My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

configuration_store.cpp 29KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Configuration and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V26"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. #define MAX_EXTRUDERS 4
  41. /**
  42. * V24 EEPROM Layout:
  43. *
  44. * 100 Version (char x4)
  45. * 104 EEPROM Checksum (uint16_t)
  46. *
  47. * 106 M92 XYZE planner.axis_steps_per_mm (float x4)
  48. * 122 M203 XYZE planner.max_feedrate_mm_s (float x4)
  49. * 138 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4)
  50. * 154 M204 P planner.acceleration (float)
  51. * 158 M204 R planner.retract_acceleration (float)
  52. * 162 M204 T planner.travel_acceleration (float)
  53. * 166 M205 S planner.min_feedrate_mm_s (float)
  54. * 170 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 174 M205 B planner.min_segment_time (ulong)
  56. * 178 M205 X planner.max_jerk[X_AXIS] (float)
  57. * 182 M205 Y planner.max_jerk[Y_AXIS] (float)
  58. * 186 M205 Z planner.max_jerk[Z_AXIS] (float)
  59. * 190 M205 E planner.max_jerk[E_AXIS] (float)
  60. * 194 M206 XYZ home_offset (float x3)
  61. *
  62. * Mesh bed leveling:
  63. * 206 M420 S status (uint8)
  64. * 207 z_offset (float)
  65. * 211 mesh_num_x (uint8 as set in firmware)
  66. * 212 mesh_num_y (uint8 as set in firmware)
  67. * 213 G29 S3 XYZ z_values[][] (float x9, by default, up to float x 81)
  68. *
  69. * AUTO BED LEVELING
  70. * 249 M851 zprobe_zoffset (float)
  71. *
  72. * DELTA:
  73. * 253 M666 XYZ endstop_adj (float x3)
  74. * 265 M665 R delta_radius (float)
  75. * 269 M665 L delta_diagonal_rod (float)
  76. * 273 M665 S delta_segments_per_second (float)
  77. * 277 M665 A delta_diagonal_rod_trim_tower_1 (float)
  78. * 281 M665 B delta_diagonal_rod_trim_tower_2 (float)
  79. * 285 M665 C delta_diagonal_rod_trim_tower_3 (float)
  80. *
  81. * Z_DUAL_ENDSTOPS:
  82. * 289 M666 Z z_endstop_adj (float)
  83. *
  84. * ULTIPANEL:
  85. * 293 M145 S0 H preheatHotendTemp1 (int)
  86. * 295 M145 S0 B preheatBedTemp1 (int)
  87. * 297 M145 S0 F preheatFanSpeed1 (int)
  88. * 299 M145 S1 H preheatHotendTemp2 (int)
  89. * 301 M145 S1 B preheatBedTemp2 (int)
  90. * 303 M145 S1 F preheatFanSpeed2 (int)
  91. *
  92. * PIDTEMP:
  93. * 305 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  94. * 321 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  95. * 337 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  96. * 353 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  97. * 369 M301 L lpq_len (int)
  98. *
  99. * PIDTEMPBED:
  100. * 371 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
  101. *
  102. * DOGLCD:
  103. * 383 M250 C lcd_contrast (int)
  104. *
  105. * FWRETRACT:
  106. * 385 M209 S autoretract_enabled (bool)
  107. * 386 M207 S retract_length (float)
  108. * 390 M207 W retract_length_swap (float)
  109. * 394 M207 F retract_feedrate_mm_s (float)
  110. * 399 M207 Z retract_zlift (float)
  111. * 402 M208 S retract_recover_length (float)
  112. * 406 M208 W retract_recover_length_swap (float)
  113. * 410 M208 F retract_recover_feedrate_mm_s (float)
  114. *
  115. * Volumetric Extrusion:
  116. * 414 M200 D volumetric_enabled (bool)
  117. * 415 M200 T D filament_size (float x4) (T0..3)
  118. *
  119. * 431 This Slot is Available!
  120. *
  121. */
  122. #include "Marlin.h"
  123. #include "language.h"
  124. #include "endstops.h"
  125. #include "planner.h"
  126. #include "temperature.h"
  127. #include "ultralcd.h"
  128. #include "configuration_store.h"
  129. #if ENABLED(MESH_BED_LEVELING)
  130. #include "mesh_bed_leveling.h"
  131. #endif
  132. uint16_t eeprom_checksum;
  133. const char version[4] = EEPROM_VERSION;
  134. void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
  135. uint8_t c;
  136. while (size--) {
  137. eeprom_write_byte((unsigned char*)pos, *value);
  138. c = eeprom_read_byte((unsigned char*)pos);
  139. if (c != *value) {
  140. SERIAL_ECHO_START;
  141. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  142. }
  143. eeprom_checksum += c;
  144. pos++;
  145. value++;
  146. };
  147. }
  148. void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
  149. do {
  150. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  151. *value = c;
  152. eeprom_checksum += c;
  153. pos++;
  154. value++;
  155. } while (--size);
  156. }
  157. /**
  158. * Post-process after Retrieve or Reset
  159. */
  160. void Config_Postprocess() {
  161. // steps per s2 needs to be updated to agree with units per s2
  162. planner.reset_acceleration_rates();
  163. // Make sure delta kinematics are updated before refreshing the
  164. // planner position so the stepper counts will be set correctly.
  165. #if ENABLED(DELTA)
  166. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  167. #endif
  168. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  169. // and init stepper.count[], planner.position[] with current_position
  170. planner.refresh_positioning();
  171. #if ENABLED(PIDTEMP)
  172. thermalManager.updatePID();
  173. #endif
  174. calculate_volumetric_multipliers();
  175. // Software endstops depend on home_offset
  176. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  177. }
  178. #if ENABLED(EEPROM_SETTINGS)
  179. #define DUMMY_PID_VALUE 3000.0f
  180. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  181. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  182. #define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  183. #define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
  184. /**
  185. * M500 - Store Configuration
  186. */
  187. void Config_StoreSettings() {
  188. float dummy = 0.0f;
  189. char ver[4] = "000";
  190. EEPROM_START();
  191. EEPROM_WRITE(ver); // invalidate data first
  192. EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
  193. eeprom_checksum = 0; // clear before first "real data"
  194. EEPROM_WRITE(planner.axis_steps_per_mm);
  195. EEPROM_WRITE(planner.max_feedrate_mm_s);
  196. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  197. EEPROM_WRITE(planner.acceleration);
  198. EEPROM_WRITE(planner.retract_acceleration);
  199. EEPROM_WRITE(planner.travel_acceleration);
  200. EEPROM_WRITE(planner.min_feedrate_mm_s);
  201. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  202. EEPROM_WRITE(planner.min_segment_time);
  203. EEPROM_WRITE(planner.max_jerk);
  204. EEPROM_WRITE(home_offset);
  205. #if ENABLED(MESH_BED_LEVELING)
  206. // Compile time test that sizeof(mbl.z_values) is as expected
  207. typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
  208. uint8_t mesh_num_x = MESH_NUM_X_POINTS,
  209. mesh_num_y = MESH_NUM_Y_POINTS,
  210. dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
  211. EEPROM_WRITE(dummy_uint8);
  212. EEPROM_WRITE(mbl.z_offset);
  213. EEPROM_WRITE(mesh_num_x);
  214. EEPROM_WRITE(mesh_num_y);
  215. EEPROM_WRITE(mbl.z_values);
  216. #else
  217. // For disabled MBL write a default mesh
  218. uint8_t mesh_num_x = 3,
  219. mesh_num_y = 3,
  220. dummy_uint8 = 0;
  221. dummy = 0.0f;
  222. EEPROM_WRITE(dummy_uint8);
  223. EEPROM_WRITE(dummy);
  224. EEPROM_WRITE(mesh_num_x);
  225. EEPROM_WRITE(mesh_num_y);
  226. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE(dummy);
  227. #endif // MESH_BED_LEVELING
  228. #if !HAS_BED_PROBE
  229. float zprobe_zoffset = 0;
  230. #endif
  231. EEPROM_WRITE(zprobe_zoffset);
  232. // 9 floats for DELTA / Z_DUAL_ENDSTOPS
  233. #if ENABLED(DELTA)
  234. EEPROM_WRITE(endstop_adj); // 3 floats
  235. EEPROM_WRITE(delta_radius); // 1 float
  236. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  237. EEPROM_WRITE(delta_segments_per_second); // 1 float
  238. EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
  239. EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
  240. EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
  241. #elif ENABLED(Z_DUAL_ENDSTOPS)
  242. EEPROM_WRITE(z_endstop_adj); // 1 float
  243. dummy = 0.0f;
  244. for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
  245. #else
  246. dummy = 0.0f;
  247. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  248. #endif
  249. #if DISABLED(ULTIPANEL)
  250. int preheatHotendTemp1 = PREHEAT_1_TEMP_HOTEND, preheatBedTemp1 = PREHEAT_1_TEMP_BED, preheatFanSpeed1 = PREHEAT_1_FAN_SPEED,
  251. preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND, preheatBedTemp2 = PREHEAT_2_TEMP_BED, preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
  252. #endif // !ULTIPANEL
  253. EEPROM_WRITE(preheatHotendTemp1);
  254. EEPROM_WRITE(preheatBedTemp1);
  255. EEPROM_WRITE(preheatFanSpeed1);
  256. EEPROM_WRITE(preheatHotendTemp2);
  257. EEPROM_WRITE(preheatBedTemp2);
  258. EEPROM_WRITE(preheatFanSpeed2);
  259. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  260. #if ENABLED(PIDTEMP)
  261. if (e < HOTENDS) {
  262. EEPROM_WRITE(PID_PARAM(Kp, e));
  263. EEPROM_WRITE(PID_PARAM(Ki, e));
  264. EEPROM_WRITE(PID_PARAM(Kd, e));
  265. #if ENABLED(PID_EXTRUSION_SCALING)
  266. EEPROM_WRITE(PID_PARAM(Kc, e));
  267. #else
  268. dummy = 1.0f; // 1.0 = default kc
  269. EEPROM_WRITE(dummy);
  270. #endif
  271. }
  272. else
  273. #endif // !PIDTEMP
  274. {
  275. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  276. EEPROM_WRITE(dummy); // Kp
  277. dummy = 0.0f;
  278. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  279. }
  280. } // Hotends Loop
  281. #if DISABLED(PID_EXTRUSION_SCALING)
  282. int lpq_len = 20;
  283. #endif
  284. EEPROM_WRITE(lpq_len);
  285. #if DISABLED(PIDTEMPBED)
  286. dummy = DUMMY_PID_VALUE;
  287. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  288. #else
  289. EEPROM_WRITE(thermalManager.bedKp);
  290. EEPROM_WRITE(thermalManager.bedKi);
  291. EEPROM_WRITE(thermalManager.bedKd);
  292. #endif
  293. #if !HAS_LCD_CONTRAST
  294. const int lcd_contrast = 32;
  295. #endif
  296. EEPROM_WRITE(lcd_contrast);
  297. #if ENABLED(FWRETRACT)
  298. EEPROM_WRITE(autoretract_enabled);
  299. EEPROM_WRITE(retract_length);
  300. #if EXTRUDERS > 1
  301. EEPROM_WRITE(retract_length_swap);
  302. #else
  303. dummy = 0.0f;
  304. EEPROM_WRITE(dummy);
  305. #endif
  306. EEPROM_WRITE(retract_feedrate_mm_s);
  307. EEPROM_WRITE(retract_zlift);
  308. EEPROM_WRITE(retract_recover_length);
  309. #if EXTRUDERS > 1
  310. EEPROM_WRITE(retract_recover_length_swap);
  311. #else
  312. dummy = 0.0f;
  313. EEPROM_WRITE(dummy);
  314. #endif
  315. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  316. #endif // FWRETRACT
  317. EEPROM_WRITE(volumetric_enabled);
  318. // Save filament sizes
  319. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  320. if (q < COUNT(filament_size)) dummy = filament_size[q];
  321. EEPROM_WRITE(dummy);
  322. }
  323. uint16_t final_checksum = eeprom_checksum,
  324. eeprom_size = eeprom_index;
  325. eeprom_index = EEPROM_OFFSET;
  326. EEPROM_WRITE(version);
  327. EEPROM_WRITE(final_checksum);
  328. // Report storage size
  329. SERIAL_ECHO_START;
  330. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
  331. SERIAL_ECHOLNPGM(" bytes)");
  332. }
  333. /**
  334. * M501 - Retrieve Configuration
  335. */
  336. void Config_RetrieveSettings() {
  337. EEPROM_START();
  338. char stored_ver[4];
  339. EEPROM_READ(stored_ver);
  340. uint16_t stored_checksum;
  341. EEPROM_READ(stored_checksum);
  342. // SERIAL_ECHOPAIR("Version: [", ver);
  343. // SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
  344. // SERIAL_CHAR(']');
  345. // SERIAL_EOL;
  346. if (strncmp(version, stored_ver, 3) != 0) {
  347. Config_ResetDefault();
  348. }
  349. else {
  350. float dummy = 0;
  351. eeprom_checksum = 0; // clear before reading first "real data"
  352. // version number match
  353. EEPROM_READ(planner.axis_steps_per_mm);
  354. EEPROM_READ(planner.max_feedrate_mm_s);
  355. EEPROM_READ(planner.max_acceleration_mm_per_s2);
  356. EEPROM_READ(planner.acceleration);
  357. EEPROM_READ(planner.retract_acceleration);
  358. EEPROM_READ(planner.travel_acceleration);
  359. EEPROM_READ(planner.min_feedrate_mm_s);
  360. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  361. EEPROM_READ(planner.min_segment_time);
  362. EEPROM_READ(planner.max_jerk);
  363. EEPROM_READ(home_offset);
  364. uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
  365. EEPROM_READ(dummy_uint8);
  366. EEPROM_READ(dummy);
  367. EEPROM_READ(mesh_num_x);
  368. EEPROM_READ(mesh_num_y);
  369. #if ENABLED(MESH_BED_LEVELING)
  370. mbl.status = dummy_uint8;
  371. mbl.z_offset = dummy;
  372. if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
  373. // EEPROM data fits the current mesh
  374. EEPROM_READ(mbl.z_values);
  375. }
  376. else {
  377. // EEPROM data is stale
  378. mbl.reset();
  379. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
  380. }
  381. #else
  382. // MBL is disabled - skip the stored data
  383. for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
  384. #endif // MESH_BED_LEVELING
  385. #if !HAS_BED_PROBE
  386. float zprobe_zoffset = 0;
  387. #endif
  388. EEPROM_READ(zprobe_zoffset);
  389. #if ENABLED(DELTA)
  390. EEPROM_READ(endstop_adj); // 3 floats
  391. EEPROM_READ(delta_radius); // 1 float
  392. EEPROM_READ(delta_diagonal_rod); // 1 float
  393. EEPROM_READ(delta_segments_per_second); // 1 float
  394. EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
  395. EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
  396. EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
  397. #elif ENABLED(Z_DUAL_ENDSTOPS)
  398. EEPROM_READ(z_endstop_adj);
  399. dummy = 0.0f;
  400. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  401. #else
  402. dummy = 0.0f;
  403. for (uint8_t q=9; q--;) EEPROM_READ(dummy);
  404. #endif
  405. #if DISABLED(ULTIPANEL)
  406. int preheatHotendTemp1, preheatBedTemp1, preheatFanSpeed1,
  407. preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2;
  408. #endif
  409. EEPROM_READ(preheatHotendTemp1);
  410. EEPROM_READ(preheatBedTemp1);
  411. EEPROM_READ(preheatFanSpeed1);
  412. EEPROM_READ(preheatHotendTemp2);
  413. EEPROM_READ(preheatBedTemp2);
  414. EEPROM_READ(preheatFanSpeed2);
  415. #if ENABLED(PIDTEMP)
  416. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  417. EEPROM_READ(dummy); // Kp
  418. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  419. // do not need to scale PID values as the values in EEPROM are already scaled
  420. PID_PARAM(Kp, e) = dummy;
  421. EEPROM_READ(PID_PARAM(Ki, e));
  422. EEPROM_READ(PID_PARAM(Kd, e));
  423. #if ENABLED(PID_EXTRUSION_SCALING)
  424. EEPROM_READ(PID_PARAM(Kc, e));
  425. #else
  426. EEPROM_READ(dummy);
  427. #endif
  428. }
  429. else {
  430. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  431. }
  432. }
  433. #else // !PIDTEMP
  434. // 4 x 4 = 16 slots for PID parameters
  435. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  436. #endif // !PIDTEMP
  437. #if DISABLED(PID_EXTRUSION_SCALING)
  438. int lpq_len;
  439. #endif
  440. EEPROM_READ(lpq_len);
  441. #if ENABLED(PIDTEMPBED)
  442. EEPROM_READ(dummy); // bedKp
  443. if (dummy != DUMMY_PID_VALUE) {
  444. thermalManager.bedKp = dummy;
  445. EEPROM_READ(thermalManager.bedKi);
  446. EEPROM_READ(thermalManager.bedKd);
  447. }
  448. #else
  449. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  450. #endif
  451. #if !HAS_LCD_CONTRAST
  452. int lcd_contrast;
  453. #endif
  454. EEPROM_READ(lcd_contrast);
  455. #if ENABLED(FWRETRACT)
  456. EEPROM_READ(autoretract_enabled);
  457. EEPROM_READ(retract_length);
  458. #if EXTRUDERS > 1
  459. EEPROM_READ(retract_length_swap);
  460. #else
  461. EEPROM_READ(dummy);
  462. #endif
  463. EEPROM_READ(retract_feedrate_mm_s);
  464. EEPROM_READ(retract_zlift);
  465. EEPROM_READ(retract_recover_length);
  466. #if EXTRUDERS > 1
  467. EEPROM_READ(retract_recover_length_swap);
  468. #else
  469. EEPROM_READ(dummy);
  470. #endif
  471. EEPROM_READ(retract_recover_feedrate_mm_s);
  472. #endif // FWRETRACT
  473. EEPROM_READ(volumetric_enabled);
  474. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  475. EEPROM_READ(dummy);
  476. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  477. }
  478. if (eeprom_checksum == stored_checksum) {
  479. Config_Postprocess();
  480. SERIAL_ECHO_START;
  481. SERIAL_ECHO(version);
  482. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index);
  483. SERIAL_ECHOLNPGM(" bytes)");
  484. }
  485. else {
  486. SERIAL_ERROR_START;
  487. SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
  488. Config_ResetDefault();
  489. }
  490. }
  491. #if ENABLED(EEPROM_CHITCHAT)
  492. Config_PrintSettings();
  493. #endif
  494. }
  495. #endif // EEPROM_SETTINGS
  496. /**
  497. * M502 - Reset Configuration
  498. */
  499. void Config_ResetDefault() {
  500. float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
  501. float tmp2[] = DEFAULT_MAX_FEEDRATE;
  502. long tmp3[] = DEFAULT_MAX_ACCELERATION;
  503. LOOP_XYZE(i) {
  504. planner.axis_steps_per_mm[i] = tmp1[i];
  505. planner.max_feedrate_mm_s[i] = tmp2[i];
  506. planner.max_acceleration_mm_per_s2[i] = tmp3[i];
  507. }
  508. planner.acceleration = DEFAULT_ACCELERATION;
  509. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  510. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  511. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  512. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  513. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  514. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  515. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  516. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  517. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  518. home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
  519. #if ENABLED(MESH_BED_LEVELING)
  520. mbl.reset();
  521. #endif
  522. #if HAS_BED_PROBE
  523. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  524. #endif
  525. #if ENABLED(DELTA)
  526. const float adj[ABC] = DELTA_ENDSTOP_ADJ;
  527. endstop_adj[A_AXIS] = adj[A_AXIS];
  528. endstop_adj[B_AXIS] = adj[B_AXIS];
  529. endstop_adj[C_AXIS] = adj[C_AXIS];
  530. delta_radius = DELTA_RADIUS;
  531. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  532. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  533. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  534. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  535. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  536. #elif ENABLED(Z_DUAL_ENDSTOPS)
  537. z_endstop_adj = 0;
  538. #endif
  539. #if ENABLED(ULTIPANEL)
  540. preheatHotendTemp1 = PREHEAT_1_TEMP_HOTEND;
  541. preheatBedTemp1 = PREHEAT_1_TEMP_BED;
  542. preheatFanSpeed1 = PREHEAT_1_FAN_SPEED;
  543. preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND;
  544. preheatBedTemp2 = PREHEAT_2_TEMP_BED;
  545. preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
  546. #endif
  547. #if HAS_LCD_CONTRAST
  548. lcd_contrast = DEFAULT_LCD_CONTRAST;
  549. #endif
  550. #if ENABLED(PIDTEMP)
  551. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  552. HOTEND_LOOP()
  553. #else
  554. int e = 0; UNUSED(e); // only need to write once
  555. #endif
  556. {
  557. PID_PARAM(Kp, e) = DEFAULT_Kp;
  558. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  559. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  560. #if ENABLED(PID_EXTRUSION_SCALING)
  561. PID_PARAM(Kc, e) = DEFAULT_Kc;
  562. #endif
  563. }
  564. #if ENABLED(PID_EXTRUSION_SCALING)
  565. lpq_len = 20; // default last-position-queue size
  566. #endif
  567. #endif // PIDTEMP
  568. #if ENABLED(PIDTEMPBED)
  569. thermalManager.bedKp = DEFAULT_bedKp;
  570. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  571. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  572. #endif
  573. #if ENABLED(FWRETRACT)
  574. autoretract_enabled = false;
  575. retract_length = RETRACT_LENGTH;
  576. #if EXTRUDERS > 1
  577. retract_length_swap = RETRACT_LENGTH_SWAP;
  578. #endif
  579. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  580. retract_zlift = RETRACT_ZLIFT;
  581. retract_recover_length = RETRACT_RECOVER_LENGTH;
  582. #if EXTRUDERS > 1
  583. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  584. #endif
  585. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  586. #endif
  587. volumetric_enabled = false;
  588. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  589. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  590. endstops.enable_globally(
  591. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  592. (true)
  593. #else
  594. (false)
  595. #endif
  596. );
  597. Config_Postprocess();
  598. SERIAL_ECHO_START;
  599. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  600. }
  601. #if DISABLED(DISABLE_M503)
  602. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
  603. /**
  604. * M503 - Print Configuration
  605. */
  606. void Config_PrintSettings(bool forReplay) {
  607. // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
  608. CONFIG_ECHO_START;
  609. if (!forReplay) {
  610. SERIAL_ECHOLNPGM("Steps per unit:");
  611. CONFIG_ECHO_START;
  612. }
  613. SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
  614. SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
  615. SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
  616. SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
  617. SERIAL_EOL;
  618. CONFIG_ECHO_START;
  619. if (!forReplay) {
  620. SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
  621. CONFIG_ECHO_START;
  622. }
  623. SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
  624. SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
  625. SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
  626. SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
  627. SERIAL_EOL;
  628. CONFIG_ECHO_START;
  629. if (!forReplay) {
  630. SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
  631. CONFIG_ECHO_START;
  632. }
  633. SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
  634. SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
  635. SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
  636. SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
  637. SERIAL_EOL;
  638. CONFIG_ECHO_START;
  639. if (!forReplay) {
  640. SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
  641. CONFIG_ECHO_START;
  642. }
  643. SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
  644. SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
  645. SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
  646. SERIAL_EOL;
  647. CONFIG_ECHO_START;
  648. if (!forReplay) {
  649. SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
  650. CONFIG_ECHO_START;
  651. }
  652. SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
  653. SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
  654. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  655. SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]);
  656. SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]);
  657. SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]);
  658. SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
  659. SERIAL_EOL;
  660. CONFIG_ECHO_START;
  661. if (!forReplay) {
  662. SERIAL_ECHOLNPGM("Home offset (mm)");
  663. CONFIG_ECHO_START;
  664. }
  665. SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
  666. SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
  667. SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
  668. SERIAL_EOL;
  669. #if ENABLED(MESH_BED_LEVELING)
  670. if (!forReplay) {
  671. SERIAL_ECHOLNPGM("Mesh bed leveling:");
  672. CONFIG_ECHO_START;
  673. }
  674. SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
  675. SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
  676. SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
  677. SERIAL_EOL;
  678. for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
  679. for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
  680. CONFIG_ECHO_START;
  681. SERIAL_ECHOPAIR(" G29 S3 X", px);
  682. SERIAL_ECHOPAIR(" Y", py);
  683. SERIAL_ECHOPGM(" Z");
  684. SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
  685. SERIAL_EOL;
  686. }
  687. }
  688. #endif
  689. #if ENABLED(DELTA)
  690. CONFIG_ECHO_START;
  691. if (!forReplay) {
  692. SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
  693. CONFIG_ECHO_START;
  694. }
  695. SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
  696. SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
  697. SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
  698. SERIAL_EOL;
  699. CONFIG_ECHO_START;
  700. if (!forReplay) {
  701. SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
  702. CONFIG_ECHO_START;
  703. }
  704. SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
  705. SERIAL_ECHOPAIR(" R", delta_radius);
  706. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  707. SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
  708. SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
  709. SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
  710. SERIAL_EOL;
  711. #elif ENABLED(Z_DUAL_ENDSTOPS)
  712. CONFIG_ECHO_START;
  713. if (!forReplay) {
  714. SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
  715. CONFIG_ECHO_START;
  716. }
  717. SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
  718. SERIAL_EOL;
  719. #endif // DELTA
  720. #if ENABLED(ULTIPANEL)
  721. CONFIG_ECHO_START;
  722. if (!forReplay) {
  723. SERIAL_ECHOLNPGM("Material heatup parameters:");
  724. CONFIG_ECHO_START;
  725. }
  726. SERIAL_ECHOPAIR(" M145 S0 H", preheatHotendTemp1);
  727. SERIAL_ECHOPAIR(" B", preheatBedTemp1);
  728. SERIAL_ECHOPAIR(" F", preheatFanSpeed1);
  729. SERIAL_EOL;
  730. CONFIG_ECHO_START;
  731. SERIAL_ECHOPAIR(" M145 S1 H", preheatHotendTemp2);
  732. SERIAL_ECHOPAIR(" B", preheatBedTemp2);
  733. SERIAL_ECHOPAIR(" F", preheatFanSpeed2);
  734. SERIAL_EOL;
  735. #endif // ULTIPANEL
  736. #if HAS_PID_HEATING
  737. CONFIG_ECHO_START;
  738. if (!forReplay) {
  739. SERIAL_ECHOLNPGM("PID settings:");
  740. }
  741. #if ENABLED(PIDTEMP)
  742. #if HOTENDS > 1
  743. if (forReplay) {
  744. HOTEND_LOOP() {
  745. CONFIG_ECHO_START;
  746. SERIAL_ECHOPAIR(" M301 E", e);
  747. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  748. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  749. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  750. #if ENABLED(PID_EXTRUSION_SCALING)
  751. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  752. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  753. #endif
  754. SERIAL_EOL;
  755. }
  756. }
  757. else
  758. #endif // HOTENDS > 1
  759. // !forReplay || HOTENDS == 1
  760. {
  761. CONFIG_ECHO_START;
  762. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  763. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  764. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  765. #if ENABLED(PID_EXTRUSION_SCALING)
  766. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  767. SERIAL_ECHOPAIR(" L", lpq_len);
  768. #endif
  769. SERIAL_EOL;
  770. }
  771. #endif // PIDTEMP
  772. #if ENABLED(PIDTEMPBED)
  773. CONFIG_ECHO_START;
  774. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  775. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  776. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  777. SERIAL_EOL;
  778. #endif
  779. #endif // PIDTEMP || PIDTEMPBED
  780. #if HAS_LCD_CONTRAST
  781. CONFIG_ECHO_START;
  782. if (!forReplay) {
  783. SERIAL_ECHOLNPGM("LCD Contrast:");
  784. CONFIG_ECHO_START;
  785. }
  786. SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
  787. SERIAL_EOL;
  788. #endif
  789. #if ENABLED(FWRETRACT)
  790. CONFIG_ECHO_START;
  791. if (!forReplay) {
  792. SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
  793. CONFIG_ECHO_START;
  794. }
  795. SERIAL_ECHOPAIR(" M207 S", retract_length);
  796. #if EXTRUDERS > 1
  797. SERIAL_ECHOPAIR(" W", retract_length_swap);
  798. #endif
  799. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
  800. SERIAL_ECHOPAIR(" Z", retract_zlift);
  801. SERIAL_EOL;
  802. CONFIG_ECHO_START;
  803. if (!forReplay) {
  804. SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
  805. CONFIG_ECHO_START;
  806. }
  807. SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
  808. #if EXTRUDERS > 1
  809. SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
  810. #endif
  811. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
  812. SERIAL_EOL;
  813. CONFIG_ECHO_START;
  814. if (!forReplay) {
  815. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  816. CONFIG_ECHO_START;
  817. }
  818. SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  819. SERIAL_EOL;
  820. #endif // FWRETRACT
  821. /**
  822. * Volumetric extrusion M200
  823. */
  824. if (!forReplay) {
  825. CONFIG_ECHO_START;
  826. SERIAL_ECHOPGM("Filament settings:");
  827. if (volumetric_enabled)
  828. SERIAL_EOL;
  829. else
  830. SERIAL_ECHOLNPGM(" Disabled");
  831. }
  832. CONFIG_ECHO_START;
  833. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  834. SERIAL_EOL;
  835. #if EXTRUDERS > 1
  836. CONFIG_ECHO_START;
  837. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  838. SERIAL_EOL;
  839. #if EXTRUDERS > 2
  840. CONFIG_ECHO_START;
  841. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  842. SERIAL_EOL;
  843. #if EXTRUDERS > 3
  844. CONFIG_ECHO_START;
  845. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  846. SERIAL_EOL;
  847. #endif
  848. #endif
  849. #endif
  850. if (!volumetric_enabled) {
  851. CONFIG_ECHO_START;
  852. SERIAL_ECHOLNPGM(" M200 D0");
  853. }
  854. /**
  855. * Auto Bed Leveling
  856. */
  857. #if HAS_BED_PROBE
  858. if (!forReplay) {
  859. CONFIG_ECHO_START;
  860. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  861. }
  862. CONFIG_ECHO_START;
  863. SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
  864. SERIAL_EOL;
  865. #endif
  866. }
  867. #endif // !DISABLE_M503