My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

stepper.cpp 43KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  59. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  60. bool Stepper::abort_on_endstop_hit = false;
  61. #endif
  62. #if ENABLED(Z_DUAL_ENDSTOPS)
  63. bool Stepper::performing_homing = false;
  64. #endif
  65. // private:
  66. unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  67. unsigned int Stepper::cleaning_buffer_counter = 0;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. bool Stepper::locked_z_motor = false;
  70. bool Stepper::locked_z2_motor = false;
  71. #endif
  72. long Stepper::counter_X = 0,
  73. Stepper::counter_Y = 0,
  74. Stepper::counter_Z = 0,
  75. Stepper::counter_E = 0;
  76. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  78. constexpr uint16_t ADV_NEVER = 65535;
  79. uint16_t Stepper::nextMainISR = 0,
  80. Stepper::nextAdvanceISR = ADV_NEVER,
  81. Stepper::eISR_Rate = ADV_NEVER;
  82. #if ENABLED(LIN_ADVANCE)
  83. volatile int Stepper::e_steps[E_STEPPERS];
  84. int Stepper::final_estep_rate,
  85. Stepper::current_estep_rate[E_STEPPERS],
  86. Stepper::current_adv_steps[E_STEPPERS];
  87. #else
  88. long Stepper::e_steps[E_STEPPERS],
  89. Stepper::final_advance = 0,
  90. Stepper::old_advance = 0,
  91. Stepper::advance_rate,
  92. Stepper::advance;
  93. #endif
  94. #define ADV_RATE(T, L) (e_steps[TOOL_E_INDEX] ? (T) * (L) / abs(e_steps[TOOL_E_INDEX]) : ADV_NEVER)
  95. #endif
  96. long Stepper::acceleration_time, Stepper::deceleration_time;
  97. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  98. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  99. #if ENABLED(MIXING_EXTRUDER)
  100. long Stepper::counter_m[MIXING_STEPPERS];
  101. #endif
  102. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  103. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  104. unsigned short Stepper::OCR1A_nominal;
  105. volatile long Stepper::endstops_trigsteps[XYZ];
  106. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  107. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  108. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  109. #elif ENABLED(DUAL_X_CARRIAGE)
  110. #define X_APPLY_DIR(v,ALWAYS) \
  111. if (extruder_duplication_enabled || ALWAYS) { \
  112. X_DIR_WRITE(v); \
  113. X2_DIR_WRITE(v); \
  114. } \
  115. else { \
  116. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  117. }
  118. #define X_APPLY_STEP(v,ALWAYS) \
  119. if (extruder_duplication_enabled || ALWAYS) { \
  120. X_STEP_WRITE(v); \
  121. X2_STEP_WRITE(v); \
  122. } \
  123. else { \
  124. if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  125. }
  126. #else
  127. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  128. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  129. #endif
  130. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  131. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  132. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  133. #else
  134. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  135. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  136. #endif
  137. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  138. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  139. #if ENABLED(Z_DUAL_ENDSTOPS)
  140. #define Z_APPLY_STEP(v,Q) \
  141. if (performing_homing) { \
  142. if (Z_HOME_DIR < 0) { \
  143. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  144. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  145. } \
  146. else { \
  147. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  148. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  149. } \
  150. } \
  151. else { \
  152. Z_STEP_WRITE(v); \
  153. Z2_STEP_WRITE(v); \
  154. }
  155. #else
  156. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  157. #endif
  158. #else
  159. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  160. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  161. #endif
  162. #if DISABLED(MIXING_EXTRUDER)
  163. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  164. #endif
  165. // intRes = longIn1 * longIn2 >> 24
  166. // uses:
  167. // r26 to store 0
  168. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  169. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  170. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  171. // B0 A0 are bits 24-39 and are the returned value
  172. // C1 B1 A1 is longIn1
  173. // D2 C2 B2 A2 is longIn2
  174. //
  175. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  176. asm volatile ( \
  177. "clr r26 \n\t" \
  178. "mul %A1, %B2 \n\t" \
  179. "mov r27, r1 \n\t" \
  180. "mul %B1, %C2 \n\t" \
  181. "movw %A0, r0 \n\t" \
  182. "mul %C1, %C2 \n\t" \
  183. "add %B0, r0 \n\t" \
  184. "mul %C1, %B2 \n\t" \
  185. "add %A0, r0 \n\t" \
  186. "adc %B0, r1 \n\t" \
  187. "mul %A1, %C2 \n\t" \
  188. "add r27, r0 \n\t" \
  189. "adc %A0, r1 \n\t" \
  190. "adc %B0, r26 \n\t" \
  191. "mul %B1, %B2 \n\t" \
  192. "add r27, r0 \n\t" \
  193. "adc %A0, r1 \n\t" \
  194. "adc %B0, r26 \n\t" \
  195. "mul %C1, %A2 \n\t" \
  196. "add r27, r0 \n\t" \
  197. "adc %A0, r1 \n\t" \
  198. "adc %B0, r26 \n\t" \
  199. "mul %B1, %A2 \n\t" \
  200. "add r27, r1 \n\t" \
  201. "adc %A0, r26 \n\t" \
  202. "adc %B0, r26 \n\t" \
  203. "lsr r27 \n\t" \
  204. "adc %A0, r26 \n\t" \
  205. "adc %B0, r26 \n\t" \
  206. "mul %D2, %A1 \n\t" \
  207. "add %A0, r0 \n\t" \
  208. "adc %B0, r1 \n\t" \
  209. "mul %D2, %B1 \n\t" \
  210. "add %B0, r0 \n\t" \
  211. "clr r1 \n\t" \
  212. : \
  213. "=&r" (intRes) \
  214. : \
  215. "d" (longIn1), \
  216. "d" (longIn2) \
  217. : \
  218. "r26" , "r27" \
  219. )
  220. // Some useful constants
  221. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  222. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  223. /**
  224. * __________________________
  225. * /| |\ _________________ ^
  226. * / | | \ /| |\ |
  227. * / | | \ / | | \ s
  228. * / | | | | | \ p
  229. * / | | | | | \ e
  230. * +-----+------------------------+---+--+---------------+----+ e
  231. * | BLOCK 1 | BLOCK 2 | d
  232. *
  233. * time ----->
  234. *
  235. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  236. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  237. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  238. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  239. */
  240. void Stepper::wake_up() {
  241. // TCNT1 = 0;
  242. ENABLE_STEPPER_DRIVER_INTERRUPT();
  243. }
  244. /**
  245. * Set the stepper direction of each axis
  246. *
  247. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  248. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  249. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  250. */
  251. void Stepper::set_directions() {
  252. #define SET_STEP_DIR(AXIS) \
  253. if (motor_direction(AXIS ##_AXIS)) { \
  254. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  255. count_direction[AXIS ##_AXIS] = -1; \
  256. } \
  257. else { \
  258. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  259. count_direction[AXIS ##_AXIS] = 1; \
  260. }
  261. #if HAS_X_DIR
  262. SET_STEP_DIR(X); // A
  263. #endif
  264. #if HAS_Y_DIR
  265. SET_STEP_DIR(Y); // B
  266. #endif
  267. #if HAS_Z_DIR
  268. SET_STEP_DIR(Z); // C
  269. #endif
  270. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  271. if (motor_direction(E_AXIS)) {
  272. REV_E_DIR();
  273. count_direction[E_AXIS] = -1;
  274. }
  275. else {
  276. NORM_E_DIR();
  277. count_direction[E_AXIS] = 1;
  278. }
  279. #endif // !ADVANCE && !LIN_ADVANCE
  280. }
  281. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  282. extern volatile uint8_t e_hit;
  283. #endif
  284. /**
  285. * Stepper Driver Interrupt
  286. *
  287. * Directly pulses the stepper motors at high frequency.
  288. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  289. *
  290. * OCR1A Frequency
  291. * 1 2 MHz
  292. * 50 40 KHz
  293. * 100 20 KHz - capped max rate
  294. * 200 10 KHz - nominal max rate
  295. * 2000 1 KHz - sleep rate
  296. * 4000 500 Hz - init rate
  297. */
  298. ISR(TIMER1_COMPA_vect) {
  299. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  300. Stepper::advance_isr_scheduler();
  301. #else
  302. Stepper::isr();
  303. #endif
  304. }
  305. #define _ENABLE_ISRs() do { cli(); if (thermalManager.in_temp_isr) CBI(TIMSK0, OCIE0B); else SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0)
  306. void Stepper::isr() {
  307. static uint32_t step_remaining = 0;
  308. uint16_t ocr_val;
  309. #define ENDSTOP_NOMINAL_OCR_VAL 3000 // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
  310. #define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
  311. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  312. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  313. CBI(TIMSK0, OCIE0B); // Temperature ISR
  314. DISABLE_STEPPER_DRIVER_INTERRUPT();
  315. sei();
  316. #endif
  317. #define _SPLIT(L) (ocr_val = (uint16_t)L)
  318. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  319. #define SPLIT(L) _SPLIT(L)
  320. #else // sample endstops in between step pulses
  321. #define SPLIT(L) do { \
  322. _SPLIT(L); \
  323. if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \
  324. uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
  325. ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
  326. step_remaining = (uint16_t)L - ocr_val; \
  327. } \
  328. } while(0)
  329. if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step
  330. endstops.update();
  331. if (step_remaining > ENDSTOP_NOMINAL_OCR_VAL) {
  332. step_remaining -= ENDSTOP_NOMINAL_OCR_VAL;
  333. ocr_val = ENDSTOP_NOMINAL_OCR_VAL;
  334. }
  335. else {
  336. ocr_val = step_remaining;
  337. step_remaining = 0; // last one before the ISR that does the step
  338. }
  339. _NEXT_ISR(ocr_val);
  340. NOLESS(OCR1A, TCNT1 + 16);
  341. _ENABLE_ISRs(); // re-enable ISRs
  342. return;
  343. }
  344. # endif
  345. if (cleaning_buffer_counter) {
  346. --cleaning_buffer_counter;
  347. current_block = NULL;
  348. planner.discard_current_block();
  349. #ifdef SD_FINISHED_RELEASECOMMAND
  350. if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  351. #endif
  352. _NEXT_ISR(200); // Run at max speed - 10 KHz
  353. _ENABLE_ISRs(); // re-enable ISRs
  354. return;
  355. }
  356. // If there is no current block, attempt to pop one from the buffer
  357. if (!current_block) {
  358. // Anything in the buffer?
  359. current_block = planner.get_current_block();
  360. if (current_block) {
  361. trapezoid_generator_reset();
  362. // Initialize Bresenham counters to 1/2 the ceiling
  363. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  364. #if ENABLED(MIXING_EXTRUDER)
  365. MIXING_STEPPERS_LOOP(i)
  366. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  367. #endif
  368. step_events_completed = 0;
  369. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  370. e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
  371. // No 'change' can be detected.
  372. #endif
  373. #if ENABLED(Z_LATE_ENABLE)
  374. if (current_block->steps[Z_AXIS] > 0) {
  375. enable_z();
  376. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  377. _ENABLE_ISRs(); // re-enable ISRs
  378. return;
  379. }
  380. #endif
  381. // #if ENABLED(ADVANCE)
  382. // e_steps[TOOL_E_INDEX] = 0;
  383. // #endif
  384. }
  385. else {
  386. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  387. _ENABLE_ISRs(); // re-enable ISRs
  388. return;
  389. }
  390. }
  391. // Update endstops state, if enabled
  392. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  393. if (e_hit && ENDSTOPS_ENABLED) {
  394. endstops.update();
  395. e_hit--;
  396. }
  397. #else
  398. if (ENDSTOPS_ENABLED) endstops.update();
  399. #endif
  400. // Take multiple steps per interrupt (For high speed moves)
  401. bool all_steps_done = false;
  402. for (int8_t i = 0; i < step_loops; i++) {
  403. #if ENABLED(LIN_ADVANCE)
  404. counter_E += current_block->steps[E_AXIS];
  405. if (counter_E > 0) {
  406. counter_E -= current_block->step_event_count;
  407. #if DISABLED(MIXING_EXTRUDER)
  408. // Don't step E here for mixing extruder
  409. count_position[E_AXIS] += count_direction[E_AXIS];
  410. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  411. #endif
  412. }
  413. #if ENABLED(MIXING_EXTRUDER)
  414. // Step mixing steppers proportionally
  415. const bool dir = motor_direction(E_AXIS);
  416. MIXING_STEPPERS_LOOP(j) {
  417. counter_m[j] += current_block->steps[E_AXIS];
  418. if (counter_m[j] > 0) {
  419. counter_m[j] -= current_block->mix_event_count[j];
  420. dir ? --e_steps[j] : ++e_steps[j];
  421. }
  422. }
  423. #endif
  424. #elif ENABLED(ADVANCE)
  425. // Always count the unified E axis
  426. counter_E += current_block->steps[E_AXIS];
  427. if (counter_E > 0) {
  428. counter_E -= current_block->step_event_count;
  429. #if DISABLED(MIXING_EXTRUDER)
  430. // Don't step E here for mixing extruder
  431. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  432. #endif
  433. }
  434. #if ENABLED(MIXING_EXTRUDER)
  435. // Step mixing steppers proportionally
  436. const bool dir = motor_direction(E_AXIS);
  437. MIXING_STEPPERS_LOOP(j) {
  438. counter_m[j] += current_block->steps[E_AXIS];
  439. if (counter_m[j] > 0) {
  440. counter_m[j] -= current_block->mix_event_count[j];
  441. dir ? --e_steps[j] : ++e_steps[j];
  442. }
  443. }
  444. #endif // MIXING_EXTRUDER
  445. #endif // ADVANCE or LIN_ADVANCE
  446. #define _COUNTER(AXIS) counter_## AXIS
  447. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  448. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  449. // Advance the Bresenham counter; start a pulse if the axis needs a step
  450. #define PULSE_START(AXIS) \
  451. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  452. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  453. // Stop an active pulse, reset the Bresenham counter, update the position
  454. #define PULSE_STOP(AXIS) \
  455. if (_COUNTER(AXIS) > 0) { \
  456. _COUNTER(AXIS) -= current_block->step_event_count; \
  457. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  458. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  459. }
  460. #define CYCLES_EATEN_BY_CODE 240
  461. // If a minimum pulse time was specified get the CPU clock
  462. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  463. static uint32_t pulse_start;
  464. pulse_start = TCNT0;
  465. #endif
  466. #if HAS_X_STEP
  467. PULSE_START(X);
  468. #endif
  469. #if HAS_Y_STEP
  470. PULSE_START(Y);
  471. #endif
  472. #if HAS_Z_STEP
  473. PULSE_START(Z);
  474. #endif
  475. // For non-advance use linear interpolation for E also
  476. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  477. #if ENABLED(MIXING_EXTRUDER)
  478. // Keep updating the single E axis
  479. counter_E += current_block->steps[E_AXIS];
  480. // Tick the counters used for this mix
  481. MIXING_STEPPERS_LOOP(j) {
  482. // Step mixing steppers (proportionally)
  483. counter_m[j] += current_block->steps[E_AXIS];
  484. // Step when the counter goes over zero
  485. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  486. }
  487. #else // !MIXING_EXTRUDER
  488. PULSE_START(E);
  489. #endif
  490. #endif // !ADVANCE && !LIN_ADVANCE
  491. // For a minimum pulse time wait before stopping pulses
  492. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  493. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_CODE) { /* nada */ }
  494. #endif
  495. #if HAS_X_STEP
  496. PULSE_STOP(X);
  497. #endif
  498. #if HAS_Y_STEP
  499. PULSE_STOP(Y);
  500. #endif
  501. #if HAS_Z_STEP
  502. PULSE_STOP(Z);
  503. #endif
  504. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  505. #if ENABLED(MIXING_EXTRUDER)
  506. // Always step the single E axis
  507. if (counter_E > 0) {
  508. counter_E -= current_block->step_event_count;
  509. count_position[E_AXIS] += count_direction[E_AXIS];
  510. }
  511. MIXING_STEPPERS_LOOP(j) {
  512. if (counter_m[j] > 0) {
  513. counter_m[j] -= current_block->mix_event_count[j];
  514. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  515. }
  516. }
  517. #else // !MIXING_EXTRUDER
  518. PULSE_STOP(E);
  519. #endif
  520. #endif // !ADVANCE && !LIN_ADVANCE
  521. if (++step_events_completed >= current_block->step_event_count) {
  522. all_steps_done = true;
  523. break;
  524. }
  525. }
  526. #if ENABLED(LIN_ADVANCE)
  527. if (current_block->use_advance_lead) {
  528. int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  529. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  530. #if ENABLED(MIXING_EXTRUDER)
  531. // Mixing extruders apply advance lead proportionally
  532. MIXING_STEPPERS_LOOP(j)
  533. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  534. #else
  535. // For most extruders, advance the single E stepper
  536. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  537. #endif
  538. }
  539. #endif
  540. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  541. // If we have esteps to execute, fire the next advance_isr "now"
  542. if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
  543. #endif
  544. // Calculate new timer value
  545. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  546. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  547. acc_step_rate += current_block->initial_rate;
  548. // upper limit
  549. NOMORE(acc_step_rate, current_block->nominal_rate);
  550. // step_rate to timer interval
  551. uint16_t timer = calc_timer(acc_step_rate);
  552. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  553. _NEXT_ISR(ocr_val);
  554. acceleration_time += timer;
  555. #if ENABLED(LIN_ADVANCE)
  556. if (current_block->use_advance_lead) {
  557. #if ENABLED(MIXING_EXTRUDER)
  558. MIXING_STEPPERS_LOOP(j)
  559. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  560. #else
  561. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  562. #endif
  563. }
  564. #elif ENABLED(ADVANCE)
  565. advance += advance_rate * step_loops;
  566. //NOLESS(advance, current_block->advance);
  567. long advance_whole = advance >> 8,
  568. advance_factor = advance_whole - old_advance;
  569. // Do E steps + advance steps
  570. #if ENABLED(MIXING_EXTRUDER)
  571. // ...for mixing steppers proportionally
  572. MIXING_STEPPERS_LOOP(j)
  573. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  574. #else
  575. // ...for the active extruder
  576. e_steps[TOOL_E_INDEX] += advance_factor;
  577. #endif
  578. old_advance = advance_whole;
  579. #endif // ADVANCE or LIN_ADVANCE
  580. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  581. eISR_Rate = ADV_RATE(timer, step_loops);
  582. #endif
  583. }
  584. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  585. uint16_t step_rate;
  586. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  587. if (step_rate < acc_step_rate) { // Still decelerating?
  588. step_rate = acc_step_rate - step_rate;
  589. NOLESS(step_rate, current_block->final_rate);
  590. }
  591. else
  592. step_rate = current_block->final_rate;
  593. // step_rate to timer interval
  594. uint16_t timer = calc_timer(step_rate);
  595. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  596. _NEXT_ISR(ocr_val);
  597. deceleration_time += timer;
  598. #if ENABLED(LIN_ADVANCE)
  599. if (current_block->use_advance_lead) {
  600. #if ENABLED(MIXING_EXTRUDER)
  601. MIXING_STEPPERS_LOOP(j)
  602. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  603. #else
  604. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  605. #endif
  606. }
  607. #elif ENABLED(ADVANCE)
  608. advance -= advance_rate * step_loops;
  609. NOLESS(advance, final_advance);
  610. // Do E steps + advance steps
  611. long advance_whole = advance >> 8,
  612. advance_factor = advance_whole - old_advance;
  613. #if ENABLED(MIXING_EXTRUDER)
  614. MIXING_STEPPERS_LOOP(j)
  615. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  616. #else
  617. e_steps[TOOL_E_INDEX] += advance_factor;
  618. #endif
  619. old_advance = advance_whole;
  620. #endif // ADVANCE or LIN_ADVANCE
  621. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  622. eISR_Rate = ADV_RATE(timer, step_loops);
  623. #endif
  624. }
  625. else {
  626. #if ENABLED(LIN_ADVANCE)
  627. if (current_block->use_advance_lead)
  628. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  629. eISR_Rate = ADV_RATE(OCR1A_nominal, step_loops_nominal);
  630. #endif
  631. SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  632. _NEXT_ISR(ocr_val);
  633. // ensure we're running at the correct step rate, even if we just came off an acceleration
  634. step_loops = step_loops_nominal;
  635. }
  636. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  637. NOLESS(OCR1A, TCNT1 + 16);
  638. #endif
  639. // If current block is finished, reset pointer
  640. if (all_steps_done) {
  641. current_block = NULL;
  642. planner.discard_current_block();
  643. }
  644. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  645. _ENABLE_ISRs(); // re-enable ISRs
  646. #endif
  647. }
  648. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  649. // Timer interrupt for E. e_steps is set in the main routine;
  650. void Stepper::advance_isr() {
  651. nextAdvanceISR = eISR_Rate;
  652. #define SET_E_STEP_DIR(INDEX) \
  653. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  654. #define START_E_PULSE(INDEX) \
  655. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  656. #define STOP_E_PULSE(INDEX) \
  657. if (e_steps[INDEX]) { \
  658. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  659. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  660. }
  661. SET_E_STEP_DIR(0);
  662. #if E_STEPPERS > 1
  663. SET_E_STEP_DIR(1);
  664. #if E_STEPPERS > 2
  665. SET_E_STEP_DIR(2);
  666. #if E_STEPPERS > 3
  667. SET_E_STEP_DIR(3);
  668. #endif
  669. #endif
  670. #endif
  671. #define CYCLES_EATEN_BY_E 60
  672. // Step all E steppers that have steps
  673. for (uint8_t i = 0; i < step_loops; i++) {
  674. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  675. static uint32_t pulse_start;
  676. pulse_start = TCNT0;
  677. #endif
  678. START_E_PULSE(0);
  679. #if E_STEPPERS > 1
  680. START_E_PULSE(1);
  681. #if E_STEPPERS > 2
  682. START_E_PULSE(2);
  683. #if E_STEPPERS > 3
  684. START_E_PULSE(3);
  685. #endif
  686. #endif
  687. #endif
  688. // For a minimum pulse time wait before stopping pulses
  689. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  690. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_E) { /* nada */ }
  691. #endif
  692. STOP_E_PULSE(0);
  693. #if E_STEPPERS > 1
  694. STOP_E_PULSE(1);
  695. #if E_STEPPERS > 2
  696. STOP_E_PULSE(2);
  697. #if E_STEPPERS > 3
  698. STOP_E_PULSE(3);
  699. #endif
  700. #endif
  701. #endif
  702. }
  703. }
  704. void Stepper::advance_isr_scheduler() {
  705. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  706. CBI(TIMSK0, OCIE0B); // Temperature ISR
  707. DISABLE_STEPPER_DRIVER_INTERRUPT();
  708. sei();
  709. // Run main stepping ISR if flagged
  710. if (!nextMainISR) isr();
  711. // Run Advance stepping ISR if flagged
  712. if (!nextAdvanceISR) advance_isr();
  713. // Is the next advance ISR scheduled before the next main ISR?
  714. if (nextAdvanceISR <= nextMainISR) {
  715. // Set up the next interrupt
  716. OCR1A = nextAdvanceISR;
  717. // New interval for the next main ISR
  718. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  719. // Will call Stepper::advance_isr on the next interrupt
  720. nextAdvanceISR = 0;
  721. }
  722. else {
  723. // The next main ISR comes first
  724. OCR1A = nextMainISR;
  725. // New interval for the next advance ISR, if any
  726. if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  727. nextAdvanceISR -= nextMainISR;
  728. // Will call Stepper::isr on the next interrupt
  729. nextMainISR = 0;
  730. }
  731. // Don't run the ISR faster than possible
  732. NOLESS(OCR1A, TCNT1 + 16);
  733. // Restore original ISR settings
  734. _ENABLE_ISRs();
  735. }
  736. #endif // ADVANCE or LIN_ADVANCE
  737. void Stepper::init() {
  738. // Init Digipot Motor Current
  739. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  740. digipot_init();
  741. #endif
  742. // Init Microstepping Pins
  743. #if HAS_MICROSTEPS
  744. microstep_init();
  745. #endif
  746. // Init TMC Steppers
  747. #if ENABLED(HAVE_TMCDRIVER)
  748. tmc_init();
  749. #endif
  750. // Init TMC2130 Steppers
  751. #if ENABLED(HAVE_TMC2130)
  752. tmc2130_init();
  753. #endif
  754. // Init L6470 Steppers
  755. #if ENABLED(HAVE_L6470DRIVER)
  756. L6470_init();
  757. #endif
  758. // Init Dir Pins
  759. #if HAS_X_DIR
  760. X_DIR_INIT;
  761. #endif
  762. #if HAS_X2_DIR
  763. X2_DIR_INIT;
  764. #endif
  765. #if HAS_Y_DIR
  766. Y_DIR_INIT;
  767. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  768. Y2_DIR_INIT;
  769. #endif
  770. #endif
  771. #if HAS_Z_DIR
  772. Z_DIR_INIT;
  773. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  774. Z2_DIR_INIT;
  775. #endif
  776. #endif
  777. #if HAS_E0_DIR
  778. E0_DIR_INIT;
  779. #endif
  780. #if HAS_E1_DIR
  781. E1_DIR_INIT;
  782. #endif
  783. #if HAS_E2_DIR
  784. E2_DIR_INIT;
  785. #endif
  786. #if HAS_E3_DIR
  787. E3_DIR_INIT;
  788. #endif
  789. // Init Enable Pins - steppers default to disabled.
  790. #if HAS_X_ENABLE
  791. X_ENABLE_INIT;
  792. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  793. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  794. X2_ENABLE_INIT;
  795. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  796. #endif
  797. #endif
  798. #if HAS_Y_ENABLE
  799. Y_ENABLE_INIT;
  800. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  801. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  802. Y2_ENABLE_INIT;
  803. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  804. #endif
  805. #endif
  806. #if HAS_Z_ENABLE
  807. Z_ENABLE_INIT;
  808. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  809. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  810. Z2_ENABLE_INIT;
  811. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  812. #endif
  813. #endif
  814. #if HAS_E0_ENABLE
  815. E0_ENABLE_INIT;
  816. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  817. #endif
  818. #if HAS_E1_ENABLE
  819. E1_ENABLE_INIT;
  820. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  821. #endif
  822. #if HAS_E2_ENABLE
  823. E2_ENABLE_INIT;
  824. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  825. #endif
  826. #if HAS_E3_ENABLE
  827. E3_ENABLE_INIT;
  828. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  829. #endif
  830. // Init endstops and pullups
  831. endstops.init();
  832. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  833. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  834. #define _DISABLE(axis) disable_## axis()
  835. #define AXIS_INIT(axis, AXIS, PIN) \
  836. _STEP_INIT(AXIS); \
  837. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  838. _DISABLE(axis)
  839. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  840. // Init Step Pins
  841. #if HAS_X_STEP
  842. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  843. X2_STEP_INIT;
  844. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  845. #endif
  846. AXIS_INIT(x, X, X);
  847. #endif
  848. #if HAS_Y_STEP
  849. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  850. Y2_STEP_INIT;
  851. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  852. #endif
  853. AXIS_INIT(y, Y, Y);
  854. #endif
  855. #if HAS_Z_STEP
  856. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  857. Z2_STEP_INIT;
  858. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  859. #endif
  860. AXIS_INIT(z, Z, Z);
  861. #endif
  862. #if HAS_E0_STEP
  863. E_AXIS_INIT(0);
  864. #endif
  865. #if HAS_E1_STEP
  866. E_AXIS_INIT(1);
  867. #endif
  868. #if HAS_E2_STEP
  869. E_AXIS_INIT(2);
  870. #endif
  871. #if HAS_E3_STEP
  872. E_AXIS_INIT(3);
  873. #endif
  874. // waveform generation = 0100 = CTC
  875. CBI(TCCR1B, WGM13);
  876. SBI(TCCR1B, WGM12);
  877. CBI(TCCR1A, WGM11);
  878. CBI(TCCR1A, WGM10);
  879. // output mode = 00 (disconnected)
  880. TCCR1A &= ~(3 << COM1A0);
  881. TCCR1A &= ~(3 << COM1B0);
  882. // Set the timer pre-scaler
  883. // Generally we use a divider of 8, resulting in a 2MHz timer
  884. // frequency on a 16MHz MCU. If you are going to change this, be
  885. // sure to regenerate speed_lookuptable.h with
  886. // create_speed_lookuptable.py
  887. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  888. // Init Stepper ISR to 122 Hz for quick starting
  889. OCR1A = 0x4000;
  890. TCNT1 = 0;
  891. ENABLE_STEPPER_DRIVER_INTERRUPT();
  892. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  893. for (int i = 0; i < E_STEPPERS; i++) {
  894. e_steps[i] = 0;
  895. #if ENABLED(LIN_ADVANCE)
  896. current_adv_steps[i] = 0;
  897. #endif
  898. }
  899. #endif // ADVANCE or LIN_ADVANCE
  900. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  901. sei();
  902. set_directions(); // Init directions to last_direction_bits = 0
  903. }
  904. /**
  905. * Block until all buffered steps are executed
  906. */
  907. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  908. /**
  909. * Set the stepper positions directly in steps
  910. *
  911. * The input is based on the typical per-axis XYZ steps.
  912. * For CORE machines XYZ needs to be translated to ABC.
  913. *
  914. * This allows get_axis_position_mm to correctly
  915. * derive the current XYZ position later on.
  916. */
  917. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  918. synchronize(); // Bad to set stepper counts in the middle of a move
  919. CRITICAL_SECTION_START;
  920. #if CORE_IS_XY
  921. // corexy positioning
  922. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  923. count_position[A_AXIS] = a + b;
  924. count_position[B_AXIS] = CORESIGN(a - b);
  925. count_position[Z_AXIS] = c;
  926. #elif CORE_IS_XZ
  927. // corexz planning
  928. count_position[A_AXIS] = a + c;
  929. count_position[Y_AXIS] = b;
  930. count_position[C_AXIS] = CORESIGN(a - c);
  931. #elif CORE_IS_YZ
  932. // coreyz planning
  933. count_position[X_AXIS] = a;
  934. count_position[B_AXIS] = b + c;
  935. count_position[C_AXIS] = CORESIGN(b - c);
  936. #else
  937. // default non-h-bot planning
  938. count_position[X_AXIS] = a;
  939. count_position[Y_AXIS] = b;
  940. count_position[Z_AXIS] = c;
  941. #endif
  942. count_position[E_AXIS] = e;
  943. CRITICAL_SECTION_END;
  944. }
  945. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  946. CRITICAL_SECTION_START;
  947. count_position[axis] = v;
  948. CRITICAL_SECTION_END;
  949. }
  950. void Stepper::set_e_position(const long &e) {
  951. CRITICAL_SECTION_START;
  952. count_position[E_AXIS] = e;
  953. CRITICAL_SECTION_END;
  954. }
  955. /**
  956. * Get a stepper's position in steps.
  957. */
  958. long Stepper::position(AxisEnum axis) {
  959. CRITICAL_SECTION_START;
  960. long count_pos = count_position[axis];
  961. CRITICAL_SECTION_END;
  962. return count_pos;
  963. }
  964. /**
  965. * Get an axis position according to stepper position(s)
  966. * For CORE machines apply translation from ABC to XYZ.
  967. */
  968. float Stepper::get_axis_position_mm(AxisEnum axis) {
  969. float axis_steps;
  970. #if IS_CORE
  971. // Requesting one of the "core" axes?
  972. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  973. CRITICAL_SECTION_START;
  974. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  975. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  976. axis_steps = 0.5f * (
  977. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  978. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  979. );
  980. CRITICAL_SECTION_END;
  981. }
  982. else
  983. axis_steps = position(axis);
  984. #else
  985. axis_steps = position(axis);
  986. #endif
  987. return axis_steps * planner.steps_to_mm[axis];
  988. }
  989. void Stepper::finish_and_disable() {
  990. synchronize();
  991. disable_all_steppers();
  992. }
  993. void Stepper::quick_stop() {
  994. cleaning_buffer_counter = 5000;
  995. DISABLE_STEPPER_DRIVER_INTERRUPT();
  996. while (planner.blocks_queued()) planner.discard_current_block();
  997. current_block = NULL;
  998. ENABLE_STEPPER_DRIVER_INTERRUPT();
  999. #if ENABLED(ULTRA_LCD)
  1000. planner.clear_block_buffer_runtime();
  1001. #endif
  1002. }
  1003. void Stepper::endstop_triggered(AxisEnum axis) {
  1004. #if IS_CORE
  1005. endstops_trigsteps[axis] = 0.5f * (
  1006. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1007. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1008. );
  1009. #else // !COREXY && !COREXZ && !COREYZ
  1010. endstops_trigsteps[axis] = count_position[axis];
  1011. #endif // !COREXY && !COREXZ && !COREYZ
  1012. kill_current_block();
  1013. }
  1014. void Stepper::report_positions() {
  1015. CRITICAL_SECTION_START;
  1016. long xpos = count_position[X_AXIS],
  1017. ypos = count_position[Y_AXIS],
  1018. zpos = count_position[Z_AXIS];
  1019. CRITICAL_SECTION_END;
  1020. #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
  1021. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  1022. #else
  1023. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1024. #endif
  1025. SERIAL_PROTOCOL(xpos);
  1026. #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
  1027. SERIAL_PROTOCOLPGM(" B:");
  1028. #else
  1029. SERIAL_PROTOCOLPGM(" Y:");
  1030. #endif
  1031. SERIAL_PROTOCOL(ypos);
  1032. #if CORE_IS_XZ || CORE_IS_YZ
  1033. SERIAL_PROTOCOLPGM(" C:");
  1034. #else
  1035. SERIAL_PROTOCOLPGM(" Z:");
  1036. #endif
  1037. SERIAL_PROTOCOL(zpos);
  1038. SERIAL_EOL;
  1039. }
  1040. #if ENABLED(BABYSTEPPING)
  1041. #define _ENABLE(axis) enable_## axis()
  1042. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1043. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1044. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1045. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  1046. _ENABLE(axis); \
  1047. uint8_t old_pin = _READ_DIR(AXIS); \
  1048. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1049. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1050. delayMicroseconds(2); \
  1051. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1052. _APPLY_DIR(AXIS, old_pin); \
  1053. }
  1054. // MUST ONLY BE CALLED BY AN ISR,
  1055. // No other ISR should ever interrupt this!
  1056. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  1057. switch (axis) {
  1058. case X_AXIS:
  1059. BABYSTEP_AXIS(x, X, false);
  1060. break;
  1061. case Y_AXIS:
  1062. BABYSTEP_AXIS(y, Y, false);
  1063. break;
  1064. case Z_AXIS: {
  1065. #if DISABLED(DELTA)
  1066. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1067. #else // DELTA
  1068. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1069. enable_x();
  1070. enable_y();
  1071. enable_z();
  1072. uint8_t old_x_dir_pin = X_DIR_READ,
  1073. old_y_dir_pin = Y_DIR_READ,
  1074. old_z_dir_pin = Z_DIR_READ;
  1075. //setup new step
  1076. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1077. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1078. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1079. //perform step
  1080. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1081. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1082. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1083. delayMicroseconds(2);
  1084. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1085. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1086. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1087. //get old pin state back.
  1088. X_DIR_WRITE(old_x_dir_pin);
  1089. Y_DIR_WRITE(old_y_dir_pin);
  1090. Z_DIR_WRITE(old_z_dir_pin);
  1091. #endif
  1092. } break;
  1093. default: break;
  1094. }
  1095. }
  1096. #endif //BABYSTEPPING
  1097. /**
  1098. * Software-controlled Stepper Motor Current
  1099. */
  1100. #if HAS_DIGIPOTSS
  1101. // From Arduino DigitalPotControl example
  1102. void Stepper::digitalPotWrite(int address, int value) {
  1103. WRITE(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  1104. SPI.transfer(address); // send in the address and value via SPI:
  1105. SPI.transfer(value);
  1106. WRITE(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  1107. //delay(10);
  1108. }
  1109. #endif //HAS_DIGIPOTSS
  1110. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1111. void Stepper::digipot_init() {
  1112. #if HAS_DIGIPOTSS
  1113. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1114. SPI.begin();
  1115. SET_OUTPUT(DIGIPOTSS_PIN);
  1116. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1117. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1118. digipot_current(i, digipot_motor_current[i]);
  1119. }
  1120. #elif HAS_MOTOR_CURRENT_PWM
  1121. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1122. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1123. digipot_current(0, motor_current_setting[0]);
  1124. #endif
  1125. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1126. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1127. digipot_current(1, motor_current_setting[1]);
  1128. #endif
  1129. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1130. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1131. digipot_current(2, motor_current_setting[2]);
  1132. #endif
  1133. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1134. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1135. #endif
  1136. }
  1137. void Stepper::digipot_current(uint8_t driver, int current) {
  1138. #if HAS_DIGIPOTSS
  1139. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1140. digitalPotWrite(digipot_ch[driver], current);
  1141. #elif HAS_MOTOR_CURRENT_PWM
  1142. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1143. switch (driver) {
  1144. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1145. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  1146. #endif
  1147. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1148. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  1149. #endif
  1150. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1151. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  1152. #endif
  1153. }
  1154. #endif
  1155. }
  1156. #endif
  1157. #if HAS_MICROSTEPS
  1158. /**
  1159. * Software-controlled Microstepping
  1160. */
  1161. void Stepper::microstep_init() {
  1162. SET_OUTPUT(X_MS1_PIN);
  1163. SET_OUTPUT(X_MS2_PIN);
  1164. #if HAS_MICROSTEPS_Y
  1165. SET_OUTPUT(Y_MS1_PIN);
  1166. SET_OUTPUT(Y_MS2_PIN);
  1167. #endif
  1168. #if HAS_MICROSTEPS_Z
  1169. SET_OUTPUT(Z_MS1_PIN);
  1170. SET_OUTPUT(Z_MS2_PIN);
  1171. #endif
  1172. #if HAS_MICROSTEPS_E0
  1173. SET_OUTPUT(E0_MS1_PIN);
  1174. SET_OUTPUT(E0_MS2_PIN);
  1175. #endif
  1176. #if HAS_MICROSTEPS_E1
  1177. SET_OUTPUT(E1_MS1_PIN);
  1178. SET_OUTPUT(E1_MS2_PIN);
  1179. #endif
  1180. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1181. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1182. microstep_mode(i, microstep_modes[i]);
  1183. }
  1184. void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1185. if (ms1 >= 0) switch (driver) {
  1186. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1187. #if HAS_MICROSTEPS_Y
  1188. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1189. #endif
  1190. #if HAS_MICROSTEPS_Z
  1191. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1192. #endif
  1193. #if HAS_MICROSTEPS_E0
  1194. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1195. #endif
  1196. #if HAS_MICROSTEPS_E1
  1197. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1198. #endif
  1199. }
  1200. if (ms2 >= 0) switch (driver) {
  1201. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1202. #if HAS_MICROSTEPS_Y
  1203. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1204. #endif
  1205. #if HAS_MICROSTEPS_Z
  1206. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1207. #endif
  1208. #if HAS_MICROSTEPS_E0
  1209. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1210. #endif
  1211. #if HAS_MICROSTEPS_E1
  1212. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1213. #endif
  1214. }
  1215. }
  1216. void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1217. switch (stepping_mode) {
  1218. case 1: microstep_ms(driver, MICROSTEP1); break;
  1219. case 2: microstep_ms(driver, MICROSTEP2); break;
  1220. case 4: microstep_ms(driver, MICROSTEP4); break;
  1221. case 8: microstep_ms(driver, MICROSTEP8); break;
  1222. case 16: microstep_ms(driver, MICROSTEP16); break;
  1223. }
  1224. }
  1225. void Stepper::microstep_readings() {
  1226. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1227. SERIAL_PROTOCOLPGM("X: ");
  1228. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1229. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1230. #if HAS_MICROSTEPS_Y
  1231. SERIAL_PROTOCOLPGM("Y: ");
  1232. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1233. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1234. #endif
  1235. #if HAS_MICROSTEPS_Z
  1236. SERIAL_PROTOCOLPGM("Z: ");
  1237. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1238. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1239. #endif
  1240. #if HAS_MICROSTEPS_E0
  1241. SERIAL_PROTOCOLPGM("E0: ");
  1242. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1243. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1244. #endif
  1245. #if HAS_MICROSTEPS_E1
  1246. SERIAL_PROTOCOLPGM("E1: ");
  1247. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1248. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1249. #endif
  1250. }
  1251. #endif // HAS_MICROSTEPS