My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ubl_motion.cpp 23KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "Marlin.h"
  25. #include "ubl.h"
  26. #include "planner.h"
  27. #include <avr/io.h>
  28. #include <math.h>
  29. extern float destination[XYZE];
  30. extern void set_current_to_destination();
  31. static void debug_echo_axis(const AxisEnum axis) {
  32. if (current_position[axis] == destination[axis])
  33. SERIAL_ECHOPGM("-------------");
  34. else
  35. SERIAL_ECHO_F(destination[X_AXIS], 6);
  36. }
  37. void debug_current_and_destination(const char *title) {
  38. // if the title message starts with a '!' it is so important, we are going to
  39. // ignore the status of the g26_debug_flag
  40. if (*title != '!' && !ubl.g26_debug_flag) return;
  41. const float de = destination[E_AXIS] - current_position[E_AXIS];
  42. if (de == 0.0) return;
  43. const float dx = current_position[X_AXIS] - destination[X_AXIS],
  44. dy = current_position[Y_AXIS] - destination[Y_AXIS],
  45. xy_dist = HYPOT(dx, dy);
  46. if (xy_dist == 0.0) {
  47. return;
  48. //SERIAL_ECHOPGM(" FPMM=");
  49. //const float fpmm = de / xy_dist;
  50. //SERIAL_PROTOCOL_F(fpmm, 6);
  51. }
  52. else {
  53. SERIAL_ECHOPGM(" fpmm=");
  54. const float fpmm = de / xy_dist;
  55. SERIAL_ECHO_F(fpmm, 6);
  56. }
  57. SERIAL_ECHOPGM(" current=( ");
  58. SERIAL_ECHO_F(current_position[X_AXIS], 6);
  59. SERIAL_ECHOPGM(", ");
  60. SERIAL_ECHO_F(current_position[Y_AXIS], 6);
  61. SERIAL_ECHOPGM(", ");
  62. SERIAL_ECHO_F(current_position[Z_AXIS], 6);
  63. SERIAL_ECHOPGM(", ");
  64. SERIAL_ECHO_F(current_position[E_AXIS], 6);
  65. SERIAL_ECHOPGM(" ) destination=( ");
  66. debug_echo_axis(X_AXIS);
  67. SERIAL_ECHOPGM(", ");
  68. debug_echo_axis(Y_AXIS);
  69. SERIAL_ECHOPGM(", ");
  70. debug_echo_axis(Z_AXIS);
  71. SERIAL_ECHOPGM(", ");
  72. debug_echo_axis(E_AXIS);
  73. SERIAL_ECHOPGM(" ) ");
  74. SERIAL_ECHO(title);
  75. SERIAL_EOL;
  76. }
  77. void ubl_line_to_destination(const float &feed_rate, uint8_t extruder) {
  78. /**
  79. * Much of the nozzle movement will be within the same cell. So we will do as little computation
  80. * as possible to determine if this is the case. If this move is within the same cell, we will
  81. * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
  82. */
  83. const float start[XYZE] = {
  84. current_position[X_AXIS],
  85. current_position[Y_AXIS],
  86. current_position[Z_AXIS],
  87. current_position[E_AXIS]
  88. },
  89. end[XYZE] = {
  90. destination[X_AXIS],
  91. destination[Y_AXIS],
  92. destination[Z_AXIS],
  93. destination[E_AXIS]
  94. };
  95. const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(start[X_AXIS])),
  96. cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])),
  97. cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(end[X_AXIS])),
  98. cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS]));
  99. if (ubl.g26_debug_flag) {
  100. SERIAL_ECHOPAIR(" ubl_line_to_destination(xe=", end[X_AXIS]);
  101. SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
  102. SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
  103. SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
  104. SERIAL_CHAR(')');
  105. SERIAL_EOL;
  106. debug_current_and_destination(PSTR("Start of ubl_line_to_destination()"));
  107. }
  108. if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
  109. /**
  110. * we don't need to break up the move
  111. *
  112. * If we are moving off the print bed, we are going to allow the move at this level.
  113. * But we detect it and isolate it. For now, we just pass along the request.
  114. */
  115. if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
  116. // Note: There is no Z Correction in this case. We are off the grid and don't know what
  117. // a reasonable correction would be.
  118. planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
  119. set_current_to_destination();
  120. if (ubl.g26_debug_flag)
  121. debug_current_and_destination(PSTR("out of bounds in ubl_line_to_destination()"));
  122. return;
  123. }
  124. FINAL_MOVE:
  125. /**
  126. * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
  127. * generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
  128. * We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
  129. * We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
  130. * instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
  131. * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
  132. */
  133. const float xratio = (RAW_X_POSITION(end[X_AXIS]) - pgm_read_float(&(ubl.mesh_index_to_xpos[cell_dest_xi]))) * (1.0 / (MESH_X_DIST)),
  134. z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
  135. (ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]),
  136. z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
  137. (ubl.z_values[cell_dest_xi + 1][cell_dest_yi + 1] - ubl.z_values[cell_dest_xi][cell_dest_yi + 1]);
  138. // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
  139. // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
  140. const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - pgm_read_float(&(ubl.mesh_index_to_ypos[cell_dest_yi]))) * (1.0 / (MESH_Y_DIST));
  141. float z0 = z1 + (z2 - z1) * yratio;
  142. /**
  143. * Debug code to use non-optimized get_z_correction() and to do a sanity check
  144. * that the correct value is being passed to planner.buffer_line()
  145. */
  146. /*
  147. z_optimized = z0;
  148. z0 = ubl.get_z_correction(end[X_AXIS], end[Y_AXIS]);
  149. if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
  150. debug_current_and_destination(PSTR("FINAL_MOVE: z_correction()"));
  151. if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
  152. if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
  153. SERIAL_ECHOPAIR(" end[X_AXIS]=", end[X_AXIS]);
  154. SERIAL_ECHOPAIR(" end[Y_AXIS]=", end[Y_AXIS]);
  155. SERIAL_ECHOPAIR(" z0=", z0);
  156. SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
  157. SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0));
  158. SERIAL_EOL;
  159. }
  160. */
  161. z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
  162. /**
  163. * If part of the Mesh is undefined, it will show up as NAN
  164. * in z_values[][] and propagate through the
  165. * calculations. If our correction is NAN, we throw it out
  166. * because part of the Mesh is undefined and we don't have the
  167. * information we need to complete the height correction.
  168. */
  169. if (isnan(z0)) z0 = 0.0;
  170. planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
  171. if (ubl.g26_debug_flag)
  172. debug_current_and_destination(PSTR("FINAL_MOVE in ubl_line_to_destination()"));
  173. set_current_to_destination();
  174. return;
  175. }
  176. /**
  177. * If we get here, we are processing a move that crosses at least one Mesh Line. We will check
  178. * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
  179. * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
  180. * computation and in fact most lines are of this nature. We will check for that in the following
  181. * blocks of code:
  182. */
  183. const float dx = end[X_AXIS] - start[X_AXIS],
  184. dy = end[Y_AXIS] - start[Y_AXIS];
  185. const int left_flag = dx < 0.0 ? 1 : 0,
  186. down_flag = dy < 0.0 ? 1 : 0;
  187. const float adx = left_flag ? -dx : dx,
  188. ady = down_flag ? -dy : dy;
  189. const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
  190. dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
  191. /**
  192. * Compute the scaling factor for the extruder for each partial move.
  193. * We need to watch out for zero length moves because it will cause us to
  194. * have an infinate scaling factor. We are stuck doing a floating point
  195. * divide to get our scaling factor, but after that, we just multiply by this
  196. * number. We also pick our scaling factor based on whether the X or Y
  197. * component is larger. We use the biggest of the two to preserve precision.
  198. */
  199. const bool use_x_dist = adx > ady;
  200. float on_axis_distance = use_x_dist ? dx : dy,
  201. e_position = end[E_AXIS] - start[E_AXIS],
  202. z_position = end[Z_AXIS] - start[Z_AXIS];
  203. const float e_normalized_dist = e_position / on_axis_distance,
  204. z_normalized_dist = z_position / on_axis_distance;
  205. int current_xi = cell_start_xi, current_yi = cell_start_yi;
  206. const float m = dy / dx,
  207. c = start[Y_AXIS] - m * start[X_AXIS];
  208. bool inf_normalized_flag, inf_m_flag;
  209. inf_normalized_flag = isinf(e_normalized_dist);
  210. inf_m_flag = isinf(m);
  211. /**
  212. * This block handles vertical lines. These are lines that stay within the same
  213. * X Cell column. They do not need to be perfectly vertical. They just can
  214. * not cross into another X Cell column.
  215. */
  216. if (dxi == 0) { // Check for a vertical line
  217. current_yi += down_flag; // Line is heading down, we just want to go to the bottom
  218. while (current_yi != cell_dest_yi + down_flag) {
  219. current_yi += dyi;
  220. const float next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[current_yi])));
  221. /**
  222. * if the slope of the line is infinite, we won't do the calculations
  223. * else, we know the next X is the same so we can recover and continue!
  224. * Calculate X at the next Y mesh line
  225. */
  226. const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
  227. float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi);
  228. /**
  229. * Debug code to use non-optimized get_z_correction() and to do a sanity check
  230. * that the correct value is being passed to planner.buffer_line()
  231. */
  232. /*
  233. z_optimized = z0;
  234. z0 = ubl.get_z_correction(x, next_mesh_line_y);
  235. if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
  236. debug_current_and_destination(PSTR("VERTICAL z_correction()"));
  237. if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
  238. if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
  239. SERIAL_ECHOPAIR(" x=", x);
  240. SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
  241. SERIAL_ECHOPAIR(" z0=", z0);
  242. SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
  243. SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
  244. SERIAL_ECHO("\n");
  245. }
  246. */
  247. z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
  248. /**
  249. * If part of the Mesh is undefined, it will show up as NAN
  250. * in z_values[][] and propagate through the
  251. * calculations. If our correction is NAN, we throw it out
  252. * because part of the Mesh is undefined and we don't have the
  253. * information we need to complete the height correction.
  254. */
  255. if (isnan(z0)) z0 = 0.0;
  256. const float y = LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[current_yi])));
  257. /**
  258. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  259. * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
  260. * happens, it might be best to remove the check and always 'schedule' the move because
  261. * the planner.buffer_line() routine will filter it if that happens.
  262. */
  263. if (y != start[Y_AXIS]) {
  264. if (!inf_normalized_flag) {
  265. on_axis_distance = y - start[Y_AXIS]; // we don't need to check if the extruder position
  266. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
  267. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  268. }
  269. else {
  270. e_position = start[E_AXIS];
  271. z_position = start[Z_AXIS];
  272. }
  273. planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  274. } //else printf("FIRST MOVE PRUNED ");
  275. }
  276. if (ubl.g26_debug_flag)
  277. debug_current_and_destination(PSTR("vertical move done in ubl_line_to_destination()"));
  278. //
  279. // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
  280. //
  281. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  282. goto FINAL_MOVE;
  283. set_current_to_destination();
  284. return;
  285. }
  286. /**
  287. *
  288. * This block handles horizontal lines. These are lines that stay within the same
  289. * Y Cell row. They do not need to be perfectly horizontal. They just can
  290. * not cross into another Y Cell row.
  291. *
  292. */
  293. if (dyi == 0) { // Check for a horizontal line
  294. current_xi += left_flag; // Line is heading left, we just want to go to the left
  295. // edge of this cell for the first move.
  296. while (current_xi != cell_dest_xi + left_flag) {
  297. current_xi += dxi;
  298. const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[current_xi]))),
  299. y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
  300. float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi);
  301. /**
  302. * Debug code to use non-optimized get_z_correction() and to do a sanity check
  303. * that the correct value is being passed to planner.buffer_line()
  304. */
  305. /*
  306. z_optimized = z0;
  307. z0 = ubl.get_z_correction(next_mesh_line_x, y);
  308. if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
  309. debug_current_and_destination(PSTR("HORIZONTAL z_correction()"));
  310. if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
  311. if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
  312. SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
  313. SERIAL_ECHOPAIR(" y=", y);
  314. SERIAL_ECHOPAIR(" z0=", z0);
  315. SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
  316. SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
  317. SERIAL_ECHO("\n");
  318. }
  319. */
  320. z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
  321. /**
  322. * If part of the Mesh is undefined, it will show up as NAN
  323. * in z_values[][] and propagate through the
  324. * calculations. If our correction is NAN, we throw it out
  325. * because part of the Mesh is undefined and we don't have the
  326. * information we need to complete the height correction.
  327. */
  328. if (isnan(z0)) z0 = 0.0;
  329. const float x = LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[current_xi])));
  330. /**
  331. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  332. * where the line is heading left and it is starting right on a Mesh Line boundary. For how often
  333. * that happens, it might be best to remove the check and always 'schedule' the move because
  334. * the planner.buffer_line() routine will filter it if that happens.
  335. */
  336. if (x != start[X_AXIS]) {
  337. if (!inf_normalized_flag) {
  338. on_axis_distance = x - start[X_AXIS]; // we don't need to check if the extruder position
  339. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
  340. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  341. }
  342. else {
  343. e_position = start[E_AXIS];
  344. z_position = start[Z_AXIS];
  345. }
  346. planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  347. } //else printf("FIRST MOVE PRUNED ");
  348. }
  349. if (ubl.g26_debug_flag)
  350. debug_current_and_destination(PSTR("horizontal move done in ubl_line_to_destination()"));
  351. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  352. goto FINAL_MOVE;
  353. set_current_to_destination();
  354. return;
  355. }
  356. /**
  357. *
  358. * This block handles the generic case of a line crossing both X and Y Mesh lines.
  359. *
  360. */
  361. int xi_cnt = cell_start_xi - cell_dest_xi,
  362. yi_cnt = cell_start_yi - cell_dest_yi;
  363. if (xi_cnt < 0) xi_cnt = -xi_cnt;
  364. if (yi_cnt < 0) yi_cnt = -yi_cnt;
  365. current_xi += left_flag;
  366. current_yi += down_flag;
  367. while (xi_cnt > 0 || yi_cnt > 0) {
  368. const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[current_xi + dxi]))),
  369. next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[current_yi + dyi]))),
  370. y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
  371. x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
  372. // (No need to worry about m being zero.
  373. // If that was the case, it was already detected
  374. // as a vertical line move above.)
  375. if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
  376. //
  377. // Yes! Crossing a Y Mesh Line next
  378. //
  379. float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi);
  380. /**
  381. * Debug code to use non-optimized get_z_correction() and to do a sanity check
  382. * that the correct value is being passed to planner.buffer_line()
  383. */
  384. /*
  385. z_optimized = z0;
  386. z0 = ubl.get_z_correction(x, next_mesh_line_y);
  387. if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
  388. debug_current_and_destination(PSTR("General_1: z_correction()"));
  389. if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
  390. if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN "); {
  391. SERIAL_ECHOPAIR(" x=", x);
  392. }
  393. SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
  394. SERIAL_ECHOPAIR(" z0=", z0);
  395. SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
  396. SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
  397. SERIAL_ECHO("\n");
  398. }
  399. */
  400. z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
  401. /**
  402. * If part of the Mesh is undefined, it will show up as NAN
  403. * in z_values[][] and propagate through the
  404. * calculations. If our correction is NAN, we throw it out
  405. * because part of the Mesh is undefined and we don't have the
  406. * information we need to complete the height correction.
  407. */
  408. if (isnan(z0)) z0 = 0.0;
  409. if (!inf_normalized_flag) {
  410. on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
  411. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  412. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  413. }
  414. else {
  415. e_position = start[E_AXIS];
  416. z_position = start[Z_AXIS];
  417. }
  418. planner.buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  419. current_yi += dyi;
  420. yi_cnt--;
  421. }
  422. else {
  423. //
  424. // Yes! Crossing a X Mesh Line next
  425. //
  426. float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag);
  427. /**
  428. * Debug code to use non-optimized get_z_correction() and to do a sanity check
  429. * that the correct value is being passed to planner.buffer_line()
  430. */
  431. /*
  432. z_optimized = z0;
  433. z0 = ubl.get_z_correction(next_mesh_line_x, y);
  434. if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
  435. debug_current_and_destination(PSTR("General_2: z_correction()"));
  436. if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
  437. if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
  438. SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
  439. SERIAL_ECHOPAIR(" y=", y);
  440. SERIAL_ECHOPAIR(" z0=", z0);
  441. SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
  442. SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
  443. SERIAL_ECHO("\n");
  444. }
  445. */
  446. z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
  447. /**
  448. * If part of the Mesh is undefined, it will show up as NAN
  449. * in z_values[][] and propagate through the
  450. * calculations. If our correction is NAN, we throw it out
  451. * because part of the Mesh is undefined and we don't have the
  452. * information we need to complete the height correction.
  453. */
  454. if (isnan(z0)) z0 = 0.0;
  455. if (!inf_normalized_flag) {
  456. on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
  457. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  458. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  459. }
  460. else {
  461. e_position = start[E_AXIS];
  462. z_position = start[Z_AXIS];
  463. }
  464. planner.buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  465. current_xi += dxi;
  466. xi_cnt--;
  467. }
  468. }
  469. if (ubl.g26_debug_flag)
  470. debug_current_and_destination(PSTR("generic move done in ubl_line_to_destination()"));
  471. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  472. goto FINAL_MOVE;
  473. set_current_to_destination();
  474. }
  475. #endif