My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

settings.cpp 115KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * settings.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. */
  36. // Change EEPROM version if the structure changes
  37. #define EEPROM_VERSION "V83"
  38. #define EEPROM_OFFSET 100
  39. // Check the integrity of data offsets.
  40. // Can be disabled for production build.
  41. //#define DEBUG_EEPROM_READWRITE
  42. #include "settings.h"
  43. #include "endstops.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "../lcd/marlinui.h"
  48. #include "../libs/vector_3.h" // for matrix_3x3
  49. #include "../gcode/gcode.h"
  50. #include "../MarlinCore.h"
  51. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  52. #include "../HAL/shared/eeprom_api.h"
  53. #endif
  54. #include "probe.h"
  55. #if HAS_LEVELING
  56. #include "../feature/bedlevel/bedlevel.h"
  57. #endif
  58. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  59. #include "../feature/z_stepper_align.h"
  60. #endif
  61. #if ENABLED(EXTENSIBLE_UI)
  62. #include "../lcd/extui/ui_api.h"
  63. #endif
  64. #if HAS_SERVOS
  65. #include "servo.h"
  66. #endif
  67. #if HAS_SERVOS && HAS_SERVO_ANGLES
  68. #define EEPROM_NUM_SERVOS NUM_SERVOS
  69. #else
  70. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  71. #endif
  72. #include "../feature/fwretract.h"
  73. #if ENABLED(POWER_LOSS_RECOVERY)
  74. #include "../feature/powerloss.h"
  75. #endif
  76. #if HAS_POWER_MONITOR
  77. #include "../feature/power_monitor.h"
  78. #endif
  79. #include "../feature/pause.h"
  80. #if ENABLED(BACKLASH_COMPENSATION)
  81. #include "../feature/backlash.h"
  82. #endif
  83. #if HAS_FILAMENT_SENSOR
  84. #include "../feature/runout.h"
  85. #ifndef FIL_RUNOUT_ENABLED_DEFAULT
  86. #define FIL_RUNOUT_ENABLED_DEFAULT true
  87. #endif
  88. #endif
  89. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  90. extern float other_extruder_advance_K[EXTRUDERS];
  91. #endif
  92. #if HAS_MULTI_EXTRUDER
  93. #include "tool_change.h"
  94. void M217_report(const bool eeprom);
  95. #endif
  96. #if ENABLED(BLTOUCH)
  97. #include "../feature/bltouch.h"
  98. #endif
  99. #if HAS_TRINAMIC_CONFIG
  100. #include "stepper/indirection.h"
  101. #include "../feature/tmc_util.h"
  102. #endif
  103. #if ENABLED(PROBE_TEMP_COMPENSATION)
  104. #include "../feature/probe_temp_comp.h"
  105. #endif
  106. #include "../feature/controllerfan.h"
  107. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  108. void M710_report(const bool forReplay);
  109. #endif
  110. #if ENABLED(CASE_LIGHT_ENABLE)
  111. #include "../feature/caselight.h"
  112. #endif
  113. #if ENABLED(PASSWORD_FEATURE)
  114. #include "../feature/password/password.h"
  115. #endif
  116. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  117. #include "../lcd/tft_io/touch_calibration.h"
  118. #endif
  119. #if HAS_ETHERNET
  120. #include "../feature/ethernet.h"
  121. #endif
  122. #if ENABLED(SOUND_MENU_ITEM)
  123. #include "../libs/buzzer.h"
  124. #endif
  125. #if ENABLED(DGUS_LCD_UI_MKS)
  126. #include "../lcd/extui/dgus/DGUSScreenHandler.h"
  127. #include "../lcd/extui/dgus/DGUSDisplayDef.h"
  128. #endif
  129. #pragma pack(push, 1) // No padding between variables
  130. #if HAS_ETHERNET
  131. void ETH0_report();
  132. void MAC_report();
  133. void M552_report();
  134. void M553_report();
  135. void M554_report();
  136. #endif
  137. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stepper_current_t;
  138. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_hybrid_threshold_t;
  139. typedef struct { int16_t X, Y, Z, X2, Y2, Z2, Z3, Z4; } tmc_sgt_t;
  140. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stealth_enabled_t;
  141. // Limit an index to an array size
  142. #define ALIM(I,ARR) _MIN(I, (signed)COUNT(ARR) - 1)
  143. // Defaults for reset / fill in on load
  144. static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  145. static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
  146. static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  147. /**
  148. * Current EEPROM Layout
  149. *
  150. * Keep this data structure up to date so
  151. * EEPROM size is known at compile time!
  152. */
  153. typedef struct SettingsDataStruct {
  154. char version[4]; // Vnn\0
  155. uint16_t crc; // Data Checksum
  156. //
  157. // DISTINCT_E_FACTORS
  158. //
  159. uint8_t esteppers; // DISTINCT_AXES - LINEAR_AXES
  160. planner_settings_t planner_settings;
  161. xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
  162. float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  163. xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
  164. #if HAS_HOTEND_OFFSET
  165. xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
  166. #endif
  167. //
  168. // FILAMENT_RUNOUT_SENSOR
  169. //
  170. bool runout_sensor_enabled; // M412 S
  171. float runout_distance_mm; // M412 D
  172. //
  173. // ENABLE_LEVELING_FADE_HEIGHT
  174. //
  175. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  176. //
  177. // MESH_BED_LEVELING
  178. //
  179. float mbl_z_offset; // mbl.z_offset
  180. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  181. float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // mbl.z_values
  182. [TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)];
  183. //
  184. // HAS_BED_PROBE
  185. //
  186. xyz_pos_t probe_offset;
  187. //
  188. // ABL_PLANAR
  189. //
  190. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  191. //
  192. // AUTO_BED_LEVELING_BILINEAR
  193. //
  194. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  195. xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
  196. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  197. bed_mesh_t z_values; // G29
  198. #else
  199. float z_values[3][3];
  200. #endif
  201. //
  202. // AUTO_BED_LEVELING_UBL
  203. //
  204. bool planner_leveling_active; // M420 S planner.leveling_active
  205. int8_t ubl_storage_slot; // ubl.storage_slot
  206. //
  207. // SERVO_ANGLES
  208. //
  209. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  210. //
  211. // Temperature first layer compensation values
  212. //
  213. #if ENABLED(PROBE_TEMP_COMPENSATION)
  214. int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V
  215. z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V
  216. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  217. , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V
  218. #endif
  219. ;
  220. #endif
  221. //
  222. // BLTOUCH
  223. //
  224. bool bltouch_last_written_mode;
  225. //
  226. // DELTA / [XYZ]_DUAL_ENDSTOPS
  227. //
  228. #if ENABLED(DELTA)
  229. float delta_height; // M666 H
  230. abc_float_t delta_endstop_adj; // M666 X Y Z
  231. float delta_radius, // M665 R
  232. delta_diagonal_rod, // M665 L
  233. segments_per_second; // M665 S
  234. abc_float_t delta_tower_angle_trim, // M665 X Y Z
  235. delta_diagonal_rod_trim; // M665 A B C
  236. #elif HAS_EXTRA_ENDSTOPS
  237. float x2_endstop_adj, // M666 X
  238. y2_endstop_adj, // M666 Y
  239. z2_endstop_adj, // M666 (S2) Z
  240. z3_endstop_adj, // M666 (S3) Z
  241. z4_endstop_adj; // M666 (S4) Z
  242. #endif
  243. //
  244. // Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS
  245. //
  246. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  247. xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y
  248. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  249. xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y
  250. #endif
  251. #endif
  252. //
  253. // Material Presets
  254. //
  255. #if PREHEAT_COUNT
  256. preheat_t ui_material_preset[PREHEAT_COUNT]; // M145 S0 H B F
  257. #endif
  258. //
  259. // PIDTEMP
  260. //
  261. PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
  262. int16_t lpq_len; // M301 L
  263. //
  264. // PIDTEMPBED
  265. //
  266. PID_t bedPID; // M304 PID / M303 E-1 U
  267. //
  268. // PIDTEMPCHAMBER
  269. //
  270. PID_t chamberPID; // M309 PID / M303 E-2 U
  271. //
  272. // User-defined Thermistors
  273. //
  274. #if HAS_USER_THERMISTORS
  275. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  276. #endif
  277. //
  278. // Power monitor
  279. //
  280. uint8_t power_monitor_flags; // M430 I V W
  281. //
  282. // HAS_LCD_CONTRAST
  283. //
  284. int16_t lcd_contrast; // M250 C
  285. //
  286. // Controller fan settings
  287. //
  288. controllerFan_settings_t controllerFan_settings; // M710
  289. //
  290. // POWER_LOSS_RECOVERY
  291. //
  292. bool recovery_enabled; // M413 S
  293. //
  294. // FWRETRACT
  295. //
  296. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  297. bool autoretract_enabled; // M209 S
  298. //
  299. // !NO_VOLUMETRIC
  300. //
  301. bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled
  302. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  303. float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[]
  304. //
  305. // HAS_TRINAMIC_CONFIG
  306. //
  307. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  308. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  309. tmc_sgt_t tmc_sgt; // M914 X Y Z X2 Y2 Z2 Z3 Z4
  310. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  311. //
  312. // LIN_ADVANCE
  313. //
  314. float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K
  315. //
  316. // HAS_MOTOR_CURRENT_PWM
  317. //
  318. #ifndef MOTOR_CURRENT_COUNT
  319. #define MOTOR_CURRENT_COUNT LINEAR_AXES
  320. #endif
  321. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // M907 X Z E
  322. //
  323. // CNC_COORDINATE_SYSTEMS
  324. //
  325. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
  326. //
  327. // SKEW_CORRECTION
  328. //
  329. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  330. //
  331. // ADVANCED_PAUSE_FEATURE
  332. //
  333. #if HAS_EXTRUDERS
  334. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  335. #endif
  336. //
  337. // Tool-change settings
  338. //
  339. #if HAS_MULTI_EXTRUDER
  340. toolchange_settings_t toolchange_settings; // M217 S P R
  341. #endif
  342. //
  343. // BACKLASH_COMPENSATION
  344. //
  345. xyz_float_t backlash_distance_mm; // M425 X Y Z
  346. uint8_t backlash_correction; // M425 F
  347. float backlash_smoothing_mm; // M425 S
  348. //
  349. // EXTENSIBLE_UI
  350. //
  351. #if ENABLED(EXTENSIBLE_UI)
  352. // This is a significant hardware change; don't reserve space when not present
  353. uint8_t extui_data[ExtUI::eeprom_data_size];
  354. #endif
  355. //
  356. // CASELIGHT_USES_BRIGHTNESS
  357. //
  358. #if CASELIGHT_USES_BRIGHTNESS
  359. uint8_t caselight_brightness; // M355 P
  360. #endif
  361. //
  362. // PASSWORD_FEATURE
  363. //
  364. #if ENABLED(PASSWORD_FEATURE)
  365. bool password_is_set;
  366. uint32_t password_value;
  367. #endif
  368. //
  369. // TOUCH_SCREEN_CALIBRATION
  370. //
  371. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  372. touch_calibration_t touch_calibration_data;
  373. #endif
  374. // Ethernet settings
  375. #if HAS_ETHERNET
  376. bool ethernet_hardware_enabled; // M552 S
  377. uint32_t ethernet_ip, // M552 P
  378. ethernet_dns,
  379. ethernet_gateway, // M553 P
  380. ethernet_subnet; // M554 P
  381. #endif
  382. //
  383. // Buzzer enable/disable
  384. //
  385. #if ENABLED(SOUND_MENU_ITEM)
  386. bool buzzer_enabled;
  387. #endif
  388. //
  389. // MKS UI controller
  390. //
  391. #if ENABLED(DGUS_LCD_UI_MKS)
  392. uint8_t mks_language_index; // Display Language
  393. xy_int_t mks_corner_offsets[5]; // Bed Tramming
  394. xyz_int_t mks_park_pos; // Custom Parking (without NOZZLE_PARK)
  395. celsius_t mks_min_extrusion_temp; // Min E Temp (shadow M302 value)
  396. #endif
  397. #if HAS_MULTI_LANGUAGE
  398. uint8_t ui_language; // M414 S
  399. #endif
  400. } SettingsData;
  401. //static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!");
  402. MarlinSettings settings;
  403. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  404. /**
  405. * Post-process after Retrieve or Reset
  406. */
  407. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  408. float new_z_fade_height;
  409. #endif
  410. void MarlinSettings::postprocess() {
  411. xyze_pos_t oldpos = current_position;
  412. // steps per s2 needs to be updated to agree with units per s2
  413. planner.reset_acceleration_rates();
  414. // Make sure delta kinematics are updated before refreshing the
  415. // planner position so the stepper counts will be set correctly.
  416. TERN_(DELTA, recalc_delta_settings());
  417. TERN_(PIDTEMP, thermalManager.updatePID());
  418. #if DISABLED(NO_VOLUMETRICS)
  419. planner.calculate_volumetric_multipliers();
  420. #elif EXTRUDERS
  421. for (uint8_t i = COUNT(planner.e_factor); i--;)
  422. planner.refresh_e_factor(i);
  423. #endif
  424. // Software endstops depend on home_offset
  425. LOOP_LINEAR_AXES(i) {
  426. update_workspace_offset((AxisEnum)i);
  427. update_software_endstops((AxisEnum)i);
  428. }
  429. TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report
  430. TERN_(AUTO_BED_LEVELING_BILINEAR, refresh_bed_level());
  431. TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power());
  432. TERN_(FWRETRACT, fwretract.refresh_autoretract());
  433. TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk());
  434. TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.update_brightness());
  435. TERN_(EXTENSIBLE_UI, ExtUI::onPostprocessSettings());
  436. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  437. // and init stepper.count[], planner.position[] with current_position
  438. planner.refresh_positioning();
  439. // Various factors can change the current position
  440. if (oldpos != current_position)
  441. report_current_position();
  442. }
  443. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  444. #include "printcounter.h"
  445. static_assert(
  446. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  447. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  448. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  449. );
  450. #endif
  451. #if ENABLED(SD_FIRMWARE_UPDATE)
  452. #if ENABLED(EEPROM_SETTINGS)
  453. static_assert(
  454. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  455. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  456. );
  457. #endif
  458. bool MarlinSettings::sd_update_status() {
  459. uint8_t val;
  460. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  461. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  462. }
  463. bool MarlinSettings::set_sd_update_status(const bool enable) {
  464. if (enable != sd_update_status())
  465. persistentStore.write_data(
  466. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  467. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  468. );
  469. return true;
  470. }
  471. #endif // SD_FIRMWARE_UPDATE
  472. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  473. static_assert(EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
  474. "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data.");
  475. #endif
  476. //
  477. // This file simply uses the DEBUG_ECHO macros to implement EEPROM_CHITCHAT.
  478. // For deeper debugging of EEPROM issues enable DEBUG_EEPROM_READWRITE.
  479. //
  480. #define DEBUG_OUT EITHER(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  481. #include "../core/debug_out.h"
  482. #if ENABLED(EEPROM_SETTINGS)
  483. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  484. #if ENABLED(DEBUG_EEPROM_READWRITE)
  485. #define _FIELD_TEST(FIELD) \
  486. EEPROM_ASSERT( \
  487. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  488. "Field " STRINGIFY(FIELD) " mismatch." \
  489. )
  490. #else
  491. #define _FIELD_TEST(FIELD) NOOP
  492. #endif
  493. const char version[4] = EEPROM_VERSION;
  494. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  495. int MarlinSettings::eeprom_index;
  496. uint16_t MarlinSettings::working_crc;
  497. bool MarlinSettings::size_error(const uint16_t size) {
  498. if (size != datasize()) {
  499. DEBUG_ERROR_MSG("EEPROM datasize error.");
  500. return true;
  501. }
  502. return false;
  503. }
  504. /**
  505. * M500 - Store Configuration
  506. */
  507. bool MarlinSettings::save() {
  508. float dummyf = 0;
  509. char ver[4] = "ERR";
  510. if (!EEPROM_START(EEPROM_OFFSET)) return false;
  511. eeprom_error = false;
  512. // Write or Skip version. (Flash doesn't allow rewrite without erase.)
  513. TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver);
  514. EEPROM_SKIP(working_crc); // Skip the checksum slot
  515. working_crc = 0; // clear before first "real data"
  516. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - LINEAR_AXES;
  517. _FIELD_TEST(esteppers);
  518. EEPROM_WRITE(esteppers);
  519. //
  520. // Planner Motion
  521. //
  522. {
  523. EEPROM_WRITE(planner.settings);
  524. #if HAS_CLASSIC_JERK
  525. EEPROM_WRITE(planner.max_jerk);
  526. #if HAS_LINEAR_E_JERK
  527. dummyf = float(DEFAULT_EJERK);
  528. EEPROM_WRITE(dummyf);
  529. #endif
  530. #else
  531. const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) };
  532. EEPROM_WRITE(planner_max_jerk);
  533. #endif
  534. TERN_(CLASSIC_JERK, dummyf = 0.02f);
  535. EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  536. }
  537. //
  538. // Home Offset
  539. //
  540. {
  541. _FIELD_TEST(home_offset);
  542. #if HAS_SCARA_OFFSET
  543. EEPROM_WRITE(scara_home_offset);
  544. #else
  545. #if !HAS_HOME_OFFSET
  546. const xyz_pos_t home_offset{0};
  547. #endif
  548. EEPROM_WRITE(home_offset);
  549. #endif
  550. }
  551. //
  552. // Hotend Offsets, if any
  553. //
  554. {
  555. #if HAS_HOTEND_OFFSET
  556. // Skip hotend 0 which must be 0
  557. LOOP_S_L_N(e, 1, HOTENDS)
  558. EEPROM_WRITE(hotend_offset[e]);
  559. #endif
  560. }
  561. //
  562. // Filament Runout Sensor
  563. //
  564. {
  565. #if HAS_FILAMENT_SENSOR
  566. const bool &runout_sensor_enabled = runout.enabled;
  567. #else
  568. constexpr int8_t runout_sensor_enabled = -1;
  569. #endif
  570. _FIELD_TEST(runout_sensor_enabled);
  571. EEPROM_WRITE(runout_sensor_enabled);
  572. #if HAS_FILAMENT_RUNOUT_DISTANCE
  573. const float &runout_distance_mm = runout.runout_distance();
  574. #else
  575. constexpr float runout_distance_mm = 0;
  576. #endif
  577. EEPROM_WRITE(runout_distance_mm);
  578. }
  579. //
  580. // Global Leveling
  581. //
  582. {
  583. const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, (DEFAULT_LEVELING_FADE_HEIGHT));
  584. EEPROM_WRITE(zfh);
  585. }
  586. //
  587. // Mesh Bed Leveling
  588. //
  589. {
  590. #if ENABLED(MESH_BED_LEVELING)
  591. static_assert(
  592. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  593. "MBL Z array is the wrong size."
  594. );
  595. #else
  596. dummyf = 0;
  597. #endif
  598. const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3),
  599. mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3);
  600. EEPROM_WRITE(TERN(MESH_BED_LEVELING, mbl.z_offset, dummyf));
  601. EEPROM_WRITE(mesh_num_x);
  602. EEPROM_WRITE(mesh_num_y);
  603. #if ENABLED(MESH_BED_LEVELING)
  604. EEPROM_WRITE(mbl.z_values);
  605. #else
  606. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
  607. #endif
  608. }
  609. //
  610. // Probe XYZ Offsets
  611. //
  612. {
  613. _FIELD_TEST(probe_offset);
  614. #if HAS_BED_PROBE
  615. const xyz_pos_t &zpo = probe.offset;
  616. #else
  617. constexpr xyz_pos_t zpo{0};
  618. #endif
  619. EEPROM_WRITE(zpo);
  620. }
  621. //
  622. // Planar Bed Leveling matrix
  623. //
  624. {
  625. #if ABL_PLANAR
  626. EEPROM_WRITE(planner.bed_level_matrix);
  627. #else
  628. dummyf = 0;
  629. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
  630. #endif
  631. }
  632. //
  633. // Bilinear Auto Bed Leveling
  634. //
  635. {
  636. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  637. static_assert(
  638. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  639. "Bilinear Z array is the wrong size."
  640. );
  641. #else
  642. const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
  643. #endif
  644. const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3),
  645. grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3);
  646. EEPROM_WRITE(grid_max_x);
  647. EEPROM_WRITE(grid_max_y);
  648. EEPROM_WRITE(bilinear_grid_spacing);
  649. EEPROM_WRITE(bilinear_start);
  650. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  651. EEPROM_WRITE(z_values); // 9-256 floats
  652. #else
  653. dummyf = 0;
  654. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
  655. #endif
  656. }
  657. //
  658. // Unified Bed Leveling
  659. //
  660. {
  661. _FIELD_TEST(planner_leveling_active);
  662. const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false);
  663. const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, ubl.storage_slot, -1);
  664. EEPROM_WRITE(ubl_active);
  665. EEPROM_WRITE(storage_slot);
  666. }
  667. //
  668. // Servo Angles
  669. //
  670. {
  671. _FIELD_TEST(servo_angles);
  672. #if !HAS_SERVO_ANGLES
  673. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  674. #endif
  675. EEPROM_WRITE(servo_angles);
  676. }
  677. //
  678. // Thermal first layer compensation values
  679. //
  680. #if ENABLED(PROBE_TEMP_COMPENSATION)
  681. EEPROM_WRITE(temp_comp.z_offsets_probe);
  682. EEPROM_WRITE(temp_comp.z_offsets_bed);
  683. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  684. EEPROM_WRITE(temp_comp.z_offsets_ext);
  685. #endif
  686. #else
  687. // No placeholder data for this feature
  688. #endif
  689. //
  690. // BLTOUCH
  691. //
  692. {
  693. _FIELD_TEST(bltouch_last_written_mode);
  694. const bool bltouch_last_written_mode = TERN(BLTOUCH, bltouch.last_written_mode, false);
  695. EEPROM_WRITE(bltouch_last_written_mode);
  696. }
  697. //
  698. // DELTA Geometry or Dual Endstops offsets
  699. //
  700. {
  701. #if ENABLED(DELTA)
  702. _FIELD_TEST(delta_height);
  703. EEPROM_WRITE(delta_height); // 1 float
  704. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  705. EEPROM_WRITE(delta_radius); // 1 float
  706. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  707. EEPROM_WRITE(segments_per_second); // 1 float
  708. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  709. EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
  710. #elif HAS_EXTRA_ENDSTOPS
  711. _FIELD_TEST(x2_endstop_adj);
  712. // Write dual endstops in X, Y, Z order. Unused = 0.0
  713. dummyf = 0;
  714. EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  715. EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  716. EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  717. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  718. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  719. #else
  720. EEPROM_WRITE(dummyf);
  721. #endif
  722. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  723. EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
  724. #else
  725. EEPROM_WRITE(dummyf);
  726. #endif
  727. #endif
  728. }
  729. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  730. EEPROM_WRITE(z_stepper_align.xy);
  731. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  732. EEPROM_WRITE(z_stepper_align.stepper_xy);
  733. #endif
  734. #endif
  735. //
  736. // LCD Preheat settings
  737. //
  738. #if PREHEAT_COUNT
  739. _FIELD_TEST(ui_material_preset);
  740. EEPROM_WRITE(ui.material_preset);
  741. #endif
  742. //
  743. // PIDTEMP
  744. //
  745. {
  746. _FIELD_TEST(hotendPID);
  747. HOTEND_LOOP() {
  748. PIDCF_t pidcf = {
  749. #if DISABLED(PIDTEMP)
  750. NAN, NAN, NAN,
  751. NAN, NAN
  752. #else
  753. PID_PARAM(Kp, e),
  754. unscalePID_i(PID_PARAM(Ki, e)),
  755. unscalePID_d(PID_PARAM(Kd, e)),
  756. PID_PARAM(Kc, e),
  757. PID_PARAM(Kf, e)
  758. #endif
  759. };
  760. EEPROM_WRITE(pidcf);
  761. }
  762. _FIELD_TEST(lpq_len);
  763. #if DISABLED(PID_EXTRUSION_SCALING)
  764. const int16_t lpq_len = 20;
  765. #endif
  766. EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len));
  767. }
  768. //
  769. // PIDTEMPBED
  770. //
  771. {
  772. _FIELD_TEST(bedPID);
  773. const PID_t bed_pid = {
  774. #if DISABLED(PIDTEMPBED)
  775. NAN, NAN, NAN
  776. #else
  777. // Store the unscaled PID values
  778. thermalManager.temp_bed.pid.Kp,
  779. unscalePID_i(thermalManager.temp_bed.pid.Ki),
  780. unscalePID_d(thermalManager.temp_bed.pid.Kd)
  781. #endif
  782. };
  783. EEPROM_WRITE(bed_pid);
  784. }
  785. //
  786. // PIDTEMPCHAMBER
  787. //
  788. {
  789. _FIELD_TEST(chamberPID);
  790. const PID_t chamber_pid = {
  791. #if DISABLED(PIDTEMPCHAMBER)
  792. NAN, NAN, NAN
  793. #else
  794. // Store the unscaled PID values
  795. thermalManager.temp_chamber.pid.Kp,
  796. unscalePID_i(thermalManager.temp_chamber.pid.Ki),
  797. unscalePID_d(thermalManager.temp_chamber.pid.Kd)
  798. #endif
  799. };
  800. EEPROM_WRITE(chamber_pid);
  801. }
  802. //
  803. // User-defined Thermistors
  804. //
  805. #if HAS_USER_THERMISTORS
  806. {
  807. _FIELD_TEST(user_thermistor);
  808. EEPROM_WRITE(thermalManager.user_thermistor);
  809. }
  810. #endif
  811. //
  812. // Power monitor
  813. //
  814. {
  815. #if HAS_POWER_MONITOR
  816. const uint8_t &power_monitor_flags = power_monitor.flags;
  817. #else
  818. constexpr uint8_t power_monitor_flags = 0x00;
  819. #endif
  820. _FIELD_TEST(power_monitor_flags);
  821. EEPROM_WRITE(power_monitor_flags);
  822. }
  823. //
  824. // LCD Contrast
  825. //
  826. {
  827. _FIELD_TEST(lcd_contrast);
  828. const int16_t lcd_contrast =
  829. #if HAS_LCD_CONTRAST
  830. ui.contrast
  831. #else
  832. 127
  833. #endif
  834. ;
  835. EEPROM_WRITE(lcd_contrast);
  836. }
  837. //
  838. // Controller Fan
  839. //
  840. {
  841. _FIELD_TEST(controllerFan_settings);
  842. #if ENABLED(USE_CONTROLLER_FAN)
  843. const controllerFan_settings_t &cfs = controllerFan.settings;
  844. #else
  845. controllerFan_settings_t cfs = controllerFan_defaults;
  846. #endif
  847. EEPROM_WRITE(cfs);
  848. }
  849. //
  850. // Power-Loss Recovery
  851. //
  852. {
  853. _FIELD_TEST(recovery_enabled);
  854. const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT));
  855. EEPROM_WRITE(recovery_enabled);
  856. }
  857. //
  858. // Firmware Retraction
  859. //
  860. {
  861. _FIELD_TEST(fwretract_settings);
  862. #if DISABLED(FWRETRACT)
  863. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  864. #endif
  865. EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults));
  866. #if DISABLED(FWRETRACT_AUTORETRACT)
  867. const bool autoretract_enabled = false;
  868. #endif
  869. EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled));
  870. }
  871. //
  872. // Volumetric & Filament Size
  873. //
  874. {
  875. _FIELD_TEST(parser_volumetric_enabled);
  876. #if DISABLED(NO_VOLUMETRICS)
  877. EEPROM_WRITE(parser.volumetric_enabled);
  878. EEPROM_WRITE(planner.filament_size);
  879. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  880. EEPROM_WRITE(planner.volumetric_extruder_limit);
  881. #else
  882. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  883. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  884. #endif
  885. #else
  886. const bool volumetric_enabled = false;
  887. EEPROM_WRITE(volumetric_enabled);
  888. dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
  889. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  890. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  891. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  892. #endif
  893. }
  894. //
  895. // TMC Configuration
  896. //
  897. {
  898. _FIELD_TEST(tmc_stepper_current);
  899. tmc_stepper_current_t tmc_stepper_current{0};
  900. #if HAS_TRINAMIC_CONFIG
  901. #if AXIS_IS_TMC(X)
  902. tmc_stepper_current.X = stepperX.getMilliamps();
  903. #endif
  904. #if AXIS_IS_TMC(Y)
  905. tmc_stepper_current.Y = stepperY.getMilliamps();
  906. #endif
  907. #if AXIS_IS_TMC(Z)
  908. tmc_stepper_current.Z = stepperZ.getMilliamps();
  909. #endif
  910. #if AXIS_IS_TMC(X2)
  911. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  912. #endif
  913. #if AXIS_IS_TMC(Y2)
  914. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  915. #endif
  916. #if AXIS_IS_TMC(Z2)
  917. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  918. #endif
  919. #if AXIS_IS_TMC(Z3)
  920. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  921. #endif
  922. #if AXIS_IS_TMC(Z4)
  923. tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
  924. #endif
  925. #if AXIS_IS_TMC(E0)
  926. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  927. #endif
  928. #if AXIS_IS_TMC(E1)
  929. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  930. #endif
  931. #if AXIS_IS_TMC(E2)
  932. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  933. #endif
  934. #if AXIS_IS_TMC(E3)
  935. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  936. #endif
  937. #if AXIS_IS_TMC(E4)
  938. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  939. #endif
  940. #if AXIS_IS_TMC(E5)
  941. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  942. #endif
  943. #if AXIS_IS_TMC(E6)
  944. tmc_stepper_current.E6 = stepperE6.getMilliamps();
  945. #endif
  946. #if AXIS_IS_TMC(E7)
  947. tmc_stepper_current.E7 = stepperE7.getMilliamps();
  948. #endif
  949. #endif
  950. EEPROM_WRITE(tmc_stepper_current);
  951. }
  952. //
  953. // TMC Hybrid Threshold, and placeholder values
  954. //
  955. {
  956. _FIELD_TEST(tmc_hybrid_threshold);
  957. #if ENABLED(HYBRID_THRESHOLD)
  958. tmc_hybrid_threshold_t tmc_hybrid_threshold{0};
  959. #if AXIS_HAS_STEALTHCHOP(X)
  960. tmc_hybrid_threshold.X = stepperX.get_pwm_thrs();
  961. #endif
  962. #if AXIS_HAS_STEALTHCHOP(Y)
  963. tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs();
  964. #endif
  965. #if AXIS_HAS_STEALTHCHOP(Z)
  966. tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs();
  967. #endif
  968. #if AXIS_HAS_STEALTHCHOP(X2)
  969. tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs();
  970. #endif
  971. #if AXIS_HAS_STEALTHCHOP(Y2)
  972. tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs();
  973. #endif
  974. #if AXIS_HAS_STEALTHCHOP(Z2)
  975. tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs();
  976. #endif
  977. #if AXIS_HAS_STEALTHCHOP(Z3)
  978. tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs();
  979. #endif
  980. #if AXIS_HAS_STEALTHCHOP(Z4)
  981. tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs();
  982. #endif
  983. #if AXIS_HAS_STEALTHCHOP(E0)
  984. tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs();
  985. #endif
  986. #if AXIS_HAS_STEALTHCHOP(E1)
  987. tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs();
  988. #endif
  989. #if AXIS_HAS_STEALTHCHOP(E2)
  990. tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs();
  991. #endif
  992. #if AXIS_HAS_STEALTHCHOP(E3)
  993. tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs();
  994. #endif
  995. #if AXIS_HAS_STEALTHCHOP(E4)
  996. tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs();
  997. #endif
  998. #if AXIS_HAS_STEALTHCHOP(E5)
  999. tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs();
  1000. #endif
  1001. #if AXIS_HAS_STEALTHCHOP(E6)
  1002. tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs();
  1003. #endif
  1004. #if AXIS_HAS_STEALTHCHOP(E7)
  1005. tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs();
  1006. #endif
  1007. #else
  1008. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  1009. .X = 100, .Y = 100, .Z = 3,
  1010. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3,
  1011. .E0 = 30, .E1 = 30, .E2 = 30,
  1012. .E3 = 30, .E4 = 30, .E5 = 30
  1013. };
  1014. #endif
  1015. EEPROM_WRITE(tmc_hybrid_threshold);
  1016. }
  1017. //
  1018. // TMC StallGuard threshold
  1019. //
  1020. {
  1021. tmc_sgt_t tmc_sgt{0};
  1022. #if USE_SENSORLESS
  1023. TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold());
  1024. TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold());
  1025. TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold());
  1026. TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold());
  1027. TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold());
  1028. TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold());
  1029. TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold());
  1030. TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold());
  1031. #endif
  1032. EEPROM_WRITE(tmc_sgt);
  1033. }
  1034. //
  1035. // TMC stepping mode
  1036. //
  1037. {
  1038. _FIELD_TEST(tmc_stealth_enabled);
  1039. tmc_stealth_enabled_t tmc_stealth_enabled = { false };
  1040. #if AXIS_HAS_STEALTHCHOP(X)
  1041. tmc_stealth_enabled.X = stepperX.get_stored_stealthChop();
  1042. #endif
  1043. #if AXIS_HAS_STEALTHCHOP(Y)
  1044. tmc_stealth_enabled.Y = stepperY.get_stored_stealthChop();
  1045. #endif
  1046. #if AXIS_HAS_STEALTHCHOP(Z)
  1047. tmc_stealth_enabled.Z = stepperZ.get_stored_stealthChop();
  1048. #endif
  1049. #if AXIS_HAS_STEALTHCHOP(X2)
  1050. tmc_stealth_enabled.X2 = stepperX2.get_stored_stealthChop();
  1051. #endif
  1052. #if AXIS_HAS_STEALTHCHOP(Y2)
  1053. tmc_stealth_enabled.Y2 = stepperY2.get_stored_stealthChop();
  1054. #endif
  1055. #if AXIS_HAS_STEALTHCHOP(Z2)
  1056. tmc_stealth_enabled.Z2 = stepperZ2.get_stored_stealthChop();
  1057. #endif
  1058. #if AXIS_HAS_STEALTHCHOP(Z3)
  1059. tmc_stealth_enabled.Z3 = stepperZ3.get_stored_stealthChop();
  1060. #endif
  1061. #if AXIS_HAS_STEALTHCHOP(Z4)
  1062. tmc_stealth_enabled.Z4 = stepperZ4.get_stored_stealthChop();
  1063. #endif
  1064. #if AXIS_HAS_STEALTHCHOP(E0)
  1065. tmc_stealth_enabled.E0 = stepperE0.get_stored_stealthChop();
  1066. #endif
  1067. #if AXIS_HAS_STEALTHCHOP(E1)
  1068. tmc_stealth_enabled.E1 = stepperE1.get_stored_stealthChop();
  1069. #endif
  1070. #if AXIS_HAS_STEALTHCHOP(E2)
  1071. tmc_stealth_enabled.E2 = stepperE2.get_stored_stealthChop();
  1072. #endif
  1073. #if AXIS_HAS_STEALTHCHOP(E3)
  1074. tmc_stealth_enabled.E3 = stepperE3.get_stored_stealthChop();
  1075. #endif
  1076. #if AXIS_HAS_STEALTHCHOP(E4)
  1077. tmc_stealth_enabled.E4 = stepperE4.get_stored_stealthChop();
  1078. #endif
  1079. #if AXIS_HAS_STEALTHCHOP(E5)
  1080. tmc_stealth_enabled.E5 = stepperE5.get_stored_stealthChop();
  1081. #endif
  1082. #if AXIS_HAS_STEALTHCHOP(E6)
  1083. tmc_stealth_enabled.E6 = stepperE6.get_stored_stealthChop();
  1084. #endif
  1085. #if AXIS_HAS_STEALTHCHOP(E7)
  1086. tmc_stealth_enabled.E7 = stepperE7.get_stored_stealthChop();
  1087. #endif
  1088. EEPROM_WRITE(tmc_stealth_enabled);
  1089. }
  1090. //
  1091. // Linear Advance
  1092. //
  1093. {
  1094. _FIELD_TEST(planner_extruder_advance_K);
  1095. #if ENABLED(LIN_ADVANCE)
  1096. EEPROM_WRITE(planner.extruder_advance_K);
  1097. #else
  1098. dummyf = 0;
  1099. for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
  1100. #endif
  1101. }
  1102. //
  1103. // Motor Current PWM
  1104. //
  1105. {
  1106. _FIELD_TEST(motor_current_setting);
  1107. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1108. EEPROM_WRITE(stepper.motor_current_setting);
  1109. #else
  1110. const uint32_t no_current[MOTOR_CURRENT_COUNT] = { 0 };
  1111. EEPROM_WRITE(no_current);
  1112. #endif
  1113. }
  1114. //
  1115. // CNC Coordinate Systems
  1116. //
  1117. _FIELD_TEST(coordinate_system);
  1118. #if DISABLED(CNC_COORDINATE_SYSTEMS)
  1119. const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
  1120. #endif
  1121. EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system));
  1122. //
  1123. // Skew correction factors
  1124. //
  1125. _FIELD_TEST(planner_skew_factor);
  1126. EEPROM_WRITE(planner.skew_factor);
  1127. //
  1128. // Advanced Pause filament load & unload lengths
  1129. //
  1130. #if HAS_EXTRUDERS
  1131. {
  1132. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1133. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1134. #endif
  1135. _FIELD_TEST(fc_settings);
  1136. EEPROM_WRITE(fc_settings);
  1137. }
  1138. #endif
  1139. //
  1140. // Multiple Extruders
  1141. //
  1142. #if HAS_MULTI_EXTRUDER
  1143. _FIELD_TEST(toolchange_settings);
  1144. EEPROM_WRITE(toolchange_settings);
  1145. #endif
  1146. //
  1147. // Backlash Compensation
  1148. //
  1149. {
  1150. #if ENABLED(BACKLASH_GCODE)
  1151. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1152. const uint8_t &backlash_correction = backlash.correction;
  1153. #else
  1154. const xyz_float_t backlash_distance_mm{0};
  1155. const uint8_t backlash_correction = 0;
  1156. #endif
  1157. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1158. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1159. #else
  1160. const float backlash_smoothing_mm = 3;
  1161. #endif
  1162. _FIELD_TEST(backlash_distance_mm);
  1163. EEPROM_WRITE(backlash_distance_mm);
  1164. EEPROM_WRITE(backlash_correction);
  1165. EEPROM_WRITE(backlash_smoothing_mm);
  1166. }
  1167. //
  1168. // Extensible UI User Data
  1169. //
  1170. #if ENABLED(EXTENSIBLE_UI)
  1171. {
  1172. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1173. ExtUI::onStoreSettings(extui_data);
  1174. _FIELD_TEST(extui_data);
  1175. EEPROM_WRITE(extui_data);
  1176. }
  1177. #endif
  1178. //
  1179. // Case Light Brightness
  1180. //
  1181. #if CASELIGHT_USES_BRIGHTNESS
  1182. EEPROM_WRITE(caselight.brightness);
  1183. #endif
  1184. //
  1185. // Password feature
  1186. //
  1187. #if ENABLED(PASSWORD_FEATURE)
  1188. EEPROM_WRITE(password.is_set);
  1189. EEPROM_WRITE(password.value);
  1190. #endif
  1191. //
  1192. // TOUCH_SCREEN_CALIBRATION
  1193. //
  1194. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  1195. EEPROM_WRITE(touch_calibration.calibration);
  1196. #endif
  1197. //
  1198. // Ethernet network info
  1199. //
  1200. #if HAS_ETHERNET
  1201. {
  1202. _FIELD_TEST(ethernet_hardware_enabled);
  1203. const bool ethernet_hardware_enabled = ethernet.hardware_enabled;
  1204. const uint32_t ethernet_ip = ethernet.ip,
  1205. ethernet_dns = ethernet.myDns,
  1206. ethernet_gateway = ethernet.gateway,
  1207. ethernet_subnet = ethernet.subnet;
  1208. EEPROM_WRITE(ethernet_hardware_enabled);
  1209. EEPROM_WRITE(ethernet_ip);
  1210. EEPROM_WRITE(ethernet_dns);
  1211. EEPROM_WRITE(ethernet_gateway);
  1212. EEPROM_WRITE(ethernet_subnet);
  1213. }
  1214. #endif
  1215. //
  1216. // Buzzer enable/disable
  1217. //
  1218. #if ENABLED(SOUND_MENU_ITEM)
  1219. EEPROM_WRITE(ui.buzzer_enabled);
  1220. #endif
  1221. //
  1222. // MKS UI controller
  1223. //
  1224. #if ENABLED(DGUS_LCD_UI_MKS)
  1225. EEPROM_WRITE(mks_language_index);
  1226. EEPROM_WRITE(mks_corner_offsets);
  1227. EEPROM_WRITE(mks_park_pos);
  1228. EEPROM_WRITE(mks_min_extrusion_temp);
  1229. #endif
  1230. //
  1231. // Selected LCD language
  1232. //
  1233. #if HAS_MULTI_LANGUAGE
  1234. EEPROM_WRITE(ui.language);
  1235. #endif
  1236. //
  1237. // Report final CRC and Data Size
  1238. //
  1239. if (!eeprom_error) {
  1240. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1241. final_crc = working_crc;
  1242. // Write the EEPROM header
  1243. eeprom_index = EEPROM_OFFSET;
  1244. EEPROM_WRITE(version);
  1245. EEPROM_WRITE(final_crc);
  1246. // Report storage size
  1247. DEBUG_ECHO_MSG("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1248. eeprom_error |= size_error(eeprom_size);
  1249. }
  1250. EEPROM_FINISH();
  1251. //
  1252. // UBL Mesh
  1253. //
  1254. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1255. if (ubl.storage_slot >= 0)
  1256. store_mesh(ubl.storage_slot);
  1257. #endif
  1258. if (!eeprom_error) LCD_MESSAGEPGM(MSG_SETTINGS_STORED);
  1259. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreWritten(!eeprom_error));
  1260. return !eeprom_error;
  1261. }
  1262. /**
  1263. * M501 - Retrieve Configuration
  1264. */
  1265. bool MarlinSettings::_load() {
  1266. if (!EEPROM_START(EEPROM_OFFSET)) return false;
  1267. char stored_ver[4];
  1268. EEPROM_READ_ALWAYS(stored_ver);
  1269. uint16_t stored_crc;
  1270. EEPROM_READ_ALWAYS(stored_crc);
  1271. // Version has to match or defaults are used
  1272. if (strncmp(version, stored_ver, 3) != 0) {
  1273. if (stored_ver[3] != '\0') {
  1274. stored_ver[0] = '?';
  1275. stored_ver[1] = '\0';
  1276. }
  1277. DEBUG_ECHO_MSG("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1278. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_version());
  1279. eeprom_error = true;
  1280. }
  1281. else {
  1282. float dummyf = 0;
  1283. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1284. _FIELD_TEST(esteppers);
  1285. // Number of esteppers may change
  1286. uint8_t esteppers;
  1287. EEPROM_READ_ALWAYS(esteppers);
  1288. //
  1289. // Planner Motion
  1290. //
  1291. {
  1292. // Get only the number of E stepper parameters previously stored
  1293. // Any steppers added later are set to their defaults
  1294. uint32_t tmp1[LINEAR_AXES + esteppers];
  1295. float tmp2[LINEAR_AXES + esteppers];
  1296. feedRate_t tmp3[LINEAR_AXES + esteppers];
  1297. EEPROM_READ((uint8_t *)tmp1, sizeof(tmp1)); // max_acceleration_mm_per_s2
  1298. EEPROM_READ(planner.settings.min_segment_time_us);
  1299. EEPROM_READ((uint8_t *)tmp2, sizeof(tmp2)); // axis_steps_per_mm
  1300. EEPROM_READ((uint8_t *)tmp3, sizeof(tmp3)); // max_feedrate_mm_s
  1301. if (!validating) LOOP_DISTINCT_AXES(i) {
  1302. const bool in = (i < esteppers + LINEAR_AXES);
  1303. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  1304. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  1305. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  1306. }
  1307. EEPROM_READ(planner.settings.acceleration);
  1308. EEPROM_READ(planner.settings.retract_acceleration);
  1309. EEPROM_READ(planner.settings.travel_acceleration);
  1310. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1311. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1312. #if HAS_CLASSIC_JERK
  1313. EEPROM_READ(planner.max_jerk);
  1314. #if HAS_LINEAR_E_JERK
  1315. EEPROM_READ(dummyf);
  1316. #endif
  1317. #else
  1318. for (uint8_t q = LOGICAL_AXES; q--;) EEPROM_READ(dummyf);
  1319. #endif
  1320. EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  1321. }
  1322. //
  1323. // Home Offset (M206 / M665)
  1324. //
  1325. {
  1326. _FIELD_TEST(home_offset);
  1327. #if HAS_SCARA_OFFSET
  1328. EEPROM_READ(scara_home_offset);
  1329. #else
  1330. #if !HAS_HOME_OFFSET
  1331. xyz_pos_t home_offset;
  1332. #endif
  1333. EEPROM_READ(home_offset);
  1334. #endif
  1335. }
  1336. //
  1337. // Hotend Offsets, if any
  1338. //
  1339. {
  1340. #if HAS_HOTEND_OFFSET
  1341. // Skip hotend 0 which must be 0
  1342. LOOP_S_L_N(e, 1, HOTENDS)
  1343. EEPROM_READ(hotend_offset[e]);
  1344. #endif
  1345. }
  1346. //
  1347. // Filament Runout Sensor
  1348. //
  1349. {
  1350. int8_t runout_sensor_enabled;
  1351. _FIELD_TEST(runout_sensor_enabled);
  1352. EEPROM_READ(runout_sensor_enabled);
  1353. #if HAS_FILAMENT_SENSOR
  1354. runout.enabled = runout_sensor_enabled < 0 ? FIL_RUNOUT_ENABLED_DEFAULT : runout_sensor_enabled;
  1355. #endif
  1356. TERN_(HAS_FILAMENT_SENSOR, if (runout.enabled) runout.reset());
  1357. float runout_distance_mm;
  1358. EEPROM_READ(runout_distance_mm);
  1359. #if HAS_FILAMENT_RUNOUT_DISTANCE
  1360. if (!validating) runout.set_runout_distance(runout_distance_mm);
  1361. #endif
  1362. }
  1363. //
  1364. // Global Leveling
  1365. //
  1366. EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf));
  1367. //
  1368. // Mesh (Manual) Bed Leveling
  1369. //
  1370. {
  1371. uint8_t mesh_num_x, mesh_num_y;
  1372. EEPROM_READ(dummyf);
  1373. EEPROM_READ_ALWAYS(mesh_num_x);
  1374. EEPROM_READ_ALWAYS(mesh_num_y);
  1375. #if ENABLED(MESH_BED_LEVELING)
  1376. if (!validating) mbl.z_offset = dummyf;
  1377. if (mesh_num_x == (GRID_MAX_POINTS_X) && mesh_num_y == (GRID_MAX_POINTS_Y)) {
  1378. // EEPROM data fits the current mesh
  1379. EEPROM_READ(mbl.z_values);
  1380. }
  1381. else {
  1382. // EEPROM data is stale
  1383. if (!validating) mbl.reset();
  1384. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1385. }
  1386. #else
  1387. // MBL is disabled - skip the stored data
  1388. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1389. #endif // MESH_BED_LEVELING
  1390. }
  1391. //
  1392. // Probe Z Offset
  1393. //
  1394. {
  1395. _FIELD_TEST(probe_offset);
  1396. #if HAS_BED_PROBE
  1397. const xyz_pos_t &zpo = probe.offset;
  1398. #else
  1399. xyz_pos_t zpo;
  1400. #endif
  1401. EEPROM_READ(zpo);
  1402. }
  1403. //
  1404. // Planar Bed Leveling matrix
  1405. //
  1406. {
  1407. #if ABL_PLANAR
  1408. EEPROM_READ(planner.bed_level_matrix);
  1409. #else
  1410. for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
  1411. #endif
  1412. }
  1413. //
  1414. // Bilinear Auto Bed Leveling
  1415. //
  1416. {
  1417. uint8_t grid_max_x, grid_max_y;
  1418. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1419. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1420. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1421. if (grid_max_x == (GRID_MAX_POINTS_X) && grid_max_y == (GRID_MAX_POINTS_Y)) {
  1422. if (!validating) set_bed_leveling_enabled(false);
  1423. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1424. EEPROM_READ(bilinear_start); // 2 ints
  1425. EEPROM_READ(z_values); // 9 to 256 floats
  1426. }
  1427. else // EEPROM data is stale
  1428. #endif // AUTO_BED_LEVELING_BILINEAR
  1429. {
  1430. // Skip past disabled (or stale) Bilinear Grid data
  1431. xy_pos_t bgs, bs;
  1432. EEPROM_READ(bgs);
  1433. EEPROM_READ(bs);
  1434. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
  1435. }
  1436. }
  1437. //
  1438. // Unified Bed Leveling active state
  1439. //
  1440. {
  1441. _FIELD_TEST(planner_leveling_active);
  1442. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1443. const bool &planner_leveling_active = planner.leveling_active;
  1444. const int8_t &ubl_storage_slot = ubl.storage_slot;
  1445. #else
  1446. bool planner_leveling_active;
  1447. int8_t ubl_storage_slot;
  1448. #endif
  1449. EEPROM_READ(planner_leveling_active);
  1450. EEPROM_READ(ubl_storage_slot);
  1451. }
  1452. //
  1453. // SERVO_ANGLES
  1454. //
  1455. {
  1456. _FIELD_TEST(servo_angles);
  1457. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1458. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1459. #else
  1460. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1461. #endif
  1462. EEPROM_READ(servo_angles_arr);
  1463. }
  1464. //
  1465. // Thermal first layer compensation values
  1466. //
  1467. #if ENABLED(PROBE_TEMP_COMPENSATION)
  1468. EEPROM_READ(temp_comp.z_offsets_probe);
  1469. EEPROM_READ(temp_comp.z_offsets_bed);
  1470. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  1471. EEPROM_READ(temp_comp.z_offsets_ext);
  1472. #endif
  1473. temp_comp.reset_index();
  1474. #else
  1475. // No placeholder data for this feature
  1476. #endif
  1477. //
  1478. // BLTOUCH
  1479. //
  1480. {
  1481. _FIELD_TEST(bltouch_last_written_mode);
  1482. #if ENABLED(BLTOUCH)
  1483. const bool &bltouch_last_written_mode = bltouch.last_written_mode;
  1484. #else
  1485. bool bltouch_last_written_mode;
  1486. #endif
  1487. EEPROM_READ(bltouch_last_written_mode);
  1488. }
  1489. //
  1490. // DELTA Geometry or Dual Endstops offsets
  1491. //
  1492. {
  1493. #if ENABLED(DELTA)
  1494. _FIELD_TEST(delta_height);
  1495. EEPROM_READ(delta_height); // 1 float
  1496. EEPROM_READ(delta_endstop_adj); // 3 floats
  1497. EEPROM_READ(delta_radius); // 1 float
  1498. EEPROM_READ(delta_diagonal_rod); // 1 float
  1499. EEPROM_READ(segments_per_second); // 1 float
  1500. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1501. EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
  1502. #elif HAS_EXTRA_ENDSTOPS
  1503. _FIELD_TEST(x2_endstop_adj);
  1504. EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  1505. EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  1506. EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  1507. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  1508. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1509. #else
  1510. EEPROM_READ(dummyf);
  1511. #endif
  1512. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  1513. EEPROM_READ(endstops.z4_endstop_adj); // 1 float
  1514. #else
  1515. EEPROM_READ(dummyf);
  1516. #endif
  1517. #endif
  1518. }
  1519. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  1520. EEPROM_READ(z_stepper_align.xy);
  1521. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  1522. EEPROM_READ(z_stepper_align.stepper_xy);
  1523. #endif
  1524. #endif
  1525. //
  1526. // LCD Preheat settings
  1527. //
  1528. #if PREHEAT_COUNT
  1529. _FIELD_TEST(ui_material_preset);
  1530. EEPROM_READ(ui.material_preset);
  1531. #endif
  1532. //
  1533. // Hotend PID
  1534. //
  1535. {
  1536. HOTEND_LOOP() {
  1537. PIDCF_t pidcf;
  1538. EEPROM_READ(pidcf);
  1539. #if ENABLED(PIDTEMP)
  1540. if (!validating && !isnan(pidcf.Kp)) {
  1541. // Scale PID values since EEPROM values are unscaled
  1542. PID_PARAM(Kp, e) = pidcf.Kp;
  1543. PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
  1544. PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
  1545. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc);
  1546. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf);
  1547. }
  1548. #endif
  1549. }
  1550. }
  1551. //
  1552. // PID Extrusion Scaling
  1553. //
  1554. {
  1555. _FIELD_TEST(lpq_len);
  1556. #if ENABLED(PID_EXTRUSION_SCALING)
  1557. const int16_t &lpq_len = thermalManager.lpq_len;
  1558. #else
  1559. int16_t lpq_len;
  1560. #endif
  1561. EEPROM_READ(lpq_len);
  1562. }
  1563. //
  1564. // Heated Bed PID
  1565. //
  1566. {
  1567. PID_t pid;
  1568. EEPROM_READ(pid);
  1569. #if ENABLED(PIDTEMPBED)
  1570. if (!validating && !isnan(pid.Kp)) {
  1571. // Scale PID values since EEPROM values are unscaled
  1572. thermalManager.temp_bed.pid.Kp = pid.Kp;
  1573. thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
  1574. thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
  1575. }
  1576. #endif
  1577. }
  1578. //
  1579. // Heated Chamber PID
  1580. //
  1581. {
  1582. PID_t pid;
  1583. EEPROM_READ(pid);
  1584. #if ENABLED(PIDTEMPCHAMBER)
  1585. if (!validating && !isnan(pid.Kp)) {
  1586. // Scale PID values since EEPROM values are unscaled
  1587. thermalManager.temp_chamber.pid.Kp = pid.Kp;
  1588. thermalManager.temp_chamber.pid.Ki = scalePID_i(pid.Ki);
  1589. thermalManager.temp_chamber.pid.Kd = scalePID_d(pid.Kd);
  1590. }
  1591. #endif
  1592. }
  1593. //
  1594. // User-defined Thermistors
  1595. //
  1596. #if HAS_USER_THERMISTORS
  1597. {
  1598. _FIELD_TEST(user_thermistor);
  1599. EEPROM_READ(thermalManager.user_thermistor);
  1600. }
  1601. #endif
  1602. //
  1603. // Power monitor
  1604. //
  1605. {
  1606. #if HAS_POWER_MONITOR
  1607. uint8_t &power_monitor_flags = power_monitor.flags;
  1608. #else
  1609. uint8_t power_monitor_flags;
  1610. #endif
  1611. _FIELD_TEST(power_monitor_flags);
  1612. EEPROM_READ(power_monitor_flags);
  1613. }
  1614. //
  1615. // LCD Contrast
  1616. //
  1617. {
  1618. _FIELD_TEST(lcd_contrast);
  1619. int16_t lcd_contrast;
  1620. EEPROM_READ(lcd_contrast);
  1621. if (!validating) {
  1622. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(lcd_contrast));
  1623. }
  1624. }
  1625. //
  1626. // Controller Fan
  1627. //
  1628. {
  1629. _FIELD_TEST(controllerFan_settings);
  1630. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  1631. const controllerFan_settings_t &cfs = controllerFan.settings;
  1632. #else
  1633. controllerFan_settings_t cfs = { 0 };
  1634. #endif
  1635. EEPROM_READ(cfs);
  1636. }
  1637. //
  1638. // Power-Loss Recovery
  1639. //
  1640. {
  1641. _FIELD_TEST(recovery_enabled);
  1642. #if ENABLED(POWER_LOSS_RECOVERY)
  1643. const bool &recovery_enabled = recovery.enabled;
  1644. #else
  1645. bool recovery_enabled;
  1646. #endif
  1647. EEPROM_READ(recovery_enabled);
  1648. }
  1649. //
  1650. // Firmware Retraction
  1651. //
  1652. {
  1653. _FIELD_TEST(fwretract_settings);
  1654. #if ENABLED(FWRETRACT)
  1655. EEPROM_READ(fwretract.settings);
  1656. #else
  1657. fwretract_settings_t fwretract_settings;
  1658. EEPROM_READ(fwretract_settings);
  1659. #endif
  1660. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1661. EEPROM_READ(fwretract.autoretract_enabled);
  1662. #else
  1663. bool autoretract_enabled;
  1664. EEPROM_READ(autoretract_enabled);
  1665. #endif
  1666. }
  1667. //
  1668. // Volumetric & Filament Size
  1669. //
  1670. {
  1671. struct {
  1672. bool volumetric_enabled;
  1673. float filament_size[EXTRUDERS];
  1674. float volumetric_extruder_limit[EXTRUDERS];
  1675. } storage;
  1676. _FIELD_TEST(parser_volumetric_enabled);
  1677. EEPROM_READ(storage);
  1678. #if DISABLED(NO_VOLUMETRICS)
  1679. if (!validating) {
  1680. parser.volumetric_enabled = storage.volumetric_enabled;
  1681. COPY(planner.filament_size, storage.filament_size);
  1682. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1683. COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit);
  1684. #endif
  1685. }
  1686. #endif
  1687. }
  1688. //
  1689. // TMC Stepper Settings
  1690. //
  1691. if (!validating) reset_stepper_drivers();
  1692. // TMC Stepper Current
  1693. {
  1694. _FIELD_TEST(tmc_stepper_current);
  1695. tmc_stepper_current_t currents;
  1696. EEPROM_READ(currents);
  1697. #if HAS_TRINAMIC_CONFIG
  1698. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1699. if (!validating) {
  1700. #if AXIS_IS_TMC(X)
  1701. SET_CURR(X);
  1702. #endif
  1703. #if AXIS_IS_TMC(Y)
  1704. SET_CURR(Y);
  1705. #endif
  1706. #if AXIS_IS_TMC(Z)
  1707. SET_CURR(Z);
  1708. #endif
  1709. #if AXIS_IS_TMC(X2)
  1710. SET_CURR(X2);
  1711. #endif
  1712. #if AXIS_IS_TMC(Y2)
  1713. SET_CURR(Y2);
  1714. #endif
  1715. #if AXIS_IS_TMC(Z2)
  1716. SET_CURR(Z2);
  1717. #endif
  1718. #if AXIS_IS_TMC(Z3)
  1719. SET_CURR(Z3);
  1720. #endif
  1721. #if AXIS_IS_TMC(Z4)
  1722. SET_CURR(Z4);
  1723. #endif
  1724. #if AXIS_IS_TMC(E0)
  1725. SET_CURR(E0);
  1726. #endif
  1727. #if AXIS_IS_TMC(E1)
  1728. SET_CURR(E1);
  1729. #endif
  1730. #if AXIS_IS_TMC(E2)
  1731. SET_CURR(E2);
  1732. #endif
  1733. #if AXIS_IS_TMC(E3)
  1734. SET_CURR(E3);
  1735. #endif
  1736. #if AXIS_IS_TMC(E4)
  1737. SET_CURR(E4);
  1738. #endif
  1739. #if AXIS_IS_TMC(E5)
  1740. SET_CURR(E5);
  1741. #endif
  1742. #if AXIS_IS_TMC(E6)
  1743. SET_CURR(E6);
  1744. #endif
  1745. #if AXIS_IS_TMC(E7)
  1746. SET_CURR(E7);
  1747. #endif
  1748. }
  1749. #endif
  1750. }
  1751. // TMC Hybrid Threshold
  1752. {
  1753. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1754. _FIELD_TEST(tmc_hybrid_threshold);
  1755. EEPROM_READ(tmc_hybrid_threshold);
  1756. #if ENABLED(HYBRID_THRESHOLD)
  1757. if (!validating) {
  1758. #if AXIS_HAS_STEALTHCHOP(X)
  1759. stepperX.set_pwm_thrs(tmc_hybrid_threshold.X);
  1760. #endif
  1761. #if AXIS_HAS_STEALTHCHOP(Y)
  1762. stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y);
  1763. #endif
  1764. #if AXIS_HAS_STEALTHCHOP(Z)
  1765. stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z);
  1766. #endif
  1767. #if AXIS_HAS_STEALTHCHOP(X2)
  1768. stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2);
  1769. #endif
  1770. #if AXIS_HAS_STEALTHCHOP(Y2)
  1771. stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2);
  1772. #endif
  1773. #if AXIS_HAS_STEALTHCHOP(Z2)
  1774. stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2);
  1775. #endif
  1776. #if AXIS_HAS_STEALTHCHOP(Z3)
  1777. stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3);
  1778. #endif
  1779. #if AXIS_HAS_STEALTHCHOP(Z4)
  1780. stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4);
  1781. #endif
  1782. #if AXIS_HAS_STEALTHCHOP(E0)
  1783. stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0);
  1784. #endif
  1785. #if AXIS_HAS_STEALTHCHOP(E1)
  1786. stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1);
  1787. #endif
  1788. #if AXIS_HAS_STEALTHCHOP(E2)
  1789. stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2);
  1790. #endif
  1791. #if AXIS_HAS_STEALTHCHOP(E3)
  1792. stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3);
  1793. #endif
  1794. #if AXIS_HAS_STEALTHCHOP(E4)
  1795. stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4);
  1796. #endif
  1797. #if AXIS_HAS_STEALTHCHOP(E5)
  1798. stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5);
  1799. #endif
  1800. #if AXIS_HAS_STEALTHCHOP(E6)
  1801. stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6);
  1802. #endif
  1803. #if AXIS_HAS_STEALTHCHOP(E7)
  1804. stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7);
  1805. #endif
  1806. }
  1807. #endif
  1808. }
  1809. //
  1810. // TMC StallGuard threshold.
  1811. //
  1812. {
  1813. tmc_sgt_t tmc_sgt;
  1814. _FIELD_TEST(tmc_sgt);
  1815. EEPROM_READ(tmc_sgt);
  1816. #if USE_SENSORLESS
  1817. if (!validating) {
  1818. TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X));
  1819. TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2));
  1820. TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y));
  1821. TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2));
  1822. TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z));
  1823. TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2));
  1824. TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3));
  1825. TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4));
  1826. }
  1827. #endif
  1828. }
  1829. // TMC stepping mode
  1830. {
  1831. _FIELD_TEST(tmc_stealth_enabled);
  1832. tmc_stealth_enabled_t tmc_stealth_enabled;
  1833. EEPROM_READ(tmc_stealth_enabled);
  1834. #if HAS_TRINAMIC_CONFIG
  1835. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1836. if (!validating) {
  1837. #if AXIS_HAS_STEALTHCHOP(X)
  1838. SET_STEPPING_MODE(X);
  1839. #endif
  1840. #if AXIS_HAS_STEALTHCHOP(Y)
  1841. SET_STEPPING_MODE(Y);
  1842. #endif
  1843. #if AXIS_HAS_STEALTHCHOP(Z)
  1844. SET_STEPPING_MODE(Z);
  1845. #endif
  1846. #if AXIS_HAS_STEALTHCHOP(X2)
  1847. SET_STEPPING_MODE(X2);
  1848. #endif
  1849. #if AXIS_HAS_STEALTHCHOP(Y2)
  1850. SET_STEPPING_MODE(Y2);
  1851. #endif
  1852. #if AXIS_HAS_STEALTHCHOP(Z2)
  1853. SET_STEPPING_MODE(Z2);
  1854. #endif
  1855. #if AXIS_HAS_STEALTHCHOP(Z3)
  1856. SET_STEPPING_MODE(Z3);
  1857. #endif
  1858. #if AXIS_HAS_STEALTHCHOP(Z4)
  1859. SET_STEPPING_MODE(Z4);
  1860. #endif
  1861. #if AXIS_HAS_STEALTHCHOP(E0)
  1862. SET_STEPPING_MODE(E0);
  1863. #endif
  1864. #if AXIS_HAS_STEALTHCHOP(E1)
  1865. SET_STEPPING_MODE(E1);
  1866. #endif
  1867. #if AXIS_HAS_STEALTHCHOP(E2)
  1868. SET_STEPPING_MODE(E2);
  1869. #endif
  1870. #if AXIS_HAS_STEALTHCHOP(E3)
  1871. SET_STEPPING_MODE(E3);
  1872. #endif
  1873. #if AXIS_HAS_STEALTHCHOP(E4)
  1874. SET_STEPPING_MODE(E4);
  1875. #endif
  1876. #if AXIS_HAS_STEALTHCHOP(E5)
  1877. SET_STEPPING_MODE(E5);
  1878. #endif
  1879. #if AXIS_HAS_STEALTHCHOP(E6)
  1880. SET_STEPPING_MODE(E6);
  1881. #endif
  1882. #if AXIS_HAS_STEALTHCHOP(E7)
  1883. SET_STEPPING_MODE(E7);
  1884. #endif
  1885. }
  1886. #endif
  1887. }
  1888. //
  1889. // Linear Advance
  1890. //
  1891. {
  1892. float extruder_advance_K[_MAX(EXTRUDERS, 1)];
  1893. _FIELD_TEST(planner_extruder_advance_K);
  1894. EEPROM_READ(extruder_advance_K);
  1895. #if ENABLED(LIN_ADVANCE)
  1896. if (!validating)
  1897. COPY(planner.extruder_advance_K, extruder_advance_K);
  1898. #endif
  1899. }
  1900. //
  1901. // Motor Current PWM
  1902. //
  1903. {
  1904. _FIELD_TEST(motor_current_setting);
  1905. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]
  1906. #if HAS_MOTOR_CURRENT_SPI
  1907. = DIGIPOT_MOTOR_CURRENT
  1908. #endif
  1909. ;
  1910. #if HAS_MOTOR_CURRENT_SPI
  1911. DEBUG_ECHO_MSG("DIGIPOTS Loading");
  1912. #endif
  1913. EEPROM_READ(motor_current_setting);
  1914. #if HAS_MOTOR_CURRENT_SPI
  1915. DEBUG_ECHO_MSG("DIGIPOTS Loaded");
  1916. #endif
  1917. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1918. if (!validating)
  1919. COPY(stepper.motor_current_setting, motor_current_setting);
  1920. #endif
  1921. }
  1922. //
  1923. // CNC Coordinate System
  1924. //
  1925. {
  1926. _FIELD_TEST(coordinate_system);
  1927. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1928. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1929. EEPROM_READ(gcode.coordinate_system);
  1930. #else
  1931. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
  1932. EEPROM_READ(coordinate_system);
  1933. #endif
  1934. }
  1935. //
  1936. // Skew correction factors
  1937. //
  1938. {
  1939. skew_factor_t skew_factor;
  1940. _FIELD_TEST(planner_skew_factor);
  1941. EEPROM_READ(skew_factor);
  1942. #if ENABLED(SKEW_CORRECTION_GCODE)
  1943. if (!validating) {
  1944. planner.skew_factor.xy = skew_factor.xy;
  1945. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1946. planner.skew_factor.xz = skew_factor.xz;
  1947. planner.skew_factor.yz = skew_factor.yz;
  1948. #endif
  1949. }
  1950. #endif
  1951. }
  1952. //
  1953. // Advanced Pause filament load & unload lengths
  1954. //
  1955. #if HAS_EXTRUDERS
  1956. {
  1957. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1958. fil_change_settings_t fc_settings[EXTRUDERS];
  1959. #endif
  1960. _FIELD_TEST(fc_settings);
  1961. EEPROM_READ(fc_settings);
  1962. }
  1963. #endif
  1964. //
  1965. // Tool-change settings
  1966. //
  1967. #if HAS_MULTI_EXTRUDER
  1968. _FIELD_TEST(toolchange_settings);
  1969. EEPROM_READ(toolchange_settings);
  1970. #endif
  1971. //
  1972. // Backlash Compensation
  1973. //
  1974. {
  1975. #if ENABLED(BACKLASH_GCODE)
  1976. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1977. const uint8_t &backlash_correction = backlash.correction;
  1978. #else
  1979. xyz_float_t backlash_distance_mm;
  1980. uint8_t backlash_correction;
  1981. #endif
  1982. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1983. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1984. #else
  1985. float backlash_smoothing_mm;
  1986. #endif
  1987. _FIELD_TEST(backlash_distance_mm);
  1988. EEPROM_READ(backlash_distance_mm);
  1989. EEPROM_READ(backlash_correction);
  1990. EEPROM_READ(backlash_smoothing_mm);
  1991. }
  1992. //
  1993. // Extensible UI User Data
  1994. //
  1995. #if ENABLED(EXTENSIBLE_UI)
  1996. // This is a significant hardware change; don't reserve EEPROM space when not present
  1997. {
  1998. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1999. _FIELD_TEST(extui_data);
  2000. EEPROM_READ(extui_data);
  2001. if (!validating) ExtUI::onLoadSettings(extui_data);
  2002. }
  2003. #endif
  2004. //
  2005. // Case Light Brightness
  2006. //
  2007. #if CASELIGHT_USES_BRIGHTNESS
  2008. _FIELD_TEST(caselight_brightness);
  2009. EEPROM_READ(caselight.brightness);
  2010. #endif
  2011. //
  2012. // Password feature
  2013. //
  2014. #if ENABLED(PASSWORD_FEATURE)
  2015. _FIELD_TEST(password_is_set);
  2016. EEPROM_READ(password.is_set);
  2017. EEPROM_READ(password.value);
  2018. #endif
  2019. //
  2020. // TOUCH_SCREEN_CALIBRATION
  2021. //
  2022. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  2023. _FIELD_TEST(touch_calibration_data);
  2024. EEPROM_READ(touch_calibration.calibration);
  2025. #endif
  2026. //
  2027. // Ethernet network info
  2028. //
  2029. #if HAS_ETHERNET
  2030. _FIELD_TEST(ethernet_hardware_enabled);
  2031. uint32_t ethernet_ip, ethernet_dns, ethernet_gateway, ethernet_subnet;
  2032. EEPROM_READ(ethernet.hardware_enabled);
  2033. EEPROM_READ(ethernet_ip); ethernet.ip = ethernet_ip;
  2034. EEPROM_READ(ethernet_dns); ethernet.myDns = ethernet_dns;
  2035. EEPROM_READ(ethernet_gateway); ethernet.gateway = ethernet_gateway;
  2036. EEPROM_READ(ethernet_subnet); ethernet.subnet = ethernet_subnet;
  2037. #endif
  2038. //
  2039. // Buzzer enable/disable
  2040. //
  2041. #if ENABLED(SOUND_MENU_ITEM)
  2042. _FIELD_TEST(buzzer_enabled);
  2043. EEPROM_READ(ui.buzzer_enabled);
  2044. #endif
  2045. //
  2046. // MKS UI controller
  2047. //
  2048. #if ENABLED(DGUS_LCD_UI_MKS)
  2049. _FIELD_TEST(mks_language_index);
  2050. EEPROM_READ(mks_language_index);
  2051. EEPROM_READ(mks_corner_offsets);
  2052. EEPROM_READ(mks_park_pos);
  2053. EEPROM_READ(mks_min_extrusion_temp);
  2054. #endif
  2055. //
  2056. // Selected LCD language
  2057. //
  2058. #if HAS_MULTI_LANGUAGE
  2059. {
  2060. uint8_t ui_language;
  2061. EEPROM_READ(ui_language);
  2062. if (ui_language >= NUM_LANGUAGES) ui_language = 0;
  2063. ui.set_language(ui_language);
  2064. }
  2065. #endif
  2066. //
  2067. // Validate Final Size and CRC
  2068. //
  2069. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  2070. if (eeprom_error) {
  2071. DEBUG_ECHO_MSG("Index: ", eeprom_index - (EEPROM_OFFSET), " Size: ", datasize());
  2072. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_index());
  2073. }
  2074. else if (working_crc != stored_crc) {
  2075. eeprom_error = true;
  2076. DEBUG_ERROR_MSG("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  2077. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_crc());
  2078. }
  2079. else if (!validating) {
  2080. DEBUG_ECHO_START();
  2081. DEBUG_ECHO(version);
  2082. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  2083. }
  2084. if (!validating && !eeprom_error) postprocess();
  2085. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2086. if (!validating) {
  2087. ubl.report_state();
  2088. if (!ubl.sanity_check()) {
  2089. SERIAL_EOL();
  2090. #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  2091. ubl.echo_name();
  2092. DEBUG_ECHOLNPGM(" initialized.\n");
  2093. #endif
  2094. }
  2095. else {
  2096. eeprom_error = true;
  2097. #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  2098. DEBUG_ECHOPGM("?Can't enable ");
  2099. ubl.echo_name();
  2100. DEBUG_ECHOLNPGM(".");
  2101. #endif
  2102. ubl.reset();
  2103. }
  2104. if (ubl.storage_slot >= 0) {
  2105. load_mesh(ubl.storage_slot);
  2106. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  2107. }
  2108. else {
  2109. ubl.reset();
  2110. DEBUG_ECHOLNPGM("UBL reset");
  2111. }
  2112. }
  2113. #endif
  2114. }
  2115. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  2116. // Report the EEPROM settings
  2117. if (!validating && TERN1(EEPROM_BOOT_SILENT, IsRunning())) report();
  2118. #endif
  2119. EEPROM_FINISH();
  2120. return !eeprom_error;
  2121. }
  2122. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2123. extern bool restoreEEPROM();
  2124. #endif
  2125. bool MarlinSettings::validate() {
  2126. validating = true;
  2127. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2128. bool success = _load();
  2129. if (!success && restoreEEPROM()) {
  2130. SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
  2131. success = _load();
  2132. }
  2133. #else
  2134. const bool success = _load();
  2135. #endif
  2136. validating = false;
  2137. return success;
  2138. }
  2139. bool MarlinSettings::load() {
  2140. if (validate()) {
  2141. const bool success = _load();
  2142. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreRead(success));
  2143. return success;
  2144. }
  2145. reset();
  2146. #if ENABLED(EEPROM_AUTO_INIT)
  2147. (void)save();
  2148. SERIAL_ECHO_MSG("EEPROM Initialized");
  2149. #endif
  2150. return false;
  2151. }
  2152. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2153. inline void ubl_invalid_slot(const int s) {
  2154. DEBUG_ECHOLNPAIR("?Invalid slot.\n", s, " mesh slots available.");
  2155. UNUSED(s);
  2156. }
  2157. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  2158. // is a placeholder for the size of the MAT; the MAT will always
  2159. // live at the very end of the eeprom
  2160. uint16_t MarlinSettings::meshes_start_index() {
  2161. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  2162. // or down a little bit without disrupting the mesh data
  2163. }
  2164. #define MESH_STORE_SIZE sizeof(TERN(OPTIMIZED_MESH_STORAGE, mesh_store_t, ubl.z_values))
  2165. uint16_t MarlinSettings::calc_num_meshes() {
  2166. return (meshes_end - meshes_start_index()) / MESH_STORE_SIZE;
  2167. }
  2168. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  2169. return meshes_end - (slot + 1) * MESH_STORE_SIZE;
  2170. }
  2171. void MarlinSettings::store_mesh(const int8_t slot) {
  2172. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2173. const int16_t a = calc_num_meshes();
  2174. if (!WITHIN(slot, 0, a - 1)) {
  2175. ubl_invalid_slot(a);
  2176. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  2177. DEBUG_EOL();
  2178. return;
  2179. }
  2180. int pos = mesh_slot_offset(slot);
  2181. uint16_t crc = 0;
  2182. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2183. int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2184. ubl.set_store_from_mesh(ubl.z_values, z_mesh_store);
  2185. uint8_t * const src = (uint8_t*)&z_mesh_store;
  2186. #else
  2187. uint8_t * const src = (uint8_t*)&ubl.z_values;
  2188. #endif
  2189. // Write crc to MAT along with other data, or just tack on to the beginning or end
  2190. persistentStore.access_start();
  2191. const bool status = persistentStore.write_data(pos, src, MESH_STORE_SIZE, &crc);
  2192. persistentStore.access_finish();
  2193. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  2194. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  2195. #else
  2196. // Other mesh types
  2197. #endif
  2198. }
  2199. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  2200. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2201. const int16_t a = settings.calc_num_meshes();
  2202. if (!WITHIN(slot, 0, a - 1)) {
  2203. ubl_invalid_slot(a);
  2204. return;
  2205. }
  2206. int pos = mesh_slot_offset(slot);
  2207. uint16_t crc = 0;
  2208. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2209. int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2210. uint8_t * const dest = (uint8_t*)&z_mesh_store;
  2211. #else
  2212. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  2213. #endif
  2214. persistentStore.access_start();
  2215. const uint16_t status = persistentStore.read_data(pos, dest, MESH_STORE_SIZE, &crc);
  2216. persistentStore.access_finish();
  2217. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2218. if (into) {
  2219. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2220. ubl.set_mesh_from_store(z_mesh_store, z_values);
  2221. memcpy(into, z_values, sizeof(z_values));
  2222. }
  2223. else
  2224. ubl.set_mesh_from_store(z_mesh_store, ubl.z_values);
  2225. #endif
  2226. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  2227. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  2228. EEPROM_FINISH();
  2229. #else
  2230. // Other mesh types
  2231. #endif
  2232. }
  2233. //void MarlinSettings::delete_mesh() { return; }
  2234. //void MarlinSettings::defrag_meshes() { return; }
  2235. #endif // AUTO_BED_LEVELING_UBL
  2236. #else // !EEPROM_SETTINGS
  2237. bool MarlinSettings::save() {
  2238. DEBUG_ERROR_MSG("EEPROM disabled");
  2239. return false;
  2240. }
  2241. #endif // !EEPROM_SETTINGS
  2242. /**
  2243. * M502 - Reset Configuration
  2244. */
  2245. void MarlinSettings::reset() {
  2246. LOOP_DISTINCT_AXES(i) {
  2247. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  2248. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  2249. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  2250. }
  2251. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  2252. planner.settings.acceleration = DEFAULT_ACCELERATION;
  2253. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  2254. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  2255. planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
  2256. planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
  2257. #if HAS_CLASSIC_JERK
  2258. #ifndef DEFAULT_XJERK
  2259. #define DEFAULT_XJERK 0
  2260. #endif
  2261. #ifndef DEFAULT_YJERK
  2262. #define DEFAULT_YJERK 0
  2263. #endif
  2264. #ifndef DEFAULT_ZJERK
  2265. #define DEFAULT_ZJERK 0
  2266. #endif
  2267. planner.max_jerk.set(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK);
  2268. TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK;);
  2269. #endif
  2270. #if HAS_JUNCTION_DEVIATION
  2271. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  2272. #endif
  2273. #if HAS_SCARA_OFFSET
  2274. scara_home_offset.reset();
  2275. #elif HAS_HOME_OFFSET
  2276. home_offset.reset();
  2277. #endif
  2278. TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
  2279. //
  2280. // Filament Runout Sensor
  2281. //
  2282. #if HAS_FILAMENT_SENSOR
  2283. runout.enabled = FIL_RUNOUT_ENABLED_DEFAULT;
  2284. runout.reset();
  2285. TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM));
  2286. #endif
  2287. //
  2288. // Tool-change Settings
  2289. //
  2290. #if HAS_MULTI_EXTRUDER
  2291. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  2292. toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH;
  2293. toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH;
  2294. toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED;
  2295. toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED;
  2296. toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME;
  2297. toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED;
  2298. toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED;
  2299. toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME;
  2300. #endif
  2301. #if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
  2302. enable_first_prime = false;
  2303. #endif
  2304. #if ENABLED(TOOLCHANGE_PARK)
  2305. constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
  2306. toolchange_settings.enable_park = true;
  2307. toolchange_settings.change_point = tpxy;
  2308. #endif
  2309. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  2310. #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
  2311. migration = migration_defaults;
  2312. #endif
  2313. #endif
  2314. #if ENABLED(BACKLASH_GCODE)
  2315. backlash.correction = (BACKLASH_CORRECTION) * 255;
  2316. constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
  2317. backlash.distance_mm = tmp;
  2318. #ifdef BACKLASH_SMOOTHING_MM
  2319. backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
  2320. #endif
  2321. #endif
  2322. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2323. //
  2324. // Case Light Brightness
  2325. //
  2326. TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS);
  2327. //
  2328. // TOUCH_SCREEN_CALIBRATION
  2329. //
  2330. TERN_(TOUCH_SCREEN_CALIBRATION, touch_calibration.calibration_reset());
  2331. //
  2332. // Buzzer enable/disable
  2333. //
  2334. TERN_(SOUND_MENU_ITEM, ui.buzzer_enabled = true);
  2335. //
  2336. // Magnetic Parking Extruder
  2337. //
  2338. TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init());
  2339. //
  2340. // Global Leveling
  2341. //
  2342. TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = (DEFAULT_LEVELING_FADE_HEIGHT));
  2343. TERN_(HAS_LEVELING, reset_bed_level());
  2344. #if HAS_BED_PROBE
  2345. constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
  2346. static_assert(COUNT(dpo) == 3, "NOZZLE_TO_PROBE_OFFSET must contain offsets for X, Y, and Z.");
  2347. #if HAS_PROBE_XY_OFFSET
  2348. LOOP_LINEAR_AXES(a) probe.offset[a] = dpo[a];
  2349. #else
  2350. probe.offset.set(0, 0, dpo[Z_AXIS]);
  2351. #endif
  2352. #endif
  2353. //
  2354. // Z Stepper Auto-alignment points
  2355. //
  2356. TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default());
  2357. //
  2358. // Servo Angles
  2359. //
  2360. TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists
  2361. //
  2362. // BLTOUCH
  2363. //
  2364. //#if ENABLED(BLTOUCH)
  2365. // bltouch.last_written_mode;
  2366. //#endif
  2367. //
  2368. // Endstop Adjustments
  2369. //
  2370. #if ENABLED(DELTA)
  2371. const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM, ddr = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  2372. delta_height = DELTA_HEIGHT;
  2373. delta_endstop_adj = adj;
  2374. delta_radius = DELTA_RADIUS;
  2375. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2376. segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  2377. delta_tower_angle_trim = dta;
  2378. delta_diagonal_rod_trim = ddr;
  2379. #endif
  2380. #if ENABLED(X_DUAL_ENDSTOPS)
  2381. #ifndef X2_ENDSTOP_ADJUSTMENT
  2382. #define X2_ENDSTOP_ADJUSTMENT 0
  2383. #endif
  2384. endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
  2385. #endif
  2386. #if ENABLED(Y_DUAL_ENDSTOPS)
  2387. #ifndef Y2_ENDSTOP_ADJUSTMENT
  2388. #define Y2_ENDSTOP_ADJUSTMENT 0
  2389. #endif
  2390. endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
  2391. #endif
  2392. #if ENABLED(Z_MULTI_ENDSTOPS)
  2393. #ifndef Z2_ENDSTOP_ADJUSTMENT
  2394. #define Z2_ENDSTOP_ADJUSTMENT 0
  2395. #endif
  2396. endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
  2397. #if NUM_Z_STEPPER_DRIVERS >= 3
  2398. #ifndef Z3_ENDSTOP_ADJUSTMENT
  2399. #define Z3_ENDSTOP_ADJUSTMENT 0
  2400. #endif
  2401. endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
  2402. #endif
  2403. #if NUM_Z_STEPPER_DRIVERS >= 4
  2404. #ifndef Z4_ENDSTOP_ADJUSTMENT
  2405. #define Z4_ENDSTOP_ADJUSTMENT 0
  2406. #endif
  2407. endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
  2408. #endif
  2409. #endif
  2410. //
  2411. // Preheat parameters
  2412. //
  2413. #if PREHEAT_COUNT
  2414. #define _PITEM(N,T) PREHEAT_##N##_##T,
  2415. #if HAS_HOTEND
  2416. constexpr uint16_t hpre[] = { REPEAT2_S(1, INCREMENT(PREHEAT_COUNT), _PITEM, TEMP_HOTEND) };
  2417. #endif
  2418. #if HAS_HEATED_BED
  2419. constexpr uint16_t bpre[] = { REPEAT2_S(1, INCREMENT(PREHEAT_COUNT), _PITEM, TEMP_BED) };
  2420. #endif
  2421. #if HAS_FAN
  2422. constexpr uint8_t fpre[] = { REPEAT2_S(1, INCREMENT(PREHEAT_COUNT), _PITEM, FAN_SPEED) };
  2423. #endif
  2424. LOOP_L_N(i, PREHEAT_COUNT) {
  2425. TERN_(HAS_HOTEND, ui.material_preset[i].hotend_temp = hpre[i]);
  2426. TERN_(HAS_HEATED_BED, ui.material_preset[i].bed_temp = bpre[i]);
  2427. TERN_(HAS_FAN, ui.material_preset[i].fan_speed = fpre[i]);
  2428. }
  2429. #endif
  2430. //
  2431. // Hotend PID
  2432. //
  2433. #if ENABLED(PIDTEMP)
  2434. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2435. constexpr float defKp[] =
  2436. #ifdef DEFAULT_Kp_LIST
  2437. DEFAULT_Kp_LIST
  2438. #else
  2439. ARRAY_BY_HOTENDS1(DEFAULT_Kp)
  2440. #endif
  2441. , defKi[] =
  2442. #ifdef DEFAULT_Ki_LIST
  2443. DEFAULT_Ki_LIST
  2444. #else
  2445. ARRAY_BY_HOTENDS1(DEFAULT_Ki)
  2446. #endif
  2447. , defKd[] =
  2448. #ifdef DEFAULT_Kd_LIST
  2449. DEFAULT_Kd_LIST
  2450. #else
  2451. ARRAY_BY_HOTENDS1(DEFAULT_Kd)
  2452. #endif
  2453. ;
  2454. static_assert(WITHIN(COUNT(defKp), 1, HOTENDS), "DEFAULT_Kp_LIST must have between 1 and HOTENDS items.");
  2455. static_assert(WITHIN(COUNT(defKi), 1, HOTENDS), "DEFAULT_Ki_LIST must have between 1 and HOTENDS items.");
  2456. static_assert(WITHIN(COUNT(defKd), 1, HOTENDS), "DEFAULT_Kd_LIST must have between 1 and HOTENDS items.");
  2457. #if ENABLED(PID_EXTRUSION_SCALING)
  2458. constexpr float defKc[] =
  2459. #ifdef DEFAULT_Kc_LIST
  2460. DEFAULT_Kc_LIST
  2461. #else
  2462. ARRAY_BY_HOTENDS1(DEFAULT_Kc)
  2463. #endif
  2464. ;
  2465. static_assert(WITHIN(COUNT(defKc), 1, HOTENDS), "DEFAULT_Kc_LIST must have between 1 and HOTENDS items.");
  2466. #endif
  2467. #if ENABLED(PID_FAN_SCALING)
  2468. constexpr float defKf[] =
  2469. #ifdef DEFAULT_Kf_LIST
  2470. DEFAULT_Kf_LIST
  2471. #else
  2472. ARRAY_BY_HOTENDS1(DEFAULT_Kf)
  2473. #endif
  2474. ;
  2475. static_assert(WITHIN(COUNT(defKf), 1, HOTENDS), "DEFAULT_Kf_LIST must have between 1 and HOTENDS items.");
  2476. #endif
  2477. #define PID_DEFAULT(N,E) def##N[E]
  2478. #else
  2479. #define PID_DEFAULT(N,E) DEFAULT_##N
  2480. #endif
  2481. HOTEND_LOOP() {
  2482. PID_PARAM(Kp, e) = float(PID_DEFAULT(Kp, ALIM(e, defKp)));
  2483. PID_PARAM(Ki, e) = scalePID_i(PID_DEFAULT(Ki, ALIM(e, defKi)));
  2484. PID_PARAM(Kd, e) = scalePID_d(PID_DEFAULT(Kd, ALIM(e, defKd)));
  2485. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = float(PID_DEFAULT(Kc, ALIM(e, defKc))));
  2486. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = float(PID_DEFAULT(Kf, ALIM(e, defKf))));
  2487. }
  2488. #endif
  2489. //
  2490. // PID Extrusion Scaling
  2491. //
  2492. TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size
  2493. //
  2494. // Heated Bed PID
  2495. //
  2496. #if ENABLED(PIDTEMPBED)
  2497. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2498. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2499. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2500. #endif
  2501. //
  2502. // Heated Chamber PID
  2503. //
  2504. #if ENABLED(PIDTEMPCHAMBER)
  2505. thermalManager.temp_chamber.pid.Kp = DEFAULT_chamberKp;
  2506. thermalManager.temp_chamber.pid.Ki = scalePID_i(DEFAULT_chamberKi);
  2507. thermalManager.temp_chamber.pid.Kd = scalePID_d(DEFAULT_chamberKd);
  2508. #endif
  2509. //
  2510. // User-Defined Thermistors
  2511. //
  2512. TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors());
  2513. //
  2514. // Power Monitor
  2515. //
  2516. TERN_(POWER_MONITOR, power_monitor.reset());
  2517. //
  2518. // LCD Contrast
  2519. //
  2520. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(DEFAULT_LCD_CONTRAST));
  2521. //
  2522. // Controller Fan
  2523. //
  2524. TERN_(USE_CONTROLLER_FAN, controllerFan.reset());
  2525. //
  2526. // Power-Loss Recovery
  2527. //
  2528. TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT)));
  2529. //
  2530. // Firmware Retraction
  2531. //
  2532. TERN_(FWRETRACT, fwretract.reset());
  2533. //
  2534. // Volumetric & Filament Size
  2535. //
  2536. #if DISABLED(NO_VOLUMETRICS)
  2537. parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
  2538. LOOP_L_N(q, COUNT(planner.filament_size))
  2539. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2540. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2541. LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit))
  2542. planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  2543. #endif
  2544. #endif
  2545. endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
  2546. reset_stepper_drivers();
  2547. //
  2548. // Linear Advance
  2549. //
  2550. #if ENABLED(LIN_ADVANCE)
  2551. LOOP_L_N(i, EXTRUDERS) {
  2552. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  2553. TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[i] = LIN_ADVANCE_K);
  2554. }
  2555. #endif
  2556. //
  2557. // Motor Current PWM
  2558. //
  2559. #if HAS_MOTOR_CURRENT_PWM
  2560. constexpr uint32_t tmp_motor_current_setting[MOTOR_CURRENT_COUNT] = PWM_MOTOR_CURRENT;
  2561. LOOP_L_N(q, MOTOR_CURRENT_COUNT)
  2562. stepper.set_digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2563. #endif
  2564. //
  2565. // DIGIPOTS
  2566. //
  2567. #if HAS_MOTOR_CURRENT_SPI
  2568. static constexpr uint32_t tmp_motor_current_setting[] = DIGIPOT_MOTOR_CURRENT;
  2569. DEBUG_ECHOLNPGM("Writing Digipot");
  2570. LOOP_L_N(q, COUNT(tmp_motor_current_setting))
  2571. stepper.set_digipot_current(q, tmp_motor_current_setting[q]);
  2572. DEBUG_ECHOLNPGM("Digipot Written");
  2573. #endif
  2574. //
  2575. // CNC Coordinate System
  2576. //
  2577. TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space
  2578. //
  2579. // Skew Correction
  2580. //
  2581. #if ENABLED(SKEW_CORRECTION_GCODE)
  2582. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2583. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2584. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2585. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2586. #endif
  2587. #endif
  2588. //
  2589. // Advanced Pause filament load & unload lengths
  2590. //
  2591. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2592. LOOP_L_N(e, EXTRUDERS) {
  2593. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2594. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2595. }
  2596. #endif
  2597. #if ENABLED(PASSWORD_FEATURE)
  2598. #ifdef PASSWORD_DEFAULT_VALUE
  2599. password.is_set = true;
  2600. password.value = PASSWORD_DEFAULT_VALUE;
  2601. #else
  2602. password.is_set = false;
  2603. #endif
  2604. #endif
  2605. //
  2606. // MKS UI controller
  2607. //
  2608. TERN_(DGUS_LCD_UI_MKS, MKS_reset_settings());
  2609. postprocess();
  2610. DEBUG_ECHO_START();
  2611. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  2612. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2613. }
  2614. #if DISABLED(DISABLE_M503)
  2615. static void config_heading(const bool repl, PGM_P const pstr, const bool eol=true) {
  2616. if (!repl) {
  2617. SERIAL_ECHO_START();
  2618. SERIAL_ECHOPGM("; ");
  2619. SERIAL_ECHOPGM_P(pstr);
  2620. if (eol) SERIAL_EOL();
  2621. }
  2622. }
  2623. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  2624. #define CONFIG_ECHO_MSG(V...) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR(V); }while(0)
  2625. #define CONFIG_ECHO_HEADING(STR) config_heading(forReplay, PSTR(STR))
  2626. #if HAS_TRINAMIC_CONFIG
  2627. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  2628. #if HAS_STEALTHCHOP
  2629. void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) {
  2630. CONFIG_ECHO_START();
  2631. SERIAL_ECHOPGM(" M569 S1");
  2632. if (etc) {
  2633. SERIAL_CHAR(' ');
  2634. SERIAL_ECHOPGM_P(etc);
  2635. }
  2636. if (newLine) SERIAL_EOL();
  2637. }
  2638. #endif
  2639. #if ENABLED(HYBRID_THRESHOLD)
  2640. inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); }
  2641. #endif
  2642. #if USE_SENSORLESS
  2643. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2644. #endif
  2645. #endif
  2646. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2647. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2648. #endif
  2649. inline void say_units(const bool colon) {
  2650. SERIAL_ECHOPGM_P(
  2651. #if ENABLED(INCH_MODE_SUPPORT)
  2652. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2653. #endif
  2654. PSTR(" (mm)")
  2655. );
  2656. if (colon) SERIAL_ECHOLNPGM(":");
  2657. }
  2658. void report_M92(const bool echo=true, const int8_t e=-1);
  2659. /**
  2660. * M503 - Report current settings in RAM
  2661. *
  2662. * Unless specifically disabled, M503 is available even without EEPROM
  2663. */
  2664. void MarlinSettings::report(const bool forReplay) {
  2665. /**
  2666. * Announce current units, in case inches are being displayed
  2667. */
  2668. CONFIG_ECHO_START();
  2669. #if ENABLED(INCH_MODE_SUPPORT)
  2670. SERIAL_ECHOPGM(" G2");
  2671. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2672. SERIAL_ECHOPGM(" ;");
  2673. say_units(false);
  2674. #else
  2675. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2676. say_units(false);
  2677. #endif
  2678. SERIAL_EOL();
  2679. #if HAS_LCD_MENU
  2680. // Temperature units - for Ultipanel temperature options
  2681. CONFIG_ECHO_START();
  2682. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2683. SERIAL_ECHOPGM(" M149 ");
  2684. SERIAL_CHAR(parser.temp_units_code());
  2685. SERIAL_ECHOPGM(" ; Units in ");
  2686. SERIAL_ECHOPGM_P(parser.temp_units_name());
  2687. #else
  2688. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2689. #endif
  2690. #endif
  2691. SERIAL_EOL();
  2692. #if EXTRUDERS && DISABLED(NO_VOLUMETRICS)
  2693. /**
  2694. * Volumetric extrusion M200
  2695. */
  2696. if (!forReplay) {
  2697. config_heading(forReplay, PSTR("Filament settings:"), false);
  2698. if (parser.volumetric_enabled)
  2699. SERIAL_EOL();
  2700. else
  2701. SERIAL_ECHOLNPGM(" Disabled");
  2702. }
  2703. #if EXTRUDERS == 1
  2704. CONFIG_ECHO_MSG(" M200 S", parser.volumetric_enabled
  2705. , " D", LINEAR_UNIT(planner.filament_size[0])
  2706. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2707. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[0])
  2708. #endif
  2709. );
  2710. #else
  2711. LOOP_L_N(i, EXTRUDERS) {
  2712. CONFIG_ECHO_MSG(" M200 T", i
  2713. , " D", LINEAR_UNIT(planner.filament_size[i])
  2714. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2715. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[i])
  2716. #endif
  2717. );
  2718. }
  2719. CONFIG_ECHO_MSG(" M200 S", parser.volumetric_enabled);
  2720. #endif
  2721. #endif // EXTRUDERS && !NO_VOLUMETRICS
  2722. CONFIG_ECHO_HEADING("Steps per unit:");
  2723. report_M92(!forReplay);
  2724. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2725. CONFIG_ECHO_START();
  2726. SERIAL_ECHOLNPAIR_P(
  2727. PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
  2728. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
  2729. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
  2730. #if DISABLED(DISTINCT_E_FACTORS)
  2731. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2732. #endif
  2733. );
  2734. #if ENABLED(DISTINCT_E_FACTORS)
  2735. LOOP_L_N(i, E_STEPPERS) {
  2736. CONFIG_ECHO_START();
  2737. SERIAL_ECHOLNPAIR_P(
  2738. PSTR(" M203 T"), i
  2739. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2740. );
  2741. }
  2742. #endif
  2743. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2744. CONFIG_ECHO_START();
  2745. SERIAL_ECHOLNPAIR_P(
  2746. PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
  2747. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
  2748. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
  2749. #if DISABLED(DISTINCT_E_FACTORS)
  2750. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2751. #endif
  2752. );
  2753. #if ENABLED(DISTINCT_E_FACTORS)
  2754. LOOP_L_N(i, E_STEPPERS) {
  2755. CONFIG_ECHO_START();
  2756. SERIAL_ECHOLNPAIR_P(
  2757. PSTR(" M201 T"), i
  2758. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2759. );
  2760. }
  2761. #endif
  2762. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2763. CONFIG_ECHO_START();
  2764. SERIAL_ECHOLNPAIR_P(
  2765. PSTR(" M204 P"), LINEAR_UNIT(planner.settings.acceleration)
  2766. , PSTR(" R"), LINEAR_UNIT(planner.settings.retract_acceleration)
  2767. , SP_T_STR, LINEAR_UNIT(planner.settings.travel_acceleration)
  2768. );
  2769. CONFIG_ECHO_HEADING(
  2770. "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>"
  2771. #if HAS_JUNCTION_DEVIATION
  2772. " J<junc_dev>"
  2773. #endif
  2774. #if HAS_CLASSIC_JERK
  2775. " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>"
  2776. TERN_(HAS_CLASSIC_E_JERK, " E<max_e_jerk>")
  2777. #endif
  2778. );
  2779. CONFIG_ECHO_START();
  2780. SERIAL_ECHOLNPAIR_P(
  2781. PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us)
  2782. , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2783. , SP_T_STR, LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2784. #if HAS_JUNCTION_DEVIATION
  2785. , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
  2786. #endif
  2787. #if HAS_CLASSIC_JERK
  2788. , SP_X_STR, LINEAR_UNIT(planner.max_jerk.x)
  2789. , SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y)
  2790. , SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z)
  2791. #if HAS_CLASSIC_E_JERK
  2792. , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)
  2793. #endif
  2794. #endif
  2795. );
  2796. #if HAS_M206_COMMAND
  2797. CONFIG_ECHO_HEADING("Home offset:");
  2798. CONFIG_ECHO_START();
  2799. SERIAL_ECHOLNPAIR_P(
  2800. #if IS_CARTESIAN
  2801. PSTR(" M206 X"), LINEAR_UNIT(home_offset.x)
  2802. , SP_Y_STR, LINEAR_UNIT(home_offset.y)
  2803. , SP_Z_STR
  2804. #else
  2805. PSTR(" M206 Z")
  2806. #endif
  2807. , LINEAR_UNIT(home_offset.z)
  2808. );
  2809. #endif
  2810. #if HAS_HOTEND_OFFSET
  2811. CONFIG_ECHO_HEADING("Hotend offsets:");
  2812. CONFIG_ECHO_START();
  2813. LOOP_S_L_N(e, 1, HOTENDS) {
  2814. SERIAL_ECHOPAIR_P(
  2815. PSTR(" M218 T"), e,
  2816. SP_X_STR, LINEAR_UNIT(hotend_offset[e].x),
  2817. SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y)
  2818. );
  2819. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3);
  2820. }
  2821. #endif
  2822. /**
  2823. * Bed Leveling
  2824. */
  2825. #if HAS_LEVELING
  2826. #if ENABLED(MESH_BED_LEVELING)
  2827. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2828. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2829. config_heading(forReplay, NUL_STR, false);
  2830. if (!forReplay) {
  2831. ubl.echo_name();
  2832. SERIAL_CHAR(':');
  2833. SERIAL_EOL();
  2834. }
  2835. #elif HAS_ABL_OR_UBL
  2836. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2837. #endif
  2838. CONFIG_ECHO_START();
  2839. SERIAL_ECHOLNPAIR_P(
  2840. PSTR(" M420 S"), planner.leveling_active
  2841. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2842. , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height)
  2843. #endif
  2844. );
  2845. #if ENABLED(MESH_BED_LEVELING)
  2846. if (leveling_is_valid()) {
  2847. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2848. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2849. CONFIG_ECHO_START();
  2850. SERIAL_ECHOPAIR(" G29 S3 I", px, " J", py);
  2851. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2852. }
  2853. }
  2854. CONFIG_ECHO_START();
  2855. SERIAL_ECHOLNPAIR_F(" G29 S4 Z", LINEAR_UNIT(mbl.z_offset), 5);
  2856. }
  2857. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2858. if (!forReplay) {
  2859. SERIAL_EOL();
  2860. ubl.report_state();
  2861. SERIAL_EOL();
  2862. config_heading(false, PSTR("Active Mesh Slot: "), false);
  2863. SERIAL_ECHOLN(ubl.storage_slot);
  2864. config_heading(false, PSTR("EEPROM can hold "), false);
  2865. SERIAL_ECHO(calc_num_meshes());
  2866. SERIAL_ECHOLNPGM(" meshes.\n");
  2867. }
  2868. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2869. // solution needs to be found.
  2870. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2871. if (leveling_is_valid()) {
  2872. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2873. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2874. CONFIG_ECHO_START();
  2875. SERIAL_ECHOPAIR(" G29 W I", px, " J", py);
  2876. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5);
  2877. }
  2878. }
  2879. }
  2880. #endif
  2881. #endif // HAS_LEVELING
  2882. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2883. CONFIG_ECHO_HEADING("Servo Angles:");
  2884. LOOP_L_N(i, NUM_SERVOS) {
  2885. switch (i) {
  2886. #if ENABLED(SWITCHING_EXTRUDER)
  2887. case SWITCHING_EXTRUDER_SERVO_NR:
  2888. #if EXTRUDERS > 3
  2889. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2890. #endif
  2891. #elif ENABLED(SWITCHING_NOZZLE)
  2892. case SWITCHING_NOZZLE_SERVO_NR:
  2893. #elif ENABLED(BLTOUCH) || (HAS_Z_SERVO_PROBE && defined(Z_SERVO_ANGLES))
  2894. case Z_PROBE_SERVO_NR:
  2895. #endif
  2896. CONFIG_ECHO_MSG(" M281 P", i, " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2897. default: break;
  2898. }
  2899. }
  2900. #endif // EDITABLE_SERVO_ANGLES
  2901. #if HAS_SCARA_OFFSET
  2902. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2903. CONFIG_ECHO_START();
  2904. SERIAL_ECHOLNPAIR_P(
  2905. PSTR(" M665 S"), segments_per_second
  2906. , SP_P_STR, scara_home_offset.a
  2907. , SP_T_STR, scara_home_offset.b
  2908. , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z)
  2909. );
  2910. #elif ENABLED(DELTA)
  2911. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2912. CONFIG_ECHO_START();
  2913. SERIAL_ECHOLNPAIR_P(
  2914. PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a)
  2915. , SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b)
  2916. , SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c)
  2917. );
  2918. CONFIG_ECHO_HEADING("Delta settings: L<diagonal rod> R<radius> H<height> S<segments per sec> XYZ<tower angle trim> ABC<rod trim>");
  2919. CONFIG_ECHO_START();
  2920. SERIAL_ECHOLNPAIR_P(
  2921. PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod)
  2922. , PSTR(" R"), LINEAR_UNIT(delta_radius)
  2923. , PSTR(" H"), LINEAR_UNIT(delta_height)
  2924. , PSTR(" S"), segments_per_second
  2925. , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a)
  2926. , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b)
  2927. , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c)
  2928. , PSTR(" A"), LINEAR_UNIT(delta_diagonal_rod_trim.a)
  2929. , PSTR(" B"), LINEAR_UNIT(delta_diagonal_rod_trim.b)
  2930. , PSTR(" C"), LINEAR_UNIT(delta_diagonal_rod_trim.c)
  2931. );
  2932. #elif HAS_EXTRA_ENDSTOPS
  2933. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2934. CONFIG_ECHO_START();
  2935. SERIAL_ECHOPGM(" M666");
  2936. #if ENABLED(X_DUAL_ENDSTOPS)
  2937. SERIAL_ECHOLNPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj));
  2938. #endif
  2939. #if ENABLED(Y_DUAL_ENDSTOPS)
  2940. SERIAL_ECHOLNPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj));
  2941. #endif
  2942. #if ENABLED(Z_MULTI_ENDSTOPS)
  2943. #if NUM_Z_STEPPER_DRIVERS >= 3
  2944. SERIAL_ECHOPAIR(" S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2945. CONFIG_ECHO_START();
  2946. SERIAL_ECHOPAIR(" M666 S3 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2947. #if NUM_Z_STEPPER_DRIVERS >= 4
  2948. CONFIG_ECHO_START();
  2949. SERIAL_ECHOPAIR(" M666 S4 Z", LINEAR_UNIT(endstops.z4_endstop_adj));
  2950. #endif
  2951. #else
  2952. SERIAL_ECHOLNPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj));
  2953. #endif
  2954. #endif
  2955. #endif // [XYZ]_DUAL_ENDSTOPS
  2956. #if PREHEAT_COUNT
  2957. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2958. LOOP_L_N(i, PREHEAT_COUNT) {
  2959. CONFIG_ECHO_START();
  2960. SERIAL_ECHOLNPAIR_P(
  2961. PSTR(" M145 S"), i
  2962. #if HAS_HOTEND
  2963. , PSTR(" H"), parser.to_temp_units(ui.material_preset[i].hotend_temp)
  2964. #endif
  2965. #if HAS_HEATED_BED
  2966. , SP_B_STR, parser.to_temp_units(ui.material_preset[i].bed_temp)
  2967. #endif
  2968. #if HAS_FAN
  2969. , PSTR(" F"), ui.material_preset[i].fan_speed
  2970. #endif
  2971. );
  2972. }
  2973. #endif
  2974. #if HAS_PID_HEATING
  2975. CONFIG_ECHO_HEADING("PID settings:");
  2976. #if ENABLED(PIDTEMP)
  2977. HOTEND_LOOP() {
  2978. CONFIG_ECHO_START();
  2979. SERIAL_ECHOPAIR_P(
  2980. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2981. PSTR(" M301 E"), e,
  2982. SP_P_STR
  2983. #else
  2984. PSTR(" M301 P")
  2985. #endif
  2986. , PID_PARAM(Kp, e)
  2987. , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e))
  2988. , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e))
  2989. );
  2990. #if ENABLED(PID_EXTRUSION_SCALING)
  2991. SERIAL_ECHOPAIR_P(SP_C_STR, PID_PARAM(Kc, e));
  2992. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2993. #endif
  2994. #if ENABLED(PID_FAN_SCALING)
  2995. SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e));
  2996. #endif
  2997. SERIAL_EOL();
  2998. }
  2999. #endif // PIDTEMP
  3000. #if ENABLED(PIDTEMPBED)
  3001. CONFIG_ECHO_MSG(
  3002. " M304 P", thermalManager.temp_bed.pid.Kp
  3003. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  3004. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  3005. );
  3006. #endif
  3007. #if ENABLED(PIDTEMPCHAMBER)
  3008. CONFIG_ECHO_START();
  3009. SERIAL_ECHOLNPAIR(
  3010. " M309 P", thermalManager.temp_chamber.pid.Kp
  3011. , " I", unscalePID_i(thermalManager.temp_chamber.pid.Ki)
  3012. , " D", unscalePID_d(thermalManager.temp_chamber.pid.Kd)
  3013. );
  3014. #endif
  3015. #endif // PIDTEMP || PIDTEMPBED || PIDTEMPCHAMBER
  3016. #if HAS_USER_THERMISTORS
  3017. CONFIG_ECHO_HEADING("User thermistors:");
  3018. LOOP_L_N(i, USER_THERMISTORS)
  3019. thermalManager.log_user_thermistor(i, true);
  3020. #endif
  3021. #if HAS_LCD_CONTRAST
  3022. CONFIG_ECHO_HEADING("LCD Contrast:");
  3023. CONFIG_ECHO_MSG(" M250 C", ui.contrast);
  3024. #endif
  3025. TERN_(CONTROLLER_FAN_EDITABLE, M710_report(forReplay));
  3026. #if ENABLED(POWER_LOSS_RECOVERY)
  3027. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  3028. CONFIG_ECHO_MSG(" M413 S", recovery.enabled);
  3029. #endif
  3030. #if ENABLED(FWRETRACT)
  3031. fwretract.M207_report(forReplay);
  3032. fwretract.M208_report(forReplay);
  3033. TERN_(FWRETRACT_AUTORETRACT, fwretract.M209_report(forReplay));
  3034. #endif
  3035. /**
  3036. * Probe Offset
  3037. */
  3038. #if HAS_BED_PROBE
  3039. config_heading(forReplay, PSTR("Z-Probe Offset"), false);
  3040. if (!forReplay) say_units(true);
  3041. CONFIG_ECHO_START();
  3042. SERIAL_ECHOLNPAIR_P(
  3043. #if HAS_PROBE_XY_OFFSET
  3044. PSTR(" M851 X"), LINEAR_UNIT(probe.offset_xy.x),
  3045. SP_Y_STR, LINEAR_UNIT(probe.offset_xy.y),
  3046. SP_Z_STR
  3047. #else
  3048. PSTR(" M851 X0 Y0 Z")
  3049. #endif
  3050. , LINEAR_UNIT(probe.offset.z)
  3051. );
  3052. #endif
  3053. /**
  3054. * Bed Skew Correction
  3055. */
  3056. #if ENABLED(SKEW_CORRECTION_GCODE)
  3057. CONFIG_ECHO_HEADING("Skew Factor: ");
  3058. CONFIG_ECHO_START();
  3059. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  3060. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  3061. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  3062. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  3063. #else
  3064. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  3065. #endif
  3066. #endif
  3067. #if HAS_TRINAMIC_CONFIG
  3068. /**
  3069. * TMC stepper driver current
  3070. */
  3071. CONFIG_ECHO_HEADING("Stepper driver current:");
  3072. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  3073. say_M906(forReplay);
  3074. #if AXIS_IS_TMC(X)
  3075. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps());
  3076. #endif
  3077. #if AXIS_IS_TMC(Y)
  3078. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps());
  3079. #endif
  3080. #if AXIS_IS_TMC(Z)
  3081. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps());
  3082. #endif
  3083. SERIAL_EOL();
  3084. #endif
  3085. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  3086. say_M906(forReplay);
  3087. SERIAL_ECHOPGM(" I1");
  3088. #if AXIS_IS_TMC(X2)
  3089. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps());
  3090. #endif
  3091. #if AXIS_IS_TMC(Y2)
  3092. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps());
  3093. #endif
  3094. #if AXIS_IS_TMC(Z2)
  3095. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps());
  3096. #endif
  3097. SERIAL_EOL();
  3098. #endif
  3099. #if AXIS_IS_TMC(Z3)
  3100. say_M906(forReplay);
  3101. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  3102. #endif
  3103. #if AXIS_IS_TMC(Z4)
  3104. say_M906(forReplay);
  3105. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.getMilliamps());
  3106. #endif
  3107. #if AXIS_IS_TMC(E0)
  3108. say_M906(forReplay);
  3109. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  3110. #endif
  3111. #if AXIS_IS_TMC(E1)
  3112. say_M906(forReplay);
  3113. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  3114. #endif
  3115. #if AXIS_IS_TMC(E2)
  3116. say_M906(forReplay);
  3117. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  3118. #endif
  3119. #if AXIS_IS_TMC(E3)
  3120. say_M906(forReplay);
  3121. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  3122. #endif
  3123. #if AXIS_IS_TMC(E4)
  3124. say_M906(forReplay);
  3125. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  3126. #endif
  3127. #if AXIS_IS_TMC(E5)
  3128. say_M906(forReplay);
  3129. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  3130. #endif
  3131. #if AXIS_IS_TMC(E6)
  3132. say_M906(forReplay);
  3133. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.getMilliamps());
  3134. #endif
  3135. #if AXIS_IS_TMC(E7)
  3136. say_M906(forReplay);
  3137. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.getMilliamps());
  3138. #endif
  3139. SERIAL_EOL();
  3140. /**
  3141. * TMC Hybrid Threshold
  3142. */
  3143. #if ENABLED(HYBRID_THRESHOLD)
  3144. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  3145. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  3146. say_M913(forReplay);
  3147. #if AXIS_HAS_STEALTHCHOP(X)
  3148. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs());
  3149. #endif
  3150. #if AXIS_HAS_STEALTHCHOP(Y)
  3151. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs());
  3152. #endif
  3153. #if AXIS_HAS_STEALTHCHOP(Z)
  3154. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs());
  3155. #endif
  3156. SERIAL_EOL();
  3157. #endif
  3158. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  3159. say_M913(forReplay);
  3160. SERIAL_ECHOPGM(" I1");
  3161. #if AXIS_HAS_STEALTHCHOP(X2)
  3162. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs());
  3163. #endif
  3164. #if AXIS_HAS_STEALTHCHOP(Y2)
  3165. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs());
  3166. #endif
  3167. #if AXIS_HAS_STEALTHCHOP(Z2)
  3168. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs());
  3169. #endif
  3170. SERIAL_EOL();
  3171. #endif
  3172. #if AXIS_HAS_STEALTHCHOP(Z3)
  3173. say_M913(forReplay);
  3174. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs());
  3175. #endif
  3176. #if AXIS_HAS_STEALTHCHOP(Z4)
  3177. say_M913(forReplay);
  3178. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.get_pwm_thrs());
  3179. #endif
  3180. #if AXIS_HAS_STEALTHCHOP(E0)
  3181. say_M913(forReplay);
  3182. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs());
  3183. #endif
  3184. #if AXIS_HAS_STEALTHCHOP(E1)
  3185. say_M913(forReplay);
  3186. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs());
  3187. #endif
  3188. #if AXIS_HAS_STEALTHCHOP(E2)
  3189. say_M913(forReplay);
  3190. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs());
  3191. #endif
  3192. #if AXIS_HAS_STEALTHCHOP(E3)
  3193. say_M913(forReplay);
  3194. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs());
  3195. #endif
  3196. #if AXIS_HAS_STEALTHCHOP(E4)
  3197. say_M913(forReplay);
  3198. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs());
  3199. #endif
  3200. #if AXIS_HAS_STEALTHCHOP(E5)
  3201. say_M913(forReplay);
  3202. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs());
  3203. #endif
  3204. #if AXIS_HAS_STEALTHCHOP(E6)
  3205. say_M913(forReplay);
  3206. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.get_pwm_thrs());
  3207. #endif
  3208. #if AXIS_HAS_STEALTHCHOP(E7)
  3209. say_M913(forReplay);
  3210. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.get_pwm_thrs());
  3211. #endif
  3212. SERIAL_EOL();
  3213. #endif // HYBRID_THRESHOLD
  3214. /**
  3215. * TMC Sensorless homing thresholds
  3216. */
  3217. #if USE_SENSORLESS
  3218. CONFIG_ECHO_HEADING("StallGuard threshold:");
  3219. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  3220. CONFIG_ECHO_START();
  3221. say_M914();
  3222. #if X_SENSORLESS
  3223. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold());
  3224. #endif
  3225. #if Y_SENSORLESS
  3226. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold());
  3227. #endif
  3228. #if Z_SENSORLESS
  3229. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold());
  3230. #endif
  3231. SERIAL_EOL();
  3232. #endif
  3233. #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
  3234. CONFIG_ECHO_START();
  3235. say_M914();
  3236. SERIAL_ECHOPGM(" I1");
  3237. #if X2_SENSORLESS
  3238. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold());
  3239. #endif
  3240. #if Y2_SENSORLESS
  3241. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold());
  3242. #endif
  3243. #if Z2_SENSORLESS
  3244. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold());
  3245. #endif
  3246. SERIAL_EOL();
  3247. #endif
  3248. #if Z3_SENSORLESS
  3249. CONFIG_ECHO_START();
  3250. say_M914();
  3251. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold());
  3252. #endif
  3253. #if Z4_SENSORLESS
  3254. CONFIG_ECHO_START();
  3255. say_M914();
  3256. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.homing_threshold());
  3257. #endif
  3258. #endif // USE_SENSORLESS
  3259. /**
  3260. * TMC stepping mode
  3261. */
  3262. #if HAS_STEALTHCHOP
  3263. CONFIG_ECHO_HEADING("Driver stepping mode:");
  3264. #if AXIS_HAS_STEALTHCHOP(X)
  3265. const bool chop_x = stepperX.get_stored_stealthChop();
  3266. #else
  3267. constexpr bool chop_x = false;
  3268. #endif
  3269. #if AXIS_HAS_STEALTHCHOP(Y)
  3270. const bool chop_y = stepperY.get_stored_stealthChop();
  3271. #else
  3272. constexpr bool chop_y = false;
  3273. #endif
  3274. #if AXIS_HAS_STEALTHCHOP(Z)
  3275. const bool chop_z = stepperZ.get_stored_stealthChop();
  3276. #else
  3277. constexpr bool chop_z = false;
  3278. #endif
  3279. if (chop_x || chop_y || chop_z) {
  3280. say_M569(forReplay);
  3281. if (chop_x) SERIAL_ECHOPGM_P(SP_X_STR);
  3282. if (chop_y) SERIAL_ECHOPGM_P(SP_Y_STR);
  3283. if (chop_z) SERIAL_ECHOPGM_P(SP_Z_STR);
  3284. SERIAL_EOL();
  3285. }
  3286. #if AXIS_HAS_STEALTHCHOP(X2)
  3287. const bool chop_x2 = stepperX2.get_stored_stealthChop();
  3288. #else
  3289. constexpr bool chop_x2 = false;
  3290. #endif
  3291. #if AXIS_HAS_STEALTHCHOP(Y2)
  3292. const bool chop_y2 = stepperY2.get_stored_stealthChop();
  3293. #else
  3294. constexpr bool chop_y2 = false;
  3295. #endif
  3296. #if AXIS_HAS_STEALTHCHOP(Z2)
  3297. const bool chop_z2 = stepperZ2.get_stored_stealthChop();
  3298. #else
  3299. constexpr bool chop_z2 = false;
  3300. #endif
  3301. if (chop_x2 || chop_y2 || chop_z2) {
  3302. say_M569(forReplay, PSTR("I1"));
  3303. if (chop_x2) SERIAL_ECHOPGM_P(SP_X_STR);
  3304. if (chop_y2) SERIAL_ECHOPGM_P(SP_Y_STR);
  3305. if (chop_z2) SERIAL_ECHOPGM_P(SP_Z_STR);
  3306. SERIAL_EOL();
  3307. }
  3308. #if AXIS_HAS_STEALTHCHOP(Z3)
  3309. if (stepperZ3.get_stored_stealthChop()) { say_M569(forReplay, PSTR("I2 Z"), true); }
  3310. #endif
  3311. #if AXIS_HAS_STEALTHCHOP(Z4)
  3312. if (stepperZ4.get_stored_stealthChop()) { say_M569(forReplay, PSTR("I3 Z"), true); }
  3313. #endif
  3314. #if AXIS_HAS_STEALTHCHOP(E0)
  3315. if (stepperE0.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T0 E"), true); }
  3316. #endif
  3317. #if AXIS_HAS_STEALTHCHOP(E1)
  3318. if (stepperE1.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T1 E"), true); }
  3319. #endif
  3320. #if AXIS_HAS_STEALTHCHOP(E2)
  3321. if (stepperE2.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T2 E"), true); }
  3322. #endif
  3323. #if AXIS_HAS_STEALTHCHOP(E3)
  3324. if (stepperE3.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T3 E"), true); }
  3325. #endif
  3326. #if AXIS_HAS_STEALTHCHOP(E4)
  3327. if (stepperE4.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T4 E"), true); }
  3328. #endif
  3329. #if AXIS_HAS_STEALTHCHOP(E5)
  3330. if (stepperE5.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T5 E"), true); }
  3331. #endif
  3332. #if AXIS_HAS_STEALTHCHOP(E6)
  3333. if (stepperE6.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T6 E"), true); }
  3334. #endif
  3335. #if AXIS_HAS_STEALTHCHOP(E7)
  3336. if (stepperE7.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T7 E"), true); }
  3337. #endif
  3338. #endif // HAS_STEALTHCHOP
  3339. #endif // HAS_TRINAMIC_CONFIG
  3340. /**
  3341. * Linear Advance
  3342. */
  3343. #if ENABLED(LIN_ADVANCE)
  3344. CONFIG_ECHO_HEADING("Linear Advance:");
  3345. #if EXTRUDERS < 2
  3346. CONFIG_ECHO_MSG(" M900 K", planner.extruder_advance_K[0]);
  3347. #else
  3348. LOOP_L_N(i, EXTRUDERS)
  3349. CONFIG_ECHO_MSG(" M900 T", i, " K", planner.extruder_advance_K[i]);
  3350. #endif
  3351. #endif
  3352. #if EITHER(HAS_MOTOR_CURRENT_SPI, HAS_MOTOR_CURRENT_PWM)
  3353. CONFIG_ECHO_HEADING("Stepper motor currents:");
  3354. CONFIG_ECHO_START();
  3355. #if HAS_MOTOR_CURRENT_PWM
  3356. SERIAL_ECHOLNPAIR_P( // PWM-based has 3 values:
  3357. PSTR(" M907 X"), stepper.motor_current_setting[0] // X and Y
  3358. , SP_Z_STR, stepper.motor_current_setting[1] // Z
  3359. , SP_E_STR, stepper.motor_current_setting[2] // E
  3360. );
  3361. #elif HAS_MOTOR_CURRENT_SPI
  3362. SERIAL_ECHOPGM(" M907"); // SPI-based has 5 values:
  3363. LOOP_LOGICAL_AXES(q) { // X Y Z E (map to X Y Z E0 by default)
  3364. SERIAL_CHAR(' ', axis_codes[q]);
  3365. SERIAL_ECHO(stepper.motor_current_setting[q]);
  3366. }
  3367. SERIAL_CHAR(' ', 'B'); // B (maps to E1 by default)
  3368. SERIAL_ECHOLN(stepper.motor_current_setting[4]);
  3369. #endif
  3370. #elif ENABLED(HAS_MOTOR_CURRENT_I2C) // i2c-based has any number of values
  3371. // Values sent over i2c are not stored.
  3372. // Indexes map directly to drivers, not axes.
  3373. #elif ENABLED(HAS_MOTOR_CURRENT_DAC) // DAC-based has 4 values, for X Y Z E
  3374. // Values sent over i2c are not stored. Uses indirect mapping.
  3375. #endif
  3376. /**
  3377. * Advanced Pause filament load & unload lengths
  3378. */
  3379. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  3380. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  3381. #if EXTRUDERS == 1
  3382. say_M603(forReplay);
  3383. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  3384. #else
  3385. auto echo_603 = [](const bool f, const uint8_t n) { say_M603(f); SERIAL_ECHOLNPAIR("T", n, " L", LINEAR_UNIT(fc_settings[n].load_length), " U", LINEAR_UNIT(fc_settings[n].unload_length)); };
  3386. LOOP_L_N(i, EXTRUDERS) echo_603(forReplay, i);
  3387. #endif
  3388. #endif
  3389. #if HAS_MULTI_EXTRUDER
  3390. CONFIG_ECHO_HEADING("Tool-changing:");
  3391. CONFIG_ECHO_START();
  3392. M217_report(true);
  3393. #endif
  3394. #if ENABLED(BACKLASH_GCODE)
  3395. CONFIG_ECHO_HEADING("Backlash compensation:");
  3396. CONFIG_ECHO_START();
  3397. SERIAL_ECHOLNPAIR_P(
  3398. PSTR(" M425 F"), backlash.get_correction()
  3399. , SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x)
  3400. , SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y)
  3401. , SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z)
  3402. #ifdef BACKLASH_SMOOTHING_MM
  3403. , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm)
  3404. #endif
  3405. );
  3406. #endif
  3407. #if HAS_FILAMENT_SENSOR
  3408. CONFIG_ECHO_HEADING("Filament runout sensor:");
  3409. CONFIG_ECHO_MSG(
  3410. " M412 S", runout.enabled
  3411. #if HAS_FILAMENT_RUNOUT_DISTANCE
  3412. , " D", LINEAR_UNIT(runout.runout_distance())
  3413. #endif
  3414. );
  3415. #endif
  3416. #if HAS_ETHERNET
  3417. CONFIG_ECHO_HEADING("Ethernet:");
  3418. if (!forReplay) { CONFIG_ECHO_START(); ETH0_report(); }
  3419. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); MAC_report();
  3420. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M552_report();
  3421. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M553_report();
  3422. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M554_report();
  3423. #endif
  3424. #if HAS_MULTI_LANGUAGE
  3425. CONFIG_ECHO_HEADING("UI Language:");
  3426. SERIAL_ECHO_MSG(" M414 S", ui.language);
  3427. #endif
  3428. }
  3429. #endif // !DISABLE_M503
  3430. #pragma pack(pop)