My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

stepper.cpp 49KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL)
  54. #include "ubl.h"
  55. #endif
  56. #if HAS_DIGIPOTSS
  57. #include <SPI.h>
  58. #endif
  59. Stepper stepper; // Singleton
  60. // public:
  61. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  62. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  63. bool Stepper::abort_on_endstop_hit = false;
  64. #endif
  65. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  66. bool Stepper::performing_homing = false;
  67. #endif
  68. #if HAS_MOTOR_CURRENT_PWM
  69. uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load()
  70. #endif
  71. // private:
  72. uint8_t Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  73. uint16_t Stepper::cleaning_buffer_counter = 0;
  74. #if ENABLED(X_DUAL_ENDSTOPS)
  75. bool Stepper::locked_x_motor = false, Stepper::locked_x2_motor = false;
  76. #endif
  77. #if ENABLED(Y_DUAL_ENDSTOPS)
  78. bool Stepper::locked_y_motor = false, Stepper::locked_y2_motor = false;
  79. #endif
  80. #if ENABLED(Z_DUAL_ENDSTOPS)
  81. bool Stepper::locked_z_motor = false, Stepper::locked_z2_motor = false;
  82. #endif
  83. long Stepper::counter_X = 0,
  84. Stepper::counter_Y = 0,
  85. Stepper::counter_Z = 0,
  86. Stepper::counter_E = 0;
  87. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  88. #if ENABLED(LIN_ADVANCE)
  89. constexpr uint16_t ADV_NEVER = 65535;
  90. uint16_t Stepper::nextMainISR = 0,
  91. Stepper::nextAdvanceISR = ADV_NEVER,
  92. Stepper::eISR_Rate = ADV_NEVER;
  93. volatile int Stepper::e_steps[E_STEPPERS];
  94. int Stepper::final_estep_rate,
  95. Stepper::current_estep_rate[E_STEPPERS],
  96. Stepper::current_adv_steps[E_STEPPERS];
  97. /**
  98. * See https://github.com/MarlinFirmware/Marlin/issues/5699#issuecomment-309264382
  99. *
  100. * This fix isn't perfect and may lose steps - but better than locking up completely
  101. * in future the planner should slow down if advance stepping rate would be too high
  102. */
  103. FORCE_INLINE uint16_t adv_rate(const int steps, const uint16_t timer, const uint8_t loops) {
  104. if (steps) {
  105. const uint16_t rate = (timer * loops) / abs(steps);
  106. //return constrain(rate, 1, ADV_NEVER - 1)
  107. return rate ? rate : 1;
  108. }
  109. return ADV_NEVER;
  110. }
  111. #endif // LIN_ADVANCE
  112. long Stepper::acceleration_time, Stepper::deceleration_time;
  113. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  114. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  115. #if ENABLED(MIXING_EXTRUDER)
  116. long Stepper::counter_m[MIXING_STEPPERS];
  117. #endif
  118. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  119. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  120. unsigned short Stepper::OCR1A_nominal;
  121. volatile long Stepper::endstops_trigsteps[XYZ];
  122. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  123. #define LOCKED_X_MOTOR locked_x_motor
  124. #define LOCKED_Y_MOTOR locked_y_motor
  125. #define LOCKED_Z_MOTOR locked_z_motor
  126. #define LOCKED_X2_MOTOR locked_x2_motor
  127. #define LOCKED_Y2_MOTOR locked_y2_motor
  128. #define LOCKED_Z2_MOTOR locked_z2_motor
  129. #define DUAL_ENDSTOP_APPLY_STEP(AXIS,v) \
  130. if (performing_homing) { \
  131. if (AXIS##_HOME_DIR < 0) { \
  132. if (!(TEST(endstops.old_endstop_bits, AXIS##_MIN) && (count_direction[AXIS##_AXIS] < 0)) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
  133. if (!(TEST(endstops.old_endstop_bits, AXIS##2_MIN) && (count_direction[AXIS##_AXIS] < 0)) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
  134. } \
  135. else { \
  136. if (!(TEST(endstops.old_endstop_bits, AXIS##_MAX) && (count_direction[AXIS##_AXIS] > 0)) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
  137. if (!(TEST(endstops.old_endstop_bits, AXIS##2_MAX) && (count_direction[AXIS##_AXIS] > 0)) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
  138. } \
  139. } \
  140. else { \
  141. AXIS##_STEP_WRITE(v); \
  142. AXIS##2_STEP_WRITE(v); \
  143. }
  144. #endif
  145. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  146. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  147. #if ENABLED(DUAL_X_CARRIAGE)
  148. #define X_APPLY_DIR(v,ALWAYS) \
  149. if (extruder_duplication_enabled || ALWAYS) { \
  150. X_DIR_WRITE(v); \
  151. X2_DIR_WRITE(v); \
  152. } \
  153. else { \
  154. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  155. }
  156. #define X_APPLY_STEP(v,ALWAYS) \
  157. if (extruder_duplication_enabled || ALWAYS) { \
  158. X_STEP_WRITE(v); \
  159. X2_STEP_WRITE(v); \
  160. } \
  161. else { \
  162. if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  163. }
  164. #elif ENABLED(X_DUAL_ENDSTOPS)
  165. #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
  166. #else
  167. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  168. #endif
  169. #else
  170. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  171. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  172. #endif
  173. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  174. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  175. #if ENABLED(Y_DUAL_ENDSTOPS)
  176. #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
  177. #else
  178. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  179. #endif
  180. #else
  181. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  182. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  183. #endif
  184. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  185. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  186. #if ENABLED(Z_DUAL_ENDSTOPS)
  187. #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
  188. #else
  189. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  190. #endif
  191. #else
  192. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  193. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  194. #endif
  195. #if DISABLED(MIXING_EXTRUDER)
  196. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  197. #endif
  198. // intRes = longIn1 * longIn2 >> 24
  199. // uses:
  200. // r26 to store 0
  201. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  202. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  203. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  204. // B0 A0 are bits 24-39 and are the returned value
  205. // C1 B1 A1 is longIn1
  206. // D2 C2 B2 A2 is longIn2
  207. //
  208. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  209. asm volatile ( \
  210. "clr r26 \n\t" \
  211. "mul %A1, %B2 \n\t" \
  212. "mov r27, r1 \n\t" \
  213. "mul %B1, %C2 \n\t" \
  214. "movw %A0, r0 \n\t" \
  215. "mul %C1, %C2 \n\t" \
  216. "add %B0, r0 \n\t" \
  217. "mul %C1, %B2 \n\t" \
  218. "add %A0, r0 \n\t" \
  219. "adc %B0, r1 \n\t" \
  220. "mul %A1, %C2 \n\t" \
  221. "add r27, r0 \n\t" \
  222. "adc %A0, r1 \n\t" \
  223. "adc %B0, r26 \n\t" \
  224. "mul %B1, %B2 \n\t" \
  225. "add r27, r0 \n\t" \
  226. "adc %A0, r1 \n\t" \
  227. "adc %B0, r26 \n\t" \
  228. "mul %C1, %A2 \n\t" \
  229. "add r27, r0 \n\t" \
  230. "adc %A0, r1 \n\t" \
  231. "adc %B0, r26 \n\t" \
  232. "mul %B1, %A2 \n\t" \
  233. "add r27, r1 \n\t" \
  234. "adc %A0, r26 \n\t" \
  235. "adc %B0, r26 \n\t" \
  236. "lsr r27 \n\t" \
  237. "adc %A0, r26 \n\t" \
  238. "adc %B0, r26 \n\t" \
  239. "mul %D2, %A1 \n\t" \
  240. "add %A0, r0 \n\t" \
  241. "adc %B0, r1 \n\t" \
  242. "mul %D2, %B1 \n\t" \
  243. "add %B0, r0 \n\t" \
  244. "clr r1 \n\t" \
  245. : \
  246. "=&r" (intRes) \
  247. : \
  248. "d" (longIn1), \
  249. "d" (longIn2) \
  250. : \
  251. "r26" , "r27" \
  252. )
  253. // Some useful constants
  254. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  255. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  256. /**
  257. * __________________________
  258. * /| |\ _________________ ^
  259. * / | | \ /| |\ |
  260. * / | | \ / | | \ s
  261. * / | | | | | \ p
  262. * / | | | | | \ e
  263. * +-----+------------------------+---+--+---------------+----+ e
  264. * | BLOCK 1 | BLOCK 2 | d
  265. *
  266. * time ----->
  267. *
  268. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  269. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  270. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  271. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  272. */
  273. void Stepper::wake_up() {
  274. // TCNT1 = 0;
  275. ENABLE_STEPPER_DRIVER_INTERRUPT();
  276. }
  277. /**
  278. * Set the stepper direction of each axis
  279. *
  280. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  281. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  282. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  283. */
  284. void Stepper::set_directions() {
  285. #define SET_STEP_DIR(AXIS) \
  286. if (motor_direction(AXIS ##_AXIS)) { \
  287. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  288. count_direction[AXIS ##_AXIS] = -1; \
  289. } \
  290. else { \
  291. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  292. count_direction[AXIS ##_AXIS] = 1; \
  293. }
  294. #if HAS_X_DIR
  295. SET_STEP_DIR(X); // A
  296. #endif
  297. #if HAS_Y_DIR
  298. SET_STEP_DIR(Y); // B
  299. #endif
  300. #if HAS_Z_DIR
  301. SET_STEP_DIR(Z); // C
  302. #endif
  303. #if DISABLED(LIN_ADVANCE)
  304. if (motor_direction(E_AXIS)) {
  305. REV_E_DIR();
  306. count_direction[E_AXIS] = -1;
  307. }
  308. else {
  309. NORM_E_DIR();
  310. count_direction[E_AXIS] = 1;
  311. }
  312. #endif // !LIN_ADVANCE
  313. }
  314. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  315. extern volatile uint8_t e_hit;
  316. #endif
  317. /**
  318. * Stepper Driver Interrupt
  319. *
  320. * Directly pulses the stepper motors at high frequency.
  321. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  322. *
  323. * OCR1A Frequency
  324. * 1 2 MHz
  325. * 50 40 KHz
  326. * 100 20 KHz - capped max rate
  327. * 200 10 KHz - nominal max rate
  328. * 2000 1 KHz - sleep rate
  329. * 4000 500 Hz - init rate
  330. */
  331. ISR(TIMER1_COMPA_vect) {
  332. #if ENABLED(LIN_ADVANCE)
  333. Stepper::advance_isr_scheduler();
  334. #else
  335. Stepper::isr();
  336. #endif
  337. }
  338. #define _ENABLE_ISRs() do { cli(); if (thermalManager.in_temp_isr) CBI(TIMSK0, OCIE0B); else SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0)
  339. void Stepper::isr() {
  340. uint16_t ocr_val;
  341. #define ENDSTOP_NOMINAL_OCR_VAL 3000 // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
  342. #define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
  343. #if DISABLED(LIN_ADVANCE)
  344. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  345. CBI(TIMSK0, OCIE0B); // Temperature ISR
  346. DISABLE_STEPPER_DRIVER_INTERRUPT();
  347. sei();
  348. #endif
  349. #define _SPLIT(L) (ocr_val = (uint16_t)L)
  350. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  351. #define SPLIT(L) _SPLIT(L)
  352. #else // sample endstops in between step pulses
  353. static uint32_t step_remaining = 0;
  354. #define SPLIT(L) do { \
  355. _SPLIT(L); \
  356. if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \
  357. const uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
  358. ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
  359. step_remaining = (uint16_t)L - ocr_val; \
  360. } \
  361. }while(0)
  362. if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step
  363. endstops.update();
  364. if (step_remaining > ENDSTOP_NOMINAL_OCR_VAL) {
  365. step_remaining -= ENDSTOP_NOMINAL_OCR_VAL;
  366. ocr_val = ENDSTOP_NOMINAL_OCR_VAL;
  367. }
  368. else {
  369. ocr_val = step_remaining;
  370. step_remaining = 0; // last one before the ISR that does the step
  371. }
  372. _NEXT_ISR(ocr_val);
  373. NOLESS(OCR1A, TCNT1 + 16);
  374. _ENABLE_ISRs(); // re-enable ISRs
  375. return;
  376. }
  377. #endif
  378. if (cleaning_buffer_counter) {
  379. --cleaning_buffer_counter;
  380. current_block = NULL;
  381. planner.discard_current_block();
  382. #ifdef SD_FINISHED_RELEASECOMMAND
  383. if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  384. #endif
  385. _NEXT_ISR(200); // Run at max speed - 10 KHz
  386. _ENABLE_ISRs(); // re-enable ISRs
  387. return;
  388. }
  389. // If there is no current block, attempt to pop one from the buffer
  390. if (!current_block) {
  391. // Anything in the buffer?
  392. current_block = planner.get_current_block();
  393. if (current_block) {
  394. trapezoid_generator_reset();
  395. // Initialize Bresenham counters to 1/2 the ceiling
  396. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  397. #if ENABLED(MIXING_EXTRUDER)
  398. MIXING_STEPPERS_LOOP(i)
  399. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  400. #endif
  401. step_events_completed = 0;
  402. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  403. e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
  404. // No 'change' can be detected.
  405. #endif
  406. #if ENABLED(Z_LATE_ENABLE)
  407. if (current_block->steps[Z_AXIS] > 0) {
  408. enable_Z();
  409. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  410. _ENABLE_ISRs(); // re-enable ISRs
  411. return;
  412. }
  413. #endif
  414. }
  415. else {
  416. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  417. _ENABLE_ISRs(); // re-enable ISRs
  418. return;
  419. }
  420. }
  421. // Update endstops state, if enabled
  422. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  423. if (e_hit && ENDSTOPS_ENABLED) {
  424. endstops.update();
  425. e_hit--;
  426. }
  427. #else
  428. if (ENDSTOPS_ENABLED) endstops.update();
  429. #endif
  430. // Take multiple steps per interrupt (For high speed moves)
  431. bool all_steps_done = false;
  432. for (uint8_t i = step_loops; i--;) {
  433. #if ENABLED(LIN_ADVANCE)
  434. counter_E += current_block->steps[E_AXIS];
  435. if (counter_E > 0) {
  436. counter_E -= current_block->step_event_count;
  437. #if DISABLED(MIXING_EXTRUDER)
  438. // Don't step E here for mixing extruder
  439. count_position[E_AXIS] += count_direction[E_AXIS];
  440. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  441. #endif
  442. }
  443. #if ENABLED(MIXING_EXTRUDER)
  444. // Step mixing steppers proportionally
  445. const bool dir = motor_direction(E_AXIS);
  446. MIXING_STEPPERS_LOOP(j) {
  447. counter_m[j] += current_block->steps[E_AXIS];
  448. if (counter_m[j] > 0) {
  449. counter_m[j] -= current_block->mix_event_count[j];
  450. dir ? --e_steps[j] : ++e_steps[j];
  451. }
  452. }
  453. #endif
  454. #endif // LIN_ADVANCE
  455. #define _COUNTER(AXIS) counter_## AXIS
  456. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  457. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  458. // Advance the Bresenham counter; start a pulse if the axis needs a step
  459. #define PULSE_START(AXIS) \
  460. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  461. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  462. // Stop an active pulse, reset the Bresenham counter, update the position
  463. #define PULSE_STOP(AXIS) \
  464. if (_COUNTER(AXIS) > 0) { \
  465. _COUNTER(AXIS) -= current_block->step_event_count; \
  466. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  467. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  468. }
  469. /**
  470. * Estimate the number of cycles that the stepper logic already takes
  471. * up between the start and stop of the X stepper pulse.
  472. *
  473. * Currently this uses very modest estimates of around 5 cycles.
  474. * True values may be derived by careful testing.
  475. *
  476. * Once any delay is added, the cost of the delay code itself
  477. * may be subtracted from this value to get a more accurate delay.
  478. * Delays under 20 cycles (1.25µs) will be very accurate, using NOPs.
  479. * Longer delays use a loop. The resolution is 8 cycles.
  480. */
  481. #if HAS_X_STEP
  482. #define _CYCLE_APPROX_1 5
  483. #else
  484. #define _CYCLE_APPROX_1 0
  485. #endif
  486. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  487. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
  488. #else
  489. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1
  490. #endif
  491. #if HAS_Y_STEP
  492. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
  493. #else
  494. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2
  495. #endif
  496. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  497. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
  498. #else
  499. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3
  500. #endif
  501. #if HAS_Z_STEP
  502. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
  503. #else
  504. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4
  505. #endif
  506. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  507. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
  508. #else
  509. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5
  510. #endif
  511. #if DISABLED(LIN_ADVANCE)
  512. #if ENABLED(MIXING_EXTRUDER)
  513. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
  514. #else
  515. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
  516. #endif
  517. #else
  518. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6
  519. #endif
  520. #define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
  521. #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
  522. /**
  523. * If a minimum pulse time was specified get the timer 0 value.
  524. *
  525. * TCNT0 has an 8x prescaler, so it increments every 8 cycles.
  526. * That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
  527. * 20 counts of TCNT0 -by itself- is a good pulse delay.
  528. * 10µs = 160 or 200 cycles.
  529. */
  530. #if EXTRA_CYCLES_XYZE > 20
  531. uint32_t pulse_start = TCNT0;
  532. #endif
  533. #if HAS_X_STEP
  534. PULSE_START(X);
  535. #endif
  536. #if HAS_Y_STEP
  537. PULSE_START(Y);
  538. #endif
  539. #if HAS_Z_STEP
  540. PULSE_START(Z);
  541. #endif
  542. // For non-advance use linear interpolation for E also
  543. #if DISABLED(LIN_ADVANCE)
  544. #if ENABLED(MIXING_EXTRUDER)
  545. // Keep updating the single E axis
  546. counter_E += current_block->steps[E_AXIS];
  547. // Tick the counters used for this mix
  548. MIXING_STEPPERS_LOOP(j) {
  549. // Step mixing steppers (proportionally)
  550. counter_m[j] += current_block->steps[E_AXIS];
  551. // Step when the counter goes over zero
  552. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  553. }
  554. #else // !MIXING_EXTRUDER
  555. PULSE_START(E);
  556. #endif
  557. #endif // !LIN_ADVANCE
  558. // For minimum pulse time wait before stopping pulses
  559. #if EXTRA_CYCLES_XYZE > 20
  560. while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  561. pulse_start = TCNT0;
  562. #elif EXTRA_CYCLES_XYZE > 0
  563. DELAY_NOPS(EXTRA_CYCLES_XYZE);
  564. #endif
  565. #if HAS_X_STEP
  566. PULSE_STOP(X);
  567. #endif
  568. #if HAS_Y_STEP
  569. PULSE_STOP(Y);
  570. #endif
  571. #if HAS_Z_STEP
  572. PULSE_STOP(Z);
  573. #endif
  574. #if DISABLED(LIN_ADVANCE)
  575. #if ENABLED(MIXING_EXTRUDER)
  576. // Always step the single E axis
  577. if (counter_E > 0) {
  578. counter_E -= current_block->step_event_count;
  579. count_position[E_AXIS] += count_direction[E_AXIS];
  580. }
  581. MIXING_STEPPERS_LOOP(j) {
  582. if (counter_m[j] > 0) {
  583. counter_m[j] -= current_block->mix_event_count[j];
  584. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  585. }
  586. }
  587. #else // !MIXING_EXTRUDER
  588. PULSE_STOP(E);
  589. #endif
  590. #endif // !LIN_ADVANCE
  591. if (++step_events_completed >= current_block->step_event_count) {
  592. all_steps_done = true;
  593. break;
  594. }
  595. // For minimum pulse time wait after stopping pulses also
  596. #if EXTRA_CYCLES_XYZE > 20
  597. if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  598. #elif EXTRA_CYCLES_XYZE > 0
  599. if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE);
  600. #endif
  601. } // steps_loop
  602. #if ENABLED(LIN_ADVANCE)
  603. if (current_block->use_advance_lead) {
  604. const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  605. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  606. #if ENABLED(MIXING_EXTRUDER)
  607. // Mixing extruders apply advance lead proportionally
  608. MIXING_STEPPERS_LOOP(j)
  609. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  610. #else
  611. // For most extruders, advance the single E stepper
  612. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  613. #endif
  614. }
  615. // If we have esteps to execute, fire the next advance_isr "now"
  616. if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
  617. #endif // LIN_ADVANCE
  618. // Calculate new timer value
  619. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  620. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  621. acc_step_rate += current_block->initial_rate;
  622. // upper limit
  623. NOMORE(acc_step_rate, current_block->nominal_rate);
  624. // step_rate to timer interval
  625. const uint16_t timer = calc_timer(acc_step_rate);
  626. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  627. _NEXT_ISR(ocr_val);
  628. acceleration_time += timer;
  629. #if ENABLED(LIN_ADVANCE)
  630. if (current_block->use_advance_lead) {
  631. #if ENABLED(MIXING_EXTRUDER)
  632. MIXING_STEPPERS_LOOP(j)
  633. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  634. #else
  635. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  636. #endif
  637. }
  638. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
  639. #endif // LIN_ADVANCE
  640. }
  641. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  642. uint16_t step_rate;
  643. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  644. if (step_rate < acc_step_rate) { // Still decelerating?
  645. step_rate = acc_step_rate - step_rate;
  646. NOLESS(step_rate, current_block->final_rate);
  647. }
  648. else
  649. step_rate = current_block->final_rate;
  650. // step_rate to timer interval
  651. const uint16_t timer = calc_timer(step_rate);
  652. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  653. _NEXT_ISR(ocr_val);
  654. deceleration_time += timer;
  655. #if ENABLED(LIN_ADVANCE)
  656. if (current_block->use_advance_lead) {
  657. #if ENABLED(MIXING_EXTRUDER)
  658. MIXING_STEPPERS_LOOP(j)
  659. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  660. #else
  661. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  662. #endif
  663. }
  664. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
  665. #endif // LIN_ADVANCE
  666. }
  667. else {
  668. #if ENABLED(LIN_ADVANCE)
  669. if (current_block->use_advance_lead)
  670. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  671. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], OCR1A_nominal, step_loops_nominal);
  672. #endif
  673. SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  674. _NEXT_ISR(ocr_val);
  675. // ensure we're running at the correct step rate, even if we just came off an acceleration
  676. step_loops = step_loops_nominal;
  677. }
  678. #if DISABLED(LIN_ADVANCE)
  679. NOLESS(OCR1A, TCNT1 + 16);
  680. #endif
  681. // If current block is finished, reset pointer
  682. if (all_steps_done) {
  683. current_block = NULL;
  684. planner.discard_current_block();
  685. }
  686. #if DISABLED(LIN_ADVANCE)
  687. _ENABLE_ISRs(); // re-enable ISRs
  688. #endif
  689. }
  690. #if ENABLED(LIN_ADVANCE)
  691. #define CYCLES_EATEN_E (E_STEPPERS * 5)
  692. #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
  693. // Timer interrupt for E. e_steps is set in the main routine;
  694. void Stepper::advance_isr() {
  695. nextAdvanceISR = eISR_Rate;
  696. #if ENABLED(MK2_MULTIPLEXER)
  697. // Even-numbered steppers are reversed
  698. #define SET_E_STEP_DIR(INDEX) \
  699. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? !INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0) : INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0))
  700. #else
  701. #define SET_E_STEP_DIR(INDEX) \
  702. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  703. #endif
  704. #define START_E_PULSE(INDEX) \
  705. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  706. #define STOP_E_PULSE(INDEX) \
  707. if (e_steps[INDEX]) { \
  708. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  709. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  710. }
  711. SET_E_STEP_DIR(0);
  712. #if E_STEPPERS > 1
  713. SET_E_STEP_DIR(1);
  714. #if E_STEPPERS > 2
  715. SET_E_STEP_DIR(2);
  716. #if E_STEPPERS > 3
  717. SET_E_STEP_DIR(3);
  718. #if E_STEPPERS > 4
  719. SET_E_STEP_DIR(4);
  720. #endif
  721. #endif
  722. #endif
  723. #endif
  724. // Step all E steppers that have steps
  725. for (uint8_t i = step_loops; i--;) {
  726. #if EXTRA_CYCLES_E > 20
  727. uint32_t pulse_start = TCNT0;
  728. #endif
  729. START_E_PULSE(0);
  730. #if E_STEPPERS > 1
  731. START_E_PULSE(1);
  732. #if E_STEPPERS > 2
  733. START_E_PULSE(2);
  734. #if E_STEPPERS > 3
  735. START_E_PULSE(3);
  736. #if E_STEPPERS > 4
  737. START_E_PULSE(4);
  738. #endif
  739. #endif
  740. #endif
  741. #endif
  742. // For minimum pulse time wait before stopping pulses
  743. #if EXTRA_CYCLES_E > 20
  744. while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  745. pulse_start = TCNT0;
  746. #elif EXTRA_CYCLES_E > 0
  747. DELAY_NOPS(EXTRA_CYCLES_E);
  748. #endif
  749. STOP_E_PULSE(0);
  750. #if E_STEPPERS > 1
  751. STOP_E_PULSE(1);
  752. #if E_STEPPERS > 2
  753. STOP_E_PULSE(2);
  754. #if E_STEPPERS > 3
  755. STOP_E_PULSE(3);
  756. #if E_STEPPERS > 4
  757. STOP_E_PULSE(4);
  758. #endif
  759. #endif
  760. #endif
  761. #endif
  762. // For minimum pulse time wait before looping
  763. #if EXTRA_CYCLES_E > 20
  764. if (i) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  765. #elif EXTRA_CYCLES_E > 0
  766. if (i) DELAY_NOPS(EXTRA_CYCLES_E);
  767. #endif
  768. } // steps_loop
  769. }
  770. void Stepper::advance_isr_scheduler() {
  771. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  772. CBI(TIMSK0, OCIE0B); // Temperature ISR
  773. DISABLE_STEPPER_DRIVER_INTERRUPT();
  774. sei();
  775. // Run main stepping ISR if flagged
  776. if (!nextMainISR) isr();
  777. // Run Advance stepping ISR if flagged
  778. if (!nextAdvanceISR) advance_isr();
  779. // Is the next advance ISR scheduled before the next main ISR?
  780. if (nextAdvanceISR <= nextMainISR) {
  781. // Set up the next interrupt
  782. OCR1A = nextAdvanceISR;
  783. // New interval for the next main ISR
  784. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  785. // Will call Stepper::advance_isr on the next interrupt
  786. nextAdvanceISR = 0;
  787. }
  788. else {
  789. // The next main ISR comes first
  790. OCR1A = nextMainISR;
  791. // New interval for the next advance ISR, if any
  792. if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  793. nextAdvanceISR -= nextMainISR;
  794. // Will call Stepper::isr on the next interrupt
  795. nextMainISR = 0;
  796. }
  797. // Don't run the ISR faster than possible
  798. NOLESS(OCR1A, TCNT1 + 16);
  799. // Restore original ISR settings
  800. _ENABLE_ISRs();
  801. }
  802. #endif // LIN_ADVANCE
  803. void Stepper::init() {
  804. // Init Digipot Motor Current
  805. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  806. digipot_init();
  807. #endif
  808. // Init Microstepping Pins
  809. #if HAS_MICROSTEPS
  810. microstep_init();
  811. #endif
  812. // Init TMC Steppers
  813. #if ENABLED(HAVE_TMCDRIVER)
  814. tmc_init();
  815. #endif
  816. // Init TMC2130 Steppers
  817. #if ENABLED(HAVE_TMC2130)
  818. tmc2130_init();
  819. #endif
  820. // Init L6470 Steppers
  821. #if ENABLED(HAVE_L6470DRIVER)
  822. L6470_init();
  823. #endif
  824. // Init Dir Pins
  825. #if HAS_X_DIR
  826. X_DIR_INIT;
  827. #endif
  828. #if HAS_X2_DIR
  829. X2_DIR_INIT;
  830. #endif
  831. #if HAS_Y_DIR
  832. Y_DIR_INIT;
  833. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  834. Y2_DIR_INIT;
  835. #endif
  836. #endif
  837. #if HAS_Z_DIR
  838. Z_DIR_INIT;
  839. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  840. Z2_DIR_INIT;
  841. #endif
  842. #endif
  843. #if HAS_E0_DIR
  844. E0_DIR_INIT;
  845. #endif
  846. #if HAS_E1_DIR
  847. E1_DIR_INIT;
  848. #endif
  849. #if HAS_E2_DIR
  850. E2_DIR_INIT;
  851. #endif
  852. #if HAS_E3_DIR
  853. E3_DIR_INIT;
  854. #endif
  855. #if HAS_E4_DIR
  856. E4_DIR_INIT;
  857. #endif
  858. // Init Enable Pins - steppers default to disabled.
  859. #if HAS_X_ENABLE
  860. X_ENABLE_INIT;
  861. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  862. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  863. X2_ENABLE_INIT;
  864. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  865. #endif
  866. #endif
  867. #if HAS_Y_ENABLE
  868. Y_ENABLE_INIT;
  869. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  870. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  871. Y2_ENABLE_INIT;
  872. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  873. #endif
  874. #endif
  875. #if HAS_Z_ENABLE
  876. Z_ENABLE_INIT;
  877. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  878. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  879. Z2_ENABLE_INIT;
  880. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  881. #endif
  882. #endif
  883. #if HAS_E0_ENABLE
  884. E0_ENABLE_INIT;
  885. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  886. #endif
  887. #if HAS_E1_ENABLE
  888. E1_ENABLE_INIT;
  889. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  890. #endif
  891. #if HAS_E2_ENABLE
  892. E2_ENABLE_INIT;
  893. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  894. #endif
  895. #if HAS_E3_ENABLE
  896. E3_ENABLE_INIT;
  897. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  898. #endif
  899. #if HAS_E4_ENABLE
  900. E4_ENABLE_INIT;
  901. if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
  902. #endif
  903. // Init endstops and pullups
  904. endstops.init();
  905. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  906. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  907. #define _DISABLE(AXIS) disable_## AXIS()
  908. #define AXIS_INIT(AXIS, PIN) \
  909. _STEP_INIT(AXIS); \
  910. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  911. _DISABLE(AXIS)
  912. #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
  913. // Init Step Pins
  914. #if HAS_X_STEP
  915. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  916. X2_STEP_INIT;
  917. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  918. #endif
  919. AXIS_INIT(X, X);
  920. #endif
  921. #if HAS_Y_STEP
  922. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  923. Y2_STEP_INIT;
  924. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  925. #endif
  926. AXIS_INIT(Y, Y);
  927. #endif
  928. #if HAS_Z_STEP
  929. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  930. Z2_STEP_INIT;
  931. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  932. #endif
  933. AXIS_INIT(Z, Z);
  934. #endif
  935. #if HAS_E0_STEP
  936. E_AXIS_INIT(0);
  937. #endif
  938. #if HAS_E1_STEP
  939. E_AXIS_INIT(1);
  940. #endif
  941. #if HAS_E2_STEP
  942. E_AXIS_INIT(2);
  943. #endif
  944. #if HAS_E3_STEP
  945. E_AXIS_INIT(3);
  946. #endif
  947. #if HAS_E4_STEP
  948. E_AXIS_INIT(4);
  949. #endif
  950. // waveform generation = 0100 = CTC
  951. SET_WGM(1, CTC_OCRnA);
  952. // output mode = 00 (disconnected)
  953. SET_COMA(1, NORMAL);
  954. // Set the timer pre-scaler
  955. // Generally we use a divider of 8, resulting in a 2MHz timer
  956. // frequency on a 16MHz MCU. If you are going to change this, be
  957. // sure to regenerate speed_lookuptable.h with
  958. // create_speed_lookuptable.py
  959. SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
  960. // Init Stepper ISR to 122 Hz for quick starting
  961. OCR1A = 0x4000;
  962. TCNT1 = 0;
  963. ENABLE_STEPPER_DRIVER_INTERRUPT();
  964. #if ENABLED(LIN_ADVANCE)
  965. for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0;
  966. ZERO(current_adv_steps);
  967. #endif
  968. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  969. sei();
  970. set_directions(); // Init directions to last_direction_bits = 0
  971. }
  972. /**
  973. * Block until all buffered steps are executed
  974. */
  975. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  976. /**
  977. * Set the stepper positions directly in steps
  978. *
  979. * The input is based on the typical per-axis XYZ steps.
  980. * For CORE machines XYZ needs to be translated to ABC.
  981. *
  982. * This allows get_axis_position_mm to correctly
  983. * derive the current XYZ position later on.
  984. */
  985. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  986. synchronize(); // Bad to set stepper counts in the middle of a move
  987. CRITICAL_SECTION_START;
  988. #if CORE_IS_XY
  989. // corexy positioning
  990. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  991. count_position[A_AXIS] = a + b;
  992. count_position[B_AXIS] = CORESIGN(a - b);
  993. count_position[Z_AXIS] = c;
  994. #elif CORE_IS_XZ
  995. // corexz planning
  996. count_position[A_AXIS] = a + c;
  997. count_position[Y_AXIS] = b;
  998. count_position[C_AXIS] = CORESIGN(a - c);
  999. #elif CORE_IS_YZ
  1000. // coreyz planning
  1001. count_position[X_AXIS] = a;
  1002. count_position[B_AXIS] = b + c;
  1003. count_position[C_AXIS] = CORESIGN(b - c);
  1004. #else
  1005. // default non-h-bot planning
  1006. count_position[X_AXIS] = a;
  1007. count_position[Y_AXIS] = b;
  1008. count_position[Z_AXIS] = c;
  1009. #endif
  1010. count_position[E_AXIS] = e;
  1011. CRITICAL_SECTION_END;
  1012. }
  1013. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  1014. CRITICAL_SECTION_START;
  1015. count_position[axis] = v;
  1016. CRITICAL_SECTION_END;
  1017. }
  1018. void Stepper::set_e_position(const long &e) {
  1019. CRITICAL_SECTION_START;
  1020. count_position[E_AXIS] = e;
  1021. CRITICAL_SECTION_END;
  1022. }
  1023. /**
  1024. * Get a stepper's position in steps.
  1025. */
  1026. long Stepper::position(AxisEnum axis) {
  1027. CRITICAL_SECTION_START;
  1028. const long count_pos = count_position[axis];
  1029. CRITICAL_SECTION_END;
  1030. return count_pos;
  1031. }
  1032. /**
  1033. * Get an axis position according to stepper position(s)
  1034. * For CORE machines apply translation from ABC to XYZ.
  1035. */
  1036. float Stepper::get_axis_position_mm(AxisEnum axis) {
  1037. float axis_steps;
  1038. #if IS_CORE
  1039. // Requesting one of the "core" axes?
  1040. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  1041. CRITICAL_SECTION_START;
  1042. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  1043. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  1044. axis_steps = 0.5f * (
  1045. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1046. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1047. );
  1048. CRITICAL_SECTION_END;
  1049. }
  1050. else
  1051. axis_steps = position(axis);
  1052. #else
  1053. axis_steps = position(axis);
  1054. #endif
  1055. return axis_steps * planner.steps_to_mm[axis];
  1056. }
  1057. void Stepper::finish_and_disable() {
  1058. synchronize();
  1059. disable_all_steppers();
  1060. }
  1061. void Stepper::quick_stop() {
  1062. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL)
  1063. if (!ubl.lcd_map_control)
  1064. cleaning_buffer_counter = 5000;
  1065. #else
  1066. cleaning_buffer_counter = 5000;
  1067. #endif
  1068. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1069. while (planner.blocks_queued()) planner.discard_current_block();
  1070. current_block = NULL;
  1071. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1072. #if ENABLED(ULTRA_LCD)
  1073. planner.clear_block_buffer_runtime();
  1074. #endif
  1075. }
  1076. void Stepper::endstop_triggered(AxisEnum axis) {
  1077. #if IS_CORE
  1078. endstops_trigsteps[axis] = 0.5f * (
  1079. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1080. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1081. );
  1082. #else // !COREXY && !COREXZ && !COREYZ
  1083. endstops_trigsteps[axis] = count_position[axis];
  1084. #endif // !COREXY && !COREXZ && !COREYZ
  1085. kill_current_block();
  1086. }
  1087. void Stepper::report_positions() {
  1088. CRITICAL_SECTION_START;
  1089. const long xpos = count_position[X_AXIS],
  1090. ypos = count_position[Y_AXIS],
  1091. zpos = count_position[Z_AXIS];
  1092. CRITICAL_SECTION_END;
  1093. #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
  1094. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  1095. #else
  1096. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1097. #endif
  1098. SERIAL_PROTOCOL(xpos);
  1099. #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
  1100. SERIAL_PROTOCOLPGM(" B:");
  1101. #else
  1102. SERIAL_PROTOCOLPGM(" Y:");
  1103. #endif
  1104. SERIAL_PROTOCOL(ypos);
  1105. #if CORE_IS_XZ || CORE_IS_YZ
  1106. SERIAL_PROTOCOLPGM(" C:");
  1107. #else
  1108. SERIAL_PROTOCOLPGM(" Z:");
  1109. #endif
  1110. SERIAL_PROTOCOL(zpos);
  1111. SERIAL_EOL();
  1112. }
  1113. #if ENABLED(BABYSTEPPING)
  1114. #if ENABLED(DELTA)
  1115. #define CYCLES_EATEN_BABYSTEP (2 * 15)
  1116. #else
  1117. #define CYCLES_EATEN_BABYSTEP 0
  1118. #endif
  1119. #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
  1120. #define _ENABLE(AXIS) enable_## AXIS()
  1121. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1122. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1123. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1124. #if EXTRA_CYCLES_BABYSTEP > 20
  1125. #define _SAVE_START const uint32_t pulse_start = TCNT0
  1126. #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  1127. #else
  1128. #define _SAVE_START NOOP
  1129. #if EXTRA_CYCLES_BABYSTEP > 0
  1130. #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
  1131. #elif STEP_PULSE_CYCLES > 0
  1132. #define _PULSE_WAIT NOOP
  1133. #elif ENABLED(DELTA)
  1134. #define _PULSE_WAIT delayMicroseconds(2);
  1135. #else
  1136. #define _PULSE_WAIT delayMicroseconds(4);
  1137. #endif
  1138. #endif
  1139. #define BABYSTEP_AXIS(AXIS, INVERT) { \
  1140. const uint8_t old_dir = _READ_DIR(AXIS); \
  1141. _ENABLE(AXIS); \
  1142. _SAVE_START; \
  1143. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1144. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1145. _PULSE_WAIT; \
  1146. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1147. _APPLY_DIR(AXIS, old_dir); \
  1148. }
  1149. // MUST ONLY BE CALLED BY AN ISR,
  1150. // No other ISR should ever interrupt this!
  1151. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  1152. cli();
  1153. switch (axis) {
  1154. #if ENABLED(BABYSTEP_XY)
  1155. case X_AXIS:
  1156. BABYSTEP_AXIS(X, false);
  1157. break;
  1158. case Y_AXIS:
  1159. BABYSTEP_AXIS(Y, false);
  1160. break;
  1161. #endif
  1162. case Z_AXIS: {
  1163. #if DISABLED(DELTA)
  1164. BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z);
  1165. #else // DELTA
  1166. const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1167. enable_X();
  1168. enable_Y();
  1169. enable_Z();
  1170. const uint8_t old_x_dir_pin = X_DIR_READ,
  1171. old_y_dir_pin = Y_DIR_READ,
  1172. old_z_dir_pin = Z_DIR_READ;
  1173. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1174. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1175. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1176. _SAVE_START;
  1177. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1178. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1179. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1180. _PULSE_WAIT;
  1181. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1182. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1183. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1184. // Restore direction bits
  1185. X_DIR_WRITE(old_x_dir_pin);
  1186. Y_DIR_WRITE(old_y_dir_pin);
  1187. Z_DIR_WRITE(old_z_dir_pin);
  1188. #endif
  1189. } break;
  1190. default: break;
  1191. }
  1192. sei();
  1193. }
  1194. #endif // BABYSTEPPING
  1195. /**
  1196. * Software-controlled Stepper Motor Current
  1197. */
  1198. #if HAS_DIGIPOTSS
  1199. // From Arduino DigitalPotControl example
  1200. void Stepper::digitalPotWrite(const int16_t address, const int16_t value) {
  1201. WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
  1202. SPI.transfer(address); // Send the address and value via SPI
  1203. SPI.transfer(value);
  1204. WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
  1205. //delay(10);
  1206. }
  1207. #endif // HAS_DIGIPOTSS
  1208. #if HAS_MOTOR_CURRENT_PWM
  1209. void Stepper::refresh_motor_power() {
  1210. for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
  1211. switch (i) {
  1212. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1213. case 0:
  1214. #endif
  1215. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1216. case 1:
  1217. #endif
  1218. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1219. case 2:
  1220. #endif
  1221. digipot_current(i, motor_current_setting[i]);
  1222. default: break;
  1223. }
  1224. }
  1225. }
  1226. #endif // HAS_MOTOR_CURRENT_PWM
  1227. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1228. void Stepper::digipot_current(const uint8_t driver, const int current) {
  1229. #if HAS_DIGIPOTSS
  1230. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1231. digitalPotWrite(digipot_ch[driver], current);
  1232. #elif HAS_MOTOR_CURRENT_PWM
  1233. if (WITHIN(driver, 0, 2))
  1234. motor_current_setting[driver] = current; // update motor_current_setting
  1235. #define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1236. switch (driver) {
  1237. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1238. case 0: _WRITE_CURRENT_PWM(XY); break;
  1239. #endif
  1240. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1241. case 1: _WRITE_CURRENT_PWM(Z); break;
  1242. #endif
  1243. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1244. case 2: _WRITE_CURRENT_PWM(E); break;
  1245. #endif
  1246. }
  1247. #endif
  1248. }
  1249. void Stepper::digipot_init() {
  1250. #if HAS_DIGIPOTSS
  1251. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1252. SPI.begin();
  1253. SET_OUTPUT(DIGIPOTSS_PIN);
  1254. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1255. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1256. digipot_current(i, digipot_motor_current[i]);
  1257. }
  1258. #elif HAS_MOTOR_CURRENT_PWM
  1259. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1260. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1261. #endif
  1262. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1263. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1264. #endif
  1265. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1266. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1267. #endif
  1268. refresh_motor_power();
  1269. // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1270. SET_CS5(PRESCALER_1);
  1271. #endif
  1272. }
  1273. #endif
  1274. #if HAS_MICROSTEPS
  1275. /**
  1276. * Software-controlled Microstepping
  1277. */
  1278. void Stepper::microstep_init() {
  1279. SET_OUTPUT(X_MS1_PIN);
  1280. SET_OUTPUT(X_MS2_PIN);
  1281. #if HAS_Y_MICROSTEPS
  1282. SET_OUTPUT(Y_MS1_PIN);
  1283. SET_OUTPUT(Y_MS2_PIN);
  1284. #endif
  1285. #if HAS_Z_MICROSTEPS
  1286. SET_OUTPUT(Z_MS1_PIN);
  1287. SET_OUTPUT(Z_MS2_PIN);
  1288. #endif
  1289. #if HAS_E0_MICROSTEPS
  1290. SET_OUTPUT(E0_MS1_PIN);
  1291. SET_OUTPUT(E0_MS2_PIN);
  1292. #endif
  1293. #if HAS_E1_MICROSTEPS
  1294. SET_OUTPUT(E1_MS1_PIN);
  1295. SET_OUTPUT(E1_MS2_PIN);
  1296. #endif
  1297. #if HAS_E2_MICROSTEPS
  1298. SET_OUTPUT(E2_MS1_PIN);
  1299. SET_OUTPUT(E2_MS2_PIN);
  1300. #endif
  1301. #if HAS_E3_MICROSTEPS
  1302. SET_OUTPUT(E3_MS1_PIN);
  1303. SET_OUTPUT(E3_MS2_PIN);
  1304. #endif
  1305. #if HAS_E4_MICROSTEPS
  1306. SET_OUTPUT(E4_MS1_PIN);
  1307. SET_OUTPUT(E4_MS2_PIN);
  1308. #endif
  1309. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1310. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1311. microstep_mode(i, microstep_modes[i]);
  1312. }
  1313. void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {
  1314. if (ms1 >= 0) switch (driver) {
  1315. case 0: WRITE(X_MS1_PIN, ms1); break;
  1316. #if HAS_Y_MICROSTEPS
  1317. case 1: WRITE(Y_MS1_PIN, ms1); break;
  1318. #endif
  1319. #if HAS_Z_MICROSTEPS
  1320. case 2: WRITE(Z_MS1_PIN, ms1); break;
  1321. #endif
  1322. #if HAS_E0_MICROSTEPS
  1323. case 3: WRITE(E0_MS1_PIN, ms1); break;
  1324. #endif
  1325. #if HAS_E1_MICROSTEPS
  1326. case 4: WRITE(E1_MS1_PIN, ms1); break;
  1327. #endif
  1328. #if HAS_E2_MICROSTEPS
  1329. case 5: WRITE(E2_MS1_PIN, ms1); break;
  1330. #endif
  1331. #if HAS_E3_MICROSTEPS
  1332. case 6: WRITE(E3_MS1_PIN, ms1); break;
  1333. #endif
  1334. #if HAS_E4_MICROSTEPS
  1335. case 7: WRITE(E4_MS1_PIN, ms1); break;
  1336. #endif
  1337. }
  1338. if (ms2 >= 0) switch (driver) {
  1339. case 0: WRITE(X_MS2_PIN, ms2); break;
  1340. #if HAS_Y_MICROSTEPS
  1341. case 1: WRITE(Y_MS2_PIN, ms2); break;
  1342. #endif
  1343. #if HAS_Z_MICROSTEPS
  1344. case 2: WRITE(Z_MS2_PIN, ms2); break;
  1345. #endif
  1346. #if HAS_E0_MICROSTEPS
  1347. case 3: WRITE(E0_MS2_PIN, ms2); break;
  1348. #endif
  1349. #if HAS_E1_MICROSTEPS
  1350. case 4: WRITE(E1_MS2_PIN, ms2); break;
  1351. #endif
  1352. #if HAS_E2_MICROSTEPS
  1353. case 5: WRITE(E2_MS2_PIN, ms2); break;
  1354. #endif
  1355. #if HAS_E3_MICROSTEPS
  1356. case 6: WRITE(E3_MS2_PIN, ms2); break;
  1357. #endif
  1358. #if HAS_E4_MICROSTEPS
  1359. case 7: WRITE(E4_MS2_PIN, ms2); break;
  1360. #endif
  1361. }
  1362. }
  1363. void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
  1364. switch (stepping_mode) {
  1365. case 1: microstep_ms(driver, MICROSTEP1); break;
  1366. case 2: microstep_ms(driver, MICROSTEP2); break;
  1367. case 4: microstep_ms(driver, MICROSTEP4); break;
  1368. case 8: microstep_ms(driver, MICROSTEP8); break;
  1369. case 16: microstep_ms(driver, MICROSTEP16); break;
  1370. }
  1371. }
  1372. void Stepper::microstep_readings() {
  1373. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1374. SERIAL_PROTOCOLPGM("X: ");
  1375. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1376. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1377. #if HAS_Y_MICROSTEPS
  1378. SERIAL_PROTOCOLPGM("Y: ");
  1379. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1380. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1381. #endif
  1382. #if HAS_Z_MICROSTEPS
  1383. SERIAL_PROTOCOLPGM("Z: ");
  1384. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1385. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1386. #endif
  1387. #if HAS_E0_MICROSTEPS
  1388. SERIAL_PROTOCOLPGM("E0: ");
  1389. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1390. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1391. #endif
  1392. #if HAS_E1_MICROSTEPS
  1393. SERIAL_PROTOCOLPGM("E1: ");
  1394. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1395. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1396. #endif
  1397. #if HAS_E2_MICROSTEPS
  1398. SERIAL_PROTOCOLPGM("E2: ");
  1399. SERIAL_PROTOCOL(READ(E2_MS1_PIN));
  1400. SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
  1401. #endif
  1402. #if HAS_E3_MICROSTEPS
  1403. SERIAL_PROTOCOLPGM("E3: ");
  1404. SERIAL_PROTOCOL(READ(E3_MS1_PIN));
  1405. SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
  1406. #endif
  1407. #if HAS_E4_MICROSTEPS
  1408. SERIAL_PROTOCOLPGM("E4: ");
  1409. SERIAL_PROTOCOL(READ(E4_MS1_PIN));
  1410. SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
  1411. #endif
  1412. }
  1413. #endif // HAS_MICROSTEPS