12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- /**
- * planner.cpp
- *
- * Buffer movement commands and manage the acceleration profile plan
- *
- * Derived from Grbl
- * Copyright (c) 2009-2011 Simen Svale Skogsrud
- *
- * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
- *
- *
- * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
- *
- * s == speed, a == acceleration, t == time, d == distance
- *
- * Basic definitions:
- * Speed[s_, a_, t_] := s + (a*t)
- * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
- *
- * Distance to reach a specific speed with a constant acceleration:
- * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
- * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
- *
- * Speed after a given distance of travel with constant acceleration:
- * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
- * m -> Sqrt[2 a d + s^2]
- *
- * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
- *
- * When to start braking (di) to reach a specified destination speed (s2) after accelerating
- * from initial speed s1 without ever stopping at a plateau:
- * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
- * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
- *
- * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
- *
- * --
- *
- * The fast inverse function needed for Bézier interpolation for AVR
- * was designed, written and tested by Eduardo José Tagle on April/2018
- */
-
- #include "planner.h"
- #include "stepper.h"
- #include "motion.h"
- #include "temperature.h"
- #include "../lcd/ultralcd.h"
- #include "../core/language.h"
- #include "../gcode/parser.h"
-
- #include "../MarlinCore.h"
-
- #if HAS_LEVELING
- #include "../feature/bedlevel/bedlevel.h"
- #endif
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- #include "../feature/filwidth.h"
- #endif
-
- #if ENABLED(BARICUDA)
- #include "../feature/baricuda.h"
- #endif
-
- #if ENABLED(MIXING_EXTRUDER)
- #include "../feature/mixing.h"
- #endif
-
- #if ENABLED(AUTO_POWER_CONTROL)
- #include "../feature/power.h"
- #endif
-
- #if ENABLED(BACKLASH_COMPENSATION)
- #include "../feature/backlash.h"
- #endif
-
- #if ENABLED(CANCEL_OBJECTS)
- #include "../feature/cancel_object.h"
- #endif
-
- #if ENABLED(POWER_LOSS_RECOVERY)
- #include "../feature/power_loss_recovery.h"
- #endif
-
- #if HAS_CUTTER
- #include "../feature/spindle_laser.h"
- #endif
-
- // Delay for delivery of first block to the stepper ISR, if the queue contains 2 or
- // fewer movements. The delay is measured in milliseconds, and must be less than 250ms
- #define BLOCK_DELAY_FOR_1ST_MOVE 100
-
- Planner planner;
-
- // public:
-
- /**
- * A ring buffer of moves described in steps
- */
- block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
- volatile uint8_t Planner::block_buffer_head, // Index of the next block to be pushed
- Planner::block_buffer_nonbusy, // Index of the first non-busy block
- Planner::block_buffer_planned, // Index of the optimally planned block
- Planner::block_buffer_tail; // Index of the busy block, if any
- uint16_t Planner::cleaning_buffer_counter; // A counter to disable queuing of blocks
- uint8_t Planner::delay_before_delivering; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
-
- planner_settings_t Planner::settings; // Initialized by settings.load()
-
- uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N]; // (steps/s^2) Derived from mm_per_s2
-
- float Planner::steps_to_mm[XYZE_N]; // (mm) Millimeters per step
-
- #if DISABLED(CLASSIC_JERK)
- float Planner::junction_deviation_mm; // (mm) M205 J
- #if ENABLED(LIN_ADVANCE)
- #if ENABLED(DISTINCT_E_FACTORS)
- float Planner::max_e_jerk[EXTRUDERS]; // Calculated from junction_deviation_mm
- #else
- float Planner::max_e_jerk;
- #endif
- #endif
- #endif
- #if HAS_CLASSIC_JERK
- #if HAS_LINEAR_E_JERK
- xyz_pos_t Planner::max_jerk; // (mm/s^2) M205 XYZ - The largest speed change requiring no acceleration.
- #else
- xyze_pos_t Planner::max_jerk; // (mm/s^2) M205 XYZE - The largest speed change requiring no acceleration.
- #endif
- #endif
-
- #if ENABLED(SD_ABORT_ON_ENDSTOP_HIT)
- bool Planner::abort_on_endstop_hit = false;
- #endif
-
- #if ENABLED(DISTINCT_E_FACTORS)
- uint8_t Planner::last_extruder = 0; // Respond to extruder change
- #endif
-
- #if EXTRUDERS
- int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
- float Planner::e_factor[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0f); // The flow percentage and volumetric multiplier combine to scale E movement
- #endif
-
- #if DISABLED(NO_VOLUMETRICS)
- float Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
- Planner::volumetric_area_nominal = CIRCLE_AREA(float(DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5f), // Nominal cross-sectional area
- Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
- #endif
-
- #if HAS_LEVELING
- bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled
- #if ABL_PLANAR
- matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
- #endif
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- float Planner::z_fade_height, // Initialized by settings.load()
- Planner::inverse_z_fade_height,
- Planner::last_fade_z;
- #endif
- #else
- constexpr bool Planner::leveling_active;
- #endif
-
- skew_factor_t Planner::skew_factor; // Initialized by settings.load()
-
- #if ENABLED(AUTOTEMP)
- float Planner::autotemp_max = 250,
- Planner::autotemp_min = 210,
- Planner::autotemp_factor = 0.1f;
- bool Planner::autotemp_enabled = false;
- #endif
-
- // private:
-
- xyze_long_t Planner::position{0};
-
- uint32_t Planner::cutoff_long;
-
- xyze_float_t Planner::previous_speed;
- float Planner::previous_nominal_speed_sqr;
-
- #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
- uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
- #endif
-
- #ifdef XY_FREQUENCY_LIMIT
- // Old direction bits. Used for speed calculations
- unsigned char Planner::old_direction_bits = 0;
- // Segment times (in µs). Used for speed calculations
- xy_ulong_t Planner::axis_segment_time_us[3] = { { MAX_FREQ_TIME_US + 1, MAX_FREQ_TIME_US + 1 } };
- #endif
-
- #if ENABLED(LIN_ADVANCE)
- float Planner::extruder_advance_K[EXTRUDERS]; // Initialized by settings.load()
- #endif
-
- #if HAS_POSITION_FLOAT
- xyze_pos_t Planner::position_float; // Needed for accurate maths. Steps cannot be used!
- #endif
-
- #if IS_KINEMATIC
- xyze_pos_t Planner::position_cart;
- #endif
-
- #if HAS_SPI_LCD
- volatile uint32_t Planner::block_buffer_runtime_us = 0;
- #endif
-
- /**
- * Class and Instance Methods
- */
-
- Planner::Planner() { init(); }
-
- void Planner::init() {
- position.reset();
- #if HAS_POSITION_FLOAT
- position_float.reset();
- #endif
- #if IS_KINEMATIC
- position_cart.reset();
- #endif
- previous_speed.reset();
- previous_nominal_speed_sqr = 0;
- #if ABL_PLANAR
- bed_level_matrix.set_to_identity();
- #endif
- clear_block_buffer();
- delay_before_delivering = 0;
- }
-
- #if ENABLED(S_CURVE_ACCELERATION)
- #ifdef __AVR__
- /**
- * This routine returns 0x1000000 / d, getting the inverse as fast as possible.
- * A fast-converging iterative Newton-Raphson method can reach full precision in
- * just 1 iteration, and takes 211 cycles (worst case; the mean case is less, up
- * to 30 cycles for small divisors), instead of the 500 cycles a normal division
- * would take.
- *
- * Inspired by the following page:
- * https://stackoverflow.com/questions/27801397/newton-raphson-division-with-big-integers
- *
- * Suppose we want to calculate floor(2 ^ k / B) where B is a positive integer
- * Then, B must be <= 2^k, otherwise, the quotient is 0.
- *
- * The Newton - Raphson iteration for x = B / 2 ^ k yields:
- * q[n + 1] = q[n] * (2 - q[n] * B / 2 ^ k)
- *
- * This can be rearranged to:
- * q[n + 1] = q[n] * (2 ^ (k + 1) - q[n] * B) >> k
- *
- * Each iteration requires only integer multiplications and bit shifts.
- * It doesn't necessarily converge to floor(2 ^ k / B) but in the worst case
- * it eventually alternates between floor(2 ^ k / B) and ceil(2 ^ k / B).
- * So it checks for this case and extracts floor(2 ^ k / B).
- *
- * A simple but important optimization for this approach is to truncate
- * multiplications (i.e., calculate only the higher bits of the product) in the
- * early iterations of the Newton - Raphson method. This is done so the results
- * of the early iterations are far from the quotient. Then it doesn't matter if
- * they are done inaccurately.
- * It's important to pick a good starting value for x. Knowing how many
- * digits the divisor has, it can be estimated:
- *
- * 2^k / x = 2 ^ log2(2^k / x)
- * 2^k / x = 2 ^(log2(2^k)-log2(x))
- * 2^k / x = 2 ^(k*log2(2)-log2(x))
- * 2^k / x = 2 ^ (k-log2(x))
- * 2^k / x >= 2 ^ (k-floor(log2(x)))
- * floor(log2(x)) is simply the index of the most significant bit set.
- *
- * If this estimation can be improved even further the number of iterations can be
- * reduced a lot, saving valuable execution time.
- * The paper "Software Integer Division" by Thomas L.Rodeheffer, Microsoft
- * Research, Silicon Valley,August 26, 2008, available at
- * https://www.microsoft.com/en-us/research/wp-content/uploads/2008/08/tr-2008-141.pdf
- * suggests, for its integer division algorithm, using a table to supply the first
- * 8 bits of precision, then, due to the quadratic convergence nature of the
- * Newton-Raphon iteration, just 2 iterations should be enough to get maximum
- * precision of the division.
- * By precomputing values of inverses for small denominator values, just one
- * Newton-Raphson iteration is enough to reach full precision.
- * This code uses the top 9 bits of the denominator as index.
- *
- * The AVR assembly function implements this C code using the data below:
- *
- * // For small divisors, it is best to directly retrieve the results
- * if (d <= 110) return pgm_read_dword(&small_inv_tab[d]);
- *
- * // Compute initial estimation of 0x1000000/x -
- * // Get most significant bit set on divider
- * uint8_t idx = 0;
- * uint32_t nr = d;
- * if (!(nr & 0xFF0000)) {
- * nr <<= 8; idx += 8;
- * if (!(nr & 0xFF0000)) { nr <<= 8; idx += 8; }
- * }
- * if (!(nr & 0xF00000)) { nr <<= 4; idx += 4; }
- * if (!(nr & 0xC00000)) { nr <<= 2; idx += 2; }
- * if (!(nr & 0x800000)) { nr <<= 1; idx += 1; }
- *
- * // Isolate top 9 bits of the denominator, to be used as index into the initial estimation table
- * uint32_t tidx = nr >> 15, // top 9 bits. bit8 is always set
- * ie = inv_tab[tidx & 0xFF] + 256, // Get the table value. bit9 is always set
- * x = idx <= 8 ? (ie >> (8 - idx)) : (ie << (idx - 8)); // Position the estimation at the proper place
- *
- * x = uint32_t((x * uint64_t(_BV(25) - x * d)) >> 24); // Refine estimation by newton-raphson. 1 iteration is enough
- * const uint32_t r = _BV(24) - x * d; // Estimate remainder
- * if (r >= d) x++; // Check whether to adjust result
- * return uint32_t(x); // x holds the proper estimation
- *
- */
- static uint32_t get_period_inverse(uint32_t d) {
-
- static const uint8_t inv_tab[256] PROGMEM = {
- 255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227,
- 225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200,
- 199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176,
- 175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154,
- 153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135,
- 134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117,
- 116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101,
- 100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86,
- 85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72,
- 71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59,
- 59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48,
- 47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37,
- 36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27,
- 26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17,
- 17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8,
- 8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0
- };
-
- // For small denominators, it is cheaper to directly store the result.
- // For bigger ones, just ONE Newton-Raphson iteration is enough to get
- // maximum precision we need
- static const uint32_t small_inv_tab[111] PROGMEM = {
- 16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481,
- 1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200,
- 524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962,
- 349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305,
- 262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369,
- 209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602,
- 174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520
- };
-
- // For small divisors, it is best to directly retrieve the results
- if (d <= 110) return pgm_read_dword(&small_inv_tab[d]);
-
- uint8_t r8 = d & 0xFF,
- r9 = (d >> 8) & 0xFF,
- r10 = (d >> 16) & 0xFF,
- r2,r3,r4,r5,r6,r7,r11,r12,r13,r14,r15,r16,r17,r18;
- const uint8_t* ptab = inv_tab;
-
- __asm__ __volatile__(
- // %8:%7:%6 = interval
- // r31:r30: MUST be those registers, and they must point to the inv_tab
-
- A("clr %13") // %13 = 0
-
- // Now we must compute
- // result = 0xFFFFFF / d
- // %8:%7:%6 = interval
- // %16:%15:%14 = nr
- // %13 = 0
-
- // A plain division of 24x24 bits should take 388 cycles to complete. We will
- // use Newton-Raphson for the calculation, and will strive to get way less cycles
- // for the same result - Using C division, it takes 500cycles to complete .
-
- A("clr %3") // idx = 0
- A("mov %14,%6")
- A("mov %15,%7")
- A("mov %16,%8") // nr = interval
- A("tst %16") // nr & 0xFF0000 == 0 ?
- A("brne 2f") // No, skip this
- A("mov %16,%15")
- A("mov %15,%14") // nr <<= 8, %14 not needed
- A("subi %3,-8") // idx += 8
- A("tst %16") // nr & 0xFF0000 == 0 ?
- A("brne 2f") // No, skip this
- A("mov %16,%15") // nr <<= 8, %14 not needed
- A("clr %15") // We clear %14
- A("subi %3,-8") // idx += 8
-
- // here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0
- L("2")
- A("cpi %16,0x10") // (nr & 0xF00000) == 0 ?
- A("brcc 3f") // No, skip this
- A("swap %15") // Swap nibbles
- A("swap %16") // Swap nibbles. Low nibble is 0
- A("mov %14, %15")
- A("andi %14,0x0F") // Isolate low nibble
- A("andi %15,0xF0") // Keep proper nibble in %15
- A("or %16, %14") // %16:%15 <<= 4
- A("subi %3,-4") // idx += 4
-
- L("3")
- A("cpi %16,0x40") // (nr & 0xC00000) == 0 ?
- A("brcc 4f") // No, skip this
- A("add %15,%15")
- A("adc %16,%16")
- A("add %15,%15")
- A("adc %16,%16") // %16:%15 <<= 2
- A("subi %3,-2") // idx += 2
-
- L("4")
- A("cpi %16,0x80") // (nr & 0x800000) == 0 ?
- A("brcc 5f") // No, skip this
- A("add %15,%15")
- A("adc %16,%16") // %16:%15 <<= 1
- A("inc %3") // idx += 1
-
- // Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure
- // we have at least 9 MSBits available to enter the initial estimation table
- L("5")
- A("add %15,%15")
- A("adc %16,%16") // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table)
- A("add r30,%16") // Only use top 8 bits
- A("adc r31,%13") // r31:r30 = inv_tab + (tidx)
- A("lpm %14, Z") // %14 = inv_tab[tidx]
- A("ldi %15, 1") // %15 = 1 %15:%14 = inv_tab[tidx] + 256
-
- // We must scale the approximation to the proper place
- A("clr %16") // %16 will always be 0 here
- A("subi %3,8") // idx == 8 ?
- A("breq 6f") // yes, no need to scale
- A("brcs 7f") // If C=1, means idx < 8, result was negative!
-
- // idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8]
- A("sbrs %3,0") // shift by 1bit position?
- A("rjmp 8f") // No
- A("add %14,%14")
- A("adc %15,%15") // %15:16 <<= 1
- L("8")
- A("sbrs %3,1") // shift by 2bit position?
- A("rjmp 9f") // No
- A("add %14,%14")
- A("adc %15,%15")
- A("add %14,%14")
- A("adc %15,%15") // %15:16 <<= 1
- L("9")
- A("sbrs %3,2") // shift by 4bits position?
- A("rjmp 16f") // No
- A("swap %15") // Swap nibbles. lo nibble of %15 will always be 0
- A("swap %14") // Swap nibbles
- A("mov %12,%14")
- A("andi %12,0x0F") // isolate low nibble
- A("andi %14,0xF0") // and clear it
- A("or %15,%12") // %15:%16 <<= 4
- L("16")
- A("sbrs %3,3") // shift by 8bits position?
- A("rjmp 6f") // No, we are done
- A("mov %16,%15")
- A("mov %15,%14")
- A("clr %14")
- A("jmp 6f")
-
- // idx < 8, now %3 = idx - 8. Get the count of bits
- L("7")
- A("neg %3") // %3 = -idx = count of bits to move right. idx range:[1...8]
- A("sbrs %3,0") // shift by 1 bit position ?
- A("rjmp 10f") // No, skip it
- A("asr %15") // (bit7 is always 0 here)
- A("ror %14")
- L("10")
- A("sbrs %3,1") // shift by 2 bit position ?
- A("rjmp 11f") // No, skip it
- A("asr %15") // (bit7 is always 0 here)
- A("ror %14")
- A("asr %15") // (bit7 is always 0 here)
- A("ror %14")
- L("11")
- A("sbrs %3,2") // shift by 4 bit position ?
- A("rjmp 12f") // No, skip it
- A("swap %15") // Swap nibbles
- A("andi %14, 0xF0") // Lose the lowest nibble
- A("swap %14") // Swap nibbles. Upper nibble is 0
- A("or %14,%15") // Pass nibble from upper byte
- A("andi %15, 0x0F") // And get rid of that nibble
- L("12")
- A("sbrs %3,3") // shift by 8 bit position ?
- A("rjmp 6f") // No, skip it
- A("mov %14,%15")
- A("clr %15")
- L("6") // %16:%15:%14 = initial estimation of 0x1000000 / d
-
- // Now, we must refine the estimation present on %16:%15:%14 using 1 iteration
- // of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough
- // to get more than 18bits of precision (the initial table lookup gives 9 bits of
- // precision to start from). 18bits of precision is all what is needed here for result
-
- // %8:%7:%6 = d = interval
- // %16:%15:%14 = x = initial estimation of 0x1000000 / d
- // %13 = 0
- // %3:%2:%1:%0 = working accumulator
-
- // Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive
- A("clr %0")
- A("clr %1")
- A("clr %2")
- A("ldi %3,2") // %3:%2:%1:%0 = 0x2000000
- A("mul %6,%14") // r1:r0 = LO(d) * LO(x)
- A("sub %0,r0")
- A("sbc %1,r1")
- A("sbc %2,%13")
- A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
- A("mul %7,%14") // r1:r0 = MI(d) * LO(x)
- A("sub %1,r0")
- A("sbc %2,r1" )
- A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
- A("mul %8,%14") // r1:r0 = HI(d) * LO(x)
- A("sub %2,r0")
- A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
- A("mul %6,%15") // r1:r0 = LO(d) * MI(x)
- A("sub %1,r0")
- A("sbc %2,r1")
- A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
- A("mul %7,%15") // r1:r0 = MI(d) * MI(x)
- A("sub %2,r0")
- A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
- A("mul %8,%15") // r1:r0 = HI(d) * MI(x)
- A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
- A("mul %6,%16") // r1:r0 = LO(d) * HI(x)
- A("sub %2,r0")
- A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
- A("mul %7,%16") // r1:r0 = MI(d) * HI(x)
- A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
- // %3:%2:%1:%0 = (1<<25) - x*d [169]
-
- // We need to multiply that result by x, and we are only interested in the top 24bits of that multiply
-
- // %16:%15:%14 = x = initial estimation of 0x1000000 / d
- // %3:%2:%1:%0 = (1<<25) - x*d = acc
- // %13 = 0
-
- // result = %11:%10:%9:%5:%4
- A("mul %14,%0") // r1:r0 = LO(x) * LO(acc)
- A("mov %4,r1")
- A("clr %5")
- A("clr %9")
- A("clr %10")
- A("clr %11") // %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8
- A("mul %15,%0") // r1:r0 = MI(x) * LO(acc)
- A("add %4,r0")
- A("adc %5,r1")
- A("adc %9,%13")
- A("adc %10,%13")
- A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc)
- A("mul %16,%0") // r1:r0 = HI(x) * LO(acc)
- A("add %5,r0")
- A("adc %9,r1")
- A("adc %10,%13")
- A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8
-
- A("mul %14,%1") // r1:r0 = LO(x) * MIL(acc)
- A("add %4,r0")
- A("adc %5,r1")
- A("adc %9,%13")
- A("adc %10,%13")
- A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIL(acc)
- A("mul %15,%1") // r1:r0 = MI(x) * MIL(acc)
- A("add %5,r0")
- A("adc %9,r1")
- A("adc %10,%13")
- A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8
- A("mul %16,%1") // r1:r0 = HI(x) * MIL(acc)
- A("add %9,r0")
- A("adc %10,r1")
- A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16
-
- A("mul %14,%2") // r1:r0 = LO(x) * MIH(acc)
- A("add %5,r0")
- A("adc %9,r1")
- A("adc %10,%13")
- A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8
- A("mul %15,%2") // r1:r0 = MI(x) * MIH(acc)
- A("add %9,r0")
- A("adc %10,r1")
- A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16
- A("mul %16,%2") // r1:r0 = HI(x) * MIH(acc)
- A("add %10,r0")
- A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24
-
- A("mul %14,%3") // r1:r0 = LO(x) * HI(acc)
- A("add %9,r0")
- A("adc %10,r1")
- A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16
- A("mul %15,%3") // r1:r0 = MI(x) * HI(acc)
- A("add %10,r0")
- A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24
- A("mul %16,%3") // r1:r0 = HI(x) * HI(acc)
- A("add %11,r0") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32
-
- // At this point, %11:%10:%9 contains the new estimation of x.
-
- // Finally, we must correct the result. Estimate remainder as
- // (1<<24) - x*d
- // %11:%10:%9 = x
- // %8:%7:%6 = d = interval" "\n\t"
- A("ldi %3,1")
- A("clr %2")
- A("clr %1")
- A("clr %0") // %3:%2:%1:%0 = 0x1000000
- A("mul %6,%9") // r1:r0 = LO(d) * LO(x)
- A("sub %0,r0")
- A("sbc %1,r1")
- A("sbc %2,%13")
- A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
- A("mul %7,%9") // r1:r0 = MI(d) * LO(x)
- A("sub %1,r0")
- A("sbc %2,r1")
- A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
- A("mul %8,%9") // r1:r0 = HI(d) * LO(x)
- A("sub %2,r0")
- A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
- A("mul %6,%10") // r1:r0 = LO(d) * MI(x)
- A("sub %1,r0")
- A("sbc %2,r1")
- A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
- A("mul %7,%10") // r1:r0 = MI(d) * MI(x)
- A("sub %2,r0")
- A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
- A("mul %8,%10") // r1:r0 = HI(d) * MI(x)
- A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
- A("mul %6,%11") // r1:r0 = LO(d) * HI(x)
- A("sub %2,r0")
- A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
- A("mul %7,%11") // r1:r0 = MI(d) * HI(x)
- A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
- // %3:%2:%1:%0 = r = (1<<24) - x*d
- // %8:%7:%6 = d = interval
-
- // Perform the final correction
- A("sub %0,%6")
- A("sbc %1,%7")
- A("sbc %2,%8") // r -= d
- A("brcs 14f") // if ( r >= d)
-
- // %11:%10:%9 = x
- A("ldi %3,1")
- A("add %9,%3")
- A("adc %10,%13")
- A("adc %11,%13") // x++
- L("14")
-
- // Estimation is done. %11:%10:%9 = x
- A("clr __zero_reg__") // Make C runtime happy
- // [211 cycles total]
- : "=r" (r2),
- "=r" (r3),
- "=r" (r4),
- "=d" (r5),
- "=r" (r6),
- "=r" (r7),
- "+r" (r8),
- "+r" (r9),
- "+r" (r10),
- "=d" (r11),
- "=r" (r12),
- "=r" (r13),
- "=d" (r14),
- "=d" (r15),
- "=d" (r16),
- "=d" (r17),
- "=d" (r18),
- "+z" (ptab)
- :
- : "r0", "r1", "cc"
- );
-
- // Return the result
- return r11 | (uint16_t(r12) << 8) | (uint32_t(r13) << 16);
- }
- #else
- // All other 32-bit MPUs can easily do inverse using hardware division,
- // so we don't need to reduce precision or to use assembly language at all.
- // This routine, for all other archs, returns 0x100000000 / d ~= 0xFFFFFFFF / d
- static FORCE_INLINE uint32_t get_period_inverse(const uint32_t d) {
- return d ? 0xFFFFFFFF / d : 0xFFFFFFFF;
- }
- #endif
- #endif
-
- #define MINIMAL_STEP_RATE 120
-
- /**
- * Get the current block for processing
- * and mark the block as busy.
- * Return nullptr if the buffer is empty
- * or if there is a first-block delay.
- *
- * WARNING: Called from Stepper ISR context!
- */
- block_t* Planner::get_current_block() {
- // Get the number of moves in the planner queue so far
- const uint8_t nr_moves = movesplanned();
-
- // If there are any moves queued ...
- if (nr_moves) {
-
- // If there is still delay of delivery of blocks running, decrement it
- if (delay_before_delivering) {
- --delay_before_delivering;
- // If the number of movements queued is less than 3, and there is still time
- // to wait, do not deliver anything
- if (nr_moves < 3 && delay_before_delivering) return nullptr;
- delay_before_delivering = 0;
- }
-
- // If we are here, there is no excuse to deliver the block
- block_t * const block = &block_buffer[block_buffer_tail];
-
- // No trapezoid calculated? Don't execute yet.
- if (TEST(block->flag, BLOCK_BIT_RECALCULATE)) return nullptr;
-
- #if HAS_SPI_LCD
- block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
- #endif
-
- // As this block is busy, advance the nonbusy block pointer
- block_buffer_nonbusy = next_block_index(block_buffer_tail);
-
- // Push block_buffer_planned pointer, if encountered.
- if (block_buffer_tail == block_buffer_planned)
- block_buffer_planned = block_buffer_nonbusy;
-
- // Return the block
- return block;
- }
-
- // The queue became empty
- #if HAS_SPI_LCD
- clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
- #endif
-
- return nullptr;
- }
-
- /**
- * Calculate trapezoid parameters, multiplying the entry- and exit-speeds
- * by the provided factors.
- **
- * ############ VERY IMPORTANT ############
- * NOTE that the PRECONDITION to call this function is that the block is
- * NOT BUSY and it is marked as RECALCULATE. That WARRANTIES the Stepper ISR
- * is not and will not use the block while we modify it, so it is safe to
- * alter its values.
- */
- void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) {
-
- uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor),
- final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second)
-
- // Limit minimal step rate (Otherwise the timer will overflow.)
- NOLESS(initial_rate, uint32_t(MINIMAL_STEP_RATE));
- NOLESS(final_rate, uint32_t(MINIMAL_STEP_RATE));
-
- #if ENABLED(S_CURVE_ACCELERATION)
- uint32_t cruise_rate = initial_rate;
- #endif
-
- const int32_t accel = block->acceleration_steps_per_s2;
-
- // Steps required for acceleration, deceleration to/from nominal rate
- uint32_t accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
- decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel));
- // Steps between acceleration and deceleration, if any
- int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
-
- // Does accelerate_steps + decelerate_steps exceed step_event_count?
- // Then we can't possibly reach the nominal rate, there will be no cruising.
- // Use intersection_distance() to calculate accel / braking time in order to
- // reach the final_rate exactly at the end of this block.
- if (plateau_steps < 0) {
- const float accelerate_steps_float = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
- accelerate_steps = _MIN(uint32_t(_MAX(accelerate_steps_float, 0)), block->step_event_count);
- plateau_steps = 0;
-
- #if ENABLED(S_CURVE_ACCELERATION)
- // We won't reach the cruising rate. Let's calculate the speed we will reach
- cruise_rate = final_speed(initial_rate, accel, accelerate_steps);
- #endif
- }
- #if ENABLED(S_CURVE_ACCELERATION)
- else // We have some plateau time, so the cruise rate will be the nominal rate
- cruise_rate = block->nominal_rate;
- #endif
-
- #if ENABLED(S_CURVE_ACCELERATION)
- // Jerk controlled speed requires to express speed versus time, NOT steps
- uint32_t acceleration_time = ((float)(cruise_rate - initial_rate) / accel) * (STEPPER_TIMER_RATE),
- deceleration_time = ((float)(cruise_rate - final_rate) / accel) * (STEPPER_TIMER_RATE);
-
- // And to offload calculations from the ISR, we also calculate the inverse of those times here
- uint32_t acceleration_time_inverse = get_period_inverse(acceleration_time);
- uint32_t deceleration_time_inverse = get_period_inverse(deceleration_time);
- #endif
-
- // Store new block parameters
- block->accelerate_until = accelerate_steps;
- block->decelerate_after = accelerate_steps + plateau_steps;
- block->initial_rate = initial_rate;
- #if ENABLED(S_CURVE_ACCELERATION)
- block->acceleration_time = acceleration_time;
- block->deceleration_time = deceleration_time;
- block->acceleration_time_inverse = acceleration_time_inverse;
- block->deceleration_time_inverse = deceleration_time_inverse;
- block->cruise_rate = cruise_rate;
- #endif
- block->final_rate = final_rate;
- }
-
- /* PLANNER SPEED DEFINITION
- +--------+ <- current->nominal_speed
- / \
- current->entry_speed -> + \
- | + <- next->entry_speed (aka exit speed)
- +-------------+
- time -->
-
- Recalculates the motion plan according to the following basic guidelines:
-
- 1. Go over every feasible block sequentially in reverse order and calculate the junction speeds
- (i.e. current->entry_speed) such that:
- a. No junction speed exceeds the pre-computed maximum junction speed limit or nominal speeds of
- neighboring blocks.
- b. A block entry speed cannot exceed one reverse-computed from its exit speed (next->entry_speed)
- with a maximum allowable deceleration over the block travel distance.
- c. The last (or newest appended) block is planned from a complete stop (an exit speed of zero).
- 2. Go over every block in chronological (forward) order and dial down junction speed values if
- a. The exit speed exceeds the one forward-computed from its entry speed with the maximum allowable
- acceleration over the block travel distance.
-
- When these stages are complete, the planner will have maximized the velocity profiles throughout the all
- of the planner blocks, where every block is operating at its maximum allowable acceleration limits. In
- other words, for all of the blocks in the planner, the plan is optimal and no further speed improvements
- are possible. If a new block is added to the buffer, the plan is recomputed according to the said
- guidelines for a new optimal plan.
-
- To increase computational efficiency of these guidelines, a set of planner block pointers have been
- created to indicate stop-compute points for when the planner guidelines cannot logically make any further
- changes or improvements to the plan when in normal operation and new blocks are streamed and added to the
- planner buffer. For example, if a subset of sequential blocks in the planner have been planned and are
- bracketed by junction velocities at their maximums (or by the first planner block as well), no new block
- added to the planner buffer will alter the velocity profiles within them. So we no longer have to compute
- them. Or, if a set of sequential blocks from the first block in the planner (or a optimal stop-compute
- point) are all accelerating, they are all optimal and can not be altered by a new block added to the
- planner buffer, as this will only further increase the plan speed to chronological blocks until a maximum
- junction velocity is reached. However, if the operational conditions of the plan changes from infrequently
- used feed holds or feedrate overrides, the stop-compute pointers will be reset and the entire plan is
- recomputed as stated in the general guidelines.
-
- Planner buffer index mapping:
- - block_buffer_tail: Points to the beginning of the planner buffer. First to be executed or being executed.
- - block_buffer_head: Points to the buffer block after the last block in the buffer. Used to indicate whether
- the buffer is full or empty. As described for standard ring buffers, this block is always empty.
- - block_buffer_planned: Points to the first buffer block after the last optimally planned block for normal
- streaming operating conditions. Use for planning optimizations by avoiding recomputing parts of the
- planner buffer that don't change with the addition of a new block, as describe above. In addition,
- this block can never be less than block_buffer_tail and will always be pushed forward and maintain
- this requirement when encountered by the Planner::discard_current_block() routine during a cycle.
-
- NOTE: Since the planner only computes on what's in the planner buffer, some motions with lots of short
- line segments, like G2/3 arcs or complex curves, may seem to move slow. This is because there simply isn't
- enough combined distance traveled in the entire buffer to accelerate up to the nominal speed and then
- decelerate to a complete stop at the end of the buffer, as stated by the guidelines. If this happens and
- becomes an annoyance, there are a few simple solutions: (1) Maximize the machine acceleration. The planner
- will be able to compute higher velocity profiles within the same combined distance. (2) Maximize line
- motion(s) distance per block to a desired tolerance. The more combined distance the planner has to use,
- the faster it can go. (3) Maximize the planner buffer size. This also will increase the combined distance
- for the planner to compute over. It also increases the number of computations the planner has to perform
- to compute an optimal plan, so select carefully.
- */
-
- // The kernel called by recalculate() when scanning the plan from last to first entry.
- void Planner::reverse_pass_kernel(block_t* const current, const block_t * const next) {
- if (current) {
- // If entry speed is already at the maximum entry speed, and there was no change of speed
- // in the next block, there is no need to recheck. Block is cruising and there is no need to
- // compute anything for this block,
- // If not, block entry speed needs to be recalculated to ensure maximum possible planned speed.
- const float max_entry_speed_sqr = current->max_entry_speed_sqr;
-
- // Compute maximum entry speed decelerating over the current block from its exit speed.
- // If not at the maximum entry speed, or the previous block entry speed changed
- if (current->entry_speed_sqr != max_entry_speed_sqr || (next && TEST(next->flag, BLOCK_BIT_RECALCULATE))) {
-
- // If nominal length true, max junction speed is guaranteed to be reached.
- // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
- // the current block and next block junction speeds are guaranteed to always be at their maximum
- // junction speeds in deceleration and acceleration, respectively. This is due to how the current
- // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
- // the reverse and forward planners, the corresponding block junction speed will always be at the
- // the maximum junction speed and may always be ignored for any speed reduction checks.
-
- const float new_entry_speed_sqr = TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH)
- ? max_entry_speed_sqr
- : _MIN(max_entry_speed_sqr, max_allowable_speed_sqr(-current->acceleration, next ? next->entry_speed_sqr : sq(float(MINIMUM_PLANNER_SPEED)), current->millimeters));
- if (current->entry_speed_sqr != new_entry_speed_sqr) {
-
- // Need to recalculate the block speed - Mark it now, so the stepper
- // ISR does not consume the block before being recalculated
- SBI(current->flag, BLOCK_BIT_RECALCULATE);
-
- // But there is an inherent race condition here, as the block may have
- // become BUSY just before being marked RECALCULATE, so check for that!
- if (stepper.is_block_busy(current)) {
- // Block became busy. Clear the RECALCULATE flag (no point in
- // recalculating BUSY blocks). And don't set its speed, as it can't
- // be updated at this time.
- CBI(current->flag, BLOCK_BIT_RECALCULATE);
- }
- else {
- // Block is not BUSY so this is ahead of the Stepper ISR:
- // Just Set the new entry speed.
- current->entry_speed_sqr = new_entry_speed_sqr;
- }
- }
- }
- }
- }
-
- /**
- * recalculate() needs to go over the current plan twice.
- * Once in reverse and once forward. This implements the reverse pass.
- */
- void Planner::reverse_pass() {
- // Initialize block index to the last block in the planner buffer.
- uint8_t block_index = prev_block_index(block_buffer_head);
-
- // Read the index of the last buffer planned block.
- // The ISR may change it so get a stable local copy.
- uint8_t planned_block_index = block_buffer_planned;
-
- // If there was a race condition and block_buffer_planned was incremented
- // or was pointing at the head (queue empty) break loop now and avoid
- // planning already consumed blocks
- if (planned_block_index == block_buffer_head) return;
-
- // Reverse Pass: Coarsely maximize all possible deceleration curves back-planning from the last
- // block in buffer. Cease planning when the last optimal planned or tail pointer is reached.
- // NOTE: Forward pass will later refine and correct the reverse pass to create an optimal plan.
- const block_t *next = nullptr;
- while (block_index != planned_block_index) {
-
- // Perform the reverse pass
- block_t *current = &block_buffer[block_index];
-
- // Only consider non sync blocks
- if (!TEST(current->flag, BLOCK_BIT_SYNC_POSITION)) {
- reverse_pass_kernel(current, next);
- next = current;
- }
-
- // Advance to the next
- block_index = prev_block_index(block_index);
-
- // The ISR could advance the block_buffer_planned while we were doing the reverse pass.
- // We must try to avoid using an already consumed block as the last one - So follow
- // changes to the pointer and make sure to limit the loop to the currently busy block
- while (planned_block_index != block_buffer_planned) {
-
- // If we reached the busy block or an already processed block, break the loop now
- if (block_index == planned_block_index) return;
-
- // Advance the pointer, following the busy block
- planned_block_index = next_block_index(planned_block_index);
- }
- }
- }
-
- // The kernel called by recalculate() when scanning the plan from first to last entry.
- void Planner::forward_pass_kernel(const block_t* const previous, block_t* const current, const uint8_t block_index) {
- if (previous) {
- // If the previous block is an acceleration block, too short to complete the full speed
- // change, adjust the entry speed accordingly. Entry speeds have already been reset,
- // maximized, and reverse-planned. If nominal length is set, max junction speed is
- // guaranteed to be reached. No need to recheck.
- if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH) &&
- previous->entry_speed_sqr < current->entry_speed_sqr) {
-
- // Compute the maximum allowable speed
- const float new_entry_speed_sqr = max_allowable_speed_sqr(-previous->acceleration, previous->entry_speed_sqr, previous->millimeters);
-
- // If true, current block is full-acceleration and we can move the planned pointer forward.
- if (new_entry_speed_sqr < current->entry_speed_sqr) {
-
- // Mark we need to recompute the trapezoidal shape, and do it now,
- // so the stepper ISR does not consume the block before being recalculated
- SBI(current->flag, BLOCK_BIT_RECALCULATE);
-
- // But there is an inherent race condition here, as the block maybe
- // became BUSY, just before it was marked as RECALCULATE, so check
- // if that is the case!
- if (stepper.is_block_busy(current)) {
- // Block became busy. Clear the RECALCULATE flag (no point in
- // recalculating BUSY blocks and don't set its speed, as it can't
- // be updated at this time.
- CBI(current->flag, BLOCK_BIT_RECALCULATE);
- }
- else {
- // Block is not BUSY, we won the race against the Stepper ISR:
-
- // Always <= max_entry_speed_sqr. Backward pass sets this.
- current->entry_speed_sqr = new_entry_speed_sqr; // Always <= max_entry_speed_sqr. Backward pass sets this.
-
- // Set optimal plan pointer.
- block_buffer_planned = block_index;
- }
- }
- }
-
- // Any block set at its maximum entry speed also creates an optimal plan up to this
- // point in the buffer. When the plan is bracketed by either the beginning of the
- // buffer and a maximum entry speed or two maximum entry speeds, every block in between
- // cannot logically be further improved. Hence, we don't have to recompute them anymore.
- if (current->entry_speed_sqr == current->max_entry_speed_sqr)
- block_buffer_planned = block_index;
- }
- }
-
- /**
- * recalculate() needs to go over the current plan twice.
- * Once in reverse and once forward. This implements the forward pass.
- */
- void Planner::forward_pass() {
-
- // Forward Pass: Forward plan the acceleration curve from the planned pointer onward.
- // Also scans for optimal plan breakpoints and appropriately updates the planned pointer.
-
- // Begin at buffer planned pointer. Note that block_buffer_planned can be modified
- // by the stepper ISR, so read it ONCE. It it guaranteed that block_buffer_planned
- // will never lead head, so the loop is safe to execute. Also note that the forward
- // pass will never modify the values at the tail.
- uint8_t block_index = block_buffer_planned;
-
- block_t *block;
- const block_t * previous = nullptr;
- while (block_index != block_buffer_head) {
-
- // Perform the forward pass
- block = &block_buffer[block_index];
-
- // Skip SYNC blocks
- if (!TEST(block->flag, BLOCK_BIT_SYNC_POSITION)) {
- // If there's no previous block or the previous block is not
- // BUSY (thus, modifiable) run the forward_pass_kernel. Otherwise,
- // the previous block became BUSY, so assume the current block's
- // entry speed can't be altered (since that would also require
- // updating the exit speed of the previous block).
- if (!previous || !stepper.is_block_busy(previous))
- forward_pass_kernel(previous, block, block_index);
- previous = block;
- }
- // Advance to the previous
- block_index = next_block_index(block_index);
- }
- }
-
- /**
- * Recalculate the trapezoid speed profiles for all blocks in the plan
- * according to the entry_factor for each junction. Must be called by
- * recalculate() after updating the blocks.
- */
- void Planner::recalculate_trapezoids() {
- // The tail may be changed by the ISR so get a local copy.
- uint8_t block_index = block_buffer_tail,
- head_block_index = block_buffer_head;
- // Since there could be a sync block in the head of the queue, and the
- // next loop must not recalculate the head block (as it needs to be
- // specially handled), scan backwards to the first non-SYNC block.
- while (head_block_index != block_index) {
-
- // Go back (head always point to the first free block)
- const uint8_t prev_index = prev_block_index(head_block_index);
-
- // Get the pointer to the block
- block_t *prev = &block_buffer[prev_index];
-
- // If not dealing with a sync block, we are done. The last block is not a SYNC block
- if (!TEST(prev->flag, BLOCK_BIT_SYNC_POSITION)) break;
-
- // Examine the previous block. This and all following are SYNC blocks
- head_block_index = prev_index;
- }
-
- // Go from the tail (currently executed block) to the first block, without including it)
- block_t *block = nullptr, *next = nullptr;
- float current_entry_speed = 0.0, next_entry_speed = 0.0;
- while (block_index != head_block_index) {
-
- next = &block_buffer[block_index];
-
- // Skip sync blocks
- if (!TEST(next->flag, BLOCK_BIT_SYNC_POSITION)) {
- next_entry_speed = SQRT(next->entry_speed_sqr);
-
- if (block) {
- // Recalculate if current block entry or exit junction speed has changed.
- if (TEST(block->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) {
-
- // Mark the current block as RECALCULATE, to protect it from the Stepper ISR running it.
- // Note that due to the above condition, there's a chance the current block isn't marked as
- // RECALCULATE yet, but the next one is. That's the reason for the following line.
- SBI(block->flag, BLOCK_BIT_RECALCULATE);
-
- // But there is an inherent race condition here, as the block maybe
- // became BUSY, just before it was marked as RECALCULATE, so check
- // if that is the case!
- if (!stepper.is_block_busy(block)) {
- // Block is not BUSY, we won the race against the Stepper ISR:
-
- // NOTE: Entry and exit factors always > 0 by all previous logic operations.
- const float current_nominal_speed = SQRT(block->nominal_speed_sqr),
- nomr = 1.0f / current_nominal_speed;
- calculate_trapezoid_for_block(block, current_entry_speed * nomr, next_entry_speed * nomr);
- #if ENABLED(LIN_ADVANCE)
- if (block->use_advance_lead) {
- const float comp = block->e_D_ratio * extruder_advance_K[active_extruder] * settings.axis_steps_per_mm[E_AXIS];
- block->max_adv_steps = current_nominal_speed * comp;
- block->final_adv_steps = next_entry_speed * comp;
- }
- #endif
- }
-
- // Reset current only to ensure next trapezoid is computed - The
- // stepper is free to use the block from now on.
- CBI(block->flag, BLOCK_BIT_RECALCULATE);
- }
- }
-
- block = next;
- current_entry_speed = next_entry_speed;
- }
-
- block_index = next_block_index(block_index);
- }
-
- // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
- if (next) {
-
- // Mark the next(last) block as RECALCULATE, to prevent the Stepper ISR running it.
- // As the last block is always recalculated here, there is a chance the block isn't
- // marked as RECALCULATE yet. That's the reason for the following line.
- SBI(next->flag, BLOCK_BIT_RECALCULATE);
-
- // But there is an inherent race condition here, as the block maybe
- // became BUSY, just before it was marked as RECALCULATE, so check
- // if that is the case!
- if (!stepper.is_block_busy(block)) {
- // Block is not BUSY, we won the race against the Stepper ISR:
-
- const float next_nominal_speed = SQRT(next->nominal_speed_sqr),
- nomr = 1.0f / next_nominal_speed;
- calculate_trapezoid_for_block(next, next_entry_speed * nomr, float(MINIMUM_PLANNER_SPEED) * nomr);
- #if ENABLED(LIN_ADVANCE)
- if (next->use_advance_lead) {
- const float comp = next->e_D_ratio * extruder_advance_K[active_extruder] * settings.axis_steps_per_mm[E_AXIS];
- next->max_adv_steps = next_nominal_speed * comp;
- next->final_adv_steps = (MINIMUM_PLANNER_SPEED) * comp;
- }
- #endif
- }
-
- // Reset next only to ensure its trapezoid is computed - The stepper is free to use
- // the block from now on.
- CBI(next->flag, BLOCK_BIT_RECALCULATE);
- }
- }
-
- void Planner::recalculate() {
- // Initialize block index to the last block in the planner buffer.
- const uint8_t block_index = prev_block_index(block_buffer_head);
- // If there is just one block, no planning can be done. Avoid it!
- if (block_index != block_buffer_planned) {
- reverse_pass();
- forward_pass();
- }
- recalculate_trapezoids();
- }
-
- #if ENABLED(AUTOTEMP)
-
- void Planner::getHighESpeed() {
- static float oldt = 0;
-
- if (!autotemp_enabled) return;
- if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
-
- float high = 0.0;
- for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
- block_t* block = &block_buffer[b];
- if (block->steps.x || block->steps.y || block->steps.z) {
- const float se = (float)block->steps.e / block->step_event_count * SQRT(block->nominal_speed_sqr); // mm/sec;
- NOLESS(high, se);
- }
- }
-
- float t = autotemp_min + high * autotemp_factor;
- LIMIT(t, autotemp_min, autotemp_max);
- if (t < oldt) t = t * (1 - float(AUTOTEMP_OLDWEIGHT)) + oldt * float(AUTOTEMP_OLDWEIGHT);
- oldt = t;
- thermalManager.setTargetHotend(t, 0);
- }
-
- #endif // AUTOTEMP
-
- /**
- * Maintain fans, paste extruder pressure,
- */
- void Planner::check_axes_activity() {
-
- #if ANY(DISABLE_X, DISABLE_Y, DISABLE_Z, DISABLE_E)
- xyze_bool_t axis_active = { false };
- #endif
-
- #if FAN_COUNT > 0
- uint8_t tail_fan_speed[FAN_COUNT];
- #endif
-
- #if ENABLED(BARICUDA)
- #if HAS_HEATER_1
- uint8_t tail_valve_pressure;
- #endif
- #if HAS_HEATER_2
- uint8_t tail_e_to_p_pressure;
- #endif
- #endif
-
- if (has_blocks_queued()) {
-
- #if FAN_COUNT > 0 || ENABLED(BARICUDA)
- block_t *block = &block_buffer[block_buffer_tail];
- #endif
-
- #if FAN_COUNT > 0
- FANS_LOOP(i)
- tail_fan_speed[i] = thermalManager.scaledFanSpeed(i, block->fan_speed[i]);
- #endif
-
- #if ENABLED(BARICUDA)
- #if HAS_HEATER_1
- tail_valve_pressure = block->valve_pressure;
- #endif
- #if HAS_HEATER_2
- tail_e_to_p_pressure = block->e_to_p_pressure;
- #endif
- #endif
-
- #if ANY(DISABLE_X, DISABLE_Y, DISABLE_Z, DISABLE_E)
- for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
- block_t *block = &block_buffer[b];
- LOOP_XYZE(i) if (block->steps[i]) axis_active[i] = true;
- }
- #endif
- }
- else {
-
- #if HAS_CUTTER
- cutter.refresh();
- #endif
-
- #if FAN_COUNT > 0
- FANS_LOOP(i)
- tail_fan_speed[i] = thermalManager.scaledFanSpeed(i);
- #endif
-
- #if ENABLED(BARICUDA)
- #if HAS_HEATER_1
- tail_valve_pressure = baricuda_valve_pressure;
- #endif
- #if HAS_HEATER_2
- tail_e_to_p_pressure = baricuda_e_to_p_pressure;
- #endif
- #endif
- }
-
- //
- // Disable inactive axes
- //
- #if ENABLED(DISABLE_X)
- if (!axis_active.x) DISABLE_AXIS_X();
- #endif
- #if ENABLED(DISABLE_Y)
- if (!axis_active.y) DISABLE_AXIS_Y();
- #endif
- #if ENABLED(DISABLE_Z)
- if (!axis_active.z) DISABLE_AXIS_Z();
- #endif
- #if ENABLED(DISABLE_E)
- if (!axis_active.e) disable_e_steppers();
- #endif
-
- //
- // Update Fan speeds
- //
- #if FAN_COUNT > 0
-
- #if FAN_KICKSTART_TIME > 0
- static millis_t fan_kick_end[FAN_COUNT] = { 0 };
- #define KICKSTART_FAN(f) \
- if (tail_fan_speed[f]) { \
- millis_t ms = millis(); \
- if (fan_kick_end[f] == 0) { \
- fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
- tail_fan_speed[f] = 255; \
- } else if (PENDING(ms, fan_kick_end[f])) \
- tail_fan_speed[f] = 255; \
- } else fan_kick_end[f] = 0
- #else
- #define KICKSTART_FAN(f) NOOP
- #endif
-
- #if FAN_MIN_PWM != 0 || FAN_MAX_PWM != 255
- #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? map(tail_fan_speed[f], 1, 255, FAN_MIN_PWM, FAN_MAX_PWM) : FAN_OFF_PWM)
- #else
- #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ?: FAN_OFF_PWM)
- #endif
-
- #if ENABLED(FAN_SOFT_PWM)
- #define _FAN_SET(F) thermalManager.soft_pwm_amount_fan[F] = CALC_FAN_SPEED(F);
- #elif ENABLED(FAST_PWM_FAN)
- #define _FAN_SET(F) set_pwm_duty(FAN##F##_PIN, CALC_FAN_SPEED(F));
- #else
- #define _FAN_SET(F) analogWrite(pin_t(FAN##F##_PIN), CALC_FAN_SPEED(F));
- #endif
- #define FAN_SET(F) do{ KICKSTART_FAN(F); _FAN_SET(F); }while(0)
-
- #if HAS_FAN0
- FAN_SET(0);
- #endif
- #if HAS_FAN1
- FAN_SET(1);
- #endif
- #if HAS_FAN2
- FAN_SET(2);
- #endif
- #if HAS_FAN3
- FAN_SET(3);
- #endif
- #if HAS_FAN4
- FAN_SET(4);
- #endif
- #if HAS_FAN5
- FAN_SET(5);
- #endif
- #if HAS_FAN6
- FAN_SET(6);
- #endif
- #if HAS_FAN7
- FAN_SET(7);
- #endif
- #endif // FAN_COUNT > 0
-
- #if ENABLED(AUTOTEMP)
- getHighESpeed();
- #endif
-
- #if ENABLED(BARICUDA)
- #if HAS_HEATER_1
- analogWrite(pin_t(HEATER_1_PIN), tail_valve_pressure);
- #endif
- #if HAS_HEATER_2
- analogWrite(pin_t(HEATER_2_PIN), tail_e_to_p_pressure);
- #endif
- #endif
- }
-
- #if DISABLED(NO_VOLUMETRICS)
-
- /**
- * Get a volumetric multiplier from a filament diameter.
- * This is the reciprocal of the circular cross-section area.
- * Return 1.0 with volumetric off or a diameter of 0.0.
- */
- inline float calculate_volumetric_multiplier(const float &diameter) {
- return (parser.volumetric_enabled && diameter) ? 1.0f / CIRCLE_AREA(diameter * 0.5f) : 1;
- }
-
- /**
- * Convert the filament sizes into volumetric multipliers.
- * The multiplier converts a given E value into a length.
- */
- void Planner::calculate_volumetric_multipliers() {
- for (uint8_t i = 0; i < COUNT(filament_size); i++) {
- volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
- refresh_e_factor(i);
- }
- }
-
- #endif // !NO_VOLUMETRICS
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- /**
- * Convert the ratio value given by the filament width sensor
- * into a volumetric multiplier. Conversion differs when using
- * linear extrusion vs volumetric extrusion.
- */
- void Planner::apply_filament_width_sensor(const int8_t encoded_ratio) {
- // Reconstitute the nominal/measured ratio
- const float nom_meas_ratio = 1 + 0.01f * encoded_ratio,
- ratio_2 = sq(nom_meas_ratio);
-
- volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled
- ? ratio_2 / CIRCLE_AREA(filwidth.nominal_mm * 0.5f) // Volumetric uses a true volumetric multiplier
- : ratio_2; // Linear squares the ratio, which scales the volume
-
- refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM);
- }
- #endif
-
- #if HAS_LEVELING
-
- constexpr xy_pos_t level_fulcrum = {
- #if ENABLED(Z_SAFE_HOMING)
- Z_SAFE_HOMING_X_POINT, Z_SAFE_HOMING_Y_POINT
- #else
- X_HOME_POS, Y_HOME_POS
- #endif
- };
-
- /**
- * rx, ry, rz - Cartesian positions in mm
- * Leveled XYZ on completion
- */
- void Planner::apply_leveling(xyz_pos_t &raw) {
- if (!leveling_active) return;
-
- #if ABL_PLANAR
-
- xy_pos_t d = raw - level_fulcrum;
- apply_rotation_xyz(bed_level_matrix, d.x, d.y, raw.z);
- raw = d + level_fulcrum;
-
- #elif HAS_MESH
-
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- const float fade_scaling_factor = fade_scaling_factor_for_z(raw.z);
- #elif DISABLED(MESH_BED_LEVELING)
- constexpr float fade_scaling_factor = 1.0;
- #endif
-
- raw.z += (
- #if ENABLED(MESH_BED_LEVELING)
- mbl.get_z(raw
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- , fade_scaling_factor
- #endif
- )
- #elif ENABLED(AUTO_BED_LEVELING_UBL)
- fade_scaling_factor ? fade_scaling_factor * ubl.get_z_correction(raw) : 0.0
- #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
- fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset(raw) : 0.0
- #endif
- );
-
- #endif
- }
-
- void Planner::unapply_leveling(xyz_pos_t &raw) {
-
- if (leveling_active) {
-
- #if ABL_PLANAR
-
- matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
-
- xy_pos_t d = raw - level_fulcrum;
- apply_rotation_xyz(inverse, d.x, d.y, raw.z);
- raw = d + level_fulcrum;
-
- #elif HAS_MESH
-
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- const float fade_scaling_factor = fade_scaling_factor_for_z(raw.z);
- #elif DISABLED(MESH_BED_LEVELING)
- constexpr float fade_scaling_factor = 1.0;
- #endif
-
- raw.z -= (
- #if ENABLED(MESH_BED_LEVELING)
- mbl.get_z(raw
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- , fade_scaling_factor
- #endif
- )
- #elif ENABLED(AUTO_BED_LEVELING_UBL)
- fade_scaling_factor ? fade_scaling_factor * ubl.get_z_correction(raw) : 0.0
- #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
- fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset(raw) : 0.0
- #endif
- );
-
- #endif
- }
-
- #if ENABLED(SKEW_CORRECTION)
- unskew(raw);
- #endif
- }
-
- #endif // HAS_LEVELING
-
- #if ENABLED(FWRETRACT)
- /**
- * rz, e - Cartesian positions in mm
- */
- void Planner::apply_retract(float &rz, float &e) {
- rz += fwretract.current_hop;
- e -= fwretract.current_retract[active_extruder];
- }
-
- void Planner::unapply_retract(float &rz, float &e) {
- rz -= fwretract.current_hop;
- e += fwretract.current_retract[active_extruder];
- }
-
- #endif
-
- void Planner::quick_stop() {
-
- // Remove all the queued blocks. Note that this function is NOT
- // called from the Stepper ISR, so we must consider tail as readonly!
- // that is why we set head to tail - But there is a race condition that
- // must be handled: The tail could change between the read and the assignment
- // so this must be enclosed in a critical section
-
- const bool was_enabled = stepper.suspend();
-
- // Drop all queue entries
- block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail;
-
- // Restart the block delay for the first movement - As the queue was
- // forced to empty, there's no risk the ISR will touch this.
- delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
-
- #if HAS_SPI_LCD
- // Clear the accumulated runtime
- clear_block_buffer_runtime();
- #endif
-
- // Make sure to drop any attempt of queuing moves for at least 1 second
- cleaning_buffer_counter = 1000;
-
- // Reenable Stepper ISR
- if (was_enabled) stepper.wake_up();
-
- // And stop the stepper ISR
- stepper.quick_stop();
- }
-
- void Planner::endstop_triggered(const AxisEnum axis) {
- // Record stepper position and discard the current block
- stepper.endstop_triggered(axis);
- }
-
- float Planner::triggered_position_mm(const AxisEnum axis) {
- return stepper.triggered_position(axis) * steps_to_mm[axis];
- }
-
- void Planner::finish_and_disable() {
- while (has_blocks_queued() || cleaning_buffer_counter) idle();
- disable_all_steppers();
- }
-
- /**
- * Get an axis position according to stepper position(s)
- * For CORE machines apply translation from ABC to XYZ.
- */
- float Planner::get_axis_position_mm(const AxisEnum axis) {
- float axis_steps;
- #if IS_CORE
- // Requesting one of the "core" axes?
- if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
-
- // Protect the access to the position.
- const bool was_enabled = stepper.suspend();
-
- const int32_t p1 = stepper.position(CORE_AXIS_1),
- p2 = stepper.position(CORE_AXIS_2);
-
- if (was_enabled) stepper.wake_up();
-
- // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
- // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
- axis_steps = (axis == CORE_AXIS_2 ? CORESIGN(p1 - p2) : p1 + p2) * 0.5f;
- }
- else
- axis_steps = stepper.position(axis);
- #else
- axis_steps = stepper.position(axis);
- #endif
- return axis_steps * steps_to_mm[axis];
- }
-
- /**
- * Block until all buffered steps are executed / cleaned
- */
- void Planner::synchronize() {
- while (
- has_blocks_queued() || cleaning_buffer_counter
- #if ENABLED(EXTERNAL_CLOSED_LOOP_CONTROLLER)
- || (READ(CLOSED_LOOP_ENABLE_PIN) && !READ(CLOSED_LOOP_MOVE_COMPLETE_PIN))
- #endif
- ) idle();
- }
-
- /**
- * Planner::_buffer_steps
- *
- * Add a new linear movement to the planner queue (in terms of steps).
- *
- * target - target position in steps units
- * target_float - target position in direct (mm, degrees) units. optional
- * fr_mm_s - (target) speed of the move
- * extruder - target extruder
- * millimeters - the length of the movement, if known
- *
- * Returns true if movement was properly queued, false otherwise
- */
- bool Planner::_buffer_steps(const xyze_long_t &target
- #if HAS_POSITION_FLOAT
- , const xyze_pos_t &target_float
- #endif
- #if IS_KINEMATIC && DISABLED(CLASSIC_JERK)
- , const xyze_float_t &delta_mm_cart
- #endif
- , feedRate_t fr_mm_s, const uint8_t extruder, const float &millimeters
- ) {
-
- // If we are cleaning, do not accept queuing of movements
- if (cleaning_buffer_counter) return false;
-
- // Wait for the next available block
- uint8_t next_buffer_head;
- block_t * const block = get_next_free_block(next_buffer_head);
-
- // Fill the block with the specified movement
- if (!_populate_block(block, false, target
- #if HAS_POSITION_FLOAT
- , target_float
- #endif
- #if IS_KINEMATIC && DISABLED(CLASSIC_JERK)
- , delta_mm_cart
- #endif
- , fr_mm_s, extruder, millimeters
- )) {
- // Movement was not queued, probably because it was too short.
- // Simply accept that as movement queued and done
- return true;
- }
-
- // If this is the first added movement, reload the delay, otherwise, cancel it.
- if (block_buffer_head == block_buffer_tail) {
- // If it was the first queued block, restart the 1st block delivery delay, to
- // give the planner an opportunity to queue more movements and plan them
- // As there are no queued movements, the Stepper ISR will not touch this
- // variable, so there is no risk setting this here (but it MUST be done
- // before the following line!!)
- delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
- }
-
- // Move buffer head
- block_buffer_head = next_buffer_head;
-
- // Recalculate and optimize trapezoidal speed profiles
- recalculate();
-
- // Movement successfully queued!
- return true;
- }
-
- /**
- * Planner::_populate_block
- *
- * Fills a new linear movement in the block (in terms of steps).
- *
- * target - target position in steps units
- * fr_mm_s - (target) speed of the move
- * extruder - target extruder
- *
- * Returns true is movement is acceptable, false otherwise
- */
- bool Planner::_populate_block(block_t * const block, bool split_move,
- const abce_long_t &target
- #if HAS_POSITION_FLOAT
- , const xyze_pos_t &target_float
- #endif
- #if IS_KINEMATIC && DISABLED(CLASSIC_JERK)
- , const xyze_float_t &delta_mm_cart
- #endif
- , feedRate_t fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/
- ) {
-
- const int32_t da = target.a - position.a,
- db = target.b - position.b,
- dc = target.c - position.c;
-
- #if EXTRUDERS
- int32_t de = target.e - position.e;
- #else
- constexpr int32_t de = 0;
- #endif
-
- /* <-- add a slash to enable
- SERIAL_ECHOLNPAIR(" _populate_block FR:", fr_mm_s,
- " A:", target.a, " (", da, " steps)"
- " B:", target.b, " (", db, " steps)"
- " C:", target.c, " (", dc, " steps)"
- #if EXTRUDERS
- " E:", target.e, " (", de, " steps)"
- #endif
- );
- //*/
-
- #if EITHER(PREVENT_COLD_EXTRUSION, PREVENT_LENGTHY_EXTRUDE)
- if (de) {
- #if ENABLED(PREVENT_COLD_EXTRUSION)
- if (thermalManager.tooColdToExtrude(extruder)) {
- position.e = target.e; // Behave as if the move really took place, but ignore E part
- #if HAS_POSITION_FLOAT
- position_float.e = target_float.e;
- #endif
- de = 0; // no difference
- SERIAL_ECHO_MSG(STR_ERR_COLD_EXTRUDE_STOP);
- }
- #endif // PREVENT_COLD_EXTRUSION
- #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
- const float e_steps = ABS(de * e_factor[extruder]);
- const float max_e_steps = settings.axis_steps_per_mm[E_AXIS_N(extruder)] * (EXTRUDE_MAXLENGTH);
- if (e_steps > max_e_steps) {
- #if ENABLED(MIXING_EXTRUDER)
- bool ignore_e = false;
- float collector[MIXING_STEPPERS];
- mixer.refresh_collector(1.0, mixer.get_current_vtool(), collector);
- MIXER_STEPPER_LOOP(e)
- if (e_steps * collector[e] > max_e_steps) { ignore_e = true; break; }
- #else
- constexpr bool ignore_e = true;
- #endif
- if (ignore_e) {
- position.e = target.e; // Behave as if the move really took place, but ignore E part
- #if HAS_POSITION_FLOAT
- position_float.e = target_float.e;
- #endif
- de = 0; // no difference
- SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP);
- }
- }
- #endif // PREVENT_LENGTHY_EXTRUDE
- }
- #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
-
- // Compute direction bit-mask for this block
- uint8_t dm = 0;
- #if CORE_IS_XY
- if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
- if (db < 0) SBI(dm, Y_HEAD); // ...and Y
- if (dc < 0) SBI(dm, Z_AXIS);
- if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
- if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction
- #elif CORE_IS_XZ
- if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
- if (db < 0) SBI(dm, Y_AXIS);
- if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
- if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
- if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
- #elif CORE_IS_YZ
- if (da < 0) SBI(dm, X_AXIS);
- if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
- if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
- if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
- if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
- #else
- if (da < 0) SBI(dm, X_AXIS);
- if (db < 0) SBI(dm, Y_AXIS);
- if (dc < 0) SBI(dm, Z_AXIS);
- #endif
- if (de < 0) SBI(dm, E_AXIS);
-
- #if EXTRUDERS
- const float esteps_float = de * e_factor[extruder];
- const uint32_t esteps = ABS(esteps_float) + 0.5f;
- #else
- constexpr uint32_t esteps = 0;
- #endif
-
- // Clear all flags, including the "busy" bit
- block->flag = 0x00;
-
- // Set direction bits
- block->direction_bits = dm;
-
- // Number of steps for each axis
- // See http://www.corexy.com/theory.html
- #if CORE_IS_XY
- block->steps.set(ABS(da + db), ABS(da - db), ABS(dc));
- #elif CORE_IS_XZ
- block->steps.set(ABS(da + dc), ABS(db), ABS(da - dc));
- #elif CORE_IS_YZ
- block->steps.set(ABS(da), ABS(db + dc), ABS(db - dc));
- #elif IS_SCARA
- block->steps.set(ABS(da), ABS(db), ABS(dc));
- #else
- // default non-h-bot planning
- block->steps.set(ABS(da), ABS(db), ABS(dc));
- #endif
-
- /**
- * This part of the code calculates the total length of the movement.
- * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
- * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
- * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
- * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
- * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
- */
- struct DeltaMM : abce_float_t {
- #if IS_CORE
- xyz_pos_t head;
- #endif
- } delta_mm;
- #if IS_CORE
- #if CORE_IS_XY
- delta_mm.head.x = da * steps_to_mm[A_AXIS];
- delta_mm.head.y = db * steps_to_mm[B_AXIS];
- delta_mm.z = dc * steps_to_mm[Z_AXIS];
- delta_mm.a = (da + db) * steps_to_mm[A_AXIS];
- delta_mm.b = CORESIGN(da - db) * steps_to_mm[B_AXIS];
- #elif CORE_IS_XZ
- delta_mm.head.x = da * steps_to_mm[A_AXIS];
- delta_mm.y = db * steps_to_mm[Y_AXIS];
- delta_mm.head.z = dc * steps_to_mm[C_AXIS];
- delta_mm.a = (da + dc) * steps_to_mm[A_AXIS];
- delta_mm.c = CORESIGN(da - dc) * steps_to_mm[C_AXIS];
- #elif CORE_IS_YZ
- delta_mm.x = da * steps_to_mm[X_AXIS];
- delta_mm.head.y = db * steps_to_mm[B_AXIS];
- delta_mm.head.z = dc * steps_to_mm[C_AXIS];
- delta_mm.b = (db + dc) * steps_to_mm[B_AXIS];
- delta_mm.c = CORESIGN(db - dc) * steps_to_mm[C_AXIS];
- #endif
- #else
- delta_mm.a = da * steps_to_mm[A_AXIS];
- delta_mm.b = db * steps_to_mm[B_AXIS];
- delta_mm.c = dc * steps_to_mm[C_AXIS];
- #endif
-
- #if EXTRUDERS
- delta_mm.e = esteps_float * steps_to_mm[E_AXIS_N(extruder)];
- #else
- delta_mm.e = 0.0f;
- #endif
-
- #if ENABLED(LCD_SHOW_E_TOTAL)
- e_move_accumulator += delta_mm.e;
- #endif
-
- if (block->steps.a < MIN_STEPS_PER_SEGMENT && block->steps.b < MIN_STEPS_PER_SEGMENT && block->steps.c < MIN_STEPS_PER_SEGMENT) {
- block->millimeters = (0
- #if EXTRUDERS
- + ABS(delta_mm.e)
- #endif
- );
- }
- else {
- if (millimeters)
- block->millimeters = millimeters;
- else
- block->millimeters = SQRT(
- #if CORE_IS_XY
- sq(delta_mm.head.x) + sq(delta_mm.head.y) + sq(delta_mm.z)
- #elif CORE_IS_XZ
- sq(delta_mm.head.x) + sq(delta_mm.y) + sq(delta_mm.head.z)
- #elif CORE_IS_YZ
- sq(delta_mm.x) + sq(delta_mm.head.y) + sq(delta_mm.head.z)
- #else
- sq(delta_mm.x) + sq(delta_mm.y) + sq(delta_mm.z)
- #endif
- );
-
- /**
- * At this point at least one of the axes has more steps than
- * MIN_STEPS_PER_SEGMENT, ensuring the segment won't get dropped as
- * zero-length. It's important to not apply corrections
- * to blocks that would get dropped!
- *
- * A correction function is permitted to add steps to an axis, it
- * should *never* remove steps!
- */
- #if ENABLED(BACKLASH_COMPENSATION)
- backlash.add_correction_steps(da, db, dc, dm, block);
- #endif
- }
-
- #if EXTRUDERS
- block->steps.e = esteps;
- #endif
-
- block->step_event_count = _MAX(block->steps.a, block->steps.b, block->steps.c, esteps);
-
- // Bail if this is a zero-length block
- if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return false;
-
- #if ENABLED(MIXING_EXTRUDER)
- MIXER_POPULATE_BLOCK();
- #endif
-
- #if HAS_CUTTER
- block->cutter_power = cutter.power;
- #endif
-
- #if FAN_COUNT > 0
- FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i];
- #endif
-
- #if ENABLED(BARICUDA)
- block->valve_pressure = baricuda_valve_pressure;
- block->e_to_p_pressure = baricuda_e_to_p_pressure;
- #endif
-
- #if EXTRUDERS > 1
- block->extruder = extruder;
- #endif
-
- #if ENABLED(AUTO_POWER_CONTROL)
- if (block->steps.x || block->steps.y || block->steps.z)
- powerManager.power_on();
- #endif
-
- // Enable active axes
- #if CORE_IS_XY
- if (block->steps.a || block->steps.b) {
- ENABLE_AXIS_X();
- ENABLE_AXIS_Y();
- }
- #if DISABLED(Z_LATE_ENABLE)
- if (block->steps.z) ENABLE_AXIS_Z();
- #endif
- #elif CORE_IS_XZ
- if (block->steps.a || block->steps.c) {
- ENABLE_AXIS_X();
- ENABLE_AXIS_Z();
- }
- if (block->steps.y) ENABLE_AXIS_Y();
- #elif CORE_IS_YZ
- if (block->steps.b || block->steps.c) {
- ENABLE_AXIS_Y();
- ENABLE_AXIS_Z();
- }
- if (block->steps.x) ENABLE_AXIS_X();
- #else
- if (block->steps.x) ENABLE_AXIS_X();
- if (block->steps.y) ENABLE_AXIS_Y();
- #if DISABLED(Z_LATE_ENABLE)
- if (block->steps.z) ENABLE_AXIS_Z();
- #endif
- #endif
-
- // Enable extruder(s)
- #if EXTRUDERS
- if (esteps) {
- #if ENABLED(AUTO_POWER_CONTROL)
- powerManager.power_on();
- #endif
-
- #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
-
- for (uint8_t i = 0; i < EXTRUDERS; i++)
- if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
-
- #if HAS_DUPLICATION_MODE
- if (extruder_duplication_enabled && extruder == 0) {
- ENABLE_AXIS_E1();
- g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
- }
- #endif
-
- #define ENABLE_ONE_E(N) do{ \
- if (extruder == N) { \
- ENABLE_AXIS_E##N(); \
- g_uc_extruder_last_move[N] = (BLOCK_BUFFER_SIZE) * 2; \
- } \
- else if (!g_uc_extruder_last_move[N]) \
- DISABLE_AXIS_E##N(); \
- }while(0);
-
- #else
-
- #define ENABLE_ONE_E(N) ENABLE_AXIS_E##N();
-
- #endif
-
- REPEAT(EXTRUDERS, ENABLE_ONE_E); // (ENABLE_ONE_E must end with semicolon)
- }
- #endif // EXTRUDERS
-
- if (esteps)
- NOLESS(fr_mm_s, settings.min_feedrate_mm_s);
- else
- NOLESS(fr_mm_s, settings.min_travel_feedrate_mm_s);
-
- const float inverse_millimeters = 1.0f / block->millimeters; // Inverse millimeters to remove multiple divides
-
- // Calculate inverse time for this move. No divide by zero due to previous checks.
- // Example: At 120mm/s a 60mm move takes 0.5s. So this will give 2.0.
- float inverse_secs = fr_mm_s * inverse_millimeters;
-
- // Get the number of non busy movements in queue (non busy means that they can be altered)
- const uint8_t moves_queued = nonbusy_movesplanned();
-
- // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
- #if EITHER(SLOWDOWN, ULTRA_LCD) || defined(XY_FREQUENCY_LIMIT)
- // Segment time im micro seconds
- uint32_t segment_time_us = LROUND(1000000.0f / inverse_secs);
- #endif
-
- #if ENABLED(SLOWDOWN)
- if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) {
- if (segment_time_us < settings.min_segment_time_us) {
- // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
- const uint32_t nst = segment_time_us + LROUND(2 * (settings.min_segment_time_us - segment_time_us) / moves_queued);
- inverse_secs = 1000000.0f / nst;
- #if defined(XY_FREQUENCY_LIMIT) || HAS_SPI_LCD
- segment_time_us = nst;
- #endif
- }
- }
- #endif
-
- #if HAS_SPI_LCD
- // Protect the access to the position.
- const bool was_enabled = stepper.suspend();
-
- block_buffer_runtime_us += segment_time_us;
- block->segment_time_us = segment_time_us;
-
- if (was_enabled) stepper.wake_up();
- #endif
-
- block->nominal_speed_sqr = sq(block->millimeters * inverse_secs); // (mm/sec)^2 Always > 0
- block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM) // Only for extruder with filament sensor
- filwidth.advance_e(delta_mm.e);
- #endif
-
- // Calculate and limit speed in mm/sec
-
- xyze_float_t current_speed;
- float speed_factor = 1.0f; // factor <1 decreases speed
-
- // Linear axes first with less logic
- LOOP_XYZ(i) {
- current_speed[i] = delta_mm[i] * inverse_secs;
- const feedRate_t cs = ABS(current_speed[i]),
- max_fr = settings.max_feedrate_mm_s[i];
- if (cs > max_fr) NOMORE(speed_factor, max_fr / cs);
- }
-
- // Limit speed on extruders, if any
- #if EXTRUDERS
- {
- current_speed.e = delta_mm.e * inverse_secs;
- #if BOTH(MIXING_EXTRUDER, RETRACT_SYNC_MIXING)
- // Move all mixing extruders at the specified rate
- if (mixer.get_current_vtool() == MIXER_AUTORETRACT_TOOL)
- current_speed.e *= MIXING_STEPPERS;
- #endif
- const feedRate_t cs = ABS(current_speed.e),
- max_fr = (settings.max_feedrate_mm_s[E_AXIS_N(extruder)]
- #if BOTH(MIXING_EXTRUDER, RETRACT_SYNC_MIXING)
- * MIXING_STEPPERS
- #endif
- );
- if (cs > max_fr) NOMORE(speed_factor, max_fr / cs);
- }
- #endif
-
- // Max segment time in µs.
- #ifdef XY_FREQUENCY_LIMIT
-
- // Check and limit the xy direction change frequency
- const unsigned char direction_change = block->direction_bits ^ old_direction_bits;
- old_direction_bits = block->direction_bits;
- segment_time_us = LROUND((float)segment_time_us / speed_factor);
-
- uint32_t xs0 = axis_segment_time_us[0].x,
- xs1 = axis_segment_time_us[1].x,
- xs2 = axis_segment_time_us[2].x,
- ys0 = axis_segment_time_us[0].y,
- ys1 = axis_segment_time_us[1].y,
- ys2 = axis_segment_time_us[2].y;
-
- if (TEST(direction_change, X_AXIS)) {
- xs2 = axis_segment_time_us[2].x = xs1;
- xs1 = axis_segment_time_us[1].x = xs0;
- xs0 = 0;
- }
- xs0 = axis_segment_time_us[0].x = xs0 + segment_time_us;
-
- if (TEST(direction_change, Y_AXIS)) {
- ys2 = axis_segment_time_us[2].y = axis_segment_time_us[1].y;
- ys1 = axis_segment_time_us[1].y = axis_segment_time_us[0].y;
- ys0 = 0;
- }
- ys0 = axis_segment_time_us[0].y = ys0 + segment_time_us;
-
- const uint32_t max_x_segment_time = _MAX(xs0, xs1, xs2),
- max_y_segment_time = _MAX(ys0, ys1, ys2),
- min_xy_segment_time = _MIN(max_x_segment_time, max_y_segment_time);
- if (min_xy_segment_time < MAX_FREQ_TIME_US) {
- const float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME_US);
- NOMORE(speed_factor, low_sf);
- }
- #endif // XY_FREQUENCY_LIMIT
-
- // Correct the speed
- if (speed_factor < 1.0f) {
- current_speed *= speed_factor;
- block->nominal_rate *= speed_factor;
- block->nominal_speed_sqr = block->nominal_speed_sqr * sq(speed_factor);
- }
-
- // Compute and limit the acceleration rate for the trapezoid generator.
- const float steps_per_mm = block->step_event_count * inverse_millimeters;
- uint32_t accel;
- if (!block->steps.a && !block->steps.b && !block->steps.c) {
- // convert to: acceleration steps/sec^2
- accel = CEIL(settings.retract_acceleration * steps_per_mm);
- #if ENABLED(LIN_ADVANCE)
- block->use_advance_lead = false;
- #endif
- }
- else {
- #define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
- if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
- const uint32_t comp = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count; \
- if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \
- } \
- }while(0)
-
- #define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \
- if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
- const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \
- if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \
- } \
- }while(0)
-
- // Start with print or travel acceleration
- accel = CEIL((esteps ? settings.acceleration : settings.travel_acceleration) * steps_per_mm);
-
- #if ENABLED(LIN_ADVANCE)
-
- #if DISABLED(CLASSIC_JERK)
- #if ENABLED(DISTINCT_E_FACTORS)
- #define MAX_E_JERK max_e_jerk[extruder]
- #else
- #define MAX_E_JERK max_e_jerk
- #endif
- #else
- #define MAX_E_JERK max_jerk.e
- #endif
-
- /**
- *
- * Use LIN_ADVANCE for blocks if all these are true:
- *
- * esteps : This is a print move, because we checked for A, B, C steps before.
- *
- * extruder_advance_K[active_extruder] : There is an advance factor set for this extruder.
- *
- * de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
- */
- block->use_advance_lead = esteps
- && extruder_advance_K[active_extruder]
- && de > 0;
-
- if (block->use_advance_lead) {
- block->e_D_ratio = (target_float.e - position_float.e) /
- #if IS_KINEMATIC
- block->millimeters
- #else
- SQRT(sq(target_float.x - position_float.x)
- + sq(target_float.y - position_float.y)
- + sq(target_float.z - position_float.z))
- #endif
- ;
-
- // Check for unusual high e_D ratio to detect if a retract move was combined with the last print move due to min. steps per segment. Never execute this with advance!
- // This assumes no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
- if (block->e_D_ratio > 3.0f)
- block->use_advance_lead = false;
- else {
- const uint32_t max_accel_steps_per_s2 = MAX_E_JERK / (extruder_advance_K[active_extruder] * block->e_D_ratio) * steps_per_mm;
- #if ENABLED(LA_DEBUG)
- if (accel > max_accel_steps_per_s2) SERIAL_ECHOLNPGM("Acceleration limited.");
- #endif
- NOMORE(accel, max_accel_steps_per_s2);
- }
- }
- #endif
-
- #if ENABLED(DISTINCT_E_FACTORS)
- #define ACCEL_IDX extruder
- #else
- #define ACCEL_IDX 0
- #endif
-
- // Limit acceleration per axis
- if (block->step_event_count <= cutoff_long) {
- LIMIT_ACCEL_LONG(A_AXIS, 0);
- LIMIT_ACCEL_LONG(B_AXIS, 0);
- LIMIT_ACCEL_LONG(C_AXIS, 0);
- LIMIT_ACCEL_LONG(E_AXIS, ACCEL_IDX);
- }
- else {
- LIMIT_ACCEL_FLOAT(A_AXIS, 0);
- LIMIT_ACCEL_FLOAT(B_AXIS, 0);
- LIMIT_ACCEL_FLOAT(C_AXIS, 0);
- LIMIT_ACCEL_FLOAT(E_AXIS, ACCEL_IDX);
- }
- }
- block->acceleration_steps_per_s2 = accel;
- block->acceleration = accel / steps_per_mm;
- #if DISABLED(S_CURVE_ACCELERATION)
- block->acceleration_rate = (uint32_t)(accel * (4096.0f * 4096.0f / (STEPPER_TIMER_RATE)));
- #endif
- #if ENABLED(LIN_ADVANCE)
- if (block->use_advance_lead) {
- block->advance_speed = (STEPPER_TIMER_RATE) / (extruder_advance_K[active_extruder] * block->e_D_ratio * block->acceleration * settings.axis_steps_per_mm[E_AXIS_N(extruder)]);
- #if ENABLED(LA_DEBUG)
- if (extruder_advance_K[active_extruder] * block->e_D_ratio * block->acceleration * 2 < SQRT(block->nominal_speed_sqr) * block->e_D_ratio)
- SERIAL_ECHOLNPGM("More than 2 steps per eISR loop executed.");
- if (block->advance_speed < 200)
- SERIAL_ECHOLNPGM("eISR running at > 10kHz.");
- #endif
- }
- #endif
-
- float vmax_junction_sqr; // Initial limit on the segment entry velocity (mm/s)^2
-
- #if DISABLED(CLASSIC_JERK)
- /**
- * Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
- * Let a circle be tangent to both previous and current path line segments, where the junction
- * deviation is defined as the distance from the junction to the closest edge of the circle,
- * colinear with the circle center. The circular segment joining the two paths represents the
- * path of centripetal acceleration. Solve for max velocity based on max acceleration about the
- * radius of the circle, defined indirectly by junction deviation. This may be also viewed as
- * path width or max_jerk in the previous Grbl version. This approach does not actually deviate
- * from path, but used as a robust way to compute cornering speeds, as it takes into account the
- * nonlinearities of both the junction angle and junction velocity.
- *
- * NOTE: If the junction deviation value is finite, Grbl executes the motions in an exact path
- * mode (G61). If the junction deviation value is zero, Grbl will execute the motion in an exact
- * stop mode (G61.1) manner. In the future, if continuous mode (G64) is desired, the math here
- * is exactly the same. Instead of motioning all the way to junction point, the machine will
- * just follow the arc circle defined here. The Arduino doesn't have the CPU cycles to perform
- * a continuous mode path, but ARM-based microcontrollers most certainly do.
- *
- * NOTE: The max junction speed is a fixed value, since machine acceleration limits cannot be
- * changed dynamically during operation nor can the line move geometry. This must be kept in
- * memory in the event of a feedrate override changing the nominal speeds of blocks, which can
- * change the overall maximum entry speed conditions of all blocks.
- *
- * #######
- * https://github.com/MarlinFirmware/Marlin/issues/10341#issuecomment-388191754
- *
- * hoffbaked: on May 10 2018 tuned and improved the GRBL algorithm for Marlin:
- Okay! It seems to be working good. I somewhat arbitrarily cut it off at 1mm
- on then on anything with less sides than an octagon. With this, and the
- reverse pass actually recalculating things, a corner acceleration value
- of 1000 junction deviation of .05 are pretty reasonable. If the cycles
- can be spared, a better acos could be used. For all I know, it may be
- already calculated in a different place. */
-
- // Unit vector of previous path line segment
- static xyze_float_t prev_unit_vec;
-
- xyze_float_t unit_vec =
- #if IS_KINEMATIC && DISABLED(CLASSIC_JERK)
- delta_mm_cart
- #else
- { delta_mm.x, delta_mm.y, delta_mm.z, delta_mm.e }
- #endif
- ;
- unit_vec *= inverse_millimeters;
-
- #if IS_CORE && DISABLED(CLASSIC_JERK)
- /**
- * On CoreXY the length of the vector [A,B] is SQRT(2) times the length of the head movement vector [X,Y].
- * So taking Z and E into account, we cannot scale to a unit vector with "inverse_millimeters".
- * => normalize the complete junction vector
- */
- normalize_junction_vector(unit_vec);
- #endif
-
- // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
- if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) {
- // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
- // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
- float junction_cos_theta = (-prev_unit_vec.x * unit_vec.x) + (-prev_unit_vec.y * unit_vec.y)
- + (-prev_unit_vec.z * unit_vec.z) + (-prev_unit_vec.e * unit_vec.e);
-
- // NOTE: Computed without any expensive trig, sin() or acos(), by trig half angle identity of cos(theta).
- if (junction_cos_theta > 0.999999f) {
- // For a 0 degree acute junction, just set minimum junction speed.
- vmax_junction_sqr = sq(float(MINIMUM_PLANNER_SPEED));
- }
- else {
- NOLESS(junction_cos_theta, -0.999999f); // Check for numerical round-off to avoid divide by zero.
-
- // Convert delta vector to unit vector
- xyze_float_t junction_unit_vec = unit_vec - prev_unit_vec;
- normalize_junction_vector(junction_unit_vec);
-
- const float junction_acceleration = limit_value_by_axis_maximum(block->acceleration, junction_unit_vec),
- sin_theta_d2 = SQRT(0.5f * (1.0f - junction_cos_theta)); // Trig half angle identity. Always positive.
-
- vmax_junction_sqr = (junction_acceleration * junction_deviation_mm * sin_theta_d2) / (1.0f - sin_theta_d2);
- if (block->millimeters < 1) {
-
- // Fast acos approximation, minus the error bar to be safe
- const float junction_theta = (RADIANS(-40) * sq(junction_cos_theta) - RADIANS(50)) * junction_cos_theta + RADIANS(90) - 0.18f;
-
- // If angle is greater than 135 degrees (octagon), find speed for approximate arc
- if (junction_theta > RADIANS(135)) {
- const float limit_sqr = block->millimeters / (RADIANS(180) - junction_theta) * junction_acceleration;
- NOMORE(vmax_junction_sqr, limit_sqr);
- }
- }
- }
-
- // Get the lowest speed
- vmax_junction_sqr = _MIN(vmax_junction_sqr, block->nominal_speed_sqr, previous_nominal_speed_sqr);
- }
- else // Init entry speed to zero. Assume it starts from rest. Planner will correct this later.
- vmax_junction_sqr = 0;
-
- prev_unit_vec = unit_vec;
-
- #endif
-
- #ifdef USE_CACHED_SQRT
- #define CACHED_SQRT(N, V) \
- static float saved_V, N; \
- if (V != saved_V) { N = SQRT(V); saved_V = V; }
- #else
- #define CACHED_SQRT(N, V) const float N = SQRT(V)
- #endif
-
- #if HAS_CLASSIC_JERK
-
- /**
- * Adapted from Průša MKS firmware
- * https://github.com/prusa3d/Prusa-Firmware
- */
- CACHED_SQRT(nominal_speed, block->nominal_speed_sqr);
-
- // Exit speed limited by a jerk to full halt of a previous last segment
- static float previous_safe_speed;
-
- // Start with a safe speed (from which the machine may halt to stop immediately).
- float safe_speed = nominal_speed;
-
- #ifdef TRAVEL_EXTRA_XYJERK
- const float extra_xyjerk = (de <= 0) ? TRAVEL_EXTRA_XYJERK : 0;
- #else
- constexpr float extra_xyjerk = 0;
- #endif
-
- uint8_t limited = 0;
- #if HAS_LINEAR_E_JERK
- LOOP_XYZ(i)
- #else
- LOOP_XYZE(i)
- #endif
- {
- const float jerk = ABS(current_speed[i]), // cs : Starting from zero, change in speed for this axis
- maxj = (max_jerk[i] + (i == X_AXIS || i == Y_AXIS ? extra_xyjerk : 0.0f)); // mj : The max jerk setting for this axis
- if (jerk > maxj) { // cs > mj : New current speed too fast?
- if (limited) { // limited already?
- const float mjerk = nominal_speed * maxj; // ns*mj
- if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk; // ns*mj/cs
- }
- else {
- safe_speed *= maxj / jerk; // Initial limit: ns*mj/cs
- ++limited; // Initially limited
- }
- }
- }
-
- float vmax_junction;
- if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) {
- // Estimate a maximum velocity allowed at a joint of two successive segments.
- // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
- // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
-
- // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
- float v_factor = 1;
- limited = 0;
-
- // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
- // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
- CACHED_SQRT(previous_nominal_speed, previous_nominal_speed_sqr);
-
- vmax_junction = _MIN(nominal_speed, previous_nominal_speed);
-
- // Now limit the jerk in all axes.
- const float smaller_speed_factor = vmax_junction / previous_nominal_speed;
- #if HAS_LINEAR_E_JERK
- LOOP_XYZ(axis)
- #else
- LOOP_XYZE(axis)
- #endif
- {
- // Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
- float v_exit = previous_speed[axis] * smaller_speed_factor,
- v_entry = current_speed[axis];
- if (limited) {
- v_exit *= v_factor;
- v_entry *= v_factor;
- }
-
- // Calculate jerk depending on whether the axis is coasting in the same direction or reversing.
- const float jerk = (v_exit > v_entry)
- ? // coasting axis reversal
- ( (v_entry > 0 || v_exit < 0) ? (v_exit - v_entry) : _MAX(v_exit, -v_entry) )
- : // v_exit <= v_entry coasting axis reversal
- ( (v_entry < 0 || v_exit > 0) ? (v_entry - v_exit) : _MAX(-v_exit, v_entry) );
-
- const float maxj = (max_jerk[axis] + (axis == X_AXIS || axis == Y_AXIS ? extra_xyjerk : 0.0f));
-
- if (jerk > maxj) {
- v_factor *= maxj / jerk;
- ++limited;
- }
- }
- if (limited) vmax_junction *= v_factor;
- // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
- // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
- const float vmax_junction_threshold = vmax_junction * 0.99f;
- if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold)
- vmax_junction = safe_speed;
- }
- else
- vmax_junction = safe_speed;
-
- previous_safe_speed = safe_speed;
-
- #if DISABLED(CLASSIC_JERK)
- vmax_junction_sqr = _MIN(vmax_junction_sqr, sq(vmax_junction));
- #else
- vmax_junction_sqr = sq(vmax_junction);
- #endif
-
- #endif // Classic Jerk Limiting
-
- // Max entry speed of this block equals the max exit speed of the previous block.
- block->max_entry_speed_sqr = vmax_junction_sqr;
-
- // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
- const float v_allowable_sqr = max_allowable_speed_sqr(-block->acceleration, sq(float(MINIMUM_PLANNER_SPEED)), block->millimeters);
-
- // If we are trying to add a split block, start with the
- // max. allowed speed to avoid an interrupted first move.
- block->entry_speed_sqr = !split_move ? sq(float(MINIMUM_PLANNER_SPEED)) : _MIN(vmax_junction_sqr, v_allowable_sqr);
-
- // Initialize planner efficiency flags
- // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
- // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
- // the current block and next block junction speeds are guaranteed to always be at their maximum
- // junction speeds in deceleration and acceleration, respectively. This is due to how the current
- // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
- // the reverse and forward planners, the corresponding block junction speed will always be at the
- // the maximum junction speed and may always be ignored for any speed reduction checks.
- block->flag |= block->nominal_speed_sqr <= v_allowable_sqr ? BLOCK_FLAG_RECALCULATE | BLOCK_FLAG_NOMINAL_LENGTH : BLOCK_FLAG_RECALCULATE;
-
- // Update previous path unit_vector and nominal speed
- previous_speed = current_speed;
- previous_nominal_speed_sqr = block->nominal_speed_sqr;
-
- // Update the position
- position = target;
- #if HAS_POSITION_FLOAT
- position_float = target_float;
- #endif
-
- #if ENABLED(GRADIENT_MIX)
- mixer.gradient_control(target_float.z);
- #endif
-
- #if ENABLED(POWER_LOSS_RECOVERY)
- block->sdpos = recovery.command_sdpos();
- #endif
-
- // Movement was accepted
- return true;
- } // _populate_block()
-
- /**
- * Planner::buffer_sync_block
- * Add a block to the buffer that just updates the position
- */
- void Planner::buffer_sync_block() {
- // Wait for the next available block
- uint8_t next_buffer_head;
- block_t * const block = get_next_free_block(next_buffer_head);
-
- // Clear block
- memset(block, 0, sizeof(block_t));
-
- block->flag = BLOCK_FLAG_SYNC_POSITION;
-
- block->position = position;
-
- // If this is the first added movement, reload the delay, otherwise, cancel it.
- if (block_buffer_head == block_buffer_tail) {
- // If it was the first queued block, restart the 1st block delivery delay, to
- // give the planner an opportunity to queue more movements and plan them
- // As there are no queued movements, the Stepper ISR will not touch this
- // variable, so there is no risk setting this here (but it MUST be done
- // before the following line!!)
- delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
- }
-
- block_buffer_head = next_buffer_head;
-
- stepper.wake_up();
- } // buffer_sync_block()
-
- /**
- * Planner::buffer_segment
- *
- * Add a new linear movement to the buffer in axis units.
- *
- * Leveling and kinematics should be applied ahead of calling this.
- *
- * a,b,c,e - target positions in mm and/or degrees
- * fr_mm_s - (target) speed of the move
- * extruder - target extruder
- * millimeters - the length of the movement, if known
- */
- bool Planner::buffer_segment(const float &a, const float &b, const float &c, const float &e
- #if IS_KINEMATIC && DISABLED(CLASSIC_JERK)
- , const xyze_float_t &delta_mm_cart
- #endif
- , const feedRate_t &fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/
- ) {
-
- // If we are cleaning, do not accept queuing of movements
- if (cleaning_buffer_counter) return false;
-
- // When changing extruders recalculate steps corresponding to the E position
- #if ENABLED(DISTINCT_E_FACTORS)
- if (last_extruder != extruder && settings.axis_steps_per_mm[E_AXIS_N(extruder)] != settings.axis_steps_per_mm[E_AXIS_N(last_extruder)]) {
- position.e = LROUND(position.e * settings.axis_steps_per_mm[E_AXIS_N(extruder)] * steps_to_mm[E_AXIS_N(last_extruder)]);
- last_extruder = extruder;
- }
- #endif
-
- // The target position of the tool in absolute steps
- // Calculate target position in absolute steps
- const abce_long_t target = {
- int32_t(LROUND(a * settings.axis_steps_per_mm[A_AXIS])),
- int32_t(LROUND(b * settings.axis_steps_per_mm[B_AXIS])),
- int32_t(LROUND(c * settings.axis_steps_per_mm[C_AXIS])),
- int32_t(LROUND(e * settings.axis_steps_per_mm[E_AXIS_N(extruder)]))
- };
-
- #if HAS_POSITION_FLOAT
- const xyze_pos_t target_float = { a, b, c, e };
- #endif
-
- // DRYRUN prevents E moves from taking place
- if (DEBUGGING(DRYRUN)
- #if ENABLED(CANCEL_OBJECTS)
- || cancelable.skipping
- #endif
- ) {
- position.e = target.e;
- #if HAS_POSITION_FLOAT
- position_float.e = e;
- #endif
- }
-
- /* <-- add a slash to enable
- SERIAL_ECHOPAIR(" buffer_segment FR:", fr_mm_s);
- #if IS_KINEMATIC
- SERIAL_ECHOPAIR(" A:", a);
- SERIAL_ECHOPAIR(" (", position.a);
- SERIAL_ECHOPAIR("->", target.a);
- SERIAL_ECHOPAIR(") B:", b);
- #else
- SERIAL_ECHOPAIR_P(SP_X_LBL, a);
- SERIAL_ECHOPAIR(" (", position.x);
- SERIAL_ECHOPAIR("->", target.x);
- SERIAL_CHAR(')');
- SERIAL_ECHOPAIR_P(SP_Y_LBL, b);
- #endif
- SERIAL_ECHOPAIR(" (", position.y);
- SERIAL_ECHOPAIR("->", target.y);
- #if ENABLED(DELTA)
- SERIAL_ECHOPAIR(") C:", c);
- #else
- SERIAL_CHAR(')');
- SERIAL_ECHOPAIR_P(SP_Z_LBL, c);
- #endif
- SERIAL_ECHOPAIR(" (", position.z);
- SERIAL_ECHOPAIR("->", target.z);
- SERIAL_CHAR(')');
- SERIAL_ECHOPAIR_P(SP_E_LBL, e);
- SERIAL_ECHOPAIR(" (", position.e);
- SERIAL_ECHOPAIR("->", target.e);
- SERIAL_ECHOLNPGM(")");
- //*/
-
- // Queue the movement
- if (
- !_buffer_steps(target
- #if HAS_POSITION_FLOAT
- , target_float
- #endif
- #if IS_KINEMATIC && DISABLED(CLASSIC_JERK)
- , delta_mm_cart
- #endif
- , fr_mm_s, extruder, millimeters
- )
- ) return false;
-
- stepper.wake_up();
- return true;
- } // buffer_segment()
-
- /**
- * Add a new linear movement to the buffer.
- * The target is cartesian. It's translated to
- * delta/scara if needed.
- *
- * rx,ry,rz,e - target position in mm or degrees
- * fr_mm_s - (target) speed of the move (mm/s)
- * extruder - target extruder
- * millimeters - the length of the movement, if known
- * inv_duration - the reciprocal if the duration of the movement, if known (kinematic only if feeedrate scaling is enabled)
- */
- bool Planner::buffer_line(const float &rx, const float &ry, const float &rz, const float &e, const feedRate_t &fr_mm_s, const uint8_t extruder, const float millimeters
- #if ENABLED(SCARA_FEEDRATE_SCALING)
- , const float &inv_duration
- #endif
- ) {
- xyze_pos_t machine = { rx, ry, rz, e };
- #if HAS_POSITION_MODIFIERS
- apply_modifiers(machine);
- #endif
-
- #if IS_KINEMATIC
-
- #if DISABLED(CLASSIC_JERK)
- const xyze_pos_t delta_mm_cart = {
- rx - position_cart.x, ry - position_cart.y,
- rz - position_cart.z, e - position_cart.e
- };
- #else
- const xyz_pos_t delta_mm_cart = { rx - position_cart.x, ry - position_cart.y, rz - position_cart.z };
- #endif
-
- float mm = millimeters;
- if (mm == 0.0)
- mm = (delta_mm_cart.x != 0.0 || delta_mm_cart.y != 0.0) ? delta_mm_cart.magnitude() : ABS(delta_mm_cart.z);
-
- // Cartesian XYZ to kinematic ABC, stored in global 'delta'
- inverse_kinematics(machine);
-
- #if ENABLED(SCARA_FEEDRATE_SCALING)
- // For SCARA scale the feed rate from mm/s to degrees/s
- // i.e., Complete the angular vector in the given time.
- const float duration_recip = inv_duration ?: fr_mm_s / mm;
- const xyz_pos_t diff = delta - position_float;
- const feedRate_t feedrate = diff.magnitude() * duration_recip;
- #else
- const feedRate_t feedrate = fr_mm_s;
- #endif
- if (buffer_segment(delta.a, delta.b, delta.c, machine.e
- #if DISABLED(CLASSIC_JERK)
- , delta_mm_cart
- #endif
- , feedrate, extruder, mm
- )) {
- position_cart.set(rx, ry, rz, e);
- return true;
- }
- else
- return false;
- #else
- return buffer_segment(machine, fr_mm_s, extruder, millimeters);
- #endif
- } // buffer_line()
-
- /**
- * Directly set the planner ABC position (and stepper positions)
- * converting mm (or angles for SCARA) into steps.
- *
- * The provided ABC position is in machine units.
- */
-
- void Planner::set_machine_position_mm(const float &a, const float &b, const float &c, const float &e) {
- #if ENABLED(DISTINCT_E_FACTORS)
- last_extruder = active_extruder;
- #endif
- #if HAS_POSITION_FLOAT
- position_float.set(a, b, c, e);
- #endif
- position.set(LROUND(a * settings.axis_steps_per_mm[A_AXIS]),
- LROUND(b * settings.axis_steps_per_mm[B_AXIS]),
- LROUND(c * settings.axis_steps_per_mm[C_AXIS]),
- LROUND(e * settings.axis_steps_per_mm[E_AXIS_N(active_extruder)]));
- if (has_blocks_queued()) {
- //previous_nominal_speed_sqr = 0.0; // Reset planner junction speeds. Assume start from rest.
- //previous_speed.reset();
- buffer_sync_block();
- }
- else
- stepper.set_position(position);
- }
-
- void Planner::set_position_mm(const float &rx, const float &ry, const float &rz, const float &e) {
- xyze_pos_t machine = { rx, ry, rz, e };
- #if HAS_POSITION_MODIFIERS
- {
- apply_modifiers(machine
- #if HAS_LEVELING
- , true
- #endif
- );
- }
- #endif
- #if IS_KINEMATIC
- position_cart.set(rx, ry, rz, e);
- inverse_kinematics(machine);
- set_machine_position_mm(delta.a, delta.b, delta.c, machine.e);
- #else
- set_machine_position_mm(machine);
- #endif
- }
-
- /**
- * Setters for planner position (also setting stepper position).
- */
- void Planner::set_e_position_mm(const float &e) {
- const uint8_t axis_index = E_AXIS_N(active_extruder);
- #if ENABLED(DISTINCT_E_FACTORS)
- last_extruder = active_extruder;
- #endif
- #if ENABLED(FWRETRACT)
- float e_new = e - fwretract.current_retract[active_extruder];
- #else
- const float e_new = e;
- #endif
- position.e = LROUND(settings.axis_steps_per_mm[axis_index] * e_new);
- #if HAS_POSITION_FLOAT
- position_float.e = e_new;
- #endif
- #if IS_KINEMATIC
- position_cart.e = e;
- #endif
- if (has_blocks_queued())
- buffer_sync_block();
- else
- stepper.set_axis_position(E_AXIS, position.e);
- }
-
- // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
- void Planner::reset_acceleration_rates() {
- #if ENABLED(DISTINCT_E_FACTORS)
- #define AXIS_CONDITION (i < E_AXIS || i == E_AXIS_N(active_extruder))
- #else
- #define AXIS_CONDITION true
- #endif
- uint32_t highest_rate = 1;
- LOOP_XYZE_N(i) {
- max_acceleration_steps_per_s2[i] = settings.max_acceleration_mm_per_s2[i] * settings.axis_steps_per_mm[i];
- if (AXIS_CONDITION) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]);
- }
- cutoff_long = 4294967295UL / highest_rate; // 0xFFFFFFFFUL
- #if HAS_LINEAR_E_JERK
- recalculate_max_e_jerk();
- #endif
- }
-
- // Recalculate position, steps_to_mm if settings.axis_steps_per_mm changes!
- void Planner::refresh_positioning() {
- LOOP_XYZE_N(i) steps_to_mm[i] = 1.0f / settings.axis_steps_per_mm[i];
- set_position_mm(current_position);
- reset_acceleration_rates();
- }
-
- inline void limit_and_warn(float &val, const uint8_t axis, PGM_P const setting_name, const xyze_float_t &max_limit) {
- const uint8_t lim_axis = axis > E_AXIS ? E_AXIS : axis;
- const float before = val;
- LIMIT(val, 0.1, max_limit[lim_axis]);
- if (before != val) {
- SERIAL_CHAR(axis_codes[lim_axis]);
- SERIAL_ECHOPGM(" Max ");
- serialprintPGM(setting_name);
- SERIAL_ECHOLNPAIR(" limited to ", val);
- }
- }
-
- void Planner::set_max_acceleration(const uint8_t axis, float targetValue) {
- #if ENABLED(LIMITED_MAX_ACCEL_EDITING)
- #ifdef MAX_ACCEL_EDIT_VALUES
- constexpr xyze_float_t max_accel_edit = MAX_ACCEL_EDIT_VALUES;
- const xyze_float_t &max_acc_edit_scaled = max_accel_edit;
- #else
- constexpr xyze_float_t max_accel_edit = DEFAULT_MAX_ACCELERATION;
- constexpr xyze_float_t max_acc_edit_scaled = max_accel_edit * 2;
- #endif
- limit_and_warn(targetValue, axis, PSTR("Acceleration"), max_acc_edit_scaled);
- #endif
- settings.max_acceleration_mm_per_s2[axis] = targetValue;
-
- // Update steps per s2 to agree with the units per s2 (since they are used in the planner)
- reset_acceleration_rates();
- }
-
- void Planner::set_max_feedrate(const uint8_t axis, float targetValue) {
- #if ENABLED(LIMITED_MAX_FR_EDITING)
- #ifdef MAX_FEEDRATE_EDIT_VALUES
- constexpr xyze_float_t max_fr_edit = MAX_FEEDRATE_EDIT_VALUES;
- const xyze_float_t &max_fr_edit_scaled = max_fr_edit;
- #else
- constexpr xyze_float_t max_fr_edit = DEFAULT_MAX_FEEDRATE;
- constexpr xyze_float_t max_fr_edit_scaled = max_fr_edit * 2;
- #endif
- limit_and_warn(targetValue, axis, PSTR("Feedrate"), max_fr_edit_scaled);
- #endif
- settings.max_feedrate_mm_s[axis] = targetValue;
- }
-
- void Planner::set_max_jerk(const AxisEnum axis, float targetValue) {
- #if HAS_CLASSIC_JERK
- #if ENABLED(LIMITED_JERK_EDITING)
- constexpr xyze_float_t max_jerk_edit =
- #ifdef MAX_JERK_EDIT_VALUES
- MAX_JERK_EDIT_VALUES
- #else
- { (DEFAULT_XJERK) * 2, (DEFAULT_YJERK) * 2,
- (DEFAULT_ZJERK) * 2, (DEFAULT_EJERK) * 2 }
- #endif
- ;
- limit_and_warn(targetValue, axis, PSTR("Jerk"), max_jerk_edit);
- #endif
- max_jerk[axis] = targetValue;
- #else
- UNUSED(axis); UNUSED(targetValue);
- #endif
- }
-
- #if HAS_SPI_LCD
-
- uint16_t Planner::block_buffer_runtime() {
- #ifdef __AVR__
- // Protect the access to the variable. Only required for AVR, as
- // any 32bit CPU offers atomic access to 32bit variables
- const bool was_enabled = stepper.suspend();
- #endif
-
- millis_t bbru = block_buffer_runtime_us;
-
- #ifdef __AVR__
- // Reenable Stepper ISR
- if (was_enabled) stepper.wake_up();
- #endif
-
- // To translate µs to ms a division by 1000 would be required.
- // We introduce 2.4% error here by dividing by 1024.
- // Doesn't matter because block_buffer_runtime_us is already too small an estimation.
- bbru >>= 10;
- // limit to about a minute.
- NOMORE(bbru, 0xFFFFul);
- return bbru;
- }
-
- void Planner::clear_block_buffer_runtime() {
- #ifdef __AVR__
- // Protect the access to the variable. Only required for AVR, as
- // any 32bit CPU offers atomic access to 32bit variables
- const bool was_enabled = stepper.suspend();
- #endif
-
- block_buffer_runtime_us = 0;
-
- #ifdef __AVR__
- // Reenable Stepper ISR
- if (was_enabled) stepper.wake_up();
- #endif
- }
-
- #endif
-
- #if ENABLED(AUTOTEMP)
-
- void Planner::autotemp_M104_M109() {
- if ((autotemp_enabled = parser.seen('F'))) autotemp_factor = parser.value_float();
- if (parser.seen('S')) autotemp_min = parser.value_celsius();
- if (parser.seen('B')) autotemp_max = parser.value_celsius();
- }
-
- #endif
|