My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 294KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. *
  29. * It has preliminary support for Matthew Roberts advance algorithm
  30. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  31. */
  32. #include "Marlin.h"
  33. #if HAS_ABL
  34. #include "vector_3.h"
  35. #endif
  36. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  37. #include "qr_solve.h"
  38. #elif ENABLED(MESH_BED_LEVELING)
  39. #include "mesh_bed_leveling.h"
  40. #endif
  41. #if ENABLED(BEZIER_CURVE_SUPPORT)
  42. #include "planner_bezier.h"
  43. #endif
  44. #include "ultralcd.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "endstops.h"
  48. #include "temperature.h"
  49. #include "cardreader.h"
  50. #include "configuration_store.h"
  51. #include "language.h"
  52. #include "pins_arduino.h"
  53. #include "math.h"
  54. #include "nozzle.h"
  55. #include "duration_t.h"
  56. #include "types.h"
  57. #if ENABLED(USE_WATCHDOG)
  58. #include "watchdog.h"
  59. #endif
  60. #if ENABLED(BLINKM)
  61. #include "blinkm.h"
  62. #include "Wire.h"
  63. #endif
  64. #if HAS_SERVOS
  65. #include "servo.h"
  66. #endif
  67. #if HAS_DIGIPOTSS
  68. #include <SPI.h>
  69. #endif
  70. #if ENABLED(DAC_STEPPER_CURRENT)
  71. #include "stepper_dac.h"
  72. #endif
  73. #if ENABLED(EXPERIMENTAL_I2CBUS)
  74. #include "twibus.h"
  75. #endif
  76. /**
  77. * Look here for descriptions of G-codes:
  78. * - http://linuxcnc.org/handbook/gcode/g-code.html
  79. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  80. *
  81. * Help us document these G-codes online:
  82. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  83. * - http://reprap.org/wiki/G-code
  84. *
  85. * -----------------
  86. * Implemented Codes
  87. * -----------------
  88. *
  89. * "G" Codes
  90. *
  91. * G0 -> G1
  92. * G1 - Coordinated Movement X Y Z E
  93. * G2 - CW ARC
  94. * G3 - CCW ARC
  95. * G4 - Dwell S<seconds> or P<milliseconds>
  96. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  97. * G10 - Retract filament according to settings of M207
  98. * G11 - Retract recover filament according to settings of M208
  99. * G12 - Clean tool
  100. * G20 - Set input units to inches
  101. * G21 - Set input units to millimeters
  102. * G28 - Home one or more axes
  103. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  104. * G30 - Single Z probe, probes bed at current XY location.
  105. * G31 - Dock sled (Z_PROBE_SLED only)
  106. * G32 - Undock sled (Z_PROBE_SLED only)
  107. * G90 - Use Absolute Coordinates
  108. * G91 - Use Relative Coordinates
  109. * G92 - Set current position to coordinates given
  110. *
  111. * "M" Codes
  112. *
  113. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  114. * M1 - Same as M0
  115. * M17 - Enable/Power all stepper motors
  116. * M18 - Disable all stepper motors; same as M84
  117. * M20 - List SD card. (Requires SDSUPPORT)
  118. * M21 - Init SD card. (Requires SDSUPPORT)
  119. * M22 - Release SD card. (Requires SDSUPPORT)
  120. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  121. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  122. * M25 - Pause SD print. (Requires SDSUPPORT)
  123. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  124. * M27 - Report SD print status. (Requires SDSUPPORT)
  125. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  126. * M29 - Stop SD write. (Requires SDSUPPORT)
  127. * M30 - Delete file from SD: "M30 /path/file.gco"
  128. * M31 - Report time since last M109 or SD card start to serial.
  129. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  130. * Use P to run other files as sub-programs: "M32 P !filename#"
  131. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  132. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  133. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  134. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  135. * M75 - Start the print job timer.
  136. * M76 - Pause the print job timer.
  137. * M77 - Stop the print job timer.
  138. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  139. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  140. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  141. * M82 - Set E codes absolute (default).
  142. * M83 - Set E codes relative while in Absolute (G90) mode.
  143. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  144. * duration after which steppers should turn off. S0 disables the timeout.
  145. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  146. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  147. * M104 - Set extruder target temp.
  148. * M105 - Report current temperatures.
  149. * M106 - Fan on.
  150. * M107 - Fan off.
  151. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  152. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  153. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  154. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  155. * M110 - Set the current line number. (Used by host printing)
  156. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  157. * M112 - Emergency stop.
  158. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  159. * M114 - Report current position.
  160. * M115 - Report capabilities.
  161. * M117 - Display a message on the controller screen. (Requires an LCD)
  162. * M119 - Report endstops status.
  163. * M120 - Enable endstops detection.
  164. * M121 - Disable endstops detection.
  165. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  166. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  167. * M128 - EtoP Open. (Requires BARICUDA)
  168. * M129 - EtoP Closed. (Requires BARICUDA)
  169. * M140 - Set bed target temp. S<temp>
  170. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  171. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  172. * M150 - Set BlinkM Color R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM)
  173. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  174. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  175. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  176. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  177. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  178. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  179. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  180. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  181. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  182. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  183. * M205 - Set advanced settings. Current units apply:
  184. S<print> T<travel> minimum speeds
  185. B<minimum segment time>
  186. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  187. * M206 - Set additional homing offset.
  188. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  189. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  190. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  191. Every normal extrude-only move will be classified as retract depending on the direction.
  192. * M211 - Enable, Disable, and/or Report software endstops: S<0|1>
  193. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  194. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  195. * M221 - Set Flow Percentage: "M221 S<percent>"
  196. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  197. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  198. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  199. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  200. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  201. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  202. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  203. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  204. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  205. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  206. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  207. * M400 - Finish all moves.
  208. * M401 - Lower Z probe. (Requires a probe)
  209. * M402 - Raise Z probe. (Requires a probe)
  210. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  211. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  212. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  213. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  214. * M410 - Quickstop. Abort all planned moves.
  215. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING)
  216. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  217. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  218. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  219. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  220. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  221. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  222. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  223. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  224. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s>" (Requires DELTA)
  225. * M666 - Set delta endstop adjustment. (Requires DELTA)
  226. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  227. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  228. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  229. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  230. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  231. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  232. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  233. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  234. *
  235. * ************ SCARA Specific - This can change to suit future G-code regulations
  236. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  237. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  238. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  239. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  240. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  241. * ************* SCARA End ***************
  242. *
  243. * ************ Custom codes - This can change to suit future G-code regulations
  244. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  245. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  246. * M999 - Restart after being stopped by error
  247. *
  248. * "T" Codes
  249. *
  250. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  251. *
  252. */
  253. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  254. void gcode_M100();
  255. #endif
  256. #if ENABLED(SDSUPPORT)
  257. CardReader card;
  258. #endif
  259. #if ENABLED(EXPERIMENTAL_I2CBUS)
  260. TWIBus i2c;
  261. #endif
  262. bool Running = true;
  263. uint8_t marlin_debug_flags = DEBUG_NONE;
  264. float current_position[NUM_AXIS] = { 0.0 };
  265. static float destination[NUM_AXIS] = { 0.0 };
  266. bool axis_known_position[XYZ] = { false };
  267. bool axis_homed[XYZ] = { false };
  268. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  269. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  270. static char* current_command, *current_command_args;
  271. static uint8_t cmd_queue_index_r = 0,
  272. cmd_queue_index_w = 0,
  273. commands_in_queue = 0;
  274. #if ENABLED(INCH_MODE_SUPPORT)
  275. float linear_unit_factor = 1.0;
  276. float volumetric_unit_factor = 1.0;
  277. #endif
  278. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  279. TempUnit input_temp_units = TEMPUNIT_C;
  280. #endif
  281. /**
  282. * Feed rates are often configured with mm/m
  283. * but the planner and stepper like mm/s units.
  284. */
  285. float constexpr homing_feedrate_mm_s[] = {
  286. #if ENABLED(DELTA)
  287. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  288. #else
  289. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  290. #endif
  291. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  292. };
  293. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  294. int feedrate_percentage = 100, saved_feedrate_percentage;
  295. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  296. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  297. bool volumetric_enabled = false;
  298. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  299. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  300. // The distance that XYZ has been offset by G92. Reset by G28.
  301. float position_shift[XYZ] = { 0 };
  302. // This offset is added to the configured home position.
  303. // Set by M206, M428, or menu item. Saved to EEPROM.
  304. float home_offset[XYZ] = { 0 };
  305. // Software Endstops are based on the configured limits.
  306. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  307. bool soft_endstops_enabled = true;
  308. #endif
  309. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  310. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  311. #if FAN_COUNT > 0
  312. int fanSpeeds[FAN_COUNT] = { 0 };
  313. #endif
  314. // The active extruder (tool). Set with T<extruder> command.
  315. uint8_t active_extruder = 0;
  316. // Relative Mode. Enable with G91, disable with G90.
  317. static bool relative_mode = false;
  318. volatile bool wait_for_heatup = true;
  319. #if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
  320. volatile bool wait_for_user = false;
  321. #endif
  322. const char errormagic[] PROGMEM = "Error:";
  323. const char echomagic[] PROGMEM = "echo:";
  324. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  325. static int serial_count = 0;
  326. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  327. static char* seen_pointer;
  328. // Next Immediate GCode Command pointer. NULL if none.
  329. const char* queued_commands_P = NULL;
  330. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  331. // Inactivity shutdown
  332. millis_t previous_cmd_ms = 0;
  333. static millis_t max_inactive_time = 0;
  334. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  335. // Print Job Timer
  336. #if ENABLED(PRINTCOUNTER)
  337. PrintCounter print_job_timer = PrintCounter();
  338. #else
  339. Stopwatch print_job_timer = Stopwatch();
  340. #endif
  341. // Buzzer - I2C on the LCD or a BEEPER_PIN
  342. #if ENABLED(LCD_USE_I2C_BUZZER)
  343. #define BUZZ(d,f) lcd_buzz(d, f)
  344. #elif HAS_BUZZER
  345. Buzzer buzzer;
  346. #define BUZZ(d,f) buzzer.tone(d, f)
  347. #else
  348. #define BUZZ(d,f) NOOP
  349. #endif
  350. static uint8_t target_extruder;
  351. #if HAS_BED_PROBE
  352. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  353. #endif
  354. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  355. #if HAS_ABL
  356. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  357. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  358. #elif defined(XY_PROBE_SPEED)
  359. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  360. #else
  361. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  362. #endif
  363. #if ENABLED(Z_DUAL_ENDSTOPS)
  364. float z_endstop_adj = 0;
  365. #endif
  366. // Extruder offsets
  367. #if HOTENDS > 1
  368. float hotend_offset[][HOTENDS] = {
  369. HOTEND_OFFSET_X,
  370. HOTEND_OFFSET_Y
  371. #ifdef HOTEND_OFFSET_Z
  372. , HOTEND_OFFSET_Z
  373. #endif
  374. };
  375. #endif
  376. #if HAS_Z_SERVO_ENDSTOP
  377. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  378. #endif
  379. #if ENABLED(BARICUDA)
  380. int baricuda_valve_pressure = 0;
  381. int baricuda_e_to_p_pressure = 0;
  382. #endif
  383. #if ENABLED(FWRETRACT)
  384. bool autoretract_enabled = false;
  385. bool retracted[EXTRUDERS] = { false };
  386. bool retracted_swap[EXTRUDERS] = { false };
  387. float retract_length = RETRACT_LENGTH;
  388. float retract_length_swap = RETRACT_LENGTH_SWAP;
  389. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  390. float retract_zlift = RETRACT_ZLIFT;
  391. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  392. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  393. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  394. #endif // FWRETRACT
  395. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  396. bool powersupply =
  397. #if ENABLED(PS_DEFAULT_OFF)
  398. false
  399. #else
  400. true
  401. #endif
  402. ;
  403. #endif
  404. #if ENABLED(DELTA)
  405. #define SIN_60 0.8660254037844386
  406. #define COS_60 0.5
  407. float delta[ABC],
  408. endstop_adj[ABC] = { 0 };
  409. // these are the default values, can be overriden with M665
  410. float delta_radius = DELTA_RADIUS,
  411. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  412. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  413. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  414. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  415. delta_tower3_x = 0, // back middle tower
  416. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  417. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  418. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  419. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  420. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  421. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  422. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  423. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  424. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  425. delta_clip_start_height = Z_MAX_POS;
  426. float delta_safe_distance_from_top();
  427. #else
  428. static bool home_all_axis = true;
  429. #endif
  430. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  431. int bilinear_grid_spacing[2] = { 0 }, bilinear_start[2] = { 0 };
  432. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  433. #endif
  434. #if IS_SCARA
  435. // Float constants for SCARA calculations
  436. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  437. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  438. L2_2 = sq(float(L2));
  439. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  440. delta[ABC];
  441. #endif
  442. float cartes[XYZ] = { 0 };
  443. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  444. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  445. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  446. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  447. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  448. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  449. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  450. #endif
  451. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  452. static bool filament_ran_out = false;
  453. #endif
  454. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  455. FilamentChangeMenuResponse filament_change_menu_response;
  456. #endif
  457. #if ENABLED(MIXING_EXTRUDER)
  458. float mixing_factor[MIXING_STEPPERS];
  459. #if MIXING_VIRTUAL_TOOLS > 1
  460. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  461. #endif
  462. #endif
  463. static bool send_ok[BUFSIZE];
  464. #if HAS_SERVOS
  465. Servo servo[NUM_SERVOS];
  466. #define MOVE_SERVO(I, P) servo[I].move(P)
  467. #if HAS_Z_SERVO_ENDSTOP
  468. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  469. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  470. #endif
  471. #endif
  472. #ifdef CHDK
  473. millis_t chdkHigh = 0;
  474. boolean chdkActive = false;
  475. #endif
  476. #if ENABLED(PID_EXTRUSION_SCALING)
  477. int lpq_len = 20;
  478. #endif
  479. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  480. static MarlinBusyState busy_state = NOT_BUSY;
  481. static millis_t next_busy_signal_ms = 0;
  482. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  483. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  484. #else
  485. #define host_keepalive() ;
  486. #define KEEPALIVE_STATE(n) ;
  487. #endif // HOST_KEEPALIVE_FEATURE
  488. #define DEFINE_PGM_READ_ANY(type, reader) \
  489. static inline type pgm_read_any(const type *p) \
  490. { return pgm_read_##reader##_near(p); }
  491. DEFINE_PGM_READ_ANY(float, float);
  492. DEFINE_PGM_READ_ANY(signed char, byte);
  493. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  494. static const PROGMEM type array##_P[XYZ] = \
  495. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  496. static inline type array(int axis) \
  497. { return pgm_read_any(&array##_P[axis]); }
  498. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  499. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  500. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  501. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  502. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  503. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  504. /**
  505. * ***************************************************************************
  506. * ******************************** FUNCTIONS ********************************
  507. * ***************************************************************************
  508. */
  509. void stop();
  510. void get_available_commands();
  511. void process_next_command();
  512. void prepare_move_to_destination();
  513. void get_cartesian_from_steppers();
  514. void set_current_from_steppers_for_axis(const AxisEnum axis);
  515. #if ENABLED(ARC_SUPPORT)
  516. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  517. #endif
  518. #if ENABLED(BEZIER_CURVE_SUPPORT)
  519. void plan_cubic_move(const float offset[4]);
  520. #endif
  521. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  522. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  523. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  524. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  525. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  526. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  527. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  528. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  529. static void report_current_position();
  530. #if ENABLED(DEBUG_LEVELING_FEATURE)
  531. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  532. serialprintPGM(prefix);
  533. SERIAL_ECHOPAIR("(", x);
  534. SERIAL_ECHOPAIR(", ", y);
  535. SERIAL_ECHOPAIR(", ", z);
  536. SERIAL_ECHOPGM(")");
  537. if (suffix) serialprintPGM(suffix);
  538. else SERIAL_EOL;
  539. }
  540. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  541. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  542. }
  543. #if HAS_ABL
  544. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  545. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  546. }
  547. #endif
  548. #define DEBUG_POS(SUFFIX,VAR) do { \
  549. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  550. #endif
  551. /**
  552. * sync_plan_position
  553. *
  554. * Set the planner/stepper positions directly from current_position with
  555. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  556. */
  557. inline void sync_plan_position() {
  558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  559. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  560. #endif
  561. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  562. }
  563. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  564. #if IS_KINEMATIC
  565. inline void sync_plan_position_kinematic() {
  566. #if ENABLED(DEBUG_LEVELING_FEATURE)
  567. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  568. #endif
  569. inverse_kinematics(current_position);
  570. planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
  571. }
  572. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  573. #else
  574. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  575. #endif
  576. #if ENABLED(SDSUPPORT)
  577. #include "SdFatUtil.h"
  578. int freeMemory() { return SdFatUtil::FreeRam(); }
  579. #else
  580. extern "C" {
  581. extern unsigned int __bss_end;
  582. extern unsigned int __heap_start;
  583. extern void* __brkval;
  584. int freeMemory() {
  585. int free_memory;
  586. if ((int)__brkval == 0)
  587. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  588. else
  589. free_memory = ((int)&free_memory) - ((int)__brkval);
  590. return free_memory;
  591. }
  592. }
  593. #endif //!SDSUPPORT
  594. #if ENABLED(DIGIPOT_I2C)
  595. extern void digipot_i2c_set_current(int channel, float current);
  596. extern void digipot_i2c_init();
  597. #endif
  598. /**
  599. * Inject the next "immediate" command, when possible.
  600. * Return true if any immediate commands remain to inject.
  601. */
  602. static bool drain_queued_commands_P() {
  603. if (queued_commands_P != NULL) {
  604. size_t i = 0;
  605. char c, cmd[30];
  606. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  607. cmd[sizeof(cmd) - 1] = '\0';
  608. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  609. cmd[i] = '\0';
  610. if (enqueue_and_echo_command(cmd)) { // success?
  611. if (c) // newline char?
  612. queued_commands_P += i + 1; // advance to the next command
  613. else
  614. queued_commands_P = NULL; // nul char? no more commands
  615. }
  616. }
  617. return (queued_commands_P != NULL); // return whether any more remain
  618. }
  619. /**
  620. * Record one or many commands to run from program memory.
  621. * Aborts the current queue, if any.
  622. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  623. */
  624. void enqueue_and_echo_commands_P(const char* pgcode) {
  625. queued_commands_P = pgcode;
  626. drain_queued_commands_P(); // first command executed asap (when possible)
  627. }
  628. void clear_command_queue() {
  629. cmd_queue_index_r = cmd_queue_index_w;
  630. commands_in_queue = 0;
  631. }
  632. /**
  633. * Once a new command is in the ring buffer, call this to commit it
  634. */
  635. inline void _commit_command(bool say_ok) {
  636. send_ok[cmd_queue_index_w] = say_ok;
  637. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  638. commands_in_queue++;
  639. }
  640. /**
  641. * Copy a command directly into the main command buffer, from RAM.
  642. * Returns true if successfully adds the command
  643. */
  644. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  645. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  646. strcpy(command_queue[cmd_queue_index_w], cmd);
  647. _commit_command(say_ok);
  648. return true;
  649. }
  650. void enqueue_and_echo_command_now(const char* cmd) {
  651. while (!enqueue_and_echo_command(cmd)) idle();
  652. }
  653. /**
  654. * Enqueue with Serial Echo
  655. */
  656. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  657. if (_enqueuecommand(cmd, say_ok)) {
  658. SERIAL_ECHO_START;
  659. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  660. SERIAL_ECHOLNPGM("\"");
  661. return true;
  662. }
  663. return false;
  664. }
  665. void setup_killpin() {
  666. #if HAS_KILL
  667. SET_INPUT(KILL_PIN);
  668. WRITE(KILL_PIN, HIGH);
  669. #endif
  670. }
  671. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  672. void setup_filrunoutpin() {
  673. SET_INPUT(FIL_RUNOUT_PIN);
  674. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  675. WRITE(FIL_RUNOUT_PIN, HIGH);
  676. #endif
  677. }
  678. #endif
  679. // Set home pin
  680. void setup_homepin(void) {
  681. #if HAS_HOME
  682. SET_INPUT(HOME_PIN);
  683. WRITE(HOME_PIN, HIGH);
  684. #endif
  685. }
  686. void setup_photpin() {
  687. #if HAS_PHOTOGRAPH
  688. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  689. #endif
  690. }
  691. void setup_powerhold() {
  692. #if HAS_SUICIDE
  693. OUT_WRITE(SUICIDE_PIN, HIGH);
  694. #endif
  695. #if HAS_POWER_SWITCH
  696. #if ENABLED(PS_DEFAULT_OFF)
  697. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  698. #else
  699. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  700. #endif
  701. #endif
  702. }
  703. void suicide() {
  704. #if HAS_SUICIDE
  705. OUT_WRITE(SUICIDE_PIN, LOW);
  706. #endif
  707. }
  708. void servo_init() {
  709. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  710. servo[0].attach(SERVO0_PIN);
  711. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  712. #endif
  713. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  714. servo[1].attach(SERVO1_PIN);
  715. servo[1].detach();
  716. #endif
  717. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  718. servo[2].attach(SERVO2_PIN);
  719. servo[2].detach();
  720. #endif
  721. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  722. servo[3].attach(SERVO3_PIN);
  723. servo[3].detach();
  724. #endif
  725. #if HAS_Z_SERVO_ENDSTOP
  726. /**
  727. * Set position of Z Servo Endstop
  728. *
  729. * The servo might be deployed and positioned too low to stow
  730. * when starting up the machine or rebooting the board.
  731. * There's no way to know where the nozzle is positioned until
  732. * homing has been done - no homing with z-probe without init!
  733. *
  734. */
  735. STOW_Z_SERVO();
  736. #endif
  737. }
  738. /**
  739. * Stepper Reset (RigidBoard, et.al.)
  740. */
  741. #if HAS_STEPPER_RESET
  742. void disableStepperDrivers() {
  743. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  744. }
  745. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  746. #endif
  747. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  748. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  749. i2c.receive(bytes);
  750. }
  751. void i2c_on_request() { // just send dummy data for now
  752. i2c.reply("Hello World!\n");
  753. }
  754. #endif
  755. void gcode_line_error(const char* err, bool doFlush = true) {
  756. SERIAL_ERROR_START;
  757. serialprintPGM(err);
  758. SERIAL_ERRORLN(gcode_LastN);
  759. //Serial.println(gcode_N);
  760. if (doFlush) FlushSerialRequestResend();
  761. serial_count = 0;
  762. }
  763. inline void get_serial_commands() {
  764. static char serial_line_buffer[MAX_CMD_SIZE];
  765. static boolean serial_comment_mode = false;
  766. // If the command buffer is empty for too long,
  767. // send "wait" to indicate Marlin is still waiting.
  768. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  769. static millis_t last_command_time = 0;
  770. millis_t ms = millis();
  771. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  772. SERIAL_ECHOLNPGM(MSG_WAIT);
  773. last_command_time = ms;
  774. }
  775. #endif
  776. /**
  777. * Loop while serial characters are incoming and the queue is not full
  778. */
  779. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  780. char serial_char = MYSERIAL.read();
  781. /**
  782. * If the character ends the line
  783. */
  784. if (serial_char == '\n' || serial_char == '\r') {
  785. serial_comment_mode = false; // end of line == end of comment
  786. if (!serial_count) continue; // skip empty lines
  787. serial_line_buffer[serial_count] = 0; // terminate string
  788. serial_count = 0; //reset buffer
  789. char* command = serial_line_buffer;
  790. while (*command == ' ') command++; // skip any leading spaces
  791. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  792. char* apos = strchr(command, '*');
  793. if (npos) {
  794. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  795. if (M110) {
  796. char* n2pos = strchr(command + 4, 'N');
  797. if (n2pos) npos = n2pos;
  798. }
  799. gcode_N = strtol(npos + 1, NULL, 10);
  800. if (gcode_N != gcode_LastN + 1 && !M110) {
  801. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  802. return;
  803. }
  804. if (apos) {
  805. byte checksum = 0, count = 0;
  806. while (command[count] != '*') checksum ^= command[count++];
  807. if (strtol(apos + 1, NULL, 10) != checksum) {
  808. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  809. return;
  810. }
  811. // if no errors, continue parsing
  812. }
  813. else {
  814. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  815. return;
  816. }
  817. gcode_LastN = gcode_N;
  818. // if no errors, continue parsing
  819. }
  820. else if (apos) { // No '*' without 'N'
  821. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  822. return;
  823. }
  824. // Movement commands alert when stopped
  825. if (IsStopped()) {
  826. char* gpos = strchr(command, 'G');
  827. if (gpos) {
  828. int codenum = strtol(gpos + 1, NULL, 10);
  829. switch (codenum) {
  830. case 0:
  831. case 1:
  832. case 2:
  833. case 3:
  834. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  835. LCD_MESSAGEPGM(MSG_STOPPED);
  836. break;
  837. }
  838. }
  839. }
  840. #if DISABLED(EMERGENCY_PARSER)
  841. // If command was e-stop process now
  842. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  843. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  844. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  845. #endif
  846. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  847. last_command_time = ms;
  848. #endif
  849. // Add the command to the queue
  850. _enqueuecommand(serial_line_buffer, true);
  851. }
  852. else if (serial_count >= MAX_CMD_SIZE - 1) {
  853. // Keep fetching, but ignore normal characters beyond the max length
  854. // The command will be injected when EOL is reached
  855. }
  856. else if (serial_char == '\\') { // Handle escapes
  857. if (MYSERIAL.available() > 0) {
  858. // if we have one more character, copy it over
  859. serial_char = MYSERIAL.read();
  860. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  861. }
  862. // otherwise do nothing
  863. }
  864. else { // it's not a newline, carriage return or escape char
  865. if (serial_char == ';') serial_comment_mode = true;
  866. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  867. }
  868. } // queue has space, serial has data
  869. }
  870. #if ENABLED(SDSUPPORT)
  871. inline void get_sdcard_commands() {
  872. static bool stop_buffering = false,
  873. sd_comment_mode = false;
  874. if (!card.sdprinting) return;
  875. /**
  876. * '#' stops reading from SD to the buffer prematurely, so procedural
  877. * macro calls are possible. If it occurs, stop_buffering is triggered
  878. * and the buffer is run dry; this character _can_ occur in serial com
  879. * due to checksums, however, no checksums are used in SD printing.
  880. */
  881. if (commands_in_queue == 0) stop_buffering = false;
  882. uint16_t sd_count = 0;
  883. bool card_eof = card.eof();
  884. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  885. int16_t n = card.get();
  886. char sd_char = (char)n;
  887. card_eof = card.eof();
  888. if (card_eof || n == -1
  889. || sd_char == '\n' || sd_char == '\r'
  890. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  891. ) {
  892. if (card_eof) {
  893. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  894. card.printingHasFinished();
  895. card.checkautostart(true);
  896. }
  897. else if (n == -1) {
  898. SERIAL_ERROR_START;
  899. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  900. }
  901. if (sd_char == '#') stop_buffering = true;
  902. sd_comment_mode = false; //for new command
  903. if (!sd_count) continue; //skip empty lines
  904. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  905. sd_count = 0; //clear buffer
  906. _commit_command(false);
  907. }
  908. else if (sd_count >= MAX_CMD_SIZE - 1) {
  909. /**
  910. * Keep fetching, but ignore normal characters beyond the max length
  911. * The command will be injected when EOL is reached
  912. */
  913. }
  914. else {
  915. if (sd_char == ';') sd_comment_mode = true;
  916. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  917. }
  918. }
  919. }
  920. #endif // SDSUPPORT
  921. /**
  922. * Add to the circular command queue the next command from:
  923. * - The command-injection queue (queued_commands_P)
  924. * - The active serial input (usually USB)
  925. * - The SD card file being actively printed
  926. */
  927. void get_available_commands() {
  928. // if any immediate commands remain, don't get other commands yet
  929. if (drain_queued_commands_P()) return;
  930. get_serial_commands();
  931. #if ENABLED(SDSUPPORT)
  932. get_sdcard_commands();
  933. #endif
  934. }
  935. inline bool code_has_value() {
  936. int i = 1;
  937. char c = seen_pointer[i];
  938. while (c == ' ') c = seen_pointer[++i];
  939. if (c == '-' || c == '+') c = seen_pointer[++i];
  940. if (c == '.') c = seen_pointer[++i];
  941. return NUMERIC(c);
  942. }
  943. inline float code_value_float() {
  944. float ret;
  945. char* e = strchr(seen_pointer, 'E');
  946. if (e) {
  947. *e = 0;
  948. ret = strtod(seen_pointer + 1, NULL);
  949. *e = 'E';
  950. }
  951. else
  952. ret = strtod(seen_pointer + 1, NULL);
  953. return ret;
  954. }
  955. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  956. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  957. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  958. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  959. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  960. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  961. #if ENABLED(INCH_MODE_SUPPORT)
  962. inline void set_input_linear_units(LinearUnit units) {
  963. switch (units) {
  964. case LINEARUNIT_INCH:
  965. linear_unit_factor = 25.4;
  966. break;
  967. case LINEARUNIT_MM:
  968. default:
  969. linear_unit_factor = 1.0;
  970. break;
  971. }
  972. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  973. }
  974. inline float axis_unit_factor(int axis) {
  975. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  976. }
  977. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  978. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  979. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  980. #else
  981. inline float code_value_linear_units() { return code_value_float(); }
  982. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  983. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  984. #endif
  985. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  986. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  987. float code_value_temp_abs() {
  988. switch (input_temp_units) {
  989. case TEMPUNIT_C:
  990. return code_value_float();
  991. case TEMPUNIT_F:
  992. return (code_value_float() - 32) * 0.5555555556;
  993. case TEMPUNIT_K:
  994. return code_value_float() - 272.15;
  995. default:
  996. return code_value_float();
  997. }
  998. }
  999. float code_value_temp_diff() {
  1000. switch (input_temp_units) {
  1001. case TEMPUNIT_C:
  1002. case TEMPUNIT_K:
  1003. return code_value_float();
  1004. case TEMPUNIT_F:
  1005. return code_value_float() * 0.5555555556;
  1006. default:
  1007. return code_value_float();
  1008. }
  1009. }
  1010. #else
  1011. float code_value_temp_abs() { return code_value_float(); }
  1012. float code_value_temp_diff() { return code_value_float(); }
  1013. #endif
  1014. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1015. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1016. bool code_seen(char code) {
  1017. seen_pointer = strchr(current_command_args, code);
  1018. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1019. }
  1020. /**
  1021. * Set target_extruder from the T parameter or the active_extruder
  1022. *
  1023. * Returns TRUE if the target is invalid
  1024. */
  1025. bool get_target_extruder_from_command(int code) {
  1026. if (code_seen('T')) {
  1027. if (code_value_byte() >= EXTRUDERS) {
  1028. SERIAL_ECHO_START;
  1029. SERIAL_CHAR('M');
  1030. SERIAL_ECHO(code);
  1031. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1032. return true;
  1033. }
  1034. target_extruder = code_value_byte();
  1035. }
  1036. else
  1037. target_extruder = active_extruder;
  1038. return false;
  1039. }
  1040. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1041. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1042. #endif
  1043. #if ENABLED(DUAL_X_CARRIAGE)
  1044. #define DXC_FULL_CONTROL_MODE 0
  1045. #define DXC_AUTO_PARK_MODE 1
  1046. #define DXC_DUPLICATION_MODE 2
  1047. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1048. static float x_home_pos(int extruder) {
  1049. if (extruder == 0)
  1050. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1051. else
  1052. /**
  1053. * In dual carriage mode the extruder offset provides an override of the
  1054. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1055. * This allow soft recalibration of the second extruder offset position
  1056. * without firmware reflash (through the M218 command).
  1057. */
  1058. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1059. }
  1060. static int x_home_dir(int extruder) {
  1061. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1062. }
  1063. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1064. static bool active_extruder_parked = false; // used in mode 1 & 2
  1065. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1066. static millis_t delayed_move_time = 0; // used in mode 1
  1067. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1068. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1069. #endif //DUAL_X_CARRIAGE
  1070. /**
  1071. * Software endstops can be used to monitor the open end of
  1072. * an axis that has a hardware endstop on the other end. Or
  1073. * they can prevent axes from moving past endstops and grinding.
  1074. *
  1075. * To keep doing their job as the coordinate system changes,
  1076. * the software endstop positions must be refreshed to remain
  1077. * at the same positions relative to the machine.
  1078. */
  1079. void update_software_endstops(AxisEnum axis) {
  1080. float offs = LOGICAL_POSITION(0, axis);
  1081. #if ENABLED(DUAL_X_CARRIAGE)
  1082. if (axis == X_AXIS) {
  1083. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1084. if (active_extruder != 0) {
  1085. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1086. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1087. return;
  1088. }
  1089. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1090. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1091. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1092. return;
  1093. }
  1094. }
  1095. else
  1096. #endif
  1097. {
  1098. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1099. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1100. }
  1101. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1102. if (DEBUGGING(LEVELING)) {
  1103. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1104. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1105. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1106. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1107. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1108. }
  1109. #endif
  1110. #if ENABLED(DELTA)
  1111. if (axis == Z_AXIS)
  1112. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1113. #endif
  1114. }
  1115. /**
  1116. * Change the home offset for an axis, update the current
  1117. * position and the software endstops to retain the same
  1118. * relative distance to the new home.
  1119. *
  1120. * Since this changes the current_position, code should
  1121. * call sync_plan_position soon after this.
  1122. */
  1123. static void set_home_offset(AxisEnum axis, float v) {
  1124. current_position[axis] += v - home_offset[axis];
  1125. home_offset[axis] = v;
  1126. update_software_endstops(axis);
  1127. }
  1128. /**
  1129. * Set an axis' current position to its home position (after homing).
  1130. *
  1131. * For Core and Cartesian robots this applies one-to-one when an
  1132. * individual axis has been homed.
  1133. *
  1134. * DELTA should wait until all homing is done before setting the XYZ
  1135. * current_position to home, because homing is a single operation.
  1136. * In the case where the axis positions are already known and previously
  1137. * homed, DELTA could home to X or Y individually by moving either one
  1138. * to the center. However, homing Z always homes XY and Z.
  1139. *
  1140. * SCARA should wait until all XY homing is done before setting the XY
  1141. * current_position to home, because neither X nor Y is at home until
  1142. * both are at home. Z can however be homed individually.
  1143. *
  1144. */
  1145. static void set_axis_is_at_home(AxisEnum axis) {
  1146. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1147. if (DEBUGGING(LEVELING)) {
  1148. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1149. SERIAL_ECHOLNPGM(")");
  1150. }
  1151. #endif
  1152. axis_known_position[axis] = axis_homed[axis] = true;
  1153. position_shift[axis] = 0;
  1154. update_software_endstops(axis);
  1155. #if ENABLED(DUAL_X_CARRIAGE)
  1156. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1157. if (active_extruder != 0)
  1158. current_position[X_AXIS] = x_home_pos(active_extruder);
  1159. else
  1160. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1161. update_software_endstops(X_AXIS);
  1162. return;
  1163. }
  1164. #endif
  1165. #if ENABLED(MORGAN_SCARA)
  1166. /**
  1167. * Morgan SCARA homes XY at the same time
  1168. */
  1169. if (axis == X_AXIS || axis == Y_AXIS) {
  1170. float homeposition[XYZ];
  1171. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1172. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1173. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1174. /**
  1175. * Get Home position SCARA arm angles using inverse kinematics,
  1176. * and calculate homing offset using forward kinematics
  1177. */
  1178. inverse_kinematics(homeposition);
  1179. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1180. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1181. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1182. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1183. /**
  1184. * SCARA home positions are based on configuration since the actual
  1185. * limits are determined by the inverse kinematic transform.
  1186. */
  1187. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1188. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1189. }
  1190. else
  1191. #endif
  1192. {
  1193. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1194. }
  1195. /**
  1196. * Z Probe Z Homing? Account for the probe's Z offset.
  1197. */
  1198. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1199. if (axis == Z_AXIS) {
  1200. #if HOMING_Z_WITH_PROBE
  1201. current_position[Z_AXIS] -= zprobe_zoffset;
  1202. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1203. if (DEBUGGING(LEVELING)) {
  1204. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1205. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1206. }
  1207. #endif
  1208. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1209. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1210. #endif
  1211. }
  1212. #endif
  1213. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1214. if (DEBUGGING(LEVELING)) {
  1215. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1216. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1217. DEBUG_POS("", current_position);
  1218. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1219. SERIAL_ECHOLNPGM(")");
  1220. }
  1221. #endif
  1222. }
  1223. /**
  1224. * Some planner shorthand inline functions
  1225. */
  1226. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1227. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1228. int hbd = homing_bump_divisor[axis];
  1229. if (hbd < 1) {
  1230. hbd = 10;
  1231. SERIAL_ECHO_START;
  1232. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1233. }
  1234. return homing_feedrate_mm_s[axis] / hbd;
  1235. }
  1236. //
  1237. // line_to_current_position
  1238. // Move the planner to the current position from wherever it last moved
  1239. // (or from wherever it has been told it is located).
  1240. //
  1241. inline void line_to_current_position() {
  1242. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1243. }
  1244. //
  1245. // line_to_destination
  1246. // Move the planner, not necessarily synced with current_position
  1247. //
  1248. inline void line_to_destination(float fr_mm_s) {
  1249. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1250. }
  1251. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1252. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1253. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1254. #if IS_KINEMATIC
  1255. /**
  1256. * Calculate delta, start a line, and set current_position to destination
  1257. */
  1258. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1259. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1260. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1261. #endif
  1262. if ( current_position[X_AXIS] == destination[X_AXIS]
  1263. && current_position[Y_AXIS] == destination[Y_AXIS]
  1264. && current_position[Z_AXIS] == destination[Z_AXIS]
  1265. && current_position[E_AXIS] == destination[E_AXIS]
  1266. ) return;
  1267. refresh_cmd_timeout();
  1268. inverse_kinematics(destination);
  1269. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1270. set_current_to_destination();
  1271. }
  1272. #endif // IS_KINEMATIC
  1273. /**
  1274. * Plan a move to (X, Y, Z) and set the current_position
  1275. * The final current_position may not be the one that was requested
  1276. */
  1277. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1278. float old_feedrate_mm_s = feedrate_mm_s;
  1279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1280. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1281. #endif
  1282. #if ENABLED(DELTA)
  1283. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1284. set_destination_to_current(); // sync destination at the start
  1285. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1286. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1287. #endif
  1288. // when in the danger zone
  1289. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1290. if (z > delta_clip_start_height) { // staying in the danger zone
  1291. destination[X_AXIS] = x; // move directly (uninterpolated)
  1292. destination[Y_AXIS] = y;
  1293. destination[Z_AXIS] = z;
  1294. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1295. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1296. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1297. #endif
  1298. return;
  1299. }
  1300. else {
  1301. destination[Z_AXIS] = delta_clip_start_height;
  1302. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1304. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1305. #endif
  1306. }
  1307. }
  1308. if (z > current_position[Z_AXIS]) { // raising?
  1309. destination[Z_AXIS] = z;
  1310. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1311. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1312. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1313. #endif
  1314. }
  1315. destination[X_AXIS] = x;
  1316. destination[Y_AXIS] = y;
  1317. prepare_move_to_destination(); // set_current_to_destination
  1318. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1319. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1320. #endif
  1321. if (z < current_position[Z_AXIS]) { // lowering?
  1322. destination[Z_AXIS] = z;
  1323. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1324. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1325. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1326. #endif
  1327. }
  1328. #elif IS_SCARA
  1329. set_destination_to_current();
  1330. // If Z needs to raise, do it before moving XY
  1331. if (destination[Z_AXIS] < z) {
  1332. destination[Z_AXIS] = z;
  1333. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1334. }
  1335. destination[X_AXIS] = x;
  1336. destination[Y_AXIS] = y;
  1337. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1338. // If Z needs to lower, do it after moving XY
  1339. if (destination[Z_AXIS] > z) {
  1340. destination[Z_AXIS] = z;
  1341. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1342. }
  1343. #else
  1344. // If Z needs to raise, do it before moving XY
  1345. if (current_position[Z_AXIS] < z) {
  1346. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1347. current_position[Z_AXIS] = z;
  1348. line_to_current_position();
  1349. }
  1350. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1351. current_position[X_AXIS] = x;
  1352. current_position[Y_AXIS] = y;
  1353. line_to_current_position();
  1354. // If Z needs to lower, do it after moving XY
  1355. if (current_position[Z_AXIS] > z) {
  1356. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1357. current_position[Z_AXIS] = z;
  1358. line_to_current_position();
  1359. }
  1360. #endif
  1361. stepper.synchronize();
  1362. feedrate_mm_s = old_feedrate_mm_s;
  1363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1364. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1365. #endif
  1366. }
  1367. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1368. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1369. }
  1370. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1371. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1372. }
  1373. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1374. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1375. }
  1376. //
  1377. // Prepare to do endstop or probe moves
  1378. // with custom feedrates.
  1379. //
  1380. // - Save current feedrates
  1381. // - Reset the rate multiplier
  1382. // - Reset the command timeout
  1383. // - Enable the endstops (for endstop moves)
  1384. //
  1385. static void setup_for_endstop_or_probe_move() {
  1386. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1387. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1388. #endif
  1389. saved_feedrate_mm_s = feedrate_mm_s;
  1390. saved_feedrate_percentage = feedrate_percentage;
  1391. feedrate_percentage = 100;
  1392. refresh_cmd_timeout();
  1393. }
  1394. static void clean_up_after_endstop_or_probe_move() {
  1395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1396. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1397. #endif
  1398. feedrate_mm_s = saved_feedrate_mm_s;
  1399. feedrate_percentage = saved_feedrate_percentage;
  1400. refresh_cmd_timeout();
  1401. }
  1402. #if HAS_BED_PROBE
  1403. /**
  1404. * Raise Z to a minimum height to make room for a probe to move
  1405. */
  1406. inline void do_probe_raise(float z_raise) {
  1407. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1408. if (DEBUGGING(LEVELING)) {
  1409. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1410. SERIAL_ECHOLNPGM(")");
  1411. }
  1412. #endif
  1413. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1414. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1415. if (z_dest > current_position[Z_AXIS])
  1416. do_blocking_move_to_z(z_dest);
  1417. }
  1418. #endif //HAS_BED_PROBE
  1419. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1420. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1421. const bool xx = x && !axis_homed[X_AXIS],
  1422. yy = y && !axis_homed[Y_AXIS],
  1423. zz = z && !axis_homed[Z_AXIS];
  1424. if (xx || yy || zz) {
  1425. SERIAL_ECHO_START;
  1426. SERIAL_ECHOPGM(MSG_HOME " ");
  1427. if (xx) SERIAL_ECHOPGM(MSG_X);
  1428. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1429. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1430. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1431. #if ENABLED(ULTRA_LCD)
  1432. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1433. strcat_P(message, PSTR(MSG_HOME " "));
  1434. if (xx) strcat_P(message, PSTR(MSG_X));
  1435. if (yy) strcat_P(message, PSTR(MSG_Y));
  1436. if (zz) strcat_P(message, PSTR(MSG_Z));
  1437. strcat_P(message, PSTR(" " MSG_FIRST));
  1438. lcd_setstatus(message);
  1439. #endif
  1440. return true;
  1441. }
  1442. return false;
  1443. }
  1444. #endif
  1445. #if ENABLED(Z_PROBE_SLED)
  1446. #ifndef SLED_DOCKING_OFFSET
  1447. #define SLED_DOCKING_OFFSET 0
  1448. #endif
  1449. /**
  1450. * Method to dock/undock a sled designed by Charles Bell.
  1451. *
  1452. * stow[in] If false, move to MAX_X and engage the solenoid
  1453. * If true, move to MAX_X and release the solenoid
  1454. */
  1455. static void dock_sled(bool stow) {
  1456. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1457. if (DEBUGGING(LEVELING)) {
  1458. SERIAL_ECHOPAIR("dock_sled(", stow);
  1459. SERIAL_ECHOLNPGM(")");
  1460. }
  1461. #endif
  1462. // Dock sled a bit closer to ensure proper capturing
  1463. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1464. #if PIN_EXISTS(SLED)
  1465. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1466. #endif
  1467. }
  1468. #endif // Z_PROBE_SLED
  1469. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1470. void run_deploy_moves_script() {
  1471. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1472. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1473. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1474. #endif
  1475. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1476. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1477. #endif
  1478. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1479. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1480. #endif
  1481. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1482. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1483. #endif
  1484. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1485. #endif
  1486. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1487. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1488. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1489. #endif
  1490. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1491. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1492. #endif
  1493. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1494. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1495. #endif
  1496. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1497. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1498. #endif
  1499. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1500. #endif
  1501. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1502. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1503. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1504. #endif
  1505. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1506. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1507. #endif
  1508. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1509. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1510. #endif
  1511. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1512. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1513. #endif
  1514. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1515. #endif
  1516. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1517. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1518. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1519. #endif
  1520. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1521. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1522. #endif
  1523. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1524. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1525. #endif
  1526. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1527. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1528. #endif
  1529. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1530. #endif
  1531. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1532. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1533. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1534. #endif
  1535. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1536. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1537. #endif
  1538. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1539. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1540. #endif
  1541. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1542. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1543. #endif
  1544. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1545. #endif
  1546. }
  1547. void run_stow_moves_script() {
  1548. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1549. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1550. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1551. #endif
  1552. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1553. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1554. #endif
  1555. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1556. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1557. #endif
  1558. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1559. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1560. #endif
  1561. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1562. #endif
  1563. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1564. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1565. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1566. #endif
  1567. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1568. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1569. #endif
  1570. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1571. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1572. #endif
  1573. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1574. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1575. #endif
  1576. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1577. #endif
  1578. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1579. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1580. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1581. #endif
  1582. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1583. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1584. #endif
  1585. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1586. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1587. #endif
  1588. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1589. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1590. #endif
  1591. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1592. #endif
  1593. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1594. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1595. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1596. #endif
  1597. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1598. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1599. #endif
  1600. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1601. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1602. #endif
  1603. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1604. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1605. #endif
  1606. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1607. #endif
  1608. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1609. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1610. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1611. #endif
  1612. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1613. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1614. #endif
  1615. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1616. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1617. #endif
  1618. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1619. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1620. #endif
  1621. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1622. #endif
  1623. }
  1624. #endif
  1625. #if HAS_BED_PROBE
  1626. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1627. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1628. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1629. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1630. #else
  1631. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1632. #endif
  1633. #endif
  1634. #define DEPLOY_PROBE() set_probe_deployed(true)
  1635. #define STOW_PROBE() set_probe_deployed(false)
  1636. #if ENABLED(BLTOUCH)
  1637. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1638. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1639. }
  1640. #endif
  1641. // returns false for ok and true for failure
  1642. static bool set_probe_deployed(bool deploy) {
  1643. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1644. if (DEBUGGING(LEVELING)) {
  1645. DEBUG_POS("set_probe_deployed", current_position);
  1646. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1647. }
  1648. #endif
  1649. if (endstops.z_probe_enabled == deploy) return false;
  1650. // Make room for probe
  1651. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1652. // When deploying make sure BLTOUCH is not already triggered
  1653. #if ENABLED(BLTOUCH)
  1654. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1655. #endif
  1656. #if ENABLED(Z_PROBE_SLED)
  1657. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1658. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1659. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1660. #endif
  1661. float oldXpos = current_position[X_AXIS],
  1662. oldYpos = current_position[Y_AXIS];
  1663. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1664. // If endstop is already false, the Z probe is deployed
  1665. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1666. // Would a goto be less ugly?
  1667. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1668. // for a triggered when stowed manual probe.
  1669. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1670. // otherwise an Allen-Key probe can't be stowed.
  1671. #endif
  1672. #if ENABLED(Z_PROBE_SLED)
  1673. dock_sled(!deploy);
  1674. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1675. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1676. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1677. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1678. #endif
  1679. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1680. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1681. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1682. if (IsRunning()) {
  1683. SERIAL_ERROR_START;
  1684. SERIAL_ERRORLNPGM("Z-Probe failed");
  1685. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1686. }
  1687. stop();
  1688. return true;
  1689. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1690. #endif
  1691. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1692. endstops.enable_z_probe(deploy);
  1693. return false;
  1694. }
  1695. static void do_probe_move(float z, float fr_mm_m) {
  1696. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1697. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1698. #endif
  1699. // Deploy BLTouch at the start of any probe
  1700. #if ENABLED(BLTOUCH)
  1701. set_bltouch_deployed(true);
  1702. #endif
  1703. // Move down until probe triggered
  1704. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1705. // Retract BLTouch immediately after a probe
  1706. #if ENABLED(BLTOUCH)
  1707. set_bltouch_deployed(false);
  1708. #endif
  1709. // Clear endstop flags
  1710. endstops.hit_on_purpose();
  1711. // Tell the planner where we actually are
  1712. planner.sync_from_steppers();
  1713. // Get Z where the steppers were interrupted
  1714. set_current_from_steppers_for_axis(Z_AXIS);
  1715. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1716. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1717. #endif
  1718. }
  1719. // Do a single Z probe and return with current_position[Z_AXIS]
  1720. // at the height where the probe triggered.
  1721. static float run_z_probe() {
  1722. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1723. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1724. #endif
  1725. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1726. refresh_cmd_timeout();
  1727. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1728. // Do a first probe at the fast speed
  1729. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1730. // move up by the bump distance
  1731. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1732. #else
  1733. // If the nozzle is above the travel height then
  1734. // move down quickly before doing the slow probe
  1735. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1736. if (z < current_position[Z_AXIS])
  1737. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1738. #endif
  1739. // move down slowly to find bed
  1740. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1741. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1742. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1743. #endif
  1744. return current_position[Z_AXIS];
  1745. }
  1746. //
  1747. // - Move to the given XY
  1748. // - Deploy the probe, if not already deployed
  1749. // - Probe the bed, get the Z position
  1750. // - Depending on the 'stow' flag
  1751. // - Stow the probe, or
  1752. // - Raise to the BETWEEN height
  1753. // - Return the probed Z position
  1754. //
  1755. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1756. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1757. if (DEBUGGING(LEVELING)) {
  1758. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1759. SERIAL_ECHOPAIR(", ", y);
  1760. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1761. SERIAL_ECHOLNPGM(")");
  1762. DEBUG_POS("", current_position);
  1763. }
  1764. #endif
  1765. float old_feedrate_mm_s = feedrate_mm_s;
  1766. // Ensure a minimum height before moving the probe
  1767. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1768. // Move to the XY where we shall probe
  1769. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1770. if (DEBUGGING(LEVELING)) {
  1771. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1772. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1773. SERIAL_ECHOLNPGM(")");
  1774. }
  1775. #endif
  1776. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1777. // Move the probe to the given XY
  1778. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1779. if (DEPLOY_PROBE()) return NAN;
  1780. float measured_z = run_z_probe();
  1781. if (!stow)
  1782. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1783. else
  1784. if (STOW_PROBE()) return NAN;
  1785. if (verbose_level > 2) {
  1786. SERIAL_PROTOCOLPGM("Bed X: ");
  1787. SERIAL_PROTOCOL_F(x, 3);
  1788. SERIAL_PROTOCOLPGM(" Y: ");
  1789. SERIAL_PROTOCOL_F(y, 3);
  1790. SERIAL_PROTOCOLPGM(" Z: ");
  1791. SERIAL_PROTOCOL_F(measured_z, 3);
  1792. SERIAL_EOL;
  1793. }
  1794. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1795. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1796. #endif
  1797. feedrate_mm_s = old_feedrate_mm_s;
  1798. return measured_z;
  1799. }
  1800. #endif // HAS_BED_PROBE
  1801. #if HAS_ABL
  1802. /**
  1803. * Reset calibration results to zero.
  1804. *
  1805. * TODO: Proper functions to disable / enable
  1806. * bed leveling via a flag, correcting the
  1807. * current position in each case.
  1808. */
  1809. void reset_bed_level() {
  1810. planner.abl_enabled = false;
  1811. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1812. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1813. #endif
  1814. #if ABL_PLANAR
  1815. planner.bed_level_matrix.set_to_identity();
  1816. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1817. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++)
  1818. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++)
  1819. bed_level_grid[x][y] = 1000.0;
  1820. #endif
  1821. }
  1822. #endif // HAS_ABL
  1823. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1824. /**
  1825. * Extrapolate a single point from its neighbors
  1826. */
  1827. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1828. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1829. if (DEBUGGING(LEVELING)) {
  1830. SERIAL_ECHOPGM("Extrapolate [");
  1831. if (x < 10) SERIAL_CHAR(' ');
  1832. SERIAL_ECHO((int)x);
  1833. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  1834. SERIAL_CHAR(' ');
  1835. if (y < 10) SERIAL_CHAR(' ');
  1836. SERIAL_ECHO((int)y);
  1837. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  1838. SERIAL_CHAR(']');
  1839. }
  1840. #endif
  1841. if (bed_level_grid[x][y] < 999.0) {
  1842. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1843. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  1844. #endif
  1845. return; // Don't overwrite good values.
  1846. }
  1847. // Get X neighbors, Y neighbors, and XY neighbors
  1848. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  1849. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  1850. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  1851. // Treat far unprobed points as zero, near as equal to far
  1852. if (a2 > 999.0) a2 = 0.0; if (a1 > 999.0) a1 = a2;
  1853. if (b2 > 999.0) b2 = 0.0; if (b1 > 999.0) b1 = b2;
  1854. if (c2 > 999.0) c2 = 0.0; if (c1 > 999.0) c1 = c2;
  1855. float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  1856. // Take the average intstead of the median
  1857. bed_level_grid[x][y] = (a + b + c) / 3.0;
  1858. // Median is robust (ignores outliers).
  1859. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1860. // : ((c < b) ? b : (a < c) ? a : c);
  1861. }
  1862. #define EXTRAPOLATE_FROM_EDGE
  1863. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  1864. #if ABL_GRID_POINTS_X < ABL_GRID_POINTS_Y
  1865. #define HALF_IN_X
  1866. #elif ABL_GRID_POINTS_Y < ABL_GRID_POINTS_X
  1867. #define HALF_IN_Y
  1868. #endif
  1869. #endif
  1870. /**
  1871. * Fill in the unprobed points (corners of circular print surface)
  1872. * using linear extrapolation, away from the center.
  1873. */
  1874. static void extrapolate_unprobed_bed_level() {
  1875. #ifdef HALF_IN_X
  1876. const uint8_t ctrx2 = 0, xlen = ABL_GRID_POINTS_X - 1;
  1877. #else
  1878. const uint8_t ctrx1 = (ABL_GRID_POINTS_X - 1) / 2, // left-of-center
  1879. ctrx2 = ABL_GRID_POINTS_X / 2, // right-of-center
  1880. xlen = ctrx1;
  1881. #endif
  1882. #ifdef HALF_IN_Y
  1883. const uint8_t ctry2 = 0, ylen = ABL_GRID_POINTS_Y - 1;
  1884. #else
  1885. const uint8_t ctry1 = (ABL_GRID_POINTS_Y - 1) / 2, // top-of-center
  1886. ctry2 = ABL_GRID_POINTS_Y / 2, // bottom-of-center
  1887. ylen = ctry1;
  1888. #endif
  1889. for (uint8_t xo = 0; xo <= xlen; xo++)
  1890. for (uint8_t yo = 0; yo <= ylen; yo++) {
  1891. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  1892. #ifndef HALF_IN_X
  1893. uint8_t x1 = ctrx1 - xo;
  1894. #endif
  1895. #ifndef HALF_IN_Y
  1896. uint8_t y1 = ctry1 - yo;
  1897. #ifndef HALF_IN_X
  1898. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  1899. #endif
  1900. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  1901. #endif
  1902. #ifndef HALF_IN_X
  1903. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  1904. #endif
  1905. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  1906. }
  1907. }
  1908. /**
  1909. * Print calibration results for plotting or manual frame adjustment.
  1910. */
  1911. static void print_bed_level() {
  1912. SERIAL_ECHOPGM("Bilinear Leveling Grid:\n ");
  1913. for (uint8_t x = 1; x < ABL_GRID_POINTS_X + 1; x++) {
  1914. SERIAL_PROTOCOLPGM(" ");
  1915. if (x < 10) SERIAL_PROTOCOLCHAR(' ');
  1916. SERIAL_PROTOCOL((int)x);
  1917. }
  1918. SERIAL_EOL;
  1919. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  1920. if (y < 9) SERIAL_PROTOCOLCHAR(' ');
  1921. SERIAL_PROTOCOL(y + 1);
  1922. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  1923. SERIAL_PROTOCOLCHAR(' ');
  1924. float offset = bed_level_grid[x][y];
  1925. if (offset < 999.0) {
  1926. if (offset > 0) SERIAL_CHAR('+');
  1927. SERIAL_PROTOCOL_F(offset, 2);
  1928. }
  1929. else
  1930. SERIAL_PROTOCOLPGM(" ====");
  1931. }
  1932. SERIAL_EOL;
  1933. }
  1934. SERIAL_EOL;
  1935. }
  1936. #endif // AUTO_BED_LEVELING_BILINEAR
  1937. /**
  1938. * Home an individual linear axis
  1939. */
  1940. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  1941. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1942. bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  1943. if (deploy_bltouch) set_bltouch_deployed(true);
  1944. #endif
  1945. // Tell the planner we're at Z=0
  1946. current_position[axis] = 0;
  1947. #if IS_SCARA
  1948. SYNC_PLAN_POSITION_KINEMATIC();
  1949. current_position[axis] = distance;
  1950. inverse_kinematics(current_position);
  1951. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1952. #else
  1953. sync_plan_position();
  1954. current_position[axis] = distance;
  1955. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1956. #endif
  1957. stepper.synchronize();
  1958. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1959. if (deploy_bltouch) set_bltouch_deployed(false);
  1960. #endif
  1961. endstops.hit_on_purpose();
  1962. }
  1963. /**
  1964. * Home an individual "raw axis" to its endstop.
  1965. * This applies to XYZ on Cartesian and Core robots, and
  1966. * to the individual ABC steppers on DELTA and SCARA.
  1967. *
  1968. * At the end of the procedure the axis is marked as
  1969. * homed and the current position of that axis is updated.
  1970. * Kinematic robots should wait till all axes are homed
  1971. * before updating the current position.
  1972. */
  1973. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1974. static void homeaxis(AxisEnum axis) {
  1975. #if IS_SCARA
  1976. // Only Z homing (with probe) is permitted
  1977. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  1978. #else
  1979. #define CAN_HOME(A) \
  1980. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  1981. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  1982. #endif
  1983. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1984. if (DEBUGGING(LEVELING)) {
  1985. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  1986. SERIAL_ECHOLNPGM(")");
  1987. }
  1988. #endif
  1989. int axis_home_dir =
  1990. #if ENABLED(DUAL_X_CARRIAGE)
  1991. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1992. #endif
  1993. home_dir(axis);
  1994. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1995. #if HOMING_Z_WITH_PROBE
  1996. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  1997. #endif
  1998. // Set a flag for Z motor locking
  1999. #if ENABLED(Z_DUAL_ENDSTOPS)
  2000. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2001. #endif
  2002. // Fast move towards endstop until triggered
  2003. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2004. // When homing Z with probe respect probe clearance
  2005. const float bump = axis_home_dir * (
  2006. #if HOMING_Z_WITH_PROBE
  2007. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2008. #endif
  2009. home_bump_mm(axis)
  2010. );
  2011. // If a second homing move is configured...
  2012. if (bump) {
  2013. // Move away from the endstop by the axis HOME_BUMP_MM
  2014. do_homing_move(axis, -bump);
  2015. // Slow move towards endstop until triggered
  2016. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2017. }
  2018. #if ENABLED(Z_DUAL_ENDSTOPS)
  2019. if (axis == Z_AXIS) {
  2020. float adj = fabs(z_endstop_adj);
  2021. bool lockZ1;
  2022. if (axis_home_dir > 0) {
  2023. adj = -adj;
  2024. lockZ1 = (z_endstop_adj > 0);
  2025. }
  2026. else
  2027. lockZ1 = (z_endstop_adj < 0);
  2028. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2029. // Move to the adjusted endstop height
  2030. do_homing_move(axis, adj);
  2031. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2032. stepper.set_homing_flag(false);
  2033. } // Z_AXIS
  2034. #endif
  2035. #if IS_SCARA
  2036. set_axis_is_at_home(axis);
  2037. SYNC_PLAN_POSITION_KINEMATIC();
  2038. #elif ENABLED(DELTA)
  2039. // Delta has already moved all three towers up in G28
  2040. // so here it re-homes each tower in turn.
  2041. // Delta homing treats the axes as normal linear axes.
  2042. // retrace by the amount specified in endstop_adj
  2043. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2044. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2045. if (DEBUGGING(LEVELING)) {
  2046. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis] * Z_HOME_DIR);
  2047. DEBUG_POS("", current_position);
  2048. }
  2049. #endif
  2050. do_homing_move(axis, endstop_adj[axis]);
  2051. }
  2052. #else
  2053. // For cartesian/core machines,
  2054. // set the axis to its home position
  2055. set_axis_is_at_home(axis);
  2056. sync_plan_position();
  2057. destination[axis] = current_position[axis];
  2058. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2059. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2060. #endif
  2061. #endif
  2062. // Put away the Z probe
  2063. #if HOMING_Z_WITH_PROBE
  2064. if (axis == Z_AXIS && STOW_PROBE()) return;
  2065. #endif
  2066. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2067. if (DEBUGGING(LEVELING)) {
  2068. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2069. SERIAL_ECHOLNPGM(")");
  2070. }
  2071. #endif
  2072. } // homeaxis()
  2073. #if ENABLED(FWRETRACT)
  2074. void retract(bool retracting, bool swapping = false) {
  2075. if (retracting == retracted[active_extruder]) return;
  2076. float old_feedrate_mm_s = feedrate_mm_s;
  2077. set_destination_to_current();
  2078. if (retracting) {
  2079. feedrate_mm_s = retract_feedrate_mm_s;
  2080. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2081. sync_plan_position_e();
  2082. prepare_move_to_destination();
  2083. if (retract_zlift > 0.01) {
  2084. current_position[Z_AXIS] -= retract_zlift;
  2085. SYNC_PLAN_POSITION_KINEMATIC();
  2086. prepare_move_to_destination();
  2087. }
  2088. }
  2089. else {
  2090. if (retract_zlift > 0.01) {
  2091. current_position[Z_AXIS] += retract_zlift;
  2092. SYNC_PLAN_POSITION_KINEMATIC();
  2093. }
  2094. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2095. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2096. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2097. sync_plan_position_e();
  2098. prepare_move_to_destination();
  2099. }
  2100. feedrate_mm_s = old_feedrate_mm_s;
  2101. retracted[active_extruder] = retracting;
  2102. } // retract()
  2103. #endif // FWRETRACT
  2104. #if ENABLED(MIXING_EXTRUDER)
  2105. void normalize_mix() {
  2106. float mix_total = 0.0;
  2107. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2108. float v = mixing_factor[i];
  2109. if (v < 0) v = mixing_factor[i] = 0;
  2110. mix_total += v;
  2111. }
  2112. // Scale all values if they don't add up to ~1.0
  2113. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2114. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2115. float mix_scale = 1.0 / mix_total;
  2116. for (int i = 0; i < MIXING_STEPPERS; i++)
  2117. mixing_factor[i] *= mix_scale;
  2118. }
  2119. }
  2120. #if ENABLED(DIRECT_MIXING_IN_G1)
  2121. // Get mixing parameters from the GCode
  2122. // Factors that are left out are set to 0
  2123. // The total "must" be 1.0 (but it will be normalized)
  2124. void gcode_get_mix() {
  2125. const char* mixing_codes = "ABCDHI";
  2126. for (int i = 0; i < MIXING_STEPPERS; i++)
  2127. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2128. normalize_mix();
  2129. }
  2130. #endif
  2131. #endif
  2132. /**
  2133. * ***************************************************************************
  2134. * ***************************** G-CODE HANDLING *****************************
  2135. * ***************************************************************************
  2136. */
  2137. /**
  2138. * Set XYZE destination and feedrate from the current GCode command
  2139. *
  2140. * - Set destination from included axis codes
  2141. * - Set to current for missing axis codes
  2142. * - Set the feedrate, if included
  2143. */
  2144. void gcode_get_destination() {
  2145. LOOP_XYZE(i) {
  2146. if (code_seen(axis_codes[i]))
  2147. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2148. else
  2149. destination[i] = current_position[i];
  2150. }
  2151. if (code_seen('F') && code_value_linear_units() > 0.0)
  2152. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2153. #if ENABLED(PRINTCOUNTER)
  2154. if (!DEBUGGING(DRYRUN))
  2155. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2156. #endif
  2157. // Get ABCDHI mixing factors
  2158. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2159. gcode_get_mix();
  2160. #endif
  2161. }
  2162. void unknown_command_error() {
  2163. SERIAL_ECHO_START;
  2164. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2165. SERIAL_ECHOLNPGM("\"");
  2166. }
  2167. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2168. /**
  2169. * Output a "busy" message at regular intervals
  2170. * while the machine is not accepting commands.
  2171. */
  2172. void host_keepalive() {
  2173. millis_t ms = millis();
  2174. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2175. if (PENDING(ms, next_busy_signal_ms)) return;
  2176. switch (busy_state) {
  2177. case IN_HANDLER:
  2178. case IN_PROCESS:
  2179. SERIAL_ECHO_START;
  2180. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2181. break;
  2182. case PAUSED_FOR_USER:
  2183. SERIAL_ECHO_START;
  2184. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2185. break;
  2186. case PAUSED_FOR_INPUT:
  2187. SERIAL_ECHO_START;
  2188. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2189. break;
  2190. default:
  2191. break;
  2192. }
  2193. }
  2194. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2195. }
  2196. #endif //HOST_KEEPALIVE_FEATURE
  2197. bool position_is_reachable(float target[XYZ]
  2198. #if HAS_BED_PROBE
  2199. , bool by_probe=false
  2200. #endif
  2201. ) {
  2202. float dx = RAW_X_POSITION(target[X_AXIS]),
  2203. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2204. #if HAS_BED_PROBE
  2205. if (by_probe) {
  2206. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2207. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2208. }
  2209. #endif
  2210. #if IS_SCARA
  2211. #if MIDDLE_DEAD_ZONE_R > 0
  2212. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2213. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2214. #else
  2215. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2216. #endif
  2217. #elif ENABLED(DELTA)
  2218. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2219. #else
  2220. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2221. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2222. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2223. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2224. #endif
  2225. }
  2226. /**************************************************
  2227. ***************** GCode Handlers *****************
  2228. **************************************************/
  2229. /**
  2230. * G0, G1: Coordinated movement of X Y Z E axes
  2231. */
  2232. inline void gcode_G0_G1(
  2233. #if IS_SCARA
  2234. bool fast_move=false
  2235. #endif
  2236. ) {
  2237. if (IsRunning()) {
  2238. gcode_get_destination(); // For X Y Z E F
  2239. #if ENABLED(FWRETRACT)
  2240. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2241. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2242. // Is this move an attempt to retract or recover?
  2243. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2244. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2245. sync_plan_position_e(); // AND from the planner
  2246. retract(!retracted[active_extruder]);
  2247. return;
  2248. }
  2249. }
  2250. #endif //FWRETRACT
  2251. #if IS_SCARA
  2252. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2253. #else
  2254. prepare_move_to_destination();
  2255. #endif
  2256. }
  2257. }
  2258. /**
  2259. * G2: Clockwise Arc
  2260. * G3: Counterclockwise Arc
  2261. *
  2262. * This command has two forms: IJ-form and R-form.
  2263. *
  2264. * - I specifies an X offset. J specifies a Y offset.
  2265. * At least one of the IJ parameters is required.
  2266. * X and Y can be omitted to do a complete circle.
  2267. * The given XY is not error-checked. The arc ends
  2268. * based on the angle of the destination.
  2269. * Mixing I or J with R will throw an error.
  2270. *
  2271. * - R specifies the radius. X or Y is required.
  2272. * Omitting both X and Y will throw an error.
  2273. * X or Y must differ from the current XY.
  2274. * Mixing R with I or J will throw an error.
  2275. *
  2276. * Examples:
  2277. *
  2278. * G2 I10 ; CW circle centered at X+10
  2279. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2280. */
  2281. #if ENABLED(ARC_SUPPORT)
  2282. inline void gcode_G2_G3(bool clockwise) {
  2283. if (IsRunning()) {
  2284. #if ENABLED(SF_ARC_FIX)
  2285. bool relative_mode_backup = relative_mode;
  2286. relative_mode = true;
  2287. #endif
  2288. gcode_get_destination();
  2289. #if ENABLED(SF_ARC_FIX)
  2290. relative_mode = relative_mode_backup;
  2291. #endif
  2292. float arc_offset[2] = { 0.0, 0.0 };
  2293. if (code_seen('R')) {
  2294. const float r = code_value_axis_units(X_AXIS),
  2295. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2296. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2297. if (r && (x2 != x1 || y2 != y1)) {
  2298. const float e = clockwise ? -1 : 1, // clockwise -1, counterclockwise 1
  2299. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2300. d = HYPOT(dx, dy), // Linear distance between the points
  2301. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2302. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2303. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2304. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2305. arc_offset[X_AXIS] = cx - x1;
  2306. arc_offset[Y_AXIS] = cy - y1;
  2307. }
  2308. }
  2309. else {
  2310. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2311. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2312. }
  2313. if (arc_offset[0] || arc_offset[1]) {
  2314. // Send an arc to the planner
  2315. plan_arc(destination, arc_offset, clockwise);
  2316. refresh_cmd_timeout();
  2317. }
  2318. else {
  2319. // Bad arguments
  2320. SERIAL_ERROR_START;
  2321. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2322. }
  2323. }
  2324. }
  2325. #endif
  2326. /**
  2327. * G4: Dwell S<seconds> or P<milliseconds>
  2328. */
  2329. inline void gcode_G4() {
  2330. millis_t dwell_ms = 0;
  2331. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2332. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2333. stepper.synchronize();
  2334. refresh_cmd_timeout();
  2335. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2336. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2337. while (PENDING(millis(), dwell_ms)) idle();
  2338. }
  2339. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2340. /**
  2341. * Parameters interpreted according to:
  2342. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2343. * However I, J omission is not supported at this point; all
  2344. * parameters can be omitted and default to zero.
  2345. */
  2346. /**
  2347. * G5: Cubic B-spline
  2348. */
  2349. inline void gcode_G5() {
  2350. if (IsRunning()) {
  2351. gcode_get_destination();
  2352. float offset[] = {
  2353. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2354. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2355. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2356. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2357. };
  2358. plan_cubic_move(offset);
  2359. }
  2360. }
  2361. #endif // BEZIER_CURVE_SUPPORT
  2362. #if ENABLED(FWRETRACT)
  2363. /**
  2364. * G10 - Retract filament according to settings of M207
  2365. * G11 - Recover filament according to settings of M208
  2366. */
  2367. inline void gcode_G10_G11(bool doRetract=false) {
  2368. #if EXTRUDERS > 1
  2369. if (doRetract) {
  2370. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2371. }
  2372. #endif
  2373. retract(doRetract
  2374. #if EXTRUDERS > 1
  2375. , retracted_swap[active_extruder]
  2376. #endif
  2377. );
  2378. }
  2379. #endif //FWRETRACT
  2380. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2381. /**
  2382. * G12: Clean the nozzle
  2383. */
  2384. inline void gcode_G12() {
  2385. // Don't allow nozzle cleaning without homing first
  2386. if (axis_unhomed_error(true, true, true)) { return; }
  2387. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2388. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2389. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2390. Nozzle::clean(pattern, strokes, objects);
  2391. }
  2392. #endif
  2393. #if ENABLED(INCH_MODE_SUPPORT)
  2394. /**
  2395. * G20: Set input mode to inches
  2396. */
  2397. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2398. /**
  2399. * G21: Set input mode to millimeters
  2400. */
  2401. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2402. #endif
  2403. #if ENABLED(NOZZLE_PARK_FEATURE)
  2404. /**
  2405. * G27: Park the nozzle
  2406. */
  2407. inline void gcode_G27() {
  2408. // Don't allow nozzle parking without homing first
  2409. if (axis_unhomed_error(true, true, true)) { return; }
  2410. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2411. Nozzle::park(z_action);
  2412. }
  2413. #endif // NOZZLE_PARK_FEATURE
  2414. #if ENABLED(QUICK_HOME)
  2415. static void quick_home_xy() {
  2416. // Pretend the current position is 0,0
  2417. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2418. sync_plan_position();
  2419. int x_axis_home_dir =
  2420. #if ENABLED(DUAL_X_CARRIAGE)
  2421. x_home_dir(active_extruder)
  2422. #else
  2423. home_dir(X_AXIS)
  2424. #endif
  2425. ;
  2426. float mlx = max_length(X_AXIS),
  2427. mly = max_length(Y_AXIS),
  2428. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2429. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2430. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2431. endstops.hit_on_purpose(); // clear endstop hit flags
  2432. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2433. }
  2434. #endif // QUICK_HOME
  2435. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2436. void log_machine_info() {
  2437. SERIAL_ECHOPGM("Machine Type: ");
  2438. #if ENABLED(DELTA)
  2439. SERIAL_ECHOLNPGM("Delta");
  2440. #elif IS_SCARA
  2441. SERIAL_ECHOLNPGM("SCARA");
  2442. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2443. SERIAL_ECHOLNPGM("Core");
  2444. #else
  2445. SERIAL_ECHOLNPGM("Cartesian");
  2446. #endif
  2447. SERIAL_ECHOPGM("Probe: ");
  2448. #if ENABLED(FIX_MOUNTED_PROBE)
  2449. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2450. #elif HAS_Z_SERVO_ENDSTOP
  2451. SERIAL_ECHOLNPGM("SERVO PROBE");
  2452. #elif ENABLED(BLTOUCH)
  2453. SERIAL_ECHOLNPGM("BLTOUCH");
  2454. #elif ENABLED(Z_PROBE_SLED)
  2455. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2456. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2457. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2458. #else
  2459. SERIAL_ECHOLNPGM("NONE");
  2460. #endif
  2461. #if HAS_BED_PROBE
  2462. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2463. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2464. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2465. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2466. SERIAL_ECHOPGM(" (Right");
  2467. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2468. SERIAL_ECHOPGM(" (Left");
  2469. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2470. SERIAL_ECHOPGM(" (Middle");
  2471. #else
  2472. SERIAL_ECHOPGM(" (Aligned With");
  2473. #endif
  2474. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2475. SERIAL_ECHOPGM("-Back");
  2476. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2477. SERIAL_ECHOPGM("-Front");
  2478. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2479. SERIAL_ECHOPGM("-Center");
  2480. #endif
  2481. if (zprobe_zoffset < 0)
  2482. SERIAL_ECHOPGM(" & Below");
  2483. else if (zprobe_zoffset > 0)
  2484. SERIAL_ECHOPGM(" & Above");
  2485. else
  2486. SERIAL_ECHOPGM(" & Same Z as");
  2487. SERIAL_ECHOLNPGM(" Nozzle)");
  2488. #endif
  2489. #if HAS_ABL
  2490. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2491. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2492. SERIAL_ECHOPGM("LINEAR");
  2493. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2494. SERIAL_ECHOPGM("BILINEAR");
  2495. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2496. SERIAL_ECHOPGM("3POINT");
  2497. #endif
  2498. if (planner.abl_enabled) {
  2499. SERIAL_ECHOLNPGM(" (enabled)");
  2500. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)
  2501. float diff[XYZ] = {
  2502. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2503. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2504. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2505. };
  2506. SERIAL_ECHOPGM("ABL Adjustment X");
  2507. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2508. SERIAL_ECHO(diff[X_AXIS]);
  2509. SERIAL_ECHOPGM(" Y");
  2510. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2511. SERIAL_ECHO(diff[Y_AXIS]);
  2512. SERIAL_ECHOPGM(" Z");
  2513. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2514. SERIAL_ECHO(diff[Z_AXIS]);
  2515. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2516. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2517. #endif
  2518. }
  2519. SERIAL_EOL;
  2520. #elif ENABLED(MESH_BED_LEVELING)
  2521. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2522. if (mbl.active()) {
  2523. SERIAL_ECHOLNPGM(" (enabled)");
  2524. SERIAL_ECHOPAIR("MBL Adjustment Z", mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)));
  2525. }
  2526. SERIAL_EOL;
  2527. #endif
  2528. }
  2529. #endif // DEBUG_LEVELING_FEATURE
  2530. #if ENABLED(DELTA)
  2531. /**
  2532. * A delta can only safely home all axes at the same time
  2533. * This is like quick_home_xy() but for 3 towers.
  2534. */
  2535. inline void home_delta() {
  2536. // Init the current position of all carriages to 0,0,0
  2537. memset(current_position, 0, sizeof(current_position));
  2538. sync_plan_position();
  2539. // Move all carriages together linearly until an endstop is hit.
  2540. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2541. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2542. line_to_current_position();
  2543. stepper.synchronize();
  2544. endstops.hit_on_purpose(); // clear endstop hit flags
  2545. // Probably not needed. Double-check this line:
  2546. memset(current_position, 0, sizeof(current_position));
  2547. // At least one carriage has reached the top.
  2548. // Now back off and re-home each carriage separately.
  2549. HOMEAXIS(A);
  2550. HOMEAXIS(B);
  2551. HOMEAXIS(C);
  2552. // Set all carriages to their home positions
  2553. // Do this here all at once for Delta, because
  2554. // XYZ isn't ABC. Applying this per-tower would
  2555. // give the impression that they are the same.
  2556. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2557. SYNC_PLAN_POSITION_KINEMATIC();
  2558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2559. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2560. #endif
  2561. }
  2562. #endif // DELTA
  2563. #if ENABLED(Z_SAFE_HOMING)
  2564. inline void home_z_safely() {
  2565. // Disallow Z homing if X or Y are unknown
  2566. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2567. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2568. SERIAL_ECHO_START;
  2569. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2570. return;
  2571. }
  2572. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2573. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2574. #endif
  2575. SYNC_PLAN_POSITION_KINEMATIC();
  2576. /**
  2577. * Move the Z probe (or just the nozzle) to the safe homing point
  2578. */
  2579. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2580. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2581. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2582. if (position_is_reachable(
  2583. destination
  2584. #if HOMING_Z_WITH_PROBE
  2585. , true
  2586. #endif
  2587. )
  2588. ) {
  2589. #if HOMING_Z_WITH_PROBE
  2590. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2591. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2592. #endif
  2593. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2594. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2595. #endif
  2596. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2597. HOMEAXIS(Z);
  2598. }
  2599. else {
  2600. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2601. SERIAL_ECHO_START;
  2602. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2603. }
  2604. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2605. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2606. #endif
  2607. }
  2608. #endif // Z_SAFE_HOMING
  2609. /**
  2610. * G28: Home all axes according to settings
  2611. *
  2612. * Parameters
  2613. *
  2614. * None Home to all axes with no parameters.
  2615. * With QUICK_HOME enabled XY will home together, then Z.
  2616. *
  2617. * Cartesian parameters
  2618. *
  2619. * X Home to the X endstop
  2620. * Y Home to the Y endstop
  2621. * Z Home to the Z endstop
  2622. *
  2623. */
  2624. inline void gcode_G28() {
  2625. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2626. if (DEBUGGING(LEVELING)) {
  2627. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2628. log_machine_info();
  2629. }
  2630. #endif
  2631. // Wait for planner moves to finish!
  2632. stepper.synchronize();
  2633. // For auto bed leveling, clear the level matrix
  2634. #if HAS_ABL
  2635. reset_bed_level();
  2636. #endif
  2637. // Always home with tool 0 active
  2638. #if HOTENDS > 1
  2639. uint8_t old_tool_index = active_extruder;
  2640. tool_change(0, 0, true);
  2641. #endif
  2642. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2643. extruder_duplication_enabled = false;
  2644. #endif
  2645. /**
  2646. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2647. * on again when homing all axis
  2648. */
  2649. #if ENABLED(MESH_BED_LEVELING)
  2650. float pre_home_z = MESH_HOME_SEARCH_Z;
  2651. if (mbl.active()) {
  2652. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2653. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2654. #endif
  2655. // Save known Z position if already homed
  2656. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2657. pre_home_z = current_position[Z_AXIS];
  2658. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2659. }
  2660. mbl.set_active(false);
  2661. current_position[Z_AXIS] = pre_home_z;
  2662. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2663. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2664. #endif
  2665. }
  2666. #endif
  2667. setup_for_endstop_or_probe_move();
  2668. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2669. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2670. #endif
  2671. endstops.enable(true); // Enable endstops for next homing move
  2672. #if ENABLED(DELTA)
  2673. home_delta();
  2674. #else // NOT DELTA
  2675. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2676. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2677. set_destination_to_current();
  2678. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2679. if (home_all_axis || homeZ) {
  2680. HOMEAXIS(Z);
  2681. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2682. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2683. #endif
  2684. }
  2685. #else
  2686. if (home_all_axis || homeX || homeY) {
  2687. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2688. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2689. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2690. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2691. if (DEBUGGING(LEVELING))
  2692. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2693. #endif
  2694. do_blocking_move_to_z(destination[Z_AXIS]);
  2695. }
  2696. }
  2697. #endif
  2698. #if ENABLED(QUICK_HOME)
  2699. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2700. #endif
  2701. #if ENABLED(HOME_Y_BEFORE_X)
  2702. // Home Y
  2703. if (home_all_axis || homeY) {
  2704. HOMEAXIS(Y);
  2705. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2706. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2707. #endif
  2708. }
  2709. #endif
  2710. // Home X
  2711. if (home_all_axis || homeX) {
  2712. #if ENABLED(DUAL_X_CARRIAGE)
  2713. int tmp_extruder = active_extruder;
  2714. active_extruder = !active_extruder;
  2715. HOMEAXIS(X);
  2716. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2717. active_extruder = tmp_extruder;
  2718. HOMEAXIS(X);
  2719. // reset state used by the different modes
  2720. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2721. delayed_move_time = 0;
  2722. active_extruder_parked = true;
  2723. #else
  2724. HOMEAXIS(X);
  2725. #endif
  2726. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2727. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2728. #endif
  2729. }
  2730. #if DISABLED(HOME_Y_BEFORE_X)
  2731. // Home Y
  2732. if (home_all_axis || homeY) {
  2733. HOMEAXIS(Y);
  2734. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2735. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2736. #endif
  2737. }
  2738. #endif
  2739. // Home Z last if homing towards the bed
  2740. #if Z_HOME_DIR < 0
  2741. if (home_all_axis || homeZ) {
  2742. #if ENABLED(Z_SAFE_HOMING)
  2743. home_z_safely();
  2744. #else
  2745. HOMEAXIS(Z);
  2746. #endif
  2747. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2748. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2749. #endif
  2750. } // home_all_axis || homeZ
  2751. #endif // Z_HOME_DIR < 0
  2752. SYNC_PLAN_POSITION_KINEMATIC();
  2753. #endif // !DELTA (gcode_G28)
  2754. endstops.not_homing();
  2755. // Enable mesh leveling again
  2756. #if ENABLED(MESH_BED_LEVELING)
  2757. if (mbl.has_mesh()) {
  2758. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2759. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2760. #endif
  2761. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2762. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2763. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2764. #endif
  2765. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2766. #if Z_HOME_DIR > 0
  2767. + Z_MAX_POS
  2768. #endif
  2769. ;
  2770. SYNC_PLAN_POSITION_KINEMATIC();
  2771. mbl.set_active(true);
  2772. #if ENABLED(MESH_G28_REST_ORIGIN)
  2773. current_position[Z_AXIS] = 0.0;
  2774. set_destination_to_current();
  2775. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  2776. stepper.synchronize();
  2777. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2778. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2779. #endif
  2780. #else
  2781. planner.unapply_leveling(current_position);
  2782. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2783. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2784. #endif
  2785. #endif
  2786. }
  2787. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2788. current_position[Z_AXIS] = pre_home_z;
  2789. SYNC_PLAN_POSITION_KINEMATIC();
  2790. mbl.set_active(true);
  2791. planner.unapply_leveling(current_position);
  2792. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2793. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2794. #endif
  2795. }
  2796. }
  2797. #endif
  2798. #if ENABLED(DELTA)
  2799. // move to a height where we can use the full xy-area
  2800. do_blocking_move_to_z(delta_clip_start_height);
  2801. #endif
  2802. clean_up_after_endstop_or_probe_move();
  2803. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2804. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2805. #endif
  2806. // Restore the active tool after homing
  2807. #if HOTENDS > 1
  2808. tool_change(old_tool_index, 0, true);
  2809. #endif
  2810. report_current_position();
  2811. }
  2812. #if HAS_PROBING_PROCEDURE
  2813. void out_of_range_error(const char* p_edge) {
  2814. SERIAL_PROTOCOLPGM("?Probe ");
  2815. serialprintPGM(p_edge);
  2816. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2817. }
  2818. #endif
  2819. #if ENABLED(MESH_BED_LEVELING)
  2820. inline void _mbl_goto_xy(float x, float y) {
  2821. float old_feedrate_mm_s = feedrate_mm_s;
  2822. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2823. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2824. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2825. + Z_CLEARANCE_BETWEEN_PROBES
  2826. #elif Z_HOMING_HEIGHT > 0
  2827. + Z_HOMING_HEIGHT
  2828. #endif
  2829. ;
  2830. line_to_current_position();
  2831. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2832. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2833. line_to_current_position();
  2834. #if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
  2835. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2836. line_to_current_position();
  2837. #endif
  2838. feedrate_mm_s = old_feedrate_mm_s;
  2839. stepper.synchronize();
  2840. }
  2841. /**
  2842. * G29: Mesh-based Z probe, probes a grid and produces a
  2843. * mesh to compensate for variable bed height
  2844. *
  2845. * Parameters With MESH_BED_LEVELING:
  2846. *
  2847. * S0 Produce a mesh report
  2848. * S1 Start probing mesh points
  2849. * S2 Probe the next mesh point
  2850. * S3 Xn Yn Zn.nn Manually modify a single point
  2851. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2852. * S5 Reset and disable mesh
  2853. *
  2854. * The S0 report the points as below
  2855. *
  2856. * +----> X-axis 1-n
  2857. * |
  2858. * |
  2859. * v Y-axis 1-n
  2860. *
  2861. */
  2862. inline void gcode_G29() {
  2863. static int probe_point = -1;
  2864. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2865. if (state < 0 || state > 5) {
  2866. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2867. return;
  2868. }
  2869. int8_t px, py;
  2870. switch (state) {
  2871. case MeshReport:
  2872. if (mbl.has_mesh()) {
  2873. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2874. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2875. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2876. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2877. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2878. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2879. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2880. SERIAL_PROTOCOLPGM(" ");
  2881. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2882. }
  2883. SERIAL_EOL;
  2884. }
  2885. }
  2886. else
  2887. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2888. break;
  2889. case MeshStart:
  2890. mbl.reset();
  2891. probe_point = 0;
  2892. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2893. break;
  2894. case MeshNext:
  2895. if (probe_point < 0) {
  2896. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2897. return;
  2898. }
  2899. // For each G29 S2...
  2900. if (probe_point == 0) {
  2901. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2902. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2903. #if Z_HOME_DIR > 0
  2904. + Z_MAX_POS
  2905. #endif
  2906. ;
  2907. SYNC_PLAN_POSITION_KINEMATIC();
  2908. }
  2909. else {
  2910. // For G29 S2 after adjusting Z.
  2911. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2912. }
  2913. // If there's another point to sample, move there with optional lift.
  2914. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2915. mbl.zigzag(probe_point, px, py);
  2916. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2917. probe_point++;
  2918. }
  2919. else {
  2920. // One last "return to the bed" (as originally coded) at completion
  2921. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2922. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2923. + Z_CLEARANCE_BETWEEN_PROBES
  2924. #elif Z_HOMING_HEIGHT > 0
  2925. + Z_HOMING_HEIGHT
  2926. #endif
  2927. ;
  2928. line_to_current_position();
  2929. stepper.synchronize();
  2930. // After recording the last point, activate the mbl and home
  2931. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2932. probe_point = -1;
  2933. mbl.set_has_mesh(true);
  2934. enqueue_and_echo_commands_P(PSTR("G28"));
  2935. }
  2936. break;
  2937. case MeshSet:
  2938. if (code_seen('X')) {
  2939. px = code_value_int() - 1;
  2940. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2941. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2942. return;
  2943. }
  2944. }
  2945. else {
  2946. SERIAL_PROTOCOLLNPGM("X not entered.");
  2947. return;
  2948. }
  2949. if (code_seen('Y')) {
  2950. py = code_value_int() - 1;
  2951. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2952. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2953. return;
  2954. }
  2955. }
  2956. else {
  2957. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2958. return;
  2959. }
  2960. if (code_seen('Z')) {
  2961. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2962. }
  2963. else {
  2964. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2965. return;
  2966. }
  2967. break;
  2968. case MeshSetZOffset:
  2969. if (code_seen('Z')) {
  2970. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2971. }
  2972. else {
  2973. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2974. return;
  2975. }
  2976. break;
  2977. case MeshReset:
  2978. if (mbl.active()) {
  2979. current_position[Z_AXIS] +=
  2980. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2981. mbl.reset();
  2982. SYNC_PLAN_POSITION_KINEMATIC();
  2983. }
  2984. else
  2985. mbl.reset();
  2986. } // switch(state)
  2987. report_current_position();
  2988. }
  2989. #elif HAS_ABL
  2990. /**
  2991. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2992. * Will fail if the printer has not been homed with G28.
  2993. *
  2994. * Enhanced G29 Auto Bed Leveling Probe Routine
  2995. *
  2996. * Parameters With ABL_GRID:
  2997. *
  2998. * P Set the size of the grid that will be probed (P x P points).
  2999. * Not supported by non-linear delta printer bed leveling.
  3000. * Example: "G29 P4"
  3001. *
  3002. * S Set the XY travel speed between probe points (in units/min)
  3003. *
  3004. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3005. * or clean the rotation Matrix. Useful to check the topology
  3006. * after a first run of G29.
  3007. *
  3008. * V Set the verbose level (0-4). Example: "G29 V3"
  3009. *
  3010. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3011. * This is useful for manual bed leveling and finding flaws in the bed (to
  3012. * assist with part placement).
  3013. * Not supported by non-linear delta printer bed leveling.
  3014. *
  3015. * F Set the Front limit of the probing grid
  3016. * B Set the Back limit of the probing grid
  3017. * L Set the Left limit of the probing grid
  3018. * R Set the Right limit of the probing grid
  3019. *
  3020. * Global Parameters:
  3021. *
  3022. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  3023. * Include "E" to engage/disengage the Z probe for each sample.
  3024. * There's no extra effect if you have a fixed Z probe.
  3025. * Usage: "G29 E" or "G29 e"
  3026. *
  3027. */
  3028. inline void gcode_G29() {
  3029. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3030. bool query = code_seen('Q');
  3031. uint8_t old_debug_flags = marlin_debug_flags;
  3032. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3033. if (DEBUGGING(LEVELING)) {
  3034. DEBUG_POS(">>> gcode_G29", current_position);
  3035. log_machine_info();
  3036. }
  3037. marlin_debug_flags = old_debug_flags;
  3038. if (query) return;
  3039. #endif
  3040. // Don't allow auto-leveling without homing first
  3041. if (axis_unhomed_error(true, true, true)) return;
  3042. int verbose_level = code_seen('V') ? code_value_int() : 1;
  3043. if (verbose_level < 0 || verbose_level > 4) {
  3044. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3045. return;
  3046. }
  3047. bool dryrun = code_seen('D'),
  3048. stow_probe_after_each = code_seen('E');
  3049. #if ABL_GRID
  3050. #if ABL_PLANAR
  3051. bool do_topography_map = verbose_level > 2 || code_seen('T');
  3052. #endif
  3053. if (verbose_level > 0) {
  3054. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3055. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3056. }
  3057. int abl_grid_points_x = ABL_GRID_POINTS_X,
  3058. abl_grid_points_y = ABL_GRID_POINTS_Y;
  3059. #if ABL_PLANAR
  3060. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3061. if (abl_grid_points_x < 2) {
  3062. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  3063. return;
  3064. }
  3065. #endif
  3066. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3067. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  3068. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  3069. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  3070. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3071. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3072. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3073. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3074. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3075. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3076. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3077. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3078. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3079. if (left_out || right_out || front_out || back_out) {
  3080. if (left_out) {
  3081. out_of_range_error(PSTR("(L)eft"));
  3082. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3083. }
  3084. if (right_out) {
  3085. out_of_range_error(PSTR("(R)ight"));
  3086. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3087. }
  3088. if (front_out) {
  3089. out_of_range_error(PSTR("(F)ront"));
  3090. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3091. }
  3092. if (back_out) {
  3093. out_of_range_error(PSTR("(B)ack"));
  3094. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3095. }
  3096. return;
  3097. }
  3098. #endif // ABL_GRID
  3099. stepper.synchronize();
  3100. // Disable auto bed leveling during G29
  3101. bool abl_should_enable = planner.abl_enabled;
  3102. planner.abl_enabled = false;
  3103. if (!dryrun) {
  3104. // Re-orient the current position without leveling
  3105. // based on where the steppers are positioned.
  3106. get_cartesian_from_steppers();
  3107. memcpy(current_position, cartes, sizeof(cartes));
  3108. // Inform the planner about the new coordinates
  3109. SYNC_PLAN_POSITION_KINEMATIC();
  3110. }
  3111. setup_for_endstop_or_probe_move();
  3112. // Deploy the probe. Probe will raise if needed.
  3113. if (DEPLOY_PROBE()) {
  3114. planner.abl_enabled = abl_should_enable;
  3115. return;
  3116. }
  3117. float xProbe = 0, yProbe = 0, measured_z = 0;
  3118. #if ABL_GRID
  3119. // probe at the points of a lattice grid
  3120. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3121. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3122. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3123. float zoffset = zprobe_zoffset;
  3124. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3125. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3126. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3127. || left_probe_bed_position != bilinear_start[X_AXIS]
  3128. || front_probe_bed_position != bilinear_start[Y_AXIS]
  3129. ) {
  3130. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3131. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3132. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3133. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3134. // Can't re-enable (on error) until the new grid is written
  3135. abl_should_enable = false;
  3136. }
  3137. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3138. /**
  3139. * solve the plane equation ax + by + d = z
  3140. * A is the matrix with rows [x y 1] for all the probed points
  3141. * B is the vector of the Z positions
  3142. * the normal vector to the plane is formed by the coefficients of the
  3143. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3144. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3145. */
  3146. int abl2 = abl_grid_points_x * abl_grid_points_y,
  3147. indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3148. probePointCounter = -1;
  3149. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3150. eqnBVector[abl2], // "B" vector of Z points
  3151. mean = 0.0;
  3152. #endif // AUTO_BED_LEVELING_LINEAR
  3153. bool zig = abl_grid_points_y & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  3154. for (uint8_t yCount = 0; yCount < abl_grid_points_y; yCount++) {
  3155. float yBase = front_probe_bed_position + yGridSpacing * yCount;
  3156. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3157. int8_t xStart, xStop, xInc;
  3158. if (zig) {
  3159. xStart = 0;
  3160. xStop = abl_grid_points_x;
  3161. xInc = 1;
  3162. }
  3163. else {
  3164. xStart = abl_grid_points_x - 1;
  3165. xStop = -1;
  3166. xInc = -1;
  3167. }
  3168. zig = !zig;
  3169. for (int8_t xCount = xStart; xCount != xStop; xCount += xInc) {
  3170. float xBase = left_probe_bed_position + xGridSpacing * xCount;
  3171. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3172. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3173. indexIntoAB[xCount][yCount] = ++probePointCounter;
  3174. #endif
  3175. #if IS_KINEMATIC
  3176. // Avoid probing outside the round or hexagonal area
  3177. float pos[XYZ] = { xProbe, yProbe, 0 };
  3178. if (!position_is_reachable(pos, true)) continue;
  3179. #endif
  3180. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3181. if (measured_z == NAN) {
  3182. planner.abl_enabled = abl_should_enable;
  3183. return;
  3184. }
  3185. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3186. mean += measured_z;
  3187. eqnBVector[probePointCounter] = measured_z;
  3188. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3189. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3190. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3191. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3192. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3193. #endif
  3194. idle();
  3195. } //xProbe
  3196. } //yProbe
  3197. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3198. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3199. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3200. #endif
  3201. // Probe at 3 arbitrary points
  3202. vector_3 points[3] = {
  3203. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3204. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3205. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3206. };
  3207. for (uint8_t i = 0; i < 3; ++i) {
  3208. // Retain the last probe position
  3209. xProbe = LOGICAL_X_POSITION(points[i].x);
  3210. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3211. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3212. }
  3213. if (measured_z == NAN) {
  3214. planner.abl_enabled = abl_should_enable;
  3215. return;
  3216. }
  3217. if (!dryrun) {
  3218. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3219. if (planeNormal.z < 0) {
  3220. planeNormal.x *= -1;
  3221. planeNormal.y *= -1;
  3222. planeNormal.z *= -1;
  3223. }
  3224. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3225. // Can't re-enable (on error) until the new grid is written
  3226. abl_should_enable = false;
  3227. }
  3228. #endif // AUTO_BED_LEVELING_3POINT
  3229. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3230. if (STOW_PROBE()) {
  3231. planner.abl_enabled = abl_should_enable;
  3232. return;
  3233. }
  3234. //
  3235. // Unless this is a dry run, auto bed leveling will
  3236. // definitely be enabled after this point
  3237. //
  3238. // Restore state after probing
  3239. clean_up_after_endstop_or_probe_move();
  3240. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3241. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3242. #endif
  3243. // Calculate leveling, print reports, correct the position
  3244. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3245. if (!dryrun) extrapolate_unprobed_bed_level();
  3246. print_bed_level();
  3247. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3248. // For LINEAR leveling calculate matrix, print reports, correct the position
  3249. // solve lsq problem
  3250. float plane_equation_coefficients[3];
  3251. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3252. mean /= abl2;
  3253. if (verbose_level) {
  3254. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3255. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3256. SERIAL_PROTOCOLPGM(" b: ");
  3257. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3258. SERIAL_PROTOCOLPGM(" d: ");
  3259. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3260. SERIAL_EOL;
  3261. if (verbose_level > 2) {
  3262. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3263. SERIAL_PROTOCOL_F(mean, 8);
  3264. SERIAL_EOL;
  3265. }
  3266. }
  3267. // Create the matrix but don't correct the position yet
  3268. if (!dryrun) {
  3269. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3270. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3271. );
  3272. }
  3273. // Show the Topography map if enabled
  3274. if (do_topography_map) {
  3275. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3276. " +--- BACK --+\n"
  3277. " | |\n"
  3278. " L | (+) | R\n"
  3279. " E | | I\n"
  3280. " F | (-) N (+) | G\n"
  3281. " T | | H\n"
  3282. " | (-) | T\n"
  3283. " | |\n"
  3284. " O-- FRONT --+\n"
  3285. " (0,0)");
  3286. float min_diff = 999;
  3287. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3288. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3289. int ind = indexIntoAB[xx][yy];
  3290. float diff = eqnBVector[ind] - mean,
  3291. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3292. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3293. z_tmp = 0;
  3294. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3295. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3296. if (diff >= 0.0)
  3297. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3298. else
  3299. SERIAL_PROTOCOLCHAR(' ');
  3300. SERIAL_PROTOCOL_F(diff, 5);
  3301. } // xx
  3302. SERIAL_EOL;
  3303. } // yy
  3304. SERIAL_EOL;
  3305. if (verbose_level > 3) {
  3306. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3307. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3308. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3309. int ind = indexIntoAB[xx][yy];
  3310. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3311. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3312. z_tmp = 0;
  3313. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3314. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3315. if (diff >= 0.0)
  3316. SERIAL_PROTOCOLPGM(" +");
  3317. // Include + for column alignment
  3318. else
  3319. SERIAL_PROTOCOLCHAR(' ');
  3320. SERIAL_PROTOCOL_F(diff, 5);
  3321. } // xx
  3322. SERIAL_EOL;
  3323. } // yy
  3324. SERIAL_EOL;
  3325. }
  3326. } //do_topography_map
  3327. #endif // AUTO_BED_LEVELING_LINEAR
  3328. #if ABL_PLANAR
  3329. // For LINEAR and 3POINT leveling correct the current position
  3330. if (verbose_level > 0)
  3331. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3332. if (!dryrun) {
  3333. //
  3334. // Correct the current XYZ position based on the tilted plane.
  3335. //
  3336. // 1. Get the distance from the current position to the reference point.
  3337. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3338. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3339. z_real = current_position[Z_AXIS],
  3340. z_zero = 0;
  3341. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3342. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3343. #endif
  3344. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3345. // 2. Apply the inverse matrix to the distance
  3346. // from the reference point to X, Y, and zero.
  3347. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3348. // 3. Get the matrix-based corrected Z.
  3349. // (Even if not used, get it for comparison.)
  3350. float new_z = z_real + z_zero;
  3351. // 4. Use the last measured distance to the bed, if possible
  3352. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3353. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3354. ) {
  3355. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3356. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3357. if (DEBUGGING(LEVELING)) {
  3358. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3359. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3360. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3361. }
  3362. #endif
  3363. new_z = simple_z;
  3364. }
  3365. // 5. The rotated XY and corrected Z are now current_position
  3366. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3367. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3368. current_position[Z_AXIS] = new_z;
  3369. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3370. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3371. #endif
  3372. SYNC_PLAN_POSITION_KINEMATIC();
  3373. abl_should_enable = true;
  3374. }
  3375. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3376. if (!dryrun) {
  3377. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3378. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3379. #endif
  3380. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3382. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3383. #endif
  3384. SYNC_PLAN_POSITION_KINEMATIC();
  3385. abl_should_enable = true;
  3386. }
  3387. #endif // ABL_PLANAR
  3388. #ifdef Z_PROBE_END_SCRIPT
  3389. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3390. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3391. #endif
  3392. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3393. stepper.synchronize();
  3394. #endif
  3395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3396. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3397. #endif
  3398. report_current_position();
  3399. KEEPALIVE_STATE(IN_HANDLER);
  3400. // Auto Bed Leveling is complete! Enable if possible.
  3401. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3402. }
  3403. #endif // HAS_ABL
  3404. #if HAS_BED_PROBE
  3405. /**
  3406. * G30: Do a single Z probe at the current XY
  3407. */
  3408. inline void gcode_G30() {
  3409. #if HAS_ABL
  3410. reset_bed_level();
  3411. #endif
  3412. setup_for_endstop_or_probe_move();
  3413. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3414. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3415. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3416. true, 1);
  3417. SERIAL_PROTOCOLPGM("Bed X: ");
  3418. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3419. SERIAL_PROTOCOLPGM(" Y: ");
  3420. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3421. SERIAL_PROTOCOLPGM(" Z: ");
  3422. SERIAL_PROTOCOL(measured_z + 0.0001);
  3423. SERIAL_EOL;
  3424. clean_up_after_endstop_or_probe_move();
  3425. report_current_position();
  3426. }
  3427. #if ENABLED(Z_PROBE_SLED)
  3428. /**
  3429. * G31: Deploy the Z probe
  3430. */
  3431. inline void gcode_G31() { DEPLOY_PROBE(); }
  3432. /**
  3433. * G32: Stow the Z probe
  3434. */
  3435. inline void gcode_G32() { STOW_PROBE(); }
  3436. #endif // Z_PROBE_SLED
  3437. #endif // HAS_BED_PROBE
  3438. /**
  3439. * G92: Set current position to given X Y Z E
  3440. */
  3441. inline void gcode_G92() {
  3442. bool didXYZ = false,
  3443. didE = code_seen('E');
  3444. if (!didE) stepper.synchronize();
  3445. LOOP_XYZE(i) {
  3446. if (code_seen(axis_codes[i])) {
  3447. #if IS_SCARA
  3448. current_position[i] = code_value_axis_units(i);
  3449. if (i != E_AXIS) didXYZ = true;
  3450. #else
  3451. float p = current_position[i],
  3452. v = code_value_axis_units(i);
  3453. current_position[i] = v;
  3454. if (i != E_AXIS) {
  3455. didXYZ = true;
  3456. position_shift[i] += v - p; // Offset the coordinate space
  3457. update_software_endstops((AxisEnum)i);
  3458. }
  3459. #endif
  3460. }
  3461. }
  3462. if (didXYZ)
  3463. SYNC_PLAN_POSITION_KINEMATIC();
  3464. else if (didE)
  3465. sync_plan_position_e();
  3466. report_current_position();
  3467. }
  3468. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  3469. /**
  3470. * M0: Unconditional stop - Wait for user button press on LCD
  3471. * M1: Conditional stop - Wait for user button press on LCD
  3472. */
  3473. inline void gcode_M0_M1() {
  3474. char* args = current_command_args;
  3475. millis_t codenum = 0;
  3476. bool hasP = false, hasS = false;
  3477. if (code_seen('P')) {
  3478. codenum = code_value_millis(); // milliseconds to wait
  3479. hasP = codenum > 0;
  3480. }
  3481. if (code_seen('S')) {
  3482. codenum = code_value_millis_from_seconds(); // seconds to wait
  3483. hasS = codenum > 0;
  3484. }
  3485. #if ENABLED(ULTIPANEL)
  3486. if (!hasP && !hasS && *args != '\0')
  3487. lcd_setstatus(args, true);
  3488. else {
  3489. LCD_MESSAGEPGM(MSG_USERWAIT);
  3490. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3491. dontExpireStatus();
  3492. #endif
  3493. }
  3494. lcd_ignore_click();
  3495. #else
  3496. if (!hasP && !hasS && *args != '\0') {
  3497. SERIAL_ECHO_START;
  3498. SERIAL_ECHOLN(args);
  3499. }
  3500. #endif
  3501. stepper.synchronize();
  3502. refresh_cmd_timeout();
  3503. #if ENABLED(ULTIPANEL)
  3504. if (codenum > 0) {
  3505. codenum += previous_cmd_ms; // wait until this time for a click
  3506. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3507. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3508. lcd_ignore_click(false);
  3509. }
  3510. else if (lcd_detected()) {
  3511. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3512. while (!lcd_clicked()) idle();
  3513. }
  3514. else return;
  3515. if (IS_SD_PRINTING)
  3516. LCD_MESSAGEPGM(MSG_RESUMING);
  3517. else
  3518. LCD_MESSAGEPGM(WELCOME_MSG);
  3519. #else
  3520. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3521. wait_for_user = true;
  3522. if (codenum > 0) {
  3523. codenum += previous_cmd_ms; // wait until this time for an M108
  3524. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3525. }
  3526. else while (wait_for_user) idle();
  3527. wait_for_user = false;
  3528. #endif
  3529. KEEPALIVE_STATE(IN_HANDLER);
  3530. }
  3531. #endif // ULTIPANEL || EMERGENCY_PARSER
  3532. /**
  3533. * M17: Enable power on all stepper motors
  3534. */
  3535. inline void gcode_M17() {
  3536. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3537. enable_all_steppers();
  3538. }
  3539. #if ENABLED(SDSUPPORT)
  3540. /**
  3541. * M20: List SD card to serial output
  3542. */
  3543. inline void gcode_M20() {
  3544. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3545. card.ls();
  3546. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3547. }
  3548. /**
  3549. * M21: Init SD Card
  3550. */
  3551. inline void gcode_M21() { card.initsd(); }
  3552. /**
  3553. * M22: Release SD Card
  3554. */
  3555. inline void gcode_M22() { card.release(); }
  3556. /**
  3557. * M23: Open a file
  3558. */
  3559. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3560. /**
  3561. * M24: Start SD Print
  3562. */
  3563. inline void gcode_M24() {
  3564. card.startFileprint();
  3565. print_job_timer.start();
  3566. }
  3567. /**
  3568. * M25: Pause SD Print
  3569. */
  3570. inline void gcode_M25() { card.pauseSDPrint(); }
  3571. /**
  3572. * M26: Set SD Card file index
  3573. */
  3574. inline void gcode_M26() {
  3575. if (card.cardOK && code_seen('S'))
  3576. card.setIndex(code_value_long());
  3577. }
  3578. /**
  3579. * M27: Get SD Card status
  3580. */
  3581. inline void gcode_M27() { card.getStatus(); }
  3582. /**
  3583. * M28: Start SD Write
  3584. */
  3585. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3586. /**
  3587. * M29: Stop SD Write
  3588. * Processed in write to file routine above
  3589. */
  3590. inline void gcode_M29() {
  3591. // card.saving = false;
  3592. }
  3593. /**
  3594. * M30 <filename>: Delete SD Card file
  3595. */
  3596. inline void gcode_M30() {
  3597. if (card.cardOK) {
  3598. card.closefile();
  3599. card.removeFile(current_command_args);
  3600. }
  3601. }
  3602. #endif // SDSUPPORT
  3603. /**
  3604. * M31: Get the time since the start of SD Print (or last M109)
  3605. */
  3606. inline void gcode_M31() {
  3607. char buffer[21];
  3608. duration_t elapsed = print_job_timer.duration();
  3609. elapsed.toString(buffer);
  3610. lcd_setstatus(buffer);
  3611. SERIAL_ECHO_START;
  3612. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3613. thermalManager.autotempShutdown();
  3614. }
  3615. #if ENABLED(SDSUPPORT)
  3616. /**
  3617. * M32: Select file and start SD Print
  3618. */
  3619. inline void gcode_M32() {
  3620. if (card.sdprinting)
  3621. stepper.synchronize();
  3622. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3623. if (!namestartpos)
  3624. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3625. else
  3626. namestartpos++; //to skip the '!'
  3627. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3628. if (card.cardOK) {
  3629. card.openFile(namestartpos, true, call_procedure);
  3630. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3631. card.setIndex(code_value_long());
  3632. card.startFileprint();
  3633. // Procedure calls count as normal print time.
  3634. if (!call_procedure) print_job_timer.start();
  3635. }
  3636. }
  3637. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3638. /**
  3639. * M33: Get the long full path of a file or folder
  3640. *
  3641. * Parameters:
  3642. * <dospath> Case-insensitive DOS-style path to a file or folder
  3643. *
  3644. * Example:
  3645. * M33 miscel~1/armchair/armcha~1.gco
  3646. *
  3647. * Output:
  3648. * /Miscellaneous/Armchair/Armchair.gcode
  3649. */
  3650. inline void gcode_M33() {
  3651. card.printLongPath(current_command_args);
  3652. }
  3653. #endif
  3654. /**
  3655. * M928: Start SD Write
  3656. */
  3657. inline void gcode_M928() {
  3658. card.openLogFile(current_command_args);
  3659. }
  3660. #endif // SDSUPPORT
  3661. /**
  3662. * M42: Change pin status via GCode
  3663. *
  3664. * P<pin> Pin number (LED if omitted)
  3665. * S<byte> Pin status from 0 - 255
  3666. */
  3667. inline void gcode_M42() {
  3668. if (!code_seen('S')) return;
  3669. int pin_status = code_value_int();
  3670. if (pin_status < 0 || pin_status > 255) return;
  3671. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3672. if (pin_number < 0) return;
  3673. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3674. if (pin_number == sensitive_pins[i]) {
  3675. SERIAL_ERROR_START;
  3676. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  3677. return;
  3678. }
  3679. pinMode(pin_number, OUTPUT);
  3680. digitalWrite(pin_number, pin_status);
  3681. analogWrite(pin_number, pin_status);
  3682. #if FAN_COUNT > 0
  3683. switch (pin_number) {
  3684. #if HAS_FAN0
  3685. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3686. #endif
  3687. #if HAS_FAN1
  3688. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3689. #endif
  3690. #if HAS_FAN2
  3691. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3692. #endif
  3693. }
  3694. #endif
  3695. }
  3696. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3697. /**
  3698. * M48: Z probe repeatability measurement function.
  3699. *
  3700. * Usage:
  3701. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3702. * P = Number of sampled points (4-50, default 10)
  3703. * X = Sample X position
  3704. * Y = Sample Y position
  3705. * V = Verbose level (0-4, default=1)
  3706. * E = Engage Z probe for each reading
  3707. * L = Number of legs of movement before probe
  3708. * S = Schizoid (Or Star if you prefer)
  3709. *
  3710. * This function assumes the bed has been homed. Specifically, that a G28 command
  3711. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3712. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3713. * regenerated.
  3714. */
  3715. inline void gcode_M48() {
  3716. if (axis_unhomed_error(true, true, true)) return;
  3717. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3718. if (verbose_level < 0 || verbose_level > 4) {
  3719. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3720. return;
  3721. }
  3722. if (verbose_level > 0)
  3723. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3724. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3725. if (n_samples < 4 || n_samples > 50) {
  3726. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3727. return;
  3728. }
  3729. float X_current = current_position[X_AXIS],
  3730. Y_current = current_position[Y_AXIS];
  3731. bool stow_probe_after_each = code_seen('E');
  3732. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3733. #if DISABLED(DELTA)
  3734. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3735. out_of_range_error(PSTR("X"));
  3736. return;
  3737. }
  3738. #endif
  3739. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3740. #if DISABLED(DELTA)
  3741. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3742. out_of_range_error(PSTR("Y"));
  3743. return;
  3744. }
  3745. #else
  3746. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  3747. if (!position_is_reachable(pos, true)) {
  3748. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3749. return;
  3750. }
  3751. #endif
  3752. bool seen_L = code_seen('L');
  3753. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3754. if (n_legs > 15) {
  3755. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3756. return;
  3757. }
  3758. if (n_legs == 1) n_legs = 2;
  3759. bool schizoid_flag = code_seen('S');
  3760. if (schizoid_flag && !seen_L) n_legs = 7;
  3761. /**
  3762. * Now get everything to the specified probe point So we can safely do a
  3763. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3764. * we don't want to use that as a starting point for each probe.
  3765. */
  3766. if (verbose_level > 2)
  3767. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3768. // Disable bed level correction in M48 because we want the raw data when we probe
  3769. #if HAS_ABL
  3770. reset_bed_level();
  3771. #endif
  3772. setup_for_endstop_or_probe_move();
  3773. // Move to the first point, deploy, and probe
  3774. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3775. randomSeed(millis());
  3776. double mean = 0, sigma = 0, sample_set[n_samples];
  3777. for (uint8_t n = 0; n < n_samples; n++) {
  3778. if (n_legs) {
  3779. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3780. float angle = random(0.0, 360.0),
  3781. radius = random(
  3782. #if ENABLED(DELTA)
  3783. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3784. #else
  3785. 5, X_MAX_LENGTH / 8
  3786. #endif
  3787. );
  3788. if (verbose_level > 3) {
  3789. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3790. SERIAL_ECHOPAIR(" angle: ", angle);
  3791. SERIAL_ECHOPGM(" Direction: ");
  3792. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3793. SERIAL_ECHOLNPGM("Clockwise");
  3794. }
  3795. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3796. double delta_angle;
  3797. if (schizoid_flag)
  3798. // The points of a 5 point star are 72 degrees apart. We need to
  3799. // skip a point and go to the next one on the star.
  3800. delta_angle = dir * 2.0 * 72.0;
  3801. else
  3802. // If we do this line, we are just trying to move further
  3803. // around the circle.
  3804. delta_angle = dir * (float) random(25, 45);
  3805. angle += delta_angle;
  3806. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3807. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3808. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3809. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3810. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3811. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3812. #if DISABLED(DELTA)
  3813. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3814. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3815. #else
  3816. // If we have gone out too far, we can do a simple fix and scale the numbers
  3817. // back in closer to the origin.
  3818. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3819. X_current /= 1.25;
  3820. Y_current /= 1.25;
  3821. if (verbose_level > 3) {
  3822. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3823. SERIAL_ECHOLNPAIR(", ", Y_current);
  3824. }
  3825. }
  3826. #endif
  3827. if (verbose_level > 3) {
  3828. SERIAL_PROTOCOLPGM("Going to:");
  3829. SERIAL_ECHOPAIR(" X", X_current);
  3830. SERIAL_ECHOPAIR(" Y", Y_current);
  3831. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3832. }
  3833. do_blocking_move_to_xy(X_current, Y_current);
  3834. } // n_legs loop
  3835. } // n_legs
  3836. // Probe a single point
  3837. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3838. /**
  3839. * Get the current mean for the data points we have so far
  3840. */
  3841. double sum = 0.0;
  3842. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3843. mean = sum / (n + 1);
  3844. /**
  3845. * Now, use that mean to calculate the standard deviation for the
  3846. * data points we have so far
  3847. */
  3848. sum = 0.0;
  3849. for (uint8_t j = 0; j <= n; j++)
  3850. sum += sq(sample_set[j] - mean);
  3851. sigma = sqrt(sum / (n + 1));
  3852. if (verbose_level > 0) {
  3853. if (verbose_level > 1) {
  3854. SERIAL_PROTOCOL(n + 1);
  3855. SERIAL_PROTOCOLPGM(" of ");
  3856. SERIAL_PROTOCOL((int)n_samples);
  3857. SERIAL_PROTOCOLPGM(" z: ");
  3858. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3859. if (verbose_level > 2) {
  3860. SERIAL_PROTOCOLPGM(" mean: ");
  3861. SERIAL_PROTOCOL_F(mean, 6);
  3862. SERIAL_PROTOCOLPGM(" sigma: ");
  3863. SERIAL_PROTOCOL_F(sigma, 6);
  3864. }
  3865. }
  3866. SERIAL_EOL;
  3867. }
  3868. } // End of probe loop
  3869. if (STOW_PROBE()) return;
  3870. if (verbose_level > 0) {
  3871. SERIAL_PROTOCOLPGM("Mean: ");
  3872. SERIAL_PROTOCOL_F(mean, 6);
  3873. SERIAL_EOL;
  3874. }
  3875. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3876. SERIAL_PROTOCOL_F(sigma, 6);
  3877. SERIAL_EOL; SERIAL_EOL;
  3878. clean_up_after_endstop_or_probe_move();
  3879. report_current_position();
  3880. }
  3881. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3882. /**
  3883. * M75: Start print timer
  3884. */
  3885. inline void gcode_M75() { print_job_timer.start(); }
  3886. /**
  3887. * M76: Pause print timer
  3888. */
  3889. inline void gcode_M76() { print_job_timer.pause(); }
  3890. /**
  3891. * M77: Stop print timer
  3892. */
  3893. inline void gcode_M77() { print_job_timer.stop(); }
  3894. #if ENABLED(PRINTCOUNTER)
  3895. /**
  3896. * M78: Show print statistics
  3897. */
  3898. inline void gcode_M78() {
  3899. // "M78 S78" will reset the statistics
  3900. if (code_seen('S') && code_value_int() == 78)
  3901. print_job_timer.initStats();
  3902. else
  3903. print_job_timer.showStats();
  3904. }
  3905. #endif
  3906. /**
  3907. * M104: Set hot end temperature
  3908. */
  3909. inline void gcode_M104() {
  3910. if (get_target_extruder_from_command(104)) return;
  3911. if (DEBUGGING(DRYRUN)) return;
  3912. #if ENABLED(SINGLENOZZLE)
  3913. if (target_extruder != active_extruder) return;
  3914. #endif
  3915. if (code_seen('S')) {
  3916. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3917. #if ENABLED(DUAL_X_CARRIAGE)
  3918. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3919. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3920. #endif
  3921. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3922. /**
  3923. * Stop the timer at the end of print, starting is managed by
  3924. * 'heat and wait' M109.
  3925. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3926. * stand by mode, for instance in a dual extruder setup, without affecting
  3927. * the running print timer.
  3928. */
  3929. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3930. print_job_timer.stop();
  3931. LCD_MESSAGEPGM(WELCOME_MSG);
  3932. }
  3933. #endif
  3934. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3935. }
  3936. }
  3937. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3938. void print_heaterstates() {
  3939. #if HAS_TEMP_HOTEND
  3940. SERIAL_PROTOCOLPGM(" T:");
  3941. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3942. SERIAL_PROTOCOLPGM(" /");
  3943. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3944. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3945. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3946. SERIAL_CHAR(')');
  3947. #endif
  3948. #endif
  3949. #if HAS_TEMP_BED
  3950. SERIAL_PROTOCOLPGM(" B:");
  3951. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3952. SERIAL_PROTOCOLPGM(" /");
  3953. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3954. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3955. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3956. SERIAL_CHAR(')');
  3957. #endif
  3958. #endif
  3959. #if HOTENDS > 1
  3960. HOTEND_LOOP() {
  3961. SERIAL_PROTOCOLPAIR(" T", e);
  3962. SERIAL_PROTOCOLCHAR(':');
  3963. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3964. SERIAL_PROTOCOLPGM(" /");
  3965. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3966. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3967. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3968. SERIAL_CHAR(')');
  3969. #endif
  3970. }
  3971. #endif
  3972. SERIAL_PROTOCOLPGM(" @:");
  3973. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3974. #if HAS_TEMP_BED
  3975. SERIAL_PROTOCOLPGM(" B@:");
  3976. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3977. #endif
  3978. #if HOTENDS > 1
  3979. HOTEND_LOOP() {
  3980. SERIAL_PROTOCOLPAIR(" @", e);
  3981. SERIAL_PROTOCOLCHAR(':');
  3982. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3983. }
  3984. #endif
  3985. }
  3986. #endif
  3987. /**
  3988. * M105: Read hot end and bed temperature
  3989. */
  3990. inline void gcode_M105() {
  3991. if (get_target_extruder_from_command(105)) return;
  3992. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3993. SERIAL_PROTOCOLPGM(MSG_OK);
  3994. print_heaterstates();
  3995. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3996. SERIAL_ERROR_START;
  3997. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3998. #endif
  3999. SERIAL_EOL;
  4000. }
  4001. #if FAN_COUNT > 0
  4002. /**
  4003. * M106: Set Fan Speed
  4004. *
  4005. * S<int> Speed between 0-255
  4006. * P<index> Fan index, if more than one fan
  4007. */
  4008. inline void gcode_M106() {
  4009. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4010. p = code_seen('P') ? code_value_ushort() : 0;
  4011. NOMORE(s, 255);
  4012. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4013. }
  4014. /**
  4015. * M107: Fan Off
  4016. */
  4017. inline void gcode_M107() {
  4018. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4019. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4020. }
  4021. #endif // FAN_COUNT > 0
  4022. #if DISABLED(EMERGENCY_PARSER)
  4023. /**
  4024. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4025. */
  4026. inline void gcode_M108() { wait_for_heatup = false; }
  4027. /**
  4028. * M112: Emergency Stop
  4029. */
  4030. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4031. /**
  4032. * M410: Quickstop - Abort all planned moves
  4033. *
  4034. * This will stop the carriages mid-move, so most likely they
  4035. * will be out of sync with the stepper position after this.
  4036. */
  4037. inline void gcode_M410() { quickstop_stepper(); }
  4038. #endif
  4039. #ifndef MIN_COOLING_SLOPE_DEG
  4040. #define MIN_COOLING_SLOPE_DEG 1.50
  4041. #endif
  4042. #ifndef MIN_COOLING_SLOPE_TIME
  4043. #define MIN_COOLING_SLOPE_TIME 60
  4044. #endif
  4045. /**
  4046. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4047. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4048. */
  4049. inline void gcode_M109() {
  4050. if (get_target_extruder_from_command(109)) return;
  4051. if (DEBUGGING(DRYRUN)) return;
  4052. #if ENABLED(SINGLENOZZLE)
  4053. if (target_extruder != active_extruder) return;
  4054. #endif
  4055. bool no_wait_for_cooling = code_seen('S');
  4056. if (no_wait_for_cooling || code_seen('R')) {
  4057. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4058. #if ENABLED(DUAL_X_CARRIAGE)
  4059. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4060. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4061. #endif
  4062. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4063. /**
  4064. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4065. * stand by mode, for instance in a dual extruder setup, without affecting
  4066. * the running print timer.
  4067. */
  4068. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4069. print_job_timer.stop();
  4070. LCD_MESSAGEPGM(WELCOME_MSG);
  4071. }
  4072. /**
  4073. * We do not check if the timer is already running because this check will
  4074. * be done for us inside the Stopwatch::start() method thus a running timer
  4075. * will not restart.
  4076. */
  4077. else print_job_timer.start();
  4078. #endif
  4079. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4080. }
  4081. #if ENABLED(AUTOTEMP)
  4082. planner.autotemp_M109();
  4083. #endif
  4084. #if TEMP_RESIDENCY_TIME > 0
  4085. millis_t residency_start_ms = 0;
  4086. // Loop until the temperature has stabilized
  4087. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4088. #else
  4089. // Loop until the temperature is very close target
  4090. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4091. #endif //TEMP_RESIDENCY_TIME > 0
  4092. float theTarget = -1.0, old_temp = 9999.0;
  4093. bool wants_to_cool = false;
  4094. wait_for_heatup = true;
  4095. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4096. KEEPALIVE_STATE(NOT_BUSY);
  4097. do {
  4098. // Target temperature might be changed during the loop
  4099. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4100. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4101. theTarget = thermalManager.degTargetHotend(target_extruder);
  4102. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4103. if (no_wait_for_cooling && wants_to_cool) break;
  4104. }
  4105. now = millis();
  4106. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4107. next_temp_ms = now + 1000UL;
  4108. print_heaterstates();
  4109. #if TEMP_RESIDENCY_TIME > 0
  4110. SERIAL_PROTOCOLPGM(" W:");
  4111. if (residency_start_ms) {
  4112. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4113. SERIAL_PROTOCOLLN(rem);
  4114. }
  4115. else {
  4116. SERIAL_PROTOCOLLNPGM("?");
  4117. }
  4118. #else
  4119. SERIAL_EOL;
  4120. #endif
  4121. }
  4122. idle();
  4123. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4124. float temp = thermalManager.degHotend(target_extruder);
  4125. #if TEMP_RESIDENCY_TIME > 0
  4126. float temp_diff = fabs(theTarget - temp);
  4127. if (!residency_start_ms) {
  4128. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4129. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4130. }
  4131. else if (temp_diff > TEMP_HYSTERESIS) {
  4132. // Restart the timer whenever the temperature falls outside the hysteresis.
  4133. residency_start_ms = now;
  4134. }
  4135. #endif //TEMP_RESIDENCY_TIME > 0
  4136. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4137. if (wants_to_cool) {
  4138. // break after MIN_COOLING_SLOPE_TIME seconds
  4139. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4140. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4141. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4142. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4143. old_temp = temp;
  4144. }
  4145. }
  4146. } while (wait_for_heatup && TEMP_CONDITIONS);
  4147. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4148. KEEPALIVE_STATE(IN_HANDLER);
  4149. }
  4150. #if HAS_TEMP_BED
  4151. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4152. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4153. #endif
  4154. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4155. #define MIN_COOLING_SLOPE_TIME_BED 60
  4156. #endif
  4157. /**
  4158. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4159. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4160. */
  4161. inline void gcode_M190() {
  4162. if (DEBUGGING(DRYRUN)) return;
  4163. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4164. bool no_wait_for_cooling = code_seen('S');
  4165. if (no_wait_for_cooling || code_seen('R')) {
  4166. thermalManager.setTargetBed(code_value_temp_abs());
  4167. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4168. if (code_value_temp_abs() > BED_MINTEMP) {
  4169. /**
  4170. * We start the timer when 'heating and waiting' command arrives, LCD
  4171. * functions never wait. Cooling down managed by extruders.
  4172. *
  4173. * We do not check if the timer is already running because this check will
  4174. * be done for us inside the Stopwatch::start() method thus a running timer
  4175. * will not restart.
  4176. */
  4177. print_job_timer.start();
  4178. }
  4179. #endif
  4180. }
  4181. #if TEMP_BED_RESIDENCY_TIME > 0
  4182. millis_t residency_start_ms = 0;
  4183. // Loop until the temperature has stabilized
  4184. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4185. #else
  4186. // Loop until the temperature is very close target
  4187. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4188. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4189. float theTarget = -1.0, old_temp = 9999.0;
  4190. bool wants_to_cool = false;
  4191. wait_for_heatup = true;
  4192. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4193. KEEPALIVE_STATE(NOT_BUSY);
  4194. target_extruder = active_extruder; // for print_heaterstates
  4195. do {
  4196. // Target temperature might be changed during the loop
  4197. if (theTarget != thermalManager.degTargetBed()) {
  4198. wants_to_cool = thermalManager.isCoolingBed();
  4199. theTarget = thermalManager.degTargetBed();
  4200. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4201. if (no_wait_for_cooling && wants_to_cool) break;
  4202. }
  4203. now = millis();
  4204. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4205. next_temp_ms = now + 1000UL;
  4206. print_heaterstates();
  4207. #if TEMP_BED_RESIDENCY_TIME > 0
  4208. SERIAL_PROTOCOLPGM(" W:");
  4209. if (residency_start_ms) {
  4210. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4211. SERIAL_PROTOCOLLN(rem);
  4212. }
  4213. else {
  4214. SERIAL_PROTOCOLLNPGM("?");
  4215. }
  4216. #else
  4217. SERIAL_EOL;
  4218. #endif
  4219. }
  4220. idle();
  4221. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4222. float temp = thermalManager.degBed();
  4223. #if TEMP_BED_RESIDENCY_TIME > 0
  4224. float temp_diff = fabs(theTarget - temp);
  4225. if (!residency_start_ms) {
  4226. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4227. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4228. }
  4229. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4230. // Restart the timer whenever the temperature falls outside the hysteresis.
  4231. residency_start_ms = now;
  4232. }
  4233. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4234. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4235. if (wants_to_cool) {
  4236. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4237. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4238. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4239. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4240. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4241. old_temp = temp;
  4242. }
  4243. }
  4244. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4245. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4246. KEEPALIVE_STATE(IN_HANDLER);
  4247. }
  4248. #endif // HAS_TEMP_BED
  4249. /**
  4250. * M110: Set Current Line Number
  4251. */
  4252. inline void gcode_M110() {
  4253. if (code_seen('N')) gcode_N = code_value_long();
  4254. }
  4255. /**
  4256. * M111: Set the debug level
  4257. */
  4258. inline void gcode_M111() {
  4259. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4260. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4261. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4262. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4263. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4264. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4265. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4266. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4267. #endif
  4268. const static char* const debug_strings[] PROGMEM = {
  4269. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4270. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4271. str_debug_32
  4272. #endif
  4273. };
  4274. SERIAL_ECHO_START;
  4275. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4276. if (marlin_debug_flags) {
  4277. uint8_t comma = 0;
  4278. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4279. if (TEST(marlin_debug_flags, i)) {
  4280. if (comma++) SERIAL_CHAR(',');
  4281. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4282. }
  4283. }
  4284. }
  4285. else {
  4286. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4287. }
  4288. SERIAL_EOL;
  4289. }
  4290. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4291. /**
  4292. * M113: Get or set Host Keepalive interval (0 to disable)
  4293. *
  4294. * S<seconds> Optional. Set the keepalive interval.
  4295. */
  4296. inline void gcode_M113() {
  4297. if (code_seen('S')) {
  4298. host_keepalive_interval = code_value_byte();
  4299. NOMORE(host_keepalive_interval, 60);
  4300. }
  4301. else {
  4302. SERIAL_ECHO_START;
  4303. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4304. }
  4305. }
  4306. #endif
  4307. #if ENABLED(BARICUDA)
  4308. #if HAS_HEATER_1
  4309. /**
  4310. * M126: Heater 1 valve open
  4311. */
  4312. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4313. /**
  4314. * M127: Heater 1 valve close
  4315. */
  4316. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4317. #endif
  4318. #if HAS_HEATER_2
  4319. /**
  4320. * M128: Heater 2 valve open
  4321. */
  4322. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4323. /**
  4324. * M129: Heater 2 valve close
  4325. */
  4326. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4327. #endif
  4328. #endif //BARICUDA
  4329. /**
  4330. * M140: Set bed temperature
  4331. */
  4332. inline void gcode_M140() {
  4333. if (DEBUGGING(DRYRUN)) return;
  4334. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4335. }
  4336. #if ENABLED(ULTIPANEL)
  4337. /**
  4338. * M145: Set the heatup state for a material in the LCD menu
  4339. * S<material> (0=PLA, 1=ABS)
  4340. * H<hotend temp>
  4341. * B<bed temp>
  4342. * F<fan speed>
  4343. */
  4344. inline void gcode_M145() {
  4345. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4346. if (material < 0 || material > 1) {
  4347. SERIAL_ERROR_START;
  4348. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4349. }
  4350. else {
  4351. int v;
  4352. switch (material) {
  4353. case 0:
  4354. if (code_seen('H')) {
  4355. v = code_value_int();
  4356. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4357. }
  4358. if (code_seen('F')) {
  4359. v = code_value_int();
  4360. preheatFanSpeed1 = constrain(v, 0, 255);
  4361. }
  4362. #if TEMP_SENSOR_BED != 0
  4363. if (code_seen('B')) {
  4364. v = code_value_int();
  4365. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4366. }
  4367. #endif
  4368. break;
  4369. case 1:
  4370. if (code_seen('H')) {
  4371. v = code_value_int();
  4372. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4373. }
  4374. if (code_seen('F')) {
  4375. v = code_value_int();
  4376. preheatFanSpeed2 = constrain(v, 0, 255);
  4377. }
  4378. #if TEMP_SENSOR_BED != 0
  4379. if (code_seen('B')) {
  4380. v = code_value_int();
  4381. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4382. }
  4383. #endif
  4384. break;
  4385. }
  4386. }
  4387. }
  4388. #endif // ULTIPANEL
  4389. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4390. /**
  4391. * M149: Set temperature units
  4392. */
  4393. inline void gcode_M149() {
  4394. if (code_seen('C')) {
  4395. set_input_temp_units(TEMPUNIT_C);
  4396. } else if (code_seen('K')) {
  4397. set_input_temp_units(TEMPUNIT_K);
  4398. } else if (code_seen('F')) {
  4399. set_input_temp_units(TEMPUNIT_F);
  4400. }
  4401. }
  4402. #endif
  4403. #if HAS_POWER_SWITCH
  4404. /**
  4405. * M80: Turn on Power Supply
  4406. */
  4407. inline void gcode_M80() {
  4408. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4409. /**
  4410. * If you have a switch on suicide pin, this is useful
  4411. * if you want to start another print with suicide feature after
  4412. * a print without suicide...
  4413. */
  4414. #if HAS_SUICIDE
  4415. OUT_WRITE(SUICIDE_PIN, HIGH);
  4416. #endif
  4417. #if ENABLED(ULTIPANEL)
  4418. powersupply = true;
  4419. LCD_MESSAGEPGM(WELCOME_MSG);
  4420. lcd_update();
  4421. #endif
  4422. }
  4423. #endif // HAS_POWER_SWITCH
  4424. /**
  4425. * M81: Turn off Power, including Power Supply, if there is one.
  4426. *
  4427. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4428. */
  4429. inline void gcode_M81() {
  4430. thermalManager.disable_all_heaters();
  4431. stepper.finish_and_disable();
  4432. #if FAN_COUNT > 0
  4433. #if FAN_COUNT > 1
  4434. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4435. #else
  4436. fanSpeeds[0] = 0;
  4437. #endif
  4438. #endif
  4439. delay(1000); // Wait 1 second before switching off
  4440. #if HAS_SUICIDE
  4441. stepper.synchronize();
  4442. suicide();
  4443. #elif HAS_POWER_SWITCH
  4444. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4445. #endif
  4446. #if ENABLED(ULTIPANEL)
  4447. #if HAS_POWER_SWITCH
  4448. powersupply = false;
  4449. #endif
  4450. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4451. lcd_update();
  4452. #endif
  4453. }
  4454. /**
  4455. * M82: Set E codes absolute (default)
  4456. */
  4457. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4458. /**
  4459. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4460. */
  4461. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4462. /**
  4463. * M18, M84: Disable all stepper motors
  4464. */
  4465. inline void gcode_M18_M84() {
  4466. if (code_seen('S')) {
  4467. stepper_inactive_time = code_value_millis_from_seconds();
  4468. }
  4469. else {
  4470. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4471. if (all_axis) {
  4472. stepper.finish_and_disable();
  4473. }
  4474. else {
  4475. stepper.synchronize();
  4476. if (code_seen('X')) disable_x();
  4477. if (code_seen('Y')) disable_y();
  4478. if (code_seen('Z')) disable_z();
  4479. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4480. if (code_seen('E')) {
  4481. disable_e0();
  4482. disable_e1();
  4483. disable_e2();
  4484. disable_e3();
  4485. }
  4486. #endif
  4487. }
  4488. }
  4489. }
  4490. /**
  4491. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4492. */
  4493. inline void gcode_M85() {
  4494. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4495. }
  4496. /**
  4497. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4498. * (Follows the same syntax as G92)
  4499. */
  4500. inline void gcode_M92() {
  4501. LOOP_XYZE(i) {
  4502. if (code_seen(axis_codes[i])) {
  4503. if (i == E_AXIS) {
  4504. float value = code_value_per_axis_unit(i);
  4505. if (value < 20.0) {
  4506. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4507. planner.max_e_jerk *= factor;
  4508. planner.max_feedrate_mm_s[i] *= factor;
  4509. planner.max_acceleration_steps_per_s2[i] *= factor;
  4510. }
  4511. planner.axis_steps_per_mm[i] = value;
  4512. }
  4513. else {
  4514. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4515. }
  4516. }
  4517. }
  4518. planner.refresh_positioning();
  4519. }
  4520. /**
  4521. * Output the current position to serial
  4522. */
  4523. static void report_current_position() {
  4524. SERIAL_PROTOCOLPGM("X:");
  4525. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4526. SERIAL_PROTOCOLPGM(" Y:");
  4527. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4528. SERIAL_PROTOCOLPGM(" Z:");
  4529. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4530. SERIAL_PROTOCOLPGM(" E:");
  4531. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4532. stepper.report_positions();
  4533. #if IS_SCARA
  4534. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_mm(A_AXIS));
  4535. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_mm(B_AXIS));
  4536. SERIAL_EOL;
  4537. #endif
  4538. }
  4539. /**
  4540. * M114: Output current position to serial port
  4541. */
  4542. inline void gcode_M114() { report_current_position(); }
  4543. /**
  4544. * M115: Capabilities string
  4545. */
  4546. inline void gcode_M115() {
  4547. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4548. }
  4549. /**
  4550. * M117: Set LCD Status Message
  4551. */
  4552. inline void gcode_M117() {
  4553. lcd_setstatus(current_command_args);
  4554. }
  4555. /**
  4556. * M119: Output endstop states to serial output
  4557. */
  4558. inline void gcode_M119() { endstops.M119(); }
  4559. /**
  4560. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4561. */
  4562. inline void gcode_M120() { endstops.enable_globally(true); }
  4563. /**
  4564. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4565. */
  4566. inline void gcode_M121() { endstops.enable_globally(false); }
  4567. #if ENABLED(BLINKM)
  4568. /**
  4569. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4570. */
  4571. inline void gcode_M150() {
  4572. SendColors(
  4573. code_seen('R') ? code_value_byte() : 0,
  4574. code_seen('U') ? code_value_byte() : 0,
  4575. code_seen('B') ? code_value_byte() : 0
  4576. );
  4577. }
  4578. #endif // BLINKM
  4579. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4580. /**
  4581. * M155: Send data to a I2C slave device
  4582. *
  4583. * This is a PoC, the formating and arguments for the GCODE will
  4584. * change to be more compatible, the current proposal is:
  4585. *
  4586. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4587. *
  4588. * M155 B<byte-1 value in base 10>
  4589. * M155 B<byte-2 value in base 10>
  4590. * M155 B<byte-3 value in base 10>
  4591. *
  4592. * M155 S1 ; Send the buffered data and reset the buffer
  4593. * M155 R1 ; Reset the buffer without sending data
  4594. *
  4595. */
  4596. inline void gcode_M155() {
  4597. // Set the target address
  4598. if (code_seen('A')) i2c.address(code_value_byte());
  4599. // Add a new byte to the buffer
  4600. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4601. // Flush the buffer to the bus
  4602. if (code_seen('S')) i2c.send();
  4603. // Reset and rewind the buffer
  4604. else if (code_seen('R')) i2c.reset();
  4605. }
  4606. /**
  4607. * M156: Request X bytes from I2C slave device
  4608. *
  4609. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4610. */
  4611. inline void gcode_M156() {
  4612. if (code_seen('A')) i2c.address(code_value_byte());
  4613. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4614. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4615. i2c.relay(bytes);
  4616. }
  4617. else {
  4618. SERIAL_ERROR_START;
  4619. SERIAL_ERRORLN("Bad i2c request");
  4620. }
  4621. }
  4622. #endif // EXPERIMENTAL_I2CBUS
  4623. /**
  4624. * M200: Set filament diameter and set E axis units to cubic units
  4625. *
  4626. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4627. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4628. */
  4629. inline void gcode_M200() {
  4630. if (get_target_extruder_from_command(200)) return;
  4631. if (code_seen('D')) {
  4632. // setting any extruder filament size disables volumetric on the assumption that
  4633. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4634. // for all extruders
  4635. volumetric_enabled = (code_value_linear_units() != 0.0);
  4636. if (volumetric_enabled) {
  4637. filament_size[target_extruder] = code_value_linear_units();
  4638. // make sure all extruders have some sane value for the filament size
  4639. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4640. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4641. }
  4642. }
  4643. else {
  4644. //reserved for setting filament diameter via UFID or filament measuring device
  4645. return;
  4646. }
  4647. calculate_volumetric_multipliers();
  4648. }
  4649. /**
  4650. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4651. */
  4652. inline void gcode_M201() {
  4653. LOOP_XYZE(i) {
  4654. if (code_seen(axis_codes[i])) {
  4655. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4656. }
  4657. }
  4658. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4659. planner.reset_acceleration_rates();
  4660. }
  4661. #if 0 // Not used for Sprinter/grbl gen6
  4662. inline void gcode_M202() {
  4663. LOOP_XYZE(i) {
  4664. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4665. }
  4666. }
  4667. #endif
  4668. /**
  4669. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4670. */
  4671. inline void gcode_M203() {
  4672. LOOP_XYZE(i)
  4673. if (code_seen(axis_codes[i]))
  4674. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4675. }
  4676. /**
  4677. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4678. *
  4679. * P = Printing moves
  4680. * R = Retract only (no X, Y, Z) moves
  4681. * T = Travel (non printing) moves
  4682. *
  4683. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4684. */
  4685. inline void gcode_M204() {
  4686. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4687. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4688. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4689. }
  4690. if (code_seen('P')) {
  4691. planner.acceleration = code_value_linear_units();
  4692. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4693. }
  4694. if (code_seen('R')) {
  4695. planner.retract_acceleration = code_value_linear_units();
  4696. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4697. }
  4698. if (code_seen('T')) {
  4699. planner.travel_acceleration = code_value_linear_units();
  4700. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4701. }
  4702. }
  4703. /**
  4704. * M205: Set Advanced Settings
  4705. *
  4706. * S = Min Feed Rate (units/s)
  4707. * T = Min Travel Feed Rate (units/s)
  4708. * B = Min Segment Time (µs)
  4709. * X = Max XY Jerk (units/sec^2)
  4710. * Z = Max Z Jerk (units/sec^2)
  4711. * E = Max E Jerk (units/sec^2)
  4712. */
  4713. inline void gcode_M205() {
  4714. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4715. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4716. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4717. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4718. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4719. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4720. }
  4721. /**
  4722. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4723. */
  4724. inline void gcode_M206() {
  4725. LOOP_XYZ(i)
  4726. if (code_seen(axis_codes[i]))
  4727. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4728. #if ENABLED(MORGAN_SCARA)
  4729. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  4730. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  4731. #endif
  4732. SYNC_PLAN_POSITION_KINEMATIC();
  4733. report_current_position();
  4734. }
  4735. #if ENABLED(DELTA)
  4736. /**
  4737. * M665: Set delta configurations
  4738. *
  4739. * L = diagonal rod
  4740. * R = delta radius
  4741. * S = segments per second
  4742. * A = Alpha (Tower 1) diagonal rod trim
  4743. * B = Beta (Tower 2) diagonal rod trim
  4744. * C = Gamma (Tower 3) diagonal rod trim
  4745. */
  4746. inline void gcode_M665() {
  4747. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4748. if (code_seen('R')) delta_radius = code_value_linear_units();
  4749. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4750. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4751. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4752. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4753. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4754. }
  4755. /**
  4756. * M666: Set delta endstop adjustment
  4757. */
  4758. inline void gcode_M666() {
  4759. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4760. if (DEBUGGING(LEVELING)) {
  4761. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4762. }
  4763. #endif
  4764. LOOP_XYZ(i) {
  4765. if (code_seen(axis_codes[i])) {
  4766. endstop_adj[i] = code_value_axis_units(i);
  4767. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4768. if (DEBUGGING(LEVELING)) {
  4769. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  4770. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4771. }
  4772. #endif
  4773. }
  4774. }
  4775. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4776. if (DEBUGGING(LEVELING)) {
  4777. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4778. }
  4779. #endif
  4780. }
  4781. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4782. /**
  4783. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4784. */
  4785. inline void gcode_M666() {
  4786. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4787. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4788. }
  4789. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4790. #if ENABLED(FWRETRACT)
  4791. /**
  4792. * M207: Set firmware retraction values
  4793. *
  4794. * S[+units] retract_length
  4795. * W[+units] retract_length_swap (multi-extruder)
  4796. * F[units/min] retract_feedrate_mm_s
  4797. * Z[units] retract_zlift
  4798. */
  4799. inline void gcode_M207() {
  4800. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4801. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4802. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4803. #if EXTRUDERS > 1
  4804. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4805. #endif
  4806. }
  4807. /**
  4808. * M208: Set firmware un-retraction values
  4809. *
  4810. * S[+units] retract_recover_length (in addition to M207 S*)
  4811. * W[+units] retract_recover_length_swap (multi-extruder)
  4812. * F[units/min] retract_recover_feedrate_mm_s
  4813. */
  4814. inline void gcode_M208() {
  4815. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4816. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4817. #if EXTRUDERS > 1
  4818. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4819. #endif
  4820. }
  4821. /**
  4822. * M209: Enable automatic retract (M209 S1)
  4823. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4824. */
  4825. inline void gcode_M209() {
  4826. if (code_seen('S')) {
  4827. autoretract_enabled = code_value_bool();
  4828. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4829. }
  4830. }
  4831. #endif // FWRETRACT
  4832. /**
  4833. * M211: Enable, Disable, and/or Report software endstops
  4834. *
  4835. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4836. */
  4837. inline void gcode_M211() {
  4838. SERIAL_ECHO_START;
  4839. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4840. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  4841. #endif
  4842. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4843. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4844. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  4845. #else
  4846. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4847. SERIAL_ECHOPGM(MSG_OFF);
  4848. #endif
  4849. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  4850. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  4851. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  4852. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  4853. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  4854. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  4855. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  4856. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  4857. }
  4858. #if HOTENDS > 1
  4859. /**
  4860. * M218 - set hotend offset (in linear units)
  4861. *
  4862. * T<tool>
  4863. * X<xoffset>
  4864. * Y<yoffset>
  4865. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4866. */
  4867. inline void gcode_M218() {
  4868. if (get_target_extruder_from_command(218)) return;
  4869. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4870. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4871. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4872. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4873. #endif
  4874. SERIAL_ECHO_START;
  4875. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4876. HOTEND_LOOP() {
  4877. SERIAL_CHAR(' ');
  4878. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4879. SERIAL_CHAR(',');
  4880. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4881. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4882. SERIAL_CHAR(',');
  4883. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4884. #endif
  4885. }
  4886. SERIAL_EOL;
  4887. }
  4888. #endif // HOTENDS > 1
  4889. /**
  4890. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4891. */
  4892. inline void gcode_M220() {
  4893. if (code_seen('S')) feedrate_percentage = code_value_int();
  4894. }
  4895. /**
  4896. * M221: Set extrusion percentage (M221 T0 S95)
  4897. */
  4898. inline void gcode_M221() {
  4899. if (get_target_extruder_from_command(221)) return;
  4900. if (code_seen('S'))
  4901. flow_percentage[target_extruder] = code_value_int();
  4902. }
  4903. /**
  4904. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4905. */
  4906. inline void gcode_M226() {
  4907. if (code_seen('P')) {
  4908. int pin_number = code_value_int();
  4909. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4910. if (pin_state >= -1 && pin_state <= 1) {
  4911. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4912. if (sensitive_pins[i] == pin_number) {
  4913. pin_number = -1;
  4914. break;
  4915. }
  4916. }
  4917. if (pin_number > -1) {
  4918. int target = LOW;
  4919. stepper.synchronize();
  4920. pinMode(pin_number, INPUT);
  4921. switch (pin_state) {
  4922. case 1:
  4923. target = HIGH;
  4924. break;
  4925. case 0:
  4926. target = LOW;
  4927. break;
  4928. case -1:
  4929. target = !digitalRead(pin_number);
  4930. break;
  4931. }
  4932. while (digitalRead(pin_number) != target) idle();
  4933. } // pin_number > -1
  4934. } // pin_state -1 0 1
  4935. } // code_seen('P')
  4936. }
  4937. #if HAS_SERVOS
  4938. /**
  4939. * M280: Get or set servo position. P<index> [S<angle>]
  4940. */
  4941. inline void gcode_M280() {
  4942. if (!code_seen('P')) return;
  4943. int servo_index = code_value_int();
  4944. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4945. if (code_seen('S'))
  4946. MOVE_SERVO(servo_index, code_value_int());
  4947. else {
  4948. SERIAL_ECHO_START;
  4949. SERIAL_ECHOPAIR(" Servo ", servo_index);
  4950. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  4951. }
  4952. }
  4953. else {
  4954. SERIAL_ERROR_START;
  4955. SERIAL_ECHOPAIR("Servo ", servo_index);
  4956. SERIAL_ECHOLNPGM(" out of range");
  4957. }
  4958. }
  4959. #endif // HAS_SERVOS
  4960. #if HAS_BUZZER
  4961. /**
  4962. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4963. */
  4964. inline void gcode_M300() {
  4965. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4966. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4967. // Limits the tone duration to 0-5 seconds.
  4968. NOMORE(duration, 5000);
  4969. BUZZ(duration, frequency);
  4970. }
  4971. #endif // HAS_BUZZER
  4972. #if ENABLED(PIDTEMP)
  4973. /**
  4974. * M301: Set PID parameters P I D (and optionally C, L)
  4975. *
  4976. * P[float] Kp term
  4977. * I[float] Ki term (unscaled)
  4978. * D[float] Kd term (unscaled)
  4979. *
  4980. * With PID_EXTRUSION_SCALING:
  4981. *
  4982. * C[float] Kc term
  4983. * L[float] LPQ length
  4984. */
  4985. inline void gcode_M301() {
  4986. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4987. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4988. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4989. if (e < HOTENDS) { // catch bad input value
  4990. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4991. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4992. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4993. #if ENABLED(PID_EXTRUSION_SCALING)
  4994. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4995. if (code_seen('L')) lpq_len = code_value_float();
  4996. NOMORE(lpq_len, LPQ_MAX_LEN);
  4997. #endif
  4998. thermalManager.updatePID();
  4999. SERIAL_ECHO_START;
  5000. #if ENABLED(PID_PARAMS_PER_HOTEND)
  5001. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  5002. #endif // PID_PARAMS_PER_HOTEND
  5003. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  5004. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  5005. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  5006. #if ENABLED(PID_EXTRUSION_SCALING)
  5007. //Kc does not have scaling applied above, or in resetting defaults
  5008. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  5009. #endif
  5010. SERIAL_EOL;
  5011. }
  5012. else {
  5013. SERIAL_ERROR_START;
  5014. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  5015. }
  5016. }
  5017. #endif // PIDTEMP
  5018. #if ENABLED(PIDTEMPBED)
  5019. inline void gcode_M304() {
  5020. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  5021. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  5022. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  5023. thermalManager.updatePID();
  5024. SERIAL_ECHO_START;
  5025. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  5026. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  5027. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  5028. }
  5029. #endif // PIDTEMPBED
  5030. #if defined(CHDK) || HAS_PHOTOGRAPH
  5031. /**
  5032. * M240: Trigger a camera by emulating a Canon RC-1
  5033. * See http://www.doc-diy.net/photo/rc-1_hacked/
  5034. */
  5035. inline void gcode_M240() {
  5036. #ifdef CHDK
  5037. OUT_WRITE(CHDK, HIGH);
  5038. chdkHigh = millis();
  5039. chdkActive = true;
  5040. #elif HAS_PHOTOGRAPH
  5041. const uint8_t NUM_PULSES = 16;
  5042. const float PULSE_LENGTH = 0.01524;
  5043. for (int i = 0; i < NUM_PULSES; i++) {
  5044. WRITE(PHOTOGRAPH_PIN, HIGH);
  5045. _delay_ms(PULSE_LENGTH);
  5046. WRITE(PHOTOGRAPH_PIN, LOW);
  5047. _delay_ms(PULSE_LENGTH);
  5048. }
  5049. delay(7.33);
  5050. for (int i = 0; i < NUM_PULSES; i++) {
  5051. WRITE(PHOTOGRAPH_PIN, HIGH);
  5052. _delay_ms(PULSE_LENGTH);
  5053. WRITE(PHOTOGRAPH_PIN, LOW);
  5054. _delay_ms(PULSE_LENGTH);
  5055. }
  5056. #endif // !CHDK && HAS_PHOTOGRAPH
  5057. }
  5058. #endif // CHDK || PHOTOGRAPH_PIN
  5059. #if HAS_LCD_CONTRAST
  5060. /**
  5061. * M250: Read and optionally set the LCD contrast
  5062. */
  5063. inline void gcode_M250() {
  5064. if (code_seen('C')) set_lcd_contrast(code_value_int());
  5065. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5066. SERIAL_PROTOCOL(lcd_contrast);
  5067. SERIAL_EOL;
  5068. }
  5069. #endif // HAS_LCD_CONTRAST
  5070. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5071. /**
  5072. * M302: Allow cold extrudes, or set the minimum extrude temperature
  5073. *
  5074. * S<temperature> sets the minimum extrude temperature
  5075. * P<bool> enables (1) or disables (0) cold extrusion
  5076. *
  5077. * Examples:
  5078. *
  5079. * M302 ; report current cold extrusion state
  5080. * M302 P0 ; enable cold extrusion checking
  5081. * M302 P1 ; disables cold extrusion checking
  5082. * M302 S0 ; always allow extrusion (disables checking)
  5083. * M302 S170 ; only allow extrusion above 170
  5084. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  5085. */
  5086. inline void gcode_M302() {
  5087. bool seen_S = code_seen('S');
  5088. if (seen_S) {
  5089. thermalManager.extrude_min_temp = code_value_temp_abs();
  5090. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  5091. }
  5092. if (code_seen('P'))
  5093. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  5094. else if (!seen_S) {
  5095. // Report current state
  5096. SERIAL_ECHO_START;
  5097. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  5098. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  5099. SERIAL_ECHOLNPGM("C)");
  5100. }
  5101. }
  5102. #endif // PREVENT_COLD_EXTRUSION
  5103. /**
  5104. * M303: PID relay autotune
  5105. *
  5106. * S<temperature> sets the target temperature. (default 150C)
  5107. * E<extruder> (-1 for the bed) (default 0)
  5108. * C<cycles>
  5109. * U<bool> with a non-zero value will apply the result to current settings
  5110. */
  5111. inline void gcode_M303() {
  5112. #if HAS_PID_HEATING
  5113. int e = code_seen('E') ? code_value_int() : 0;
  5114. int c = code_seen('C') ? code_value_int() : 5;
  5115. bool u = code_seen('U') && code_value_bool();
  5116. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  5117. if (e >= 0 && e < HOTENDS)
  5118. target_extruder = e;
  5119. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  5120. thermalManager.PID_autotune(temp, e, c, u);
  5121. KEEPALIVE_STATE(IN_HANDLER);
  5122. #else
  5123. SERIAL_ERROR_START;
  5124. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5125. #endif
  5126. }
  5127. #if ENABLED(MORGAN_SCARA)
  5128. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  5129. if (IsRunning()) {
  5130. forward_kinematics_SCARA(delta_a, delta_b);
  5131. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  5132. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  5133. destination[Z_AXIS] = current_position[Z_AXIS];
  5134. prepare_move_to_destination();
  5135. return true;
  5136. }
  5137. return false;
  5138. }
  5139. /**
  5140. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5141. */
  5142. inline bool gcode_M360() {
  5143. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5144. return SCARA_move_to_cal(0, 120);
  5145. }
  5146. /**
  5147. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5148. */
  5149. inline bool gcode_M361() {
  5150. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5151. return SCARA_move_to_cal(90, 130);
  5152. }
  5153. /**
  5154. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5155. */
  5156. inline bool gcode_M362() {
  5157. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5158. return SCARA_move_to_cal(60, 180);
  5159. }
  5160. /**
  5161. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5162. */
  5163. inline bool gcode_M363() {
  5164. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5165. return SCARA_move_to_cal(50, 90);
  5166. }
  5167. /**
  5168. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5169. */
  5170. inline bool gcode_M364() {
  5171. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5172. return SCARA_move_to_cal(45, 135);
  5173. }
  5174. #endif // SCARA
  5175. #if ENABLED(EXT_SOLENOID)
  5176. void enable_solenoid(uint8_t num) {
  5177. switch (num) {
  5178. case 0:
  5179. OUT_WRITE(SOL0_PIN, HIGH);
  5180. break;
  5181. #if HAS_SOLENOID_1
  5182. case 1:
  5183. OUT_WRITE(SOL1_PIN, HIGH);
  5184. break;
  5185. #endif
  5186. #if HAS_SOLENOID_2
  5187. case 2:
  5188. OUT_WRITE(SOL2_PIN, HIGH);
  5189. break;
  5190. #endif
  5191. #if HAS_SOLENOID_3
  5192. case 3:
  5193. OUT_WRITE(SOL3_PIN, HIGH);
  5194. break;
  5195. #endif
  5196. default:
  5197. SERIAL_ECHO_START;
  5198. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5199. break;
  5200. }
  5201. }
  5202. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5203. void disable_all_solenoids() {
  5204. OUT_WRITE(SOL0_PIN, LOW);
  5205. OUT_WRITE(SOL1_PIN, LOW);
  5206. OUT_WRITE(SOL2_PIN, LOW);
  5207. OUT_WRITE(SOL3_PIN, LOW);
  5208. }
  5209. /**
  5210. * M380: Enable solenoid on the active extruder
  5211. */
  5212. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5213. /**
  5214. * M381: Disable all solenoids
  5215. */
  5216. inline void gcode_M381() { disable_all_solenoids(); }
  5217. #endif // EXT_SOLENOID
  5218. /**
  5219. * M400: Finish all moves
  5220. */
  5221. inline void gcode_M400() { stepper.synchronize(); }
  5222. #if HAS_BED_PROBE
  5223. /**
  5224. * M401: Engage Z Servo endstop if available
  5225. */
  5226. inline void gcode_M401() { DEPLOY_PROBE(); }
  5227. /**
  5228. * M402: Retract Z Servo endstop if enabled
  5229. */
  5230. inline void gcode_M402() { STOW_PROBE(); }
  5231. #endif // HAS_BED_PROBE
  5232. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5233. /**
  5234. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5235. */
  5236. inline void gcode_M404() {
  5237. if (code_seen('W')) {
  5238. filament_width_nominal = code_value_linear_units();
  5239. }
  5240. else {
  5241. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5242. SERIAL_PROTOCOLLN(filament_width_nominal);
  5243. }
  5244. }
  5245. /**
  5246. * M405: Turn on filament sensor for control
  5247. */
  5248. inline void gcode_M405() {
  5249. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5250. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5251. if (code_seen('D')) meas_delay_cm = code_value_int();
  5252. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5253. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5254. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5255. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5256. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5257. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5258. }
  5259. filament_sensor = true;
  5260. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5261. //SERIAL_PROTOCOL(filament_width_meas);
  5262. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5263. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5264. }
  5265. /**
  5266. * M406: Turn off filament sensor for control
  5267. */
  5268. inline void gcode_M406() { filament_sensor = false; }
  5269. /**
  5270. * M407: Get measured filament diameter on serial output
  5271. */
  5272. inline void gcode_M407() {
  5273. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5274. SERIAL_PROTOCOLLN(filament_width_meas);
  5275. }
  5276. #endif // FILAMENT_WIDTH_SENSOR
  5277. void quickstop_stepper() {
  5278. stepper.quick_stop();
  5279. stepper.synchronize();
  5280. set_current_from_steppers_for_axis(ALL_AXES);
  5281. SYNC_PLAN_POSITION_KINEMATIC();
  5282. }
  5283. #if ENABLED(MESH_BED_LEVELING)
  5284. /**
  5285. * M420: Enable/Disable Mesh Bed Leveling
  5286. */
  5287. inline void gcode_M420() { if (code_seen('S')) mbl.set_has_mesh(code_value_bool()); }
  5288. /**
  5289. * M421: Set a single Mesh Bed Leveling Z coordinate
  5290. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5291. */
  5292. inline void gcode_M421() {
  5293. int8_t px = 0, py = 0;
  5294. float z = 0;
  5295. bool hasX, hasY, hasZ, hasI, hasJ;
  5296. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5297. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5298. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5299. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5300. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5301. if (hasX && hasY && hasZ) {
  5302. if (px >= 0 && py >= 0)
  5303. mbl.set_z(px, py, z);
  5304. else {
  5305. SERIAL_ERROR_START;
  5306. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5307. }
  5308. }
  5309. else if (hasI && hasJ && hasZ) {
  5310. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5311. mbl.set_z(px, py, z);
  5312. else {
  5313. SERIAL_ERROR_START;
  5314. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5315. }
  5316. }
  5317. else {
  5318. SERIAL_ERROR_START;
  5319. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5320. }
  5321. }
  5322. #endif
  5323. /**
  5324. * M428: Set home_offset based on the distance between the
  5325. * current_position and the nearest "reference point."
  5326. * If an axis is past center its endstop position
  5327. * is the reference-point. Otherwise it uses 0. This allows
  5328. * the Z offset to be set near the bed when using a max endstop.
  5329. *
  5330. * M428 can't be used more than 2cm away from 0 or an endstop.
  5331. *
  5332. * Use M206 to set these values directly.
  5333. */
  5334. inline void gcode_M428() {
  5335. bool err = false;
  5336. LOOP_XYZ(i) {
  5337. if (axis_homed[i]) {
  5338. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5339. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5340. if (diff > -20 && diff < 20) {
  5341. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5342. }
  5343. else {
  5344. SERIAL_ERROR_START;
  5345. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5346. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5347. BUZZ(200, 40);
  5348. err = true;
  5349. break;
  5350. }
  5351. }
  5352. }
  5353. if (!err) {
  5354. SYNC_PLAN_POSITION_KINEMATIC();
  5355. report_current_position();
  5356. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5357. BUZZ(200, 659);
  5358. BUZZ(200, 698);
  5359. }
  5360. }
  5361. /**
  5362. * M500: Store settings in EEPROM
  5363. */
  5364. inline void gcode_M500() {
  5365. Config_StoreSettings();
  5366. }
  5367. /**
  5368. * M501: Read settings from EEPROM
  5369. */
  5370. inline void gcode_M501() {
  5371. Config_RetrieveSettings();
  5372. }
  5373. /**
  5374. * M502: Revert to default settings
  5375. */
  5376. inline void gcode_M502() {
  5377. Config_ResetDefault();
  5378. }
  5379. /**
  5380. * M503: print settings currently in memory
  5381. */
  5382. inline void gcode_M503() {
  5383. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5384. }
  5385. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5386. /**
  5387. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5388. */
  5389. inline void gcode_M540() {
  5390. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5391. }
  5392. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5393. #if HAS_BED_PROBE
  5394. inline void gcode_M851() {
  5395. SERIAL_ECHO_START;
  5396. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5397. SERIAL_CHAR(' ');
  5398. if (code_seen('Z')) {
  5399. float value = code_value_axis_units(Z_AXIS);
  5400. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5401. zprobe_zoffset = value;
  5402. SERIAL_ECHO(zprobe_zoffset);
  5403. }
  5404. else {
  5405. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5406. SERIAL_CHAR(' ');
  5407. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5408. }
  5409. }
  5410. else {
  5411. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5412. }
  5413. SERIAL_EOL;
  5414. }
  5415. #endif // HAS_BED_PROBE
  5416. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5417. /**
  5418. * M600: Pause for filament change
  5419. *
  5420. * E[distance] - Retract the filament this far (negative value)
  5421. * Z[distance] - Move the Z axis by this distance
  5422. * X[position] - Move to this X position, with Y
  5423. * Y[position] - Move to this Y position, with X
  5424. * L[distance] - Retract distance for removal (manual reload)
  5425. *
  5426. * Default values are used for omitted arguments.
  5427. *
  5428. */
  5429. inline void gcode_M600() {
  5430. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5431. SERIAL_ERROR_START;
  5432. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5433. return;
  5434. }
  5435. // Show initial message and wait for synchronize steppers
  5436. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5437. stepper.synchronize();
  5438. float lastpos[NUM_AXIS];
  5439. // Save current position of all axes
  5440. LOOP_XYZE(i)
  5441. lastpos[i] = destination[i] = current_position[i];
  5442. // Define runplan for move axes
  5443. #if IS_KINEMATIC
  5444. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5445. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5446. #else
  5447. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5448. #endif
  5449. KEEPALIVE_STATE(IN_HANDLER);
  5450. // Initial retract before move to filament change position
  5451. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5452. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5453. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5454. #endif
  5455. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5456. // Lift Z axis
  5457. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5458. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5459. FILAMENT_CHANGE_Z_ADD
  5460. #else
  5461. 0
  5462. #endif
  5463. ;
  5464. if (z_lift > 0) {
  5465. destination[Z_AXIS] += z_lift;
  5466. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5467. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5468. }
  5469. // Move XY axes to filament exchange position
  5470. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5471. #ifdef FILAMENT_CHANGE_X_POS
  5472. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5473. #endif
  5474. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5475. #ifdef FILAMENT_CHANGE_Y_POS
  5476. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5477. #endif
  5478. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5479. stepper.synchronize();
  5480. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5481. // Unload filament
  5482. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5483. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5484. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5485. #endif
  5486. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5487. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5488. stepper.synchronize();
  5489. disable_e0();
  5490. disable_e1();
  5491. disable_e2();
  5492. disable_e3();
  5493. delay(100);
  5494. #if HAS_BUZZER
  5495. millis_t next_tick = 0;
  5496. #endif
  5497. // Wait for filament insert by user and press button
  5498. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5499. while (!lcd_clicked()) {
  5500. #if HAS_BUZZER
  5501. millis_t ms = millis();
  5502. if (ms >= next_tick) {
  5503. BUZZ(300, 2000);
  5504. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5505. }
  5506. #endif
  5507. idle(true);
  5508. }
  5509. delay(100);
  5510. while (lcd_clicked()) idle(true);
  5511. delay(100);
  5512. // Show load message
  5513. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5514. // Load filament
  5515. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5516. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5517. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5518. #endif
  5519. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5520. stepper.synchronize();
  5521. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5522. do {
  5523. // Extrude filament to get into hotend
  5524. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5525. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5526. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5527. stepper.synchronize();
  5528. // Ask user if more filament should be extruded
  5529. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5530. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5531. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5532. KEEPALIVE_STATE(IN_HANDLER);
  5533. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5534. #endif
  5535. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5536. KEEPALIVE_STATE(IN_HANDLER);
  5537. // Set extruder to saved position
  5538. current_position[E_AXIS] = lastpos[E_AXIS];
  5539. destination[E_AXIS] = lastpos[E_AXIS];
  5540. planner.set_e_position_mm(current_position[E_AXIS]);
  5541. #if IS_KINEMATIC
  5542. // Move XYZ to starting position, then E
  5543. inverse_kinematics(lastpos);
  5544. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5545. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5546. #else
  5547. // Move XY to starting position, then Z, then E
  5548. destination[X_AXIS] = lastpos[X_AXIS];
  5549. destination[Y_AXIS] = lastpos[Y_AXIS];
  5550. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5551. destination[Z_AXIS] = lastpos[Z_AXIS];
  5552. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5553. #endif
  5554. stepper.synchronize();
  5555. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5556. filament_ran_out = false;
  5557. #endif
  5558. // Show status screen
  5559. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5560. }
  5561. #endif // FILAMENT_CHANGE_FEATURE
  5562. #if ENABLED(DUAL_X_CARRIAGE)
  5563. /**
  5564. * M605: Set dual x-carriage movement mode
  5565. *
  5566. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5567. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5568. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5569. * units x-offset and an optional differential hotend temperature of
  5570. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5571. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5572. *
  5573. * Note: the X axis should be homed after changing dual x-carriage mode.
  5574. */
  5575. inline void gcode_M605() {
  5576. stepper.synchronize();
  5577. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5578. switch (dual_x_carriage_mode) {
  5579. case DXC_DUPLICATION_MODE:
  5580. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5581. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5582. SERIAL_ECHO_START;
  5583. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5584. SERIAL_CHAR(' ');
  5585. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5586. SERIAL_CHAR(',');
  5587. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5588. SERIAL_CHAR(' ');
  5589. SERIAL_ECHO(duplicate_extruder_x_offset);
  5590. SERIAL_CHAR(',');
  5591. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5592. break;
  5593. case DXC_FULL_CONTROL_MODE:
  5594. case DXC_AUTO_PARK_MODE:
  5595. break;
  5596. default:
  5597. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5598. break;
  5599. }
  5600. active_extruder_parked = false;
  5601. extruder_duplication_enabled = false;
  5602. delayed_move_time = 0;
  5603. }
  5604. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5605. inline void gcode_M605() {
  5606. stepper.synchronize();
  5607. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5608. SERIAL_ECHO_START;
  5609. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5610. }
  5611. #endif // M605
  5612. #if ENABLED(LIN_ADVANCE)
  5613. /**
  5614. * M905: Set advance factor
  5615. */
  5616. inline void gcode_M905() {
  5617. stepper.synchronize();
  5618. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5619. }
  5620. #endif
  5621. /**
  5622. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5623. */
  5624. inline void gcode_M907() {
  5625. #if HAS_DIGIPOTSS
  5626. LOOP_XYZE(i)
  5627. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5628. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5629. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5630. #elif HAS_MOTOR_CURRENT_PWM
  5631. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5632. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5633. #endif
  5634. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5635. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5636. #endif
  5637. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5638. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5639. #endif
  5640. #endif
  5641. #if ENABLED(DIGIPOT_I2C)
  5642. // this one uses actual amps in floating point
  5643. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5644. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5645. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5646. #endif
  5647. #if ENABLED(DAC_STEPPER_CURRENT)
  5648. if (code_seen('S')) {
  5649. float dac_percent = code_value_float();
  5650. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5651. }
  5652. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5653. #endif
  5654. }
  5655. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5656. /**
  5657. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5658. */
  5659. inline void gcode_M908() {
  5660. #if HAS_DIGIPOTSS
  5661. stepper.digitalPotWrite(
  5662. code_seen('P') ? code_value_int() : 0,
  5663. code_seen('S') ? code_value_int() : 0
  5664. );
  5665. #endif
  5666. #ifdef DAC_STEPPER_CURRENT
  5667. dac_current_raw(
  5668. code_seen('P') ? code_value_byte() : -1,
  5669. code_seen('S') ? code_value_ushort() : 0
  5670. );
  5671. #endif
  5672. }
  5673. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5674. inline void gcode_M909() { dac_print_values(); }
  5675. inline void gcode_M910() { dac_commit_eeprom(); }
  5676. #endif
  5677. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5678. #if HAS_MICROSTEPS
  5679. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5680. inline void gcode_M350() {
  5681. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5682. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5683. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5684. stepper.microstep_readings();
  5685. }
  5686. /**
  5687. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5688. * S# determines MS1 or MS2, X# sets the pin high/low.
  5689. */
  5690. inline void gcode_M351() {
  5691. if (code_seen('S')) switch (code_value_byte()) {
  5692. case 1:
  5693. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5694. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5695. break;
  5696. case 2:
  5697. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5698. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5699. break;
  5700. }
  5701. stepper.microstep_readings();
  5702. }
  5703. #endif // HAS_MICROSTEPS
  5704. #if ENABLED(MIXING_EXTRUDER)
  5705. /**
  5706. * M163: Set a single mix factor for a mixing extruder
  5707. * This is called "weight" by some systems.
  5708. *
  5709. * S[index] The channel index to set
  5710. * P[float] The mix value
  5711. *
  5712. */
  5713. inline void gcode_M163() {
  5714. int mix_index = code_seen('S') ? code_value_int() : 0;
  5715. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5716. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5717. }
  5718. #if MIXING_VIRTUAL_TOOLS > 1
  5719. /**
  5720. * M164: Store the current mix factors as a virtual tool.
  5721. *
  5722. * S[index] The virtual tool to store
  5723. *
  5724. */
  5725. inline void gcode_M164() {
  5726. int tool_index = code_seen('S') ? code_value_int() : 0;
  5727. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5728. normalize_mix();
  5729. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5730. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5731. }
  5732. }
  5733. #endif
  5734. #if ENABLED(DIRECT_MIXING_IN_G1)
  5735. /**
  5736. * M165: Set multiple mix factors for a mixing extruder.
  5737. * Factors that are left out will be set to 0.
  5738. * All factors together must add up to 1.0.
  5739. *
  5740. * A[factor] Mix factor for extruder stepper 1
  5741. * B[factor] Mix factor for extruder stepper 2
  5742. * C[factor] Mix factor for extruder stepper 3
  5743. * D[factor] Mix factor for extruder stepper 4
  5744. * H[factor] Mix factor for extruder stepper 5
  5745. * I[factor] Mix factor for extruder stepper 6
  5746. *
  5747. */
  5748. inline void gcode_M165() { gcode_get_mix(); }
  5749. #endif
  5750. #endif // MIXING_EXTRUDER
  5751. /**
  5752. * M999: Restart after being stopped
  5753. *
  5754. * Default behaviour is to flush the serial buffer and request
  5755. * a resend to the host starting on the last N line received.
  5756. *
  5757. * Sending "M999 S1" will resume printing without flushing the
  5758. * existing command buffer.
  5759. *
  5760. */
  5761. inline void gcode_M999() {
  5762. Running = true;
  5763. lcd_reset_alert_level();
  5764. if (code_seen('S') && code_value_bool()) return;
  5765. // gcode_LastN = Stopped_gcode_LastN;
  5766. FlushSerialRequestResend();
  5767. }
  5768. #if ENABLED(SWITCHING_EXTRUDER)
  5769. inline void move_extruder_servo(uint8_t e) {
  5770. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5771. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5772. }
  5773. #endif
  5774. inline void invalid_extruder_error(const uint8_t &e) {
  5775. SERIAL_ECHO_START;
  5776. SERIAL_CHAR('T');
  5777. SERIAL_PROTOCOL_F(e, DEC);
  5778. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5779. }
  5780. /**
  5781. * Perform a tool-change, which may result in moving the
  5782. * previous tool out of the way and the new tool into place.
  5783. */
  5784. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5785. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5786. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5787. invalid_extruder_error(tmp_extruder);
  5788. return;
  5789. }
  5790. // T0-Tnnn: Switch virtual tool by changing the mix
  5791. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5792. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5793. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5794. #if HOTENDS > 1
  5795. if (tmp_extruder >= EXTRUDERS) {
  5796. invalid_extruder_error(tmp_extruder);
  5797. return;
  5798. }
  5799. float old_feedrate_mm_s = feedrate_mm_s;
  5800. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5801. if (tmp_extruder != active_extruder) {
  5802. if (!no_move && axis_unhomed_error(true, true, true)) {
  5803. SERIAL_ECHOLNPGM("No move on toolchange");
  5804. no_move = true;
  5805. }
  5806. // Save current position to destination, for use later
  5807. set_destination_to_current();
  5808. #if ENABLED(DUAL_X_CARRIAGE)
  5809. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5810. if (DEBUGGING(LEVELING)) {
  5811. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5812. switch (dual_x_carriage_mode) {
  5813. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5814. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5815. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5816. }
  5817. }
  5818. #endif
  5819. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5820. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5821. ) {
  5822. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5823. if (DEBUGGING(LEVELING)) {
  5824. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5825. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5826. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5827. }
  5828. #endif
  5829. // Park old head: 1) raise 2) move to park position 3) lower
  5830. for (uint8_t i = 0; i < 3; i++)
  5831. planner.buffer_line(
  5832. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5833. current_position[Y_AXIS],
  5834. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5835. current_position[E_AXIS],
  5836. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5837. active_extruder
  5838. );
  5839. stepper.synchronize();
  5840. }
  5841. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5842. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5843. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5844. active_extruder = tmp_extruder;
  5845. // This function resets the max/min values - the current position may be overwritten below.
  5846. set_axis_is_at_home(X_AXIS);
  5847. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5848. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5849. #endif
  5850. switch (dual_x_carriage_mode) {
  5851. case DXC_FULL_CONTROL_MODE:
  5852. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5853. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5854. break;
  5855. case DXC_DUPLICATION_MODE:
  5856. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5857. if (active_extruder_parked)
  5858. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5859. else
  5860. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5861. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5862. extruder_duplication_enabled = false;
  5863. break;
  5864. default:
  5865. // record raised toolhead position for use by unpark
  5866. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5867. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5868. active_extruder_parked = true;
  5869. delayed_move_time = 0;
  5870. break;
  5871. }
  5872. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5873. if (DEBUGGING(LEVELING)) {
  5874. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5875. DEBUG_POS("New extruder (parked)", current_position);
  5876. }
  5877. #endif
  5878. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5879. #else // !DUAL_X_CARRIAGE
  5880. #if ENABLED(SWITCHING_EXTRUDER)
  5881. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5882. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5883. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5884. // Always raise by some amount
  5885. planner.buffer_line(
  5886. current_position[X_AXIS],
  5887. current_position[Y_AXIS],
  5888. current_position[Z_AXIS] + z_raise,
  5889. current_position[E_AXIS],
  5890. planner.max_feedrate_mm_s[Z_AXIS],
  5891. active_extruder
  5892. );
  5893. stepper.synchronize();
  5894. move_extruder_servo(active_extruder);
  5895. delay(500);
  5896. // Move back down, if needed
  5897. if (z_raise != z_diff) {
  5898. planner.buffer_line(
  5899. current_position[X_AXIS],
  5900. current_position[Y_AXIS],
  5901. current_position[Z_AXIS] + z_diff,
  5902. current_position[E_AXIS],
  5903. planner.max_feedrate_mm_s[Z_AXIS],
  5904. active_extruder
  5905. );
  5906. stepper.synchronize();
  5907. }
  5908. #endif
  5909. /**
  5910. * Set current_position to the position of the new nozzle.
  5911. * Offsets are based on linear distance, so we need to get
  5912. * the resulting position in coordinate space.
  5913. *
  5914. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5915. * - With mesh leveling, update Z for the new position
  5916. * - Otherwise, just use the raw linear distance
  5917. *
  5918. * Software endstops are altered here too. Consider a case where:
  5919. * E0 at X=0 ... E1 at X=10
  5920. * When we switch to E1 now X=10, but E1 can't move left.
  5921. * To express this we apply the change in XY to the software endstops.
  5922. * E1 can move farther right than E0, so the right limit is extended.
  5923. *
  5924. * Note that we don't adjust the Z software endstops. Why not?
  5925. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5926. * because the bed is 1mm lower at the new position. As long as
  5927. * the first nozzle is out of the way, the carriage should be
  5928. * allowed to move 1mm lower. This technically "breaks" the
  5929. * Z software endstop. But this is technically correct (and
  5930. * there is no viable alternative).
  5931. */
  5932. #if ABL_PLANAR
  5933. // Offset extruder, make sure to apply the bed level rotation matrix
  5934. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5935. hotend_offset[Y_AXIS][tmp_extruder],
  5936. 0),
  5937. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5938. hotend_offset[Y_AXIS][active_extruder],
  5939. 0),
  5940. offset_vec = tmp_offset_vec - act_offset_vec;
  5941. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5942. if (DEBUGGING(LEVELING)) {
  5943. tmp_offset_vec.debug("tmp_offset_vec");
  5944. act_offset_vec.debug("act_offset_vec");
  5945. offset_vec.debug("offset_vec (BEFORE)");
  5946. }
  5947. #endif
  5948. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5949. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5950. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5951. #endif
  5952. // Adjustments to the current position
  5953. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5954. current_position[Z_AXIS] += offset_vec.z;
  5955. #else // !ABL_PLANAR
  5956. float xydiff[2] = {
  5957. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5958. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5959. };
  5960. #if ENABLED(MESH_BED_LEVELING)
  5961. if (mbl.active()) {
  5962. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5963. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5964. #endif
  5965. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5966. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5967. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5968. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5969. if (DEBUGGING(LEVELING))
  5970. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  5971. #endif
  5972. }
  5973. #endif // MESH_BED_LEVELING
  5974. #endif // !HAS_ABL
  5975. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5976. if (DEBUGGING(LEVELING)) {
  5977. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5978. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5979. SERIAL_ECHOLNPGM(" }");
  5980. }
  5981. #endif
  5982. // The newly-selected extruder XY is actually at...
  5983. current_position[X_AXIS] += xydiff[X_AXIS];
  5984. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5985. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5986. position_shift[i] += xydiff[i];
  5987. update_software_endstops((AxisEnum)i);
  5988. }
  5989. // Set the new active extruder
  5990. active_extruder = tmp_extruder;
  5991. #endif // !DUAL_X_CARRIAGE
  5992. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5993. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5994. #endif
  5995. // Tell the planner the new "current position"
  5996. SYNC_PLAN_POSITION_KINEMATIC();
  5997. // Move to the "old position" (move the extruder into place)
  5998. if (!no_move && IsRunning()) {
  5999. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6000. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  6001. #endif
  6002. prepare_move_to_destination();
  6003. }
  6004. } // (tmp_extruder != active_extruder)
  6005. stepper.synchronize();
  6006. #if ENABLED(EXT_SOLENOID)
  6007. disable_all_solenoids();
  6008. enable_solenoid_on_active_extruder();
  6009. #endif // EXT_SOLENOID
  6010. feedrate_mm_s = old_feedrate_mm_s;
  6011. #else // HOTENDS <= 1
  6012. // Set the new active extruder
  6013. active_extruder = tmp_extruder;
  6014. UNUSED(fr_mm_s);
  6015. UNUSED(no_move);
  6016. #endif // HOTENDS <= 1
  6017. SERIAL_ECHO_START;
  6018. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  6019. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6020. }
  6021. /**
  6022. * T0-T3: Switch tool, usually switching extruders
  6023. *
  6024. * F[units/min] Set the movement feedrate
  6025. * S1 Don't move the tool in XY after change
  6026. */
  6027. inline void gcode_T(uint8_t tmp_extruder) {
  6028. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6029. if (DEBUGGING(LEVELING)) {
  6030. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  6031. SERIAL_ECHOLNPGM(")");
  6032. DEBUG_POS("BEFORE", current_position);
  6033. }
  6034. #endif
  6035. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  6036. tool_change(tmp_extruder);
  6037. #elif HOTENDS > 1
  6038. tool_change(
  6039. tmp_extruder,
  6040. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  6041. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  6042. );
  6043. #endif
  6044. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6045. if (DEBUGGING(LEVELING)) {
  6046. DEBUG_POS("AFTER", current_position);
  6047. SERIAL_ECHOLNPGM("<<< gcode_T");
  6048. }
  6049. #endif
  6050. }
  6051. /**
  6052. * Process a single command and dispatch it to its handler
  6053. * This is called from the main loop()
  6054. */
  6055. void process_next_command() {
  6056. current_command = command_queue[cmd_queue_index_r];
  6057. if (DEBUGGING(ECHO)) {
  6058. SERIAL_ECHO_START;
  6059. SERIAL_ECHOLN(current_command);
  6060. }
  6061. // Sanitize the current command:
  6062. // - Skip leading spaces
  6063. // - Bypass N[-0-9][0-9]*[ ]*
  6064. // - Overwrite * with nul to mark the end
  6065. while (*current_command == ' ') ++current_command;
  6066. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  6067. current_command += 2; // skip N[-0-9]
  6068. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  6069. while (*current_command == ' ') ++current_command; // skip [ ]*
  6070. }
  6071. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  6072. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  6073. char *cmd_ptr = current_command;
  6074. // Get the command code, which must be G, M, or T
  6075. char command_code = *cmd_ptr++;
  6076. // Skip spaces to get the numeric part
  6077. while (*cmd_ptr == ' ') cmd_ptr++;
  6078. uint16_t codenum = 0; // define ahead of goto
  6079. // Bail early if there's no code
  6080. bool code_is_good = NUMERIC(*cmd_ptr);
  6081. if (!code_is_good) goto ExitUnknownCommand;
  6082. // Get and skip the code number
  6083. do {
  6084. codenum = (codenum * 10) + (*cmd_ptr - '0');
  6085. cmd_ptr++;
  6086. } while (NUMERIC(*cmd_ptr));
  6087. // Skip all spaces to get to the first argument, or nul
  6088. while (*cmd_ptr == ' ') cmd_ptr++;
  6089. // The command's arguments (if any) start here, for sure!
  6090. current_command_args = cmd_ptr;
  6091. KEEPALIVE_STATE(IN_HANDLER);
  6092. // Handle a known G, M, or T
  6093. switch (command_code) {
  6094. case 'G': switch (codenum) {
  6095. // G0, G1
  6096. case 0:
  6097. case 1:
  6098. #if IS_SCARA
  6099. gcode_G0_G1(codenum == 0);
  6100. #else
  6101. gcode_G0_G1();
  6102. #endif
  6103. break;
  6104. // G2, G3
  6105. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  6106. case 2: // G2 - CW ARC
  6107. case 3: // G3 - CCW ARC
  6108. gcode_G2_G3(codenum == 2);
  6109. break;
  6110. #endif
  6111. // G4 Dwell
  6112. case 4:
  6113. gcode_G4();
  6114. break;
  6115. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6116. // G5
  6117. case 5: // G5 - Cubic B_spline
  6118. gcode_G5();
  6119. break;
  6120. #endif // BEZIER_CURVE_SUPPORT
  6121. #if ENABLED(FWRETRACT)
  6122. case 10: // G10: retract
  6123. case 11: // G11: retract_recover
  6124. gcode_G10_G11(codenum == 10);
  6125. break;
  6126. #endif // FWRETRACT
  6127. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6128. case 12:
  6129. gcode_G12(); // G12: Nozzle Clean
  6130. break;
  6131. #endif // NOZZLE_CLEAN_FEATURE
  6132. #if ENABLED(INCH_MODE_SUPPORT)
  6133. case 20: //G20: Inch Mode
  6134. gcode_G20();
  6135. break;
  6136. case 21: //G21: MM Mode
  6137. gcode_G21();
  6138. break;
  6139. #endif // INCH_MODE_SUPPORT
  6140. #if ENABLED(NOZZLE_PARK_FEATURE)
  6141. case 27: // G27: Nozzle Park
  6142. gcode_G27();
  6143. break;
  6144. #endif // NOZZLE_PARK_FEATURE
  6145. case 28: // G28: Home all axes, one at a time
  6146. gcode_G28();
  6147. break;
  6148. #if HAS_ABL || ENABLED(MESH_BED_LEVELING)
  6149. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6150. gcode_G29();
  6151. break;
  6152. #endif // HAS_ABL
  6153. #if HAS_BED_PROBE
  6154. case 30: // G30 Single Z probe
  6155. gcode_G30();
  6156. break;
  6157. #if ENABLED(Z_PROBE_SLED)
  6158. case 31: // G31: dock the sled
  6159. gcode_G31();
  6160. break;
  6161. case 32: // G32: undock the sled
  6162. gcode_G32();
  6163. break;
  6164. #endif // Z_PROBE_SLED
  6165. #endif // HAS_BED_PROBE
  6166. case 90: // G90
  6167. relative_mode = false;
  6168. break;
  6169. case 91: // G91
  6170. relative_mode = true;
  6171. break;
  6172. case 92: // G92
  6173. gcode_G92();
  6174. break;
  6175. }
  6176. break;
  6177. case 'M': switch (codenum) {
  6178. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  6179. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6180. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6181. gcode_M0_M1();
  6182. break;
  6183. #endif // ULTIPANEL
  6184. case 17:
  6185. gcode_M17();
  6186. break;
  6187. #if ENABLED(SDSUPPORT)
  6188. case 20: // M20 - list SD card
  6189. gcode_M20(); break;
  6190. case 21: // M21 - init SD card
  6191. gcode_M21(); break;
  6192. case 22: //M22 - release SD card
  6193. gcode_M22(); break;
  6194. case 23: //M23 - Select file
  6195. gcode_M23(); break;
  6196. case 24: //M24 - Start SD print
  6197. gcode_M24(); break;
  6198. case 25: //M25 - Pause SD print
  6199. gcode_M25(); break;
  6200. case 26: //M26 - Set SD index
  6201. gcode_M26(); break;
  6202. case 27: //M27 - Get SD status
  6203. gcode_M27(); break;
  6204. case 28: //M28 - Start SD write
  6205. gcode_M28(); break;
  6206. case 29: //M29 - Stop SD write
  6207. gcode_M29(); break;
  6208. case 30: //M30 <filename> Delete File
  6209. gcode_M30(); break;
  6210. case 32: //M32 - Select file and start SD print
  6211. gcode_M32(); break;
  6212. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6213. case 33: //M33 - Get the long full path to a file or folder
  6214. gcode_M33(); break;
  6215. #endif // LONG_FILENAME_HOST_SUPPORT
  6216. case 928: //M928 - Start SD write
  6217. gcode_M928(); break;
  6218. #endif //SDSUPPORT
  6219. case 31: //M31 take time since the start of the SD print or an M109 command
  6220. gcode_M31();
  6221. break;
  6222. case 42: //M42 -Change pin status via gcode
  6223. gcode_M42();
  6224. break;
  6225. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6226. case 48: // M48 Z probe repeatability
  6227. gcode_M48();
  6228. break;
  6229. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6230. case 75: // Start print timer
  6231. gcode_M75();
  6232. break;
  6233. case 76: // Pause print timer
  6234. gcode_M76();
  6235. break;
  6236. case 77: // Stop print timer
  6237. gcode_M77();
  6238. break;
  6239. #if ENABLED(PRINTCOUNTER)
  6240. case 78: // Show print statistics
  6241. gcode_M78();
  6242. break;
  6243. #endif
  6244. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6245. case 100:
  6246. gcode_M100();
  6247. break;
  6248. #endif
  6249. case 104: // M104
  6250. gcode_M104();
  6251. break;
  6252. case 110: // M110: Set Current Line Number
  6253. gcode_M110();
  6254. break;
  6255. case 111: // M111: Set debug level
  6256. gcode_M111();
  6257. break;
  6258. #if DISABLED(EMERGENCY_PARSER)
  6259. case 108: // M108: Cancel Waiting
  6260. gcode_M108();
  6261. break;
  6262. case 112: // M112: Emergency Stop
  6263. gcode_M112();
  6264. break;
  6265. case 410: // M410 quickstop - Abort all the planned moves.
  6266. gcode_M410();
  6267. break;
  6268. #endif
  6269. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6270. case 113: // M113: Set Host Keepalive interval
  6271. gcode_M113();
  6272. break;
  6273. #endif
  6274. case 140: // M140: Set bed temp
  6275. gcode_M140();
  6276. break;
  6277. case 105: // M105: Read current temperature
  6278. gcode_M105();
  6279. KEEPALIVE_STATE(NOT_BUSY);
  6280. return; // "ok" already printed
  6281. case 109: // M109: Wait for temperature
  6282. gcode_M109();
  6283. break;
  6284. #if HAS_TEMP_BED
  6285. case 190: // M190: Wait for bed heater to reach target
  6286. gcode_M190();
  6287. break;
  6288. #endif // HAS_TEMP_BED
  6289. #if FAN_COUNT > 0
  6290. case 106: // M106: Fan On
  6291. gcode_M106();
  6292. break;
  6293. case 107: // M107: Fan Off
  6294. gcode_M107();
  6295. break;
  6296. #endif // FAN_COUNT > 0
  6297. #if ENABLED(BARICUDA)
  6298. // PWM for HEATER_1_PIN
  6299. #if HAS_HEATER_1
  6300. case 126: // M126: valve open
  6301. gcode_M126();
  6302. break;
  6303. case 127: // M127: valve closed
  6304. gcode_M127();
  6305. break;
  6306. #endif // HAS_HEATER_1
  6307. // PWM for HEATER_2_PIN
  6308. #if HAS_HEATER_2
  6309. case 128: // M128: valve open
  6310. gcode_M128();
  6311. break;
  6312. case 129: // M129: valve closed
  6313. gcode_M129();
  6314. break;
  6315. #endif // HAS_HEATER_2
  6316. #endif // BARICUDA
  6317. #if HAS_POWER_SWITCH
  6318. case 80: // M80: Turn on Power Supply
  6319. gcode_M80();
  6320. break;
  6321. #endif // HAS_POWER_SWITCH
  6322. case 81: // M81: Turn off Power, including Power Supply, if possible
  6323. gcode_M81();
  6324. break;
  6325. case 82:
  6326. gcode_M82();
  6327. break;
  6328. case 83:
  6329. gcode_M83();
  6330. break;
  6331. case 18: // (for compatibility)
  6332. case 84: // M84
  6333. gcode_M18_M84();
  6334. break;
  6335. case 85: // M85
  6336. gcode_M85();
  6337. break;
  6338. case 92: // M92: Set the steps-per-unit for one or more axes
  6339. gcode_M92();
  6340. break;
  6341. case 115: // M115: Report capabilities
  6342. gcode_M115();
  6343. break;
  6344. case 117: // M117: Set LCD message text, if possible
  6345. gcode_M117();
  6346. break;
  6347. case 114: // M114: Report current position
  6348. gcode_M114();
  6349. break;
  6350. case 120: // M120: Enable endstops
  6351. gcode_M120();
  6352. break;
  6353. case 121: // M121: Disable endstops
  6354. gcode_M121();
  6355. break;
  6356. case 119: // M119: Report endstop states
  6357. gcode_M119();
  6358. break;
  6359. #if ENABLED(ULTIPANEL)
  6360. case 145: // M145: Set material heatup parameters
  6361. gcode_M145();
  6362. break;
  6363. #endif
  6364. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6365. case 149:
  6366. gcode_M149();
  6367. break;
  6368. #endif
  6369. #if ENABLED(BLINKM)
  6370. case 150: // M150
  6371. gcode_M150();
  6372. break;
  6373. #endif //BLINKM
  6374. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6375. case 155:
  6376. gcode_M155();
  6377. break;
  6378. case 156:
  6379. gcode_M156();
  6380. break;
  6381. #endif //EXPERIMENTAL_I2CBUS
  6382. #if ENABLED(MIXING_EXTRUDER)
  6383. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6384. gcode_M163();
  6385. break;
  6386. #if MIXING_VIRTUAL_TOOLS > 1
  6387. case 164: // M164 S<int> save current mix as a virtual extruder
  6388. gcode_M164();
  6389. break;
  6390. #endif
  6391. #if ENABLED(DIRECT_MIXING_IN_G1)
  6392. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6393. gcode_M165();
  6394. break;
  6395. #endif
  6396. #endif
  6397. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6398. gcode_M200();
  6399. break;
  6400. case 201: // M201
  6401. gcode_M201();
  6402. break;
  6403. #if 0 // Not used for Sprinter/grbl gen6
  6404. case 202: // M202
  6405. gcode_M202();
  6406. break;
  6407. #endif
  6408. case 203: // M203 max feedrate units/sec
  6409. gcode_M203();
  6410. break;
  6411. case 204: // M204 acclereration S normal moves T filmanent only moves
  6412. gcode_M204();
  6413. break;
  6414. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6415. gcode_M205();
  6416. break;
  6417. case 206: // M206 additional homing offset
  6418. gcode_M206();
  6419. break;
  6420. #if ENABLED(DELTA)
  6421. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6422. gcode_M665();
  6423. break;
  6424. #endif
  6425. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6426. case 666: // M666 set delta / dual endstop adjustment
  6427. gcode_M666();
  6428. break;
  6429. #endif
  6430. #if ENABLED(FWRETRACT)
  6431. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6432. gcode_M207();
  6433. break;
  6434. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6435. gcode_M208();
  6436. break;
  6437. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6438. gcode_M209();
  6439. break;
  6440. #endif // FWRETRACT
  6441. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6442. gcode_M211();
  6443. break;
  6444. #if HOTENDS > 1
  6445. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6446. gcode_M218();
  6447. break;
  6448. #endif
  6449. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6450. gcode_M220();
  6451. break;
  6452. case 221: // M221 - Set Flow Percentage: S<percent>
  6453. gcode_M221();
  6454. break;
  6455. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6456. gcode_M226();
  6457. break;
  6458. #if HAS_SERVOS
  6459. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6460. gcode_M280();
  6461. break;
  6462. #endif // HAS_SERVOS
  6463. #if HAS_BUZZER
  6464. case 300: // M300 - Play beep tone
  6465. gcode_M300();
  6466. break;
  6467. #endif // HAS_BUZZER
  6468. #if ENABLED(PIDTEMP)
  6469. case 301: // M301
  6470. gcode_M301();
  6471. break;
  6472. #endif // PIDTEMP
  6473. #if ENABLED(PIDTEMPBED)
  6474. case 304: // M304
  6475. gcode_M304();
  6476. break;
  6477. #endif // PIDTEMPBED
  6478. #if defined(CHDK) || HAS_PHOTOGRAPH
  6479. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6480. gcode_M240();
  6481. break;
  6482. #endif // CHDK || PHOTOGRAPH_PIN
  6483. #if HAS_LCD_CONTRAST
  6484. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6485. gcode_M250();
  6486. break;
  6487. #endif // HAS_LCD_CONTRAST
  6488. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6489. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6490. gcode_M302();
  6491. break;
  6492. #endif // PREVENT_COLD_EXTRUSION
  6493. case 303: // M303 PID autotune
  6494. gcode_M303();
  6495. break;
  6496. #if ENABLED(MORGAN_SCARA)
  6497. case 360: // M360 SCARA Theta pos1
  6498. if (gcode_M360()) return;
  6499. break;
  6500. case 361: // M361 SCARA Theta pos2
  6501. if (gcode_M361()) return;
  6502. break;
  6503. case 362: // M362 SCARA Psi pos1
  6504. if (gcode_M362()) return;
  6505. break;
  6506. case 363: // M363 SCARA Psi pos2
  6507. if (gcode_M363()) return;
  6508. break;
  6509. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6510. if (gcode_M364()) return;
  6511. break;
  6512. #endif // SCARA
  6513. case 400: // M400 finish all moves
  6514. gcode_M400();
  6515. break;
  6516. #if HAS_BED_PROBE
  6517. case 401:
  6518. gcode_M401();
  6519. break;
  6520. case 402:
  6521. gcode_M402();
  6522. break;
  6523. #endif // HAS_BED_PROBE
  6524. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6525. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6526. gcode_M404();
  6527. break;
  6528. case 405: //M405 Turn on filament sensor for control
  6529. gcode_M405();
  6530. break;
  6531. case 406: //M406 Turn off filament sensor for control
  6532. gcode_M406();
  6533. break;
  6534. case 407: //M407 Display measured filament diameter
  6535. gcode_M407();
  6536. break;
  6537. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6538. #if ENABLED(MESH_BED_LEVELING)
  6539. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6540. gcode_M420();
  6541. break;
  6542. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6543. gcode_M421();
  6544. break;
  6545. #endif
  6546. case 428: // M428 Apply current_position to home_offset
  6547. gcode_M428();
  6548. break;
  6549. case 500: // M500 Store settings in EEPROM
  6550. gcode_M500();
  6551. break;
  6552. case 501: // M501 Read settings from EEPROM
  6553. gcode_M501();
  6554. break;
  6555. case 502: // M502 Revert to default settings
  6556. gcode_M502();
  6557. break;
  6558. case 503: // M503 print settings currently in memory
  6559. gcode_M503();
  6560. break;
  6561. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6562. case 540:
  6563. gcode_M540();
  6564. break;
  6565. #endif
  6566. #if HAS_BED_PROBE
  6567. case 851: // Set Z Probe Z Offset
  6568. gcode_M851();
  6569. break;
  6570. #endif // HAS_BED_PROBE
  6571. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6572. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6573. gcode_M600();
  6574. break;
  6575. #endif // FILAMENT_CHANGE_FEATURE
  6576. #if ENABLED(DUAL_X_CARRIAGE)
  6577. case 605:
  6578. gcode_M605();
  6579. break;
  6580. #endif // DUAL_X_CARRIAGE
  6581. #if ENABLED(LIN_ADVANCE)
  6582. case 905: // M905 Set advance factor.
  6583. gcode_M905();
  6584. break;
  6585. #endif
  6586. case 907: // M907 Set digital trimpot motor current using axis codes.
  6587. gcode_M907();
  6588. break;
  6589. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6590. case 908: // M908 Control digital trimpot directly.
  6591. gcode_M908();
  6592. break;
  6593. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6594. case 909: // M909 Print digipot/DAC current value
  6595. gcode_M909();
  6596. break;
  6597. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6598. gcode_M910();
  6599. break;
  6600. #endif
  6601. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6602. #if HAS_MICROSTEPS
  6603. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6604. gcode_M350();
  6605. break;
  6606. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6607. gcode_M351();
  6608. break;
  6609. #endif // HAS_MICROSTEPS
  6610. case 999: // M999: Restart after being Stopped
  6611. gcode_M999();
  6612. break;
  6613. }
  6614. break;
  6615. case 'T':
  6616. gcode_T(codenum);
  6617. break;
  6618. default: code_is_good = false;
  6619. }
  6620. KEEPALIVE_STATE(NOT_BUSY);
  6621. ExitUnknownCommand:
  6622. // Still unknown command? Throw an error
  6623. if (!code_is_good) unknown_command_error();
  6624. ok_to_send();
  6625. }
  6626. /**
  6627. * Send a "Resend: nnn" message to the host to
  6628. * indicate that a command needs to be re-sent.
  6629. */
  6630. void FlushSerialRequestResend() {
  6631. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6632. MYSERIAL.flush();
  6633. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6634. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6635. ok_to_send();
  6636. }
  6637. /**
  6638. * Send an "ok" message to the host, indicating
  6639. * that a command was successfully processed.
  6640. *
  6641. * If ADVANCED_OK is enabled also include:
  6642. * N<int> Line number of the command, if any
  6643. * P<int> Planner space remaining
  6644. * B<int> Block queue space remaining
  6645. */
  6646. void ok_to_send() {
  6647. refresh_cmd_timeout();
  6648. if (!send_ok[cmd_queue_index_r]) return;
  6649. SERIAL_PROTOCOLPGM(MSG_OK);
  6650. #if ENABLED(ADVANCED_OK)
  6651. char* p = command_queue[cmd_queue_index_r];
  6652. if (*p == 'N') {
  6653. SERIAL_PROTOCOL(' ');
  6654. SERIAL_ECHO(*p++);
  6655. while (NUMERIC_SIGNED(*p))
  6656. SERIAL_ECHO(*p++);
  6657. }
  6658. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6659. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6660. #endif
  6661. SERIAL_EOL;
  6662. }
  6663. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6664. /**
  6665. * Constrain the given coordinates to the software endstops.
  6666. */
  6667. void clamp_to_software_endstops(float target[XYZ]) {
  6668. #if ENABLED(min_software_endstops)
  6669. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6670. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6671. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6672. #endif
  6673. #if ENABLED(max_software_endstops)
  6674. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6675. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6676. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6677. #endif
  6678. }
  6679. #endif
  6680. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6681. // Get the Z adjustment for non-linear bed leveling
  6682. float bilinear_z_offset(float cartesian[XYZ]) {
  6683. int gridx = (cartesian[X_AXIS] - bilinear_start[X_AXIS]) / bilinear_grid_spacing[X_AXIS],
  6684. gridy = (cartesian[Y_AXIS] - bilinear_start[Y_AXIS]) / bilinear_grid_spacing[Y_AXIS];
  6685. // What grid box is xy inside?
  6686. if (gridx < 0) gridx = 0;
  6687. if (gridx > ABL_GRID_POINTS_X - 1) gridx = ABL_GRID_POINTS_X - 1;
  6688. if (gridy < 0) gridy = 0;
  6689. if (gridy > ABL_GRID_POINTS_Y - 1) gridy = ABL_GRID_POINTS_Y - 1;
  6690. // Ratio within the grid box
  6691. float ratio_x = cartesian[X_AXIS] / bilinear_grid_spacing[X_AXIS] - gridx,
  6692. ratio_y = cartesian[Y_AXIS] / bilinear_grid_spacing[Y_AXIS] - gridy,
  6693. // Z at the box corners
  6694. z1 = bed_level_grid[gridx][gridy], // left-front
  6695. z2 = bed_level_grid[gridx][gridy + 1], // left-back
  6696. z3 = bed_level_grid[gridx + 1][gridy], // right-front
  6697. z4 = bed_level_grid[gridx + 1][gridy + 1], // right-back
  6698. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  6699. R = z3 + (z4 - z3) * ratio_y; // Linear interp. RF -> RB
  6700. /*
  6701. SERIAL_ECHOPAIR("gridx=", gridx);
  6702. SERIAL_ECHOPAIR(" gridy=", gridy);
  6703. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  6704. SERIAL_ECHOPAIR(" ratio_y=", ratio_y);
  6705. SERIAL_ECHOPAIR(" z1=", z1);
  6706. SERIAL_ECHOPAIR(" z2=", z2);
  6707. SERIAL_ECHOPAIR(" z3=", z3);
  6708. SERIAL_ECHOPAIR(" z4=", z4);
  6709. SERIAL_ECHOPAIR(" L=", L);
  6710. SERIAL_ECHOPAIR(" R=", R);
  6711. SERIAL_ECHOPAIR(" offset=", L + ratio_x * (R - L);
  6712. //*/
  6713. return L + ratio_x * (R - L);
  6714. }
  6715. #endif // AUTO_BED_LEVELING_BILINEAR
  6716. #if ENABLED(DELTA)
  6717. /**
  6718. * Recalculate factors used for delta kinematics whenever
  6719. * settings have been changed (e.g., by M665).
  6720. */
  6721. void recalc_delta_settings(float radius, float diagonal_rod) {
  6722. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6723. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6724. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6725. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6726. delta_tower3_x = 0.0; // back middle tower
  6727. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6728. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6729. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6730. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6731. }
  6732. #if ENABLED(DELTA_FAST_SQRT)
  6733. /**
  6734. * Fast inverse sqrt from Quake III Arena
  6735. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  6736. */
  6737. float Q_rsqrt(float number) {
  6738. long i;
  6739. float x2, y;
  6740. const float threehalfs = 1.5f;
  6741. x2 = number * 0.5f;
  6742. y = number;
  6743. i = * ( long * ) &y; // evil floating point bit level hacking
  6744. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  6745. y = * ( float * ) &i;
  6746. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  6747. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  6748. return y;
  6749. }
  6750. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  6751. #else
  6752. #define _SQRT(n) sqrt(n)
  6753. #endif
  6754. /**
  6755. * Delta Inverse Kinematics
  6756. *
  6757. * Calculate the tower positions for a given logical
  6758. * position, storing the result in the delta[] array.
  6759. *
  6760. * This is an expensive calculation, requiring 3 square
  6761. * roots per segmented linear move, and strains the limits
  6762. * of a Mega2560 with a Graphical Display.
  6763. *
  6764. * Suggested optimizations include:
  6765. *
  6766. * - Disable the home_offset (M206) and/or position_shift (G92)
  6767. * features to remove up to 12 float additions.
  6768. *
  6769. * - Use a fast-inverse-sqrt function and add the reciprocal.
  6770. * (see above)
  6771. */
  6772. // Macro to obtain the Z position of an individual tower
  6773. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  6774. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  6775. delta_tower##T##_x - raw[X_AXIS], \
  6776. delta_tower##T##_y - raw[Y_AXIS] \
  6777. ) \
  6778. )
  6779. #define DELTA_RAW_IK() do { \
  6780. delta[A_AXIS] = DELTA_Z(1); \
  6781. delta[B_AXIS] = DELTA_Z(2); \
  6782. delta[C_AXIS] = DELTA_Z(3); \
  6783. } while(0)
  6784. #define DELTA_LOGICAL_IK() do { \
  6785. const float raw[XYZ] = { \
  6786. RAW_X_POSITION(logical[X_AXIS]), \
  6787. RAW_Y_POSITION(logical[Y_AXIS]), \
  6788. RAW_Z_POSITION(logical[Z_AXIS]) \
  6789. }; \
  6790. DELTA_RAW_IK(); \
  6791. } while(0)
  6792. #define DELTA_DEBUG() do { \
  6793. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  6794. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  6795. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  6796. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  6797. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  6798. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  6799. } while(0)
  6800. void inverse_kinematics(const float logical[XYZ]) {
  6801. DELTA_LOGICAL_IK();
  6802. // DELTA_DEBUG();
  6803. }
  6804. /**
  6805. * Calculate the highest Z position where the
  6806. * effector has the full range of XY motion.
  6807. */
  6808. float delta_safe_distance_from_top() {
  6809. float cartesian[XYZ] = {
  6810. LOGICAL_X_POSITION(0),
  6811. LOGICAL_Y_POSITION(0),
  6812. LOGICAL_Z_POSITION(0)
  6813. };
  6814. inverse_kinematics(cartesian);
  6815. float distance = delta[A_AXIS];
  6816. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6817. inverse_kinematics(cartesian);
  6818. return abs(distance - delta[A_AXIS]);
  6819. }
  6820. /**
  6821. * Delta Forward Kinematics
  6822. *
  6823. * See the Wikipedia article "Trilateration"
  6824. * https://en.wikipedia.org/wiki/Trilateration
  6825. *
  6826. * Establish a new coordinate system in the plane of the
  6827. * three carriage points. This system has its origin at
  6828. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  6829. * plane with a Z component of zero.
  6830. * We will define unit vectors in this coordinate system
  6831. * in our original coordinate system. Then when we calculate
  6832. * the Xnew, Ynew and Znew values, we can translate back into
  6833. * the original system by moving along those unit vectors
  6834. * by the corresponding values.
  6835. *
  6836. * Variable names matched to Marlin, c-version, and avoid the
  6837. * use of any vector library.
  6838. *
  6839. * by Andreas Hardtung 2016-06-07
  6840. * based on a Java function from "Delta Robot Kinematics V3"
  6841. * by Steve Graves
  6842. *
  6843. * The result is stored in the cartes[] array.
  6844. */
  6845. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6846. // Create a vector in old coordinates along x axis of new coordinate
  6847. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6848. // Get the Magnitude of vector.
  6849. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  6850. // Create unit vector by dividing by magnitude.
  6851. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  6852. // Get the vector from the origin of the new system to the third point.
  6853. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6854. // Use the dot product to find the component of this vector on the X axis.
  6855. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  6856. // Create a vector along the x axis that represents the x component of p13.
  6857. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  6858. // Subtract the X component from the original vector leaving only Y. We use the
  6859. // variable that will be the unit vector after we scale it.
  6860. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  6861. // The magnitude of Y component
  6862. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  6863. // Convert to a unit vector
  6864. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6865. // The cross product of the unit x and y is the unit z
  6866. // float[] ez = vectorCrossProd(ex, ey);
  6867. float ez[3] = {
  6868. ex[1] * ey[2] - ex[2] * ey[1],
  6869. ex[2] * ey[0] - ex[0] * ey[2],
  6870. ex[0] * ey[1] - ex[1] * ey[0]
  6871. };
  6872. // We now have the d, i and j values defined in Wikipedia.
  6873. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  6874. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  6875. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  6876. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  6877. // Start from the origin of the old coordinates and add vectors in the
  6878. // old coords that represent the Xnew, Ynew and Znew to find the point
  6879. // in the old system.
  6880. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  6881. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  6882. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  6883. };
  6884. void forward_kinematics_DELTA(float point[ABC]) {
  6885. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  6886. }
  6887. #endif // DELTA
  6888. /**
  6889. * Get the stepper positions in the cartes[] array.
  6890. * Forward kinematics are applied for DELTA and SCARA.
  6891. *
  6892. * The result is in the current coordinate space with
  6893. * leveling applied. The coordinates need to be run through
  6894. * unapply_leveling to obtain the "ideal" coordinates
  6895. * suitable for current_position, etc.
  6896. */
  6897. void get_cartesian_from_steppers() {
  6898. #if ENABLED(DELTA)
  6899. forward_kinematics_DELTA(
  6900. stepper.get_axis_position_mm(A_AXIS),
  6901. stepper.get_axis_position_mm(B_AXIS),
  6902. stepper.get_axis_position_mm(C_AXIS)
  6903. );
  6904. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  6905. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  6906. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  6907. #elif IS_SCARA
  6908. forward_kinematics_SCARA(
  6909. stepper.get_axis_position_degrees(A_AXIS),
  6910. stepper.get_axis_position_degrees(B_AXIS)
  6911. );
  6912. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  6913. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  6914. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6915. #else
  6916. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  6917. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  6918. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6919. #endif
  6920. }
  6921. /**
  6922. * Set the current_position for an axis based on
  6923. * the stepper positions, removing any leveling that
  6924. * may have been applied.
  6925. */
  6926. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  6927. get_cartesian_from_steppers();
  6928. #if PLANNER_LEVELING
  6929. planner.unapply_leveling(cartes);
  6930. #endif
  6931. if (axis == ALL_AXES)
  6932. memcpy(current_position, cartes, sizeof(cartes));
  6933. else
  6934. current_position[axis] = cartes[axis];
  6935. }
  6936. #if ENABLED(MESH_BED_LEVELING)
  6937. /**
  6938. * Prepare a mesh-leveled linear move in a Cartesian setup,
  6939. * splitting the move where it crosses mesh borders.
  6940. */
  6941. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6942. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6943. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6944. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6945. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6946. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6947. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6948. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6949. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6950. if (cx1 == cx2 && cy1 == cy2) {
  6951. // Start and end on same mesh square
  6952. line_to_destination(fr_mm_s);
  6953. set_current_to_destination();
  6954. return;
  6955. }
  6956. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6957. float normalized_dist, end[NUM_AXIS];
  6958. // Split at the left/front border of the right/top square
  6959. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6960. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6961. memcpy(end, destination, sizeof(end));
  6962. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6963. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6964. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6965. CBI(x_splits, gcx);
  6966. }
  6967. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6968. memcpy(end, destination, sizeof(end));
  6969. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6970. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6971. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6972. CBI(y_splits, gcy);
  6973. }
  6974. else {
  6975. // Already split on a border
  6976. line_to_destination(fr_mm_s);
  6977. set_current_to_destination();
  6978. return;
  6979. }
  6980. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6981. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6982. // Do the split and look for more borders
  6983. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6984. // Restore destination from stack
  6985. memcpy(destination, end, sizeof(end));
  6986. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6987. }
  6988. #endif // MESH_BED_LEVELING
  6989. #if IS_KINEMATIC
  6990. /**
  6991. * Prepare a linear move in a DELTA or SCARA setup.
  6992. *
  6993. * This calls planner.buffer_line several times, adding
  6994. * small incremental moves for DELTA or SCARA.
  6995. */
  6996. inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
  6997. // Get the top feedrate of the move in the XY plane
  6998. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6999. // If the move is only in Z/E don't split up the move
  7000. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  7001. inverse_kinematics(ltarget);
  7002. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
  7003. return true;
  7004. }
  7005. // Get the cartesian distances moved in XYZE
  7006. float difference[NUM_AXIS];
  7007. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  7008. // Get the linear distance in XYZ
  7009. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  7010. // If the move is very short, check the E move distance
  7011. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  7012. // No E move either? Game over.
  7013. if (UNEAR_ZERO(cartesian_mm)) return false;
  7014. // Minimum number of seconds to move the given distance
  7015. float seconds = cartesian_mm / _feedrate_mm_s;
  7016. // The number of segments-per-second times the duration
  7017. // gives the number of segments
  7018. uint16_t segments = delta_segments_per_second * seconds;
  7019. // For SCARA minimum segment size is 0.5mm
  7020. #if IS_SCARA
  7021. NOMORE(segments, cartesian_mm * 2);
  7022. #endif
  7023. // At least one segment is required
  7024. NOLESS(segments, 1);
  7025. // The approximate length of each segment
  7026. float segment_distance[XYZE] = {
  7027. difference[X_AXIS] / segments,
  7028. difference[Y_AXIS] / segments,
  7029. difference[Z_AXIS] / segments,
  7030. difference[E_AXIS] / segments
  7031. };
  7032. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  7033. // SERIAL_ECHOPAIR(" seconds=", seconds);
  7034. // SERIAL_ECHOLNPAIR(" segments=", segments);
  7035. // Drop one segment so the last move is to the exact target.
  7036. // If there's only 1 segment, loops will be skipped entirely.
  7037. --segments;
  7038. // Using "raw" coordinates saves 6 float subtractions
  7039. // per segment, saving valuable CPU cycles
  7040. #if ENABLED(USE_RAW_KINEMATICS)
  7041. // Get the raw current position as starting point
  7042. float raw[XYZE] = {
  7043. RAW_CURRENT_POSITION(X_AXIS),
  7044. RAW_CURRENT_POSITION(Y_AXIS),
  7045. RAW_CURRENT_POSITION(Z_AXIS),
  7046. current_position[E_AXIS]
  7047. };
  7048. #define DELTA_VAR raw
  7049. // Delta can inline its kinematics
  7050. #if ENABLED(DELTA)
  7051. #define DELTA_IK() DELTA_RAW_IK()
  7052. #else
  7053. #define DELTA_IK() inverse_kinematics(raw)
  7054. #endif
  7055. #else
  7056. // Get the logical current position as starting point
  7057. float logical[XYZE];
  7058. memcpy(logical, current_position, sizeof(logical));
  7059. #define DELTA_VAR logical
  7060. // Delta can inline its kinematics
  7061. #if ENABLED(DELTA)
  7062. #define DELTA_IK() DELTA_LOGICAL_IK()
  7063. #else
  7064. #define DELTA_IK() inverse_kinematics(logical)
  7065. #endif
  7066. #endif
  7067. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  7068. // Only interpolate XYZ. Advance E normally.
  7069. #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
  7070. // Get the starting delta if interpolation is possible
  7071. if (segments >= 2) DELTA_IK();
  7072. // Loop using decrement
  7073. for (uint16_t s = segments + 1; --s;) {
  7074. // Are there at least 2 moves left?
  7075. if (s >= 2) {
  7076. // Save the previous delta for interpolation
  7077. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  7078. // Get the delta 2 segments ahead (rather than the next)
  7079. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  7080. // Advance E normally
  7081. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7082. // Get the exact delta for the move after this
  7083. DELTA_IK();
  7084. // Move to the interpolated delta position first
  7085. planner.buffer_line(
  7086. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  7087. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  7088. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  7089. DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
  7090. );
  7091. // Advance E once more for the next move
  7092. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7093. // Do an extra decrement of the loop
  7094. --s;
  7095. }
  7096. else {
  7097. // Get the last segment delta. (Used when segments is odd)
  7098. DELTA_NEXT(segment_distance[i]);
  7099. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7100. DELTA_IK();
  7101. }
  7102. // Move to the non-interpolated position
  7103. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7104. }
  7105. #else
  7106. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
  7107. // For non-interpolated delta calculate every segment
  7108. for (uint16_t s = segments + 1; --s;) {
  7109. DELTA_NEXT(segment_distance[i]);
  7110. DELTA_IK();
  7111. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7112. }
  7113. #endif
  7114. // Since segment_distance is only approximate,
  7115. // the final move must be to the exact destination.
  7116. inverse_kinematics(ltarget);
  7117. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
  7118. return true;
  7119. }
  7120. #else
  7121. /**
  7122. * Prepare a linear move in a Cartesian setup.
  7123. * If Mesh Bed Leveling is enabled, perform a mesh move.
  7124. */
  7125. inline bool prepare_move_to_destination_cartesian() {
  7126. // Do not use feedrate_percentage for E or Z only moves
  7127. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  7128. line_to_destination();
  7129. }
  7130. else {
  7131. #if ENABLED(MESH_BED_LEVELING)
  7132. if (mbl.active()) {
  7133. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7134. return false;
  7135. }
  7136. else
  7137. #endif
  7138. line_to_destination(MMS_SCALED(feedrate_mm_s));
  7139. }
  7140. return true;
  7141. }
  7142. #endif // !IS_KINEMATIC
  7143. #if ENABLED(DUAL_X_CARRIAGE)
  7144. /**
  7145. * Prepare a linear move in a dual X axis setup
  7146. */
  7147. inline bool prepare_move_to_destination_dualx() {
  7148. if (active_extruder_parked) {
  7149. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  7150. // move duplicate extruder into correct duplication position.
  7151. planner.set_position_mm(
  7152. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  7153. current_position[Y_AXIS],
  7154. current_position[Z_AXIS],
  7155. current_position[E_AXIS]
  7156. );
  7157. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  7158. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  7159. SYNC_PLAN_POSITION_KINEMATIC();
  7160. stepper.synchronize();
  7161. extruder_duplication_enabled = true;
  7162. active_extruder_parked = false;
  7163. }
  7164. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  7165. if (current_position[E_AXIS] == destination[E_AXIS]) {
  7166. // This is a travel move (with no extrusion)
  7167. // Skip it, but keep track of the current position
  7168. // (so it can be used as the start of the next non-travel move)
  7169. if (delayed_move_time != 0xFFFFFFFFUL) {
  7170. set_current_to_destination();
  7171. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  7172. delayed_move_time = millis();
  7173. return false;
  7174. }
  7175. }
  7176. delayed_move_time = 0;
  7177. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  7178. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7179. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  7180. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7181. active_extruder_parked = false;
  7182. }
  7183. }
  7184. return true;
  7185. }
  7186. #endif // DUAL_X_CARRIAGE
  7187. /**
  7188. * Prepare a single move and get ready for the next one
  7189. *
  7190. * This may result in several calls to planner.buffer_line to
  7191. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  7192. */
  7193. void prepare_move_to_destination() {
  7194. clamp_to_software_endstops(destination);
  7195. refresh_cmd_timeout();
  7196. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7197. if (!DEBUGGING(DRYRUN)) {
  7198. if (destination[E_AXIS] != current_position[E_AXIS]) {
  7199. if (thermalManager.tooColdToExtrude(active_extruder)) {
  7200. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7201. SERIAL_ECHO_START;
  7202. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  7203. }
  7204. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  7205. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  7206. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7207. SERIAL_ECHO_START;
  7208. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  7209. }
  7210. #endif
  7211. }
  7212. }
  7213. #endif
  7214. #if IS_KINEMATIC
  7215. if (!prepare_kinematic_move_to(destination)) return;
  7216. #else
  7217. #if ENABLED(DUAL_X_CARRIAGE)
  7218. if (!prepare_move_to_destination_dualx()) return;
  7219. #endif
  7220. if (!prepare_move_to_destination_cartesian()) return;
  7221. #endif
  7222. set_current_to_destination();
  7223. }
  7224. #if ENABLED(ARC_SUPPORT)
  7225. /**
  7226. * Plan an arc in 2 dimensions
  7227. *
  7228. * The arc is approximated by generating many small linear segments.
  7229. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  7230. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  7231. * larger segments will tend to be more efficient. Your slicer should have
  7232. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  7233. */
  7234. void plan_arc(
  7235. float logical[NUM_AXIS], // Destination position
  7236. float* offset, // Center of rotation relative to current_position
  7237. uint8_t clockwise // Clockwise?
  7238. ) {
  7239. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  7240. center_X = current_position[X_AXIS] + offset[X_AXIS],
  7241. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  7242. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  7243. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  7244. r_X = -offset[X_AXIS], // Radius vector from center to current location
  7245. r_Y = -offset[Y_AXIS],
  7246. rt_X = logical[X_AXIS] - center_X,
  7247. rt_Y = logical[Y_AXIS] - center_Y;
  7248. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  7249. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  7250. if (angular_travel < 0) angular_travel += RADIANS(360);
  7251. if (clockwise) angular_travel -= RADIANS(360);
  7252. // Make a circle if the angular rotation is 0
  7253. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  7254. angular_travel += RADIANS(360);
  7255. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  7256. if (mm_of_travel < 0.001) return;
  7257. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  7258. if (segments == 0) segments = 1;
  7259. float theta_per_segment = angular_travel / segments;
  7260. float linear_per_segment = linear_travel / segments;
  7261. float extruder_per_segment = extruder_travel / segments;
  7262. /**
  7263. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  7264. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  7265. * r_T = [cos(phi) -sin(phi);
  7266. * sin(phi) cos(phi] * r ;
  7267. *
  7268. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  7269. * defined from the circle center to the initial position. Each line segment is formed by successive
  7270. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  7271. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  7272. * all double numbers are single precision on the Arduino. (True double precision will not have
  7273. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  7274. * tool precision in some cases. Therefore, arc path correction is implemented.
  7275. *
  7276. * Small angle approximation may be used to reduce computation overhead further. This approximation
  7277. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  7278. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  7279. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  7280. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  7281. * issue for CNC machines with the single precision Arduino calculations.
  7282. *
  7283. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  7284. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  7285. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  7286. * This is important when there are successive arc motions.
  7287. */
  7288. // Vector rotation matrix values
  7289. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  7290. float sin_T = theta_per_segment;
  7291. float arc_target[NUM_AXIS];
  7292. float sin_Ti, cos_Ti, r_new_Y;
  7293. uint16_t i;
  7294. int8_t count = 0;
  7295. // Initialize the linear axis
  7296. arc_target[Z_AXIS] = current_position[Z_AXIS];
  7297. // Initialize the extruder axis
  7298. arc_target[E_AXIS] = current_position[E_AXIS];
  7299. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  7300. millis_t next_idle_ms = millis() + 200UL;
  7301. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  7302. thermalManager.manage_heater();
  7303. millis_t now = millis();
  7304. if (ELAPSED(now, next_idle_ms)) {
  7305. next_idle_ms = now + 200UL;
  7306. idle();
  7307. }
  7308. if (++count < N_ARC_CORRECTION) {
  7309. // Apply vector rotation matrix to previous r_X / 1
  7310. r_new_Y = r_X * sin_T + r_Y * cos_T;
  7311. r_X = r_X * cos_T - r_Y * sin_T;
  7312. r_Y = r_new_Y;
  7313. }
  7314. else {
  7315. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7316. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7317. // To reduce stuttering, the sin and cos could be computed at different times.
  7318. // For now, compute both at the same time.
  7319. cos_Ti = cos(i * theta_per_segment);
  7320. sin_Ti = sin(i * theta_per_segment);
  7321. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7322. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7323. count = 0;
  7324. }
  7325. // Update arc_target location
  7326. arc_target[X_AXIS] = center_X + r_X;
  7327. arc_target[Y_AXIS] = center_Y + r_Y;
  7328. arc_target[Z_AXIS] += linear_per_segment;
  7329. arc_target[E_AXIS] += extruder_per_segment;
  7330. clamp_to_software_endstops(arc_target);
  7331. #if IS_KINEMATIC
  7332. inverse_kinematics(arc_target);
  7333. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7334. #else
  7335. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7336. #endif
  7337. }
  7338. // Ensure last segment arrives at target location.
  7339. #if IS_KINEMATIC
  7340. inverse_kinematics(logical);
  7341. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7342. #else
  7343. planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7344. #endif
  7345. // As far as the parser is concerned, the position is now == target. In reality the
  7346. // motion control system might still be processing the action and the real tool position
  7347. // in any intermediate location.
  7348. set_current_to_destination();
  7349. }
  7350. #endif
  7351. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7352. void plan_cubic_move(const float offset[4]) {
  7353. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7354. // As far as the parser is concerned, the position is now == destination. In reality the
  7355. // motion control system might still be processing the action and the real tool position
  7356. // in any intermediate location.
  7357. set_current_to_destination();
  7358. }
  7359. #endif // BEZIER_CURVE_SUPPORT
  7360. #if HAS_CONTROLLERFAN
  7361. void controllerFan() {
  7362. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7363. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7364. millis_t ms = millis();
  7365. if (ELAPSED(ms, nextMotorCheck)) {
  7366. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7367. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7368. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7369. #if E_STEPPERS > 1
  7370. || E1_ENABLE_READ == E_ENABLE_ON
  7371. #if HAS_X2_ENABLE
  7372. || X2_ENABLE_READ == X_ENABLE_ON
  7373. #endif
  7374. #if E_STEPPERS > 2
  7375. || E2_ENABLE_READ == E_ENABLE_ON
  7376. #if E_STEPPERS > 3
  7377. || E3_ENABLE_READ == E_ENABLE_ON
  7378. #endif
  7379. #endif
  7380. #endif
  7381. ) {
  7382. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7383. }
  7384. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7385. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7386. // allows digital or PWM fan output to be used (see M42 handling)
  7387. digitalWrite(CONTROLLERFAN_PIN, speed);
  7388. analogWrite(CONTROLLERFAN_PIN, speed);
  7389. }
  7390. }
  7391. #endif // HAS_CONTROLLERFAN
  7392. #if ENABLED(MORGAN_SCARA)
  7393. /**
  7394. * Morgan SCARA Forward Kinematics. Results in cartes[].
  7395. * Maths and first version by QHARLEY.
  7396. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7397. */
  7398. void forward_kinematics_SCARA(const float &a, const float &b) {
  7399. float a_sin = sin(RADIANS(a)) * L1,
  7400. a_cos = cos(RADIANS(a)) * L1,
  7401. b_sin = sin(RADIANS(b)) * L2,
  7402. b_cos = cos(RADIANS(b)) * L2;
  7403. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7404. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7405. /*
  7406. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  7407. SERIAL_ECHOPAIR(" b=", b);
  7408. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7409. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7410. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7411. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7412. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7413. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7414. //*/
  7415. }
  7416. /**
  7417. * Morgan SCARA Inverse Kinematics. Results in delta[].
  7418. *
  7419. * See http://forums.reprap.org/read.php?185,283327
  7420. *
  7421. * Maths and first version by QHARLEY.
  7422. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7423. */
  7424. void inverse_kinematics(const float logical[XYZ]) {
  7425. static float C2, S2, SK1, SK2, THETA, PSI;
  7426. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  7427. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7428. if (L1 == L2)
  7429. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  7430. else
  7431. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  7432. S2 = sqrt(sq(C2) - 1);
  7433. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  7434. SK1 = L1 + L2 * C2;
  7435. // Rotated Arm2 gives the distance from Arm1 to Arm2
  7436. SK2 = L2 * S2;
  7437. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  7438. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  7439. // Angle of Arm2
  7440. PSI = atan2(S2, C2);
  7441. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7442. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7443. delta[C_AXIS] = logical[Z_AXIS];
  7444. /*
  7445. DEBUG_POS("SCARA IK", logical);
  7446. DEBUG_POS("SCARA IK", delta);
  7447. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7448. SERIAL_ECHOPAIR(",", sy);
  7449. SERIAL_ECHOPAIR(" C2=", C2);
  7450. SERIAL_ECHOPAIR(" S2=", S2);
  7451. SERIAL_ECHOPAIR(" Theta=", THETA);
  7452. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7453. //*/
  7454. }
  7455. #endif // MORGAN_SCARA
  7456. #if ENABLED(TEMP_STAT_LEDS)
  7457. static bool red_led = false;
  7458. static millis_t next_status_led_update_ms = 0;
  7459. void handle_status_leds(void) {
  7460. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7461. next_status_led_update_ms += 500; // Update every 0.5s
  7462. float max_temp = 0.0;
  7463. #if HAS_TEMP_BED
  7464. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7465. #endif
  7466. HOTEND_LOOP() {
  7467. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7468. }
  7469. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7470. if (new_led != red_led) {
  7471. red_led = new_led;
  7472. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  7473. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  7474. }
  7475. }
  7476. }
  7477. #endif
  7478. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7479. void handle_filament_runout() {
  7480. if (!filament_ran_out) {
  7481. filament_ran_out = true;
  7482. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7483. stepper.synchronize();
  7484. }
  7485. }
  7486. #endif // FILAMENT_RUNOUT_SENSOR
  7487. #if ENABLED(FAST_PWM_FAN)
  7488. void setPwmFrequency(uint8_t pin, int val) {
  7489. val &= 0x07;
  7490. switch (digitalPinToTimer(pin)) {
  7491. #if defined(TCCR0A)
  7492. case TIMER0A:
  7493. case TIMER0B:
  7494. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7495. // TCCR0B |= val;
  7496. break;
  7497. #endif
  7498. #if defined(TCCR1A)
  7499. case TIMER1A:
  7500. case TIMER1B:
  7501. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7502. // TCCR1B |= val;
  7503. break;
  7504. #endif
  7505. #if defined(TCCR2)
  7506. case TIMER2:
  7507. case TIMER2:
  7508. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7509. TCCR2 |= val;
  7510. break;
  7511. #endif
  7512. #if defined(TCCR2A)
  7513. case TIMER2A:
  7514. case TIMER2B:
  7515. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7516. TCCR2B |= val;
  7517. break;
  7518. #endif
  7519. #if defined(TCCR3A)
  7520. case TIMER3A:
  7521. case TIMER3B:
  7522. case TIMER3C:
  7523. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7524. TCCR3B |= val;
  7525. break;
  7526. #endif
  7527. #if defined(TCCR4A)
  7528. case TIMER4A:
  7529. case TIMER4B:
  7530. case TIMER4C:
  7531. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7532. TCCR4B |= val;
  7533. break;
  7534. #endif
  7535. #if defined(TCCR5A)
  7536. case TIMER5A:
  7537. case TIMER5B:
  7538. case TIMER5C:
  7539. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7540. TCCR5B |= val;
  7541. break;
  7542. #endif
  7543. }
  7544. }
  7545. #endif // FAST_PWM_FAN
  7546. float calculate_volumetric_multiplier(float diameter) {
  7547. if (!volumetric_enabled || diameter == 0) return 1.0;
  7548. float d2 = diameter * 0.5;
  7549. return 1.0 / (M_PI * d2 * d2);
  7550. }
  7551. void calculate_volumetric_multipliers() {
  7552. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7553. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7554. }
  7555. void enable_all_steppers() {
  7556. enable_x();
  7557. enable_y();
  7558. enable_z();
  7559. enable_e0();
  7560. enable_e1();
  7561. enable_e2();
  7562. enable_e3();
  7563. }
  7564. void disable_all_steppers() {
  7565. disable_x();
  7566. disable_y();
  7567. disable_z();
  7568. disable_e0();
  7569. disable_e1();
  7570. disable_e2();
  7571. disable_e3();
  7572. }
  7573. /**
  7574. * Manage several activities:
  7575. * - Check for Filament Runout
  7576. * - Keep the command buffer full
  7577. * - Check for maximum inactive time between commands
  7578. * - Check for maximum inactive time between stepper commands
  7579. * - Check if pin CHDK needs to go LOW
  7580. * - Check for KILL button held down
  7581. * - Check for HOME button held down
  7582. * - Check if cooling fan needs to be switched on
  7583. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7584. */
  7585. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7586. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7587. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7588. handle_filament_runout();
  7589. #endif
  7590. if (commands_in_queue < BUFSIZE) get_available_commands();
  7591. millis_t ms = millis();
  7592. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7593. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7594. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7595. #if ENABLED(DISABLE_INACTIVE_X)
  7596. disable_x();
  7597. #endif
  7598. #if ENABLED(DISABLE_INACTIVE_Y)
  7599. disable_y();
  7600. #endif
  7601. #if ENABLED(DISABLE_INACTIVE_Z)
  7602. disable_z();
  7603. #endif
  7604. #if ENABLED(DISABLE_INACTIVE_E)
  7605. disable_e0();
  7606. disable_e1();
  7607. disable_e2();
  7608. disable_e3();
  7609. #endif
  7610. }
  7611. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7612. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7613. chdkActive = false;
  7614. WRITE(CHDK, LOW);
  7615. }
  7616. #endif
  7617. #if HAS_KILL
  7618. // Check if the kill button was pressed and wait just in case it was an accidental
  7619. // key kill key press
  7620. // -------------------------------------------------------------------------------
  7621. static int killCount = 0; // make the inactivity button a bit less responsive
  7622. const int KILL_DELAY = 750;
  7623. if (!READ(KILL_PIN))
  7624. killCount++;
  7625. else if (killCount > 0)
  7626. killCount--;
  7627. // Exceeded threshold and we can confirm that it was not accidental
  7628. // KILL the machine
  7629. // ----------------------------------------------------------------
  7630. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7631. #endif
  7632. #if HAS_HOME
  7633. // Check to see if we have to home, use poor man's debouncer
  7634. // ---------------------------------------------------------
  7635. static int homeDebounceCount = 0; // poor man's debouncing count
  7636. const int HOME_DEBOUNCE_DELAY = 2500;
  7637. if (!READ(HOME_PIN)) {
  7638. if (!homeDebounceCount) {
  7639. enqueue_and_echo_commands_P(PSTR("G28"));
  7640. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7641. }
  7642. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7643. homeDebounceCount++;
  7644. else
  7645. homeDebounceCount = 0;
  7646. }
  7647. #endif
  7648. #if HAS_CONTROLLERFAN
  7649. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7650. #endif
  7651. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7652. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7653. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7654. bool oldstatus;
  7655. #if ENABLED(SWITCHING_EXTRUDER)
  7656. oldstatus = E0_ENABLE_READ;
  7657. enable_e0();
  7658. #else // !SWITCHING_EXTRUDER
  7659. switch (active_extruder) {
  7660. case 0:
  7661. oldstatus = E0_ENABLE_READ;
  7662. enable_e0();
  7663. break;
  7664. #if E_STEPPERS > 1
  7665. case 1:
  7666. oldstatus = E1_ENABLE_READ;
  7667. enable_e1();
  7668. break;
  7669. #if E_STEPPERS > 2
  7670. case 2:
  7671. oldstatus = E2_ENABLE_READ;
  7672. enable_e2();
  7673. break;
  7674. #if E_STEPPERS > 3
  7675. case 3:
  7676. oldstatus = E3_ENABLE_READ;
  7677. enable_e3();
  7678. break;
  7679. #endif
  7680. #endif
  7681. #endif
  7682. }
  7683. #endif // !SWITCHING_EXTRUDER
  7684. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7685. planner.buffer_line(
  7686. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  7687. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  7688. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  7689. );
  7690. stepper.synchronize();
  7691. planner.set_e_position_mm(current_position[E_AXIS]);
  7692. #if ENABLED(SWITCHING_EXTRUDER)
  7693. E0_ENABLE_WRITE(oldstatus);
  7694. #else
  7695. switch (active_extruder) {
  7696. case 0:
  7697. E0_ENABLE_WRITE(oldstatus);
  7698. break;
  7699. #if E_STEPPERS > 1
  7700. case 1:
  7701. E1_ENABLE_WRITE(oldstatus);
  7702. break;
  7703. #if E_STEPPERS > 2
  7704. case 2:
  7705. E2_ENABLE_WRITE(oldstatus);
  7706. break;
  7707. #if E_STEPPERS > 3
  7708. case 3:
  7709. E3_ENABLE_WRITE(oldstatus);
  7710. break;
  7711. #endif
  7712. #endif
  7713. #endif
  7714. }
  7715. #endif // !SWITCHING_EXTRUDER
  7716. }
  7717. #endif // EXTRUDER_RUNOUT_PREVENT
  7718. #if ENABLED(DUAL_X_CARRIAGE)
  7719. // handle delayed move timeout
  7720. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7721. // travel moves have been received so enact them
  7722. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7723. set_destination_to_current();
  7724. prepare_move_to_destination();
  7725. }
  7726. #endif
  7727. #if ENABLED(TEMP_STAT_LEDS)
  7728. handle_status_leds();
  7729. #endif
  7730. planner.check_axes_activity();
  7731. }
  7732. /**
  7733. * Standard idle routine keeps the machine alive
  7734. */
  7735. void idle(
  7736. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7737. bool no_stepper_sleep/*=false*/
  7738. #endif
  7739. ) {
  7740. lcd_update();
  7741. host_keepalive();
  7742. manage_inactivity(
  7743. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7744. no_stepper_sleep
  7745. #endif
  7746. );
  7747. thermalManager.manage_heater();
  7748. #if ENABLED(PRINTCOUNTER)
  7749. print_job_timer.tick();
  7750. #endif
  7751. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7752. buzzer.tick();
  7753. #endif
  7754. }
  7755. /**
  7756. * Kill all activity and lock the machine.
  7757. * After this the machine will need to be reset.
  7758. */
  7759. void kill(const char* lcd_msg) {
  7760. SERIAL_ERROR_START;
  7761. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7762. #if ENABLED(ULTRA_LCD)
  7763. kill_screen(lcd_msg);
  7764. #else
  7765. UNUSED(lcd_msg);
  7766. #endif
  7767. delay(500); // Wait a short time
  7768. cli(); // Stop interrupts
  7769. thermalManager.disable_all_heaters();
  7770. disable_all_steppers();
  7771. #if HAS_POWER_SWITCH
  7772. pinMode(PS_ON_PIN, INPUT);
  7773. #endif
  7774. suicide();
  7775. while (1) {
  7776. #if ENABLED(USE_WATCHDOG)
  7777. watchdog_reset();
  7778. #endif
  7779. } // Wait for reset
  7780. }
  7781. /**
  7782. * Turn off heaters and stop the print in progress
  7783. * After a stop the machine may be resumed with M999
  7784. */
  7785. void stop() {
  7786. thermalManager.disable_all_heaters();
  7787. if (IsRunning()) {
  7788. Running = false;
  7789. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7790. SERIAL_ERROR_START;
  7791. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7792. LCD_MESSAGEPGM(MSG_STOPPED);
  7793. }
  7794. }
  7795. /**
  7796. * Marlin entry-point: Set up before the program loop
  7797. * - Set up the kill pin, filament runout, power hold
  7798. * - Start the serial port
  7799. * - Print startup messages and diagnostics
  7800. * - Get EEPROM or default settings
  7801. * - Initialize managers for:
  7802. * • temperature
  7803. * • planner
  7804. * • watchdog
  7805. * • stepper
  7806. * • photo pin
  7807. * • servos
  7808. * • LCD controller
  7809. * • Digipot I2C
  7810. * • Z probe sled
  7811. * • status LEDs
  7812. */
  7813. void setup() {
  7814. #ifdef DISABLE_JTAG
  7815. // Disable JTAG on AT90USB chips to free up pins for IO
  7816. MCUCR = 0x80;
  7817. MCUCR = 0x80;
  7818. #endif
  7819. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7820. setup_filrunoutpin();
  7821. #endif
  7822. setup_killpin();
  7823. setup_powerhold();
  7824. #if HAS_STEPPER_RESET
  7825. disableStepperDrivers();
  7826. #endif
  7827. MYSERIAL.begin(BAUDRATE);
  7828. SERIAL_PROTOCOLLNPGM("start");
  7829. SERIAL_ECHO_START;
  7830. // Check startup - does nothing if bootloader sets MCUSR to 0
  7831. byte mcu = MCUSR;
  7832. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  7833. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  7834. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  7835. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  7836. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  7837. MCUSR = 0;
  7838. SERIAL_ECHOPGM(MSG_MARLIN);
  7839. SERIAL_CHAR(' ');
  7840. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  7841. SERIAL_EOL;
  7842. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  7843. SERIAL_ECHO_START;
  7844. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  7845. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  7846. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  7847. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  7848. #endif
  7849. SERIAL_ECHO_START;
  7850. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  7851. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  7852. // Send "ok" after commands by default
  7853. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  7854. // Load data from EEPROM if available (or use defaults)
  7855. // This also updates variables in the planner, elsewhere
  7856. Config_RetrieveSettings();
  7857. // Initialize current position based on home_offset
  7858. memcpy(current_position, home_offset, sizeof(home_offset));
  7859. // Vital to init stepper/planner equivalent for current_position
  7860. SYNC_PLAN_POSITION_KINEMATIC();
  7861. thermalManager.init(); // Initialize temperature loop
  7862. #if ENABLED(USE_WATCHDOG)
  7863. watchdog_init();
  7864. #endif
  7865. stepper.init(); // Initialize stepper, this enables interrupts!
  7866. setup_photpin();
  7867. servo_init();
  7868. #if HAS_BED_PROBE
  7869. endstops.enable_z_probe(false);
  7870. #endif
  7871. #if HAS_CONTROLLERFAN
  7872. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  7873. #endif
  7874. #if HAS_STEPPER_RESET
  7875. enableStepperDrivers();
  7876. #endif
  7877. #if ENABLED(DIGIPOT_I2C)
  7878. digipot_i2c_init();
  7879. #endif
  7880. #if ENABLED(DAC_STEPPER_CURRENT)
  7881. dac_init();
  7882. #endif
  7883. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  7884. OUT_WRITE(SLED_PIN, LOW); // turn it off
  7885. #endif // Z_PROBE_SLED
  7886. setup_homepin();
  7887. #if PIN_EXISTS(STAT_LED_RED)
  7888. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  7889. #endif
  7890. #if PIN_EXISTS(STAT_LED_BLUE)
  7891. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  7892. #endif
  7893. lcd_init();
  7894. #if ENABLED(SHOW_BOOTSCREEN)
  7895. #if ENABLED(DOGLCD)
  7896. safe_delay(BOOTSCREEN_TIMEOUT);
  7897. #elif ENABLED(ULTRA_LCD)
  7898. bootscreen();
  7899. lcd_init();
  7900. #endif
  7901. #endif
  7902. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7903. // Initialize mixing to 100% color 1
  7904. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7905. mixing_factor[i] = (i == 0) ? 1 : 0;
  7906. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  7907. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7908. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  7909. #endif
  7910. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  7911. i2c.onReceive(i2c_on_receive);
  7912. i2c.onRequest(i2c_on_request);
  7913. #endif
  7914. }
  7915. /**
  7916. * The main Marlin program loop
  7917. *
  7918. * - Save or log commands to SD
  7919. * - Process available commands (if not saving)
  7920. * - Call heater manager
  7921. * - Call inactivity manager
  7922. * - Call endstop manager
  7923. * - Call LCD update
  7924. */
  7925. void loop() {
  7926. if (commands_in_queue < BUFSIZE) get_available_commands();
  7927. #if ENABLED(SDSUPPORT)
  7928. card.checkautostart(false);
  7929. #endif
  7930. if (commands_in_queue) {
  7931. #if ENABLED(SDSUPPORT)
  7932. if (card.saving) {
  7933. char* command = command_queue[cmd_queue_index_r];
  7934. if (strstr_P(command, PSTR("M29"))) {
  7935. // M29 closes the file
  7936. card.closefile();
  7937. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  7938. ok_to_send();
  7939. }
  7940. else {
  7941. // Write the string from the read buffer to SD
  7942. card.write_command(command);
  7943. if (card.logging)
  7944. process_next_command(); // The card is saving because it's logging
  7945. else
  7946. ok_to_send();
  7947. }
  7948. }
  7949. else
  7950. process_next_command();
  7951. #else
  7952. process_next_command();
  7953. #endif // SDSUPPORT
  7954. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  7955. if (commands_in_queue) {
  7956. --commands_in_queue;
  7957. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  7958. }
  7959. }
  7960. endstops.report_state();
  7961. idle();
  7962. }