My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

M100_Free_Mem_Chk.cpp 8.3KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * M100 Free Memory Watcher
  24. *
  25. * This code watches the free memory block between the bottom of the heap and the top of the stack.
  26. * This memory block is initialized and watched via the M100 command.
  27. *
  28. * M100 I Initializes the free memory block and prints vitals statistics about the area
  29. * M100 F Identifies how much of the free memory block remains free and unused. It also
  30. * detects and reports any corruption within the free memory block that may have
  31. * happened due to errant firmware.
  32. * M100 D Does a hex display of the free memory block along with a flag for any errant
  33. * data that does not match the expected value.
  34. * M100 C x Corrupts x locations within the free memory block. This is useful to check the
  35. * correctness of the M100 F and M100 D commands.
  36. *
  37. * Initial version by Roxy-3DPrintBoard
  38. */
  39. #define M100_FREE_MEMORY_DUMPER // Comment out to remove Dump sub-command
  40. #define M100_FREE_MEMORY_CORRUPTOR // Comment out to remove Corrupt sub-command
  41. #include "Marlin.h"
  42. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  43. extern char* __brkval;
  44. extern size_t __heap_start, __heap_end, __flp;
  45. extern char __bss_end;
  46. //
  47. // Utility functions used by M100 to get its work done.
  48. //
  49. char* top_of_stack();
  50. void prt_hex_nibble(unsigned int);
  51. void prt_hex_byte(unsigned int);
  52. void prt_hex_word(unsigned int);
  53. int how_many_E5s_are_here(char*);
  54. void gcode_M100() {
  55. static bool m100_not_initialized = true;
  56. char* sp, *ptr;
  57. int i, j, n;
  58. //
  59. // M100 D dumps the free memory block from __brkval to the stack pointer.
  60. // malloc() eats memory from the start of the block and the stack grows
  61. // up from the bottom of the block. Solid 0xE5's indicate nothing has
  62. // used that memory yet. There should not be anything but 0xE5's within
  63. // the block of 0xE5's. If there is, that would indicate memory corruption
  64. // probably caused by bad pointers. Any unexpected values will be flagged in
  65. // the right hand column to help spotting them.
  66. //
  67. #if ENABLED(M100_FREE_MEMORY_DUMPER) // Disable to remove Dump sub-command
  68. if (code_seen('D')) {
  69. ptr = __brkval ? __brkval : &__bss_end;
  70. //
  71. // We want to start and end the dump on a nice 16 byte boundry even though
  72. // the values we are using are not 16 byte aligned.
  73. //
  74. SERIAL_ECHOPGM("\nbss_end : ");
  75. prt_hex_word((unsigned int) ptr);
  76. ptr = (char*)((unsigned long) ptr & 0xfff0);
  77. sp = top_of_stack();
  78. SERIAL_ECHOPGM("\nStack Pointer : ");
  79. prt_hex_word((unsigned int) sp);
  80. SERIAL_EOL;
  81. sp = (char*)((unsigned long) sp | 0x000f);
  82. n = sp - ptr;
  83. //
  84. // This is the main loop of the Dump command.
  85. //
  86. while (ptr < sp) {
  87. prt_hex_word((unsigned int) ptr); // Print the address
  88. SERIAL_CHAR(':');
  89. for (i = 0; i < 16; i++) { // and 16 data bytes
  90. prt_hex_byte(*(ptr + i));
  91. SERIAL_CHAR(' ');
  92. }
  93. SERIAL_CHAR('|'); // now show where non 0xE5's are
  94. for (i = 0; i < 16; i++) {
  95. if (*(ptr + i) == (char)0xe5)
  96. SERIAL_CHAR(' ');
  97. else
  98. SERIAL_CHAR('?');
  99. }
  100. SERIAL_EOL;
  101. ptr += 16;
  102. }
  103. return;
  104. }
  105. #endif
  106. //
  107. // M100 F requests the code to return the number of free bytes in the memory pool along with
  108. // other vital statistics that define the memory pool.
  109. //
  110. if (code_seen('F')) {
  111. #if 0
  112. int max_addr = (int) __brkval ? __brkval : &__bss_end;
  113. int max_cnt = 0;
  114. #endif
  115. int block_cnt = 0;
  116. ptr = __brkval ? __brkval : &__bss_end;
  117. sp = top_of_stack();
  118. n = sp - ptr;
  119. // Scan through the range looking for the biggest block of 0xE5's we can find
  120. for (i = 0; i < n; i++) {
  121. if (*(ptr + i) == (char)0xe5) {
  122. j = how_many_E5s_are_here(ptr + i);
  123. if (j > 8) {
  124. SERIAL_ECHOPAIR("Found ", j);
  125. SERIAL_ECHOPGM(" bytes free at 0x");
  126. prt_hex_word((int) ptr + i);
  127. SERIAL_EOL;
  128. i += j;
  129. block_cnt++;
  130. }
  131. #if 0
  132. if (j > max_cnt) { // We don't do anything with this information yet
  133. max_cnt = j; // but we do know where the biggest free memory block is.
  134. max_addr = (int) ptr + i;
  135. }
  136. #endif
  137. }
  138. }
  139. if (block_cnt > 1)
  140. SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");
  141. return;
  142. }
  143. //
  144. // M100 C x Corrupts x locations in the free memory pool and reports the locations of the corruption.
  145. // This is useful to check the correctness of the M100 D and the M100 F commands.
  146. //
  147. #if ENABLED(M100_FREE_MEMORY_CORRUPTOR)
  148. if (code_seen('C')) {
  149. int x = code_value_int(); // x gets the # of locations to corrupt within the memory pool
  150. SERIAL_ECHOLNPGM("Corrupting free memory block.\n");
  151. ptr = __brkval ? __brkval : &__bss_end;
  152. SERIAL_ECHOPAIR("\nbss_end : ", ptr);
  153. ptr += 8;
  154. sp = top_of_stack();
  155. SERIAL_ECHOPAIR("\nStack Pointer : ", sp);
  156. SERIAL_ECHOLNPGM("\n");
  157. n = sp - ptr - 64; // -64 just to keep us from finding interrupt activity that
  158. // has altered the stack.
  159. j = n / (x + 1);
  160. for (i = 1; i <= x; i++) {
  161. *(ptr + (i * j)) = i;
  162. SERIAL_ECHOPGM("\nCorrupting address: 0x");
  163. prt_hex_word((unsigned int)(ptr + (i * j)));
  164. }
  165. SERIAL_ECHOLNPGM("\n");
  166. return;
  167. }
  168. #endif
  169. //
  170. // M100 I Initializes the free memory pool so it can be watched and prints vital
  171. // statistics that define the free memory pool.
  172. //
  173. if (m100_not_initialized || code_seen('I')) { // If no sub-command is specified, the first time
  174. SERIAL_ECHOLNPGM("Initializing free memory block.\n"); // this happens, it will Initialize.
  175. ptr = __brkval ? __brkval : &__bss_end; // Repeated M100 with no sub-command will not destroy the
  176. SERIAL_ECHOPAIR("\nbss_end : ", ptr); // state of the initialized free memory pool.
  177. ptr += 8;
  178. sp = top_of_stack();
  179. SERIAL_ECHOPAIR("\nStack Pointer : ", sp);
  180. SERIAL_ECHOLNPGM("\n");
  181. n = sp - ptr - 64; // -64 just to keep us from finding interrupt activity that
  182. // has altered the stack.
  183. SERIAL_ECHO(n);
  184. SERIAL_ECHOLNPGM(" bytes of memory initialized.\n");
  185. for (i = 0; i < n; i++)
  186. *(ptr + i) = (char)0xe5;
  187. for (i = 0; i < n; i++) {
  188. if (*(ptr + i) != (char)0xe5) {
  189. SERIAL_ECHOPAIR("? address : ", ptr + i);
  190. SERIAL_ECHOPAIR("=", *(ptr + i));
  191. SERIAL_ECHOLNPGM("\n");
  192. }
  193. }
  194. m100_not_initialized = false;
  195. return;
  196. }
  197. return;
  198. }
  199. // top_of_stack() returns the location of a variable on its stack frame. The value returned is above
  200. // the stack once the function returns to the caller.
  201. char* top_of_stack() {
  202. char x;
  203. return &x + 1; // x is pulled on return;
  204. }
  205. //
  206. // 3 support routines to print hex numbers. We can print a nibble, byte and word
  207. //
  208. void prt_hex_nibble(unsigned int n) {
  209. if (n <= 9)
  210. SERIAL_ECHO(n);
  211. else
  212. SERIAL_ECHO((char)('A' + n - 10));
  213. }
  214. void prt_hex_byte(unsigned int b) {
  215. prt_hex_nibble((b & 0xf0) >> 4);
  216. prt_hex_nibble(b & 0x0f);
  217. }
  218. void prt_hex_word(unsigned int w) {
  219. prt_hex_byte((w & 0xff00) >> 8);
  220. prt_hex_byte(w & 0x0ff);
  221. }
  222. // how_many_E5s_are_here() is a utility function to easily find out how many 0xE5's are
  223. // at the specified location. Having this logic as a function simplifies the search code.
  224. //
  225. int how_many_E5s_are_here(char* p) {
  226. int n;
  227. for (n = 0; n < 32000; n++) {
  228. if (*(p + n) != (char)0xe5)
  229. return n - 1;
  230. }
  231. return -1;
  232. }
  233. #endif