1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- /**
- * temperature.cpp - temperature control
- */
-
- #include "temperature.h"
- #include "endstops.h"
-
- #include "../MarlinCore.h"
- #include "../lcd/ultralcd.h"
- #include "planner.h"
- #include "../core/language.h"
- #include "../HAL/shared/Delay.h"
- #if ENABLED(EXTENSIBLE_UI)
- #include "../lcd/extensible_ui/ui_api.h"
- #endif
-
- #if ENABLED(MAX6675_IS_MAX31865)
- #include "Adafruit_MAX31865.h"
- #ifndef MAX31865_CS_PIN
- #define MAX31865_CS_PIN MAX6675_SS_PIN // HW:49 SW:65 for example
- #endif
- #ifndef MAX31865_MOSI_PIN
- #define MAX31865_MOSI_PIN MOSI_PIN // 63
- #endif
- #ifndef MAX31865_MISO_PIN
- #define MAX31865_MISO_PIN MAX6675_DO_PIN // 42
- #endif
- #ifndef MAX31865_SCK_PIN
- #define MAX31865_SCK_PIN MAX6675_SCK_PIN // 40
- #endif
- Adafruit_MAX31865 max31865 = Adafruit_MAX31865(MAX31865_CS_PIN
- #if MAX31865_CS_PIN != MAX6675_SS_PIN
- , MAX31865_MOSI_PIN // For software SPI also set MOSI/MISO/SCK
- , MAX31865_MISO_PIN
- , MAX31865_SCK_PIN
- #endif
- );
- #endif
-
- #define MAX6675_SEPARATE_SPI (EITHER(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675) && PINS_EXIST(MAX6675_SCK, MAX6675_DO))
-
- #if MAX6675_SEPARATE_SPI
- #include "../libs/private_spi.h"
- #endif
-
- #if ENABLED(PID_EXTRUSION_SCALING)
- #include "stepper.h"
- #endif
-
- #if ENABLED(BABYSTEPPING) && DISABLED(INTEGRATED_BABYSTEPPING)
- #include "../feature/babystep.h"
- #endif
-
- #include "printcounter.h"
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- #include "../feature/filwidth.h"
- #endif
-
- #if ENABLED(EMERGENCY_PARSER)
- #include "../feature/emergency_parser.h"
- #endif
-
- #if ENABLED(PRINTER_EVENT_LEDS)
- #include "../feature/leds/printer_event_leds.h"
- #endif
-
- #if ENABLED(JOYSTICK)
- #include "../feature/joystick.h"
- #endif
-
- #if ENABLED(SINGLENOZZLE)
- #include "tool_change.h"
- #endif
-
- #if USE_BEEPER
- #include "../libs/buzzer.h"
- #endif
-
- #if HOTEND_USES_THERMISTOR
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- static void* heater_ttbl_map[2] = { (void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE };
- static constexpr uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
- #else
- static void* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE, (void*)HEATER_4_TEMPTABLE, (void*)HEATER_5_TEMPTABLE);
- static constexpr uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN, HEATER_4_TEMPTABLE_LEN, HEATER_5_TEMPTABLE_LEN);
- #endif
- #endif
-
- Temperature thermalManager;
-
- const char str_t_thermal_runaway[] PROGMEM = STR_T_THERMAL_RUNAWAY,
- str_t_heating_failed[] PROGMEM = STR_T_HEATING_FAILED;
-
- /**
- * Macros to include the heater id in temp errors. The compiler's dead-code
- * elimination should (hopefully) optimize out the unused strings.
- */
-
- #if HAS_HEATED_BED
- #define _BED_PSTR(h) (h) == H_BED ? GET_TEXT(MSG_BED) :
- #else
- #define _BED_PSTR(h)
- #endif
- #if HAS_HEATED_CHAMBER
- #define _CHAMBER_PSTR(h) (h) == H_CHAMBER ? GET_TEXT(MSG_CHAMBER) :
- #else
- #define _CHAMBER_PSTR(h)
- #endif
- #define _E_PSTR(h,N) ((HOTENDS) > N && (h) == N) ? PSTR(LCD_STR_E##N) :
- #define HEATER_PSTR(h) _BED_PSTR(h) _CHAMBER_PSTR(h) _E_PSTR(h,1) _E_PSTR(h,2) _E_PSTR(h,3) _E_PSTR(h,4) _E_PSTR(h,5) PSTR(LCD_STR_E0)
-
- // public:
-
- #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
- bool Temperature::adaptive_fan_slowing = true;
- #endif
-
- #if HOTENDS
- hotend_info_t Temperature::temp_hotend[HOTEND_TEMPS]; // = { 0 }
- #endif
-
- #if ENABLED(AUTO_POWER_E_FANS)
- uint8_t Temperature::autofan_speed[HOTENDS]; // = { 0 }
- #endif
-
- #if ENABLED(AUTO_POWER_CHAMBER_FAN)
- uint8_t Temperature::chamberfan_speed; // = 0
- #endif
-
- #if FAN_COUNT > 0
-
- uint8_t Temperature::fan_speed[FAN_COUNT]; // = { 0 }
-
- #if ENABLED(EXTRA_FAN_SPEED)
- uint8_t Temperature::old_fan_speed[FAN_COUNT], Temperature::new_fan_speed[FAN_COUNT];
-
- void Temperature::set_temp_fan_speed(const uint8_t fan, const uint16_t tmp_temp) {
- switch (tmp_temp) {
- case 1:
- set_fan_speed(fan, old_fan_speed[fan]);
- break;
- case 2:
- old_fan_speed[fan] = fan_speed[fan];
- set_fan_speed(fan, new_fan_speed[fan]);
- break;
- default:
- new_fan_speed[fan] = _MIN(tmp_temp, 255U);
- break;
- }
- }
-
- #endif
-
- #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
- bool Temperature::fans_paused; // = false;
- uint8_t Temperature::saved_fan_speed[FAN_COUNT]; // = { 0 }
- #endif
-
- #if ENABLED(ADAPTIVE_FAN_SLOWING)
- uint8_t Temperature::fan_speed_scaler[FAN_COUNT] = ARRAY_N(FAN_COUNT, 128, 128, 128, 128, 128, 128);
- #endif
-
- /**
- * Set the print fan speed for a target extruder
- */
- void Temperature::set_fan_speed(uint8_t target, uint16_t speed) {
-
- NOMORE(speed, 255U);
-
- #if ENABLED(SINGLENOZZLE)
- if (target != active_extruder) {
- if (target < EXTRUDERS) singlenozzle_fan_speed[target] = speed;
- return;
- }
- target = 0; // Always use fan index 0 with SINGLENOZZLE
- #endif
-
- if (target >= FAN_COUNT) return;
-
- fan_speed[target] = speed;
- }
-
- #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
-
- void Temperature::set_fans_paused(const bool p) {
- if (p != fans_paused) {
- fans_paused = p;
- if (p)
- FANS_LOOP(i) { saved_fan_speed[i] = fan_speed[i]; fan_speed[i] = 0; }
- else
- FANS_LOOP(i) fan_speed[i] = saved_fan_speed[i];
- }
- }
-
- #endif
-
- #endif // FAN_COUNT > 0
-
- #if WATCH_HOTENDS
- hotend_watch_t Temperature::watch_hotend[HOTENDS]; // = { { 0 } }
- #endif
- #if HEATER_IDLE_HANDLER
- hotend_idle_t Temperature::hotend_idle[HOTENDS]; // = { { 0 } }
- #endif
-
- #if HAS_HEATED_BED
- bed_info_t Temperature::temp_bed; // = { 0 }
- // Init min and max temp with extreme values to prevent false errors during startup
- #ifdef BED_MINTEMP
- int16_t Temperature::mintemp_raw_BED = HEATER_BED_RAW_LO_TEMP;
- #endif
- #ifdef BED_MAXTEMP
- int16_t Temperature::maxtemp_raw_BED = HEATER_BED_RAW_HI_TEMP;
- #endif
- #if WATCH_BED
- bed_watch_t Temperature::watch_bed; // = { 0 }
- #endif
- #if DISABLED(PIDTEMPBED)
- millis_t Temperature::next_bed_check_ms;
- #endif
- #if HEATER_IDLE_HANDLER
- hotend_idle_t Temperature::bed_idle; // = { 0 }
- #endif
- #endif // HAS_HEATED_BED
-
- #if HAS_TEMP_CHAMBER
- chamber_info_t Temperature::temp_chamber; // = { 0 }
- #if HAS_HEATED_CHAMBER
- #ifdef CHAMBER_MINTEMP
- int16_t Temperature::mintemp_raw_CHAMBER = HEATER_CHAMBER_RAW_LO_TEMP;
- #endif
- #ifdef CHAMBER_MAXTEMP
- int16_t Temperature::maxtemp_raw_CHAMBER = HEATER_CHAMBER_RAW_HI_TEMP;
- #endif
- #if WATCH_CHAMBER
- chamber_watch_t Temperature::watch_chamber{0};
- #endif
- millis_t Temperature::next_chamber_check_ms;
- #endif // HAS_HEATED_CHAMBER
- #endif // HAS_TEMP_CHAMBER
-
- #if HAS_TEMP_PROBE
- probe_info_t Temperature::temp_probe; // = { 0 }
- #endif
-
- // Initialized by settings.load()
- #if ENABLED(PIDTEMP)
- //hotend_pid_t Temperature::pid[HOTENDS];
- #endif
-
- #if ENABLED(PREVENT_COLD_EXTRUSION)
- bool Temperature::allow_cold_extrude = false;
- int16_t Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
- #endif
-
- // private:
-
- #if EARLY_WATCHDOG
- bool Temperature::inited = false;
- #endif
-
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- uint16_t Temperature::redundant_temperature_raw = 0;
- float Temperature::redundant_temperature = 0.0;
- #endif
-
- volatile bool Temperature::raw_temps_ready = false;
-
- #if ENABLED(PID_EXTRUSION_SCALING)
- int32_t Temperature::last_e_position, Temperature::lpq[LPQ_MAX_LEN];
- lpq_ptr_t Temperature::lpq_ptr = 0;
- #endif
-
- #define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) < (HEATER_##N##_RAW_HI_TEMP) ? 1 : -1)
-
- #if HOTENDS
- // Init mintemp and maxtemp with extreme values to prevent false errors during startup
- constexpr temp_range_t sensor_heater_0 { HEATER_0_RAW_LO_TEMP, HEATER_0_RAW_HI_TEMP, 0, 16383 },
- sensor_heater_1 { HEATER_1_RAW_LO_TEMP, HEATER_1_RAW_HI_TEMP, 0, 16383 },
- sensor_heater_2 { HEATER_2_RAW_LO_TEMP, HEATER_2_RAW_HI_TEMP, 0, 16383 },
- sensor_heater_3 { HEATER_3_RAW_LO_TEMP, HEATER_3_RAW_HI_TEMP, 0, 16383 },
- sensor_heater_4 { HEATER_4_RAW_LO_TEMP, HEATER_4_RAW_HI_TEMP, 0, 16383 },
- sensor_heater_5 { HEATER_5_RAW_LO_TEMP, HEATER_5_RAW_HI_TEMP, 0, 16383 },
- sensor_heater_6 { HEATER_6_RAW_LO_TEMP, HEATER_6_RAW_HI_TEMP, 0, 16383 },
- sensor_heater_7 { HEATER_7_RAW_LO_TEMP, HEATER_7_RAW_HI_TEMP, 0, 16383 };
-
- temp_range_t Temperature::temp_range[HOTENDS] = ARRAY_BY_HOTENDS(sensor_heater_0, sensor_heater_1, sensor_heater_2, sensor_heater_3, sensor_heater_4, sensor_heater_5, sensor_heater_6, sensor_heater_7);
- #endif
-
- #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
- uint8_t Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
- #endif
-
- #ifdef MILLISECONDS_PREHEAT_TIME
- millis_t Temperature::preheat_end_time[HOTENDS] = { 0 };
- #endif
-
- #if HAS_AUTO_FAN
- millis_t Temperature::next_auto_fan_check_ms = 0;
- #endif
-
- #if ENABLED(FAN_SOFT_PWM)
- uint8_t Temperature::soft_pwm_amount_fan[FAN_COUNT],
- Temperature::soft_pwm_count_fan[FAN_COUNT];
- #endif
-
- #if ENABLED(PROBING_HEATERS_OFF)
- bool Temperature::paused;
- #endif
-
- // public:
-
- #if HAS_ADC_BUTTONS
- uint32_t Temperature::current_ADCKey_raw = HAL_ADC_RANGE;
- uint8_t Temperature::ADCKey_count = 0;
- #endif
-
- #if ENABLED(PID_EXTRUSION_SCALING)
- int16_t Temperature::lpq_len; // Initialized in configuration_store
- #endif
-
- #if HAS_PID_HEATING
-
- inline void say_default_() { SERIAL_ECHOPGM("#define DEFAULT_"); }
-
- /**
- * PID Autotuning (M303)
- *
- * Alternately heat and cool the nozzle, observing its behavior to
- * determine the best PID values to achieve a stable temperature.
- * Needs sufficient heater power to make some overshoot at target
- * temperature to succeed.
- */
- void Temperature::PID_autotune(const float &target, const heater_ind_t heater, const int8_t ncycles, const bool set_result/*=false*/) {
- float current_temp = 0.0;
- int cycles = 0;
- bool heating = true;
-
- millis_t next_temp_ms = millis(), t1 = next_temp_ms, t2 = next_temp_ms;
- long t_high = 0, t_low = 0;
-
- long bias, d;
- PID_t tune_pid = { 0, 0, 0 };
- float maxT = 0, minT = 10000;
-
- const bool isbed = (heater == H_BED);
-
- #if HAS_PID_FOR_BOTH
- #define GHV(B,H) (isbed ? (B) : (H))
- #define SHV(B,H) do{ if (isbed) temp_bed.soft_pwm_amount = B; else temp_hotend[heater].soft_pwm_amount = H; }while(0)
- #define ONHEATINGSTART() (isbed ? printerEventLEDs.onBedHeatingStart() : printerEventLEDs.onHotendHeatingStart())
- #define ONHEATING(S,C,T) (isbed ? printerEventLEDs.onBedHeating(S,C,T) : printerEventLEDs.onHotendHeating(S,C,T))
- #elif ENABLED(PIDTEMPBED)
- #define GHV(B,H) B
- #define SHV(B,H) (temp_bed.soft_pwm_amount = B)
- #define ONHEATINGSTART() printerEventLEDs.onBedHeatingStart()
- #define ONHEATING(S,C,T) printerEventLEDs.onBedHeating(S,C,T)
- #else
- #define GHV(B,H) H
- #define SHV(B,H) (temp_hotend[heater].soft_pwm_amount = H)
- #define ONHEATINGSTART() printerEventLEDs.onHotendHeatingStart()
- #define ONHEATING(S,C,T) printerEventLEDs.onHotendHeating(S,C,T)
- #endif
-
- #if WATCH_BED || WATCH_HOTENDS
- #define HAS_TP_BED BOTH(THERMAL_PROTECTION_BED, PIDTEMPBED)
- #if HAS_TP_BED && BOTH(THERMAL_PROTECTION_HOTENDS, PIDTEMP)
- #define GTV(B,H) (isbed ? (B) : (H))
- #elif HAS_TP_BED
- #define GTV(B,H) (B)
- #else
- #define GTV(B,H) (H)
- #endif
- const uint16_t watch_temp_period = GTV(WATCH_BED_TEMP_PERIOD, WATCH_TEMP_PERIOD);
- const uint8_t watch_temp_increase = GTV(WATCH_BED_TEMP_INCREASE, WATCH_TEMP_INCREASE);
- const float watch_temp_target = target - float(watch_temp_increase + GTV(TEMP_BED_HYSTERESIS, TEMP_HYSTERESIS) + 1);
- millis_t temp_change_ms = next_temp_ms + watch_temp_period * 1000UL;
- float next_watch_temp = 0.0;
- bool heated = false;
- #endif
-
- #if HAS_AUTO_FAN
- next_auto_fan_check_ms = next_temp_ms + 2500UL;
- #endif
-
- if (target > GHV(BED_MAXTEMP - 10, temp_range[heater].maxtemp - 15)) {
- SERIAL_ECHOLNPGM(STR_PID_TEMP_TOO_HIGH);
- #if ENABLED(EXTENSIBLE_UI)
- ExtUI::OnPidTuning(ExtUI::result_t::PID_TEMP_TOO_HIGH);
- #endif
- return;
- }
-
- SERIAL_ECHOLNPGM(STR_PID_AUTOTUNE_START);
-
- disable_all_heaters();
-
- SHV(bias = d = (MAX_BED_POWER) >> 1, bias = d = (PID_MAX) >> 1);
-
- wait_for_heatup = true; // Can be interrupted with M108
- #if ENABLED(PRINTER_EVENT_LEDS)
- const float start_temp = GHV(temp_bed.celsius, temp_hotend[heater].celsius);
- LEDColor color = ONHEATINGSTART();
- #endif
-
- #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
- adaptive_fan_slowing = false;
- #endif
-
- // PID Tuning loop
- while (wait_for_heatup) {
-
- const millis_t ms = millis();
-
- if (raw_temps_ready) { // temp sample ready
- updateTemperaturesFromRawValues();
-
- // Get the current temperature and constrain it
- current_temp = GHV(temp_bed.celsius, temp_hotend[heater].celsius);
- NOLESS(maxT, current_temp);
- NOMORE(minT, current_temp);
-
- #if ENABLED(PRINTER_EVENT_LEDS)
- ONHEATING(start_temp, current_temp, target);
- #endif
-
- #if HAS_AUTO_FAN
- if (ELAPSED(ms, next_auto_fan_check_ms)) {
- checkExtruderAutoFans();
- next_auto_fan_check_ms = ms + 2500UL;
- }
- #endif
-
- if (heating && current_temp > target) {
- if (ELAPSED(ms, t2 + 5000UL)) {
- heating = false;
- SHV((bias - d) >> 1, (bias - d) >> 1);
- t1 = ms;
- t_high = t1 - t2;
- maxT = target;
- }
- }
-
- if (!heating && current_temp < target) {
- if (ELAPSED(ms, t1 + 5000UL)) {
- heating = true;
- t2 = ms;
- t_low = t2 - t1;
- if (cycles > 0) {
- const long max_pow = GHV(MAX_BED_POWER, PID_MAX);
- bias += (d * (t_high - t_low)) / (t_low + t_high);
- LIMIT(bias, 20, max_pow - 20);
- d = (bias > max_pow >> 1) ? max_pow - 1 - bias : bias;
-
- SERIAL_ECHOPAIR(STR_BIAS, bias, STR_D_COLON, d, STR_T_MIN, minT, STR_T_MAX, maxT);
- if (cycles > 2) {
- const float Ku = (4.0f * d) / (float(M_PI) * (maxT - minT) * 0.5f),
- Tu = float(t_low + t_high) * 0.001f,
- pf = isbed ? 0.2f : 0.6f,
- df = isbed ? 1.0f / 3.0f : 1.0f / 8.0f;
-
- SERIAL_ECHOPAIR(STR_KU, Ku, STR_TU, Tu);
- if (isbed) { // Do not remove this otherwise PID autotune won't work right for the bed!
- tune_pid.Kp = Ku * 0.2f;
- tune_pid.Ki = 2 * tune_pid.Kp / Tu;
- tune_pid.Kd = tune_pid.Kp * Tu / 3;
- SERIAL_ECHOLNPGM("\n" " No overshoot"); // Works far better for the bed. Classic and some have bad ringing.
- SERIAL_ECHOLNPAIR(STR_KP, tune_pid.Kp, STR_KI, tune_pid.Ki, STR_KD, tune_pid.Kd);
- }
- else {
- tune_pid.Kp = Ku * pf;
- tune_pid.Kd = tune_pid.Kp * Tu * df;
- tune_pid.Ki = 2 * tune_pid.Kp / Tu;
- SERIAL_ECHOLNPGM("\n" STR_CLASSIC_PID);
- SERIAL_ECHOLNPAIR(STR_KP, tune_pid.Kp, STR_KI, tune_pid.Ki, STR_KD, tune_pid.Kd);
- }
-
- /**
- tune_pid.Kp = 0.33 * Ku;
- tune_pid.Ki = tune_pid.Kp / Tu;
- tune_pid.Kd = tune_pid.Kp * Tu / 3;
- SERIAL_ECHOLNPGM(" Some overshoot");
- SERIAL_ECHOLNPAIR(" Kp: ", tune_pid.Kp, " Ki: ", tune_pid.Ki, " Kd: ", tune_pid.Kd, " No overshoot");
- tune_pid.Kp = 0.2 * Ku;
- tune_pid.Ki = 2 * tune_pid.Kp / Tu;
- tune_pid.Kd = tune_pid.Kp * Tu / 3;
- SERIAL_ECHOPAIR(" Kp: ", tune_pid.Kp, " Ki: ", tune_pid.Ki, " Kd: ", tune_pid.Kd);
- */
- }
- }
- SHV((bias + d) >> 1, (bias + d) >> 1);
- cycles++;
- minT = target;
- }
- }
- }
-
- // Did the temperature overshoot very far?
- #ifndef MAX_OVERSHOOT_PID_AUTOTUNE
- #define MAX_OVERSHOOT_PID_AUTOTUNE 30
- #endif
- if (current_temp > target + MAX_OVERSHOOT_PID_AUTOTUNE) {
- SERIAL_ECHOLNPGM(STR_PID_TEMP_TOO_HIGH);
- #if ENABLED(EXTENSIBLE_UI)
- ExtUI::OnPidTuning(ExtUI::result_t::PID_TEMP_TOO_HIGH);
- #endif
- break;
- }
-
- // Report heater states every 2 seconds
- if (ELAPSED(ms, next_temp_ms)) {
- #if HAS_TEMP_SENSOR
- print_heater_states(isbed ? active_extruder : heater);
- SERIAL_EOL();
- #endif
- next_temp_ms = ms + 2000UL;
-
- // Make sure heating is actually working
- #if WATCH_BED || WATCH_HOTENDS
- if (
- #if WATCH_BED && WATCH_HOTENDS
- true
- #elif WATCH_HOTENDS
- !isbed
- #else
- isbed
- #endif
- ) {
- if (!heated) { // If not yet reached target...
- if (current_temp > next_watch_temp) { // Over the watch temp?
- next_watch_temp = current_temp + watch_temp_increase; // - set the next temp to watch for
- temp_change_ms = ms + watch_temp_period * 1000UL; // - move the expiration timer up
- if (current_temp > watch_temp_target) heated = true; // - Flag if target temperature reached
- }
- else if (ELAPSED(ms, temp_change_ms)) // Watch timer expired
- _temp_error(heater, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD));
- }
- else if (current_temp < target - (MAX_OVERSHOOT_PID_AUTOTUNE)) // Heated, then temperature fell too far?
- _temp_error(heater, str_t_thermal_runaway, GET_TEXT(MSG_THERMAL_RUNAWAY));
- }
- #endif
- } // every 2 seconds
-
- // Timeout after MAX_CYCLE_TIME_PID_AUTOTUNE minutes since the last undershoot/overshoot cycle
- #ifndef MAX_CYCLE_TIME_PID_AUTOTUNE
- #define MAX_CYCLE_TIME_PID_AUTOTUNE 20L
- #endif
- if (((ms - t1) + (ms - t2)) > (MAX_CYCLE_TIME_PID_AUTOTUNE * 60L * 1000L)) {
- #if ENABLED(EXTENSIBLE_UI)
- ExtUI::OnPidTuning(ExtUI::result_t::PID_TUNING_TIMEOUT);
- #endif
- SERIAL_ECHOLNPGM(STR_PID_TIMEOUT);
- break;
- }
-
- if (cycles > ncycles && cycles > 2) {
- SERIAL_ECHOLNPGM(STR_PID_AUTOTUNE_FINISHED);
-
- #if HAS_PID_FOR_BOTH
- const char * const estring = GHV(PSTR("bed"), NUL_STR);
- say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp);
- say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki);
- say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd);
- #elif ENABLED(PIDTEMP)
- say_default_(); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp);
- say_default_(); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki);
- say_default_(); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd);
- #else
- say_default_(); SERIAL_ECHOLNPAIR("bedKp ", tune_pid.Kp);
- say_default_(); SERIAL_ECHOLNPAIR("bedKi ", tune_pid.Ki);
- say_default_(); SERIAL_ECHOLNPAIR("bedKd ", tune_pid.Kd);
- #endif
-
- #define _SET_BED_PID() do { \
- temp_bed.pid.Kp = tune_pid.Kp; \
- temp_bed.pid.Ki = scalePID_i(tune_pid.Ki); \
- temp_bed.pid.Kd = scalePID_d(tune_pid.Kd); \
- }while(0)
-
- #define _SET_EXTRUDER_PID() do { \
- PID_PARAM(Kp, heater) = tune_pid.Kp; \
- PID_PARAM(Ki, heater) = scalePID_i(tune_pid.Ki); \
- PID_PARAM(Kd, heater) = scalePID_d(tune_pid.Kd); \
- updatePID(); }while(0)
-
- // Use the result? (As with "M303 U1")
- if (set_result) {
- #if HAS_PID_FOR_BOTH
- if (isbed) _SET_BED_PID(); else _SET_EXTRUDER_PID();
- #elif ENABLED(PIDTEMP)
- _SET_EXTRUDER_PID();
- #else
- _SET_BED_PID();
- #endif
- }
-
- #if ENABLED(PRINTER_EVENT_LEDS)
- printerEventLEDs.onPidTuningDone(color);
- #endif
- #if ENABLED(EXTENSIBLE_UI)
- ExtUI::OnPidTuning(ExtUI::result_t::PID_DONE);
- #endif
-
- goto EXIT_M303;
- }
- ui.update();
- }
-
- disable_all_heaters();
-
- #if ENABLED(PRINTER_EVENT_LEDS)
- printerEventLEDs.onPidTuningDone(color);
- #endif
- #if ENABLED(EXTENSIBLE_UI)
- ExtUI::OnPidTuning(ExtUI::result_t::PID_DONE);
- #endif
-
- EXIT_M303:
- #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
- adaptive_fan_slowing = true;
- #endif
- return;
- }
-
- #endif // HAS_PID_HEATING
-
- /**
- * Class and Instance Methods
- */
-
- int16_t Temperature::getHeaterPower(const heater_ind_t heater_id) {
- switch (heater_id) {
- #if HAS_HEATED_BED
- case H_BED: return temp_bed.soft_pwm_amount;
- #endif
- #if HAS_HEATED_CHAMBER
- case H_CHAMBER: return temp_chamber.soft_pwm_amount;
- #endif
- default:
- return (0
- #if HOTENDS
- + temp_hotend[heater_id].soft_pwm_amount
- #endif
- );
- }
- }
-
- #define _EFANOVERLAP(A,B) _FANOVERLAP(E##A,B)
-
- #if HAS_AUTO_FAN
-
- #define CHAMBER_FAN_INDEX HOTENDS
-
- void Temperature::checkExtruderAutoFans() {
- #define _EFAN(B,A) _EFANOVERLAP(A,B) ? B :
- static const uint8_t fanBit[] PROGMEM = {
- 0
- #if HOTENDS > 1
- #define _NEXT_FAN(N) , REPEAT2(N,_EFAN,N) N
- RREPEAT_S(1, HOTENDS, _NEXT_FAN)
- #endif
- #if HAS_AUTO_CHAMBER_FAN
- #define _CFAN(B) _FANOVERLAP(CHAMBER,B) ? B :
- , REPEAT(HOTENDS,_CFAN) (HOTENDS)
- #endif
- };
-
- uint8_t fanState = 0;
- HOTEND_LOOP()
- if (temp_hotend[e].celsius >= EXTRUDER_AUTO_FAN_TEMPERATURE)
- SBI(fanState, pgm_read_byte(&fanBit[e]));
-
- #if HAS_AUTO_CHAMBER_FAN
- if (temp_chamber.celsius >= CHAMBER_AUTO_FAN_TEMPERATURE)
- SBI(fanState, pgm_read_byte(&fanBit[CHAMBER_FAN_INDEX]));
- #endif
-
- #define _UPDATE_AUTO_FAN(P,D,A) do{ \
- if (PWM_PIN(P##_AUTO_FAN_PIN) && A < 255) \
- analogWrite(pin_t(P##_AUTO_FAN_PIN), D ? A : 0); \
- else \
- WRITE(P##_AUTO_FAN_PIN, D); \
- }while(0)
-
- uint8_t fanDone = 0;
- for (uint8_t f = 0; f < COUNT(fanBit); f++) {
- const uint8_t realFan = pgm_read_byte(&fanBit[f]);
- if (TEST(fanDone, realFan)) continue;
- const bool fan_on = TEST(fanState, realFan);
- switch (f) {
- #if ENABLED(AUTO_POWER_CHAMBER_FAN)
- case CHAMBER_FAN_INDEX:
- chamberfan_speed = fan_on ? CHAMBER_AUTO_FAN_SPEED : 0;
- break;
- #endif
- default:
- #if ENABLED(AUTO_POWER_E_FANS)
- autofan_speed[realFan] = fan_on ? EXTRUDER_AUTO_FAN_SPEED : 0;
- #endif
- break;
- }
-
- switch (f) {
- #if HAS_AUTO_FAN_0
- case 0: _UPDATE_AUTO_FAN(E0, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
- #endif
- #if HAS_AUTO_FAN_1
- case 1: _UPDATE_AUTO_FAN(E1, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
- #endif
- #if HAS_AUTO_FAN_2
- case 2: _UPDATE_AUTO_FAN(E2, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
- #endif
- #if HAS_AUTO_FAN_3
- case 3: _UPDATE_AUTO_FAN(E3, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
- #endif
- #if HAS_AUTO_FAN_4
- case 4: _UPDATE_AUTO_FAN(E4, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
- #endif
- #if HAS_AUTO_FAN_5
- case 5: _UPDATE_AUTO_FAN(E5, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
- #endif
- #if HAS_AUTO_FAN_6
- case 6: _UPDATE_AUTO_FAN(E6, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
- #endif
- #if HAS_AUTO_FAN_7
- case 7: _UPDATE_AUTO_FAN(E7, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
- #endif
- #if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E
- case CHAMBER_FAN_INDEX: _UPDATE_AUTO_FAN(CHAMBER, fan_on, CHAMBER_AUTO_FAN_SPEED); break;
- #endif
- }
- SBI(fanDone, realFan);
- }
- }
-
- #endif // HAS_AUTO_FAN
-
- //
- // Temperature Error Handlers
- //
-
- inline void loud_kill(PGM_P const lcd_msg, const heater_ind_t heater) {
- Running = false;
- #if USE_BEEPER
- for (uint8_t i = 20; i--;) {
- WRITE(BEEPER_PIN, HIGH); delay(25);
- WRITE(BEEPER_PIN, LOW); delay(80);
- }
- WRITE(BEEPER_PIN, HIGH);
- #endif
- kill(lcd_msg, HEATER_PSTR(heater));
- }
-
- void Temperature::_temp_error(const heater_ind_t heater, PGM_P const serial_msg, PGM_P const lcd_msg) {
-
- static uint8_t killed = 0;
-
- if (IsRunning()
- #if BOGUS_TEMPERATURE_GRACE_PERIOD
- && killed == 2
- #endif
- ) {
- SERIAL_ERROR_START();
- serialprintPGM(serial_msg);
- SERIAL_ECHOPGM(STR_STOPPED_HEATER);
- if (heater >= 0) SERIAL_ECHO((int)heater);
- #if HAS_HEATED_CHAMBER
- else if (heater == H_CHAMBER) SERIAL_ECHOPGM(STR_HEATER_CHAMBER);
- #endif
- else SERIAL_ECHOPGM(STR_HEATER_BED);
- SERIAL_EOL();
- }
-
- disable_all_heaters(); // always disable (even for bogus temp)
-
- #if BOGUS_TEMPERATURE_GRACE_PERIOD
- const millis_t ms = millis();
- static millis_t expire_ms;
- switch (killed) {
- case 0:
- expire_ms = ms + BOGUS_TEMPERATURE_GRACE_PERIOD;
- ++killed;
- break;
- case 1:
- if (ELAPSED(ms, expire_ms)) ++killed;
- break;
- case 2:
- loud_kill(lcd_msg, heater);
- ++killed;
- break;
- }
- #elif defined(BOGUS_TEMPERATURE_GRACE_PERIOD)
- UNUSED(killed);
- #else
- if (!killed) { killed = 1; loud_kill(lcd_msg, heater); }
- #endif
- }
-
- void Temperature::max_temp_error(const heater_ind_t heater) {
- _temp_error(heater, PSTR(STR_T_MAXTEMP), GET_TEXT(MSG_ERR_MAXTEMP));
- }
-
- void Temperature::min_temp_error(const heater_ind_t heater) {
- _temp_error(heater, PSTR(STR_T_MINTEMP), GET_TEXT(MSG_ERR_MINTEMP));
- }
-
- #if HOTENDS
-
- float Temperature::get_pid_output_hotend(const uint8_t E_NAME) {
- const uint8_t ee = HOTEND_INDEX;
- #if ENABLED(PIDTEMP)
- #if DISABLED(PID_OPENLOOP)
- static hotend_pid_t work_pid[HOTENDS];
- static float temp_iState[HOTENDS] = { 0 },
- temp_dState[HOTENDS] = { 0 };
- static bool pid_reset[HOTENDS] = { false };
- const float pid_error = temp_hotend[ee].target - temp_hotend[ee].celsius;
-
- float pid_output;
-
- if (temp_hotend[ee].target == 0
- || pid_error < -(PID_FUNCTIONAL_RANGE)
- #if HEATER_IDLE_HANDLER
- || hotend_idle[ee].timed_out
- #endif
- ) {
- pid_output = 0;
- pid_reset[ee] = true;
- }
- else if (pid_error > PID_FUNCTIONAL_RANGE) {
- pid_output = BANG_MAX;
- pid_reset[ee] = true;
- }
- else {
- if (pid_reset[ee]) {
- temp_iState[ee] = 0.0;
- work_pid[ee].Kd = 0.0;
- pid_reset[ee] = false;
- }
-
- work_pid[ee].Kd = work_pid[ee].Kd + PID_K2 * (PID_PARAM(Kd, ee) * (temp_dState[ee] - temp_hotend[ee].celsius) - work_pid[ee].Kd);
- const float max_power_over_i_gain = float(PID_MAX) / PID_PARAM(Ki, ee) - float(MIN_POWER);
- temp_iState[ee] = constrain(temp_iState[ee] + pid_error, 0, max_power_over_i_gain);
- work_pid[ee].Kp = PID_PARAM(Kp, ee) * pid_error;
- work_pid[ee].Ki = PID_PARAM(Ki, ee) * temp_iState[ee];
-
- pid_output = work_pid[ee].Kp + work_pid[ee].Ki + work_pid[ee].Kd + float(MIN_POWER);
-
- #if ENABLED(PID_EXTRUSION_SCALING)
- #if HOTENDS == 1
- constexpr bool this_hotend = true;
- #else
- const bool this_hotend = (ee == active_extruder);
- #endif
- work_pid[ee].Kc = 0;
- if (this_hotend) {
- const long e_position = stepper.position(E_AXIS);
- if (e_position > last_e_position) {
- lpq[lpq_ptr] = e_position - last_e_position;
- last_e_position = e_position;
- }
- else
- lpq[lpq_ptr] = 0;
-
- if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
- work_pid[ee].Kc = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, ee);
- pid_output += work_pid[ee].Kc;
- }
- #endif // PID_EXTRUSION_SCALING
- #if ENABLED(PID_FAN_SCALING)
- if (thermalManager.fan_speed[active_extruder] > PID_FAN_SCALING_MIN_SPEED) {
- work_pid[ee].Kf = PID_PARAM(Kf, ee) + (PID_FAN_SCALING_LIN_FACTOR) * thermalManager.fan_speed[active_extruder];
- pid_output += work_pid[ee].Kf;
- }
- //pid_output -= work_pid[ee].Ki;
- //pid_output += work_pid[ee].Ki * work_pid[ee].Kf
- #endif // PID_FAN_SCALING
- LIMIT(pid_output, 0, PID_MAX);
- }
- temp_dState[ee] = temp_hotend[ee].celsius;
-
- #else // PID_OPENLOOP
-
- const float pid_output = constrain(temp_hotend[ee].target, 0, PID_MAX);
-
- #endif // PID_OPENLOOP
-
- #if ENABLED(PID_DEBUG)
- if (ee == active_extruder) {
- SERIAL_ECHO_START();
- SERIAL_ECHOPAIR(
- STR_PID_DEBUG, ee,
- STR_PID_DEBUG_INPUT, temp_hotend[ee].celsius,
- STR_PID_DEBUG_OUTPUT, pid_output
- );
- #if DISABLED(PID_OPENLOOP)
- {
- SERIAL_ECHOPAIR(
- STR_PID_DEBUG_PTERM, work_pid[ee].Kp,
- STR_PID_DEBUG_ITERM, work_pid[ee].Ki,
- STR_PID_DEBUG_DTERM, work_pid[ee].Kd
- #if ENABLED(PID_EXTRUSION_SCALING)
- , STR_PID_DEBUG_CTERM, work_pid[ee].Kc
- #endif
- );
- }
- #endif
- SERIAL_EOL();
- }
- #endif // PID_DEBUG
-
- #else // No PID enabled
-
- #if HEATER_IDLE_HANDLER
- const bool is_idling = hotend_idle[ee].timed_out;
- #else
- constexpr bool is_idling = false;
- #endif
- const float pid_output = (!is_idling && temp_hotend[ee].celsius < temp_hotend[ee].target) ? BANG_MAX : 0;
-
- #endif
-
- return pid_output;
- }
-
- #endif // HOTENDS
-
- #if ENABLED(PIDTEMPBED)
-
- float Temperature::get_pid_output_bed() {
-
- #if DISABLED(PID_OPENLOOP)
-
- static PID_t work_pid{0};
- static float temp_iState = 0, temp_dState = 0;
- static bool pid_reset = true;
- float pid_output = 0;
- const float max_power_over_i_gain = float(MAX_BED_POWER) / temp_bed.pid.Ki - float(MIN_BED_POWER),
- pid_error = temp_bed.target - temp_bed.celsius;
-
- if (!temp_bed.target || pid_error < -(PID_FUNCTIONAL_RANGE)) {
- pid_output = 0;
- pid_reset = true;
- }
- else if (pid_error > PID_FUNCTIONAL_RANGE) {
- pid_output = MAX_BED_POWER;
- pid_reset = true;
- }
- else {
- if (pid_reset) {
- temp_iState = 0.0;
- work_pid.Kd = 0.0;
- pid_reset = false;
- }
-
- temp_iState = constrain(temp_iState + pid_error, 0, max_power_over_i_gain);
-
- work_pid.Kp = temp_bed.pid.Kp * pid_error;
- work_pid.Ki = temp_bed.pid.Ki * temp_iState;
- work_pid.Kd = work_pid.Kd + PID_K2 * (temp_bed.pid.Kd * (temp_dState - temp_bed.celsius) - work_pid.Kd);
-
- temp_dState = temp_bed.celsius;
-
- pid_output = constrain(work_pid.Kp + work_pid.Ki + work_pid.Kd + float(MIN_BED_POWER), 0, MAX_BED_POWER);
- }
-
- #else // PID_OPENLOOP
-
- const float pid_output = constrain(temp_bed.target, 0, MAX_BED_POWER);
-
- #endif // PID_OPENLOOP
-
- #if ENABLED(PID_BED_DEBUG)
- {
- SERIAL_ECHO_START();
- SERIAL_ECHOLNPAIR(
- " PID_BED_DEBUG : Input ", temp_bed.celsius, " Output ", pid_output,
- #if DISABLED(PID_OPENLOOP)
- STR_PID_DEBUG_PTERM, work_pid.Kp,
- STR_PID_DEBUG_ITERM, work_pid.Ki,
- STR_PID_DEBUG_DTERM, work_pid.Kd,
- #endif
- );
- }
- #endif
-
- return pid_output;
- }
-
- #endif // PIDTEMPBED
-
- /**
- * Manage heating activities for extruder hot-ends and a heated bed
- * - Acquire updated temperature readings
- * - Also resets the watchdog timer
- * - Invoke thermal runaway protection
- * - Manage extruder auto-fan
- * - Apply filament width to the extrusion rate (may move)
- * - Update the heated bed PID output value
- */
- void Temperature::manage_heater() {
-
- #if EARLY_WATCHDOG
- // If thermal manager is still not running, make sure to at least reset the watchdog!
- if (!inited) return watchdog_refresh();
- #endif
-
- #if BOTH(PROBING_HEATERS_OFF, BED_LIMIT_SWITCHING)
- static bool last_pause_state;
- #endif
-
- #if ENABLED(EMERGENCY_PARSER)
- if (emergency_parser.killed_by_M112) kill(M112_KILL_STR, nullptr, true);
- #endif
-
- if (!raw_temps_ready) return;
-
- updateTemperaturesFromRawValues(); // also resets the watchdog
-
- #if ENABLED(HEATER_0_USES_MAX6675)
- if (temp_hotend[0].celsius > _MIN(HEATER_0_MAXTEMP, HEATER_0_MAX6675_TMAX - 1.0)) max_temp_error(H_E0);
- if (temp_hotend[0].celsius < _MAX(HEATER_0_MINTEMP, HEATER_0_MAX6675_TMIN + .01)) min_temp_error(H_E0);
- #endif
-
- #if ENABLED(HEATER_1_USES_MAX6675)
- if (temp_hotend[1].celsius > _MIN(HEATER_1_MAXTEMP, HEATER_1_MAX6675_TMAX - 1.0)) max_temp_error(H_E1);
- if (temp_hotend[1].celsius < _MAX(HEATER_1_MINTEMP, HEATER_1_MAX6675_TMIN + .01)) min_temp_error(H_E1);
- #endif
-
- millis_t ms = millis();
-
- #if HOTENDS
-
- HOTEND_LOOP() {
- #if ENABLED(THERMAL_PROTECTION_HOTENDS)
- if (degHotend(e) > temp_range[e].maxtemp)
- _temp_error((heater_ind_t)e, str_t_thermal_runaway, GET_TEXT(MSG_THERMAL_RUNAWAY));
- #endif
-
- #if HEATER_IDLE_HANDLER
- hotend_idle[e].update(ms);
- #endif
-
- #if ENABLED(THERMAL_PROTECTION_HOTENDS)
- // Check for thermal runaway
- thermal_runaway_protection(tr_state_machine[e], temp_hotend[e].celsius, temp_hotend[e].target, (heater_ind_t)e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
- #endif
-
- temp_hotend[e].soft_pwm_amount = (temp_hotend[e].celsius > temp_range[e].mintemp || is_preheating(e)) && temp_hotend[e].celsius < temp_range[e].maxtemp ? (int)get_pid_output_hotend(e) >> 1 : 0;
-
- #if WATCH_HOTENDS
- // Make sure temperature is increasing
- if (watch_hotend[e].next_ms && ELAPSED(ms, watch_hotend[e].next_ms)) { // Time to check this extruder?
- if (degHotend(e) < watch_hotend[e].target) // Failed to increase enough?
- _temp_error((heater_ind_t)e, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD));
- else // Start again if the target is still far off
- start_watching_hotend(e);
- }
- #endif
-
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- // Make sure measured temperatures are close together
- if (ABS(temp_hotend[0].celsius - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF)
- _temp_error(H_E0, PSTR(STR_REDUNDANCY), GET_TEXT(MSG_ERR_REDUNDANT_TEMP));
- #endif
-
- } // HOTEND_LOOP
-
- #endif // HOTENDS
-
- #if HAS_AUTO_FAN
- if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
- checkExtruderAutoFans();
- next_auto_fan_check_ms = ms + 2500UL;
- }
- #endif
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- /**
- * Dynamically set the volumetric multiplier based
- * on the delayed Filament Width measurement.
- */
- filwidth.update_volumetric();
- #endif
-
- #if HAS_HEATED_BED
-
- #if ENABLED(THERMAL_PROTECTION_BED)
- if (degBed() > BED_MAXTEMP)
- _temp_error(H_BED, str_t_thermal_runaway, GET_TEXT(MSG_THERMAL_RUNAWAY));
- #endif
-
- #if WATCH_BED
- // Make sure temperature is increasing
- if (watch_bed.elapsed(ms)) { // Time to check the bed?
- if (degBed() < watch_bed.target) // Failed to increase enough?
- _temp_error(H_BED, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD));
- else // Start again if the target is still far off
- start_watching_bed();
- }
- #endif // WATCH_BED
-
- do {
-
- #if DISABLED(PIDTEMPBED)
- if (PENDING(ms, next_bed_check_ms)
- #if BOTH(PROBING_HEATERS_OFF, BED_LIMIT_SWITCHING)
- && paused == last_pause_state
- #endif
- ) break;
- next_bed_check_ms = ms + BED_CHECK_INTERVAL;
- #if BOTH(PROBING_HEATERS_OFF, BED_LIMIT_SWITCHING)
- last_pause_state = paused;
- #endif
- #endif
-
- #if HEATER_IDLE_HANDLER
- bed_idle.update(ms);
- #endif
-
- #if HAS_THERMALLY_PROTECTED_BED
- thermal_runaway_protection(tr_state_machine_bed, temp_bed.celsius, temp_bed.target, H_BED, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
- #endif
-
- #if HEATER_IDLE_HANDLER
- if (bed_idle.timed_out) {
- temp_bed.soft_pwm_amount = 0;
- #if DISABLED(PIDTEMPBED)
- WRITE_HEATER_BED(LOW);
- #endif
- }
- else
- #endif
- {
- #if ENABLED(PIDTEMPBED)
- temp_bed.soft_pwm_amount = WITHIN(temp_bed.celsius, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0;
- #else
- // Check if temperature is within the correct band
- if (WITHIN(temp_bed.celsius, BED_MINTEMP, BED_MAXTEMP)) {
- #if ENABLED(BED_LIMIT_SWITCHING)
- if (temp_bed.celsius >= temp_bed.target + BED_HYSTERESIS)
- temp_bed.soft_pwm_amount = 0;
- else if (temp_bed.celsius <= temp_bed.target - (BED_HYSTERESIS))
- temp_bed.soft_pwm_amount = MAX_BED_POWER >> 1;
- #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
- temp_bed.soft_pwm_amount = temp_bed.celsius < temp_bed.target ? MAX_BED_POWER >> 1 : 0;
- #endif
- }
- else {
- temp_bed.soft_pwm_amount = 0;
- WRITE_HEATER_BED(LOW);
- }
- #endif
- }
-
- } while (false);
-
- #endif // HAS_HEATED_BED
-
- #if HAS_HEATED_CHAMBER
-
- #ifndef CHAMBER_CHECK_INTERVAL
- #define CHAMBER_CHECK_INTERVAL 1000UL
- #endif
-
- #if ENABLED(THERMAL_PROTECTION_CHAMBER)
- if (degChamber() > CHAMBER_MAXTEMP)
- _temp_error(H_CHAMBER, str_t_thermal_runaway, GET_TEXT(MSG_THERMAL_RUNAWAY));
- #endif
-
- #if WATCH_CHAMBER
- // Make sure temperature is increasing
- if (watch_chamber.elapsed(ms)) { // Time to check the chamber?
- if (degChamber() < watch_chamber.target) // Failed to increase enough?
- _temp_error(H_CHAMBER, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD));
- else
- start_watching_chamber(); // Start again if the target is still far off
- }
- #endif
-
- if (ELAPSED(ms, next_chamber_check_ms)) {
- next_chamber_check_ms = ms + CHAMBER_CHECK_INTERVAL;
-
- if (WITHIN(temp_chamber.celsius, CHAMBER_MINTEMP, CHAMBER_MAXTEMP)) {
- #if ENABLED(CHAMBER_LIMIT_SWITCHING)
- if (temp_chamber.celsius >= temp_chamber.target + TEMP_CHAMBER_HYSTERESIS)
- temp_chamber.soft_pwm_amount = 0;
- else if (temp_chamber.celsius <= temp_chamber.target - (TEMP_CHAMBER_HYSTERESIS))
- temp_chamber.soft_pwm_amount = MAX_CHAMBER_POWER >> 1;
- #else
- temp_chamber.soft_pwm_amount = temp_chamber.celsius < temp_chamber.target ? MAX_CHAMBER_POWER >> 1 : 0;
- #endif
- }
- else {
- temp_chamber.soft_pwm_amount = 0;
- WRITE_HEATER_CHAMBER(LOW);
- }
-
- #if ENABLED(THERMAL_PROTECTION_CHAMBER)
- thermal_runaway_protection(tr_state_machine_chamber, temp_chamber.celsius, temp_chamber.target, H_CHAMBER, THERMAL_PROTECTION_CHAMBER_PERIOD, THERMAL_PROTECTION_CHAMBER_HYSTERESIS);
- #endif
- }
-
- // TODO: Implement true PID pwm
- //temp_bed.soft_pwm_amount = WITHIN(temp_chamber.celsius, CHAMBER_MINTEMP, CHAMBER_MAXTEMP) ? (int)get_pid_output_chamber() >> 1 : 0;
-
- #endif // HAS_HEATED_CHAMBER
-
- UNUSED(ms);
- }
-
- #define TEMP_AD595(RAW) ((RAW) * 5.0 * 100.0 / float(HAL_ADC_RANGE) / (OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET)
- #define TEMP_AD8495(RAW) ((RAW) * 6.6 * 100.0 / float(HAL_ADC_RANGE) / (OVERSAMPLENR) * (TEMP_SENSOR_AD8495_GAIN) + TEMP_SENSOR_AD8495_OFFSET)
-
- /**
- * Bisect search for the range of the 'raw' value, then interpolate
- * proportionally between the under and over values.
- */
- #define SCAN_THERMISTOR_TABLE(TBL,LEN) do{ \
- uint8_t l = 0, r = LEN, m; \
- for (;;) { \
- m = (l + r) >> 1; \
- if (!m) return short(pgm_read_word(&TBL[0][1])); \
- if (m == l || m == r) return short(pgm_read_word(&TBL[LEN-1][1])); \
- short v00 = pgm_read_word(&TBL[m-1][0]), \
- v10 = pgm_read_word(&TBL[m-0][0]); \
- if (raw < v00) r = m; \
- else if (raw > v10) l = m; \
- else { \
- const short v01 = short(pgm_read_word(&TBL[m-1][1])), \
- v11 = short(pgm_read_word(&TBL[m-0][1])); \
- return v01 + (raw - v00) * float(v11 - v01) / float(v10 - v00); \
- } \
- } \
- }while(0)
-
- #if HAS_USER_THERMISTORS
-
- user_thermistor_t Temperature::user_thermistor[USER_THERMISTORS]; // Initialized by settings.load()
-
- void Temperature::reset_user_thermistors() {
- user_thermistor_t user_thermistor[USER_THERMISTORS] = {
- #if ENABLED(HEATER_0_USER_THERMISTOR)
- { true, 0, 0, HOTEND0_PULLUP_RESISTOR_OHMS, HOTEND0_RESISTANCE_25C_OHMS, 0, 0, HOTEND0_BETA, 0 },
- #endif
- #if ENABLED(HEATER_1_USER_THERMISTOR)
- { true, 0, 0, HOTEND1_PULLUP_RESISTOR_OHMS, HOTEND1_RESISTANCE_25C_OHMS, 0, 0, HOTEND1_BETA, 0 },
- #endif
- #if ENABLED(HEATER_2_USER_THERMISTOR)
- { true, 0, 0, HOTEND2_PULLUP_RESISTOR_OHMS, HOTEND2_RESISTANCE_25C_OHMS, 0, 0, HOTEND2_BETA, 0 },
- #endif
- #if ENABLED(HEATER_3_USER_THERMISTOR)
- { true, 0, 0, HOTEND3_PULLUP_RESISTOR_OHMS, HOTEND3_RESISTANCE_25C_OHMS, 0, 0, HOTEND3_BETA, 0 },
- #endif
- #if ENABLED(HEATER_4_USER_THERMISTOR)
- { true, 0, 0, HOTEND4_PULLUP_RESISTOR_OHMS, HOTEND4_RESISTANCE_25C_OHMS, 0, 0, HOTEND4_BETA, 0 },
- #endif
- #if ENABLED(HEATER_5_USER_THERMISTOR)
- { true, 0, 0, HOTEND5_PULLUP_RESISTOR_OHMS, HOTEND5_RESISTANCE_25C_OHMS, 0, 0, HOTEND5_BETA, 0 },
- #endif
- #if ENABLED(HEATER_6_USER_THERMISTOR)
- { true, 0, 0, HOTEND6_PULLUP_RESISTOR_OHMS, HOTEND6_RESISTANCE_25C_OHMS, 0, 0, HOTEND6_BETA, 0 },
- #endif
- #if ENABLED(HEATER_7_USER_THERMISTOR)
- { true, 0, 0, HOTEND7_PULLUP_RESISTOR_OHMS, HOTEND7_RESISTANCE_25C_OHMS, 0, 0, HOTEND7_BETA, 0 },
- #endif
- #if ENABLED(HEATER_BED_USER_THERMISTOR)
- { true, 0, 0, BED_PULLUP_RESISTOR_OHMS, BED_RESISTANCE_25C_OHMS, 0, 0, BED_BETA, 0 },
- #endif
- #if ENABLED(HEATER_CHAMBER_USER_THERMISTOR)
- { true, 0, 0, CHAMBER_PULLUP_RESISTOR_OHMS, CHAMBER_RESISTANCE_25C_OHMS, 0, 0, CHAMBER_BETA, 0 }
- #endif
- };
- COPY(thermalManager.user_thermistor, user_thermistor);
- }
-
- void Temperature::log_user_thermistor(const uint8_t t_index, const bool eprom/*=false*/) {
-
- if (eprom)
- SERIAL_ECHOPGM(" M305 ");
- else
- SERIAL_ECHO_START();
- SERIAL_CHAR('P');
- SERIAL_CHAR('0' + t_index);
-
- const user_thermistor_t &t = user_thermistor[t_index];
-
- SERIAL_ECHOPAIR_F(" R", t.series_res, 1);
- SERIAL_ECHOPAIR_F_P(SP_T_STR, t.res_25, 1);
- SERIAL_ECHOPAIR_F(" B", t.beta, 1);
- SERIAL_ECHOPAIR_F(" C", t.sh_c_coeff, 9);
- SERIAL_ECHOPGM(" ; ");
- serialprintPGM(
- #if ENABLED(HEATER_0_USER_THERMISTOR)
- t_index == CTI_HOTEND_0 ? PSTR("HOTEND 0") :
- #endif
- #if ENABLED(HEATER_1_USER_THERMISTOR)
- t_index == CTI_HOTEND_1 ? PSTR("HOTEND 1") :
- #endif
- #if ENABLED(HEATER_2_USER_THERMISTOR)
- t_index == CTI_HOTEND_2 ? PSTR("HOTEND 2") :
- #endif
- #if ENABLED(HEATER_3_USER_THERMISTOR)
- t_index == CTI_HOTEND_3 ? PSTR("HOTEND 3") :
- #endif
- #if ENABLED(HEATER_4_USER_THERMISTOR)
- t_index == CTI_HOTEND_4 ? PSTR("HOTEND 4") :
- #endif
- #if ENABLED(HEATER_5_USER_THERMISTOR)
- t_index == CTI_HOTEND_5 ? PSTR("HOTEND 5") :
- #endif
- #if ENABLED(HEATER_6_USER_THERMISTOR)
- t_index == CTI_HOTEND_6 ? PSTR("HOTEND 6") :
- #endif
- #if ENABLED(HEATER_7_USER_THERMISTOR)
- t_index == CTI_HOTEND_7 ? PSTR("HOTEND 7") :
- #endif
- #if ENABLED(HEATER_BED_USER_THERMISTOR)
- t_index == CTI_BED ? PSTR("BED") :
- #endif
- #if ENABLED(HEATER_CHAMBER_USER_THERMISTOR)
- t_index == CTI_CHAMBER ? PSTR("CHAMBER") :
- #endif
- nullptr
- );
- SERIAL_EOL();
- }
-
- float Temperature::user_thermistor_to_deg_c(const uint8_t t_index, const int raw) {
- //#if (MOTHERBOARD == BOARD_RAMPS_14_EFB)
- // static uint32_t clocks_total = 0;
- // static uint32_t calls = 0;
- // uint32_t tcnt5 = TCNT5;
- //#endif
-
- if (!WITHIN(t_index, 0, COUNT(user_thermistor) - 1)) return 25;
-
- user_thermistor_t &t = user_thermistor[t_index];
- if (t.pre_calc) { // pre-calculate some variables
- t.pre_calc = false;
- t.res_25_recip = 1.0f / t.res_25;
- t.res_25_log = logf(t.res_25);
- t.beta_recip = 1.0f / t.beta;
- t.sh_alpha = RECIPROCAL(THERMISTOR_RESISTANCE_NOMINAL_C - (THERMISTOR_ABS_ZERO_C))
- - (t.beta_recip * t.res_25_log) - (t.sh_c_coeff * cu(t.res_25_log));
- }
-
- // maximum adc value .. take into account the over sampling
- const int adc_max = MAX_RAW_THERMISTOR_VALUE,
- adc_raw = constrain(raw, 1, adc_max - 1); // constrain to prevent divide-by-zero
-
- const float adc_inverse = (adc_max - adc_raw) - 0.5f,
- resistance = t.series_res * (adc_raw + 0.5f) / adc_inverse,
- log_resistance = logf(resistance);
-
- float value = t.sh_alpha;
- value += log_resistance * t.beta_recip;
- if (t.sh_c_coeff != 0)
- value += t.sh_c_coeff * cu(log_resistance);
- value = 1.0f / value;
-
- //#if (MOTHERBOARD == BOARD_RAMPS_14_EFB)
- // int32_t clocks = TCNT5 - tcnt5;
- // if (clocks >= 0) {
- // clocks_total += clocks;
- // calls++;
- // }
- //#endif
-
- // Return degrees C (up to 999, as the LCD only displays 3 digits)
- return _MIN(value + THERMISTOR_ABS_ZERO_C, 999);
- }
- #endif
-
- #if HOTENDS
- // Derived from RepRap FiveD extruder::getTemperature()
- // For hot end temperature measurement.
- float Temperature::analog_to_celsius_hotend(const int raw, const uint8_t e) {
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- if (e > HOTENDS)
- #else
- if (e >= HOTENDS)
- #endif
- {
- SERIAL_ERROR_START();
- SERIAL_ECHO((int)e);
- SERIAL_ECHOLNPGM(STR_INVALID_EXTRUDER_NUM);
- kill();
- return 0;
- }
-
- switch (e) {
- case 0:
- #if ENABLED(HEATER_0_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_HOTEND_0, raw);
- #elif ENABLED(HEATER_0_USES_MAX6675)
- return (
- #if ENABLED(MAX6675_IS_MAX31865)
- max31865.temperature(100, 400) // 100 ohms = PT100 resistance. 400 ohms = calibration resistor
- #else
- raw * 0.25
- #endif
- );
- #elif ENABLED(HEATER_0_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(HEATER_0_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- break;
- #endif
- case 1:
- #if ENABLED(HEATER_1_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_HOTEND_1, raw);
- #elif ENABLED(HEATER_1_USES_MAX6675)
- return raw * 0.25;
- #elif ENABLED(HEATER_1_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(HEATER_1_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- break;
- #endif
- case 2:
- #if ENABLED(HEATER_2_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_HOTEND_2, raw);
- #elif ENABLED(HEATER_2_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(HEATER_2_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- break;
- #endif
- case 3:
- #if ENABLED(HEATER_3_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_HOTEND_3, raw);
- #elif ENABLED(HEATER_3_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(HEATER_3_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- break;
- #endif
- case 4:
- #if ENABLED(HEATER_4_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_HOTEND_4, raw);
- #elif ENABLED(HEATER_4_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(HEATER_4_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- break;
- #endif
- case 5:
- #if ENABLED(HEATER_5_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_HOTEND_5, raw);
- #elif ENABLED(HEATER_5_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(HEATER_5_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- break;
- #endif
- case 6:
- #if ENABLED(HEATER_6_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_HOTEND_6, raw);
- #elif ENABLED(HEATER_6_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(HEATER_6_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- break;
- #endif
- case 7:
- #if ENABLED(HEATER_7_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_HOTEND_7, raw);
- #elif ENABLED(HEATER_7_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(HEATER_7_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- break;
- #endif
- default: break;
- }
-
- #if HOTEND_USES_THERMISTOR
- // Thermistor with conversion table?
- const short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]);
- SCAN_THERMISTOR_TABLE((*tt), heater_ttbllen_map[e]);
- #endif
-
- return 0;
- }
- #endif // HOTENDS
-
- #if HAS_HEATED_BED
- // Derived from RepRap FiveD extruder::getTemperature()
- // For bed temperature measurement.
- float Temperature::analog_to_celsius_bed(const int raw) {
- #if ENABLED(HEATER_BED_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_BED, raw);
- #elif ENABLED(HEATER_BED_USES_THERMISTOR)
- SCAN_THERMISTOR_TABLE(BED_TEMPTABLE, BED_TEMPTABLE_LEN);
- #elif ENABLED(HEATER_BED_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(HEATER_BED_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- UNUSED(raw);
- return 0;
- #endif
- }
- #endif // HAS_HEATED_BED
-
- #if HAS_TEMP_CHAMBER
- // Derived from RepRap FiveD extruder::getTemperature()
- // For chamber temperature measurement.
- float Temperature::analog_to_celsius_chamber(const int raw) {
- #if ENABLED(HEATER_CHAMBER_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_CHAMBER, raw);
- #elif ENABLED(HEATER_CHAMBER_USES_THERMISTOR)
- SCAN_THERMISTOR_TABLE(CHAMBER_TEMPTABLE, CHAMBER_TEMPTABLE_LEN);
- #elif ENABLED(HEATER_CHAMBER_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(HEATER_CHAMBER_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- UNUSED(raw);
- return 0;
- #endif
- }
- #endif // HAS_TEMP_CHAMBER
-
- #if HAS_TEMP_PROBE
- // Derived from RepRap FiveD extruder::getTemperature()
- // For probe temperature measurement.
- float Temperature::analog_to_celsius_probe(const int raw) {
- #if ENABLED(PROBE_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_PROBE, raw);
- #elif ENABLED(PROBE_USES_THERMISTOR)
- SCAN_THERMISTOR_TABLE(PROBE_TEMPTABLE, PROBE_TEMPTABLE_LEN);
- #elif ENABLED(PROBE_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(PROBE_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- UNUSED(raw);
- return 0;
- #endif
- }
- #endif // HAS_TEMP_PROBE
-
- /**
- * Get the raw values into the actual temperatures.
- * The raw values are created in interrupt context,
- * and this function is called from normal context
- * as it would block the stepper routine.
- */
- void Temperature::updateTemperaturesFromRawValues() {
- #if ENABLED(HEATER_0_USES_MAX6675)
- temp_hotend[0].raw = READ_MAX6675(0);
- #endif
- #if ENABLED(HEATER_1_USES_MAX6675)
- temp_hotend[1].raw = READ_MAX6675(1);
- #endif
- #if HOTENDS
- HOTEND_LOOP() temp_hotend[e].celsius = analog_to_celsius_hotend(temp_hotend[e].raw, e);
- #endif
- #if HAS_HEATED_BED
- temp_bed.celsius = analog_to_celsius_bed(temp_bed.raw);
- #endif
- #if HAS_TEMP_CHAMBER
- temp_chamber.celsius = analog_to_celsius_chamber(temp_chamber.raw);
- #endif
- #if HAS_TEMP_PROBE
- temp_probe.celsius = analog_to_celsius_probe(temp_probe.raw);
- #endif
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- redundant_temperature = analog_to_celsius_hotend(redundant_temperature_raw, 1);
- #endif
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- filwidth.update_measured_mm();
- #endif
-
- // Reset the watchdog on good temperature measurement
- watchdog_refresh();
-
- raw_temps_ready = false;
- }
-
- #if MAX6675_SEPARATE_SPI
- SPIclass<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
- #endif
-
- // Init fans according to whether they're native PWM or Software PWM
- #ifdef ALFAWISE_UX0
- #define _INIT_SOFT_FAN(P) OUT_WRITE_OD(P, FAN_INVERTING ? LOW : HIGH)
- #else
- #define _INIT_SOFT_FAN(P) OUT_WRITE(P, FAN_INVERTING ? LOW : HIGH)
- #endif
- #if ENABLED(FAN_SOFT_PWM)
- #define _INIT_FAN_PIN(P) _INIT_SOFT_FAN(P)
- #else
- #define _INIT_FAN_PIN(P) do{ if (PWM_PIN(P)) SET_PWM(P); else _INIT_SOFT_FAN(P); }while(0)
- #endif
- #if ENABLED(FAST_PWM_FAN)
- #define SET_FAST_PWM_FREQ(P) set_pwm_frequency(P, FAST_PWM_FAN_FREQUENCY)
- #else
- #define SET_FAST_PWM_FREQ(P) NOOP
- #endif
- #define INIT_FAN_PIN(P) do{ _INIT_FAN_PIN(P); SET_FAST_PWM_FREQ(P); }while(0)
- #if EXTRUDER_AUTO_FAN_SPEED != 255
- #define INIT_E_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(FAST_PWM_FAN_FREQUENCY); } else SET_OUTPUT(P); }while(0)
- #else
- #define INIT_E_AUTO_FAN_PIN(P) SET_OUTPUT(P)
- #endif
- #if CHAMBER_AUTO_FAN_SPEED != 255
- #define INIT_CHAMBER_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(FAST_PWM_FAN_FREQUENCY); } else SET_OUTPUT(P); }while(0)
- #else
- #define INIT_CHAMBER_AUTO_FAN_PIN(P) SET_OUTPUT(P)
- #endif
-
- /**
- * Initialize the temperature manager
- * The manager is implemented by periodic calls to manage_heater()
- */
- void Temperature::init() {
-
- #if ENABLED(MAX6675_IS_MAX31865)
- max31865.begin(MAX31865_2WIRE); // MAX31865_2WIRE, MAX31865_3WIRE, MAX31865_4WIRE
- #endif
-
- #if EARLY_WATCHDOG
- // Flag that the thermalManager should be running
- if (inited) return;
- inited = true;
- #endif
-
- #if MB(RUMBA)
- // Disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
- #define _AD(N) ANY(HEATER_##N##_USES_AD595, HEATER_##N##_USES_AD8495)
- #if _AD(0) || _AD(1) || _AD(2) || _AD(BED) || _AD(CHAMBER)
- MCUCR = _BV(JTD);
- MCUCR = _BV(JTD);
- #endif
- #endif
-
- #if BOTH(PIDTEMP, PID_EXTRUSION_SCALING)
- last_e_position = 0;
- #endif
-
- #if HAS_HEATER_0
- #ifdef ALFAWISE_UX0
- OUT_WRITE_OD(HEATER_0_PIN, HEATER_0_INVERTING);
- #else
- OUT_WRITE(HEATER_0_PIN, HEATER_0_INVERTING);
- #endif
- #endif
-
- #if HAS_HEATER_1
- OUT_WRITE(HEATER_1_PIN, HEATER_1_INVERTING);
- #endif
- #if HAS_HEATER_2
- OUT_WRITE(HEATER_2_PIN, HEATER_2_INVERTING);
- #endif
- #if HAS_HEATER_3
- OUT_WRITE(HEATER_3_PIN, HEATER_3_INVERTING);
- #endif
- #if HAS_HEATER_4
- OUT_WRITE(HEATER_4_PIN, HEATER_4_INVERTING);
- #endif
- #if HAS_HEATER_5
- OUT_WRITE(HEATER_5_PIN, HEATER_5_INVERTING);
- #endif
- #if HAS_HEATER_6
- OUT_WRITE(HEATER_6_PIN, HEATER_6_INVERTING);
- #endif
- #if HAS_HEATER_7
- OUT_WRITE(HEATER_7_PIN, HEATER_7_INVERTING);
- #endif
-
- #if HAS_HEATED_BED
- #ifdef ALFAWISE_UX0
- OUT_WRITE_OD(HEATER_BED_PIN, HEATER_BED_INVERTING);
- #else
- OUT_WRITE(HEATER_BED_PIN, HEATER_BED_INVERTING);
- #endif
- #endif
-
- #if HAS_HEATED_CHAMBER
- OUT_WRITE(HEATER_CHAMBER_PIN, HEATER_CHAMBER_INVERTING);
- #endif
-
- #if HAS_FAN0
- INIT_FAN_PIN(FAN_PIN);
- #endif
- #if HAS_FAN1
- INIT_FAN_PIN(FAN1_PIN);
- #endif
- #if HAS_FAN2
- INIT_FAN_PIN(FAN2_PIN);
- #endif
- #if HAS_FAN3
- INIT_FAN_PIN(FAN3_PIN);
- #endif
- #if HAS_FAN4
- INIT_FAN_PIN(FAN4_PIN);
- #endif
- #if HAS_FAN5
- INIT_FAN_PIN(FAN5_PIN);
- #endif
- #if HAS_FAN6
- INIT_FAN_PIN(FAN6_PIN);
- #endif
- #if HAS_FAN7
- INIT_FAN_PIN(FAN7_PIN);
- #endif
- #if ENABLED(USE_CONTROLLER_FAN)
- INIT_FAN_PIN(CONTROLLER_FAN_PIN);
- #endif
-
- #if MAX6675_SEPARATE_SPI
-
- OUT_WRITE(SCK_PIN, LOW);
- OUT_WRITE(MOSI_PIN, HIGH);
- SET_INPUT_PULLUP(MISO_PIN);
-
- max6675_spi.init();
-
- OUT_WRITE(SS_PIN, HIGH);
- OUT_WRITE(MAX6675_SS_PIN, HIGH);
-
- #endif
-
- #if ENABLED(HEATER_1_USES_MAX6675)
- OUT_WRITE(MAX6675_SS2_PIN, HIGH);
- #endif
-
- HAL_adc_init();
-
- #if HAS_TEMP_ADC_0
- HAL_ANALOG_SELECT(TEMP_0_PIN);
- #endif
- #if HAS_TEMP_ADC_1
- HAL_ANALOG_SELECT(TEMP_1_PIN);
- #endif
- #if HAS_TEMP_ADC_2
- HAL_ANALOG_SELECT(TEMP_2_PIN);
- #endif
- #if HAS_TEMP_ADC_3
- HAL_ANALOG_SELECT(TEMP_3_PIN);
- #endif
- #if HAS_TEMP_ADC_4
- HAL_ANALOG_SELECT(TEMP_4_PIN);
- #endif
- #if HAS_TEMP_ADC_5
- HAL_ANALOG_SELECT(TEMP_5_PIN);
- #endif
- #if HAS_TEMP_ADC_6
- HAL_ANALOG_SELECT(TEMP_6_PIN);
- #endif
- #if HAS_TEMP_ADC_7
- HAL_ANALOG_SELECT(TEMP_7_PIN);
- #endif
- #if HAS_JOY_ADC_X
- HAL_ANALOG_SELECT(JOY_X_PIN);
- #endif
- #if HAS_JOY_ADC_Y
- HAL_ANALOG_SELECT(JOY_Y_PIN);
- #endif
- #if HAS_JOY_ADC_Z
- HAL_ANALOG_SELECT(JOY_Z_PIN);
- #endif
- #if HAS_JOY_ADC_EN
- SET_INPUT_PULLUP(JOY_EN_PIN);
- #endif
- #if HAS_HEATED_BED
- HAL_ANALOG_SELECT(TEMP_BED_PIN);
- #endif
- #if HAS_TEMP_CHAMBER
- HAL_ANALOG_SELECT(TEMP_CHAMBER_PIN);
- #endif
- #if HAS_TEMP_PROBE
- HAL_ANALOG_SELECT(TEMP_PROBE_PIN);
- #endif
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- HAL_ANALOG_SELECT(FILWIDTH_PIN);
- #endif
- #if HAS_ADC_BUTTONS
- HAL_ANALOG_SELECT(ADC_KEYPAD_PIN);
- #endif
-
- HAL_timer_start(TEMP_TIMER_NUM, TEMP_TIMER_FREQUENCY);
- ENABLE_TEMPERATURE_INTERRUPT();
-
- #if HAS_AUTO_FAN_0
- INIT_E_AUTO_FAN_PIN(E0_AUTO_FAN_PIN);
- #endif
- #if HAS_AUTO_FAN_1 && !_EFANOVERLAP(1,0)
- INIT_E_AUTO_FAN_PIN(E1_AUTO_FAN_PIN);
- #endif
- #if HAS_AUTO_FAN_2 && !(_EFANOVERLAP(2,0) || _EFANOVERLAP(2,1))
- INIT_E_AUTO_FAN_PIN(E2_AUTO_FAN_PIN);
- #endif
- #if HAS_AUTO_FAN_3 && !(_EFANOVERLAP(3,0) || _EFANOVERLAP(3,1) || _EFANOVERLAP(3,2))
- INIT_E_AUTO_FAN_PIN(E3_AUTO_FAN_PIN);
- #endif
- #if HAS_AUTO_FAN_4 && !(_EFANOVERLAP(4,0) || _EFANOVERLAP(4,1) || _EFANOVERLAP(4,2) || _EFANOVERLAP(4,3))
- INIT_E_AUTO_FAN_PIN(E4_AUTO_FAN_PIN);
- #endif
- #if HAS_AUTO_FAN_5 && !(_EFANOVERLAP(5,0) || _EFANOVERLAP(5,1) || _EFANOVERLAP(5,2) || _EFANOVERLAP(5,3) || _EFANOVERLAP(5,4))
- INIT_E_AUTO_FAN_PIN(E5_AUTO_FAN_PIN);
- #endif
- #if HAS_AUTO_FAN_6 && !(_EFANOVERLAP(6,0) || _EFANOVERLAP(6,1) || _EFANOVERLAP(6,2) || _EFANOVERLAP(6,3) || _EFANOVERLAP(6,4) || _EFANOVERLAP(6,5))
- INIT_E_AUTO_FAN_PIN(E6_AUTO_FAN_PIN);
- #endif
- #if HAS_AUTO_FAN_7 && !(_EFANOVERLAP(7,0) || _EFANOVERLAP(7,1) || _EFANOVERLAP(7,2) || _EFANOVERLAP(7,3) || _EFANOVERLAP(7,4) || _EFANOVERLAP(7,5) || _EFANOVERLAP(7,6))
- INIT_E_AUTO_FAN_PIN(E7_AUTO_FAN_PIN);
- #endif
- #if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E
- INIT_CHAMBER_AUTO_FAN_PIN(CHAMBER_AUTO_FAN_PIN);
- #endif
-
- // Wait for temperature measurement to settle
- delay(250);
-
- #if HOTENDS
-
- #define _TEMP_MIN_E(NR) do{ \
- temp_range[NR].mintemp = HEATER_ ##NR## _MINTEMP; \
- while (analog_to_celsius_hotend(temp_range[NR].raw_min, NR) < HEATER_ ##NR## _MINTEMP) \
- temp_range[NR].raw_min += TEMPDIR(NR) * (OVERSAMPLENR); \
- }while(0)
- #define _TEMP_MAX_E(NR) do{ \
- temp_range[NR].maxtemp = HEATER_ ##NR## _MAXTEMP; \
- while (analog_to_celsius_hotend(temp_range[NR].raw_max, NR) > HEATER_ ##NR## _MAXTEMP) \
- temp_range[NR].raw_max -= TEMPDIR(NR) * (OVERSAMPLENR); \
- }while(0)
-
- #ifdef HEATER_0_MINTEMP
- _TEMP_MIN_E(0);
- #endif
- #ifdef HEATER_0_MAXTEMP
- _TEMP_MAX_E(0);
- #endif
- #if HOTENDS > 1
- #ifdef HEATER_1_MINTEMP
- _TEMP_MIN_E(1);
- #endif
- #ifdef HEATER_1_MAXTEMP
- _TEMP_MAX_E(1);
- #endif
- #if HOTENDS > 2
- #ifdef HEATER_2_MINTEMP
- _TEMP_MIN_E(2);
- #endif
- #ifdef HEATER_2_MAXTEMP
- _TEMP_MAX_E(2);
- #endif
- #if HOTENDS > 3
- #ifdef HEATER_3_MINTEMP
- _TEMP_MIN_E(3);
- #endif
- #ifdef HEATER_3_MAXTEMP
- _TEMP_MAX_E(3);
- #endif
- #if HOTENDS > 4
- #ifdef HEATER_4_MINTEMP
- _TEMP_MIN_E(4);
- #endif
- #ifdef HEATER_4_MAXTEMP
- _TEMP_MAX_E(4);
- #endif
- #if HOTENDS > 5
- #ifdef HEATER_5_MINTEMP
- _TEMP_MIN_E(5);
- #endif
- #ifdef HEATER_5_MAXTEMP
- _TEMP_MAX_E(5);
- #endif
- #if HOTENDS > 6
- #ifdef HEATER_6_MINTEMP
- _TEMP_MIN_E(6);
- #endif
- #ifdef HEATER_6_MAXTEMP
- _TEMP_MAX_E(6);
- #endif
- #if HOTENDS > 7
- #ifdef HEATER_7_MINTEMP
- _TEMP_MIN_E(7);
- #endif
- #ifdef HEATER_7_MAXTEMP
- _TEMP_MAX_E(7);
- #endif
- #endif // HOTENDS > 7
- #endif // HOTENDS > 6
- #endif // HOTENDS > 5
- #endif // HOTENDS > 4
- #endif // HOTENDS > 3
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
-
- #endif // HOTENDS
-
- #if HAS_HEATED_BED
- #ifdef BED_MINTEMP
- while (analog_to_celsius_bed(mintemp_raw_BED) < BED_MINTEMP) mintemp_raw_BED += TEMPDIR(BED) * (OVERSAMPLENR);
- #endif
- #ifdef BED_MAXTEMP
- while (analog_to_celsius_bed(maxtemp_raw_BED) > BED_MAXTEMP) maxtemp_raw_BED -= TEMPDIR(BED) * (OVERSAMPLENR);
- #endif
- #endif // HAS_HEATED_BED
-
- #if HAS_HEATED_CHAMBER
- #ifdef CHAMBER_MINTEMP
- while (analog_to_celsius_chamber(mintemp_raw_CHAMBER) < CHAMBER_MINTEMP) mintemp_raw_CHAMBER += TEMPDIR(CHAMBER) * (OVERSAMPLENR);
- #endif
- #ifdef CHAMBER_MAXTEMP
- while (analog_to_celsius_chamber(maxtemp_raw_CHAMBER) > CHAMBER_MAXTEMP) maxtemp_raw_CHAMBER -= TEMPDIR(CHAMBER) * (OVERSAMPLENR);
- #endif
- #endif
-
- #if ENABLED(PROBING_HEATERS_OFF)
- paused = false;
- #endif
- }
-
- #if WATCH_HOTENDS
- /**
- * Start Heating Sanity Check for hotends that are below
- * their target temperature by a configurable margin.
- * This is called when the temperature is set. (M104, M109)
- */
- void Temperature::start_watching_hotend(const uint8_t E_NAME) {
- const uint8_t ee = HOTEND_INDEX;
- watch_hotend[ee].restart(degHotend(ee), degTargetHotend(ee));
- }
- #endif
-
- #if WATCH_BED
- /**
- * Start Heating Sanity Check for hotends that are below
- * their target temperature by a configurable margin.
- * This is called when the temperature is set. (M140, M190)
- */
- void Temperature::start_watching_bed() {
- watch_bed.restart(degBed(), degTargetBed());
- }
- #endif
-
- #if WATCH_CHAMBER
- /**
- * Start Heating Sanity Check for chamber that is below
- * its target temperature by a configurable margin.
- * This is called when the temperature is set. (M141, M191)
- */
- void Temperature::start_watching_chamber() {
- watch_chamber.restart(degChamber(), degTargetChamber());
- }
- #endif
-
- #if HAS_THERMAL_PROTECTION
-
- #if ENABLED(THERMAL_PROTECTION_HOTENDS)
- Temperature::tr_state_machine_t Temperature::tr_state_machine[HOTENDS]; // = { { TRInactive, 0 } };
- #endif
- #if HAS_THERMALLY_PROTECTED_BED
- Temperature::tr_state_machine_t Temperature::tr_state_machine_bed; // = { TRInactive, 0 };
- #endif
- #if ENABLED(THERMAL_PROTECTION_CHAMBER)
- Temperature::tr_state_machine_t Temperature::tr_state_machine_chamber; // = { TRInactive, 0 };
- #endif
-
- void Temperature::thermal_runaway_protection(Temperature::tr_state_machine_t &sm, const float ¤t, const float &target, const heater_ind_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc) {
-
- static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
-
- /**
- SERIAL_ECHO_START();
- SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
- if (heater_id == H_CHAMBER) SERIAL_ECHOPGM("chamber");
- if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id);
- SERIAL_ECHOPAIR(" ; State:", sm.state, " ; Timer:", sm.timer, " ; Temperature:", current, " ; Target Temp:", target);
- if (heater_id >= 0)
- SERIAL_ECHOPAIR(" ; Idle Timeout:", hotend_idle[heater_id].timed_out);
- else
- SERIAL_ECHOPAIR(" ; Idle Timeout:", bed_idle.timed_out);
- SERIAL_EOL();
- //*/
-
- const int heater_index = heater_id >= 0 ? heater_id : HOTENDS;
-
- #if HEATER_IDLE_HANDLER
- // If the heater idle timeout expires, restart
- if ((heater_id >= 0 && hotend_idle[heater_id].timed_out)
- #if HAS_HEATED_BED
- || (heater_id < 0 && bed_idle.timed_out)
- #endif
- ) {
- sm.state = TRInactive;
- tr_target_temperature[heater_index] = 0;
- }
- else
- #endif
- {
- // If the target temperature changes, restart
- if (tr_target_temperature[heater_index] != target) {
- tr_target_temperature[heater_index] = target;
- sm.state = target > 0 ? TRFirstHeating : TRInactive;
- }
- }
-
- switch (sm.state) {
- // Inactive state waits for a target temperature to be set
- case TRInactive: break;
-
- // When first heating, wait for the temperature to be reached then go to Stable state
- case TRFirstHeating:
- if (current < tr_target_temperature[heater_index]) break;
- sm.state = TRStable;
-
- // While the temperature is stable watch for a bad temperature
- case TRStable:
-
- #if ENABLED(ADAPTIVE_FAN_SLOWING)
- if (adaptive_fan_slowing && heater_id >= 0) {
- const int fan_index = _MIN(heater_id, FAN_COUNT - 1);
- if (fan_speed[fan_index] == 0 || current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.25f))
- fan_speed_scaler[fan_index] = 128;
- else if (current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.3335f))
- fan_speed_scaler[fan_index] = 96;
- else if (current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.5f))
- fan_speed_scaler[fan_index] = 64;
- else if (current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.8f))
- fan_speed_scaler[fan_index] = 32;
- else
- fan_speed_scaler[fan_index] = 0;
- }
- #endif
-
- if (current >= tr_target_temperature[heater_index] - hysteresis_degc) {
- sm.timer = millis() + period_seconds * 1000UL;
- break;
- }
- else if (PENDING(millis(), sm.timer)) break;
- sm.state = TRRunaway;
-
- case TRRunaway:
- _temp_error(heater_id, str_t_thermal_runaway, GET_TEXT(MSG_THERMAL_RUNAWAY));
- }
- }
-
- #endif // HAS_THERMAL_PROTECTION
-
- void Temperature::disable_all_heaters() {
-
- #if ENABLED(AUTOTEMP)
- planner.autotemp_enabled = false;
- #endif
-
- #if HOTENDS
- HOTEND_LOOP() setTargetHotend(0, e);
- #endif
-
- #if HAS_HEATED_BED
- setTargetBed(0);
- #endif
-
- #if HAS_HEATED_CHAMBER
- setTargetChamber(0);
- #endif
-
- // Unpause and reset everything
- #if ENABLED(PROBING_HEATERS_OFF)
- pause(false);
- #endif
-
- #define DISABLE_HEATER(N) { \
- setTargetHotend(0, N); \
- temp_hotend[N].soft_pwm_amount = 0; \
- WRITE_HEATER_##N(LOW); \
- }
-
- #if HAS_TEMP_HOTEND
- REPEAT(HOTENDS, DISABLE_HEATER);
- #endif
-
- #if HAS_HEATED_BED
- temp_bed.target = 0;
- temp_bed.soft_pwm_amount = 0;
- WRITE_HEATER_BED(LOW);
- #endif
-
- #if HAS_HEATED_CHAMBER
- temp_chamber.target = 0;
- temp_chamber.soft_pwm_amount = 0;
- WRITE_HEATER_CHAMBER(LOW);
- #endif
- }
-
- #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
-
- bool Temperature::over_autostart_threshold() {
- #if HOTENDS
- HOTEND_LOOP() if (degTargetHotend(e) > (EXTRUDE_MINTEMP) / 2) return true;
- #endif
- #if HAS_HEATED_BED
- if (degTargetBed() > BED_MINTEMP) return true;
- #endif
- #if HAS_HEATED_CHAMBER
- if (degTargetChamber() > CHAMBER_MINTEMP) return true;
- #endif
- return false;
- }
-
- void Temperature::check_timer_autostart(const bool can_start, const bool can_stop) {
- if (over_autostart_threshold()) {
- if (can_start) startOrResumeJob();
- }
- else if (can_stop) {
- print_job_timer.stop();
- ui.reset_status();
- }
- }
-
- #endif
-
-
- #if ENABLED(PROBING_HEATERS_OFF)
-
- void Temperature::pause(const bool p) {
- if (p != paused) {
- paused = p;
- if (p) {
- HOTEND_LOOP() hotend_idle[e].expire(); // timeout immediately
- #if HAS_HEATED_BED
- bed_idle.expire(); // timeout immediately
- #endif
- }
- else {
- HOTEND_LOOP() reset_hotend_idle_timer(e);
- #if HAS_HEATED_BED
- reset_bed_idle_timer();
- #endif
- }
- }
- }
-
- #endif // PROBING_HEATERS_OFF
-
- #if HAS_MAX6675
-
- int Temperature::read_max6675(
- #if COUNT_6675 > 1
- const uint8_t hindex
- #endif
- ) {
- #if COUNT_6675 == 1
- constexpr uint8_t hindex = 0;
- #else
- // Needed to return the correct temp when this is called too soon
- static uint16_t max6675_temp_previous[COUNT_6675] = { 0 };
- #endif
-
- #define MAX6675_HEAT_INTERVAL 250UL
-
- #if ENABLED(MAX6675_IS_MAX31855)
- static uint32_t max6675_temp = 2000;
- #define MAX6675_ERROR_MASK 7
- #define MAX6675_DISCARD_BITS 18
- #define MAX6675_SPEED_BITS 3 // (_BV(SPR1)) // clock ÷ 64
- #else
- static uint16_t max6675_temp = 2000;
- #define MAX6675_ERROR_MASK 4
- #define MAX6675_DISCARD_BITS 3
- #define MAX6675_SPEED_BITS 2 // (_BV(SPR0)) // clock ÷ 16
- #endif
-
- // Return last-read value between readings
- static millis_t next_max6675_ms[COUNT_6675] = { 0 };
- millis_t ms = millis();
- if (PENDING(ms, next_max6675_ms[hindex]))
- return int(
- #if COUNT_6675 == 1
- max6675_temp
- #else
- max6675_temp_previous[hindex] // Need to return the correct previous value
- #endif
- );
-
- next_max6675_ms[hindex] = ms + MAX6675_HEAT_INTERVAL;
-
- #if ENABLED(MAX6675_IS_MAX31865)
- max6675_temp = int(max31865.temperature(100, 400)); // 100 ohms = PT100 resistance. 400 ohms = calibration resistor
- #endif
-
- //
- // TODO: spiBegin, spiRec and spiInit doesn't work when soft spi is used.
- //
- #if !MAX6675_SEPARATE_SPI
- spiBegin();
- spiInit(MAX6675_SPEED_BITS);
- #endif
-
- #if COUNT_6675 > 1
- #define WRITE_MAX6675(V) do{ switch (hindex) { case 1: WRITE(MAX6675_SS2_PIN, V); break; default: WRITE(MAX6675_SS_PIN, V); } }while(0)
- #define SET_OUTPUT_MAX6675() do{ switch (hindex) { case 1: SET_OUTPUT(MAX6675_SS2_PIN); break; default: SET_OUTPUT(MAX6675_SS_PIN); } }while(0)
- #elif ENABLED(HEATER_1_USES_MAX6675)
- #define WRITE_MAX6675(V) WRITE(MAX6675_SS2_PIN, V)
- #define SET_OUTPUT_MAX6675() SET_OUTPUT(MAX6675_SS2_PIN)
- #else
- #define WRITE_MAX6675(V) WRITE(MAX6675_SS_PIN, V)
- #define SET_OUTPUT_MAX6675() SET_OUTPUT(MAX6675_SS_PIN)
- #endif
-
- SET_OUTPUT_MAX6675();
- WRITE_MAX6675(LOW); // enable TT_MAX6675
-
- DELAY_NS(100); // Ensure 100ns delay
-
- // Read a big-endian temperature value
- max6675_temp = 0;
- for (uint8_t i = sizeof(max6675_temp); i--;) {
- max6675_temp |= (
- #if MAX6675_SEPARATE_SPI
- max6675_spi.receive()
- #else
- spiRec()
- #endif
- );
- if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
- }
-
- WRITE_MAX6675(HIGH); // disable TT_MAX6675
-
- if (max6675_temp & MAX6675_ERROR_MASK) {
- SERIAL_ERROR_START();
- SERIAL_ECHOPGM("Temp measurement error! ");
- #if MAX6675_ERROR_MASK == 7
- SERIAL_ECHOPGM("MAX31855 ");
- if (max6675_temp & 1)
- SERIAL_ECHOLNPGM("Open Circuit");
- else if (max6675_temp & 2)
- SERIAL_ECHOLNPGM("Short to GND");
- else if (max6675_temp & 4)
- SERIAL_ECHOLNPGM("Short to VCC");
- #else
- SERIAL_ECHOLNPGM("MAX6675");
- #endif
-
- // Thermocouple open
- max6675_temp = 4 * (
- #if COUNT_6675 > 1
- hindex ? HEATER_1_MAX6675_TMAX : HEATER_0_MAX6675_TMAX
- #elif ENABLED(HEATER_1_USES_MAX6675)
- HEATER_1_MAX6675_TMAX
- #else
- HEATER_0_MAX6675_TMAX
- #endif
- );
- }
- else
- max6675_temp >>= MAX6675_DISCARD_BITS;
-
- #if ENABLED(MAX6675_IS_MAX31855)
- if (max6675_temp & 0x00002000) max6675_temp |= 0xFFFFC000; // Support negative temperature
- #endif
-
- #if COUNT_6675 > 1
- max6675_temp_previous[hindex] = max6675_temp;
- #endif
-
- return int(max6675_temp);
- }
-
- #endif // HAS_MAX6675
-
- /**
- * Update raw temperatures
- */
- void Temperature::update_raw_temperatures() {
-
- #if HAS_TEMP_ADC_0 && DISABLED(HEATER_0_USES_MAX6675)
- temp_hotend[0].update();
- #endif
-
- #if HAS_TEMP_ADC_1
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- redundant_temperature_raw = temp_hotend[1].acc;
- #elif DISABLED(HEATER_1_USES_MAX6675)
- temp_hotend[1].update();
- #endif
- #endif
-
- #if HAS_TEMP_ADC_2
- temp_hotend[2].update();
- #endif
- #if HAS_TEMP_ADC_3
- temp_hotend[3].update();
- #endif
- #if HAS_TEMP_ADC_4
- temp_hotend[4].update();
- #endif
- #if HAS_TEMP_ADC_5
- temp_hotend[5].update();
- #endif
- #if HAS_TEMP_ADC_6
- temp_hotend[6].update();
- #endif
- #if HAS_TEMP_ADC_7
- temp_hotend[7].update();
- #endif
-
- #if HAS_HEATED_BED
- temp_bed.update();
- #endif
-
- #if HAS_TEMP_CHAMBER
- temp_chamber.update();
- #endif
-
- #if HAS_TEMP_PROBE
- temp_probe.update();
- #endif
-
- #if HAS_JOY_ADC_X
- joystick.x.update();
- #endif
- #if HAS_JOY_ADC_Y
- joystick.y.update();
- #endif
- #if HAS_JOY_ADC_Z
- joystick.z.update();
- #endif
-
- raw_temps_ready = true;
- }
-
- void Temperature::readings_ready() {
-
- // Update the raw values if they've been read. Else we could be updating them during reading.
- if (!raw_temps_ready) update_raw_temperatures();
-
- // Filament Sensor - can be read any time since IIR filtering is used
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- filwidth.reading_ready();
- #endif
-
- #if HOTENDS
- HOTEND_LOOP() temp_hotend[e].reset();
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- temp_hotend[1].reset();
- #endif
- #endif
-
- #if HAS_HEATED_BED
- temp_bed.reset();
- #endif
-
- #if HAS_TEMP_CHAMBER
- temp_chamber.reset();
- #endif
-
- #if HAS_TEMP_PROBE
- temp_probe.reset();
- #endif
-
- #if HAS_JOY_ADC_X
- joystick.x.reset();
- #endif
- #if HAS_JOY_ADC_Y
- joystick.y.reset();
- #endif
- #if HAS_JOY_ADC_Z
- joystick.z.reset();
- #endif
-
- #if HOTENDS
-
- static constexpr int8_t temp_dir[] = {
- #if ENABLED(HEATER_0_USES_MAX6675)
- 0
- #else
- TEMPDIR(0)
- #endif
- #if HOTENDS > 1
- #define _TEMPDIR(N) , TEMPDIR(N)
- #if ENABLED(HEATER_1_USES_MAX6675)
- , 0
- #else
- _TEMPDIR(1)
- #endif
- #if HOTENDS > 2
- REPEAT_S(2, HOTENDS, _TEMPDIR)
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
- };
-
- for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
- const int8_t tdir = temp_dir[e];
- if (tdir) {
- const int16_t rawtemp = temp_hotend[e].raw * tdir; // normal direction, +rawtemp, else -rawtemp
- const bool heater_on = (temp_hotend[e].target > 0
- #if ENABLED(PIDTEMP)
- || temp_hotend[e].soft_pwm_amount > 0
- #endif
- );
- if (rawtemp > temp_range[e].raw_max * tdir) max_temp_error((heater_ind_t)e);
- if (heater_on && rawtemp < temp_range[e].raw_min * tdir && !is_preheating(e)) {
- #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
- if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
- #endif
- min_temp_error((heater_ind_t)e);
- }
- #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
- else
- consecutive_low_temperature_error[e] = 0;
- #endif
- }
- }
-
- #endif // HOTENDS
-
- #if HAS_HEATED_BED
- #if TEMPDIR(BED) < 0
- #define BEDCMP(A,B) ((A)<=(B))
- #else
- #define BEDCMP(A,B) ((A)>=(B))
- #endif
- const bool bed_on = (temp_bed.target > 0)
- #if ENABLED(PIDTEMPBED)
- || (temp_bed.soft_pwm_amount > 0)
- #endif
- ;
- if (BEDCMP(temp_bed.raw, maxtemp_raw_BED)) max_temp_error(H_BED);
- if (bed_on && BEDCMP(mintemp_raw_BED, temp_bed.raw)) min_temp_error(H_BED);
- #endif
-
- #if HAS_HEATED_CHAMBER
- #if TEMPDIR(CHAMBER) < 0
- #define CHAMBERCMP(A,B) ((A)<=(B))
- #else
- #define CHAMBERCMP(A,B) ((A)>=(B))
- #endif
- const bool chamber_on = (temp_chamber.target > 0);
- if (CHAMBERCMP(temp_chamber.raw, maxtemp_raw_CHAMBER)) max_temp_error(H_CHAMBER);
- if (chamber_on && CHAMBERCMP(mintemp_raw_CHAMBER, temp_chamber.raw)) min_temp_error(H_CHAMBER);
- #endif
- }
-
- /**
- * Timer 0 is shared with millies so don't change the prescaler.
- *
- * On AVR this ISR uses the compare method so it runs at the base
- * frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
- * in OCR0B above (128 or halfway between OVFs).
- *
- * - Manage PWM to all the heaters and fan
- * - Prepare or Measure one of the raw ADC sensor values
- * - Check new temperature values for MIN/MAX errors (kill on error)
- * - Step the babysteps value for each axis towards 0
- * - For PINS_DEBUGGING, monitor and report endstop pins
- * - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
- * - Call planner.tick to count down its "ignore" time
- */
- HAL_TEMP_TIMER_ISR() {
- HAL_timer_isr_prologue(TEMP_TIMER_NUM);
-
- Temperature::tick();
-
- HAL_timer_isr_epilogue(TEMP_TIMER_NUM);
- }
-
- #if ENABLED(SLOW_PWM_HEATERS) && !defined(MIN_STATE_TIME)
- #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
- #endif
-
- class SoftPWM {
- public:
- uint8_t count;
- inline bool add(const uint8_t mask, const uint8_t amount) {
- count = (count & mask) + amount; return (count > mask);
- }
- #if ENABLED(SLOW_PWM_HEATERS)
- bool state_heater;
- uint8_t state_timer_heater;
- inline void dec() { if (state_timer_heater > 0) state_timer_heater--; }
- inline bool ready(const bool v) {
- const bool rdy = !state_timer_heater;
- if (rdy && state_heater != v) {
- state_heater = v;
- state_timer_heater = MIN_STATE_TIME;
- }
- return rdy;
- }
- #endif
- };
-
- /**
- * Handle various ~1KHz tasks associated with temperature
- * - Heater PWM (~1KHz with scaler)
- * - LCD Button polling (~500Hz)
- * - Start / Read one ADC sensor
- * - Advance Babysteps
- * - Endstop polling
- * - Planner clean buffer
- */
- void Temperature::tick() {
-
- static int8_t temp_count = -1;
- static ADCSensorState adc_sensor_state = StartupDelay;
- static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
-
- // avoid multiple loads of pwm_count
- uint8_t pwm_count_tmp = pwm_count;
-
- #if HAS_ADC_BUTTONS
- static unsigned int raw_ADCKey_value = 0;
- static bool ADCKey_pressed = false;
- #endif
-
- #if HOTENDS
- static SoftPWM soft_pwm_hotend[HOTENDS];
- #endif
-
- #if HAS_HEATED_BED
- static SoftPWM soft_pwm_bed;
- #endif
-
- #if HAS_HEATED_CHAMBER
- static SoftPWM soft_pwm_chamber;
- #endif
-
- #if DISABLED(SLOW_PWM_HEATERS)
-
- #if HOTENDS || HAS_HEATED_BED || HAS_HEATED_CHAMBER
- constexpr uint8_t pwm_mask =
- #if ENABLED(SOFT_PWM_DITHER)
- _BV(SOFT_PWM_SCALE) - 1
- #else
- 0
- #endif
- ;
- #define _PWM_MOD(N,S,T) do{ \
- const bool on = S.add(pwm_mask, T.soft_pwm_amount); \
- WRITE_HEATER_##N(on); \
- }while(0)
- #endif
-
- /**
- * Standard heater PWM modulation
- */
- if (pwm_count_tmp >= 127) {
- pwm_count_tmp -= 127;
-
- #if HOTENDS
- #define _PWM_MOD_E(N) _PWM_MOD(N,soft_pwm_hotend[N],temp_hotend[N]);
- REPEAT(HOTENDS, _PWM_MOD_E);
- #endif
-
- #if HAS_HEATED_BED
- _PWM_MOD(BED,soft_pwm_bed,temp_bed);
- #endif
-
- #if HAS_HEATED_CHAMBER
- _PWM_MOD(CHAMBER,soft_pwm_chamber,temp_chamber);
- #endif
-
- #if ENABLED(FAN_SOFT_PWM)
- #define _FAN_PWM(N) do{ \
- uint8_t &spcf = soft_pwm_count_fan[N]; \
- spcf = (spcf & pwm_mask) + (soft_pwm_amount_fan[N] >> 1); \
- WRITE_FAN(N, spcf > pwm_mask ? HIGH : LOW); \
- }while(0)
- #if HAS_FAN0
- _FAN_PWM(0);
- #endif
- #if HAS_FAN1
- _FAN_PWM(1);
- #endif
- #if HAS_FAN2
- _FAN_PWM(2);
- #endif
- #if HAS_FAN3
- _FAN_PWM(3);
- #endif
- #if HAS_FAN4
- _FAN_PWM(4);
- #endif
- #if HAS_FAN5
- _FAN_PWM(5);
- #endif
- #if HAS_FAN6
- _FAN_PWM(6);
- #endif
- #if HAS_FAN7
- _FAN_PWM(7);
- #endif
- #endif
- }
- else {
- #define _PWM_LOW(N,S) do{ if (S.count <= pwm_count_tmp) WRITE_HEATER_##N(LOW); }while(0)
- #if HOTENDS
- #define _PWM_LOW_E(N) _PWM_LOW(N, soft_pwm_hotend[N]);
- REPEAT(HOTENDS, _PWM_LOW_E);
- #endif
-
- #if HAS_HEATED_BED
- _PWM_LOW(BED, soft_pwm_bed);
- #endif
-
- #if HAS_HEATED_CHAMBER
- _PWM_LOW(CHAMBER, soft_pwm_chamber);
- #endif
-
- #if ENABLED(FAN_SOFT_PWM)
- #if HAS_FAN0
- if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(0, LOW);
- #endif
- #if HAS_FAN1
- if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN(1, LOW);
- #endif
- #if HAS_FAN2
- if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN(2, LOW);
- #endif
- #if HAS_FAN3
- if (soft_pwm_count_fan[3] <= pwm_count_tmp) WRITE_FAN(3, LOW);
- #endif
- #if HAS_FAN4
- if (soft_pwm_count_fan[4] <= pwm_count_tmp) WRITE_FAN(4, LOW);
- #endif
- #if HAS_FAN5
- if (soft_pwm_count_fan[5] <= pwm_count_tmp) WRITE_FAN(5, LOW);
- #endif
- #if HAS_FAN6
- if (soft_pwm_count_fan[6] <= pwm_count_tmp) WRITE_FAN(6, LOW);
- #endif
- #if HAS_FAN7
- if (soft_pwm_count_fan[7] <= pwm_count_tmp) WRITE_FAN(7, LOW);
- #endif
- #endif
- }
-
- // SOFT_PWM_SCALE to frequency:
- //
- // 0: 16000000/64/256/128 = 7.6294 Hz
- // 1: / 64 = 15.2588 Hz
- // 2: / 32 = 30.5176 Hz
- // 3: / 16 = 61.0352 Hz
- // 4: / 8 = 122.0703 Hz
- // 5: / 4 = 244.1406 Hz
- pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
-
- #else // SLOW_PWM_HEATERS
-
- /**
- * SLOW PWM HEATERS
- *
- * For relay-driven heaters
- */
- #define _SLOW_SET(NR,PWM,V) do{ if (PWM.ready(V)) WRITE_HEATER_##NR(V); }while(0)
- #define _SLOW_PWM(NR,PWM,SRC) do{ PWM.count = SRC.soft_pwm_amount; _SLOW_SET(NR,PWM,(PWM.count > 0)); }while(0)
- #define _PWM_OFF(NR,PWM) do{ if (PWM.count < slow_pwm_count) _SLOW_SET(NR,PWM,0); }while(0)
-
- static uint8_t slow_pwm_count = 0;
-
- if (slow_pwm_count == 0) {
-
- #if HOTENDS
- #define _SLOW_PWM_E(N) _SLOW_PWM(N, soft_pwm_hotend[N], temp_hotend[N]);
- REPEAT(HOTENDS, _SLOW_PWM_E);
- #endif
-
- #if HAS_HEATED_BED
- _SLOW_PWM(BED, soft_pwm_bed, temp_bed);
- #endif
-
- } // slow_pwm_count == 0
-
- #if HOTENDS
- #define _PWM_OFF_E(N) _PWM_OFF(N, soft_pwm_hotend[N]);
- REPEAT(HOTENDS, _PWM_OFF_E);
- #endif
-
- #if HAS_HEATED_BED
- _PWM_OFF(BED, soft_pwm_bed);
- #endif
-
- #if ENABLED(FAN_SOFT_PWM)
- if (pwm_count_tmp >= 127) {
- pwm_count_tmp = 0;
- #define _PWM_FAN(N) do{ \
- soft_pwm_count_fan[N] = soft_pwm_amount_fan[N] >> 1; \
- WRITE_FAN(N, soft_pwm_count_fan[N] > 0 ? HIGH : LOW); \
- }while(0)
- #if HAS_FAN0
- _PWM_FAN(0);
- #endif
- #if HAS_FAN1
- _PWM_FAN(1);
- #endif
- #if HAS_FAN2
- _PWM_FAN(2);
- #endif
- #if HAS_FAN3
- _FAN_PWM(3);
- #endif
- #if HAS_FAN4
- _FAN_PWM(4);
- #endif
- #if HAS_FAN5
- _FAN_PWM(5);
- #endif
- #if HAS_FAN6
- _FAN_PWM(6);
- #endif
- #if HAS_FAN7
- _FAN_PWM(7);
- #endif
- }
- #if HAS_FAN0
- if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(0, LOW);
- #endif
- #if HAS_FAN1
- if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN(1, LOW);
- #endif
- #if HAS_FAN2
- if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN(2, LOW);
- #endif
- #if HAS_FAN3
- if (soft_pwm_count_fan[3] <= pwm_count_tmp) WRITE_FAN(3, LOW);
- #endif
- #if HAS_FAN4
- if (soft_pwm_count_fan[4] <= pwm_count_tmp) WRITE_FAN(4, LOW);
- #endif
- #if HAS_FAN5
- if (soft_pwm_count_fan[5] <= pwm_count_tmp) WRITE_FAN(5, LOW);
- #endif
- #if HAS_FAN6
- if (soft_pwm_count_fan[6] <= pwm_count_tmp) WRITE_FAN(6, LOW);
- #endif
- #if HAS_FAN7
- if (soft_pwm_count_fan[7] <= pwm_count_tmp) WRITE_FAN(7, LOW);
- #endif
- #endif // FAN_SOFT_PWM
-
- // SOFT_PWM_SCALE to frequency:
- //
- // 0: 16000000/64/256/128 = 7.6294 Hz
- // 1: / 64 = 15.2588 Hz
- // 2: / 32 = 30.5176 Hz
- // 3: / 16 = 61.0352 Hz
- // 4: / 8 = 122.0703 Hz
- // 5: / 4 = 244.1406 Hz
- pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
-
- // increment slow_pwm_count only every 64th pwm_count,
- // i.e. yielding a PWM frequency of 16/128 Hz (8s).
- if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) {
- slow_pwm_count++;
- slow_pwm_count &= 0x7F;
-
- #if HOTENDS
- HOTEND_LOOP() soft_pwm_hotend[e].dec();
- #endif
- #if HAS_HEATED_BED
- soft_pwm_bed.dec();
- #endif
- } // ((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0
-
- #endif // SLOW_PWM_HEATERS
-
- //
- // Update lcd buttons 488 times per second
- //
- static bool do_buttons;
- if ((do_buttons ^= true)) ui.update_buttons();
-
- /**
- * One sensor is sampled on every other call of the ISR.
- * Each sensor is read 16 (OVERSAMPLENR) times, taking the average.
- *
- * On each Prepare pass, ADC is started for a sensor pin.
- * On the next pass, the ADC value is read and accumulated.
- *
- * This gives each ADC 0.9765ms to charge up.
- */
- #define ACCUMULATE_ADC(obj) do{ \
- if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; \
- else obj.sample(HAL_READ_ADC()); \
- }while(0)
-
- ADCSensorState next_sensor_state = adc_sensor_state < SensorsReady ? (ADCSensorState)(int(adc_sensor_state) + 1) : StartSampling;
-
- switch (adc_sensor_state) {
-
- case SensorsReady: {
- // All sensors have been read. Stay in this state for a few
- // ISRs to save on calls to temp update/checking code below.
- constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady;
- static uint8_t delay_count = 0;
- if (extra_loops > 0) {
- if (delay_count == 0) delay_count = extra_loops; // Init this delay
- if (--delay_count) // While delaying...
- next_sensor_state = SensorsReady; // retain this state (else, next state will be 0)
- break;
- }
- else {
- adc_sensor_state = StartSampling; // Fall-through to start sampling
- next_sensor_state = (ADCSensorState)(int(StartSampling) + 1);
- }
- }
-
- case StartSampling: // Start of sampling loops. Do updates/checks.
- if (++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
- temp_count = 0;
- readings_ready();
- }
- break;
-
- #if HAS_TEMP_ADC_0
- case PrepareTemp_0: HAL_START_ADC(TEMP_0_PIN); break;
- case MeasureTemp_0: ACCUMULATE_ADC(temp_hotend[0]); break;
- #endif
-
- #if HAS_HEATED_BED
- case PrepareTemp_BED: HAL_START_ADC(TEMP_BED_PIN); break;
- case MeasureTemp_BED: ACCUMULATE_ADC(temp_bed); break;
- #endif
-
- #if HAS_TEMP_CHAMBER
- case PrepareTemp_CHAMBER: HAL_START_ADC(TEMP_CHAMBER_PIN); break;
- case MeasureTemp_CHAMBER: ACCUMULATE_ADC(temp_chamber); break;
- #endif
-
- #if HAS_TEMP_PROBE
- case PrepareTemp_PROBE: HAL_START_ADC(TEMP_PROBE_PIN); break;
- case MeasureTemp_PROBE: ACCUMULATE_ADC(temp_probe); break;
- #endif
-
- #if HAS_TEMP_ADC_1
- case PrepareTemp_1: HAL_START_ADC(TEMP_1_PIN); break;
- case MeasureTemp_1: ACCUMULATE_ADC(temp_hotend[1]); break;
- #endif
-
- #if HAS_TEMP_ADC_2
- case PrepareTemp_2: HAL_START_ADC(TEMP_2_PIN); break;
- case MeasureTemp_2: ACCUMULATE_ADC(temp_hotend[2]); break;
- #endif
-
- #if HAS_TEMP_ADC_3
- case PrepareTemp_3: HAL_START_ADC(TEMP_3_PIN); break;
- case MeasureTemp_3: ACCUMULATE_ADC(temp_hotend[3]); break;
- #endif
-
- #if HAS_TEMP_ADC_4
- case PrepareTemp_4: HAL_START_ADC(TEMP_4_PIN); break;
- case MeasureTemp_4: ACCUMULATE_ADC(temp_hotend[4]); break;
- #endif
-
- #if HAS_TEMP_ADC_5
- case PrepareTemp_5: HAL_START_ADC(TEMP_5_PIN); break;
- case MeasureTemp_5: ACCUMULATE_ADC(temp_hotend[5]); break;
- #endif
-
- #if HAS_TEMP_ADC_6
- case PrepareTemp_6: HAL_START_ADC(TEMP_6_PIN); break;
- case MeasureTemp_6: ACCUMULATE_ADC(temp_hotend[6]); break;
- #endif
-
- #if HAS_TEMP_ADC_7
- case PrepareTemp_7: HAL_START_ADC(TEMP_7_PIN); break;
- case MeasureTemp_7: ACCUMULATE_ADC(temp_hotend[7]); break;
- #endif
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- case Prepare_FILWIDTH: HAL_START_ADC(FILWIDTH_PIN); break;
- case Measure_FILWIDTH:
- if (!HAL_ADC_READY())
- next_sensor_state = adc_sensor_state; // redo this state
- else
- filwidth.accumulate(HAL_READ_ADC());
- break;
- #endif
-
- #if HAS_JOY_ADC_X
- case PrepareJoy_X: HAL_START_ADC(JOY_X_PIN); break;
- case MeasureJoy_X: ACCUMULATE_ADC(joystick.x); break;
- #endif
-
- #if HAS_JOY_ADC_Y
- case PrepareJoy_Y: HAL_START_ADC(JOY_Y_PIN); break;
- case MeasureJoy_Y: ACCUMULATE_ADC(joystick.y); break;
- #endif
-
- #if HAS_JOY_ADC_Z
- case PrepareJoy_Z: HAL_START_ADC(JOY_Z_PIN); break;
- case MeasureJoy_Z: ACCUMULATE_ADC(joystick.z); break;
- #endif
-
- #if HAS_ADC_BUTTONS
- #ifndef ADC_BUTTON_DEBOUNCE_DELAY
- #define ADC_BUTTON_DEBOUNCE_DELAY 16
- #endif
- case Prepare_ADC_KEY: HAL_START_ADC(ADC_KEYPAD_PIN); break;
- case Measure_ADC_KEY:
- if (!HAL_ADC_READY())
- next_sensor_state = adc_sensor_state; // redo this state
- else if (ADCKey_count < ADC_BUTTON_DEBOUNCE_DELAY) {
- raw_ADCKey_value = HAL_READ_ADC();
- if (raw_ADCKey_value <= 900UL * HAL_ADC_RANGE / 1024UL) {
- NOMORE(current_ADCKey_raw, raw_ADCKey_value);
- ADCKey_count++;
- }
- else { //ADC Key release
- if (ADCKey_count > 0) ADCKey_count++; else ADCKey_pressed = false;
- if (ADCKey_pressed) {
- ADCKey_count = 0;
- current_ADCKey_raw = HAL_ADC_RANGE;
- }
- }
- }
- if (ADCKey_count == ADC_BUTTON_DEBOUNCE_DELAY) ADCKey_pressed = true;
- break;
- #endif // HAS_ADC_BUTTONS
-
- case StartupDelay: break;
-
- } // switch(adc_sensor_state)
-
- // Go to the next state
- adc_sensor_state = next_sensor_state;
-
- //
- // Additional ~1KHz Tasks
- //
-
- #if ENABLED(BABYSTEPPING) && DISABLED(INTEGRATED_BABYSTEPPING)
- babystep.task();
- #endif
-
- // Poll endstops state, if required
- endstops.poll();
-
- // Periodically call the planner timer
- planner.tick();
- }
-
- #if HAS_TEMP_SENSOR
-
- #include "../gcode/gcode.h"
-
- static void print_heater_state(const float &c, const float &t
- #if ENABLED(SHOW_TEMP_ADC_VALUES)
- , const float r
- #endif
- , const heater_ind_t e=INDEX_NONE
- ) {
- char k;
- switch (e) {
- #if HAS_TEMP_CHAMBER
- case H_CHAMBER: k = 'C'; break;
- #endif
- #if HAS_TEMP_PROBE
- case H_PROBE: k = 'P'; break;
- #endif
- #if HAS_TEMP_HOTEND
- default: k = 'T'; break;
- #if HAS_HEATED_BED
- case H_BED: k = 'B'; break;
- #endif
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- case H_REDUNDANT: k = 'R'; break;
- #endif
- #elif HAS_HEATED_BED
- default: k = 'B'; break;
- #endif
- }
- SERIAL_CHAR(' ');
- SERIAL_CHAR(k);
- #if HOTENDS > 1
- if (e >= 0) SERIAL_CHAR('0' + e);
- #endif
- SERIAL_CHAR(':');
- SERIAL_ECHO(c);
- SERIAL_ECHOPAIR(" /" , t);
- #if ENABLED(SHOW_TEMP_ADC_VALUES)
- SERIAL_ECHOPAIR(" (", r * RECIPROCAL(OVERSAMPLENR));
- SERIAL_CHAR(')');
- #endif
- delay(2);
- }
-
- void Temperature::print_heater_states(const uint8_t target_extruder
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- , const bool include_r/*=false*/
- #endif
- ) {
- #if HAS_TEMP_HOTEND
- print_heater_state(degHotend(target_extruder), degTargetHotend(target_extruder)
- #if ENABLED(SHOW_TEMP_ADC_VALUES)
- , rawHotendTemp(target_extruder)
- #endif
- );
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- if (include_r) print_heater_state(redundant_temperature, degTargetHotend(target_extruder)
- #if ENABLED(SHOW_TEMP_ADC_VALUES)
- , redundant_temperature_raw
- #endif
- , H_REDUNDANT
- );
- #endif
- #endif
- #if HAS_HEATED_BED
- print_heater_state(degBed(), degTargetBed()
- #if ENABLED(SHOW_TEMP_ADC_VALUES)
- , rawBedTemp()
- #endif
- , H_BED
- );
- #endif
- #if HAS_TEMP_CHAMBER
- print_heater_state(degChamber()
- #if HAS_HEATED_CHAMBER
- , degTargetChamber()
- #else
- , 0
- #endif
- #if ENABLED(SHOW_TEMP_ADC_VALUES)
- , rawChamberTemp()
- #endif
- , H_CHAMBER
- );
- #endif // HAS_TEMP_CHAMBER
- #if HAS_TEMP_PROBE
- print_heater_state(degProbe(), 0
- #if ENABLED(SHOW_TEMP_ADC_VALUES)
- , rawProbeTemp()
- #endif
- , H_PROBE
- );
- #endif // HAS_TEMP_PROBE
- #if HOTENDS > 1
- HOTEND_LOOP() print_heater_state(degHotend(e), degTargetHotend(e)
- #if ENABLED(SHOW_TEMP_ADC_VALUES)
- , rawHotendTemp(e)
- #endif
- , (heater_ind_t)e
- );
- #endif
- SERIAL_ECHOPAIR(" @:", getHeaterPower((heater_ind_t)target_extruder));
- #if HAS_HEATED_BED
- SERIAL_ECHOPAIR(" B@:", getHeaterPower(H_BED));
- #endif
- #if HAS_HEATED_CHAMBER
- SERIAL_ECHOPAIR(" C@:", getHeaterPower(H_CHAMBER));
- #endif
- #if HOTENDS > 1
- HOTEND_LOOP() {
- SERIAL_ECHOPAIR(" @", e);
- SERIAL_CHAR(':');
- SERIAL_ECHO(getHeaterPower((heater_ind_t)e));
- }
- #endif
- }
-
- #if ENABLED(AUTO_REPORT_TEMPERATURES)
-
- uint8_t Temperature::auto_report_temp_interval;
- millis_t Temperature::next_temp_report_ms;
-
- void Temperature::auto_report_temperatures() {
- if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
- next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
- PORT_REDIRECT(SERIAL_BOTH);
- print_heater_states(active_extruder);
- SERIAL_EOL();
- }
- }
-
- #endif // AUTO_REPORT_TEMPERATURES
-
- #if HOTENDS && HAS_DISPLAY
- void Temperature::set_heating_message(const uint8_t e) {
- const bool heating = isHeatingHotend(e);
- ui.status_printf_P(0,
- #if HOTENDS > 1
- PSTR("E%c " S_FMT), '1' + e
- #else
- PSTR("E " S_FMT)
- #endif
- , heating ? GET_TEXT(MSG_HEATING) : GET_TEXT(MSG_COOLING)
- );
- }
- #endif
-
- #if HAS_TEMP_HOTEND
-
- #ifndef MIN_COOLING_SLOPE_DEG
- #define MIN_COOLING_SLOPE_DEG 1.50
- #endif
- #ifndef MIN_COOLING_SLOPE_TIME
- #define MIN_COOLING_SLOPE_TIME 60
- #endif
-
- bool Temperature::wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling/*=true*/
- #if G26_CLICK_CAN_CANCEL
- , const bool click_to_cancel/*=false*/
- #endif
- ) {
- #if TEMP_RESIDENCY_TIME > 0
- millis_t residency_start_ms = 0;
- bool first_loop = true;
- // Loop until the temperature has stabilized
- #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
- #else
- // Loop until the temperature is very close target
- #define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder))
- #endif
-
- #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
- KEEPALIVE_STATE(NOT_BUSY);
- #endif
-
- #if ENABLED(PRINTER_EVENT_LEDS)
- const float start_temp = degHotend(target_extruder);
- printerEventLEDs.onHotendHeatingStart();
- #endif
-
- float target_temp = -1.0, old_temp = 9999.0;
- bool wants_to_cool = false;
- wait_for_heatup = true;
- millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
- do {
- // Target temperature might be changed during the loop
- if (target_temp != degTargetHotend(target_extruder)) {
- wants_to_cool = isCoolingHotend(target_extruder);
- target_temp = degTargetHotend(target_extruder);
-
- // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
- if (no_wait_for_cooling && wants_to_cool) break;
- }
-
- now = millis();
- if (ELAPSED(now, next_temp_ms)) { // Print temp & remaining time every 1s while waiting
- next_temp_ms = now + 1000UL;
- print_heater_states(target_extruder);
- #if TEMP_RESIDENCY_TIME > 0
- SERIAL_ECHOPGM(" W:");
- if (residency_start_ms)
- SERIAL_ECHO(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
- else
- SERIAL_CHAR('?');
- #endif
- SERIAL_EOL();
- }
-
- idle();
- gcode.reset_stepper_timeout(); // Keep steppers powered
-
- const float temp = degHotend(target_extruder);
-
- #if ENABLED(PRINTER_EVENT_LEDS)
- // Gradually change LED strip from violet to red as nozzle heats up
- if (!wants_to_cool) printerEventLEDs.onHotendHeating(start_temp, temp, target_temp);
- #endif
-
- #if TEMP_RESIDENCY_TIME > 0
-
- const float temp_diff = ABS(target_temp - temp);
-
- if (!residency_start_ms) {
- // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
- if (temp_diff < TEMP_WINDOW) {
- residency_start_ms = now;
- if (first_loop) residency_start_ms += (TEMP_RESIDENCY_TIME) * 1000UL;
- }
- }
- else if (temp_diff > TEMP_HYSTERESIS) {
- // Restart the timer whenever the temperature falls outside the hysteresis.
- residency_start_ms = now;
- }
-
- first_loop = false;
-
- #endif
-
- // Prevent a wait-forever situation if R is misused i.e. M109 R0
- if (wants_to_cool) {
- // break after MIN_COOLING_SLOPE_TIME seconds
- // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
- if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
- if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG)) break;
- next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
- old_temp = temp;
- }
- }
-
- #if G26_CLICK_CAN_CANCEL
- if (click_to_cancel && ui.use_click()) {
- wait_for_heatup = false;
- ui.quick_feedback();
- }
- #endif
-
- } while (wait_for_heatup && TEMP_CONDITIONS);
-
- if (wait_for_heatup) {
- ui.reset_status();
- #if ENABLED(PRINTER_EVENT_LEDS)
- printerEventLEDs.onHeatingDone();
- #endif
- }
-
- return wait_for_heatup;
- }
-
- #endif // HAS_TEMP_HOTEND
-
- #if HAS_HEATED_BED
-
- #ifndef MIN_COOLING_SLOPE_DEG_BED
- #define MIN_COOLING_SLOPE_DEG_BED 1.50
- #endif
- #ifndef MIN_COOLING_SLOPE_TIME_BED
- #define MIN_COOLING_SLOPE_TIME_BED 60
- #endif
-
- bool Temperature::wait_for_bed(const bool no_wait_for_cooling/*=true*/
- #if G26_CLICK_CAN_CANCEL
- , const bool click_to_cancel/*=false*/
- #endif
- ) {
- #if TEMP_BED_RESIDENCY_TIME > 0
- millis_t residency_start_ms = 0;
- bool first_loop = true;
- // Loop until the temperature has stabilized
- #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
- #else
- // Loop until the temperature is very close target
- #define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed())
- #endif
-
- float target_temp = -1, old_temp = 9999;
- bool wants_to_cool = false;
- wait_for_heatup = true;
- millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
-
- #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
- KEEPALIVE_STATE(NOT_BUSY);
- #endif
-
- #if ENABLED(PRINTER_EVENT_LEDS)
- const float start_temp = degBed();
- printerEventLEDs.onBedHeatingStart();
- #endif
-
- do {
- // Target temperature might be changed during the loop
- if (target_temp != degTargetBed()) {
- wants_to_cool = isCoolingBed();
- target_temp = degTargetBed();
-
- // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
- if (no_wait_for_cooling && wants_to_cool) break;
- }
-
- now = millis();
- if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
- next_temp_ms = now + 1000UL;
- print_heater_states(active_extruder);
- #if TEMP_BED_RESIDENCY_TIME > 0
- SERIAL_ECHOPGM(" W:");
- if (residency_start_ms)
- SERIAL_ECHO(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
- else
- SERIAL_CHAR('?');
- #endif
- SERIAL_EOL();
- }
-
- idle();
- gcode.reset_stepper_timeout(); // Keep steppers powered
-
- const float temp = degBed();
-
- #if ENABLED(PRINTER_EVENT_LEDS)
- // Gradually change LED strip from blue to violet as bed heats up
- if (!wants_to_cool) printerEventLEDs.onBedHeating(start_temp, temp, target_temp);
- #endif
-
- #if TEMP_BED_RESIDENCY_TIME > 0
-
- const float temp_diff = ABS(target_temp - temp);
-
- if (!residency_start_ms) {
- // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
- if (temp_diff < TEMP_BED_WINDOW) {
- residency_start_ms = now;
- if (first_loop) residency_start_ms += (TEMP_BED_RESIDENCY_TIME) * 1000UL;
- }
- }
- else if (temp_diff > TEMP_BED_HYSTERESIS) {
- // Restart the timer whenever the temperature falls outside the hysteresis.
- residency_start_ms = now;
- }
-
- #endif // TEMP_BED_RESIDENCY_TIME > 0
-
- // Prevent a wait-forever situation if R is misused i.e. M190 R0
- if (wants_to_cool) {
- // Break after MIN_COOLING_SLOPE_TIME_BED seconds
- // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
- if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
- if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_BED)) break;
- next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
- old_temp = temp;
- }
- }
-
- #if G26_CLICK_CAN_CANCEL
- if (click_to_cancel && ui.use_click()) {
- wait_for_heatup = false;
- ui.quick_feedback();
- }
- #endif
-
- #if TEMP_BED_RESIDENCY_TIME > 0
- first_loop = false;
- #endif
-
- } while (wait_for_heatup && TEMP_BED_CONDITIONS);
-
- if (wait_for_heatup) ui.reset_status();
-
- return wait_for_heatup;
- }
-
- #endif // HAS_HEATED_BED
-
- #if HAS_HEATED_CHAMBER
-
- #ifndef MIN_COOLING_SLOPE_DEG_CHAMBER
- #define MIN_COOLING_SLOPE_DEG_CHAMBER 1.50
- #endif
- #ifndef MIN_COOLING_SLOPE_TIME_CHAMBER
- #define MIN_COOLING_SLOPE_TIME_CHAMBER 60
- #endif
-
- bool Temperature::wait_for_chamber(const bool no_wait_for_cooling/*=true*/) {
- #if TEMP_CHAMBER_RESIDENCY_TIME > 0
- millis_t residency_start_ms = 0;
- bool first_loop = true;
- // Loop until the temperature has stabilized
- #define TEMP_CHAMBER_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_CHAMBER_RESIDENCY_TIME) * 1000UL))
- #else
- // Loop until the temperature is very close target
- #define TEMP_CHAMBER_CONDITIONS (wants_to_cool ? isCoolingChamber() : isHeatingChamber())
- #endif
-
- float target_temp = -1, old_temp = 9999;
- bool wants_to_cool = false;
- wait_for_heatup = true;
- millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
-
- #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
- KEEPALIVE_STATE(NOT_BUSY);
- #endif
-
- do {
- // Target temperature might be changed during the loop
- if (target_temp != degTargetChamber()) {
- wants_to_cool = isCoolingChamber();
- target_temp = degTargetChamber();
-
- // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
- if (no_wait_for_cooling && wants_to_cool) break;
- }
-
- now = millis();
- if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
- next_temp_ms = now + 1000UL;
- print_heater_states(active_extruder);
- #if TEMP_CHAMBER_RESIDENCY_TIME > 0
- SERIAL_ECHOPGM(" W:");
- if (residency_start_ms)
- SERIAL_ECHO(long((((TEMP_CHAMBER_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
- else
- SERIAL_CHAR('?');
- #endif
- SERIAL_EOL();
- }
-
- idle();
- gcode.reset_stepper_timeout(); // Keep steppers powered
-
- const float temp = degChamber();
-
- #if TEMP_CHAMBER_RESIDENCY_TIME > 0
-
- const float temp_diff = ABS(target_temp - temp);
-
- if (!residency_start_ms) {
- // Start the TEMP_CHAMBER_RESIDENCY_TIME timer when we reach target temp for the first time.
- if (temp_diff < TEMP_CHAMBER_WINDOW) {
- residency_start_ms = now;
- if (first_loop) residency_start_ms += (TEMP_CHAMBER_RESIDENCY_TIME) * 1000UL;
- }
- }
- else if (temp_diff > TEMP_CHAMBER_HYSTERESIS) {
- // Restart the timer whenever the temperature falls outside the hysteresis.
- residency_start_ms = now;
- }
-
- first_loop = false;
- #endif // TEMP_CHAMBER_RESIDENCY_TIME > 0
-
- // Prevent a wait-forever situation if R is misused i.e. M191 R0
- if (wants_to_cool) {
- // Break after MIN_COOLING_SLOPE_TIME_CHAMBER seconds
- // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_CHAMBER
- if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
- if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_CHAMBER)) break;
- next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_CHAMBER;
- old_temp = temp;
- }
- }
- } while (wait_for_heatup && TEMP_CHAMBER_CONDITIONS);
-
- if (wait_for_heatup) ui.reset_status();
-
- return wait_for_heatup;
- }
-
- #endif // HAS_HEATED_CHAMBER
-
- #endif // HAS_TEMP_SENSOR
|