My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 474KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207 (Requires FWRETRACT)
  53. * G11 - Retract recover filament according to settings of M208 (Requires FWRETRACT)
  54. * G12 - Clean tool (Requires NOZZLE_CLEAN_FEATURE)
  55. * G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
  56. * G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
  57. * G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
  58. * G20 - Set input units to inches (Requires INCH_MODE_SUPPORT)
  59. * G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT)
  60. * G26 - Mesh Validation Pattern (Requires G26_MESH_VALIDATION)
  61. * G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
  62. * G28 - Home one or more axes
  63. * G29 - Start or continue the bed leveling probe procedure (Requires bed leveling)
  64. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  65. * G31 - Dock sled (Z_PROBE_SLED only)
  66. * G32 - Undock sled (Z_PROBE_SLED only)
  67. * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
  68. * G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)
  69. * G42 - Coordinated move to a mesh point (Requires MESH_BED_LEVELING, AUTO_BED_LEVELING_BLINEAR, or AUTO_BED_LEVELING_UBL)
  70. * G90 - Use Absolute Coordinates
  71. * G91 - Use Relative Coordinates
  72. * G92 - Set current position to coordinates given
  73. *
  74. * "M" Codes
  75. *
  76. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  77. * M1 -> M0
  78. * M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
  79. * M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
  80. * M5 - Turn laser/spindle off
  81. * M17 - Enable/Power all stepper motors
  82. * M18 - Disable all stepper motors; same as M84
  83. * M20 - List SD card. (Requires SDSUPPORT)
  84. * M21 - Init SD card. (Requires SDSUPPORT)
  85. * M22 - Release SD card. (Requires SDSUPPORT)
  86. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  87. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  88. * M25 - Pause SD print. (Requires SDSUPPORT)
  89. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  90. * M27 - Report SD print status. (Requires SDSUPPORT)
  91. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  92. * M29 - Stop SD write. (Requires SDSUPPORT)
  93. * M30 - Delete file from SD: "M30 /path/file.gco"
  94. * M31 - Report time since last M109 or SD card start to serial.
  95. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  96. * Use P to run other files as sub-programs: "M32 P !filename#"
  97. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  98. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  99. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  100. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  101. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  102. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  103. * M75 - Start the print job timer.
  104. * M76 - Pause the print job timer.
  105. * M77 - Stop the print job timer.
  106. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  107. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
  108. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
  109. * M82 - Set E codes absolute (default).
  110. * M83 - Set E codes relative while in Absolute (G90) mode.
  111. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  112. * duration after which steppers should turn off. S0 disables the timeout.
  113. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  114. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  115. * M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
  116. * M104 - Set extruder target temp.
  117. * M105 - Report current temperatures.
  118. * M106 - Set print fan speed.
  119. * M107 - Print fan off.
  120. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  121. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  122. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  123. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  124. * M110 - Set the current line number. (Used by host printing)
  125. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  126. * M112 - Emergency stop.
  127. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  128. * M114 - Report current position.
  129. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  130. * M117 - Display a message on the controller screen. (Requires an LCD)
  131. * M118 - Display a message in the host console.
  132. * M119 - Report endstops status.
  133. * M120 - Enable endstops detection.
  134. * M121 - Disable endstops detection.
  135. * M122 - Debug stepper (Requires HAVE_TMC2130)
  136. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  137. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  138. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  139. * M128 - EtoP Open. (Requires BARICUDA)
  140. * M129 - EtoP Closed. (Requires BARICUDA)
  141. * M140 - Set bed target temp. S<temp>
  142. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  143. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  144. * M150 - Set Status LED Color as R<red> U<green> B<blue> P<bright>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, NEOPIXEL_LED, or PCA9632).
  145. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  146. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  147. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  148. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  149. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  150. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  151. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  152. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  153. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  154. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  155. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  156. * M205 - Set advanced settings. Current units apply:
  157. S<print> T<travel> minimum speeds
  158. B<minimum segment time>
  159. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  160. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  161. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  162. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  163. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  164. Every normal extrude-only move will be classified as retract depending on the direction.
  165. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  166. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  167. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  168. * M221 - Set Flow Percentage: "M221 S<percent>"
  169. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  170. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  171. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  172. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  173. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  174. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  175. * M290 - Babystepping (Requires BABYSTEPPING)
  176. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  178. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  179. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  180. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  181. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  182. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  183. * M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
  184. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  185. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  186. * M400 - Finish all moves.
  187. * M401 - Lower Z probe. (Requires a probe)
  188. * M402 - Raise Z probe. (Requires a probe)
  189. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  190. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  191. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  192. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  193. * M410 - Quickstop. Abort all planned moves.
  194. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  195. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  196. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  197. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  198. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  199. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  200. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  201. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  202. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
  203. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  204. * M666 - Set delta endstop adjustment. (Requires DELTA)
  205. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  206. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  207. * M852 - Set skew factors: "M852 [I<xy>] [J<xz>] [K<yz>]". (Requires SKEW_CORRECTION_GCODE, and SKEW_CORRECTION_FOR_Z for IJ)
  208. * M860 - Report the position of position encoder modules.
  209. * M861 - Report the status of position encoder modules.
  210. * M862 - Perform an axis continuity test for position encoder modules.
  211. * M863 - Perform steps-per-mm calibration for position encoder modules.
  212. * M864 - Change position encoder module I2C address.
  213. * M865 - Check position encoder module firmware version.
  214. * M866 - Report or reset position encoder module error count.
  215. * M867 - Enable/disable or toggle error correction for position encoder modules.
  216. * M868 - Report or set position encoder module error correction threshold.
  217. * M869 - Report position encoder module error.
  218. * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
  219. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130 or HAVE_TMC2208)
  220. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  221. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  222. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  223. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  224. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130 or HAVE_TMC2208)
  225. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130 or HAVE_TMC2208)
  226. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  227. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  228. *
  229. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  230. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  231. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  232. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  233. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  234. *
  235. * ************ Custom codes - This can change to suit future G-code regulations
  236. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  237. * M999 - Restart after being stopped by error
  238. *
  239. * "T" Codes
  240. *
  241. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  242. *
  243. */
  244. #include "Marlin.h"
  245. #include "ultralcd.h"
  246. #include "planner.h"
  247. #include "stepper.h"
  248. #include "endstops.h"
  249. #include "temperature.h"
  250. #include "cardreader.h"
  251. #include "configuration_store.h"
  252. #include "language.h"
  253. #include "pins_arduino.h"
  254. #include "math.h"
  255. #include "nozzle.h"
  256. #include "duration_t.h"
  257. #include "types.h"
  258. #include "gcode.h"
  259. #if HAS_ABL
  260. #include "vector_3.h"
  261. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  262. #include "least_squares_fit.h"
  263. #endif
  264. #elif ENABLED(MESH_BED_LEVELING)
  265. #include "mesh_bed_leveling.h"
  266. #endif
  267. #if ENABLED(BEZIER_CURVE_SUPPORT)
  268. #include "planner_bezier.h"
  269. #endif
  270. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  271. #include "buzzer.h"
  272. #endif
  273. #if ENABLED(USE_WATCHDOG)
  274. #include "watchdog.h"
  275. #endif
  276. #if ENABLED(MAX7219_DEBUG)
  277. #include "Max7219_Debug_LEDs.h"
  278. #endif
  279. #if HAS_COLOR_LEDS
  280. #include "leds.h"
  281. #endif
  282. #if HAS_SERVOS
  283. #include "servo.h"
  284. #endif
  285. #if HAS_DIGIPOTSS
  286. #include <SPI.h>
  287. #endif
  288. #if ENABLED(DAC_STEPPER_CURRENT)
  289. #include "stepper_dac.h"
  290. #endif
  291. #if ENABLED(EXPERIMENTAL_I2CBUS)
  292. #include "twibus.h"
  293. #endif
  294. #if ENABLED(I2C_POSITION_ENCODERS)
  295. #include "I2CPositionEncoder.h"
  296. #endif
  297. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  298. #include "endstop_interrupts.h"
  299. #endif
  300. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  301. void gcode_M100();
  302. void M100_dump_routine(const char * const title, const char *start, const char *end);
  303. #endif
  304. #if ENABLED(G26_MESH_VALIDATION)
  305. bool g26_debug_flag; // =false
  306. void gcode_G26();
  307. #endif
  308. #if ENABLED(SDSUPPORT)
  309. CardReader card;
  310. #endif
  311. #if ENABLED(EXPERIMENTAL_I2CBUS)
  312. TWIBus i2c;
  313. #endif
  314. #if ENABLED(G38_PROBE_TARGET)
  315. bool G38_move = false,
  316. G38_endstop_hit = false;
  317. #endif
  318. #if ENABLED(AUTO_BED_LEVELING_UBL)
  319. #include "ubl.h"
  320. extern bool defer_return_to_status;
  321. unified_bed_leveling ubl;
  322. #endif
  323. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  324. int8_t active_coordinate_system = -1; // machine space
  325. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
  326. #endif
  327. bool Running = true;
  328. uint8_t marlin_debug_flags = DEBUG_NONE;
  329. /**
  330. * Cartesian Current Position
  331. * Used to track the native machine position as moves are queued.
  332. * Used by 'buffer_line_to_current_position' to do a move after changing it.
  333. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  334. */
  335. float current_position[XYZE] = { 0.0 };
  336. /**
  337. * Cartesian Destination
  338. * The destination for a move, filled in by G-code movement commands,
  339. * and expected by functions like 'prepare_move_to_destination'.
  340. * Set with 'gcode_get_destination' or 'set_destination_from_current'.
  341. */
  342. float destination[XYZE] = { 0.0 };
  343. /**
  344. * axis_homed
  345. * Flags that each linear axis was homed.
  346. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  347. *
  348. * axis_known_position
  349. * Flags that the position is known in each linear axis. Set when homed.
  350. * Cleared whenever a stepper powers off, potentially losing its position.
  351. */
  352. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  353. /**
  354. * GCode line number handling. Hosts may opt to include line numbers when
  355. * sending commands to Marlin, and lines will be checked for sequentiality.
  356. * M110 N<int> sets the current line number.
  357. */
  358. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  359. /**
  360. * GCode Command Queue
  361. * A simple ring buffer of BUFSIZE command strings.
  362. *
  363. * Commands are copied into this buffer by the command injectors
  364. * (immediate, serial, sd card) and they are processed sequentially by
  365. * the main loop. The process_next_command function parses the next
  366. * command and hands off execution to individual handler functions.
  367. */
  368. uint8_t commands_in_queue = 0; // Count of commands in the queue
  369. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  370. cmd_queue_index_w = 0; // Ring buffer write position
  371. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  372. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  373. #else // This can be collapsed back to the way it was soon.
  374. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  375. #endif
  376. /**
  377. * Next Injected Command pointer. NULL if no commands are being injected.
  378. * Used by Marlin internally to ensure that commands initiated from within
  379. * are enqueued ahead of any pending serial or sd card commands.
  380. */
  381. static const char *injected_commands_P = NULL;
  382. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  383. TempUnit input_temp_units = TEMPUNIT_C;
  384. #endif
  385. /**
  386. * Feed rates are often configured with mm/m
  387. * but the planner and stepper like mm/s units.
  388. */
  389. static const float homing_feedrate_mm_s[] PROGMEM = {
  390. #if ENABLED(DELTA)
  391. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  392. #else
  393. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  394. #endif
  395. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  396. };
  397. FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
  398. float feedrate_mm_s = MMM_TO_MMS(1500.0);
  399. static float saved_feedrate_mm_s;
  400. int16_t feedrate_percentage = 100, saved_feedrate_percentage;
  401. // Initialized by settings.load()
  402. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  403. #if HAS_WORKSPACE_OFFSET
  404. #if HAS_POSITION_SHIFT
  405. // The distance that XYZ has been offset by G92. Reset by G28.
  406. float position_shift[XYZ] = { 0 };
  407. #endif
  408. #if HAS_HOME_OFFSET
  409. // This offset is added to the configured home position.
  410. // Set by M206, M428, or menu item. Saved to EEPROM.
  411. float home_offset[XYZ] = { 0 };
  412. #endif
  413. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  414. // The above two are combined to save on computes
  415. float workspace_offset[XYZ] = { 0 };
  416. #endif
  417. #endif
  418. // Software Endstops are based on the configured limits.
  419. float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
  420. soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
  421. #if HAS_SOFTWARE_ENDSTOPS
  422. bool soft_endstops_enabled = true;
  423. #if IS_KINEMATIC
  424. float soft_endstop_radius, soft_endstop_radius_2;
  425. #endif
  426. #endif
  427. #if FAN_COUNT > 0
  428. int16_t fanSpeeds[FAN_COUNT] = { 0 };
  429. #if ENABLED(EXTRA_FAN_SPEED)
  430. int16_t old_fanSpeeds[FAN_COUNT],
  431. new_fanSpeeds[FAN_COUNT];
  432. #endif
  433. #if ENABLED(PROBING_FANS_OFF)
  434. bool fans_paused = false;
  435. int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
  436. #endif
  437. #endif
  438. // The active extruder (tool). Set with T<extruder> command.
  439. uint8_t active_extruder = 0;
  440. // Relative Mode. Enable with G91, disable with G90.
  441. static bool relative_mode = false;
  442. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  443. volatile bool wait_for_heatup = true;
  444. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  445. #if HAS_RESUME_CONTINUE
  446. volatile bool wait_for_user = false;
  447. #endif
  448. const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
  449. // Number of characters read in the current line of serial input
  450. static int serial_count = 0;
  451. // Inactivity shutdown
  452. millis_t previous_cmd_ms = 0;
  453. static millis_t max_inactive_time = 0;
  454. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  455. // Print Job Timer
  456. #if ENABLED(PRINTCOUNTER)
  457. PrintCounter print_job_timer = PrintCounter();
  458. #else
  459. Stopwatch print_job_timer = Stopwatch();
  460. #endif
  461. // Buzzer - I2C on the LCD or a BEEPER_PIN
  462. #if ENABLED(LCD_USE_I2C_BUZZER)
  463. #define BUZZ(d,f) lcd_buzz(d, f)
  464. #elif PIN_EXISTS(BEEPER)
  465. Buzzer buzzer;
  466. #define BUZZ(d,f) buzzer.tone(d, f)
  467. #else
  468. #define BUZZ(d,f) NOOP
  469. #endif
  470. uint8_t target_extruder;
  471. #if HAS_BED_PROBE
  472. float zprobe_zoffset; // Initialized by settings.load()
  473. #endif
  474. #if HAS_ABL
  475. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  476. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  477. #elif defined(XY_PROBE_SPEED)
  478. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  479. #else
  480. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  481. #endif
  482. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  483. #if ENABLED(DELTA)
  484. #define ADJUST_DELTA(V) \
  485. if (planner.leveling_active) { \
  486. const float zadj = bilinear_z_offset(V); \
  487. delta[A_AXIS] += zadj; \
  488. delta[B_AXIS] += zadj; \
  489. delta[C_AXIS] += zadj; \
  490. }
  491. #else
  492. #define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); }
  493. #endif
  494. #elif IS_KINEMATIC
  495. #define ADJUST_DELTA(V) NOOP
  496. #endif
  497. #if ENABLED(X_DUAL_ENDSTOPS)
  498. float x_endstop_adj; // Initialized by settings.load()
  499. #endif
  500. #if ENABLED(Y_DUAL_ENDSTOPS)
  501. float y_endstop_adj; // Initialized by settings.load()
  502. #endif
  503. #if ENABLED(Z_DUAL_ENDSTOPS)
  504. float z_endstop_adj; // Initialized by settings.load()
  505. #endif
  506. // Extruder offsets
  507. #if HOTENDS > 1
  508. float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
  509. #endif
  510. #if HAS_Z_SERVO_ENDSTOP
  511. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  512. #endif
  513. #if ENABLED(BARICUDA)
  514. uint8_t baricuda_valve_pressure = 0,
  515. baricuda_e_to_p_pressure = 0;
  516. #endif
  517. #if ENABLED(FWRETRACT) // Initialized by settings.load()...
  518. bool autoretract_enabled, // M209 S - Autoretract switch
  519. retracted[EXTRUDERS] = { false }; // Which extruders are currently retracted
  520. float retract_length, // M207 S - G10 Retract length
  521. retract_feedrate_mm_s, // M207 F - G10 Retract feedrate
  522. retract_zlift, // M207 Z - G10 Retract hop size
  523. retract_recover_length, // M208 S - G11 Recover length
  524. retract_recover_feedrate_mm_s, // M208 F - G11 Recover feedrate
  525. swap_retract_length, // M207 W - G10 Swap Retract length
  526. swap_retract_recover_length, // M208 W - G11 Swap Recover length
  527. swap_retract_recover_feedrate_mm_s; // M208 R - G11 Swap Recover feedrate
  528. #if EXTRUDERS > 1
  529. bool retracted_swap[EXTRUDERS] = { false }; // Which extruders are swap-retracted
  530. #else
  531. constexpr bool retracted_swap[1] = { false };
  532. #endif
  533. #endif // FWRETRACT
  534. #if HAS_POWER_SWITCH
  535. bool powersupply_on =
  536. #if ENABLED(PS_DEFAULT_OFF)
  537. false
  538. #else
  539. true
  540. #endif
  541. ;
  542. #endif
  543. #if ENABLED(DELTA)
  544. float delta[ABC];
  545. // Initialized by settings.load()
  546. float delta_height,
  547. delta_endstop_adj[ABC] = { 0 },
  548. delta_radius,
  549. delta_tower_angle_trim[ABC],
  550. delta_tower[ABC][2],
  551. delta_diagonal_rod,
  552. delta_calibration_radius,
  553. delta_diagonal_rod_2_tower[ABC],
  554. delta_segments_per_second,
  555. delta_clip_start_height = Z_MAX_POS;
  556. float delta_safe_distance_from_top();
  557. #endif
  558. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  559. int bilinear_grid_spacing[2], bilinear_start[2];
  560. float bilinear_grid_factor[2],
  561. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  562. #endif
  563. #if IS_SCARA
  564. // Float constants for SCARA calculations
  565. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  566. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  567. L2_2 = sq(float(L2));
  568. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  569. delta[ABC];
  570. #endif
  571. float cartes[XYZ] = { 0 };
  572. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  573. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  574. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  575. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  576. uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting
  577. measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  578. int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  579. #endif
  580. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  581. static bool filament_ran_out = false;
  582. #endif
  583. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  584. AdvancedPauseMenuResponse advanced_pause_menu_response;
  585. #endif
  586. #if ENABLED(MIXING_EXTRUDER)
  587. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  588. #if MIXING_VIRTUAL_TOOLS > 1
  589. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  590. #endif
  591. #endif
  592. static bool send_ok[BUFSIZE];
  593. #if HAS_SERVOS
  594. Servo servo[NUM_SERVOS];
  595. #define MOVE_SERVO(I, P) servo[I].move(P)
  596. #if HAS_Z_SERVO_ENDSTOP
  597. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  598. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  599. #endif
  600. #endif
  601. #ifdef CHDK
  602. millis_t chdkHigh = 0;
  603. bool chdkActive = false;
  604. #endif
  605. #if ENABLED(PID_EXTRUSION_SCALING)
  606. int lpq_len = 20;
  607. #endif
  608. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  609. MarlinBusyState busy_state = NOT_BUSY;
  610. static millis_t next_busy_signal_ms = 0;
  611. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  612. #else
  613. #define host_keepalive() NOOP
  614. #endif
  615. #if ENABLED(I2C_POSITION_ENCODERS)
  616. I2CPositionEncodersMgr I2CPEM;
  617. uint8_t blockBufferIndexRef = 0;
  618. millis_t lastUpdateMillis;
  619. #endif
  620. #if ENABLED(CNC_WORKSPACE_PLANES)
  621. static WorkspacePlane workspace_plane = PLANE_XY;
  622. #endif
  623. FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  624. FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  625. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  626. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  627. static inline type array(const AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  628. typedef void __void_##CONFIG##__
  629. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  630. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  631. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  632. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  633. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  634. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  635. /**
  636. * ***************************************************************************
  637. * ******************************** FUNCTIONS ********************************
  638. * ***************************************************************************
  639. */
  640. void stop();
  641. void get_available_commands();
  642. void process_next_command();
  643. void process_parsed_command();
  644. void get_cartesian_from_steppers();
  645. void set_current_from_steppers_for_axis(const AxisEnum axis);
  646. #if ENABLED(ARC_SUPPORT)
  647. void plan_arc(const float (&cart)[XYZE], const float (&offset)[2], const bool clockwise);
  648. #endif
  649. #if ENABLED(BEZIER_CURVE_SUPPORT)
  650. void plan_cubic_move(const float (&offset)[4]);
  651. #endif
  652. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  653. void report_current_position();
  654. void report_current_position_detail();
  655. #if ENABLED(DEBUG_LEVELING_FEATURE)
  656. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  657. serialprintPGM(prefix);
  658. SERIAL_CHAR('(');
  659. SERIAL_ECHO(x);
  660. SERIAL_ECHOPAIR(", ", y);
  661. SERIAL_ECHOPAIR(", ", z);
  662. SERIAL_CHAR(')');
  663. if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
  664. }
  665. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  666. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  667. }
  668. #if HAS_ABL
  669. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  670. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  671. }
  672. #endif
  673. #define DEBUG_POS(SUFFIX,VAR) do { \
  674. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
  675. #endif
  676. /**
  677. * sync_plan_position
  678. *
  679. * Set the planner/stepper positions directly from current_position with
  680. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  681. */
  682. void sync_plan_position() {
  683. #if ENABLED(DEBUG_LEVELING_FEATURE)
  684. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  685. #endif
  686. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  687. }
  688. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  689. #if IS_KINEMATIC
  690. inline void sync_plan_position_kinematic() {
  691. #if ENABLED(DEBUG_LEVELING_FEATURE)
  692. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  693. #endif
  694. planner.set_position_mm_kinematic(current_position);
  695. }
  696. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  697. #else
  698. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  699. #endif
  700. #if ENABLED(SDSUPPORT)
  701. #include "SdFatUtil.h"
  702. int freeMemory() { return SdFatUtil::FreeRam(); }
  703. #else
  704. extern "C" {
  705. extern char __bss_end;
  706. extern char __heap_start;
  707. extern void* __brkval;
  708. int freeMemory() {
  709. int free_memory;
  710. if ((int)__brkval == 0)
  711. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  712. else
  713. free_memory = ((int)&free_memory) - ((int)__brkval);
  714. return free_memory;
  715. }
  716. }
  717. #endif // !SDSUPPORT
  718. #if ENABLED(DIGIPOT_I2C)
  719. extern void digipot_i2c_set_current(uint8_t channel, float current);
  720. extern void digipot_i2c_init();
  721. #endif
  722. /**
  723. * Inject the next "immediate" command, when possible, onto the front of the queue.
  724. * Return true if any immediate commands remain to inject.
  725. */
  726. static bool drain_injected_commands_P() {
  727. if (injected_commands_P != NULL) {
  728. size_t i = 0;
  729. char c, cmd[30];
  730. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  731. cmd[sizeof(cmd) - 1] = '\0';
  732. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  733. cmd[i] = '\0';
  734. if (enqueue_and_echo_command(cmd)) // success?
  735. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  736. }
  737. return (injected_commands_P != NULL); // return whether any more remain
  738. }
  739. /**
  740. * Record one or many commands to run from program memory.
  741. * Aborts the current queue, if any.
  742. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  743. */
  744. void enqueue_and_echo_commands_P(const char * const pgcode) {
  745. injected_commands_P = pgcode;
  746. drain_injected_commands_P(); // first command executed asap (when possible)
  747. }
  748. /**
  749. * Clear the Marlin command queue
  750. */
  751. void clear_command_queue() {
  752. cmd_queue_index_r = cmd_queue_index_w;
  753. commands_in_queue = 0;
  754. }
  755. /**
  756. * Once a new command is in the ring buffer, call this to commit it
  757. */
  758. inline void _commit_command(bool say_ok) {
  759. send_ok[cmd_queue_index_w] = say_ok;
  760. if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
  761. commands_in_queue++;
  762. }
  763. /**
  764. * Copy a command from RAM into the main command buffer.
  765. * Return true if the command was successfully added.
  766. * Return false for a full buffer, or if the 'command' is a comment.
  767. */
  768. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  769. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  770. strcpy(command_queue[cmd_queue_index_w], cmd);
  771. _commit_command(say_ok);
  772. return true;
  773. }
  774. /**
  775. * Enqueue with Serial Echo
  776. */
  777. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  778. if (_enqueuecommand(cmd, say_ok)) {
  779. SERIAL_ECHO_START();
  780. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  781. SERIAL_CHAR('"');
  782. SERIAL_EOL();
  783. return true;
  784. }
  785. return false;
  786. }
  787. void setup_killpin() {
  788. #if HAS_KILL
  789. SET_INPUT_PULLUP(KILL_PIN);
  790. #endif
  791. }
  792. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  793. void setup_filrunoutpin() {
  794. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  795. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  796. #else
  797. SET_INPUT(FIL_RUNOUT_PIN);
  798. #endif
  799. }
  800. #endif
  801. void setup_powerhold() {
  802. #if HAS_SUICIDE
  803. OUT_WRITE(SUICIDE_PIN, HIGH);
  804. #endif
  805. #if HAS_POWER_SWITCH
  806. #if ENABLED(PS_DEFAULT_OFF)
  807. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  808. #else
  809. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  810. #endif
  811. #endif
  812. }
  813. void suicide() {
  814. #if HAS_SUICIDE
  815. OUT_WRITE(SUICIDE_PIN, LOW);
  816. #endif
  817. }
  818. void servo_init() {
  819. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  820. servo[0].attach(SERVO0_PIN);
  821. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  822. #endif
  823. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  824. servo[1].attach(SERVO1_PIN);
  825. servo[1].detach();
  826. #endif
  827. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  828. servo[2].attach(SERVO2_PIN);
  829. servo[2].detach();
  830. #endif
  831. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  832. servo[3].attach(SERVO3_PIN);
  833. servo[3].detach();
  834. #endif
  835. #if HAS_Z_SERVO_ENDSTOP
  836. /**
  837. * Set position of Z Servo Endstop
  838. *
  839. * The servo might be deployed and positioned too low to stow
  840. * when starting up the machine or rebooting the board.
  841. * There's no way to know where the nozzle is positioned until
  842. * homing has been done - no homing with z-probe without init!
  843. *
  844. */
  845. STOW_Z_SERVO();
  846. #endif
  847. }
  848. /**
  849. * Stepper Reset (RigidBoard, et.al.)
  850. */
  851. #if HAS_STEPPER_RESET
  852. void disableStepperDrivers() {
  853. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  854. }
  855. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  856. #endif
  857. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  858. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  859. i2c.receive(bytes);
  860. }
  861. void i2c_on_request() { // just send dummy data for now
  862. i2c.reply("Hello World!\n");
  863. }
  864. #endif
  865. void gcode_line_error(const char* err, bool doFlush = true) {
  866. SERIAL_ERROR_START();
  867. serialprintPGM(err);
  868. SERIAL_ERRORLN(gcode_LastN);
  869. //Serial.println(gcode_N);
  870. if (doFlush) FlushSerialRequestResend();
  871. serial_count = 0;
  872. }
  873. /**
  874. * Get all commands waiting on the serial port and queue them.
  875. * Exit when the buffer is full or when no more characters are
  876. * left on the serial port.
  877. */
  878. inline void get_serial_commands() {
  879. static char serial_line_buffer[MAX_CMD_SIZE];
  880. static bool serial_comment_mode = false;
  881. // If the command buffer is empty for too long,
  882. // send "wait" to indicate Marlin is still waiting.
  883. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  884. static millis_t last_command_time = 0;
  885. const millis_t ms = millis();
  886. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  887. SERIAL_ECHOLNPGM(MSG_WAIT);
  888. last_command_time = ms;
  889. }
  890. #endif
  891. /**
  892. * Loop while serial characters are incoming and the queue is not full
  893. */
  894. int c;
  895. while (commands_in_queue < BUFSIZE && (c = MYSERIAL.read()) >= 0) {
  896. char serial_char = c;
  897. /**
  898. * If the character ends the line
  899. */
  900. if (serial_char == '\n' || serial_char == '\r') {
  901. serial_comment_mode = false; // end of line == end of comment
  902. if (!serial_count) continue; // Skip empty lines
  903. serial_line_buffer[serial_count] = 0; // Terminate string
  904. serial_count = 0; // Reset buffer
  905. char* command = serial_line_buffer;
  906. while (*command == ' ') command++; // Skip leading spaces
  907. char *npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  908. if (npos) {
  909. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  910. if (M110) {
  911. char* n2pos = strchr(command + 4, 'N');
  912. if (n2pos) npos = n2pos;
  913. }
  914. gcode_N = strtol(npos + 1, NULL, 10);
  915. if (gcode_N != gcode_LastN + 1 && !M110) {
  916. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  917. return;
  918. }
  919. char *apos = strrchr(command, '*');
  920. if (apos) {
  921. uint8_t checksum = 0, count = uint8_t(apos - command);
  922. while (count) checksum ^= command[--count];
  923. if (strtol(apos + 1, NULL, 10) != checksum) {
  924. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  925. return;
  926. }
  927. }
  928. else {
  929. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  930. return;
  931. }
  932. gcode_LastN = gcode_N;
  933. }
  934. // Movement commands alert when stopped
  935. if (IsStopped()) {
  936. char* gpos = strchr(command, 'G');
  937. if (gpos) {
  938. const int codenum = strtol(gpos + 1, NULL, 10);
  939. switch (codenum) {
  940. case 0:
  941. case 1:
  942. case 2:
  943. case 3:
  944. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  945. LCD_MESSAGEPGM(MSG_STOPPED);
  946. break;
  947. }
  948. }
  949. }
  950. #if DISABLED(EMERGENCY_PARSER)
  951. // If command was e-stop process now
  952. if (strcmp(command, "M108") == 0) {
  953. wait_for_heatup = false;
  954. #if ENABLED(ULTIPANEL)
  955. wait_for_user = false;
  956. #endif
  957. }
  958. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  959. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  960. #endif
  961. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  962. last_command_time = ms;
  963. #endif
  964. // Add the command to the queue
  965. _enqueuecommand(serial_line_buffer, true);
  966. }
  967. else if (serial_count >= MAX_CMD_SIZE - 1) {
  968. // Keep fetching, but ignore normal characters beyond the max length
  969. // The command will be injected when EOL is reached
  970. }
  971. else if (serial_char == '\\') { // Handle escapes
  972. if ((c = MYSERIAL.read()) >= 0) {
  973. // if we have one more character, copy it over
  974. serial_char = c;
  975. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  976. }
  977. // otherwise do nothing
  978. }
  979. else { // it's not a newline, carriage return or escape char
  980. if (serial_char == ';') serial_comment_mode = true;
  981. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  982. }
  983. } // queue has space, serial has data
  984. }
  985. #if ENABLED(SDSUPPORT)
  986. /**
  987. * Get commands from the SD Card until the command buffer is full
  988. * or until the end of the file is reached. The special character '#'
  989. * can also interrupt buffering.
  990. */
  991. inline void get_sdcard_commands() {
  992. static bool stop_buffering = false,
  993. sd_comment_mode = false;
  994. if (!card.sdprinting) return;
  995. /**
  996. * '#' stops reading from SD to the buffer prematurely, so procedural
  997. * macro calls are possible. If it occurs, stop_buffering is triggered
  998. * and the buffer is run dry; this character _can_ occur in serial com
  999. * due to checksums, however, no checksums are used in SD printing.
  1000. */
  1001. if (commands_in_queue == 0) stop_buffering = false;
  1002. uint16_t sd_count = 0;
  1003. bool card_eof = card.eof();
  1004. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1005. const int16_t n = card.get();
  1006. char sd_char = (char)n;
  1007. card_eof = card.eof();
  1008. if (card_eof || n == -1
  1009. || sd_char == '\n' || sd_char == '\r'
  1010. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1011. ) {
  1012. if (card_eof) {
  1013. card.printingHasFinished();
  1014. if (card.sdprinting)
  1015. sd_count = 0; // If a sub-file was printing, continue from call point
  1016. else {
  1017. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1018. #if ENABLED(PRINTER_EVENT_LEDS)
  1019. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1020. leds.set_green();
  1021. #if HAS_RESUME_CONTINUE
  1022. enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
  1023. #else
  1024. safe_delay(1000);
  1025. #endif
  1026. leds.set_off();
  1027. #endif
  1028. card.checkautostart(true);
  1029. }
  1030. }
  1031. else if (n == -1) {
  1032. SERIAL_ERROR_START();
  1033. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1034. }
  1035. if (sd_char == '#') stop_buffering = true;
  1036. sd_comment_mode = false; // for new command
  1037. if (!sd_count) continue; // skip empty lines (and comment lines)
  1038. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1039. sd_count = 0; // clear sd line buffer
  1040. _commit_command(false);
  1041. }
  1042. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1043. /**
  1044. * Keep fetching, but ignore normal characters beyond the max length
  1045. * The command will be injected when EOL is reached
  1046. */
  1047. }
  1048. else {
  1049. if (sd_char == ';') sd_comment_mode = true;
  1050. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1051. }
  1052. }
  1053. }
  1054. #endif // SDSUPPORT
  1055. /**
  1056. * Add to the circular command queue the next command from:
  1057. * - The command-injection queue (injected_commands_P)
  1058. * - The active serial input (usually USB)
  1059. * - The SD card file being actively printed
  1060. */
  1061. void get_available_commands() {
  1062. // if any immediate commands remain, don't get other commands yet
  1063. if (drain_injected_commands_P()) return;
  1064. get_serial_commands();
  1065. #if ENABLED(SDSUPPORT)
  1066. get_sdcard_commands();
  1067. #endif
  1068. }
  1069. /**
  1070. * Set target_extruder from the T parameter or the active_extruder
  1071. *
  1072. * Returns TRUE if the target is invalid
  1073. */
  1074. bool get_target_extruder_from_command(const uint16_t code) {
  1075. if (parser.seenval('T')) {
  1076. const int8_t e = parser.value_byte();
  1077. if (e >= EXTRUDERS) {
  1078. SERIAL_ECHO_START();
  1079. SERIAL_CHAR('M');
  1080. SERIAL_ECHO(code);
  1081. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
  1082. return true;
  1083. }
  1084. target_extruder = e;
  1085. }
  1086. else
  1087. target_extruder = active_extruder;
  1088. return false;
  1089. }
  1090. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1091. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1092. #endif
  1093. #if ENABLED(DUAL_X_CARRIAGE)
  1094. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1095. static float x_home_pos(const int extruder) {
  1096. if (extruder == 0)
  1097. return base_home_pos(X_AXIS);
  1098. else
  1099. /**
  1100. * In dual carriage mode the extruder offset provides an override of the
  1101. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1102. * This allows soft recalibration of the second extruder home position
  1103. * without firmware reflash (through the M218 command).
  1104. */
  1105. return hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1106. }
  1107. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1108. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1109. static bool active_extruder_parked = false; // used in mode 1 & 2
  1110. static float raised_parked_position[XYZE]; // used in mode 1
  1111. static millis_t delayed_move_time = 0; // used in mode 1
  1112. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1113. static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
  1114. #endif // DUAL_X_CARRIAGE
  1115. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1116. /**
  1117. * Software endstops can be used to monitor the open end of
  1118. * an axis that has a hardware endstop on the other end. Or
  1119. * they can prevent axes from moving past endstops and grinding.
  1120. *
  1121. * To keep doing their job as the coordinate system changes,
  1122. * the software endstop positions must be refreshed to remain
  1123. * at the same positions relative to the machine.
  1124. */
  1125. void update_software_endstops(const AxisEnum axis) {
  1126. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1127. workspace_offset[axis] = home_offset[axis] + position_shift[axis];
  1128. #endif
  1129. #if ENABLED(DUAL_X_CARRIAGE)
  1130. if (axis == X_AXIS) {
  1131. // In Dual X mode hotend_offset[X] is T1's home position
  1132. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1133. if (active_extruder != 0) {
  1134. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1135. soft_endstop_min[X_AXIS] = X2_MIN_POS;
  1136. soft_endstop_max[X_AXIS] = dual_max_x;
  1137. }
  1138. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1139. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1140. // but not so far to the right that T1 would move past the end
  1141. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS);
  1142. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset);
  1143. }
  1144. else {
  1145. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1146. soft_endstop_min[axis] = base_min_pos(axis);
  1147. soft_endstop_max[axis] = base_max_pos(axis);
  1148. }
  1149. }
  1150. #elif ENABLED(DELTA)
  1151. soft_endstop_min[axis] = base_min_pos(axis);
  1152. soft_endstop_max[axis] = axis == Z_AXIS ? delta_height : base_max_pos(axis);
  1153. #else
  1154. soft_endstop_min[axis] = base_min_pos(axis);
  1155. soft_endstop_max[axis] = base_max_pos(axis);
  1156. #endif
  1157. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1158. if (DEBUGGING(LEVELING)) {
  1159. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1160. #if HAS_HOME_OFFSET
  1161. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1162. #endif
  1163. #if HAS_POSITION_SHIFT
  1164. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1165. #endif
  1166. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1167. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1168. }
  1169. #endif
  1170. #if ENABLED(DELTA)
  1171. switch(axis) {
  1172. case X_AXIS:
  1173. case Y_AXIS:
  1174. // Get a minimum radius for clamping
  1175. soft_endstop_radius = MIN3(FABS(max(soft_endstop_min[X_AXIS], soft_endstop_min[Y_AXIS])), soft_endstop_max[X_AXIS], soft_endstop_max[Y_AXIS]);
  1176. soft_endstop_radius_2 = sq(soft_endstop_radius);
  1177. break;
  1178. case Z_AXIS:
  1179. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1180. default: break;
  1181. }
  1182. #endif
  1183. }
  1184. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1185. #if HAS_M206_COMMAND
  1186. /**
  1187. * Change the home offset for an axis, update the current
  1188. * position and the software endstops to retain the same
  1189. * relative distance to the new home.
  1190. *
  1191. * Since this changes the current_position, code should
  1192. * call sync_plan_position soon after this.
  1193. */
  1194. static void set_home_offset(const AxisEnum axis, const float v) {
  1195. home_offset[axis] = v;
  1196. update_software_endstops(axis);
  1197. }
  1198. #endif // HAS_M206_COMMAND
  1199. /**
  1200. * Set an axis' current position to its home position (after homing).
  1201. *
  1202. * For Core and Cartesian robots this applies one-to-one when an
  1203. * individual axis has been homed.
  1204. *
  1205. * DELTA should wait until all homing is done before setting the XYZ
  1206. * current_position to home, because homing is a single operation.
  1207. * In the case where the axis positions are already known and previously
  1208. * homed, DELTA could home to X or Y individually by moving either one
  1209. * to the center. However, homing Z always homes XY and Z.
  1210. *
  1211. * SCARA should wait until all XY homing is done before setting the XY
  1212. * current_position to home, because neither X nor Y is at home until
  1213. * both are at home. Z can however be homed individually.
  1214. *
  1215. * Callers must sync the planner position after calling this!
  1216. */
  1217. static void set_axis_is_at_home(const AxisEnum axis) {
  1218. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1219. if (DEBUGGING(LEVELING)) {
  1220. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1221. SERIAL_CHAR(')');
  1222. SERIAL_EOL();
  1223. }
  1224. #endif
  1225. axis_known_position[axis] = axis_homed[axis] = true;
  1226. #if HAS_POSITION_SHIFT
  1227. position_shift[axis] = 0;
  1228. update_software_endstops(axis);
  1229. #endif
  1230. #if ENABLED(DUAL_X_CARRIAGE)
  1231. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1232. current_position[X_AXIS] = x_home_pos(active_extruder);
  1233. return;
  1234. }
  1235. #endif
  1236. #if ENABLED(MORGAN_SCARA)
  1237. /**
  1238. * Morgan SCARA homes XY at the same time
  1239. */
  1240. if (axis == X_AXIS || axis == Y_AXIS) {
  1241. float homeposition[XYZ] = {
  1242. base_home_pos(X_AXIS),
  1243. base_home_pos(Y_AXIS),
  1244. base_home_pos(Z_AXIS)
  1245. };
  1246. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1247. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1248. /**
  1249. * Get Home position SCARA arm angles using inverse kinematics,
  1250. * and calculate homing offset using forward kinematics
  1251. */
  1252. inverse_kinematics(homeposition);
  1253. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1254. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1255. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1256. current_position[axis] = cartes[axis];
  1257. /**
  1258. * SCARA home positions are based on configuration since the actual
  1259. * limits are determined by the inverse kinematic transform.
  1260. */
  1261. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1262. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1263. }
  1264. else
  1265. #elif ENABLED(DELTA)
  1266. if (axis == Z_AXIS)
  1267. current_position[axis] = delta_height;
  1268. else
  1269. #endif
  1270. {
  1271. current_position[axis] = base_home_pos(axis);
  1272. }
  1273. /**
  1274. * Z Probe Z Homing? Account for the probe's Z offset.
  1275. */
  1276. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1277. if (axis == Z_AXIS) {
  1278. #if HOMING_Z_WITH_PROBE
  1279. current_position[Z_AXIS] -= zprobe_zoffset;
  1280. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1281. if (DEBUGGING(LEVELING)) {
  1282. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1283. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1284. }
  1285. #endif
  1286. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1287. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1288. #endif
  1289. }
  1290. #endif
  1291. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1292. if (DEBUGGING(LEVELING)) {
  1293. #if HAS_HOME_OFFSET
  1294. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1295. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1296. #endif
  1297. DEBUG_POS("", current_position);
  1298. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1299. SERIAL_CHAR(')');
  1300. SERIAL_EOL();
  1301. }
  1302. #endif
  1303. #if ENABLED(I2C_POSITION_ENCODERS)
  1304. I2CPEM.homed(axis);
  1305. #endif
  1306. }
  1307. /**
  1308. * Some planner shorthand inline functions
  1309. */
  1310. inline float get_homing_bump_feedrate(const AxisEnum axis) {
  1311. static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
  1312. uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
  1313. if (hbd < 1) {
  1314. hbd = 10;
  1315. SERIAL_ECHO_START();
  1316. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1317. }
  1318. return homing_feedrate(axis) / hbd;
  1319. }
  1320. /**
  1321. * Move the planner to the current position from wherever it last moved
  1322. * (or from wherever it has been told it is located).
  1323. */
  1324. inline void buffer_line_to_current_position() {
  1325. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1326. }
  1327. /**
  1328. * Move the planner to the position stored in the destination array, which is
  1329. * used by G0/G1/G2/G3/G5 and many other functions to set a destination.
  1330. */
  1331. inline void buffer_line_to_destination(const float fr_mm_s) {
  1332. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1333. }
  1334. #if IS_KINEMATIC
  1335. /**
  1336. * Calculate delta, start a line, and set current_position to destination
  1337. */
  1338. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1339. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1340. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1341. #endif
  1342. refresh_cmd_timeout();
  1343. #if UBL_SEGMENTED
  1344. // ubl segmented line will do z-only moves in single segment
  1345. ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
  1346. #else
  1347. if ( current_position[X_AXIS] == destination[X_AXIS]
  1348. && current_position[Y_AXIS] == destination[Y_AXIS]
  1349. && current_position[Z_AXIS] == destination[Z_AXIS]
  1350. && current_position[E_AXIS] == destination[E_AXIS]
  1351. ) return;
  1352. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1353. #endif
  1354. set_current_from_destination();
  1355. }
  1356. #endif // IS_KINEMATIC
  1357. /**
  1358. * Plan a move to (X, Y, Z) and set the current_position
  1359. * The final current_position may not be the one that was requested
  1360. */
  1361. void do_blocking_move_to(const float &rx, const float &ry, const float &rz, const float &fr_mm_s/*=0.0*/) {
  1362. const float old_feedrate_mm_s = feedrate_mm_s;
  1363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1364. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, LOGICAL_X_POSITION(rx), LOGICAL_Y_POSITION(ry), LOGICAL_Z_POSITION(rz));
  1365. #endif
  1366. const float z_feedrate = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1367. #if ENABLED(DELTA)
  1368. if (!position_is_reachable(rx, ry)) return;
  1369. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1370. set_destination_from_current(); // sync destination at the start
  1371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1372. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_from_current", destination);
  1373. #endif
  1374. // when in the danger zone
  1375. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1376. if (rz > delta_clip_start_height) { // staying in the danger zone
  1377. destination[X_AXIS] = rx; // move directly (uninterpolated)
  1378. destination[Y_AXIS] = ry;
  1379. destination[Z_AXIS] = rz;
  1380. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1382. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1383. #endif
  1384. return;
  1385. }
  1386. destination[Z_AXIS] = delta_clip_start_height;
  1387. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1388. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1389. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1390. #endif
  1391. }
  1392. if (rz > current_position[Z_AXIS]) { // raising?
  1393. destination[Z_AXIS] = rz;
  1394. prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination
  1395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1396. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1397. #endif
  1398. }
  1399. destination[X_AXIS] = rx;
  1400. destination[Y_AXIS] = ry;
  1401. prepare_move_to_destination(); // set_current_from_destination
  1402. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1403. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1404. #endif
  1405. if (rz < current_position[Z_AXIS]) { // lowering?
  1406. destination[Z_AXIS] = rz;
  1407. prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination
  1408. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1409. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1410. #endif
  1411. }
  1412. #elif IS_SCARA
  1413. if (!position_is_reachable(rx, ry)) return;
  1414. set_destination_from_current();
  1415. // If Z needs to raise, do it before moving XY
  1416. if (destination[Z_AXIS] < rz) {
  1417. destination[Z_AXIS] = rz;
  1418. prepare_uninterpolated_move_to_destination(z_feedrate);
  1419. }
  1420. destination[X_AXIS] = rx;
  1421. destination[Y_AXIS] = ry;
  1422. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1423. // If Z needs to lower, do it after moving XY
  1424. if (destination[Z_AXIS] > rz) {
  1425. destination[Z_AXIS] = rz;
  1426. prepare_uninterpolated_move_to_destination(z_feedrate);
  1427. }
  1428. #else
  1429. // If Z needs to raise, do it before moving XY
  1430. if (current_position[Z_AXIS] < rz) {
  1431. feedrate_mm_s = z_feedrate;
  1432. current_position[Z_AXIS] = rz;
  1433. buffer_line_to_current_position();
  1434. }
  1435. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1436. current_position[X_AXIS] = rx;
  1437. current_position[Y_AXIS] = ry;
  1438. buffer_line_to_current_position();
  1439. // If Z needs to lower, do it after moving XY
  1440. if (current_position[Z_AXIS] > rz) {
  1441. feedrate_mm_s = z_feedrate;
  1442. current_position[Z_AXIS] = rz;
  1443. buffer_line_to_current_position();
  1444. }
  1445. #endif
  1446. stepper.synchronize();
  1447. feedrate_mm_s = old_feedrate_mm_s;
  1448. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1449. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1450. #endif
  1451. }
  1452. void do_blocking_move_to_x(const float &rx, const float &fr_mm_s/*=0.0*/) {
  1453. do_blocking_move_to(rx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1454. }
  1455. void do_blocking_move_to_z(const float &rz, const float &fr_mm_s/*=0.0*/) {
  1456. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], rz, fr_mm_s);
  1457. }
  1458. void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s/*=0.0*/) {
  1459. do_blocking_move_to(rx, ry, current_position[Z_AXIS], fr_mm_s);
  1460. }
  1461. //
  1462. // Prepare to do endstop or probe moves
  1463. // with custom feedrates.
  1464. //
  1465. // - Save current feedrates
  1466. // - Reset the rate multiplier
  1467. // - Reset the command timeout
  1468. // - Enable the endstops (for endstop moves)
  1469. //
  1470. static void setup_for_endstop_or_probe_move() {
  1471. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1472. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1473. #endif
  1474. saved_feedrate_mm_s = feedrate_mm_s;
  1475. saved_feedrate_percentage = feedrate_percentage;
  1476. feedrate_percentage = 100;
  1477. refresh_cmd_timeout();
  1478. }
  1479. static void clean_up_after_endstop_or_probe_move() {
  1480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1481. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1482. #endif
  1483. feedrate_mm_s = saved_feedrate_mm_s;
  1484. feedrate_percentage = saved_feedrate_percentage;
  1485. refresh_cmd_timeout();
  1486. }
  1487. #if HAS_BED_PROBE
  1488. /**
  1489. * Raise Z to a minimum height to make room for a probe to move
  1490. */
  1491. inline void do_probe_raise(const float z_raise) {
  1492. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1493. if (DEBUGGING(LEVELING)) {
  1494. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1495. SERIAL_CHAR(')');
  1496. SERIAL_EOL();
  1497. }
  1498. #endif
  1499. float z_dest = z_raise;
  1500. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1501. if (z_dest > current_position[Z_AXIS])
  1502. do_blocking_move_to_z(z_dest);
  1503. }
  1504. #endif // HAS_BED_PROBE
  1505. #if HAS_AXIS_UNHOMED_ERR
  1506. bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
  1507. #if ENABLED(HOME_AFTER_DEACTIVATE)
  1508. const bool xx = x && !axis_known_position[X_AXIS],
  1509. yy = y && !axis_known_position[Y_AXIS],
  1510. zz = z && !axis_known_position[Z_AXIS];
  1511. #else
  1512. const bool xx = x && !axis_homed[X_AXIS],
  1513. yy = y && !axis_homed[Y_AXIS],
  1514. zz = z && !axis_homed[Z_AXIS];
  1515. #endif
  1516. if (xx || yy || zz) {
  1517. SERIAL_ECHO_START();
  1518. SERIAL_ECHOPGM(MSG_HOME " ");
  1519. if (xx) SERIAL_ECHOPGM(MSG_X);
  1520. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1521. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1522. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1523. #if ENABLED(ULTRA_LCD)
  1524. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1525. #endif
  1526. return true;
  1527. }
  1528. return false;
  1529. }
  1530. #endif // HAS_AXIS_UNHOMED_ERR
  1531. #if ENABLED(Z_PROBE_SLED)
  1532. #ifndef SLED_DOCKING_OFFSET
  1533. #define SLED_DOCKING_OFFSET 0
  1534. #endif
  1535. /**
  1536. * Method to dock/undock a sled designed by Charles Bell.
  1537. *
  1538. * stow[in] If false, move to MAX_X and engage the solenoid
  1539. * If true, move to MAX_X and release the solenoid
  1540. */
  1541. static void dock_sled(bool stow) {
  1542. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1543. if (DEBUGGING(LEVELING)) {
  1544. SERIAL_ECHOPAIR("dock_sled(", stow);
  1545. SERIAL_CHAR(')');
  1546. SERIAL_EOL();
  1547. }
  1548. #endif
  1549. // Dock sled a bit closer to ensure proper capturing
  1550. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1551. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1552. WRITE(SOL1_PIN, !stow); // switch solenoid
  1553. #endif
  1554. }
  1555. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1556. FORCE_INLINE void do_blocking_move_to(const float (&raw)[XYZ], const float &fr_mm_s) {
  1557. do_blocking_move_to(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], fr_mm_s);
  1558. }
  1559. void run_deploy_moves_script() {
  1560. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1561. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1562. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1563. #endif
  1564. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1565. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1566. #endif
  1567. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1568. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1569. #endif
  1570. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1571. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1572. #endif
  1573. const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
  1574. do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1575. #endif
  1576. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1577. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1578. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1579. #endif
  1580. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1581. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1582. #endif
  1583. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1584. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1585. #endif
  1586. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1587. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1588. #endif
  1589. const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
  1590. do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1591. #endif
  1592. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1593. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1594. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1595. #endif
  1596. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1597. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1598. #endif
  1599. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1600. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1601. #endif
  1602. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1603. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1604. #endif
  1605. const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
  1606. do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1607. #endif
  1608. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1609. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1610. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1611. #endif
  1612. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1613. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1614. #endif
  1615. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1616. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1617. #endif
  1618. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1619. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1620. #endif
  1621. const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
  1622. do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1623. #endif
  1624. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1625. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1626. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1627. #endif
  1628. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1629. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1630. #endif
  1631. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1632. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1633. #endif
  1634. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1635. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1636. #endif
  1637. const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
  1638. do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1639. #endif
  1640. }
  1641. void run_stow_moves_script() {
  1642. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1643. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1644. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1645. #endif
  1646. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1647. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1648. #endif
  1649. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1650. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1651. #endif
  1652. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1653. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1654. #endif
  1655. const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
  1656. do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1657. #endif
  1658. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1659. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1660. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1661. #endif
  1662. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1663. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1664. #endif
  1665. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1666. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1667. #endif
  1668. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1669. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1670. #endif
  1671. const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
  1672. do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1673. #endif
  1674. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1675. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1676. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1677. #endif
  1678. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1679. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1680. #endif
  1681. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1682. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1683. #endif
  1684. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1685. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1686. #endif
  1687. const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
  1688. do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1689. #endif
  1690. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1691. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1692. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1693. #endif
  1694. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1695. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1696. #endif
  1697. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1698. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1699. #endif
  1700. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1701. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1702. #endif
  1703. const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
  1704. do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1705. #endif
  1706. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1707. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1708. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1709. #endif
  1710. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1711. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1712. #endif
  1713. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1714. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1715. #endif
  1716. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1717. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1718. #endif
  1719. const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
  1720. do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1721. #endif
  1722. }
  1723. #endif // Z_PROBE_ALLEN_KEY
  1724. #if ENABLED(PROBING_FANS_OFF)
  1725. void fans_pause(const bool p) {
  1726. if (p != fans_paused) {
  1727. fans_paused = p;
  1728. if (p)
  1729. for (uint8_t x = 0; x < FAN_COUNT; x++) {
  1730. paused_fanSpeeds[x] = fanSpeeds[x];
  1731. fanSpeeds[x] = 0;
  1732. }
  1733. else
  1734. for (uint8_t x = 0; x < FAN_COUNT; x++)
  1735. fanSpeeds[x] = paused_fanSpeeds[x];
  1736. }
  1737. }
  1738. #endif // PROBING_FANS_OFF
  1739. #if HAS_BED_PROBE
  1740. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1741. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1742. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1743. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1744. #else
  1745. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1746. #endif
  1747. #endif
  1748. #if QUIET_PROBING
  1749. void probing_pause(const bool p) {
  1750. #if ENABLED(PROBING_HEATERS_OFF)
  1751. thermalManager.pause(p);
  1752. #endif
  1753. #if ENABLED(PROBING_FANS_OFF)
  1754. fans_pause(p);
  1755. #endif
  1756. if (p) safe_delay(
  1757. #if DELAY_BEFORE_PROBING > 25
  1758. DELAY_BEFORE_PROBING
  1759. #else
  1760. 25
  1761. #endif
  1762. );
  1763. }
  1764. #endif // QUIET_PROBING
  1765. #if ENABLED(BLTOUCH)
  1766. void bltouch_command(int angle) {
  1767. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, angle); // Give the BL-Touch the command and wait
  1768. safe_delay(BLTOUCH_DELAY);
  1769. }
  1770. bool set_bltouch_deployed(const bool deploy) {
  1771. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1772. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1773. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1774. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1775. safe_delay(1500); // Wait for internal self-test to complete.
  1776. // (Measured completion time was 0.65 seconds
  1777. // after reset, deploy, and stow sequence)
  1778. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1779. SERIAL_ERROR_START();
  1780. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1781. stop(); // punt!
  1782. return true;
  1783. }
  1784. }
  1785. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1786. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1787. if (DEBUGGING(LEVELING)) {
  1788. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1789. SERIAL_CHAR(')');
  1790. SERIAL_EOL();
  1791. }
  1792. #endif
  1793. return false;
  1794. }
  1795. #endif // BLTOUCH
  1796. // returns false for ok and true for failure
  1797. bool set_probe_deployed(bool deploy) {
  1798. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1799. if (DEBUGGING(LEVELING)) {
  1800. DEBUG_POS("set_probe_deployed", current_position);
  1801. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1802. }
  1803. #endif
  1804. if (endstops.z_probe_enabled == deploy) return false;
  1805. // Make room for probe
  1806. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1807. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  1808. #if ENABLED(Z_PROBE_SLED)
  1809. #define _AUE_ARGS true, false, false
  1810. #else
  1811. #define _AUE_ARGS
  1812. #endif
  1813. if (axis_unhomed_error(_AUE_ARGS)) {
  1814. SERIAL_ERROR_START();
  1815. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1816. stop();
  1817. return true;
  1818. }
  1819. #endif
  1820. const float oldXpos = current_position[X_AXIS],
  1821. oldYpos = current_position[Y_AXIS];
  1822. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1823. // If endstop is already false, the Z probe is deployed
  1824. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1825. // Would a goto be less ugly?
  1826. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1827. // for a triggered when stowed manual probe.
  1828. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1829. // otherwise an Allen-Key probe can't be stowed.
  1830. #endif
  1831. #if ENABLED(SOLENOID_PROBE)
  1832. #if HAS_SOLENOID_1
  1833. WRITE(SOL1_PIN, deploy);
  1834. #endif
  1835. #elif ENABLED(Z_PROBE_SLED)
  1836. dock_sled(!deploy);
  1837. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1838. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[deploy ? 0 : 1]);
  1839. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1840. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1841. #endif
  1842. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1843. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1844. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1845. if (IsRunning()) {
  1846. SERIAL_ERROR_START();
  1847. SERIAL_ERRORLNPGM("Z-Probe failed");
  1848. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1849. }
  1850. stop();
  1851. return true;
  1852. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1853. #endif
  1854. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1855. endstops.enable_z_probe(deploy);
  1856. return false;
  1857. }
  1858. /**
  1859. * @brief Used by run_z_probe to do a single Z probe move.
  1860. *
  1861. * @param z Z destination
  1862. * @param fr_mm_s Feedrate in mm/s
  1863. * @return true to indicate an error
  1864. */
  1865. static bool do_probe_move(const float z, const float fr_mm_m) {
  1866. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1867. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1868. #endif
  1869. // Deploy BLTouch at the start of any probe
  1870. #if ENABLED(BLTOUCH)
  1871. if (set_bltouch_deployed(true)) return true;
  1872. #endif
  1873. #if QUIET_PROBING
  1874. probing_pause(true);
  1875. #endif
  1876. // Move down until probe triggered
  1877. do_blocking_move_to_z(z, MMM_TO_MMS(fr_mm_m));
  1878. // Check to see if the probe was triggered
  1879. const bool probe_triggered = TEST(Endstops::endstop_hit_bits,
  1880. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  1881. Z_MIN
  1882. #else
  1883. Z_MIN_PROBE
  1884. #endif
  1885. );
  1886. #if QUIET_PROBING
  1887. probing_pause(false);
  1888. #endif
  1889. // Retract BLTouch immediately after a probe if it was triggered
  1890. #if ENABLED(BLTOUCH)
  1891. if (probe_triggered && set_bltouch_deployed(false)) return true;
  1892. #endif
  1893. // Clear endstop flags
  1894. endstops.hit_on_purpose();
  1895. // Get Z where the steppers were interrupted
  1896. set_current_from_steppers_for_axis(Z_AXIS);
  1897. // Tell the planner where we actually are
  1898. SYNC_PLAN_POSITION_KINEMATIC();
  1899. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1900. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1901. #endif
  1902. return !probe_triggered;
  1903. }
  1904. /**
  1905. * @details Used by probe_pt to do a single Z probe at the current position.
  1906. * Leaves current_position[Z_AXIS] at the height where the probe triggered.
  1907. *
  1908. * @return The raw Z position where the probe was triggered
  1909. */
  1910. static float run_z_probe() {
  1911. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1912. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1913. #endif
  1914. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1915. refresh_cmd_timeout();
  1916. // Double-probing does a fast probe followed by a slow probe
  1917. #if MULTIPLE_PROBING == 2
  1918. // Do a first probe at the fast speed
  1919. if (do_probe_move(-10, Z_PROBE_SPEED_FAST)) return NAN;
  1920. float first_probe_z = current_position[Z_AXIS];
  1921. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1922. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1923. #endif
  1924. // move up to make clearance for the probe
  1925. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1926. #else
  1927. // If the nozzle is above the travel height then
  1928. // move down quickly before doing the slow probe
  1929. float z = Z_CLEARANCE_DEPLOY_PROBE;
  1930. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1931. if (z < current_position[Z_AXIS]) {
  1932. // If we don't make it to the z position (i.e. the probe triggered), move up to make clearance for the probe
  1933. if (!do_probe_move(z, Z_PROBE_SPEED_FAST))
  1934. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1935. }
  1936. #endif
  1937. #if MULTIPLE_PROBING > 2
  1938. float probes_total = 0;
  1939. for (uint8_t p = MULTIPLE_PROBING + 1; --p;) {
  1940. #endif
  1941. // move down slowly to find bed
  1942. if (do_probe_move(-10, Z_PROBE_SPEED_SLOW)) return NAN;
  1943. #if MULTIPLE_PROBING > 2
  1944. probes_total += current_position[Z_AXIS];
  1945. if (p > 1) do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1946. }
  1947. #endif
  1948. #if MULTIPLE_PROBING > 2
  1949. // Return the average value of all probes
  1950. return probes_total * (1.0 / (MULTIPLE_PROBING));
  1951. #elif MULTIPLE_PROBING == 2
  1952. const float z2 = current_position[Z_AXIS];
  1953. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1954. if (DEBUGGING(LEVELING)) {
  1955. SERIAL_ECHOPAIR("2nd Probe Z:", z2);
  1956. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - z2);
  1957. }
  1958. #endif
  1959. // Return a weighted average of the fast and slow probes
  1960. return (z2 * 3.0 + first_probe_z * 2.0) * 0.2;
  1961. #else
  1962. // Return the single probe result
  1963. return current_position[Z_AXIS];
  1964. #endif
  1965. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1966. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1967. #endif
  1968. }
  1969. /**
  1970. * - Move to the given XY
  1971. * - Deploy the probe, if not already deployed
  1972. * - Probe the bed, get the Z position
  1973. * - Depending on the 'stow' flag
  1974. * - Stow the probe, or
  1975. * - Raise to the BETWEEN height
  1976. * - Return the probed Z position
  1977. */
  1978. float probe_pt(const float &rx, const float &ry, const bool stow, const uint8_t verbose_level, const bool probe_relative=true) {
  1979. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1980. if (DEBUGGING(LEVELING)) {
  1981. SERIAL_ECHOPAIR(">>> probe_pt(", LOGICAL_X_POSITION(rx));
  1982. SERIAL_ECHOPAIR(", ", LOGICAL_Y_POSITION(ry));
  1983. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1984. SERIAL_ECHOLNPGM("stow)");
  1985. DEBUG_POS("", current_position);
  1986. }
  1987. #endif
  1988. // TODO: Adapt for SCARA, where the offset rotates
  1989. float nx = rx, ny = ry;
  1990. if (probe_relative) {
  1991. if (!position_is_reachable_by_probe(rx, ry)) return NAN; // The given position is in terms of the probe
  1992. nx -= (X_PROBE_OFFSET_FROM_EXTRUDER); // Get the nozzle position
  1993. ny -= (Y_PROBE_OFFSET_FROM_EXTRUDER);
  1994. }
  1995. else if (!position_is_reachable(nx, ny)) return NAN; // The given position is in terms of the nozzle
  1996. const float nz =
  1997. #if ENABLED(DELTA)
  1998. // Move below clip height or xy move will be aborted by do_blocking_move_to
  1999. min(current_position[Z_AXIS], delta_clip_start_height)
  2000. #else
  2001. current_position[Z_AXIS]
  2002. #endif
  2003. ;
  2004. const float old_feedrate_mm_s = feedrate_mm_s;
  2005. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2006. // Move the probe to the starting XYZ
  2007. do_blocking_move_to(nx, ny, nz);
  2008. float measured_z = NAN;
  2009. if (!DEPLOY_PROBE()) {
  2010. measured_z = run_z_probe() + zprobe_zoffset;
  2011. if (!stow)
  2012. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2013. else
  2014. if (STOW_PROBE()) measured_z = NAN;
  2015. }
  2016. if (verbose_level > 2) {
  2017. SERIAL_PROTOCOLPGM("Bed X: ");
  2018. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 3);
  2019. SERIAL_PROTOCOLPGM(" Y: ");
  2020. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ry), 3);
  2021. SERIAL_PROTOCOLPGM(" Z: ");
  2022. SERIAL_PROTOCOL_F(measured_z, 3);
  2023. SERIAL_EOL();
  2024. }
  2025. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2026. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2027. #endif
  2028. feedrate_mm_s = old_feedrate_mm_s;
  2029. if (isnan(measured_z)) {
  2030. LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
  2031. SERIAL_ERROR_START();
  2032. SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);
  2033. }
  2034. return measured_z;
  2035. }
  2036. #endif // HAS_BED_PROBE
  2037. #if HAS_LEVELING
  2038. bool leveling_is_valid() {
  2039. return
  2040. #if ENABLED(MESH_BED_LEVELING)
  2041. mbl.has_mesh
  2042. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2043. !!bilinear_grid_spacing[X_AXIS]
  2044. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2045. true
  2046. #else // 3POINT, LINEAR
  2047. true
  2048. #endif
  2049. ;
  2050. }
  2051. /**
  2052. * Turn bed leveling on or off, fixing the current
  2053. * position as-needed.
  2054. *
  2055. * Disable: Current position = physical position
  2056. * Enable: Current position = "unleveled" physical position
  2057. */
  2058. void set_bed_leveling_enabled(const bool enable/*=true*/) {
  2059. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2060. const bool can_change = (!enable || leveling_is_valid());
  2061. #else
  2062. constexpr bool can_change = true;
  2063. #endif
  2064. if (can_change && enable != planner.leveling_active) {
  2065. #if ENABLED(MESH_BED_LEVELING)
  2066. if (!enable)
  2067. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2068. const bool enabling = enable && leveling_is_valid();
  2069. planner.leveling_active = enabling;
  2070. if (enabling) planner.unapply_leveling(current_position);
  2071. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2072. #if PLANNER_LEVELING
  2073. if (planner.leveling_active) { // leveling from on to off
  2074. // change unleveled current_position to physical current_position without moving steppers.
  2075. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2076. planner.leveling_active = false; // disable only AFTER calling apply_leveling
  2077. }
  2078. else { // leveling from off to on
  2079. planner.leveling_active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
  2080. // change physical current_position to unleveled current_position without moving steppers.
  2081. planner.unapply_leveling(current_position);
  2082. }
  2083. #else
  2084. planner.leveling_active = enable; // just flip the bit, current_position will be wrong until next move.
  2085. #endif
  2086. #else // ABL
  2087. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2088. // Force bilinear_z_offset to re-calculate next time
  2089. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2090. (void)bilinear_z_offset(reset);
  2091. #endif
  2092. // Enable or disable leveling compensation in the planner
  2093. planner.leveling_active = enable;
  2094. if (!enable)
  2095. // When disabling just get the current position from the steppers.
  2096. // This will yield the smallest error when first converted back to steps.
  2097. set_current_from_steppers_for_axis(
  2098. #if ABL_PLANAR
  2099. ALL_AXES
  2100. #else
  2101. Z_AXIS
  2102. #endif
  2103. );
  2104. else
  2105. // When enabling, remove compensation from the current position,
  2106. // so compensation will give the right stepper counts.
  2107. planner.unapply_leveling(current_position);
  2108. SYNC_PLAN_POSITION_KINEMATIC();
  2109. #endif // ABL
  2110. }
  2111. }
  2112. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2113. void set_z_fade_height(const float zfh, const bool do_report/*=true*/) {
  2114. if (planner.z_fade_height == zfh) return; // do nothing if no change
  2115. const bool level_active = planner.leveling_active;
  2116. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2117. if (level_active) set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
  2118. #endif
  2119. planner.set_z_fade_height(zfh);
  2120. if (level_active) {
  2121. const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  2122. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2123. set_bed_leveling_enabled(true); // turn back on after changing fade height
  2124. #else
  2125. set_current_from_steppers_for_axis(
  2126. #if ABL_PLANAR
  2127. ALL_AXES
  2128. #else
  2129. Z_AXIS
  2130. #endif
  2131. );
  2132. SYNC_PLAN_POSITION_KINEMATIC();
  2133. #endif
  2134. if (do_report && memcmp(oldpos, current_position, sizeof(oldpos)))
  2135. report_current_position();
  2136. }
  2137. }
  2138. #endif // LEVELING_FADE_HEIGHT
  2139. /**
  2140. * Reset calibration results to zero.
  2141. */
  2142. void reset_bed_level() {
  2143. set_bed_leveling_enabled(false);
  2144. #if ENABLED(MESH_BED_LEVELING)
  2145. if (leveling_is_valid()) {
  2146. mbl.reset();
  2147. mbl.has_mesh = false;
  2148. }
  2149. #else
  2150. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2151. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2152. #endif
  2153. #if ABL_PLANAR
  2154. planner.bed_level_matrix.set_to_identity();
  2155. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2156. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2157. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2158. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2159. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2160. z_values[x][y] = NAN;
  2161. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2162. ubl.reset();
  2163. #endif
  2164. #endif
  2165. }
  2166. #endif // HAS_LEVELING
  2167. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2168. /**
  2169. * Enable to produce output in JSON format suitable
  2170. * for SCAD or JavaScript mesh visualizers.
  2171. *
  2172. * Visualize meshes in OpenSCAD using the included script.
  2173. *
  2174. * buildroot/shared/scripts/MarlinMesh.scad
  2175. */
  2176. //#define SCAD_MESH_OUTPUT
  2177. /**
  2178. * Print calibration results for plotting or manual frame adjustment.
  2179. */
  2180. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2181. #ifndef SCAD_MESH_OUTPUT
  2182. for (uint8_t x = 0; x < sx; x++) {
  2183. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2184. SERIAL_PROTOCOLCHAR(' ');
  2185. SERIAL_PROTOCOL((int)x);
  2186. }
  2187. SERIAL_EOL();
  2188. #endif
  2189. #ifdef SCAD_MESH_OUTPUT
  2190. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2191. #endif
  2192. for (uint8_t y = 0; y < sy; y++) {
  2193. #ifdef SCAD_MESH_OUTPUT
  2194. SERIAL_PROTOCOLPGM(" ["); // open sub-array
  2195. #else
  2196. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2197. SERIAL_PROTOCOL((int)y);
  2198. #endif
  2199. for (uint8_t x = 0; x < sx; x++) {
  2200. SERIAL_PROTOCOLCHAR(' ');
  2201. const float offset = fn(x, y);
  2202. if (!isnan(offset)) {
  2203. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2204. SERIAL_PROTOCOL_F(offset, precision);
  2205. }
  2206. else {
  2207. #ifdef SCAD_MESH_OUTPUT
  2208. for (uint8_t i = 3; i < precision + 3; i++)
  2209. SERIAL_PROTOCOLCHAR(' ');
  2210. SERIAL_PROTOCOLPGM("NAN");
  2211. #else
  2212. for (uint8_t i = 0; i < precision + 3; i++)
  2213. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2214. #endif
  2215. }
  2216. #ifdef SCAD_MESH_OUTPUT
  2217. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2218. #endif
  2219. }
  2220. #ifdef SCAD_MESH_OUTPUT
  2221. SERIAL_PROTOCOLCHAR(' ');
  2222. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2223. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2224. #endif
  2225. SERIAL_EOL();
  2226. }
  2227. #ifdef SCAD_MESH_OUTPUT
  2228. SERIAL_PROTOCOLPGM("];"); // close 2D array
  2229. #endif
  2230. SERIAL_EOL();
  2231. }
  2232. #endif
  2233. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2234. /**
  2235. * Extrapolate a single point from its neighbors
  2236. */
  2237. static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  2238. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2239. if (DEBUGGING(LEVELING)) {
  2240. SERIAL_ECHOPGM("Extrapolate [");
  2241. if (x < 10) SERIAL_CHAR(' ');
  2242. SERIAL_ECHO((int)x);
  2243. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2244. SERIAL_CHAR(' ');
  2245. if (y < 10) SERIAL_CHAR(' ');
  2246. SERIAL_ECHO((int)y);
  2247. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2248. SERIAL_CHAR(']');
  2249. }
  2250. #endif
  2251. if (!isnan(z_values[x][y])) {
  2252. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2253. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2254. #endif
  2255. return; // Don't overwrite good values.
  2256. }
  2257. SERIAL_EOL();
  2258. // Get X neighbors, Y neighbors, and XY neighbors
  2259. const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
  2260. float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
  2261. b1 = z_values[x ][y1], b2 = z_values[x ][y2],
  2262. c1 = z_values[x1][y1], c2 = z_values[x2][y2];
  2263. // Treat far unprobed points as zero, near as equal to far
  2264. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2265. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2266. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2267. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2268. // Take the average instead of the median
  2269. z_values[x][y] = (a + b + c) / 3.0;
  2270. // Median is robust (ignores outliers).
  2271. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2272. // : ((c < b) ? b : (a < c) ? a : c);
  2273. }
  2274. //Enable this if your SCARA uses 180° of total area
  2275. //#define EXTRAPOLATE_FROM_EDGE
  2276. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2277. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2278. #define HALF_IN_X
  2279. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2280. #define HALF_IN_Y
  2281. #endif
  2282. #endif
  2283. /**
  2284. * Fill in the unprobed points (corners of circular print surface)
  2285. * using linear extrapolation, away from the center.
  2286. */
  2287. static void extrapolate_unprobed_bed_level() {
  2288. #ifdef HALF_IN_X
  2289. constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2290. #else
  2291. constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2292. ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
  2293. xlen = ctrx1;
  2294. #endif
  2295. #ifdef HALF_IN_Y
  2296. constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2297. #else
  2298. constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2299. ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
  2300. ylen = ctry1;
  2301. #endif
  2302. for (uint8_t xo = 0; xo <= xlen; xo++)
  2303. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2304. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2305. #ifndef HALF_IN_X
  2306. const uint8_t x1 = ctrx1 - xo;
  2307. #endif
  2308. #ifndef HALF_IN_Y
  2309. const uint8_t y1 = ctry1 - yo;
  2310. #ifndef HALF_IN_X
  2311. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2312. #endif
  2313. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2314. #endif
  2315. #ifndef HALF_IN_X
  2316. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2317. #endif
  2318. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2319. }
  2320. }
  2321. static void print_bilinear_leveling_grid() {
  2322. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2323. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2324. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2325. );
  2326. }
  2327. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2328. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2329. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2330. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2331. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2332. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2333. int bilinear_grid_spacing_virt[2] = { 0 };
  2334. float bilinear_grid_factor_virt[2] = { 0 };
  2335. static void print_bilinear_leveling_grid_virt() {
  2336. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2337. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2338. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2339. );
  2340. }
  2341. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2342. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2343. uint8_t ep = 0, ip = 1;
  2344. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2345. if (x) {
  2346. ep = GRID_MAX_POINTS_X - 1;
  2347. ip = GRID_MAX_POINTS_X - 2;
  2348. }
  2349. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2350. return LINEAR_EXTRAPOLATION(
  2351. z_values[ep][y - 1],
  2352. z_values[ip][y - 1]
  2353. );
  2354. else
  2355. return LINEAR_EXTRAPOLATION(
  2356. bed_level_virt_coord(ep + 1, y),
  2357. bed_level_virt_coord(ip + 1, y)
  2358. );
  2359. }
  2360. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2361. if (y) {
  2362. ep = GRID_MAX_POINTS_Y - 1;
  2363. ip = GRID_MAX_POINTS_Y - 2;
  2364. }
  2365. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2366. return LINEAR_EXTRAPOLATION(
  2367. z_values[x - 1][ep],
  2368. z_values[x - 1][ip]
  2369. );
  2370. else
  2371. return LINEAR_EXTRAPOLATION(
  2372. bed_level_virt_coord(x, ep + 1),
  2373. bed_level_virt_coord(x, ip + 1)
  2374. );
  2375. }
  2376. return z_values[x - 1][y - 1];
  2377. }
  2378. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2379. return (
  2380. p[i-1] * -t * sq(1 - t)
  2381. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2382. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2383. - p[i+2] * sq(t) * (1 - t)
  2384. ) * 0.5;
  2385. }
  2386. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2387. float row[4], column[4];
  2388. for (uint8_t i = 0; i < 4; i++) {
  2389. for (uint8_t j = 0; j < 4; j++) {
  2390. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2391. }
  2392. row[i] = bed_level_virt_cmr(column, 1, ty);
  2393. }
  2394. return bed_level_virt_cmr(row, 1, tx);
  2395. }
  2396. void bed_level_virt_interpolate() {
  2397. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2398. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2399. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2400. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2401. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2402. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2403. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2404. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2405. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2406. continue;
  2407. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2408. bed_level_virt_2cmr(
  2409. x + 1,
  2410. y + 1,
  2411. (float)tx / (BILINEAR_SUBDIVISIONS),
  2412. (float)ty / (BILINEAR_SUBDIVISIONS)
  2413. );
  2414. }
  2415. }
  2416. #endif // ABL_BILINEAR_SUBDIVISION
  2417. // Refresh after other values have been updated
  2418. void refresh_bed_level() {
  2419. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2420. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2421. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2422. bed_level_virt_interpolate();
  2423. #endif
  2424. }
  2425. #endif // AUTO_BED_LEVELING_BILINEAR
  2426. /**
  2427. * Home an individual linear axis
  2428. */
  2429. static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
  2430. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2431. if (DEBUGGING(LEVELING)) {
  2432. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2433. SERIAL_ECHOPAIR(", ", distance);
  2434. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2435. SERIAL_CHAR(')');
  2436. SERIAL_EOL();
  2437. }
  2438. #endif
  2439. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2440. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2441. if (deploy_bltouch) set_bltouch_deployed(true);
  2442. #endif
  2443. #if QUIET_PROBING
  2444. if (axis == Z_AXIS) probing_pause(true);
  2445. #endif
  2446. // Tell the planner the axis is at 0
  2447. current_position[axis] = 0;
  2448. #if IS_SCARA
  2449. SYNC_PLAN_POSITION_KINEMATIC();
  2450. current_position[axis] = distance;
  2451. inverse_kinematics(current_position);
  2452. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2453. #else
  2454. sync_plan_position();
  2455. current_position[axis] = distance;
  2456. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2457. #endif
  2458. stepper.synchronize();
  2459. #if QUIET_PROBING
  2460. if (axis == Z_AXIS) probing_pause(false);
  2461. #endif
  2462. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2463. if (deploy_bltouch) set_bltouch_deployed(false);
  2464. #endif
  2465. endstops.hit_on_purpose();
  2466. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2467. if (DEBUGGING(LEVELING)) {
  2468. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2469. SERIAL_CHAR(')');
  2470. SERIAL_EOL();
  2471. }
  2472. #endif
  2473. }
  2474. /**
  2475. * TMC2130 specific sensorless homing using stallGuard2.
  2476. * stallGuard2 only works when in spreadCycle mode.
  2477. * spreadCycle and stealthChop are mutually exclusive.
  2478. */
  2479. #if ENABLED(SENSORLESS_HOMING)
  2480. template<typename TMC>
  2481. void tmc_sensorless_homing(TMC &st, bool enable=true) {
  2482. #if ENABLED(STEALTHCHOP)
  2483. if (enable) {
  2484. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2485. st.stealthChop(0);
  2486. }
  2487. else {
  2488. st.coolstep_min_speed(0);
  2489. st.stealthChop(1);
  2490. }
  2491. #endif
  2492. st.diag1_stall(enable ? 1 : 0);
  2493. }
  2494. #endif
  2495. /**
  2496. * Home an individual "raw axis" to its endstop.
  2497. * This applies to XYZ on Cartesian and Core robots, and
  2498. * to the individual ABC steppers on DELTA and SCARA.
  2499. *
  2500. * At the end of the procedure the axis is marked as
  2501. * homed and the current position of that axis is updated.
  2502. * Kinematic robots should wait till all axes are homed
  2503. * before updating the current position.
  2504. */
  2505. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2506. static void homeaxis(const AxisEnum axis) {
  2507. #if IS_SCARA
  2508. // Only Z homing (with probe) is permitted
  2509. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2510. #else
  2511. #define CAN_HOME(A) \
  2512. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2513. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2514. #endif
  2515. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2516. if (DEBUGGING(LEVELING)) {
  2517. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2518. SERIAL_CHAR(')');
  2519. SERIAL_EOL();
  2520. }
  2521. #endif
  2522. const int axis_home_dir =
  2523. #if ENABLED(DUAL_X_CARRIAGE)
  2524. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2525. #endif
  2526. home_dir(axis);
  2527. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2528. #if HOMING_Z_WITH_PROBE
  2529. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2530. #endif
  2531. // Set flags for X, Y, Z motor locking
  2532. #if ENABLED(X_DUAL_ENDSTOPS)
  2533. if (axis == X_AXIS) stepper.set_homing_flag_x(true);
  2534. #endif
  2535. #if ENABLED(Y_DUAL_ENDSTOPS)
  2536. if (axis == Y_AXIS) stepper.set_homing_flag_y(true);
  2537. #endif
  2538. #if ENABLED(Z_DUAL_ENDSTOPS)
  2539. if (axis == Z_AXIS) stepper.set_homing_flag_z(true);
  2540. #endif
  2541. // Disable stealthChop if used. Enable diag1 pin on driver.
  2542. #if ENABLED(SENSORLESS_HOMING)
  2543. #if ENABLED(X_IS_TMC2130)
  2544. if (axis == X_AXIS) tmc_sensorless_homing(stepperX);
  2545. #endif
  2546. #if ENABLED(Y_IS_TMC2130)
  2547. if (axis == Y_AXIS) tmc_sensorless_homing(stepperY);
  2548. #endif
  2549. #endif
  2550. // Fast move towards endstop until triggered
  2551. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2552. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2553. #endif
  2554. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2555. // When homing Z with probe respect probe clearance
  2556. const float bump = axis_home_dir * (
  2557. #if HOMING_Z_WITH_PROBE
  2558. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2559. #endif
  2560. home_bump_mm(axis)
  2561. );
  2562. // If a second homing move is configured...
  2563. if (bump) {
  2564. // Move away from the endstop by the axis HOME_BUMP_MM
  2565. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2566. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2567. #endif
  2568. do_homing_move(axis, -bump);
  2569. // Slow move towards endstop until triggered
  2570. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2571. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2572. #endif
  2573. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2574. }
  2575. /**
  2576. * Home axes that have dual endstops... differently
  2577. */
  2578. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  2579. const bool pos_dir = axis_home_dir > 0;
  2580. #if ENABLED(X_DUAL_ENDSTOPS)
  2581. if (axis == X_AXIS) {
  2582. const bool lock_x1 = pos_dir ? (x_endstop_adj > 0) : (x_endstop_adj < 0);
  2583. const float adj = FABS(x_endstop_adj);
  2584. if (lock_x1) stepper.set_x_lock(true); else stepper.set_x2_lock(true);
  2585. do_homing_move(axis, pos_dir ? -adj : adj);
  2586. if (lock_x1) stepper.set_x_lock(false); else stepper.set_x2_lock(false);
  2587. stepper.set_homing_flag_x(false);
  2588. }
  2589. #endif
  2590. #if ENABLED(Y_DUAL_ENDSTOPS)
  2591. if (axis == Y_AXIS) {
  2592. const bool lock_y1 = pos_dir ? (y_endstop_adj > 0) : (y_endstop_adj < 0);
  2593. const float adj = FABS(y_endstop_adj);
  2594. if (lock_y1) stepper.set_y_lock(true); else stepper.set_y2_lock(true);
  2595. do_homing_move(axis, pos_dir ? -adj : adj);
  2596. if (lock_y1) stepper.set_y_lock(false); else stepper.set_y2_lock(false);
  2597. stepper.set_homing_flag_y(false);
  2598. }
  2599. #endif
  2600. #if ENABLED(Z_DUAL_ENDSTOPS)
  2601. if (axis == Z_AXIS) {
  2602. const bool lock_z1 = pos_dir ? (z_endstop_adj > 0) : (z_endstop_adj < 0);
  2603. const float adj = FABS(z_endstop_adj);
  2604. if (lock_z1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2605. do_homing_move(axis, pos_dir ? -adj : adj);
  2606. if (lock_z1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2607. stepper.set_homing_flag_z(false);
  2608. }
  2609. #endif
  2610. #endif
  2611. #if IS_SCARA
  2612. set_axis_is_at_home(axis);
  2613. SYNC_PLAN_POSITION_KINEMATIC();
  2614. #elif ENABLED(DELTA)
  2615. // Delta has already moved all three towers up in G28
  2616. // so here it re-homes each tower in turn.
  2617. // Delta homing treats the axes as normal linear axes.
  2618. // retrace by the amount specified in delta_endstop_adj + additional 0.1mm in order to have minimum steps
  2619. if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) {
  2620. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2621. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("delta_endstop_adj:");
  2622. #endif
  2623. do_homing_move(axis, delta_endstop_adj[axis] - 0.1 * Z_HOME_DIR);
  2624. }
  2625. #else
  2626. // For cartesian/core machines,
  2627. // set the axis to its home position
  2628. set_axis_is_at_home(axis);
  2629. sync_plan_position();
  2630. destination[axis] = current_position[axis];
  2631. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2632. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2633. #endif
  2634. #endif
  2635. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2636. #if ENABLED(SENSORLESS_HOMING)
  2637. #if ENABLED(X_IS_TMC2130)
  2638. if (axis == X_AXIS) tmc_sensorless_homing(stepperX, false);
  2639. #endif
  2640. #if ENABLED(Y_IS_TMC2130)
  2641. if (axis == Y_AXIS) tmc_sensorless_homing(stepperY, false);
  2642. #endif
  2643. #endif
  2644. // Put away the Z probe
  2645. #if HOMING_Z_WITH_PROBE
  2646. if (axis == Z_AXIS && STOW_PROBE()) return;
  2647. #endif
  2648. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2649. if (DEBUGGING(LEVELING)) {
  2650. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2651. SERIAL_CHAR(')');
  2652. SERIAL_EOL();
  2653. }
  2654. #endif
  2655. } // homeaxis()
  2656. #if ENABLED(FWRETRACT)
  2657. /**
  2658. * Retract or recover according to firmware settings
  2659. *
  2660. * This function handles retract/recover moves for G10 and G11,
  2661. * plus auto-retract moves sent from G0/G1 when E-only moves are done.
  2662. *
  2663. * To simplify the logic, doubled retract/recover moves are ignored.
  2664. *
  2665. * Note: Z lift is done transparently to the planner. Aborting
  2666. * a print between G10 and G11 may corrupt the Z position.
  2667. *
  2668. * Note: Auto-retract will apply the set Z hop in addition to any Z hop
  2669. * included in the G-code. Use M207 Z0 to to prevent double hop.
  2670. */
  2671. void retract(const bool retracting
  2672. #if EXTRUDERS > 1
  2673. , bool swapping = false
  2674. #endif
  2675. ) {
  2676. static float hop_amount = 0.0; // Total amount lifted, for use in recover
  2677. // Prevent two retracts or recovers in a row
  2678. if (retracted[active_extruder] == retracting) return;
  2679. // Prevent two swap-retract or recovers in a row
  2680. #if EXTRUDERS > 1
  2681. // Allow G10 S1 only after G10
  2682. if (swapping && retracted_swap[active_extruder] == retracting) return;
  2683. // G11 priority to recover the long retract if activated
  2684. if (!retracting) swapping = retracted_swap[active_extruder];
  2685. #else
  2686. const bool swapping = false;
  2687. #endif
  2688. /* // debugging
  2689. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2690. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2691. SERIAL_ECHOLNPAIR("active extruder ", active_extruder);
  2692. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2693. SERIAL_ECHOPAIR("retracted[", i);
  2694. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2695. SERIAL_ECHOPAIR("retracted_swap[", i);
  2696. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2697. }
  2698. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2699. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2700. //*/
  2701. const bool has_zhop = retract_zlift > 0.01; // Is there a hop set?
  2702. const float old_feedrate_mm_s = feedrate_mm_s;
  2703. // The current position will be the destination for E and Z moves
  2704. set_destination_from_current();
  2705. stepper.synchronize(); // Wait for buffered moves to complete
  2706. const float renormalize = 1.0 / planner.e_factor[active_extruder];
  2707. if (retracting) {
  2708. // Retract by moving from a faux E position back to the current E position
  2709. feedrate_mm_s = retract_feedrate_mm_s;
  2710. current_position[E_AXIS] += (swapping ? swap_retract_length : retract_length) * renormalize;
  2711. sync_plan_position_e();
  2712. prepare_move_to_destination();
  2713. // Is a Z hop set, and has the hop not yet been done?
  2714. if (has_zhop && !hop_amount) {
  2715. hop_amount += retract_zlift; // Carriage is raised for retraction hop
  2716. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; // Z feedrate to max
  2717. current_position[Z_AXIS] -= retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2718. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2719. prepare_move_to_destination(); // Raise up to the old current pos
  2720. feedrate_mm_s = retract_feedrate_mm_s; // Restore feedrate
  2721. }
  2722. }
  2723. else {
  2724. // If a hop was done and Z hasn't changed, undo the Z hop
  2725. if (hop_amount) {
  2726. current_position[Z_AXIS] += retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2727. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2728. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; // Z feedrate to max
  2729. prepare_move_to_destination(); // Raise up to the old current pos
  2730. hop_amount = 0.0; // Clear hop
  2731. }
  2732. // A retract multiplier has been added here to get faster swap recovery
  2733. feedrate_mm_s = swapping ? swap_retract_recover_feedrate_mm_s : retract_recover_feedrate_mm_s;
  2734. const float move_e = swapping ? swap_retract_length + swap_retract_recover_length : retract_length + retract_recover_length;
  2735. current_position[E_AXIS] -= move_e * renormalize;
  2736. sync_plan_position_e();
  2737. prepare_move_to_destination(); // Recover E
  2738. }
  2739. feedrate_mm_s = old_feedrate_mm_s; // Restore original feedrate
  2740. retracted[active_extruder] = retracting; // Active extruder now retracted / recovered
  2741. // If swap retract/recover update the retracted_swap flag too
  2742. #if EXTRUDERS > 1
  2743. if (swapping) retracted_swap[active_extruder] = retracting;
  2744. #endif
  2745. /* // debugging
  2746. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2747. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2748. SERIAL_ECHOLNPAIR("active_extruder ", active_extruder);
  2749. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2750. SERIAL_ECHOPAIR("retracted[", i);
  2751. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2752. SERIAL_ECHOPAIR("retracted_swap[", i);
  2753. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2754. }
  2755. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2756. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2757. //*/
  2758. }
  2759. #endif // FWRETRACT
  2760. #if ENABLED(MIXING_EXTRUDER)
  2761. void normalize_mix() {
  2762. float mix_total = 0.0;
  2763. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2764. // Scale all values if they don't add up to ~1.0
  2765. if (!NEAR(mix_total, 1.0)) {
  2766. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2767. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2768. }
  2769. }
  2770. #if ENABLED(DIRECT_MIXING_IN_G1)
  2771. // Get mixing parameters from the GCode
  2772. // The total "must" be 1.0 (but it will be normalized)
  2773. // If no mix factors are given, the old mix is preserved
  2774. void gcode_get_mix() {
  2775. const char* mixing_codes = "ABCDHI";
  2776. byte mix_bits = 0;
  2777. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2778. if (parser.seenval(mixing_codes[i])) {
  2779. SBI(mix_bits, i);
  2780. float v = parser.value_float();
  2781. NOLESS(v, 0.0);
  2782. mixing_factor[i] = RECIPROCAL(v);
  2783. }
  2784. }
  2785. // If any mixing factors were included, clear the rest
  2786. // If none were included, preserve the last mix
  2787. if (mix_bits) {
  2788. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2789. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2790. normalize_mix();
  2791. }
  2792. }
  2793. #endif
  2794. #endif
  2795. /**
  2796. * ***************************************************************************
  2797. * ***************************** G-CODE HANDLING *****************************
  2798. * ***************************************************************************
  2799. */
  2800. /**
  2801. * Set XYZE destination and feedrate from the current GCode command
  2802. *
  2803. * - Set destination from included axis codes
  2804. * - Set to current for missing axis codes
  2805. * - Set the feedrate, if included
  2806. */
  2807. void gcode_get_destination() {
  2808. LOOP_XYZE(i) {
  2809. if (parser.seen(axis_codes[i])) {
  2810. const float v = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2811. destination[i] = i == E_AXIS ? v : LOGICAL_TO_NATIVE(v, i);
  2812. }
  2813. else
  2814. destination[i] = current_position[i];
  2815. }
  2816. if (parser.linearval('F') > 0.0)
  2817. feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
  2818. #if ENABLED(PRINTCOUNTER)
  2819. if (!DEBUGGING(DRYRUN))
  2820. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2821. #endif
  2822. // Get ABCDHI mixing factors
  2823. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2824. gcode_get_mix();
  2825. #endif
  2826. }
  2827. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2828. /**
  2829. * Output a "busy" message at regular intervals
  2830. * while the machine is not accepting commands.
  2831. */
  2832. void host_keepalive() {
  2833. const millis_t ms = millis();
  2834. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2835. if (PENDING(ms, next_busy_signal_ms)) return;
  2836. switch (busy_state) {
  2837. case IN_HANDLER:
  2838. case IN_PROCESS:
  2839. SERIAL_ECHO_START();
  2840. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2841. break;
  2842. case PAUSED_FOR_USER:
  2843. SERIAL_ECHO_START();
  2844. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2845. break;
  2846. case PAUSED_FOR_INPUT:
  2847. SERIAL_ECHO_START();
  2848. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2849. break;
  2850. default:
  2851. break;
  2852. }
  2853. }
  2854. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2855. }
  2856. #endif // HOST_KEEPALIVE_FEATURE
  2857. /**************************************************
  2858. ***************** GCode Handlers *****************
  2859. **************************************************/
  2860. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2861. #define G0_G1_CONDITION !axis_unhomed_error(parser.seen('X'), parser.seen('Y'), parser.seen('Z'))
  2862. #else
  2863. #define G0_G1_CONDITION true
  2864. #endif
  2865. /**
  2866. * G0, G1: Coordinated movement of X Y Z E axes
  2867. */
  2868. inline void gcode_G0_G1(
  2869. #if IS_SCARA
  2870. bool fast_move=false
  2871. #endif
  2872. ) {
  2873. if (IsRunning() && G0_G1_CONDITION) {
  2874. gcode_get_destination(); // For X Y Z E F
  2875. #if ENABLED(FWRETRACT)
  2876. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  2877. // When M209 Autoretract is enabled, convert E-only moves to firmware retract/recover moves
  2878. if (autoretract_enabled && parser.seen('E') && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z'))) {
  2879. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2880. // Is this a retract or recover move?
  2881. if (WITHIN(FABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && retracted[active_extruder] == (echange > 0.0)) {
  2882. current_position[E_AXIS] = destination[E_AXIS]; // Hide a G1-based retract/recover from calculations
  2883. sync_plan_position_e(); // AND from the planner
  2884. return retract(echange < 0.0); // Firmware-based retract/recover (double-retract ignored)
  2885. }
  2886. }
  2887. }
  2888. #endif // FWRETRACT
  2889. #if IS_SCARA
  2890. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2891. #else
  2892. prepare_move_to_destination();
  2893. #endif
  2894. #if ENABLED(NANODLP_Z_SYNC)
  2895. #if ENABLED(NANODLP_ALL_AXIS)
  2896. #define _MOVE_SYNC true // For any move wait and output sync message
  2897. #else
  2898. #define _MOVE_SYNC parser.seenval('Z') // Only for Z move
  2899. #endif
  2900. if (_MOVE_SYNC) {
  2901. stepper.synchronize();
  2902. SERIAL_ECHOLNPGM(MSG_Z_MOVE_COMP);
  2903. }
  2904. #endif
  2905. }
  2906. }
  2907. /**
  2908. * G2: Clockwise Arc
  2909. * G3: Counterclockwise Arc
  2910. *
  2911. * This command has two forms: IJ-form and R-form.
  2912. *
  2913. * - I specifies an X offset. J specifies a Y offset.
  2914. * At least one of the IJ parameters is required.
  2915. * X and Y can be omitted to do a complete circle.
  2916. * The given XY is not error-checked. The arc ends
  2917. * based on the angle of the destination.
  2918. * Mixing I or J with R will throw an error.
  2919. *
  2920. * - R specifies the radius. X or Y is required.
  2921. * Omitting both X and Y will throw an error.
  2922. * X or Y must differ from the current XY.
  2923. * Mixing R with I or J will throw an error.
  2924. *
  2925. * - P specifies the number of full circles to do
  2926. * before the specified arc move.
  2927. *
  2928. * Examples:
  2929. *
  2930. * G2 I10 ; CW circle centered at X+10
  2931. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2932. */
  2933. #if ENABLED(ARC_SUPPORT)
  2934. inline void gcode_G2_G3(const bool clockwise) {
  2935. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2936. if (axis_unhomed_error()) return;
  2937. #endif
  2938. if (IsRunning()) {
  2939. #if ENABLED(SF_ARC_FIX)
  2940. const bool relative_mode_backup = relative_mode;
  2941. relative_mode = true;
  2942. #endif
  2943. gcode_get_destination();
  2944. #if ENABLED(SF_ARC_FIX)
  2945. relative_mode = relative_mode_backup;
  2946. #endif
  2947. float arc_offset[2] = { 0.0, 0.0 };
  2948. if (parser.seenval('R')) {
  2949. const float r = parser.value_linear_units(),
  2950. p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
  2951. p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
  2952. if (r && (p2 != p1 || q2 != q1)) {
  2953. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2954. dx = p2 - p1, dy = q2 - q1, // X and Y differences
  2955. d = HYPOT(dx, dy), // Linear distance between the points
  2956. h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2957. mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
  2958. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2959. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2960. arc_offset[0] = cx - p1;
  2961. arc_offset[1] = cy - q1;
  2962. }
  2963. }
  2964. else {
  2965. if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
  2966. if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
  2967. }
  2968. if (arc_offset[0] || arc_offset[1]) {
  2969. #if ENABLED(ARC_P_CIRCLES)
  2970. // P indicates number of circles to do
  2971. int8_t circles_to_do = parser.byteval('P');
  2972. if (!WITHIN(circles_to_do, 0, 100)) {
  2973. SERIAL_ERROR_START();
  2974. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2975. }
  2976. while (circles_to_do--)
  2977. plan_arc(current_position, arc_offset, clockwise);
  2978. #endif
  2979. // Send the arc to the planner
  2980. plan_arc(destination, arc_offset, clockwise);
  2981. refresh_cmd_timeout();
  2982. }
  2983. else {
  2984. // Bad arguments
  2985. SERIAL_ERROR_START();
  2986. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2987. }
  2988. }
  2989. }
  2990. #endif // ARC_SUPPORT
  2991. void dwell(millis_t time) {
  2992. refresh_cmd_timeout();
  2993. time += previous_cmd_ms;
  2994. while (PENDING(millis(), time)) idle();
  2995. }
  2996. /**
  2997. * G4: Dwell S<seconds> or P<milliseconds>
  2998. */
  2999. inline void gcode_G4() {
  3000. millis_t dwell_ms = 0;
  3001. if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
  3002. if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
  3003. stepper.synchronize();
  3004. #if ENABLED(NANODLP_Z_SYNC)
  3005. SERIAL_ECHOLNPGM(MSG_Z_MOVE_COMP);
  3006. #endif
  3007. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  3008. dwell(dwell_ms);
  3009. }
  3010. #if ENABLED(BEZIER_CURVE_SUPPORT)
  3011. /**
  3012. * Parameters interpreted according to:
  3013. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  3014. * However I, J omission is not supported at this point; all
  3015. * parameters can be omitted and default to zero.
  3016. */
  3017. /**
  3018. * G5: Cubic B-spline
  3019. */
  3020. inline void gcode_G5() {
  3021. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  3022. if (axis_unhomed_error()) return;
  3023. #endif
  3024. if (IsRunning()) {
  3025. #if ENABLED(CNC_WORKSPACE_PLANES)
  3026. if (workspace_plane != PLANE_XY) {
  3027. SERIAL_ERROR_START();
  3028. SERIAL_ERRORLNPGM(MSG_ERR_BAD_PLANE_MODE);
  3029. return;
  3030. }
  3031. #endif
  3032. gcode_get_destination();
  3033. const float offset[] = {
  3034. parser.linearval('I'),
  3035. parser.linearval('J'),
  3036. parser.linearval('P'),
  3037. parser.linearval('Q')
  3038. };
  3039. plan_cubic_move(offset);
  3040. }
  3041. }
  3042. #endif // BEZIER_CURVE_SUPPORT
  3043. #if ENABLED(FWRETRACT)
  3044. /**
  3045. * G10 - Retract filament according to settings of M207
  3046. */
  3047. inline void gcode_G10() {
  3048. #if EXTRUDERS > 1
  3049. const bool rs = parser.boolval('S');
  3050. retracted_swap[active_extruder] = rs; // Use 'S' for swap, default to false
  3051. #endif
  3052. retract(true
  3053. #if EXTRUDERS > 1
  3054. , rs
  3055. #endif
  3056. );
  3057. }
  3058. /**
  3059. * G11 - Recover filament according to settings of M208
  3060. */
  3061. inline void gcode_G11() { retract(false); }
  3062. #endif // FWRETRACT
  3063. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  3064. /**
  3065. * G12: Clean the nozzle
  3066. */
  3067. inline void gcode_G12() {
  3068. // Don't allow nozzle cleaning without homing first
  3069. if (axis_unhomed_error()) return;
  3070. const uint8_t pattern = parser.ushortval('P', 0),
  3071. strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
  3072. objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
  3073. const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
  3074. Nozzle::clean(pattern, strokes, radius, objects);
  3075. }
  3076. #endif
  3077. #if ENABLED(CNC_WORKSPACE_PLANES)
  3078. inline void report_workspace_plane() {
  3079. SERIAL_ECHO_START();
  3080. SERIAL_ECHOPGM("Workspace Plane ");
  3081. serialprintPGM(
  3082. workspace_plane == PLANE_YZ ? PSTR("YZ\n") :
  3083. workspace_plane == PLANE_ZX ? PSTR("ZX\n") :
  3084. PSTR("XY\n")
  3085. );
  3086. }
  3087. inline void set_workspace_plane(const WorkspacePlane plane) {
  3088. workspace_plane = plane;
  3089. if (DEBUGGING(INFO)) report_workspace_plane();
  3090. }
  3091. /**
  3092. * G17: Select Plane XY
  3093. * G18: Select Plane ZX
  3094. * G19: Select Plane YZ
  3095. */
  3096. inline void gcode_G17() { set_workspace_plane(PLANE_XY); }
  3097. inline void gcode_G18() { set_workspace_plane(PLANE_ZX); }
  3098. inline void gcode_G19() { set_workspace_plane(PLANE_YZ); }
  3099. #endif // CNC_WORKSPACE_PLANES
  3100. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  3101. /**
  3102. * Select a coordinate system and update the workspace offset.
  3103. * System index -1 is used to specify machine-native.
  3104. */
  3105. bool select_coordinate_system(const int8_t _new) {
  3106. if (active_coordinate_system == _new) return false;
  3107. float old_offset[XYZ] = { 0 }, new_offset[XYZ] = { 0 };
  3108. if (WITHIN(active_coordinate_system, 0, MAX_COORDINATE_SYSTEMS - 1))
  3109. COPY(old_offset, coordinate_system[active_coordinate_system]);
  3110. if (WITHIN(_new, 0, MAX_COORDINATE_SYSTEMS - 1))
  3111. COPY(new_offset, coordinate_system[_new]);
  3112. active_coordinate_system = _new;
  3113. LOOP_XYZ(i) {
  3114. const float diff = new_offset[i] - old_offset[i];
  3115. if (diff) {
  3116. position_shift[i] += diff;
  3117. update_software_endstops((AxisEnum)i);
  3118. }
  3119. }
  3120. return true;
  3121. }
  3122. /**
  3123. * In CNC G-code G53 is like a modifier
  3124. * It precedes a movement command (or other modifiers) on the same line.
  3125. * This is the first command to use parser.chain() to make this possible.
  3126. */
  3127. inline void gcode_G53() {
  3128. // If this command has more following...
  3129. if (parser.chain()) {
  3130. const int8_t _system = active_coordinate_system;
  3131. active_coordinate_system = -1;
  3132. process_parsed_command();
  3133. active_coordinate_system = _system;
  3134. }
  3135. }
  3136. /**
  3137. * G54-G59.3: Select a new workspace
  3138. *
  3139. * A workspace is an XYZ offset to the machine native space.
  3140. * All workspaces default to 0,0,0 at start, or with EEPROM
  3141. * support they may be restored from a previous session.
  3142. *
  3143. * G92 is used to set the current workspace's offset.
  3144. */
  3145. inline void gcode_G54_59(uint8_t subcode=0) {
  3146. const int8_t _space = parser.codenum - 54 + subcode;
  3147. if (select_coordinate_system(_space)) {
  3148. SERIAL_PROTOCOLLNPAIR("Select workspace ", _space);
  3149. report_current_position();
  3150. }
  3151. }
  3152. FORCE_INLINE void gcode_G54() { gcode_G54_59(); }
  3153. FORCE_INLINE void gcode_G55() { gcode_G54_59(); }
  3154. FORCE_INLINE void gcode_G56() { gcode_G54_59(); }
  3155. FORCE_INLINE void gcode_G57() { gcode_G54_59(); }
  3156. FORCE_INLINE void gcode_G58() { gcode_G54_59(); }
  3157. FORCE_INLINE void gcode_G59() { gcode_G54_59(parser.subcode); }
  3158. #endif
  3159. #if ENABLED(INCH_MODE_SUPPORT)
  3160. /**
  3161. * G20: Set input mode to inches
  3162. */
  3163. inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
  3164. /**
  3165. * G21: Set input mode to millimeters
  3166. */
  3167. inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
  3168. #endif
  3169. #if ENABLED(NOZZLE_PARK_FEATURE)
  3170. /**
  3171. * G27: Park the nozzle
  3172. */
  3173. inline void gcode_G27() {
  3174. // Don't allow nozzle parking without homing first
  3175. if (axis_unhomed_error()) return;
  3176. Nozzle::park(parser.ushortval('P'));
  3177. }
  3178. #endif // NOZZLE_PARK_FEATURE
  3179. #if ENABLED(QUICK_HOME)
  3180. static void quick_home_xy() {
  3181. // Pretend the current position is 0,0
  3182. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3183. sync_plan_position();
  3184. const int x_axis_home_dir =
  3185. #if ENABLED(DUAL_X_CARRIAGE)
  3186. x_home_dir(active_extruder)
  3187. #else
  3188. home_dir(X_AXIS)
  3189. #endif
  3190. ;
  3191. const float mlx = max_length(X_AXIS),
  3192. mly = max_length(Y_AXIS),
  3193. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  3194. fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
  3195. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  3196. endstops.hit_on_purpose(); // clear endstop hit flags
  3197. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3198. }
  3199. #endif // QUICK_HOME
  3200. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3201. void log_machine_info() {
  3202. SERIAL_ECHOPGM("Machine Type: ");
  3203. #if ENABLED(DELTA)
  3204. SERIAL_ECHOLNPGM("Delta");
  3205. #elif IS_SCARA
  3206. SERIAL_ECHOLNPGM("SCARA");
  3207. #elif IS_CORE
  3208. SERIAL_ECHOLNPGM("Core");
  3209. #else
  3210. SERIAL_ECHOLNPGM("Cartesian");
  3211. #endif
  3212. SERIAL_ECHOPGM("Probe: ");
  3213. #if ENABLED(PROBE_MANUALLY)
  3214. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  3215. #elif ENABLED(FIX_MOUNTED_PROBE)
  3216. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  3217. #elif ENABLED(BLTOUCH)
  3218. SERIAL_ECHOLNPGM("BLTOUCH");
  3219. #elif HAS_Z_SERVO_ENDSTOP
  3220. SERIAL_ECHOLNPGM("SERVO PROBE");
  3221. #elif ENABLED(Z_PROBE_SLED)
  3222. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3223. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3224. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3225. #else
  3226. SERIAL_ECHOLNPGM("NONE");
  3227. #endif
  3228. #if HAS_BED_PROBE
  3229. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3230. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3231. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3232. #if X_PROBE_OFFSET_FROM_EXTRUDER > 0
  3233. SERIAL_ECHOPGM(" (Right");
  3234. #elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
  3235. SERIAL_ECHOPGM(" (Left");
  3236. #elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
  3237. SERIAL_ECHOPGM(" (Middle");
  3238. #else
  3239. SERIAL_ECHOPGM(" (Aligned With");
  3240. #endif
  3241. #if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
  3242. SERIAL_ECHOPGM("-Back");
  3243. #elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
  3244. SERIAL_ECHOPGM("-Front");
  3245. #elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
  3246. SERIAL_ECHOPGM("-Center");
  3247. #endif
  3248. if (zprobe_zoffset < 0)
  3249. SERIAL_ECHOPGM(" & Below");
  3250. else if (zprobe_zoffset > 0)
  3251. SERIAL_ECHOPGM(" & Above");
  3252. else
  3253. SERIAL_ECHOPGM(" & Same Z as");
  3254. SERIAL_ECHOLNPGM(" Nozzle)");
  3255. #endif
  3256. #if HAS_ABL
  3257. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3258. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3259. SERIAL_ECHOPGM("LINEAR");
  3260. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3261. SERIAL_ECHOPGM("BILINEAR");
  3262. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3263. SERIAL_ECHOPGM("3POINT");
  3264. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3265. SERIAL_ECHOPGM("UBL");
  3266. #endif
  3267. if (planner.leveling_active) {
  3268. SERIAL_ECHOLNPGM(" (enabled)");
  3269. #if ABL_PLANAR
  3270. const float diff[XYZ] = {
  3271. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3272. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3273. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3274. };
  3275. SERIAL_ECHOPGM("ABL Adjustment X");
  3276. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3277. SERIAL_ECHO(diff[X_AXIS]);
  3278. SERIAL_ECHOPGM(" Y");
  3279. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3280. SERIAL_ECHO(diff[Y_AXIS]);
  3281. SERIAL_ECHOPGM(" Z");
  3282. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3283. SERIAL_ECHO(diff[Z_AXIS]);
  3284. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3285. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3286. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3287. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3288. #endif
  3289. }
  3290. else
  3291. SERIAL_ECHOLNPGM(" (disabled)");
  3292. SERIAL_EOL();
  3293. #elif ENABLED(MESH_BED_LEVELING)
  3294. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3295. if (planner.leveling_active) {
  3296. float rz = current_position[Z_AXIS];
  3297. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], rz);
  3298. SERIAL_ECHOLNPGM(" (enabled)");
  3299. SERIAL_ECHOPAIR("MBL Adjustment Z", rz);
  3300. }
  3301. else
  3302. SERIAL_ECHOPGM(" (disabled)");
  3303. SERIAL_EOL();
  3304. #endif // MESH_BED_LEVELING
  3305. }
  3306. #endif // DEBUG_LEVELING_FEATURE
  3307. #if ENABLED(DELTA)
  3308. /**
  3309. * A delta can only safely home all axes at the same time
  3310. * This is like quick_home_xy() but for 3 towers.
  3311. */
  3312. inline bool home_delta() {
  3313. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3314. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3315. #endif
  3316. // Init the current position of all carriages to 0,0,0
  3317. ZERO(current_position);
  3318. sync_plan_position();
  3319. // Move all carriages together linearly until an endstop is hit.
  3320. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (delta_height + 10);
  3321. feedrate_mm_s = homing_feedrate(X_AXIS);
  3322. buffer_line_to_current_position();
  3323. stepper.synchronize();
  3324. // If an endstop was not hit, then damage can occur if homing is continued.
  3325. // This can occur if the delta height not set correctly.
  3326. if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) {
  3327. LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED);
  3328. SERIAL_ERROR_START();
  3329. SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED);
  3330. return false;
  3331. }
  3332. endstops.hit_on_purpose(); // clear endstop hit flags
  3333. // At least one carriage has reached the top.
  3334. // Now re-home each carriage separately.
  3335. HOMEAXIS(A);
  3336. HOMEAXIS(B);
  3337. HOMEAXIS(C);
  3338. // Set all carriages to their home positions
  3339. // Do this here all at once for Delta, because
  3340. // XYZ isn't ABC. Applying this per-tower would
  3341. // give the impression that they are the same.
  3342. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3343. SYNC_PLAN_POSITION_KINEMATIC();
  3344. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3345. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3346. #endif
  3347. return true;
  3348. }
  3349. #endif // DELTA
  3350. #if ENABLED(Z_SAFE_HOMING)
  3351. inline void home_z_safely() {
  3352. // Disallow Z homing if X or Y are unknown
  3353. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3354. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3355. SERIAL_ECHO_START();
  3356. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3357. return;
  3358. }
  3359. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3360. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3361. #endif
  3362. SYNC_PLAN_POSITION_KINEMATIC();
  3363. /**
  3364. * Move the Z probe (or just the nozzle) to the safe homing point
  3365. */
  3366. destination[X_AXIS] = Z_SAFE_HOMING_X_POINT;
  3367. destination[Y_AXIS] = Z_SAFE_HOMING_Y_POINT;
  3368. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3369. #if HOMING_Z_WITH_PROBE
  3370. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3371. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3372. #endif
  3373. if (position_is_reachable(destination[X_AXIS], destination[Y_AXIS])) {
  3374. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3375. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3376. #endif
  3377. // This causes the carriage on Dual X to unpark
  3378. #if ENABLED(DUAL_X_CARRIAGE)
  3379. active_extruder_parked = false;
  3380. #endif
  3381. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3382. HOMEAXIS(Z);
  3383. }
  3384. else {
  3385. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3386. SERIAL_ECHO_START();
  3387. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3388. }
  3389. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3390. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3391. #endif
  3392. }
  3393. #endif // Z_SAFE_HOMING
  3394. #if ENABLED(PROBE_MANUALLY)
  3395. bool g29_in_progress = false;
  3396. #else
  3397. constexpr bool g29_in_progress = false;
  3398. #endif
  3399. /**
  3400. * G28: Home all axes according to settings
  3401. *
  3402. * Parameters
  3403. *
  3404. * None Home to all axes with no parameters.
  3405. * With QUICK_HOME enabled XY will home together, then Z.
  3406. *
  3407. * Cartesian parameters
  3408. *
  3409. * X Home to the X endstop
  3410. * Y Home to the Y endstop
  3411. * Z Home to the Z endstop
  3412. *
  3413. */
  3414. inline void gcode_G28(const bool always_home_all) {
  3415. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3416. if (DEBUGGING(LEVELING)) {
  3417. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3418. log_machine_info();
  3419. }
  3420. #endif
  3421. // Wait for planner moves to finish!
  3422. stepper.synchronize();
  3423. // Cancel the active G29 session
  3424. #if ENABLED(PROBE_MANUALLY)
  3425. g29_in_progress = false;
  3426. #endif
  3427. // Disable the leveling matrix before homing
  3428. #if HAS_LEVELING
  3429. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3430. const bool ubl_state_at_entry = planner.leveling_active;
  3431. #endif
  3432. set_bed_leveling_enabled(false);
  3433. #endif
  3434. #if ENABLED(CNC_WORKSPACE_PLANES)
  3435. workspace_plane = PLANE_XY;
  3436. #endif
  3437. // Always home with tool 0 active
  3438. #if HOTENDS > 1
  3439. const uint8_t old_tool_index = active_extruder;
  3440. tool_change(0, 0, true);
  3441. #endif
  3442. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3443. extruder_duplication_enabled = false;
  3444. #endif
  3445. setup_for_endstop_or_probe_move();
  3446. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3447. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3448. #endif
  3449. endstops.enable(true); // Enable endstops for next homing move
  3450. #if ENABLED(DELTA)
  3451. home_delta();
  3452. UNUSED(always_home_all);
  3453. #else // NOT DELTA
  3454. const bool homeX = always_home_all || parser.seen('X'),
  3455. homeY = always_home_all || parser.seen('Y'),
  3456. homeZ = always_home_all || parser.seen('Z'),
  3457. home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3458. set_destination_from_current();
  3459. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3460. if (home_all || homeZ) {
  3461. HOMEAXIS(Z);
  3462. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3463. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3464. #endif
  3465. }
  3466. #endif
  3467. if (home_all || homeX || homeY) {
  3468. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3469. destination[Z_AXIS] = Z_HOMING_HEIGHT;
  3470. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3471. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3472. if (DEBUGGING(LEVELING))
  3473. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3474. #endif
  3475. do_blocking_move_to_z(destination[Z_AXIS]);
  3476. }
  3477. }
  3478. #if ENABLED(QUICK_HOME)
  3479. if (home_all || (homeX && homeY)) quick_home_xy();
  3480. #endif
  3481. #if ENABLED(HOME_Y_BEFORE_X)
  3482. // Home Y
  3483. if (home_all || homeY) {
  3484. HOMEAXIS(Y);
  3485. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3486. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3487. #endif
  3488. }
  3489. #endif
  3490. // Home X
  3491. if (home_all || homeX) {
  3492. #if ENABLED(DUAL_X_CARRIAGE)
  3493. // Always home the 2nd (right) extruder first
  3494. active_extruder = 1;
  3495. HOMEAXIS(X);
  3496. // Remember this extruder's position for later tool change
  3497. inactive_extruder_x_pos = current_position[X_AXIS];
  3498. // Home the 1st (left) extruder
  3499. active_extruder = 0;
  3500. HOMEAXIS(X);
  3501. // Consider the active extruder to be parked
  3502. COPY(raised_parked_position, current_position);
  3503. delayed_move_time = 0;
  3504. active_extruder_parked = true;
  3505. #else
  3506. HOMEAXIS(X);
  3507. #endif
  3508. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3509. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3510. #endif
  3511. }
  3512. #if DISABLED(HOME_Y_BEFORE_X)
  3513. // Home Y
  3514. if (home_all || homeY) {
  3515. HOMEAXIS(Y);
  3516. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3517. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3518. #endif
  3519. }
  3520. #endif
  3521. // Home Z last if homing towards the bed
  3522. #if Z_HOME_DIR < 0
  3523. if (home_all || homeZ) {
  3524. #if ENABLED(Z_SAFE_HOMING)
  3525. home_z_safely();
  3526. #else
  3527. HOMEAXIS(Z);
  3528. #endif
  3529. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3530. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
  3531. #endif
  3532. } // home_all || homeZ
  3533. #endif // Z_HOME_DIR < 0
  3534. SYNC_PLAN_POSITION_KINEMATIC();
  3535. #endif // !DELTA (gcode_G28)
  3536. endstops.not_homing();
  3537. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3538. // move to a height where we can use the full xy-area
  3539. do_blocking_move_to_z(delta_clip_start_height);
  3540. #endif
  3541. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3542. set_bed_leveling_enabled(ubl_state_at_entry);
  3543. #endif
  3544. clean_up_after_endstop_or_probe_move();
  3545. // Restore the active tool after homing
  3546. #if HOTENDS > 1
  3547. #if ENABLED(PARKING_EXTRUDER)
  3548. #define NO_FETCH false // fetch the previous toolhead
  3549. #else
  3550. #define NO_FETCH true
  3551. #endif
  3552. tool_change(old_tool_index, 0, NO_FETCH);
  3553. #endif
  3554. lcd_refresh();
  3555. report_current_position();
  3556. #if ENABLED(NANODLP_Z_SYNC)
  3557. #if ENABLED(NANODLP_ALL_AXIS)
  3558. #define _HOME_SYNC true // For any axis, output sync text.
  3559. #else
  3560. #define _HOME_SYNC (home_all || homeZ) // Only for Z-axis
  3561. #endif
  3562. if (_HOME_SYNC)
  3563. SERIAL_ECHOLNPGM(MSG_Z_MOVE_COMP);
  3564. #endif
  3565. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3566. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3567. #endif
  3568. } // G28
  3569. void home_all_axes() { gcode_G28(true); }
  3570. #if HAS_PROBING_PROCEDURE
  3571. void out_of_range_error(const char* p_edge) {
  3572. SERIAL_PROTOCOLPGM("?Probe ");
  3573. serialprintPGM(p_edge);
  3574. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3575. }
  3576. #endif
  3577. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3578. #if ENABLED(LCD_BED_LEVELING)
  3579. extern bool lcd_wait_for_move;
  3580. #else
  3581. constexpr bool lcd_wait_for_move = false;
  3582. #endif
  3583. inline void _manual_goto_xy(const float &rx, const float &ry) {
  3584. #if MANUAL_PROBE_HEIGHT > 0
  3585. const float prev_z = current_position[Z_AXIS];
  3586. do_blocking_move_to(rx, ry, MANUAL_PROBE_HEIGHT);
  3587. do_blocking_move_to_z(prev_z);
  3588. #else
  3589. do_blocking_move_to_xy(rx, ry);
  3590. #endif
  3591. current_position[X_AXIS] = rx;
  3592. current_position[Y_AXIS] = ry;
  3593. #if ENABLED(LCD_BED_LEVELING)
  3594. lcd_wait_for_move = false;
  3595. #endif
  3596. }
  3597. #endif
  3598. #if ENABLED(MESH_BED_LEVELING)
  3599. // Save 130 bytes with non-duplication of PSTR
  3600. void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3601. void mbl_mesh_report() {
  3602. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3603. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3604. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3605. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3606. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3607. );
  3608. }
  3609. /**
  3610. * G29: Mesh-based Z probe, probes a grid and produces a
  3611. * mesh to compensate for variable bed height
  3612. *
  3613. * Parameters With MESH_BED_LEVELING:
  3614. *
  3615. * S0 Produce a mesh report
  3616. * S1 Start probing mesh points
  3617. * S2 Probe the next mesh point
  3618. * S3 Xn Yn Zn.nn Manually modify a single point
  3619. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3620. * S5 Reset and disable mesh
  3621. *
  3622. * The S0 report the points as below
  3623. *
  3624. * +----> X-axis 1-n
  3625. * |
  3626. * |
  3627. * v Y-axis 1-n
  3628. *
  3629. */
  3630. inline void gcode_G29() {
  3631. static int mbl_probe_index = -1;
  3632. #if HAS_SOFTWARE_ENDSTOPS
  3633. static bool enable_soft_endstops;
  3634. #endif
  3635. const MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
  3636. if (!WITHIN(state, 0, 5)) {
  3637. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3638. return;
  3639. }
  3640. int8_t px, py;
  3641. switch (state) {
  3642. case MeshReport:
  3643. if (leveling_is_valid()) {
  3644. SERIAL_PROTOCOLLNPAIR("State: ", planner.leveling_active ? MSG_ON : MSG_OFF);
  3645. mbl_mesh_report();
  3646. }
  3647. else
  3648. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3649. break;
  3650. case MeshStart:
  3651. mbl.reset();
  3652. mbl_probe_index = 0;
  3653. enqueue_and_echo_commands_P(lcd_wait_for_move ? PSTR("G29 S2") : PSTR("G28\nG29 S2"));
  3654. break;
  3655. case MeshNext:
  3656. if (mbl_probe_index < 0) {
  3657. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3658. return;
  3659. }
  3660. // For each G29 S2...
  3661. if (mbl_probe_index == 0) {
  3662. #if HAS_SOFTWARE_ENDSTOPS
  3663. // For the initial G29 S2 save software endstop state
  3664. enable_soft_endstops = soft_endstops_enabled;
  3665. #endif
  3666. }
  3667. else {
  3668. // For G29 S2 after adjusting Z.
  3669. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3670. #if HAS_SOFTWARE_ENDSTOPS
  3671. soft_endstops_enabled = enable_soft_endstops;
  3672. #endif
  3673. }
  3674. // If there's another point to sample, move there with optional lift.
  3675. if (mbl_probe_index < GRID_MAX_POINTS) {
  3676. mbl.zigzag(mbl_probe_index, px, py);
  3677. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3678. #if HAS_SOFTWARE_ENDSTOPS
  3679. // Disable software endstops to allow manual adjustment
  3680. // If G29 is not completed, they will not be re-enabled
  3681. soft_endstops_enabled = false;
  3682. #endif
  3683. mbl_probe_index++;
  3684. }
  3685. else {
  3686. // One last "return to the bed" (as originally coded) at completion
  3687. current_position[Z_AXIS] = Z_MIN_POS + MANUAL_PROBE_HEIGHT;
  3688. buffer_line_to_current_position();
  3689. stepper.synchronize();
  3690. // After recording the last point, activate home and activate
  3691. mbl_probe_index = -1;
  3692. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3693. BUZZ(100, 659);
  3694. BUZZ(100, 698);
  3695. mbl.has_mesh = true;
  3696. home_all_axes();
  3697. set_bed_leveling_enabled(true);
  3698. #if ENABLED(MESH_G28_REST_ORIGIN)
  3699. current_position[Z_AXIS] = Z_MIN_POS;
  3700. set_destination_from_current();
  3701. buffer_line_to_destination(homing_feedrate(Z_AXIS));
  3702. stepper.synchronize();
  3703. #endif
  3704. #if ENABLED(LCD_BED_LEVELING)
  3705. lcd_wait_for_move = false;
  3706. #endif
  3707. }
  3708. break;
  3709. case MeshSet:
  3710. if (parser.seenval('X')) {
  3711. px = parser.value_int() - 1;
  3712. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3713. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3714. return;
  3715. }
  3716. }
  3717. else {
  3718. SERIAL_CHAR('X'); echo_not_entered();
  3719. return;
  3720. }
  3721. if (parser.seenval('Y')) {
  3722. py = parser.value_int() - 1;
  3723. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3724. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3725. return;
  3726. }
  3727. }
  3728. else {
  3729. SERIAL_CHAR('Y'); echo_not_entered();
  3730. return;
  3731. }
  3732. if (parser.seenval('Z'))
  3733. mbl.z_values[px][py] = parser.value_linear_units();
  3734. else {
  3735. SERIAL_CHAR('Z'); echo_not_entered();
  3736. return;
  3737. }
  3738. break;
  3739. case MeshSetZOffset:
  3740. if (parser.seenval('Z'))
  3741. mbl.z_offset = parser.value_linear_units();
  3742. else {
  3743. SERIAL_CHAR('Z'); echo_not_entered();
  3744. return;
  3745. }
  3746. break;
  3747. case MeshReset:
  3748. reset_bed_level();
  3749. break;
  3750. } // switch(state)
  3751. if (state == MeshStart || state == MeshNext) {
  3752. SERIAL_PROTOCOLPAIR("MBL G29 point ", min(mbl_probe_index, GRID_MAX_POINTS));
  3753. SERIAL_PROTOCOLLNPAIR(" of ", int(GRID_MAX_POINTS));
  3754. }
  3755. report_current_position();
  3756. }
  3757. #elif OLDSCHOOL_ABL
  3758. #if ABL_GRID
  3759. #if ENABLED(PROBE_Y_FIRST)
  3760. #define PR_OUTER_VAR xCount
  3761. #define PR_OUTER_END abl_grid_points_x
  3762. #define PR_INNER_VAR yCount
  3763. #define PR_INNER_END abl_grid_points_y
  3764. #else
  3765. #define PR_OUTER_VAR yCount
  3766. #define PR_OUTER_END abl_grid_points_y
  3767. #define PR_INNER_VAR xCount
  3768. #define PR_INNER_END abl_grid_points_x
  3769. #endif
  3770. #endif
  3771. /**
  3772. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3773. * Will fail if the printer has not been homed with G28.
  3774. *
  3775. * Enhanced G29 Auto Bed Leveling Probe Routine
  3776. *
  3777. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3778. * or alter the bed level data. Useful to check the topology
  3779. * after a first run of G29.
  3780. *
  3781. * J Jettison current bed leveling data
  3782. *
  3783. * V Set the verbose level (0-4). Example: "G29 V3"
  3784. *
  3785. * Parameters With LINEAR leveling only:
  3786. *
  3787. * P Set the size of the grid that will be probed (P x P points).
  3788. * Example: "G29 P4"
  3789. *
  3790. * X Set the X size of the grid that will be probed (X x Y points).
  3791. * Example: "G29 X7 Y5"
  3792. *
  3793. * Y Set the Y size of the grid that will be probed (X x Y points).
  3794. *
  3795. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3796. * This is useful for manual bed leveling and finding flaws in the bed (to
  3797. * assist with part placement).
  3798. * Not supported by non-linear delta printer bed leveling.
  3799. *
  3800. * Parameters With LINEAR and BILINEAR leveling only:
  3801. *
  3802. * S Set the XY travel speed between probe points (in units/min)
  3803. *
  3804. * F Set the Front limit of the probing grid
  3805. * B Set the Back limit of the probing grid
  3806. * L Set the Left limit of the probing grid
  3807. * R Set the Right limit of the probing grid
  3808. *
  3809. * Parameters with DEBUG_LEVELING_FEATURE only:
  3810. *
  3811. * C Make a totally fake grid with no actual probing.
  3812. * For use in testing when no probing is possible.
  3813. *
  3814. * Parameters with BILINEAR leveling only:
  3815. *
  3816. * Z Supply an additional Z probe offset
  3817. *
  3818. * Extra parameters with PROBE_MANUALLY:
  3819. *
  3820. * To do manual probing simply repeat G29 until the procedure is complete.
  3821. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3822. *
  3823. * Q Query leveling and G29 state
  3824. *
  3825. * A Abort current leveling procedure
  3826. *
  3827. * Extra parameters with BILINEAR only:
  3828. *
  3829. * W Write a mesh point. (If G29 is idle.)
  3830. * I X index for mesh point
  3831. * J Y index for mesh point
  3832. * X X for mesh point, overrides I
  3833. * Y Y for mesh point, overrides J
  3834. * Z Z for mesh point. Otherwise, raw current Z.
  3835. *
  3836. * Without PROBE_MANUALLY:
  3837. *
  3838. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3839. * Include "E" to engage/disengage the Z probe for each sample.
  3840. * There's no extra effect if you have a fixed Z probe.
  3841. *
  3842. */
  3843. inline void gcode_G29() {
  3844. // G29 Q is also available if debugging
  3845. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3846. const bool query = parser.seen('Q');
  3847. const uint8_t old_debug_flags = marlin_debug_flags;
  3848. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3849. if (DEBUGGING(LEVELING)) {
  3850. DEBUG_POS(">>> gcode_G29", current_position);
  3851. log_machine_info();
  3852. }
  3853. marlin_debug_flags = old_debug_flags;
  3854. #if DISABLED(PROBE_MANUALLY)
  3855. if (query) return;
  3856. #endif
  3857. #endif
  3858. #if ENABLED(PROBE_MANUALLY)
  3859. const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ;
  3860. #endif
  3861. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3862. const bool faux = parser.boolval('C');
  3863. #elif ENABLED(PROBE_MANUALLY)
  3864. const bool faux = no_action;
  3865. #else
  3866. bool constexpr faux = false;
  3867. #endif
  3868. // Don't allow auto-leveling without homing first
  3869. if (axis_unhomed_error()) return;
  3870. // Define local vars 'static' for manual probing, 'auto' otherwise
  3871. #if ENABLED(PROBE_MANUALLY)
  3872. #define ABL_VAR static
  3873. #else
  3874. #define ABL_VAR
  3875. #endif
  3876. ABL_VAR int verbose_level;
  3877. ABL_VAR float xProbe, yProbe, measured_z;
  3878. ABL_VAR bool dryrun, abl_should_enable;
  3879. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3880. ABL_VAR int abl_probe_index;
  3881. #endif
  3882. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3883. ABL_VAR bool enable_soft_endstops = true;
  3884. #endif
  3885. #if ABL_GRID
  3886. #if ENABLED(PROBE_MANUALLY)
  3887. ABL_VAR uint8_t PR_OUTER_VAR;
  3888. ABL_VAR int8_t PR_INNER_VAR;
  3889. #endif
  3890. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3891. ABL_VAR float xGridSpacing = 0, yGridSpacing = 0;
  3892. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3893. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3894. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3895. ABL_VAR bool do_topography_map;
  3896. #else // Bilinear
  3897. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3898. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3899. #endif
  3900. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3901. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3902. ABL_VAR int abl2;
  3903. #else // Bilinear
  3904. int constexpr abl2 = GRID_MAX_POINTS;
  3905. #endif
  3906. #endif
  3907. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3908. ABL_VAR float zoffset;
  3909. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3910. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3911. ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
  3912. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  3913. mean;
  3914. #endif
  3915. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3916. int constexpr abl2 = 3;
  3917. // Probe at 3 arbitrary points
  3918. ABL_VAR vector_3 points[3] = {
  3919. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3920. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3921. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3922. };
  3923. #endif // AUTO_BED_LEVELING_3POINT
  3924. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3925. struct linear_fit_data lsf_results;
  3926. incremental_LSF_reset(&lsf_results);
  3927. #endif
  3928. /**
  3929. * On the initial G29 fetch command parameters.
  3930. */
  3931. if (!g29_in_progress) {
  3932. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3933. abl_probe_index = -1;
  3934. #endif
  3935. abl_should_enable = planner.leveling_active;
  3936. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3937. if (parser.seen('W')) {
  3938. if (!leveling_is_valid()) {
  3939. SERIAL_ERROR_START();
  3940. SERIAL_ERRORLNPGM("No bilinear grid");
  3941. return;
  3942. }
  3943. const float rz = parser.seenval('Z') ? RAW_Z_POSITION(parser.value_linear_units()) : current_position[Z_AXIS];
  3944. if (!WITHIN(rz, -10, 10)) {
  3945. SERIAL_ERROR_START();
  3946. SERIAL_ERRORLNPGM("Bad Z value");
  3947. return;
  3948. }
  3949. const float rx = RAW_X_POSITION(parser.linearval('X', NAN)),
  3950. ry = RAW_Y_POSITION(parser.linearval('Y', NAN));
  3951. int8_t i = parser.byteval('I', -1),
  3952. j = parser.byteval('J', -1);
  3953. if (!isnan(rx) && !isnan(ry)) {
  3954. // Get nearest i / j from x / y
  3955. i = (rx - bilinear_start[X_AXIS] + 0.5 * xGridSpacing) / xGridSpacing;
  3956. j = (ry - bilinear_start[Y_AXIS] + 0.5 * yGridSpacing) / yGridSpacing;
  3957. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3958. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3959. }
  3960. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3961. set_bed_leveling_enabled(false);
  3962. z_values[i][j] = rz;
  3963. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3964. bed_level_virt_interpolate();
  3965. #endif
  3966. set_bed_leveling_enabled(abl_should_enable);
  3967. report_current_position();
  3968. }
  3969. return;
  3970. } // parser.seen('W')
  3971. #endif
  3972. #if HAS_LEVELING
  3973. // Jettison bed leveling data
  3974. if (parser.seen('J')) {
  3975. reset_bed_level();
  3976. return;
  3977. }
  3978. #endif
  3979. verbose_level = parser.intval('V');
  3980. if (!WITHIN(verbose_level, 0, 4)) {
  3981. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  3982. return;
  3983. }
  3984. dryrun = parser.boolval('D')
  3985. #if ENABLED(PROBE_MANUALLY)
  3986. || no_action
  3987. #endif
  3988. ;
  3989. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3990. do_topography_map = verbose_level > 2 || parser.boolval('T');
  3991. // X and Y specify points in each direction, overriding the default
  3992. // These values may be saved with the completed mesh
  3993. abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
  3994. abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
  3995. if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
  3996. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3997. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3998. return;
  3999. }
  4000. abl2 = abl_grid_points_x * abl_grid_points_y;
  4001. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4002. zoffset = parser.linearval('Z');
  4003. #endif
  4004. #if ABL_GRID
  4005. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  4006. left_probe_bed_position = parser.seenval('L') ? (int)RAW_X_POSITION(parser.value_linear_units()) : LEFT_PROBE_BED_POSITION;
  4007. right_probe_bed_position = parser.seenval('R') ? (int)RAW_X_POSITION(parser.value_linear_units()) : RIGHT_PROBE_BED_POSITION;
  4008. front_probe_bed_position = parser.seenval('F') ? (int)RAW_Y_POSITION(parser.value_linear_units()) : FRONT_PROBE_BED_POSITION;
  4009. back_probe_bed_position = parser.seenval('B') ? (int)RAW_Y_POSITION(parser.value_linear_units()) : BACK_PROBE_BED_POSITION;
  4010. const bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  4011. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  4012. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  4013. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  4014. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  4015. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  4016. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  4017. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  4018. if (left_out || right_out || front_out || back_out) {
  4019. if (left_out) {
  4020. out_of_range_error(PSTR("(L)eft"));
  4021. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  4022. }
  4023. if (right_out) {
  4024. out_of_range_error(PSTR("(R)ight"));
  4025. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  4026. }
  4027. if (front_out) {
  4028. out_of_range_error(PSTR("(F)ront"));
  4029. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  4030. }
  4031. if (back_out) {
  4032. out_of_range_error(PSTR("(B)ack"));
  4033. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  4034. }
  4035. return;
  4036. }
  4037. // probe at the points of a lattice grid
  4038. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  4039. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  4040. #endif // ABL_GRID
  4041. if (verbose_level > 0) {
  4042. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  4043. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  4044. }
  4045. stepper.synchronize();
  4046. // Disable auto bed leveling during G29
  4047. planner.leveling_active = false;
  4048. if (!dryrun) {
  4049. // Re-orient the current position without leveling
  4050. // based on where the steppers are positioned.
  4051. set_current_from_steppers_for_axis(ALL_AXES);
  4052. // Sync the planner to where the steppers stopped
  4053. SYNC_PLAN_POSITION_KINEMATIC();
  4054. }
  4055. #if HAS_BED_PROBE
  4056. // Deploy the probe. Probe will raise if needed.
  4057. if (DEPLOY_PROBE()) {
  4058. planner.leveling_active = abl_should_enable;
  4059. return;
  4060. }
  4061. #endif
  4062. if (!faux) setup_for_endstop_or_probe_move();
  4063. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4064. #if ENABLED(PROBE_MANUALLY)
  4065. if (!no_action)
  4066. #endif
  4067. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  4068. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  4069. || left_probe_bed_position != bilinear_start[X_AXIS]
  4070. || front_probe_bed_position != bilinear_start[Y_AXIS]
  4071. ) {
  4072. if (dryrun) {
  4073. // Before reset bed level, re-enable to correct the position
  4074. planner.leveling_active = abl_should_enable;
  4075. }
  4076. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  4077. reset_bed_level();
  4078. // Initialize a grid with the given dimensions
  4079. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  4080. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  4081. bilinear_start[X_AXIS] = left_probe_bed_position;
  4082. bilinear_start[Y_AXIS] = front_probe_bed_position;
  4083. // Can't re-enable (on error) until the new grid is written
  4084. abl_should_enable = false;
  4085. }
  4086. #endif // AUTO_BED_LEVELING_BILINEAR
  4087. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  4088. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4089. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  4090. #endif
  4091. // Probe at 3 arbitrary points
  4092. points[0].z = points[1].z = points[2].z = 0;
  4093. #endif // AUTO_BED_LEVELING_3POINT
  4094. } // !g29_in_progress
  4095. #if ENABLED(PROBE_MANUALLY)
  4096. // For manual probing, get the next index to probe now.
  4097. // On the first probe this will be incremented to 0.
  4098. if (!no_action) {
  4099. ++abl_probe_index;
  4100. g29_in_progress = true;
  4101. }
  4102. // Abort current G29 procedure, go back to idle state
  4103. if (seenA && g29_in_progress) {
  4104. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  4105. #if HAS_SOFTWARE_ENDSTOPS
  4106. soft_endstops_enabled = enable_soft_endstops;
  4107. #endif
  4108. planner.leveling_active = abl_should_enable;
  4109. g29_in_progress = false;
  4110. #if ENABLED(LCD_BED_LEVELING)
  4111. lcd_wait_for_move = false;
  4112. #endif
  4113. }
  4114. // Query G29 status
  4115. if (verbose_level || seenQ) {
  4116. SERIAL_PROTOCOLPGM("Manual G29 ");
  4117. if (g29_in_progress) {
  4118. SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2));
  4119. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  4120. }
  4121. else
  4122. SERIAL_PROTOCOLLNPGM("idle");
  4123. }
  4124. if (no_action) return;
  4125. if (abl_probe_index == 0) {
  4126. // For the initial G29 save software endstop state
  4127. #if HAS_SOFTWARE_ENDSTOPS
  4128. enable_soft_endstops = soft_endstops_enabled;
  4129. #endif
  4130. }
  4131. else {
  4132. // For G29 after adjusting Z.
  4133. // Save the previous Z before going to the next point
  4134. measured_z = current_position[Z_AXIS];
  4135. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4136. mean += measured_z;
  4137. eqnBVector[abl_probe_index] = measured_z;
  4138. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4139. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4140. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4141. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4142. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4143. z_values[xCount][yCount] = measured_z + zoffset;
  4144. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4145. if (DEBUGGING(LEVELING)) {
  4146. SERIAL_PROTOCOLPAIR("Save X", xCount);
  4147. SERIAL_PROTOCOLPAIR(" Y", yCount);
  4148. SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
  4149. }
  4150. #endif
  4151. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4152. points[abl_probe_index].z = measured_z;
  4153. #endif
  4154. }
  4155. //
  4156. // If there's another point to sample, move there with optional lift.
  4157. //
  4158. #if ABL_GRID
  4159. // Skip any unreachable points
  4160. while (abl_probe_index < abl2) {
  4161. // Set xCount, yCount based on abl_probe_index, with zig-zag
  4162. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  4163. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  4164. // Probe in reverse order for every other row/column
  4165. bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  4166. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  4167. const float xBase = xCount * xGridSpacing + left_probe_bed_position,
  4168. yBase = yCount * yGridSpacing + front_probe_bed_position;
  4169. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4170. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4171. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4172. indexIntoAB[xCount][yCount] = abl_probe_index;
  4173. #endif
  4174. // Keep looping till a reachable point is found
  4175. if (position_is_reachable(xProbe, yProbe)) break;
  4176. ++abl_probe_index;
  4177. }
  4178. // Is there a next point to move to?
  4179. if (abl_probe_index < abl2) {
  4180. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  4181. #if HAS_SOFTWARE_ENDSTOPS
  4182. // Disable software endstops to allow manual adjustment
  4183. // If G29 is not completed, they will not be re-enabled
  4184. soft_endstops_enabled = false;
  4185. #endif
  4186. return;
  4187. }
  4188. else {
  4189. // Leveling done! Fall through to G29 finishing code below
  4190. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  4191. // Re-enable software endstops, if needed
  4192. #if HAS_SOFTWARE_ENDSTOPS
  4193. soft_endstops_enabled = enable_soft_endstops;
  4194. #endif
  4195. }
  4196. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4197. // Probe at 3 arbitrary points
  4198. if (abl_probe_index < 3) {
  4199. xProbe = points[abl_probe_index].x;
  4200. yProbe = points[abl_probe_index].y;
  4201. #if HAS_SOFTWARE_ENDSTOPS
  4202. // Disable software endstops to allow manual adjustment
  4203. // If G29 is not completed, they will not be re-enabled
  4204. soft_endstops_enabled = false;
  4205. #endif
  4206. return;
  4207. }
  4208. else {
  4209. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  4210. // Re-enable software endstops, if needed
  4211. #if HAS_SOFTWARE_ENDSTOPS
  4212. soft_endstops_enabled = enable_soft_endstops;
  4213. #endif
  4214. if (!dryrun) {
  4215. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4216. if (planeNormal.z < 0) {
  4217. planeNormal.x *= -1;
  4218. planeNormal.y *= -1;
  4219. planeNormal.z *= -1;
  4220. }
  4221. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4222. // Can't re-enable (on error) until the new grid is written
  4223. abl_should_enable = false;
  4224. }
  4225. }
  4226. #endif // AUTO_BED_LEVELING_3POINT
  4227. #else // !PROBE_MANUALLY
  4228. {
  4229. const bool stow_probe_after_each = parser.boolval('E');
  4230. #if ABL_GRID
  4231. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  4232. measured_z = 0;
  4233. // Outer loop is Y with PROBE_Y_FIRST disabled
  4234. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
  4235. int8_t inStart, inStop, inInc;
  4236. if (zig) { // away from origin
  4237. inStart = 0;
  4238. inStop = PR_INNER_END;
  4239. inInc = 1;
  4240. }
  4241. else { // towards origin
  4242. inStart = PR_INNER_END - 1;
  4243. inStop = -1;
  4244. inInc = -1;
  4245. }
  4246. zig ^= true; // zag
  4247. // Inner loop is Y with PROBE_Y_FIRST enabled
  4248. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  4249. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  4250. yBase = front_probe_bed_position + yGridSpacing * yCount;
  4251. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4252. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4253. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4254. indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
  4255. #endif
  4256. #if IS_KINEMATIC
  4257. // Avoid probing outside the round or hexagonal area
  4258. if (!position_is_reachable_by_probe(xProbe, yProbe)) continue;
  4259. #endif
  4260. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4261. if (isnan(measured_z)) {
  4262. planner.leveling_active = abl_should_enable;
  4263. break;
  4264. }
  4265. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4266. mean += measured_z;
  4267. eqnBVector[abl_probe_index] = measured_z;
  4268. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4269. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4270. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4271. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4272. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4273. z_values[xCount][yCount] = measured_z + zoffset;
  4274. #endif
  4275. abl_should_enable = false;
  4276. idle();
  4277. } // inner
  4278. } // outer
  4279. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4280. // Probe at 3 arbitrary points
  4281. for (uint8_t i = 0; i < 3; ++i) {
  4282. // Retain the last probe position
  4283. xProbe = points[i].x;
  4284. yProbe = points[i].y;
  4285. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4286. if (isnan(measured_z)) {
  4287. planner.leveling_active = abl_should_enable;
  4288. break;
  4289. }
  4290. points[i].z = measured_z;
  4291. }
  4292. if (!dryrun && !isnan(measured_z)) {
  4293. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4294. if (planeNormal.z < 0) {
  4295. planeNormal.x *= -1;
  4296. planeNormal.y *= -1;
  4297. planeNormal.z *= -1;
  4298. }
  4299. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4300. // Can't re-enable (on error) until the new grid is written
  4301. abl_should_enable = false;
  4302. }
  4303. #endif // AUTO_BED_LEVELING_3POINT
  4304. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4305. if (STOW_PROBE()) {
  4306. planner.leveling_active = abl_should_enable;
  4307. measured_z = NAN;
  4308. }
  4309. }
  4310. #endif // !PROBE_MANUALLY
  4311. //
  4312. // G29 Finishing Code
  4313. //
  4314. // Unless this is a dry run, auto bed leveling will
  4315. // definitely be enabled after this point.
  4316. //
  4317. // If code above wants to continue leveling, it should
  4318. // return or loop before this point.
  4319. //
  4320. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4321. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4322. #endif
  4323. #if ENABLED(PROBE_MANUALLY)
  4324. g29_in_progress = false;
  4325. #if ENABLED(LCD_BED_LEVELING)
  4326. lcd_wait_for_move = false;
  4327. #endif
  4328. #endif
  4329. // Calculate leveling, print reports, correct the position
  4330. if (!isnan(measured_z)) {
  4331. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4332. if (!dryrun) extrapolate_unprobed_bed_level();
  4333. print_bilinear_leveling_grid();
  4334. refresh_bed_level();
  4335. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4336. print_bilinear_leveling_grid_virt();
  4337. #endif
  4338. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4339. // For LINEAR leveling calculate matrix, print reports, correct the position
  4340. /**
  4341. * solve the plane equation ax + by + d = z
  4342. * A is the matrix with rows [x y 1] for all the probed points
  4343. * B is the vector of the Z positions
  4344. * the normal vector to the plane is formed by the coefficients of the
  4345. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4346. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4347. */
  4348. float plane_equation_coefficients[3];
  4349. finish_incremental_LSF(&lsf_results);
  4350. plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
  4351. plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
  4352. plane_equation_coefficients[2] = -lsf_results.D;
  4353. mean /= abl2;
  4354. if (verbose_level) {
  4355. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4356. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4357. SERIAL_PROTOCOLPGM(" b: ");
  4358. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4359. SERIAL_PROTOCOLPGM(" d: ");
  4360. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4361. SERIAL_EOL();
  4362. if (verbose_level > 2) {
  4363. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4364. SERIAL_PROTOCOL_F(mean, 8);
  4365. SERIAL_EOL();
  4366. }
  4367. }
  4368. // Create the matrix but don't correct the position yet
  4369. if (!dryrun)
  4370. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4371. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
  4372. );
  4373. // Show the Topography map if enabled
  4374. if (do_topography_map) {
  4375. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4376. " +--- BACK --+\n"
  4377. " | |\n"
  4378. " L | (+) | R\n"
  4379. " E | | I\n"
  4380. " F | (-) N (+) | G\n"
  4381. " T | | H\n"
  4382. " | (-) | T\n"
  4383. " | |\n"
  4384. " O-- FRONT --+\n"
  4385. " (0,0)");
  4386. float min_diff = 999;
  4387. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4388. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4389. int ind = indexIntoAB[xx][yy];
  4390. float diff = eqnBVector[ind] - mean,
  4391. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4392. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4393. z_tmp = 0;
  4394. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4395. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4396. if (diff >= 0.0)
  4397. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4398. else
  4399. SERIAL_PROTOCOLCHAR(' ');
  4400. SERIAL_PROTOCOL_F(diff, 5);
  4401. } // xx
  4402. SERIAL_EOL();
  4403. } // yy
  4404. SERIAL_EOL();
  4405. if (verbose_level > 3) {
  4406. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4407. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4408. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4409. int ind = indexIntoAB[xx][yy];
  4410. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4411. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4412. z_tmp = 0;
  4413. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4414. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4415. if (diff >= 0.0)
  4416. SERIAL_PROTOCOLPGM(" +");
  4417. // Include + for column alignment
  4418. else
  4419. SERIAL_PROTOCOLCHAR(' ');
  4420. SERIAL_PROTOCOL_F(diff, 5);
  4421. } // xx
  4422. SERIAL_EOL();
  4423. } // yy
  4424. SERIAL_EOL();
  4425. }
  4426. } //do_topography_map
  4427. #endif // AUTO_BED_LEVELING_LINEAR
  4428. #if ABL_PLANAR
  4429. // For LINEAR and 3POINT leveling correct the current position
  4430. if (verbose_level > 0)
  4431. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  4432. if (!dryrun) {
  4433. //
  4434. // Correct the current XYZ position based on the tilted plane.
  4435. //
  4436. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4437. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4438. #endif
  4439. float converted[XYZ];
  4440. COPY(converted, current_position);
  4441. planner.leveling_active = true;
  4442. planner.unapply_leveling(converted); // use conversion machinery
  4443. planner.leveling_active = false;
  4444. // Use the last measured distance to the bed, if possible
  4445. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4446. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4447. ) {
  4448. const float simple_z = current_position[Z_AXIS] - measured_z;
  4449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4450. if (DEBUGGING(LEVELING)) {
  4451. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4452. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4453. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4454. }
  4455. #endif
  4456. converted[Z_AXIS] = simple_z;
  4457. }
  4458. // The rotated XY and corrected Z are now current_position
  4459. COPY(current_position, converted);
  4460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4461. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4462. #endif
  4463. }
  4464. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4465. if (!dryrun) {
  4466. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4467. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4468. #endif
  4469. // Unapply the offset because it is going to be immediately applied
  4470. // and cause compensation movement in Z
  4471. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4473. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4474. #endif
  4475. }
  4476. #endif // ABL_PLANAR
  4477. #ifdef Z_PROBE_END_SCRIPT
  4478. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4479. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4480. #endif
  4481. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4482. stepper.synchronize();
  4483. #endif
  4484. // Auto Bed Leveling is complete! Enable if possible.
  4485. planner.leveling_active = dryrun ? abl_should_enable : true;
  4486. } // !isnan(measured_z)
  4487. // Restore state after probing
  4488. if (!faux) clean_up_after_endstop_or_probe_move();
  4489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4490. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4491. #endif
  4492. report_current_position();
  4493. KEEPALIVE_STATE(IN_HANDLER);
  4494. if (planner.leveling_active)
  4495. SYNC_PLAN_POSITION_KINEMATIC();
  4496. }
  4497. #endif // OLDSCHOOL_ABL
  4498. #if HAS_BED_PROBE
  4499. /**
  4500. * G30: Do a single Z probe at the current XY
  4501. *
  4502. * Parameters:
  4503. *
  4504. * X Probe X position (default current X)
  4505. * Y Probe Y position (default current Y)
  4506. * E Engage the probe for each probe
  4507. */
  4508. inline void gcode_G30() {
  4509. const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
  4510. ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
  4511. if (!position_is_reachable_by_probe(xpos, ypos)) return;
  4512. // Disable leveling so the planner won't mess with us
  4513. #if HAS_LEVELING
  4514. set_bed_leveling_enabled(false);
  4515. #endif
  4516. setup_for_endstop_or_probe_move();
  4517. const float measured_z = probe_pt(xpos, ypos, parser.boolval('E'), 1);
  4518. if (!isnan(measured_z)) {
  4519. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4520. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4521. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4522. }
  4523. clean_up_after_endstop_or_probe_move();
  4524. report_current_position();
  4525. }
  4526. #if ENABLED(Z_PROBE_SLED)
  4527. /**
  4528. * G31: Deploy the Z probe
  4529. */
  4530. inline void gcode_G31() { DEPLOY_PROBE(); }
  4531. /**
  4532. * G32: Stow the Z probe
  4533. */
  4534. inline void gcode_G32() { STOW_PROBE(); }
  4535. #endif // Z_PROBE_SLED
  4536. #endif // HAS_BED_PROBE
  4537. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4538. constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
  4539. _4P_STEP = _7P_STEP * 2, // 4-point step
  4540. NPP = _7P_STEP * 6; // number of calibration points on the radius
  4541. enum CalEnum { // the 7 main calibration points - add definitions if needed
  4542. CEN = 0,
  4543. __A = 1,
  4544. _AB = __A + _7P_STEP,
  4545. __B = _AB + _7P_STEP,
  4546. _BC = __B + _7P_STEP,
  4547. __C = _BC + _7P_STEP,
  4548. _CA = __C + _7P_STEP,
  4549. };
  4550. #define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
  4551. #define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)
  4552. #define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
  4553. #define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
  4554. #define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
  4555. #define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
  4556. static void print_signed_float(const char * const prefix, const float &f) {
  4557. SERIAL_PROTOCOLPGM(" ");
  4558. serialprintPGM(prefix);
  4559. SERIAL_PROTOCOLCHAR(':');
  4560. if (f >= 0) SERIAL_CHAR('+');
  4561. SERIAL_PROTOCOL_F(f, 2);
  4562. }
  4563. static void print_G33_settings(const bool end_stops, const bool tower_angles) {
  4564. SERIAL_PROTOCOLPAIR(".Height:", delta_height);
  4565. if (end_stops) {
  4566. print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]);
  4567. print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]);
  4568. print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]);
  4569. }
  4570. if (end_stops && tower_angles) {
  4571. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4572. SERIAL_EOL();
  4573. SERIAL_CHAR('.');
  4574. SERIAL_PROTOCOL_SP(13);
  4575. }
  4576. if (tower_angles) {
  4577. print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
  4578. print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
  4579. print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
  4580. }
  4581. if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
  4582. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4583. }
  4584. SERIAL_EOL();
  4585. }
  4586. static void print_G33_results(const float z_at_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
  4587. SERIAL_PROTOCOLPGM(". ");
  4588. print_signed_float(PSTR("c"), z_at_pt[CEN]);
  4589. if (tower_points) {
  4590. print_signed_float(PSTR(" x"), z_at_pt[__A]);
  4591. print_signed_float(PSTR(" y"), z_at_pt[__B]);
  4592. print_signed_float(PSTR(" z"), z_at_pt[__C]);
  4593. }
  4594. if (tower_points && opposite_points) {
  4595. SERIAL_EOL();
  4596. SERIAL_CHAR('.');
  4597. SERIAL_PROTOCOL_SP(13);
  4598. }
  4599. if (opposite_points) {
  4600. print_signed_float(PSTR("yz"), z_at_pt[_BC]);
  4601. print_signed_float(PSTR("zx"), z_at_pt[_CA]);
  4602. print_signed_float(PSTR("xy"), z_at_pt[_AB]);
  4603. }
  4604. SERIAL_EOL();
  4605. }
  4606. /**
  4607. * After G33:
  4608. * - Move to the print ceiling (DELTA_HOME_TO_SAFE_ZONE only)
  4609. * - Stow the probe
  4610. * - Restore endstops state
  4611. * - Select the old tool, if needed
  4612. */
  4613. static void G33_cleanup(
  4614. #if HOTENDS > 1
  4615. const uint8_t old_tool_index
  4616. #endif
  4617. ) {
  4618. #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  4619. do_blocking_move_to_z(delta_clip_start_height);
  4620. #endif
  4621. STOW_PROBE();
  4622. clean_up_after_endstop_or_probe_move();
  4623. #if HOTENDS > 1
  4624. tool_change(old_tool_index, 0, true);
  4625. #endif
  4626. }
  4627. inline float calibration_probe(const float nx, const float ny, const bool stow) {
  4628. #if HAS_BED_PROBE
  4629. return probe_pt(nx, ny, stow, 0, false);
  4630. #else
  4631. UNUSED(stow);
  4632. return lcd_probe_pt(nx, ny);
  4633. #endif
  4634. }
  4635. static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
  4636. const bool _0p_calibration = probe_points == 0,
  4637. _1p_calibration = probe_points == 1,
  4638. _4p_calibration = probe_points == 2,
  4639. _4p_opposite_points = _4p_calibration && !towers_set,
  4640. _7p_calibration = probe_points >= 3 || probe_points == 0,
  4641. _7p_no_intermediates = probe_points == 3,
  4642. _7p_1_intermediates = probe_points == 4,
  4643. _7p_2_intermediates = probe_points == 5,
  4644. _7p_4_intermediates = probe_points == 6,
  4645. _7p_6_intermediates = probe_points == 7,
  4646. _7p_8_intermediates = probe_points == 8,
  4647. _7p_11_intermediates = probe_points == 9,
  4648. _7p_14_intermediates = probe_points == 10,
  4649. _7p_intermed_points = probe_points >= 4,
  4650. _7p_6_centre = probe_points >= 5 && probe_points <= 7,
  4651. _7p_9_centre = probe_points >= 8;
  4652. LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0;
  4653. if (!_0p_calibration) {
  4654. if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
  4655. z_at_pt[CEN] += calibration_probe(0, 0, stow_after_each);
  4656. if (isnan(z_at_pt[CEN])) return NAN;
  4657. }
  4658. if (_7p_calibration) { // probe extra center points
  4659. const float start = _7p_9_centre ? _CA + _7P_STEP / 3.0 : _7p_6_centre ? _CA : __C,
  4660. steps = _7p_9_centre ? _4P_STEP / 3.0 : _7p_6_centre ? _7P_STEP : _4P_STEP;
  4661. I_LOOP_CAL_PT(axis, start, steps) {
  4662. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4663. r = delta_calibration_radius * 0.1;
  4664. z_at_pt[CEN] += calibration_probe(cos(a) * r, sin(a) * r, stow_after_each);
  4665. if (isnan(z_at_pt[CEN])) return NAN;
  4666. }
  4667. z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
  4668. }
  4669. if (!_1p_calibration) { // probe the radius
  4670. const CalEnum start = _4p_opposite_points ? _AB : __A;
  4671. const float steps = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100
  4672. _7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 + 9c = 81
  4673. _7p_8_intermediates ? _7P_STEP / 9.0 : // 9r * 6 + 10c = 64
  4674. _7p_6_intermediates ? _7P_STEP / 7.0 : // 7r * 6 + 7c = 49
  4675. _7p_4_intermediates ? _7P_STEP / 5.0 : // 5r * 6 + 6c = 36
  4676. _7p_2_intermediates ? _7P_STEP / 3.0 : // 3r * 6 + 7c = 25
  4677. _7p_1_intermediates ? _7P_STEP / 2.0 : // 2r * 6 + 4c = 16
  4678. _7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
  4679. _4P_STEP; // .5r * 6 + 1c = 4
  4680. bool zig_zag = true;
  4681. F_LOOP_CAL_PT(axis, start, _7p_9_centre ? steps * 3 : steps) {
  4682. const int8_t offset = _7p_9_centre ? 1 : 0;
  4683. for (int8_t circle = -offset; circle <= offset; circle++) {
  4684. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4685. r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)),
  4686. interpol = fmod(axis, 1);
  4687. const float z_temp = calibration_probe(cos(a) * r, sin(a) * r, stow_after_each);
  4688. if (isnan(z_temp)) return NAN;
  4689. // split probe point to neighbouring calibration points
  4690. z_at_pt[uint8_t(round(axis - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
  4691. z_at_pt[uint8_t(round(axis - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
  4692. }
  4693. zig_zag = !zig_zag;
  4694. }
  4695. if (_7p_intermed_points)
  4696. LOOP_CAL_RAD(axis)
  4697. z_at_pt[axis] /= _7P_STEP / steps;
  4698. }
  4699. float S1 = z_at_pt[CEN],
  4700. S2 = sq(z_at_pt[CEN]);
  4701. int16_t N = 1;
  4702. if (!_1p_calibration) { // std dev from zero plane
  4703. LOOP_CAL_ACT(axis, _4p_calibration, _4p_opposite_points) {
  4704. S1 += z_at_pt[axis];
  4705. S2 += sq(z_at_pt[axis]);
  4706. N++;
  4707. }
  4708. return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4709. }
  4710. }
  4711. return 0.00001;
  4712. }
  4713. #if HAS_BED_PROBE
  4714. static bool G33_auto_tune() {
  4715. float z_at_pt[NPP + 1] = { 0.0 },
  4716. z_at_pt_base[NPP + 1] = { 0.0 },
  4717. z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8;
  4718. #define ZP(N,I) ((N) * z_at_pt[I])
  4719. #define Z06(I) ZP(6, I)
  4720. #define Z03(I) ZP(3, I)
  4721. #define Z02(I) ZP(2, I)
  4722. #define Z01(I) ZP(1, I)
  4723. #define Z32(I) ZP(3/2, I)
  4724. SERIAL_PROTOCOLPGM("AUTO TUNE baseline");
  4725. SERIAL_EOL();
  4726. if (isnan(probe_G33_points(z_at_pt_base, 3, true, false))) return false;
  4727. print_G33_results(z_at_pt_base, true, true);
  4728. LOOP_XYZ(axis) {
  4729. delta_endstop_adj[axis] -= 1.0;
  4730. recalc_delta_settings();
  4731. endstops.enable(true);
  4732. if (!home_delta()) return false;
  4733. endstops.not_homing();
  4734. SERIAL_PROTOCOLPGM("Tuning E");
  4735. SERIAL_CHAR(tolower(axis_codes[axis]));
  4736. SERIAL_EOL();
  4737. if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
  4738. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4739. print_G33_results(z_at_pt, true, true);
  4740. delta_endstop_adj[axis] += 1.0;
  4741. recalc_delta_settings();
  4742. switch (axis) {
  4743. case A_AXIS :
  4744. h_fac += 4.0 / (Z03(CEN) +Z01(__A) +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
  4745. break;
  4746. case B_AXIS :
  4747. h_fac += 4.0 / (Z03(CEN) +Z01(__B) +Z32(_BC) +Z32(_AB)); // Offset by Y-tower end-stop
  4748. break;
  4749. case C_AXIS :
  4750. h_fac += 4.0 / (Z03(CEN) +Z01(__C) +Z32(_BC) +Z32(_CA) ); // Offset by Z-tower end-stop
  4751. break;
  4752. }
  4753. }
  4754. h_fac /= 3.0;
  4755. h_fac *= norm; // Normalize to 1.02 for Kossel mini
  4756. for (int8_t zig_zag = -1; zig_zag < 2; zig_zag += 2) {
  4757. delta_radius += 1.0 * zig_zag;
  4758. recalc_delta_settings();
  4759. endstops.enable(true);
  4760. if (!home_delta()) return false;
  4761. endstops.not_homing();
  4762. SERIAL_PROTOCOLPGM("Tuning R");
  4763. SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+");
  4764. SERIAL_EOL();
  4765. if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
  4766. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4767. print_G33_results(z_at_pt, true, true);
  4768. delta_radius -= 1.0 * zig_zag;
  4769. recalc_delta_settings();
  4770. r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
  4771. }
  4772. r_fac /= 2.0;
  4773. r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini
  4774. LOOP_XYZ(axis) {
  4775. delta_tower_angle_trim[axis] += 1.0;
  4776. delta_endstop_adj[(axis + 1) % 3] -= 1.0 / 4.5;
  4777. delta_endstop_adj[(axis + 2) % 3] += 1.0 / 4.5;
  4778. z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  4779. delta_height -= z_temp;
  4780. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  4781. recalc_delta_settings();
  4782. endstops.enable(true);
  4783. if (!home_delta()) return false;
  4784. endstops.not_homing();
  4785. SERIAL_PROTOCOLPGM("Tuning T");
  4786. SERIAL_CHAR(tolower(axis_codes[axis]));
  4787. SERIAL_EOL();
  4788. if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
  4789. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4790. print_G33_results(z_at_pt, true, true);
  4791. delta_tower_angle_trim[axis] -= 1.0;
  4792. delta_endstop_adj[(axis+1) % 3] += 1.0/4.5;
  4793. delta_endstop_adj[(axis+2) % 3] -= 1.0/4.5;
  4794. z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  4795. delta_height -= z_temp;
  4796. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  4797. recalc_delta_settings();
  4798. switch (axis) {
  4799. case A_AXIS :
  4800. a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
  4801. break;
  4802. case B_AXIS :
  4803. a_fac += 4.0 / (-Z06(__A) +Z06(__C) -Z06(_BC) +Z06(_AB)); // Offset by beta tower angle
  4804. break;
  4805. case C_AXIS :
  4806. a_fac += 4.0 / (Z06(__A) -Z06(__B) +Z06(_BC) -Z06(_CA) ); // Offset by gamma tower angle
  4807. break;
  4808. }
  4809. }
  4810. a_fac /= 3.0;
  4811. a_fac *= norm; // Normalize to 0.83 for Kossel mini
  4812. endstops.enable(true);
  4813. if (!home_delta()) return false;
  4814. endstops.not_homing();
  4815. print_signed_float(PSTR( "H_FACTOR: "), h_fac);
  4816. print_signed_float(PSTR(" R_FACTOR: "), r_fac);
  4817. print_signed_float(PSTR(" A_FACTOR: "), a_fac);
  4818. SERIAL_EOL();
  4819. SERIAL_PROTOCOLPGM("Copy these values to Configuration.h");
  4820. SERIAL_EOL();
  4821. return true;
  4822. }
  4823. #endif // HAS_BED_PROBE
  4824. /**
  4825. * G33 - Delta '1-4-7-point' Auto-Calibration
  4826. * Calibrate height, endstops, delta radius, and tower angles.
  4827. *
  4828. * Parameters:
  4829. *
  4830. * Pn Number of probe points:
  4831. * P0 No probe. Normalize only.
  4832. * P1 Probe center and set height only.
  4833. * P2 Probe center and towers. Set height, endstops and delta radius.
  4834. * P3 Probe all positions: center, towers and opposite towers. Set all.
  4835. * P4-P10 Probe all positions + at different itermediate locations and average them.
  4836. *
  4837. * T Don't calibrate tower angle corrections
  4838. *
  4839. * Cn.nn Calibration precision; when omitted calibrates to maximum precision
  4840. *
  4841. * Fn Force to run at least n iterations and takes the best result
  4842. *
  4843. * A Auto tune calibartion factors (set in Configuration.h)
  4844. *
  4845. * Vn Verbose level:
  4846. * V0 Dry-run mode. Report settings and probe results. No calibration.
  4847. * V1 Report start and end settings only
  4848. * V2 Report settings at each iteration
  4849. * V3 Report settings and probe results
  4850. *
  4851. * E Engage the probe for each point
  4852. */
  4853. inline void gcode_G33() {
  4854. const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
  4855. if (!WITHIN(probe_points, 0, 10)) {
  4856. SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10).");
  4857. return;
  4858. }
  4859. const int8_t verbose_level = parser.byteval('V', 1);
  4860. if (!WITHIN(verbose_level, 0, 3)) {
  4861. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-3).");
  4862. return;
  4863. }
  4864. const float calibration_precision = parser.floatval('C', 0.0);
  4865. if (calibration_precision < 0) {
  4866. SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0).");
  4867. return;
  4868. }
  4869. const int8_t force_iterations = parser.intval('F', 0);
  4870. if (!WITHIN(force_iterations, 0, 30)) {
  4871. SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
  4872. return;
  4873. }
  4874. const bool towers_set = !parser.boolval('T'),
  4875. auto_tune = parser.boolval('A'),
  4876. stow_after_each = parser.boolval('E'),
  4877. _0p_calibration = probe_points == 0,
  4878. _1p_calibration = probe_points == 1,
  4879. _4p_calibration = probe_points == 2,
  4880. _7p_9_centre = probe_points >= 8,
  4881. _tower_results = (_4p_calibration && towers_set)
  4882. || probe_points >= 3 || probe_points == 0,
  4883. _opposite_results = (_4p_calibration && !towers_set)
  4884. || probe_points >= 3 || probe_points == 0,
  4885. _endstop_results = probe_points != 1,
  4886. _angle_results = (probe_points >= 3 || probe_points == 0) && towers_set;
  4887. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4888. int8_t iterations = 0;
  4889. float test_precision,
  4890. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4891. zero_std_dev_min = zero_std_dev,
  4892. e_old[ABC] = {
  4893. delta_endstop_adj[A_AXIS],
  4894. delta_endstop_adj[B_AXIS],
  4895. delta_endstop_adj[C_AXIS]
  4896. },
  4897. dr_old = delta_radius,
  4898. zh_old = delta_height,
  4899. ta_old[ABC] = {
  4900. delta_tower_angle_trim[A_AXIS],
  4901. delta_tower_angle_trim[B_AXIS],
  4902. delta_tower_angle_trim[C_AXIS]
  4903. };
  4904. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4905. if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
  4906. LOOP_CAL_RAD(axis) {
  4907. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4908. r = delta_calibration_radius * (1 + (_7p_9_centre ? 0.1 : 0.0));
  4909. if (!position_is_reachable(cos(a) * r, sin(a) * r)) {
  4910. SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
  4911. return;
  4912. }
  4913. }
  4914. }
  4915. stepper.synchronize();
  4916. #if HAS_LEVELING
  4917. reset_bed_level(); // After calibration bed-level data is no longer valid
  4918. #endif
  4919. #if HOTENDS > 1
  4920. const uint8_t old_tool_index = active_extruder;
  4921. tool_change(0, 0, true);
  4922. #define G33_CLEANUP() G33_cleanup(old_tool_index)
  4923. #else
  4924. #define G33_CLEANUP() G33_cleanup()
  4925. #endif
  4926. setup_for_endstop_or_probe_move();
  4927. endstops.enable(true);
  4928. if (!_0p_calibration) {
  4929. if (!home_delta())
  4930. return;
  4931. endstops.not_homing();
  4932. }
  4933. if (auto_tune) {
  4934. #if HAS_BED_PROBE
  4935. G33_auto_tune();
  4936. #else
  4937. SERIAL_PROTOCOLLNPGM("A probe is needed for auto-tune");
  4938. #endif
  4939. G33_CLEANUP();
  4940. return;
  4941. }
  4942. // Report settings
  4943. const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
  4944. serialprintPGM(checkingac);
  4945. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4946. SERIAL_EOL();
  4947. lcd_setstatusPGM(checkingac);
  4948. print_G33_settings(_endstop_results, _angle_results);
  4949. do {
  4950. float z_at_pt[NPP + 1] = { 0.0 };
  4951. test_precision = zero_std_dev;
  4952. iterations++;
  4953. // Probe the points
  4954. zero_std_dev = probe_G33_points(z_at_pt, probe_points, towers_set, stow_after_each);
  4955. if (isnan(zero_std_dev)) {
  4956. SERIAL_PROTOCOLPGM("Correct delta_radius with M665 R or end-stops with M666 X Y Z");
  4957. SERIAL_EOL();
  4958. return G33_CLEANUP();
  4959. }
  4960. // Solve matrices
  4961. if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
  4962. if (zero_std_dev < zero_std_dev_min) {
  4963. COPY(e_old, delta_endstop_adj);
  4964. dr_old = delta_radius;
  4965. zh_old = delta_height;
  4966. COPY(ta_old, delta_tower_angle_trim);
  4967. }
  4968. float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
  4969. const float r_diff = delta_radius - delta_calibration_radius,
  4970. h_factor = 1 / 6.0 *
  4971. #ifdef H_FACTOR
  4972. (H_FACTOR), // Set in Configuration.h
  4973. #else
  4974. (1.00 + r_diff * 0.001), // 1.02 for r_diff = 20mm
  4975. #endif
  4976. r_factor = 1 / 6.0 *
  4977. #ifdef R_FACTOR
  4978. -(R_FACTOR), // Set in Configuration.h
  4979. #else
  4980. -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), // 2.25 for r_diff = 20mm
  4981. #endif
  4982. a_factor = 1 / 6.0 *
  4983. #ifdef A_FACTOR
  4984. (A_FACTOR); // Set in Configuration.h
  4985. #else
  4986. (66.66 / delta_calibration_radius); // 0.83 for cal_rd = 80mm
  4987. #endif
  4988. #define ZP(N,I) ((N) * z_at_pt[I])
  4989. #define Z6(I) ZP(6, I)
  4990. #define Z4(I) ZP(4, I)
  4991. #define Z2(I) ZP(2, I)
  4992. #define Z1(I) ZP(1, I)
  4993. #if !HAS_BED_PROBE
  4994. test_precision = 0.00; // forced end
  4995. #endif
  4996. switch (probe_points) {
  4997. case 0:
  4998. test_precision = 0.00; // forced end
  4999. break;
  5000. case 1:
  5001. test_precision = 0.00; // forced end
  5002. LOOP_XYZ(axis) e_delta[axis] = Z1(CEN);
  5003. break;
  5004. case 2:
  5005. if (towers_set) {
  5006. e_delta[A_AXIS] = (Z6(CEN) +Z4(__A) -Z2(__B) -Z2(__C)) * h_factor;
  5007. e_delta[B_AXIS] = (Z6(CEN) -Z2(__A) +Z4(__B) -Z2(__C)) * h_factor;
  5008. e_delta[C_AXIS] = (Z6(CEN) -Z2(__A) -Z2(__B) +Z4(__C)) * h_factor;
  5009. r_delta = (Z6(CEN) -Z2(__A) -Z2(__B) -Z2(__C)) * r_factor;
  5010. }
  5011. else {
  5012. e_delta[A_AXIS] = (Z6(CEN) -Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor;
  5013. e_delta[B_AXIS] = (Z6(CEN) +Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor;
  5014. e_delta[C_AXIS] = (Z6(CEN) +Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor;
  5015. r_delta = (Z6(CEN) -Z2(_BC) -Z2(_CA) -Z2(_AB)) * r_factor;
  5016. }
  5017. break;
  5018. default:
  5019. e_delta[A_AXIS] = (Z6(CEN) +Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor;
  5020. e_delta[B_AXIS] = (Z6(CEN) -Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor;
  5021. e_delta[C_AXIS] = (Z6(CEN) -Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor;
  5022. r_delta = (Z6(CEN) -Z1(__A) -Z1(__B) -Z1(__C) -Z1(_BC) -Z1(_CA) -Z1(_AB)) * r_factor;
  5023. if (towers_set) {
  5024. t_delta[A_AXIS] = ( -Z4(__B) +Z4(__C) -Z4(_CA) +Z4(_AB)) * a_factor;
  5025. t_delta[B_AXIS] = ( Z4(__A) -Z4(__C) +Z4(_BC) -Z4(_AB)) * a_factor;
  5026. t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) -Z4(_BC) +Z4(_CA) ) * a_factor;
  5027. e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
  5028. e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
  5029. e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;
  5030. }
  5031. break;
  5032. }
  5033. LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis];
  5034. delta_radius += r_delta;
  5035. LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
  5036. }
  5037. else if (zero_std_dev >= test_precision) { // step one back
  5038. COPY(delta_endstop_adj, e_old);
  5039. delta_radius = dr_old;
  5040. delta_height = zh_old;
  5041. COPY(delta_tower_angle_trim, ta_old);
  5042. }
  5043. if (verbose_level != 0) { // !dry run
  5044. // normalise angles to least squares
  5045. if (_angle_results) {
  5046. float a_sum = 0.0;
  5047. LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
  5048. LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
  5049. }
  5050. // adjust delta_height and endstops by the max amount
  5051. const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  5052. delta_height -= z_temp;
  5053. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  5054. }
  5055. recalc_delta_settings();
  5056. NOMORE(zero_std_dev_min, zero_std_dev);
  5057. // print report
  5058. if (verbose_level > 2)
  5059. print_G33_results(z_at_pt, _tower_results, _opposite_results);
  5060. if (verbose_level != 0) { // !dry run
  5061. if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
  5062. SERIAL_PROTOCOLPGM("Calibration OK");
  5063. SERIAL_PROTOCOL_SP(32);
  5064. #if HAS_BED_PROBE
  5065. if (zero_std_dev >= test_precision && !_1p_calibration)
  5066. SERIAL_PROTOCOLPGM("rolling back.");
  5067. else
  5068. #endif
  5069. {
  5070. SERIAL_PROTOCOLPGM("std dev:");
  5071. SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
  5072. }
  5073. SERIAL_EOL();
  5074. char mess[21];
  5075. strcpy_P(mess, PSTR("Calibration sd:"));
  5076. if (zero_std_dev_min < 1)
  5077. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
  5078. else
  5079. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
  5080. lcd_setstatus(mess);
  5081. print_G33_settings(_endstop_results, _angle_results);
  5082. serialprintPGM(save_message);
  5083. SERIAL_EOL();
  5084. }
  5085. else { // !end iterations
  5086. char mess[15];
  5087. if (iterations < 31)
  5088. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  5089. else
  5090. strcpy_P(mess, PSTR("No convergence"));
  5091. SERIAL_PROTOCOL(mess);
  5092. SERIAL_PROTOCOL_SP(32);
  5093. SERIAL_PROTOCOLPGM("std dev:");
  5094. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  5095. SERIAL_EOL();
  5096. lcd_setstatus(mess);
  5097. if (verbose_level > 1)
  5098. print_G33_settings(_endstop_results, _angle_results);
  5099. }
  5100. }
  5101. else { // dry run
  5102. const char *enddryrun = PSTR("End DRY-RUN");
  5103. serialprintPGM(enddryrun);
  5104. SERIAL_PROTOCOL_SP(35);
  5105. SERIAL_PROTOCOLPGM("std dev:");
  5106. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  5107. SERIAL_EOL();
  5108. char mess[21];
  5109. strcpy_P(mess, enddryrun);
  5110. strcpy_P(&mess[11], PSTR(" sd:"));
  5111. if (zero_std_dev < 1)
  5112. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
  5113. else
  5114. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
  5115. lcd_setstatus(mess);
  5116. }
  5117. endstops.enable(true);
  5118. if (!home_delta())
  5119. return;
  5120. endstops.not_homing();
  5121. }
  5122. while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
  5123. G33_CLEANUP();
  5124. }
  5125. #endif // DELTA_AUTO_CALIBRATION
  5126. #if ENABLED(G38_PROBE_TARGET)
  5127. static bool G38_run_probe() {
  5128. bool G38_pass_fail = false;
  5129. #if MULTIPLE_PROBING > 1
  5130. // Get direction of move and retract
  5131. float retract_mm[XYZ];
  5132. LOOP_XYZ(i) {
  5133. float dist = destination[i] - current_position[i];
  5134. retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  5135. }
  5136. #endif
  5137. stepper.synchronize(); // wait until the machine is idle
  5138. // Move until destination reached or target hit
  5139. endstops.enable(true);
  5140. G38_move = true;
  5141. G38_endstop_hit = false;
  5142. prepare_move_to_destination();
  5143. stepper.synchronize();
  5144. G38_move = false;
  5145. endstops.hit_on_purpose();
  5146. set_current_from_steppers_for_axis(ALL_AXES);
  5147. SYNC_PLAN_POSITION_KINEMATIC();
  5148. if (G38_endstop_hit) {
  5149. G38_pass_fail = true;
  5150. #if MULTIPLE_PROBING > 1
  5151. // Move away by the retract distance
  5152. set_destination_from_current();
  5153. LOOP_XYZ(i) destination[i] += retract_mm[i];
  5154. endstops.enable(false);
  5155. prepare_move_to_destination();
  5156. stepper.synchronize();
  5157. feedrate_mm_s /= 4;
  5158. // Bump the target more slowly
  5159. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  5160. endstops.enable(true);
  5161. G38_move = true;
  5162. prepare_move_to_destination();
  5163. stepper.synchronize();
  5164. G38_move = false;
  5165. set_current_from_steppers_for_axis(ALL_AXES);
  5166. SYNC_PLAN_POSITION_KINEMATIC();
  5167. #endif
  5168. }
  5169. endstops.hit_on_purpose();
  5170. endstops.not_homing();
  5171. return G38_pass_fail;
  5172. }
  5173. /**
  5174. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  5175. * G38.3 - probe toward workpiece, stop on contact
  5176. *
  5177. * Like G28 except uses Z min probe for all axes
  5178. */
  5179. inline void gcode_G38(bool is_38_2) {
  5180. // Get X Y Z E F
  5181. gcode_get_destination();
  5182. setup_for_endstop_or_probe_move();
  5183. // If any axis has enough movement, do the move
  5184. LOOP_XYZ(i)
  5185. if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  5186. if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i);
  5187. // If G38.2 fails throw an error
  5188. if (!G38_run_probe() && is_38_2) {
  5189. SERIAL_ERROR_START();
  5190. SERIAL_ERRORLNPGM("Failed to reach target");
  5191. }
  5192. break;
  5193. }
  5194. clean_up_after_endstop_or_probe_move();
  5195. }
  5196. #endif // G38_PROBE_TARGET
  5197. #if HAS_MESH
  5198. /**
  5199. * G42: Move X & Y axes to mesh coordinates (I & J)
  5200. */
  5201. inline void gcode_G42() {
  5202. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  5203. if (axis_unhomed_error()) return;
  5204. #endif
  5205. if (IsRunning()) {
  5206. const bool hasI = parser.seenval('I');
  5207. const int8_t ix = hasI ? parser.value_int() : 0;
  5208. const bool hasJ = parser.seenval('J');
  5209. const int8_t iy = hasJ ? parser.value_int() : 0;
  5210. if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
  5211. SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
  5212. return;
  5213. }
  5214. set_destination_from_current();
  5215. if (hasI) destination[X_AXIS] = _GET_MESH_X(ix);
  5216. if (hasJ) destination[Y_AXIS] = _GET_MESH_Y(iy);
  5217. if (parser.boolval('P')) {
  5218. if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  5219. if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  5220. }
  5221. const float fval = parser.linearval('F');
  5222. if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
  5223. // SCARA kinematic has "safe" XY raw moves
  5224. #if IS_SCARA
  5225. prepare_uninterpolated_move_to_destination();
  5226. #else
  5227. prepare_move_to_destination();
  5228. #endif
  5229. }
  5230. }
  5231. #endif // HAS_MESH
  5232. /**
  5233. * G92: Set current position to given X Y Z E
  5234. */
  5235. inline void gcode_G92() {
  5236. stepper.synchronize();
  5237. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  5238. switch (parser.subcode) {
  5239. case 1:
  5240. // Zero the G92 values and restore current position
  5241. #if !IS_SCARA
  5242. LOOP_XYZ(i) {
  5243. const float v = position_shift[i];
  5244. if (v) {
  5245. position_shift[i] = 0;
  5246. update_software_endstops((AxisEnum)i);
  5247. }
  5248. }
  5249. #endif // Not SCARA
  5250. return;
  5251. }
  5252. #endif
  5253. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  5254. #define IS_G92_0 (parser.subcode == 0)
  5255. #else
  5256. #define IS_G92_0 true
  5257. #endif
  5258. bool didE = false;
  5259. #if IS_SCARA || !HAS_POSITION_SHIFT
  5260. bool didXYZ = false;
  5261. #else
  5262. constexpr bool didXYZ = false;
  5263. #endif
  5264. if (IS_G92_0) LOOP_XYZE(i) {
  5265. if (parser.seenval(axis_codes[i])) {
  5266. const float l = parser.value_axis_units((AxisEnum)i),
  5267. v = i == E_AXIS ? l : LOGICAL_TO_NATIVE(l, i),
  5268. d = v - current_position[i];
  5269. if (!NEAR_ZERO(d)) {
  5270. #if IS_SCARA || !HAS_POSITION_SHIFT
  5271. if (i == E_AXIS) didE = true; else didXYZ = true;
  5272. current_position[i] = v; // Without workspaces revert to Marlin 1.0 behavior
  5273. #elif HAS_POSITION_SHIFT
  5274. if (i == E_AXIS) {
  5275. didE = true;
  5276. current_position[E_AXIS] = v; // When using coordinate spaces, only E is set directly
  5277. }
  5278. else {
  5279. position_shift[i] += d; // Other axes simply offset the coordinate space
  5280. update_software_endstops((AxisEnum)i);
  5281. }
  5282. #endif
  5283. }
  5284. }
  5285. }
  5286. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  5287. // Apply workspace offset to the active coordinate system
  5288. if (WITHIN(active_coordinate_system, 0, MAX_COORDINATE_SYSTEMS - 1))
  5289. COPY(coordinate_system[active_coordinate_system], position_shift);
  5290. #endif
  5291. if (didXYZ)
  5292. SYNC_PLAN_POSITION_KINEMATIC();
  5293. else if (didE)
  5294. sync_plan_position_e();
  5295. report_current_position();
  5296. }
  5297. #if HAS_RESUME_CONTINUE
  5298. /**
  5299. * M0: Unconditional stop - Wait for user button press on LCD
  5300. * M1: Conditional stop - Wait for user button press on LCD
  5301. */
  5302. inline void gcode_M0_M1() {
  5303. const char * const args = parser.string_arg;
  5304. millis_t ms = 0;
  5305. bool hasP = false, hasS = false;
  5306. if (parser.seenval('P')) {
  5307. ms = parser.value_millis(); // milliseconds to wait
  5308. hasP = ms > 0;
  5309. }
  5310. if (parser.seenval('S')) {
  5311. ms = parser.value_millis_from_seconds(); // seconds to wait
  5312. hasS = ms > 0;
  5313. }
  5314. #if ENABLED(ULTIPANEL)
  5315. if (!hasP && !hasS && args && *args)
  5316. lcd_setstatus(args, true);
  5317. else {
  5318. LCD_MESSAGEPGM(MSG_USERWAIT);
  5319. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  5320. dontExpireStatus();
  5321. #endif
  5322. }
  5323. #else
  5324. if (!hasP && !hasS && args && *args) {
  5325. SERIAL_ECHO_START();
  5326. SERIAL_ECHOLN(args);
  5327. }
  5328. #endif
  5329. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5330. wait_for_user = true;
  5331. stepper.synchronize();
  5332. refresh_cmd_timeout();
  5333. if (ms > 0) {
  5334. ms += previous_cmd_ms; // wait until this time for a click
  5335. while (PENDING(millis(), ms) && wait_for_user) idle();
  5336. }
  5337. else {
  5338. #if ENABLED(ULTIPANEL)
  5339. if (lcd_detected()) {
  5340. while (wait_for_user) idle();
  5341. print_job_timer.isPaused() ? LCD_MESSAGEPGM(WELCOME_MSG) : LCD_MESSAGEPGM(MSG_RESUMING);
  5342. }
  5343. #else
  5344. while (wait_for_user) idle();
  5345. #endif
  5346. }
  5347. wait_for_user = false;
  5348. KEEPALIVE_STATE(IN_HANDLER);
  5349. }
  5350. #endif // HAS_RESUME_CONTINUE
  5351. #if ENABLED(SPINDLE_LASER_ENABLE)
  5352. /**
  5353. * M3: Spindle Clockwise
  5354. * M4: Spindle Counter-clockwise
  5355. *
  5356. * S0 turns off spindle.
  5357. *
  5358. * If no speed PWM output is defined then M3/M4 just turns it on.
  5359. *
  5360. * At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
  5361. * Hardware PWM is required. ISRs are too slow.
  5362. *
  5363. * NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
  5364. * No other settings give a PWM signal that goes from 0 to 5 volts.
  5365. *
  5366. * The system automatically sets WGM to Mode 1, so no special
  5367. * initialization is needed.
  5368. *
  5369. * WGM bits for timer 2 are automatically set by the system to
  5370. * Mode 1. This produces an acceptable 0 to 5 volt signal.
  5371. * No special initialization is needed.
  5372. *
  5373. * NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
  5374. * factors for timers 2, 3, 4, and 5 are acceptable.
  5375. *
  5376. * SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
  5377. * the spindle/laser during power-up or when connecting to the host
  5378. * (usually goes through a reset which sets all I/O pins to tri-state)
  5379. *
  5380. * PWM duty cycle goes from 0 (off) to 255 (always on).
  5381. */
  5382. // Wait for spindle to come up to speed
  5383. inline void delay_for_power_up() { dwell(SPINDLE_LASER_POWERUP_DELAY); }
  5384. // Wait for spindle to stop turning
  5385. inline void delay_for_power_down() { dwell(SPINDLE_LASER_POWERDOWN_DELAY); }
  5386. /**
  5387. * ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
  5388. *
  5389. * it accepts inputs of 0-255
  5390. */
  5391. inline void ocr_val_mode() {
  5392. uint8_t spindle_laser_power = parser.value_byte();
  5393. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5394. if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
  5395. analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
  5396. }
  5397. inline void gcode_M3_M4(bool is_M3) {
  5398. stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
  5399. #if SPINDLE_DIR_CHANGE
  5400. const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
  5401. if (SPINDLE_STOP_ON_DIR_CHANGE \
  5402. && READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
  5403. && READ(SPINDLE_DIR_PIN) != rotation_dir
  5404. ) {
  5405. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
  5406. delay_for_power_down();
  5407. }
  5408. WRITE(SPINDLE_DIR_PIN, rotation_dir);
  5409. #endif
  5410. /**
  5411. * Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
  5412. * Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
  5413. * Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
  5414. */
  5415. #if ENABLED(SPINDLE_LASER_PWM)
  5416. if (parser.seen('O')) ocr_val_mode();
  5417. else {
  5418. const float spindle_laser_power = parser.floatval('S');
  5419. if (spindle_laser_power == 0) {
  5420. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
  5421. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // only write low byte
  5422. delay_for_power_down();
  5423. }
  5424. else {
  5425. int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
  5426. NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
  5427. if (spindle_laser_power <= SPEED_POWER_MIN)
  5428. ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting
  5429. if (spindle_laser_power >= SPEED_POWER_MAX)
  5430. ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM
  5431. if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
  5432. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5433. analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
  5434. delay_for_power_up();
  5435. }
  5436. }
  5437. #else
  5438. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
  5439. delay_for_power_up();
  5440. #endif
  5441. }
  5442. /**
  5443. * M5 turn off spindle
  5444. */
  5445. inline void gcode_M5() {
  5446. stepper.synchronize();
  5447. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
  5448. delay_for_power_down();
  5449. }
  5450. #endif // SPINDLE_LASER_ENABLE
  5451. /**
  5452. * M17: Enable power on all stepper motors
  5453. */
  5454. inline void gcode_M17() {
  5455. LCD_MESSAGEPGM(MSG_NO_MOVE);
  5456. enable_all_steppers();
  5457. }
  5458. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  5459. static float resume_position[XYZE];
  5460. static bool move_away_flag = false;
  5461. #if ENABLED(SDSUPPORT)
  5462. static bool sd_print_paused = false;
  5463. #endif
  5464. static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
  5465. static millis_t next_buzz = 0;
  5466. static int8_t runout_beep = 0;
  5467. if (init) next_buzz = runout_beep = 0;
  5468. const millis_t ms = millis();
  5469. if (ELAPSED(ms, next_buzz)) {
  5470. if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
  5471. next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
  5472. BUZZ(300, 2000);
  5473. runout_beep++;
  5474. }
  5475. }
  5476. }
  5477. static void ensure_safe_temperature() {
  5478. bool heaters_heating = true;
  5479. wait_for_heatup = true; // M108 will clear this
  5480. while (wait_for_heatup && heaters_heating) {
  5481. idle();
  5482. heaters_heating = false;
  5483. HOTEND_LOOP() {
  5484. if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) {
  5485. heaters_heating = true;
  5486. #if ENABLED(ULTIPANEL)
  5487. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  5488. #endif
  5489. break;
  5490. }
  5491. }
  5492. }
  5493. }
  5494. #if IS_KINEMATIC
  5495. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  5496. #else
  5497. #define RUNPLAN(RATE_MM_S) buffer_line_to_destination(RATE_MM_S)
  5498. #endif
  5499. void do_pause_e_move(const float &length, const float fr) {
  5500. current_position[E_AXIS] += length / planner.e_factor[active_extruder];
  5501. set_destination_from_current();
  5502. RUNPLAN(fr);
  5503. stepper.synchronize();
  5504. }
  5505. static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos,
  5506. const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false
  5507. ) {
  5508. if (move_away_flag) return false; // already paused
  5509. if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) {
  5510. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5511. if (!thermalManager.allow_cold_extrude &&
  5512. thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
  5513. SERIAL_ERROR_START();
  5514. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5515. return false;
  5516. }
  5517. #endif
  5518. ensure_safe_temperature(); // wait for extruder to heat up before unloading
  5519. }
  5520. // Indicate that the printer is paused
  5521. move_away_flag = true;
  5522. // Pause the print job and timer
  5523. #if ENABLED(SDSUPPORT)
  5524. if (card.sdprinting) {
  5525. card.pauseSDPrint();
  5526. sd_print_paused = true;
  5527. }
  5528. #endif
  5529. print_job_timer.pause();
  5530. // Show initial message and wait for synchronize steppers
  5531. if (show_lcd) {
  5532. #if ENABLED(ULTIPANEL)
  5533. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
  5534. #endif
  5535. }
  5536. // Save current position
  5537. stepper.synchronize();
  5538. COPY(resume_position, current_position);
  5539. // Initial retract before move to filament change position
  5540. if (retract) do_pause_e_move(retract, PAUSE_PARK_RETRACT_FEEDRATE);
  5541. // Lift Z axis
  5542. if (z_lift > 0)
  5543. do_blocking_move_to_z(current_position[Z_AXIS] + z_lift, PAUSE_PARK_Z_FEEDRATE);
  5544. // Move XY axes to filament exchange position
  5545. do_blocking_move_to_xy(x_pos, y_pos, PAUSE_PARK_XY_FEEDRATE);
  5546. if (unload_length != 0) {
  5547. if (show_lcd) {
  5548. #if ENABLED(ULTIPANEL)
  5549. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD);
  5550. idle();
  5551. #endif
  5552. }
  5553. // Unload filament
  5554. do_pause_e_move(unload_length, FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5555. }
  5556. if (show_lcd) {
  5557. #if ENABLED(ULTIPANEL)
  5558. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5559. #endif
  5560. }
  5561. #if HAS_BUZZER
  5562. filament_change_beep(max_beep_count, true);
  5563. #endif
  5564. idle();
  5565. // Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
  5566. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
  5567. disable_e_steppers();
  5568. safe_delay(100);
  5569. #endif
  5570. // Start the heater idle timers
  5571. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5572. HOTEND_LOOP()
  5573. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5574. return true;
  5575. }
  5576. static void wait_for_filament_reload(const int8_t max_beep_count = 0) {
  5577. bool nozzle_timed_out = false;
  5578. // Wait for filament insert by user and press button
  5579. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5580. wait_for_user = true; // LCD click or M108 will clear this
  5581. while (wait_for_user) {
  5582. #if HAS_BUZZER
  5583. filament_change_beep(max_beep_count);
  5584. #endif
  5585. // If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
  5586. // re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
  5587. if (!nozzle_timed_out)
  5588. HOTEND_LOOP()
  5589. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5590. if (nozzle_timed_out) {
  5591. #if ENABLED(ULTIPANEL)
  5592. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  5593. #endif
  5594. // Wait for LCD click or M108
  5595. while (wait_for_user) idle(true);
  5596. // Re-enable the heaters if they timed out
  5597. HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
  5598. // Wait for the heaters to reach the target temperatures
  5599. ensure_safe_temperature();
  5600. #if ENABLED(ULTIPANEL)
  5601. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5602. #endif
  5603. // Start the heater idle timers
  5604. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5605. HOTEND_LOOP()
  5606. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5607. wait_for_user = true; /* Wait for user to load filament */
  5608. nozzle_timed_out = false;
  5609. #if HAS_BUZZER
  5610. filament_change_beep(max_beep_count, true);
  5611. #endif
  5612. }
  5613. idle(true);
  5614. }
  5615. KEEPALIVE_STATE(IN_HANDLER);
  5616. }
  5617. static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) {
  5618. bool nozzle_timed_out = false;
  5619. if (!move_away_flag) return;
  5620. // Re-enable the heaters if they timed out
  5621. HOTEND_LOOP() {
  5622. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5623. thermalManager.reset_heater_idle_timer(e);
  5624. }
  5625. if (nozzle_timed_out) ensure_safe_temperature();
  5626. #if HAS_BUZZER
  5627. filament_change_beep(max_beep_count, true);
  5628. #endif
  5629. set_destination_from_current();
  5630. if (load_length != 0) {
  5631. #if ENABLED(ULTIPANEL)
  5632. // Show "insert filament"
  5633. if (nozzle_timed_out)
  5634. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5635. #endif
  5636. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5637. wait_for_user = true; // LCD click or M108 will clear this
  5638. while (wait_for_user && nozzle_timed_out) {
  5639. #if HAS_BUZZER
  5640. filament_change_beep(max_beep_count);
  5641. #endif
  5642. idle(true);
  5643. }
  5644. KEEPALIVE_STATE(IN_HANDLER);
  5645. #if ENABLED(ULTIPANEL)
  5646. // Show "load" message
  5647. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD);
  5648. #endif
  5649. // Load filament
  5650. do_pause_e_move(load_length, FILAMENT_CHANGE_LOAD_FEEDRATE);
  5651. }
  5652. #if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0
  5653. float extrude_length = initial_extrude_length;
  5654. do {
  5655. if (extrude_length > 0) {
  5656. // "Wait for filament extrude"
  5657. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE);
  5658. // Extrude filament to get into hotend
  5659. do_pause_e_move(extrude_length, ADVANCED_PAUSE_EXTRUDE_FEEDRATE);
  5660. }
  5661. // Show "Extrude More" / "Resume" menu and wait for reply
  5662. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5663. wait_for_user = false;
  5664. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION);
  5665. while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
  5666. KEEPALIVE_STATE(IN_HANDLER);
  5667. extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH;
  5668. // Keep looping if "Extrude More" was selected
  5669. } while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE);
  5670. #endif
  5671. #if ENABLED(ULTIPANEL)
  5672. // "Wait for print to resume"
  5673. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
  5674. #endif
  5675. // Set extruder to saved position
  5676. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  5677. planner.set_e_position_mm(current_position[E_AXIS]);
  5678. // Move XY to starting position, then Z
  5679. do_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], PAUSE_PARK_XY_FEEDRATE);
  5680. do_blocking_move_to_z(resume_position[Z_AXIS], PAUSE_PARK_Z_FEEDRATE);
  5681. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5682. filament_ran_out = false;
  5683. #endif
  5684. #if ENABLED(ULTIPANEL)
  5685. // Show status screen
  5686. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
  5687. #endif
  5688. #if ENABLED(SDSUPPORT)
  5689. if (sd_print_paused) {
  5690. card.startFileprint();
  5691. sd_print_paused = false;
  5692. }
  5693. #endif
  5694. move_away_flag = false;
  5695. }
  5696. #endif // ADVANCED_PAUSE_FEATURE
  5697. #if ENABLED(SDSUPPORT)
  5698. /**
  5699. * M20: List SD card to serial output
  5700. */
  5701. inline void gcode_M20() {
  5702. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  5703. card.ls();
  5704. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  5705. }
  5706. /**
  5707. * M21: Init SD Card
  5708. */
  5709. inline void gcode_M21() { card.initsd(); }
  5710. /**
  5711. * M22: Release SD Card
  5712. */
  5713. inline void gcode_M22() { card.release(); }
  5714. /**
  5715. * M23: Open a file
  5716. */
  5717. inline void gcode_M23() {
  5718. // Simplify3D includes the size, so zero out all spaces (#7227)
  5719. for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0';
  5720. card.openFile(parser.string_arg, true);
  5721. }
  5722. /**
  5723. * M24: Start or Resume SD Print
  5724. */
  5725. inline void gcode_M24() {
  5726. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5727. resume_print();
  5728. #endif
  5729. card.startFileprint();
  5730. print_job_timer.start();
  5731. }
  5732. /**
  5733. * M25: Pause SD Print
  5734. */
  5735. inline void gcode_M25() {
  5736. card.pauseSDPrint();
  5737. print_job_timer.pause();
  5738. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5739. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  5740. #endif
  5741. }
  5742. /**
  5743. * M26: Set SD Card file index
  5744. */
  5745. inline void gcode_M26() {
  5746. if (card.cardOK && parser.seenval('S'))
  5747. card.setIndex(parser.value_long());
  5748. }
  5749. /**
  5750. * M27: Get SD Card status
  5751. */
  5752. inline void gcode_M27() { card.getStatus(); }
  5753. /**
  5754. * M28: Start SD Write
  5755. */
  5756. inline void gcode_M28() { card.openFile(parser.string_arg, false); }
  5757. /**
  5758. * M29: Stop SD Write
  5759. * Processed in write to file routine above
  5760. */
  5761. inline void gcode_M29() {
  5762. // card.saving = false;
  5763. }
  5764. /**
  5765. * M30 <filename>: Delete SD Card file
  5766. */
  5767. inline void gcode_M30() {
  5768. if (card.cardOK) {
  5769. card.closefile();
  5770. card.removeFile(parser.string_arg);
  5771. }
  5772. }
  5773. #endif // SDSUPPORT
  5774. /**
  5775. * M31: Get the time since the start of SD Print (or last M109)
  5776. */
  5777. inline void gcode_M31() {
  5778. char buffer[21];
  5779. duration_t elapsed = print_job_timer.duration();
  5780. elapsed.toString(buffer);
  5781. lcd_setstatus(buffer);
  5782. SERIAL_ECHO_START();
  5783. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  5784. }
  5785. #if ENABLED(SDSUPPORT)
  5786. /**
  5787. * M32: Select file and start SD Print
  5788. *
  5789. * Examples:
  5790. *
  5791. * M32 !PATH/TO/FILE.GCO# ; Start FILE.GCO
  5792. * M32 P !PATH/TO/FILE.GCO# ; Start FILE.GCO as a procedure
  5793. * M32 S60 !PATH/TO/FILE.GCO# ; Start FILE.GCO at byte 60
  5794. *
  5795. */
  5796. inline void gcode_M32() {
  5797. if (card.sdprinting) stepper.synchronize();
  5798. if (card.cardOK) {
  5799. const bool call_procedure = parser.boolval('P');
  5800. card.openFile(parser.string_arg, true, call_procedure);
  5801. if (parser.seenval('S')) card.setIndex(parser.value_long());
  5802. card.startFileprint();
  5803. // Procedure calls count as normal print time.
  5804. if (!call_procedure) print_job_timer.start();
  5805. }
  5806. }
  5807. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5808. /**
  5809. * M33: Get the long full path of a file or folder
  5810. *
  5811. * Parameters:
  5812. * <dospath> Case-insensitive DOS-style path to a file or folder
  5813. *
  5814. * Example:
  5815. * M33 miscel~1/armchair/armcha~1.gco
  5816. *
  5817. * Output:
  5818. * /Miscellaneous/Armchair/Armchair.gcode
  5819. */
  5820. inline void gcode_M33() {
  5821. card.printLongPath(parser.string_arg);
  5822. }
  5823. #endif
  5824. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  5825. /**
  5826. * M34: Set SD Card Sorting Options
  5827. */
  5828. inline void gcode_M34() {
  5829. if (parser.seen('S')) card.setSortOn(parser.value_bool());
  5830. if (parser.seenval('F')) {
  5831. const int v = parser.value_long();
  5832. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  5833. }
  5834. //if (parser.seen('R')) card.setSortReverse(parser.value_bool());
  5835. }
  5836. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  5837. /**
  5838. * M928: Start SD Write
  5839. */
  5840. inline void gcode_M928() {
  5841. card.openLogFile(parser.string_arg);
  5842. }
  5843. #endif // SDSUPPORT
  5844. /**
  5845. * Sensitive pin test for M42, M226
  5846. */
  5847. static bool pin_is_protected(const int8_t pin) {
  5848. static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
  5849. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  5850. if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true;
  5851. return false;
  5852. }
  5853. /**
  5854. * M42: Change pin status via GCode
  5855. *
  5856. * P<pin> Pin number (LED if omitted)
  5857. * S<byte> Pin status from 0 - 255
  5858. */
  5859. inline void gcode_M42() {
  5860. if (!parser.seenval('S')) return;
  5861. const byte pin_status = parser.value_byte();
  5862. const int pin_number = parser.intval('P', LED_PIN);
  5863. if (pin_number < 0) return;
  5864. if (pin_is_protected(pin_number)) {
  5865. SERIAL_ERROR_START();
  5866. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  5867. return;
  5868. }
  5869. pinMode(pin_number, OUTPUT);
  5870. digitalWrite(pin_number, pin_status);
  5871. analogWrite(pin_number, pin_status);
  5872. #if FAN_COUNT > 0
  5873. switch (pin_number) {
  5874. #if HAS_FAN0
  5875. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  5876. #endif
  5877. #if HAS_FAN1
  5878. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  5879. #endif
  5880. #if HAS_FAN2
  5881. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  5882. #endif
  5883. }
  5884. #endif
  5885. }
  5886. #if ENABLED(PINS_DEBUGGING)
  5887. #include "pinsDebug.h"
  5888. inline void toggle_pins() {
  5889. const bool I_flag = parser.boolval('I');
  5890. const int repeat = parser.intval('R', 1),
  5891. start = parser.intval('S'),
  5892. end = parser.intval('L', NUM_DIGITAL_PINS - 1),
  5893. wait = parser.intval('W', 500);
  5894. for (uint8_t pin = start; pin <= end; pin++) {
  5895. //report_pin_state_extended(pin, I_flag, false);
  5896. if (!I_flag && pin_is_protected(pin)) {
  5897. report_pin_state_extended(pin, I_flag, true, "Untouched ");
  5898. SERIAL_EOL();
  5899. }
  5900. else {
  5901. report_pin_state_extended(pin, I_flag, true, "Pulsing ");
  5902. #if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
  5903. if (pin == TEENSY_E2) {
  5904. SET_OUTPUT(TEENSY_E2);
  5905. for (int16_t j = 0; j < repeat; j++) {
  5906. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5907. WRITE(TEENSY_E2, HIGH); safe_delay(wait);
  5908. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5909. }
  5910. }
  5911. else if (pin == TEENSY_E3) {
  5912. SET_OUTPUT(TEENSY_E3);
  5913. for (int16_t j = 0; j < repeat; j++) {
  5914. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5915. WRITE(TEENSY_E3, HIGH); safe_delay(wait);
  5916. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5917. }
  5918. }
  5919. else
  5920. #endif
  5921. {
  5922. pinMode(pin, OUTPUT);
  5923. for (int16_t j = 0; j < repeat; j++) {
  5924. digitalWrite(pin, 0); safe_delay(wait);
  5925. digitalWrite(pin, 1); safe_delay(wait);
  5926. digitalWrite(pin, 0); safe_delay(wait);
  5927. }
  5928. }
  5929. }
  5930. SERIAL_EOL();
  5931. }
  5932. SERIAL_ECHOLNPGM("Done.");
  5933. } // toggle_pins
  5934. inline void servo_probe_test() {
  5935. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  5936. SERIAL_ERROR_START();
  5937. SERIAL_ERRORLNPGM("SERVO not setup");
  5938. #elif !HAS_Z_SERVO_ENDSTOP
  5939. SERIAL_ERROR_START();
  5940. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  5941. #else // HAS_Z_SERVO_ENDSTOP
  5942. const uint8_t probe_index = parser.byteval('P', Z_ENDSTOP_SERVO_NR);
  5943. SERIAL_PROTOCOLLNPGM("Servo probe test");
  5944. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  5945. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  5946. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  5947. bool probe_inverting;
  5948. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  5949. #define PROBE_TEST_PIN Z_MIN_PIN
  5950. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  5951. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  5952. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  5953. #if Z_MIN_ENDSTOP_INVERTING
  5954. SERIAL_PROTOCOLLNPGM("true");
  5955. #else
  5956. SERIAL_PROTOCOLLNPGM("false");
  5957. #endif
  5958. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  5959. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  5960. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  5961. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  5962. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  5963. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  5964. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  5965. SERIAL_PROTOCOLLNPGM("true");
  5966. #else
  5967. SERIAL_PROTOCOLLNPGM("false");
  5968. #endif
  5969. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5970. #endif
  5971. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5972. SET_INPUT_PULLUP(PROBE_TEST_PIN);
  5973. bool deploy_state, stow_state;
  5974. for (uint8_t i = 0; i < 4; i++) {
  5975. MOVE_SERVO(probe_index, z_servo_angle[0]); //deploy
  5976. safe_delay(500);
  5977. deploy_state = READ(PROBE_TEST_PIN);
  5978. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  5979. safe_delay(500);
  5980. stow_state = READ(PROBE_TEST_PIN);
  5981. }
  5982. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5983. refresh_cmd_timeout();
  5984. if (deploy_state != stow_state) {
  5985. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5986. if (deploy_state) {
  5987. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5988. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5989. }
  5990. else {
  5991. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5992. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5993. }
  5994. #if ENABLED(BLTOUCH)
  5995. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5996. #endif
  5997. }
  5998. else { // measure active signal length
  5999. MOVE_SERVO(probe_index, z_servo_angle[0]); // deploy
  6000. safe_delay(500);
  6001. SERIAL_PROTOCOLLNPGM("please trigger probe");
  6002. uint16_t probe_counter = 0;
  6003. // Allow 30 seconds max for operator to trigger probe
  6004. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  6005. safe_delay(2);
  6006. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  6007. refresh_cmd_timeout();
  6008. if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered
  6009. for (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter)
  6010. safe_delay(2);
  6011. if (probe_counter == 50)
  6012. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  6013. else if (probe_counter >= 2)
  6014. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  6015. else
  6016. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  6017. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  6018. } // pulse detected
  6019. } // for loop waiting for trigger
  6020. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  6021. } // measure active signal length
  6022. #endif
  6023. } // servo_probe_test
  6024. /**
  6025. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  6026. *
  6027. * M43 - report name and state of pin(s)
  6028. * P<pin> Pin to read or watch. If omitted, reads all pins.
  6029. * I Flag to ignore Marlin's pin protection.
  6030. *
  6031. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  6032. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  6033. * I Flag to ignore Marlin's pin protection.
  6034. *
  6035. * M43 E<bool> - Enable / disable background endstop monitoring
  6036. * - Machine continues to operate
  6037. * - Reports changes to endstops
  6038. * - Toggles LED_PIN when an endstop changes
  6039. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  6040. *
  6041. * M43 T - Toggle pin(s) and report which pin is being toggled
  6042. * S<pin> - Start Pin number. If not given, will default to 0
  6043. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  6044. * I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
  6045. * R - Repeat pulses on each pin this number of times before continueing to next pin
  6046. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  6047. *
  6048. * M43 S - Servo probe test
  6049. * P<index> - Probe index (optional - defaults to 0
  6050. */
  6051. inline void gcode_M43() {
  6052. if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
  6053. toggle_pins();
  6054. return;
  6055. }
  6056. // Enable or disable endstop monitoring
  6057. if (parser.seen('E')) {
  6058. endstop_monitor_flag = parser.value_bool();
  6059. SERIAL_PROTOCOLPGM("endstop monitor ");
  6060. serialprintPGM(endstop_monitor_flag ? PSTR("en") : PSTR("dis"));
  6061. SERIAL_PROTOCOLLNPGM("abled");
  6062. return;
  6063. }
  6064. if (parser.seen('S')) {
  6065. servo_probe_test();
  6066. return;
  6067. }
  6068. // Get the range of pins to test or watch
  6069. const uint8_t first_pin = parser.byteval('P'),
  6070. last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  6071. if (first_pin > last_pin) return;
  6072. const bool ignore_protection = parser.boolval('I');
  6073. // Watch until click, M108, or reset
  6074. if (parser.boolval('W')) {
  6075. SERIAL_PROTOCOLLNPGM("Watching pins");
  6076. byte pin_state[last_pin - first_pin + 1];
  6077. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  6078. if (pin_is_protected(pin) && !ignore_protection) continue;
  6079. pinMode(pin, INPUT_PULLUP);
  6080. delay(1);
  6081. /*
  6082. if (IS_ANALOG(pin))
  6083. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  6084. else
  6085. //*/
  6086. pin_state[pin - first_pin] = digitalRead(pin);
  6087. }
  6088. #if HAS_RESUME_CONTINUE
  6089. wait_for_user = true;
  6090. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6091. #endif
  6092. for (;;) {
  6093. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  6094. if (pin_is_protected(pin) && !ignore_protection) continue;
  6095. const byte val =
  6096. /*
  6097. IS_ANALOG(pin)
  6098. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  6099. :
  6100. //*/
  6101. digitalRead(pin);
  6102. if (val != pin_state[pin - first_pin]) {
  6103. report_pin_state_extended(pin, ignore_protection, false);
  6104. pin_state[pin - first_pin] = val;
  6105. }
  6106. }
  6107. #if HAS_RESUME_CONTINUE
  6108. if (!wait_for_user) {
  6109. KEEPALIVE_STATE(IN_HANDLER);
  6110. break;
  6111. }
  6112. #endif
  6113. safe_delay(200);
  6114. }
  6115. return;
  6116. }
  6117. // Report current state of selected pin(s)
  6118. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  6119. report_pin_state_extended(pin, ignore_protection, true);
  6120. }
  6121. #endif // PINS_DEBUGGING
  6122. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6123. /**
  6124. * M48: Z probe repeatability measurement function.
  6125. *
  6126. * Usage:
  6127. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  6128. * P = Number of sampled points (4-50, default 10)
  6129. * X = Sample X position
  6130. * Y = Sample Y position
  6131. * V = Verbose level (0-4, default=1)
  6132. * E = Engage Z probe for each reading
  6133. * L = Number of legs of movement before probe
  6134. * S = Schizoid (Or Star if you prefer)
  6135. *
  6136. * This function requires the machine to be homed before invocation.
  6137. */
  6138. inline void gcode_M48() {
  6139. if (axis_unhomed_error()) return;
  6140. const int8_t verbose_level = parser.byteval('V', 1);
  6141. if (!WITHIN(verbose_level, 0, 4)) {
  6142. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  6143. return;
  6144. }
  6145. if (verbose_level > 0)
  6146. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  6147. const int8_t n_samples = parser.byteval('P', 10);
  6148. if (!WITHIN(n_samples, 4, 50)) {
  6149. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  6150. return;
  6151. }
  6152. const bool stow_probe_after_each = parser.boolval('E');
  6153. float X_current = current_position[X_AXIS],
  6154. Y_current = current_position[Y_AXIS];
  6155. const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
  6156. Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6157. #if DISABLED(DELTA)
  6158. if (!WITHIN(X_probe_location, MIN_PROBE_X, MAX_PROBE_X)) {
  6159. out_of_range_error(PSTR("X"));
  6160. return;
  6161. }
  6162. if (!WITHIN(Y_probe_location, MIN_PROBE_Y, MAX_PROBE_Y)) {
  6163. out_of_range_error(PSTR("Y"));
  6164. return;
  6165. }
  6166. #else
  6167. if (!position_is_reachable_by_probe(X_probe_location, Y_probe_location)) {
  6168. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  6169. return;
  6170. }
  6171. #endif
  6172. bool seen_L = parser.seen('L');
  6173. uint8_t n_legs = seen_L ? parser.value_byte() : 0;
  6174. if (n_legs > 15) {
  6175. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  6176. return;
  6177. }
  6178. if (n_legs == 1) n_legs = 2;
  6179. const bool schizoid_flag = parser.boolval('S');
  6180. if (schizoid_flag && !seen_L) n_legs = 7;
  6181. /**
  6182. * Now get everything to the specified probe point So we can safely do a
  6183. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  6184. * we don't want to use that as a starting point for each probe.
  6185. */
  6186. if (verbose_level > 2)
  6187. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  6188. // Disable bed level correction in M48 because we want the raw data when we probe
  6189. #if HAS_LEVELING
  6190. const bool was_enabled = planner.leveling_active;
  6191. set_bed_leveling_enabled(false);
  6192. #endif
  6193. setup_for_endstop_or_probe_move();
  6194. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  6195. // Move to the first point, deploy, and probe
  6196. const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  6197. bool probing_good = !isnan(t);
  6198. if (probing_good) {
  6199. randomSeed(millis());
  6200. for (uint8_t n = 0; n < n_samples; n++) {
  6201. if (n_legs) {
  6202. const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  6203. float angle = random(0.0, 360.0);
  6204. const float radius = random(
  6205. #if ENABLED(DELTA)
  6206. 0.1250000000 * (DELTA_PROBEABLE_RADIUS),
  6207. 0.3333333333 * (DELTA_PROBEABLE_RADIUS)
  6208. #else
  6209. 5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
  6210. #endif
  6211. );
  6212. if (verbose_level > 3) {
  6213. SERIAL_ECHOPAIR("Starting radius: ", radius);
  6214. SERIAL_ECHOPAIR(" angle: ", angle);
  6215. SERIAL_ECHOPGM(" Direction: ");
  6216. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  6217. SERIAL_ECHOLNPGM("Clockwise");
  6218. }
  6219. for (uint8_t l = 0; l < n_legs - 1; l++) {
  6220. double delta_angle;
  6221. if (schizoid_flag)
  6222. // The points of a 5 point star are 72 degrees apart. We need to
  6223. // skip a point and go to the next one on the star.
  6224. delta_angle = dir * 2.0 * 72.0;
  6225. else
  6226. // If we do this line, we are just trying to move further
  6227. // around the circle.
  6228. delta_angle = dir * (float) random(25, 45);
  6229. angle += delta_angle;
  6230. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  6231. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  6232. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  6233. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  6234. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  6235. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  6236. #if DISABLED(DELTA)
  6237. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  6238. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  6239. #else
  6240. // If we have gone out too far, we can do a simple fix and scale the numbers
  6241. // back in closer to the origin.
  6242. while (!position_is_reachable_by_probe(X_current, Y_current)) {
  6243. X_current *= 0.8;
  6244. Y_current *= 0.8;
  6245. if (verbose_level > 3) {
  6246. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  6247. SERIAL_ECHOLNPAIR(", ", Y_current);
  6248. }
  6249. }
  6250. #endif
  6251. if (verbose_level > 3) {
  6252. SERIAL_PROTOCOLPGM("Going to:");
  6253. SERIAL_ECHOPAIR(" X", X_current);
  6254. SERIAL_ECHOPAIR(" Y", Y_current);
  6255. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  6256. }
  6257. do_blocking_move_to_xy(X_current, Y_current);
  6258. } // n_legs loop
  6259. } // n_legs
  6260. // Probe a single point
  6261. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  6262. // Break the loop if the probe fails
  6263. probing_good = !isnan(sample_set[n]);
  6264. if (!probing_good) break;
  6265. /**
  6266. * Get the current mean for the data points we have so far
  6267. */
  6268. double sum = 0.0;
  6269. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  6270. mean = sum / (n + 1);
  6271. NOMORE(min, sample_set[n]);
  6272. NOLESS(max, sample_set[n]);
  6273. /**
  6274. * Now, use that mean to calculate the standard deviation for the
  6275. * data points we have so far
  6276. */
  6277. sum = 0.0;
  6278. for (uint8_t j = 0; j <= n; j++)
  6279. sum += sq(sample_set[j] - mean);
  6280. sigma = SQRT(sum / (n + 1));
  6281. if (verbose_level > 0) {
  6282. if (verbose_level > 1) {
  6283. SERIAL_PROTOCOL(n + 1);
  6284. SERIAL_PROTOCOLPGM(" of ");
  6285. SERIAL_PROTOCOL((int)n_samples);
  6286. SERIAL_PROTOCOLPGM(": z: ");
  6287. SERIAL_PROTOCOL_F(sample_set[n], 3);
  6288. if (verbose_level > 2) {
  6289. SERIAL_PROTOCOLPGM(" mean: ");
  6290. SERIAL_PROTOCOL_F(mean, 4);
  6291. SERIAL_PROTOCOLPGM(" sigma: ");
  6292. SERIAL_PROTOCOL_F(sigma, 6);
  6293. SERIAL_PROTOCOLPGM(" min: ");
  6294. SERIAL_PROTOCOL_F(min, 3);
  6295. SERIAL_PROTOCOLPGM(" max: ");
  6296. SERIAL_PROTOCOL_F(max, 3);
  6297. SERIAL_PROTOCOLPGM(" range: ");
  6298. SERIAL_PROTOCOL_F(max-min, 3);
  6299. }
  6300. SERIAL_EOL();
  6301. }
  6302. }
  6303. } // n_samples loop
  6304. }
  6305. STOW_PROBE();
  6306. if (probing_good) {
  6307. SERIAL_PROTOCOLLNPGM("Finished!");
  6308. if (verbose_level > 0) {
  6309. SERIAL_PROTOCOLPGM("Mean: ");
  6310. SERIAL_PROTOCOL_F(mean, 6);
  6311. SERIAL_PROTOCOLPGM(" Min: ");
  6312. SERIAL_PROTOCOL_F(min, 3);
  6313. SERIAL_PROTOCOLPGM(" Max: ");
  6314. SERIAL_PROTOCOL_F(max, 3);
  6315. SERIAL_PROTOCOLPGM(" Range: ");
  6316. SERIAL_PROTOCOL_F(max-min, 3);
  6317. SERIAL_EOL();
  6318. }
  6319. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  6320. SERIAL_PROTOCOL_F(sigma, 6);
  6321. SERIAL_EOL();
  6322. SERIAL_EOL();
  6323. }
  6324. clean_up_after_endstop_or_probe_move();
  6325. // Re-enable bed level correction if it had been on
  6326. #if HAS_LEVELING
  6327. set_bed_leveling_enabled(was_enabled);
  6328. #endif
  6329. report_current_position();
  6330. }
  6331. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6332. #if ENABLED(G26_MESH_VALIDATION)
  6333. inline void gcode_M49() {
  6334. g26_debug_flag ^= true;
  6335. SERIAL_PROTOCOLPGM("G26 Debug ");
  6336. serialprintPGM(g26_debug_flag ? PSTR("on.\n") : PSTR("off.\n"));
  6337. }
  6338. #endif // G26_MESH_VALIDATION
  6339. #if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
  6340. /**
  6341. * M73: Set percentage complete (for display on LCD)
  6342. *
  6343. * Example:
  6344. * M73 P25 ; Set progress to 25%
  6345. *
  6346. * Notes:
  6347. * This has no effect during an SD print job
  6348. */
  6349. inline void gcode_M73() {
  6350. if (!IS_SD_PRINTING && parser.seen('P')) {
  6351. progress_bar_percent = parser.value_byte();
  6352. NOMORE(progress_bar_percent, 100);
  6353. }
  6354. }
  6355. #endif // ULTRA_LCD && LCD_SET_PROGRESS_MANUALLY
  6356. /**
  6357. * M75: Start print timer
  6358. */
  6359. inline void gcode_M75() { print_job_timer.start(); }
  6360. /**
  6361. * M76: Pause print timer
  6362. */
  6363. inline void gcode_M76() { print_job_timer.pause(); }
  6364. /**
  6365. * M77: Stop print timer
  6366. */
  6367. inline void gcode_M77() { print_job_timer.stop(); }
  6368. #if ENABLED(PRINTCOUNTER)
  6369. /**
  6370. * M78: Show print statistics
  6371. */
  6372. inline void gcode_M78() {
  6373. // "M78 S78" will reset the statistics
  6374. if (parser.intval('S') == 78)
  6375. print_job_timer.initStats();
  6376. else
  6377. print_job_timer.showStats();
  6378. }
  6379. #endif
  6380. /**
  6381. * M104: Set hot end temperature
  6382. */
  6383. inline void gcode_M104() {
  6384. if (get_target_extruder_from_command(104)) return;
  6385. if (DEBUGGING(DRYRUN)) return;
  6386. #if ENABLED(SINGLENOZZLE)
  6387. if (target_extruder != active_extruder) return;
  6388. #endif
  6389. if (parser.seenval('S')) {
  6390. const int16_t temp = parser.value_celsius();
  6391. thermalManager.setTargetHotend(temp, target_extruder);
  6392. #if ENABLED(DUAL_X_CARRIAGE)
  6393. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6394. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6395. #endif
  6396. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6397. /**
  6398. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  6399. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  6400. * standby mode, for instance in a dual extruder setup, without affecting
  6401. * the running print timer.
  6402. */
  6403. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6404. print_job_timer.stop();
  6405. LCD_MESSAGEPGM(WELCOME_MSG);
  6406. }
  6407. #endif
  6408. if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
  6409. lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6410. }
  6411. #if ENABLED(AUTOTEMP)
  6412. planner.autotemp_M104_M109();
  6413. #endif
  6414. }
  6415. /**
  6416. * M105: Read hot end and bed temperature
  6417. */
  6418. inline void gcode_M105() {
  6419. if (get_target_extruder_from_command(105)) return;
  6420. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6421. SERIAL_PROTOCOLPGM(MSG_OK);
  6422. thermalManager.print_heaterstates();
  6423. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  6424. SERIAL_ERROR_START();
  6425. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  6426. #endif
  6427. SERIAL_EOL();
  6428. }
  6429. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  6430. /**
  6431. * M155: Set temperature auto-report interval. M155 S<seconds>
  6432. */
  6433. inline void gcode_M155() {
  6434. if (parser.seenval('S'))
  6435. thermalManager.set_auto_report_interval(parser.value_byte());
  6436. }
  6437. #endif // AUTO_REPORT_TEMPERATURES
  6438. #if FAN_COUNT > 0
  6439. /**
  6440. * M106: Set Fan Speed
  6441. *
  6442. * S<int> Speed between 0-255
  6443. * P<index> Fan index, if more than one fan
  6444. *
  6445. * With EXTRA_FAN_SPEED enabled:
  6446. *
  6447. * T<int> Restore/Use/Set Temporary Speed:
  6448. * 1 = Restore previous speed after T2
  6449. * 2 = Use temporary speed set with T3-255
  6450. * 3-255 = Set the speed for use with T2
  6451. */
  6452. inline void gcode_M106() {
  6453. const uint8_t p = parser.byteval('P');
  6454. if (p < FAN_COUNT) {
  6455. #if ENABLED(EXTRA_FAN_SPEED)
  6456. const int16_t t = parser.intval('T');
  6457. if (t > 0) {
  6458. switch (t) {
  6459. case 1:
  6460. fanSpeeds[p] = old_fanSpeeds[p];
  6461. break;
  6462. case 2:
  6463. old_fanSpeeds[p] = fanSpeeds[p];
  6464. fanSpeeds[p] = new_fanSpeeds[p];
  6465. break;
  6466. default:
  6467. new_fanSpeeds[p] = min(t, 255);
  6468. break;
  6469. }
  6470. return;
  6471. }
  6472. #endif // EXTRA_FAN_SPEED
  6473. const uint16_t s = parser.ushortval('S', 255);
  6474. fanSpeeds[p] = min(s, 255);
  6475. }
  6476. }
  6477. /**
  6478. * M107: Fan Off
  6479. */
  6480. inline void gcode_M107() {
  6481. const uint16_t p = parser.ushortval('P');
  6482. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  6483. }
  6484. #endif // FAN_COUNT > 0
  6485. #if DISABLED(EMERGENCY_PARSER)
  6486. /**
  6487. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  6488. */
  6489. inline void gcode_M108() { wait_for_heatup = false; }
  6490. /**
  6491. * M112: Emergency Stop
  6492. */
  6493. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  6494. /**
  6495. * M410: Quickstop - Abort all planned moves
  6496. *
  6497. * This will stop the carriages mid-move, so most likely they
  6498. * will be out of sync with the stepper position after this.
  6499. */
  6500. inline void gcode_M410() { quickstop_stepper(); }
  6501. #endif
  6502. /**
  6503. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  6504. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  6505. */
  6506. #ifndef MIN_COOLING_SLOPE_DEG
  6507. #define MIN_COOLING_SLOPE_DEG 1.50
  6508. #endif
  6509. #ifndef MIN_COOLING_SLOPE_TIME
  6510. #define MIN_COOLING_SLOPE_TIME 60
  6511. #endif
  6512. inline void gcode_M109() {
  6513. if (get_target_extruder_from_command(109)) return;
  6514. if (DEBUGGING(DRYRUN)) return;
  6515. #if ENABLED(SINGLENOZZLE)
  6516. if (target_extruder != active_extruder) return;
  6517. #endif
  6518. const bool no_wait_for_cooling = parser.seenval('S');
  6519. if (no_wait_for_cooling || parser.seenval('R')) {
  6520. const int16_t temp = parser.value_celsius();
  6521. thermalManager.setTargetHotend(temp, target_extruder);
  6522. #if ENABLED(DUAL_X_CARRIAGE)
  6523. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6524. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6525. #endif
  6526. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6527. /**
  6528. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  6529. * standby mode, (e.g., in a dual extruder setup) without affecting
  6530. * the running print timer.
  6531. */
  6532. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6533. print_job_timer.stop();
  6534. LCD_MESSAGEPGM(WELCOME_MSG);
  6535. }
  6536. else
  6537. print_job_timer.start();
  6538. #endif
  6539. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6540. }
  6541. else return;
  6542. #if ENABLED(AUTOTEMP)
  6543. planner.autotemp_M104_M109();
  6544. #endif
  6545. #if TEMP_RESIDENCY_TIME > 0
  6546. millis_t residency_start_ms = 0;
  6547. // Loop until the temperature has stabilized
  6548. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  6549. #else
  6550. // Loop until the temperature is very close target
  6551. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  6552. #endif
  6553. float target_temp = -1.0, old_temp = 9999.0;
  6554. bool wants_to_cool = false;
  6555. wait_for_heatup = true;
  6556. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6557. #if DISABLED(BUSY_WHILE_HEATING)
  6558. KEEPALIVE_STATE(NOT_BUSY);
  6559. #endif
  6560. #if ENABLED(PRINTER_EVENT_LEDS)
  6561. const float start_temp = thermalManager.degHotend(target_extruder);
  6562. uint8_t old_blue = 0;
  6563. #endif
  6564. do {
  6565. // Target temperature might be changed during the loop
  6566. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  6567. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  6568. target_temp = thermalManager.degTargetHotend(target_extruder);
  6569. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6570. if (no_wait_for_cooling && wants_to_cool) break;
  6571. }
  6572. now = millis();
  6573. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  6574. next_temp_ms = now + 1000UL;
  6575. thermalManager.print_heaterstates();
  6576. #if TEMP_RESIDENCY_TIME > 0
  6577. SERIAL_PROTOCOLPGM(" W:");
  6578. if (residency_start_ms)
  6579. SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6580. else
  6581. SERIAL_PROTOCOLCHAR('?');
  6582. #endif
  6583. SERIAL_EOL();
  6584. }
  6585. idle();
  6586. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6587. const float temp = thermalManager.degHotend(target_extruder);
  6588. #if ENABLED(PRINTER_EVENT_LEDS)
  6589. // Gradually change LED strip from violet to red as nozzle heats up
  6590. if (!wants_to_cool) {
  6591. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  6592. if (blue != old_blue) {
  6593. old_blue = blue;
  6594. leds.set_color(
  6595. MakeLEDColor(255, 0, blue, 0, pixels.getBrightness())
  6596. #if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
  6597. , true
  6598. #endif
  6599. );
  6600. }
  6601. }
  6602. #endif
  6603. #if TEMP_RESIDENCY_TIME > 0
  6604. const float temp_diff = FABS(target_temp - temp);
  6605. if (!residency_start_ms) {
  6606. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  6607. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  6608. }
  6609. else if (temp_diff > TEMP_HYSTERESIS) {
  6610. // Restart the timer whenever the temperature falls outside the hysteresis.
  6611. residency_start_ms = now;
  6612. }
  6613. #endif
  6614. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  6615. if (wants_to_cool) {
  6616. // break after MIN_COOLING_SLOPE_TIME seconds
  6617. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  6618. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6619. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  6620. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  6621. old_temp = temp;
  6622. }
  6623. }
  6624. } while (wait_for_heatup && TEMP_CONDITIONS);
  6625. if (wait_for_heatup) {
  6626. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  6627. #if ENABLED(PRINTER_EVENT_LEDS)
  6628. leds.set_white();
  6629. #endif
  6630. }
  6631. #if DISABLED(BUSY_WHILE_HEATING)
  6632. KEEPALIVE_STATE(IN_HANDLER);
  6633. #endif
  6634. }
  6635. #if HAS_TEMP_BED
  6636. #ifndef MIN_COOLING_SLOPE_DEG_BED
  6637. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  6638. #endif
  6639. #ifndef MIN_COOLING_SLOPE_TIME_BED
  6640. #define MIN_COOLING_SLOPE_TIME_BED 60
  6641. #endif
  6642. /**
  6643. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  6644. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  6645. */
  6646. inline void gcode_M190() {
  6647. if (DEBUGGING(DRYRUN)) return;
  6648. LCD_MESSAGEPGM(MSG_BED_HEATING);
  6649. const bool no_wait_for_cooling = parser.seenval('S');
  6650. if (no_wait_for_cooling || parser.seenval('R')) {
  6651. thermalManager.setTargetBed(parser.value_celsius());
  6652. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6653. if (parser.value_celsius() > BED_MINTEMP)
  6654. print_job_timer.start();
  6655. #endif
  6656. }
  6657. else return;
  6658. #if TEMP_BED_RESIDENCY_TIME > 0
  6659. millis_t residency_start_ms = 0;
  6660. // Loop until the temperature has stabilized
  6661. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  6662. #else
  6663. // Loop until the temperature is very close target
  6664. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  6665. #endif
  6666. float target_temp = -1.0, old_temp = 9999.0;
  6667. bool wants_to_cool = false;
  6668. wait_for_heatup = true;
  6669. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6670. #if DISABLED(BUSY_WHILE_HEATING)
  6671. KEEPALIVE_STATE(NOT_BUSY);
  6672. #endif
  6673. target_extruder = active_extruder; // for print_heaterstates
  6674. #if ENABLED(PRINTER_EVENT_LEDS)
  6675. const float start_temp = thermalManager.degBed();
  6676. uint8_t old_red = 255;
  6677. #endif
  6678. do {
  6679. // Target temperature might be changed during the loop
  6680. if (target_temp != thermalManager.degTargetBed()) {
  6681. wants_to_cool = thermalManager.isCoolingBed();
  6682. target_temp = thermalManager.degTargetBed();
  6683. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6684. if (no_wait_for_cooling && wants_to_cool) break;
  6685. }
  6686. now = millis();
  6687. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  6688. next_temp_ms = now + 1000UL;
  6689. thermalManager.print_heaterstates();
  6690. #if TEMP_BED_RESIDENCY_TIME > 0
  6691. SERIAL_PROTOCOLPGM(" W:");
  6692. if (residency_start_ms)
  6693. SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6694. else
  6695. SERIAL_PROTOCOLCHAR('?');
  6696. #endif
  6697. SERIAL_EOL();
  6698. }
  6699. idle();
  6700. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6701. const float temp = thermalManager.degBed();
  6702. #if ENABLED(PRINTER_EVENT_LEDS)
  6703. // Gradually change LED strip from blue to violet as bed heats up
  6704. if (!wants_to_cool) {
  6705. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  6706. if (red != old_red) {
  6707. old_red = red;
  6708. leds.set_color(
  6709. MakeLEDColor(red, 0, 255, 0, pixels.getBrightness())
  6710. #if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
  6711. , true
  6712. #endif
  6713. );
  6714. }
  6715. }
  6716. #endif
  6717. #if TEMP_BED_RESIDENCY_TIME > 0
  6718. const float temp_diff = FABS(target_temp - temp);
  6719. if (!residency_start_ms) {
  6720. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  6721. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  6722. }
  6723. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  6724. // Restart the timer whenever the temperature falls outside the hysteresis.
  6725. residency_start_ms = now;
  6726. }
  6727. #endif // TEMP_BED_RESIDENCY_TIME > 0
  6728. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  6729. if (wants_to_cool) {
  6730. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  6731. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  6732. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6733. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  6734. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  6735. old_temp = temp;
  6736. }
  6737. }
  6738. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  6739. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  6740. #if DISABLED(BUSY_WHILE_HEATING)
  6741. KEEPALIVE_STATE(IN_HANDLER);
  6742. #endif
  6743. }
  6744. #endif // HAS_TEMP_BED
  6745. /**
  6746. * M110: Set Current Line Number
  6747. */
  6748. inline void gcode_M110() {
  6749. if (parser.seenval('N')) gcode_LastN = parser.value_long();
  6750. }
  6751. /**
  6752. * M111: Set the debug level
  6753. */
  6754. inline void gcode_M111() {
  6755. if (parser.seen('S')) marlin_debug_flags = parser.byteval('S');
  6756. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO,
  6757. str_debug_2[] PROGMEM = MSG_DEBUG_INFO,
  6758. str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS,
  6759. str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN,
  6760. str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION
  6761. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6762. , str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING
  6763. #endif
  6764. ;
  6765. const static char* const debug_strings[] PROGMEM = {
  6766. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
  6767. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6768. , str_debug_32
  6769. #endif
  6770. };
  6771. SERIAL_ECHO_START();
  6772. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  6773. if (marlin_debug_flags) {
  6774. uint8_t comma = 0;
  6775. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  6776. if (TEST(marlin_debug_flags, i)) {
  6777. if (comma++) SERIAL_CHAR(',');
  6778. serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
  6779. }
  6780. }
  6781. }
  6782. else {
  6783. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  6784. }
  6785. SERIAL_EOL();
  6786. }
  6787. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6788. /**
  6789. * M113: Get or set Host Keepalive interval (0 to disable)
  6790. *
  6791. * S<seconds> Optional. Set the keepalive interval.
  6792. */
  6793. inline void gcode_M113() {
  6794. if (parser.seenval('S')) {
  6795. host_keepalive_interval = parser.value_byte();
  6796. NOMORE(host_keepalive_interval, 60);
  6797. }
  6798. else {
  6799. SERIAL_ECHO_START();
  6800. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  6801. }
  6802. }
  6803. #endif
  6804. #if ENABLED(BARICUDA)
  6805. #if HAS_HEATER_1
  6806. /**
  6807. * M126: Heater 1 valve open
  6808. */
  6809. inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
  6810. /**
  6811. * M127: Heater 1 valve close
  6812. */
  6813. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  6814. #endif
  6815. #if HAS_HEATER_2
  6816. /**
  6817. * M128: Heater 2 valve open
  6818. */
  6819. inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
  6820. /**
  6821. * M129: Heater 2 valve close
  6822. */
  6823. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  6824. #endif
  6825. #endif // BARICUDA
  6826. /**
  6827. * M140: Set bed temperature
  6828. */
  6829. inline void gcode_M140() {
  6830. if (DEBUGGING(DRYRUN)) return;
  6831. if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
  6832. }
  6833. #if ENABLED(ULTIPANEL)
  6834. /**
  6835. * M145: Set the heatup state for a material in the LCD menu
  6836. *
  6837. * S<material> (0=PLA, 1=ABS)
  6838. * H<hotend temp>
  6839. * B<bed temp>
  6840. * F<fan speed>
  6841. */
  6842. inline void gcode_M145() {
  6843. const uint8_t material = (uint8_t)parser.intval('S');
  6844. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  6845. SERIAL_ERROR_START();
  6846. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  6847. }
  6848. else {
  6849. int v;
  6850. if (parser.seenval('H')) {
  6851. v = parser.value_int();
  6852. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  6853. }
  6854. if (parser.seenval('F')) {
  6855. v = parser.value_int();
  6856. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  6857. }
  6858. #if TEMP_SENSOR_BED != 0
  6859. if (parser.seenval('B')) {
  6860. v = parser.value_int();
  6861. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  6862. }
  6863. #endif
  6864. }
  6865. }
  6866. #endif // ULTIPANEL
  6867. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6868. /**
  6869. * M149: Set temperature units
  6870. */
  6871. inline void gcode_M149() {
  6872. if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
  6873. else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
  6874. else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
  6875. }
  6876. #endif
  6877. #if HAS_POWER_SWITCH
  6878. /**
  6879. * M80 : Turn on the Power Supply
  6880. * M80 S : Report the current state and exit
  6881. */
  6882. inline void gcode_M80() {
  6883. // S: Report the current power supply state and exit
  6884. if (parser.seen('S')) {
  6885. serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
  6886. return;
  6887. }
  6888. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
  6889. /**
  6890. * If you have a switch on suicide pin, this is useful
  6891. * if you want to start another print with suicide feature after
  6892. * a print without suicide...
  6893. */
  6894. #if HAS_SUICIDE
  6895. OUT_WRITE(SUICIDE_PIN, HIGH);
  6896. #endif
  6897. #if ENABLED(HAVE_TMC2130)
  6898. delay(100);
  6899. tmc2130_init(); // Settings only stick when the driver has power
  6900. #endif
  6901. powersupply_on = true;
  6902. #if ENABLED(ULTIPANEL)
  6903. LCD_MESSAGEPGM(WELCOME_MSG);
  6904. #endif
  6905. #if ENABLED(HAVE_TMC2208)
  6906. delay(100);
  6907. tmc2208_init();
  6908. #endif
  6909. }
  6910. #endif // HAS_POWER_SWITCH
  6911. /**
  6912. * M81: Turn off Power, including Power Supply, if there is one.
  6913. *
  6914. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  6915. */
  6916. inline void gcode_M81() {
  6917. thermalManager.disable_all_heaters();
  6918. stepper.finish_and_disable();
  6919. #if FAN_COUNT > 0
  6920. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  6921. #if ENABLED(PROBING_FANS_OFF)
  6922. fans_paused = false;
  6923. ZERO(paused_fanSpeeds);
  6924. #endif
  6925. #endif
  6926. safe_delay(1000); // Wait 1 second before switching off
  6927. #if HAS_SUICIDE
  6928. stepper.synchronize();
  6929. suicide();
  6930. #elif HAS_POWER_SWITCH
  6931. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  6932. powersupply_on = false;
  6933. #endif
  6934. #if ENABLED(ULTIPANEL)
  6935. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  6936. #endif
  6937. }
  6938. /**
  6939. * M82: Set E codes absolute (default)
  6940. */
  6941. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  6942. /**
  6943. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  6944. */
  6945. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  6946. /**
  6947. * M18, M84: Disable stepper motors
  6948. */
  6949. inline void gcode_M18_M84() {
  6950. if (parser.seenval('S')) {
  6951. stepper_inactive_time = parser.value_millis_from_seconds();
  6952. }
  6953. else {
  6954. bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
  6955. if (all_axis) {
  6956. stepper.finish_and_disable();
  6957. }
  6958. else {
  6959. stepper.synchronize();
  6960. if (parser.seen('X')) disable_X();
  6961. if (parser.seen('Y')) disable_Y();
  6962. if (parser.seen('Z')) disable_Z();
  6963. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS
  6964. if (parser.seen('E')) disable_e_steppers();
  6965. #endif
  6966. }
  6967. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  6968. ubl.lcd_map_control = defer_return_to_status = false;
  6969. #endif
  6970. }
  6971. }
  6972. /**
  6973. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  6974. */
  6975. inline void gcode_M85() {
  6976. if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
  6977. }
  6978. /**
  6979. * Multi-stepper support for M92, M201, M203
  6980. */
  6981. #if ENABLED(DISTINCT_E_FACTORS)
  6982. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  6983. #define TARGET_EXTRUDER target_extruder
  6984. #else
  6985. #define GET_TARGET_EXTRUDER(CMD) NOOP
  6986. #define TARGET_EXTRUDER 0
  6987. #endif
  6988. /**
  6989. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  6990. * (Follows the same syntax as G92)
  6991. *
  6992. * With multiple extruders use T to specify which one.
  6993. */
  6994. inline void gcode_M92() {
  6995. GET_TARGET_EXTRUDER(92);
  6996. LOOP_XYZE(i) {
  6997. if (parser.seen(axis_codes[i])) {
  6998. if (i == E_AXIS) {
  6999. const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
  7000. if (value < 20.0) {
  7001. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  7002. planner.max_jerk[E_AXIS] *= factor;
  7003. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  7004. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  7005. }
  7006. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  7007. }
  7008. else {
  7009. planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
  7010. }
  7011. }
  7012. }
  7013. planner.refresh_positioning();
  7014. }
  7015. /**
  7016. * Output the current position to serial
  7017. */
  7018. void report_current_position() {
  7019. SERIAL_PROTOCOLPGM("X:");
  7020. SERIAL_PROTOCOL(LOGICAL_X_POSITION(current_position[X_AXIS]));
  7021. SERIAL_PROTOCOLPGM(" Y:");
  7022. SERIAL_PROTOCOL(LOGICAL_Y_POSITION(current_position[Y_AXIS]));
  7023. SERIAL_PROTOCOLPGM(" Z:");
  7024. SERIAL_PROTOCOL(LOGICAL_Z_POSITION(current_position[Z_AXIS]));
  7025. SERIAL_PROTOCOLPGM(" E:");
  7026. SERIAL_PROTOCOL(current_position[E_AXIS]);
  7027. stepper.report_positions();
  7028. #if IS_SCARA
  7029. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  7030. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  7031. SERIAL_EOL();
  7032. #endif
  7033. }
  7034. #ifdef M114_DETAIL
  7035. void report_xyze(const float pos[], const uint8_t n = 4, const uint8_t precision = 3) {
  7036. char str[12];
  7037. for (uint8_t i = 0; i < n; i++) {
  7038. SERIAL_CHAR(' ');
  7039. SERIAL_CHAR(axis_codes[i]);
  7040. SERIAL_CHAR(':');
  7041. SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
  7042. }
  7043. SERIAL_EOL();
  7044. }
  7045. inline void report_xyz(const float pos[]) { report_xyze(pos, 3); }
  7046. void report_current_position_detail() {
  7047. stepper.synchronize();
  7048. SERIAL_PROTOCOLPGM("\nLogical:");
  7049. const float logical[XYZ] = {
  7050. LOGICAL_X_POSITION(current_position[X_AXIS]),
  7051. LOGICAL_Y_POSITION(current_position[Y_AXIS]),
  7052. LOGICAL_Z_POSITION(current_position[Z_AXIS])
  7053. };
  7054. report_xyze(logical);
  7055. SERIAL_PROTOCOLPGM("Raw: ");
  7056. report_xyz(current_position);
  7057. float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  7058. #if PLANNER_LEVELING
  7059. SERIAL_PROTOCOLPGM("Leveled:");
  7060. planner.apply_leveling(leveled);
  7061. report_xyz(leveled);
  7062. SERIAL_PROTOCOLPGM("UnLevel:");
  7063. float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
  7064. planner.unapply_leveling(unleveled);
  7065. report_xyz(unleveled);
  7066. #endif
  7067. #if IS_KINEMATIC
  7068. #if IS_SCARA
  7069. SERIAL_PROTOCOLPGM("ScaraK: ");
  7070. #else
  7071. SERIAL_PROTOCOLPGM("DeltaK: ");
  7072. #endif
  7073. inverse_kinematics(leveled); // writes delta[]
  7074. report_xyz(delta);
  7075. #endif
  7076. SERIAL_PROTOCOLPGM("Stepper:");
  7077. LOOP_XYZE(i) {
  7078. SERIAL_CHAR(' ');
  7079. SERIAL_CHAR(axis_codes[i]);
  7080. SERIAL_CHAR(':');
  7081. SERIAL_PROTOCOL(stepper.position((AxisEnum)i));
  7082. }
  7083. SERIAL_EOL();
  7084. #if IS_SCARA
  7085. const float deg[XYZ] = {
  7086. stepper.get_axis_position_degrees(A_AXIS),
  7087. stepper.get_axis_position_degrees(B_AXIS)
  7088. };
  7089. SERIAL_PROTOCOLPGM("Degrees:");
  7090. report_xyze(deg, 2);
  7091. #endif
  7092. SERIAL_PROTOCOLPGM("FromStp:");
  7093. get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
  7094. const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
  7095. report_xyze(from_steppers);
  7096. const float diff[XYZE] = {
  7097. from_steppers[X_AXIS] - leveled[X_AXIS],
  7098. from_steppers[Y_AXIS] - leveled[Y_AXIS],
  7099. from_steppers[Z_AXIS] - leveled[Z_AXIS],
  7100. from_steppers[E_AXIS] - current_position[E_AXIS]
  7101. };
  7102. SERIAL_PROTOCOLPGM("Differ: ");
  7103. report_xyze(diff);
  7104. }
  7105. #endif // M114_DETAIL
  7106. /**
  7107. * M114: Report current position to host
  7108. */
  7109. inline void gcode_M114() {
  7110. #ifdef M114_DETAIL
  7111. if (parser.seen('D')) {
  7112. report_current_position_detail();
  7113. return;
  7114. }
  7115. #endif
  7116. stepper.synchronize();
  7117. report_current_position();
  7118. }
  7119. /**
  7120. * M115: Capabilities string
  7121. */
  7122. inline void gcode_M115() {
  7123. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  7124. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  7125. // SERIAL_XON_XOFF
  7126. #if ENABLED(SERIAL_XON_XOFF)
  7127. SERIAL_PROTOCOLLNPGM("Cap:SERIAL_XON_XOFF:1");
  7128. #else
  7129. SERIAL_PROTOCOLLNPGM("Cap:SERIAL_XON_XOFF:0");
  7130. #endif
  7131. // EEPROM (M500, M501)
  7132. #if ENABLED(EEPROM_SETTINGS)
  7133. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  7134. #else
  7135. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  7136. #endif
  7137. // AUTOREPORT_TEMP (M155)
  7138. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  7139. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  7140. #else
  7141. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  7142. #endif
  7143. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  7144. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  7145. // Print Job timer M75, M76, M77
  7146. SERIAL_PROTOCOLLNPGM("Cap:PRINT_JOB:1");
  7147. // AUTOLEVEL (G29)
  7148. #if HAS_ABL
  7149. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  7150. #else
  7151. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  7152. #endif
  7153. // Z_PROBE (G30)
  7154. #if HAS_BED_PROBE
  7155. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  7156. #else
  7157. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  7158. #endif
  7159. // MESH_REPORT (M420 V)
  7160. #if HAS_LEVELING
  7161. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  7162. #else
  7163. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  7164. #endif
  7165. // BUILD_PERCENT (M73)
  7166. #if ENABLED(LCD_SET_PROGRESS_MANUALLY)
  7167. SERIAL_PROTOCOLLNPGM("Cap:BUILD_PERCENT:1");
  7168. #else
  7169. SERIAL_PROTOCOLLNPGM("Cap:BUILD_PERCENT:0");
  7170. #endif
  7171. // SOFTWARE_POWER (M80, M81)
  7172. #if HAS_POWER_SWITCH
  7173. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  7174. #else
  7175. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  7176. #endif
  7177. // CASE LIGHTS (M355)
  7178. #if HAS_CASE_LIGHT
  7179. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  7180. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  7181. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
  7182. }
  7183. else
  7184. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  7185. #else
  7186. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  7187. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  7188. #endif
  7189. // EMERGENCY_PARSER (M108, M112, M410)
  7190. #if ENABLED(EMERGENCY_PARSER)
  7191. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  7192. #else
  7193. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  7194. #endif
  7195. #endif // EXTENDED_CAPABILITIES_REPORT
  7196. }
  7197. /**
  7198. * M117: Set LCD Status Message
  7199. */
  7200. inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
  7201. /**
  7202. * M118: Display a message in the host console.
  7203. *
  7204. * A1 Append '// ' for an action command, as in OctoPrint
  7205. * E1 Have the host 'echo:' the text
  7206. */
  7207. inline void gcode_M118() {
  7208. if (parser.boolval('E')) SERIAL_ECHO_START();
  7209. if (parser.boolval('A')) SERIAL_ECHOPGM("// ");
  7210. SERIAL_ECHOLN(parser.string_arg);
  7211. }
  7212. /**
  7213. * M119: Output endstop states to serial output
  7214. */
  7215. inline void gcode_M119() { endstops.M119(); }
  7216. /**
  7217. * M120: Enable endstops and set non-homing endstop state to "enabled"
  7218. */
  7219. inline void gcode_M120() { endstops.enable_globally(true); }
  7220. /**
  7221. * M121: Disable endstops and set non-homing endstop state to "disabled"
  7222. */
  7223. inline void gcode_M121() { endstops.enable_globally(false); }
  7224. #if ENABLED(PARK_HEAD_ON_PAUSE)
  7225. /**
  7226. * M125: Store current position and move to filament change position.
  7227. * Called on pause (by M25) to prevent material leaking onto the
  7228. * object. On resume (M24) the head will be moved back and the
  7229. * print will resume.
  7230. *
  7231. * If Marlin is compiled without SD Card support, M125 can be
  7232. * used directly to pause the print and move to park position,
  7233. * resuming with a button click or M108.
  7234. *
  7235. * L = override retract length
  7236. * X = override X
  7237. * Y = override Y
  7238. * Z = override Z raise
  7239. */
  7240. inline void gcode_M125() {
  7241. // Initial retract before move to filament change position
  7242. const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  7243. #ifdef PAUSE_PARK_RETRACT_LENGTH
  7244. - (PAUSE_PARK_RETRACT_LENGTH)
  7245. #endif
  7246. ;
  7247. // Lift Z axis
  7248. const float z_lift = parser.linearval('Z')
  7249. #ifdef PAUSE_PARK_Z_ADD
  7250. + PAUSE_PARK_Z_ADD
  7251. #endif
  7252. ;
  7253. // Move XY axes to filament change position or given position
  7254. const float x_pos = parser.linearval('X')
  7255. #ifdef PAUSE_PARK_X_POS
  7256. + PAUSE_PARK_X_POS
  7257. #endif
  7258. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7259. + (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
  7260. #endif
  7261. ;
  7262. const float y_pos = parser.linearval('Y')
  7263. #ifdef PAUSE_PARK_Y_POS
  7264. + PAUSE_PARK_Y_POS
  7265. #endif
  7266. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7267. + (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
  7268. #endif
  7269. ;
  7270. #if DISABLED(SDSUPPORT)
  7271. const bool job_running = print_job_timer.isRunning();
  7272. #endif
  7273. if (pause_print(retract, z_lift, x_pos, y_pos)) {
  7274. #if DISABLED(SDSUPPORT)
  7275. // Wait for lcd click or M108
  7276. wait_for_filament_reload();
  7277. // Return to print position and continue
  7278. resume_print();
  7279. if (job_running) print_job_timer.start();
  7280. #endif
  7281. }
  7282. }
  7283. #endif // PARK_HEAD_ON_PAUSE
  7284. #if HAS_COLOR_LEDS
  7285. /**
  7286. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  7287. * and Brightness - Use P (for NEOPIXEL only)
  7288. *
  7289. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  7290. * If brightness is left out, no value changed
  7291. *
  7292. * Examples:
  7293. *
  7294. * M150 R255 ; Turn LED red
  7295. * M150 R255 U127 ; Turn LED orange (PWM only)
  7296. * M150 ; Turn LED off
  7297. * M150 R U B ; Turn LED white
  7298. * M150 W ; Turn LED white using a white LED
  7299. * M150 P127 ; Set LED 50% brightness
  7300. * M150 P ; Set LED full brightness
  7301. */
  7302. inline void gcode_M150() {
  7303. leds.set_color(MakeLEDColor(
  7304. parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7305. parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7306. parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7307. parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7308. parser.seen('P') ? (parser.has_value() ? parser.value_byte() : 255) : pixels.getBrightness()
  7309. ));
  7310. }
  7311. #endif // HAS_COLOR_LEDS
  7312. /**
  7313. * M200: Set filament diameter and set E axis units to cubic units
  7314. *
  7315. * T<extruder> - Optional extruder number. Current extruder if omitted.
  7316. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  7317. */
  7318. inline void gcode_M200() {
  7319. if (get_target_extruder_from_command(200)) return;
  7320. if (parser.seen('D')) {
  7321. // setting any extruder filament size disables volumetric on the assumption that
  7322. // slicers either generate in extruder values as cubic mm or as as filament feeds
  7323. // for all extruders
  7324. if ( (parser.volumetric_enabled = (parser.value_linear_units() != 0.0)) )
  7325. planner.set_filament_size(target_extruder, parser.value_linear_units());
  7326. }
  7327. planner.calculate_volumetric_multipliers();
  7328. }
  7329. /**
  7330. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  7331. *
  7332. * With multiple extruders use T to specify which one.
  7333. */
  7334. inline void gcode_M201() {
  7335. GET_TARGET_EXTRUDER(201);
  7336. LOOP_XYZE(i) {
  7337. if (parser.seen(axis_codes[i])) {
  7338. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7339. planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
  7340. }
  7341. }
  7342. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  7343. planner.reset_acceleration_rates();
  7344. }
  7345. #if 0 // Not used for Sprinter/grbl gen6
  7346. inline void gcode_M202() {
  7347. LOOP_XYZE(i) {
  7348. if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  7349. }
  7350. }
  7351. #endif
  7352. /**
  7353. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  7354. *
  7355. * With multiple extruders use T to specify which one.
  7356. */
  7357. inline void gcode_M203() {
  7358. GET_TARGET_EXTRUDER(203);
  7359. LOOP_XYZE(i)
  7360. if (parser.seen(axis_codes[i])) {
  7361. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7362. planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
  7363. }
  7364. }
  7365. /**
  7366. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  7367. *
  7368. * P = Printing moves
  7369. * R = Retract only (no X, Y, Z) moves
  7370. * T = Travel (non printing) moves
  7371. *
  7372. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  7373. */
  7374. inline void gcode_M204() {
  7375. if (parser.seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  7376. planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
  7377. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  7378. }
  7379. if (parser.seen('P')) {
  7380. planner.acceleration = parser.value_linear_units();
  7381. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  7382. }
  7383. if (parser.seen('R')) {
  7384. planner.retract_acceleration = parser.value_linear_units();
  7385. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  7386. }
  7387. if (parser.seen('T')) {
  7388. planner.travel_acceleration = parser.value_linear_units();
  7389. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  7390. }
  7391. }
  7392. /**
  7393. * M205: Set Advanced Settings
  7394. *
  7395. * S = Min Feed Rate (units/s)
  7396. * T = Min Travel Feed Rate (units/s)
  7397. * B = Min Segment Time (µs)
  7398. * X = Max X Jerk (units/sec^2)
  7399. * Y = Max Y Jerk (units/sec^2)
  7400. * Z = Max Z Jerk (units/sec^2)
  7401. * E = Max E Jerk (units/sec^2)
  7402. */
  7403. inline void gcode_M205() {
  7404. if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
  7405. if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
  7406. if (parser.seen('B')) planner.min_segment_time_us = parser.value_ulong();
  7407. if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
  7408. if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
  7409. if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
  7410. if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
  7411. }
  7412. #if HAS_M206_COMMAND
  7413. /**
  7414. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  7415. *
  7416. * *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
  7417. * *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
  7418. * *** In the next 1.2 release, it will simply be disabled by default.
  7419. */
  7420. inline void gcode_M206() {
  7421. LOOP_XYZ(i)
  7422. if (parser.seen(axis_codes[i]))
  7423. set_home_offset((AxisEnum)i, parser.value_linear_units());
  7424. #if ENABLED(MORGAN_SCARA)
  7425. if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_float()); // Theta
  7426. if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_float()); // Psi
  7427. #endif
  7428. report_current_position();
  7429. }
  7430. #endif // HAS_M206_COMMAND
  7431. #if ENABLED(DELTA)
  7432. /**
  7433. * M665: Set delta configurations
  7434. *
  7435. * H = delta height
  7436. * L = diagonal rod
  7437. * R = delta radius
  7438. * S = segments per second
  7439. * B = delta calibration radius
  7440. * X = Alpha (Tower 1) angle trim
  7441. * Y = Beta (Tower 2) angle trim
  7442. * Z = Rotate A and B by this angle
  7443. */
  7444. inline void gcode_M665() {
  7445. if (parser.seen('H')) delta_height = parser.value_linear_units();
  7446. if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
  7447. if (parser.seen('R')) delta_radius = parser.value_linear_units();
  7448. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7449. if (parser.seen('B')) delta_calibration_radius = parser.value_float();
  7450. if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
  7451. if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
  7452. if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
  7453. recalc_delta_settings();
  7454. }
  7455. /**
  7456. * M666: Set delta endstop adjustment
  7457. */
  7458. inline void gcode_M666() {
  7459. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7460. if (DEBUGGING(LEVELING)) {
  7461. SERIAL_ECHOLNPGM(">>> gcode_M666");
  7462. }
  7463. #endif
  7464. LOOP_XYZ(i) {
  7465. if (parser.seen(axis_codes[i])) {
  7466. if (parser.value_linear_units() * Z_HOME_DIR <= 0)
  7467. delta_endstop_adj[i] = parser.value_linear_units();
  7468. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7469. if (DEBUGGING(LEVELING)) {
  7470. SERIAL_ECHOPAIR("delta_endstop_adj[", axis_codes[i]);
  7471. SERIAL_ECHOLNPAIR("] = ", delta_endstop_adj[i]);
  7472. }
  7473. #endif
  7474. }
  7475. }
  7476. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7477. if (DEBUGGING(LEVELING)) {
  7478. SERIAL_ECHOLNPGM("<<< gcode_M666");
  7479. }
  7480. #endif
  7481. }
  7482. #elif IS_SCARA
  7483. /**
  7484. * M665: Set SCARA settings
  7485. *
  7486. * Parameters:
  7487. *
  7488. * S[segments-per-second] - Segments-per-second
  7489. * P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
  7490. * T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
  7491. *
  7492. * A, P, and X are all aliases for the shoulder angle
  7493. * B, T, and Y are all aliases for the elbow angle
  7494. */
  7495. inline void gcode_M665() {
  7496. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7497. const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
  7498. const uint8_t sumAPX = hasA + hasP + hasX;
  7499. if (sumAPX == 1)
  7500. home_offset[A_AXIS] = parser.value_float();
  7501. else if (sumAPX > 1) {
  7502. SERIAL_ERROR_START();
  7503. SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
  7504. return;
  7505. }
  7506. const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
  7507. const uint8_t sumBTY = hasB + hasT + hasY;
  7508. if (sumBTY == 1)
  7509. home_offset[B_AXIS] = parser.value_float();
  7510. else if (sumBTY > 1) {
  7511. SERIAL_ERROR_START();
  7512. SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
  7513. return;
  7514. }
  7515. }
  7516. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  7517. /**
  7518. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  7519. */
  7520. inline void gcode_M666() {
  7521. SERIAL_ECHOPGM("Dual Endstop Adjustment (mm): ");
  7522. #if ENABLED(X_DUAL_ENDSTOPS)
  7523. if (parser.seen('X')) x_endstop_adj = parser.value_linear_units();
  7524. SERIAL_ECHOPAIR(" X", x_endstop_adj);
  7525. #endif
  7526. #if ENABLED(Y_DUAL_ENDSTOPS)
  7527. if (parser.seen('Y')) y_endstop_adj = parser.value_linear_units();
  7528. SERIAL_ECHOPAIR(" Y", y_endstop_adj);
  7529. #endif
  7530. #if ENABLED(Z_DUAL_ENDSTOPS)
  7531. if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
  7532. SERIAL_ECHOPAIR(" Z", z_endstop_adj);
  7533. #endif
  7534. SERIAL_EOL();
  7535. }
  7536. #endif // !DELTA && Z_DUAL_ENDSTOPS
  7537. #if ENABLED(FWRETRACT)
  7538. /**
  7539. * M207: Set firmware retraction values
  7540. *
  7541. * S[+units] retract_length
  7542. * W[+units] swap_retract_length (multi-extruder)
  7543. * F[units/min] retract_feedrate_mm_s
  7544. * Z[units] retract_zlift
  7545. */
  7546. inline void gcode_M207() {
  7547. if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
  7548. if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7549. if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
  7550. if (parser.seen('W')) swap_retract_length = parser.value_axis_units(E_AXIS);
  7551. }
  7552. /**
  7553. * M208: Set firmware un-retraction values
  7554. *
  7555. * S[+units] retract_recover_length (in addition to M207 S*)
  7556. * W[+units] swap_retract_recover_length (multi-extruder)
  7557. * F[units/min] retract_recover_feedrate_mm_s
  7558. * R[units/min] swap_retract_recover_feedrate_mm_s
  7559. */
  7560. inline void gcode_M208() {
  7561. if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
  7562. if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7563. if (parser.seen('R')) swap_retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7564. if (parser.seen('W')) swap_retract_recover_length = parser.value_axis_units(E_AXIS);
  7565. }
  7566. /**
  7567. * M209: Enable automatic retract (M209 S1)
  7568. * For slicers that don't support G10/11, reversed extrude-only
  7569. * moves will be classified as retraction.
  7570. */
  7571. inline void gcode_M209() {
  7572. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  7573. if (parser.seen('S')) {
  7574. autoretract_enabled = parser.value_bool();
  7575. for (uint8_t i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  7576. }
  7577. }
  7578. }
  7579. #endif // FWRETRACT
  7580. /**
  7581. * M211: Enable, Disable, and/or Report software endstops
  7582. *
  7583. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  7584. */
  7585. inline void gcode_M211() {
  7586. SERIAL_ECHO_START();
  7587. #if HAS_SOFTWARE_ENDSTOPS
  7588. if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
  7589. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7590. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  7591. #else
  7592. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7593. SERIAL_ECHOPGM(MSG_OFF);
  7594. #endif
  7595. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  7596. SERIAL_ECHOPAIR( MSG_X, LOGICAL_X_POSITION(soft_endstop_min[X_AXIS]));
  7597. SERIAL_ECHOPAIR(" " MSG_Y, LOGICAL_Y_POSITION(soft_endstop_min[Y_AXIS]));
  7598. SERIAL_ECHOPAIR(" " MSG_Z, LOGICAL_Z_POSITION(soft_endstop_min[Z_AXIS]));
  7599. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  7600. SERIAL_ECHOPAIR( MSG_X, LOGICAL_X_POSITION(soft_endstop_max[X_AXIS]));
  7601. SERIAL_ECHOPAIR(" " MSG_Y, LOGICAL_Y_POSITION(soft_endstop_max[Y_AXIS]));
  7602. SERIAL_ECHOLNPAIR(" " MSG_Z, LOGICAL_Z_POSITION(soft_endstop_max[Z_AXIS]));
  7603. }
  7604. #if HOTENDS > 1
  7605. /**
  7606. * M218 - set hotend offset (in linear units)
  7607. *
  7608. * T<tool>
  7609. * X<xoffset>
  7610. * Y<yoffset>
  7611. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
  7612. */
  7613. inline void gcode_M218() {
  7614. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  7615. if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
  7616. if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
  7617. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7618. if (parser.seenval('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
  7619. #endif
  7620. SERIAL_ECHO_START();
  7621. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7622. HOTEND_LOOP() {
  7623. SERIAL_CHAR(' ');
  7624. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  7625. SERIAL_CHAR(',');
  7626. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  7627. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7628. SERIAL_CHAR(',');
  7629. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  7630. #endif
  7631. }
  7632. SERIAL_EOL();
  7633. }
  7634. #endif // HOTENDS > 1
  7635. /**
  7636. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  7637. */
  7638. inline void gcode_M220() {
  7639. if (parser.seenval('S')) feedrate_percentage = parser.value_int();
  7640. }
  7641. /**
  7642. * M221: Set extrusion percentage (M221 T0 S95)
  7643. */
  7644. inline void gcode_M221() {
  7645. if (get_target_extruder_from_command(221)) return;
  7646. if (parser.seenval('S')) {
  7647. planner.flow_percentage[target_extruder] = parser.value_int();
  7648. planner.refresh_e_factor(target_extruder);
  7649. }
  7650. }
  7651. /**
  7652. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  7653. */
  7654. inline void gcode_M226() {
  7655. if (parser.seen('P')) {
  7656. const int pin_number = parser.value_int(),
  7657. pin_state = parser.intval('S', -1); // required pin state - default is inverted
  7658. if (WITHIN(pin_state, -1, 1) && pin_number > -1 && !pin_is_protected(pin_number)) {
  7659. int target = LOW;
  7660. stepper.synchronize();
  7661. pinMode(pin_number, INPUT);
  7662. switch (pin_state) {
  7663. case 1:
  7664. target = HIGH;
  7665. break;
  7666. case 0:
  7667. target = LOW;
  7668. break;
  7669. case -1:
  7670. target = !digitalRead(pin_number);
  7671. break;
  7672. }
  7673. while (digitalRead(pin_number) != target) idle();
  7674. } // pin_state -1 0 1 && pin_number > -1
  7675. } // parser.seen('P')
  7676. }
  7677. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7678. /**
  7679. * M260: Send data to a I2C slave device
  7680. *
  7681. * This is a PoC, the formating and arguments for the GCODE will
  7682. * change to be more compatible, the current proposal is:
  7683. *
  7684. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  7685. *
  7686. * M260 B<byte-1 value in base 10>
  7687. * M260 B<byte-2 value in base 10>
  7688. * M260 B<byte-3 value in base 10>
  7689. *
  7690. * M260 S1 ; Send the buffered data and reset the buffer
  7691. * M260 R1 ; Reset the buffer without sending data
  7692. *
  7693. */
  7694. inline void gcode_M260() {
  7695. // Set the target address
  7696. if (parser.seen('A')) i2c.address(parser.value_byte());
  7697. // Add a new byte to the buffer
  7698. if (parser.seen('B')) i2c.addbyte(parser.value_byte());
  7699. // Flush the buffer to the bus
  7700. if (parser.seen('S')) i2c.send();
  7701. // Reset and rewind the buffer
  7702. else if (parser.seen('R')) i2c.reset();
  7703. }
  7704. /**
  7705. * M261: Request X bytes from I2C slave device
  7706. *
  7707. * Usage: M261 A<slave device address base 10> B<number of bytes>
  7708. */
  7709. inline void gcode_M261() {
  7710. if (parser.seen('A')) i2c.address(parser.value_byte());
  7711. uint8_t bytes = parser.byteval('B', 1);
  7712. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  7713. i2c.relay(bytes);
  7714. }
  7715. else {
  7716. SERIAL_ERROR_START();
  7717. SERIAL_ERRORLN("Bad i2c request");
  7718. }
  7719. }
  7720. #endif // EXPERIMENTAL_I2CBUS
  7721. #if HAS_SERVOS
  7722. /**
  7723. * M280: Get or set servo position. P<index> [S<angle>]
  7724. */
  7725. inline void gcode_M280() {
  7726. if (!parser.seen('P')) return;
  7727. const int servo_index = parser.value_int();
  7728. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  7729. if (parser.seen('S'))
  7730. MOVE_SERVO(servo_index, parser.value_int());
  7731. else {
  7732. SERIAL_ECHO_START();
  7733. SERIAL_ECHOPAIR(" Servo ", servo_index);
  7734. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  7735. }
  7736. }
  7737. else {
  7738. SERIAL_ERROR_START();
  7739. SERIAL_ECHOPAIR("Servo ", servo_index);
  7740. SERIAL_ECHOLNPGM(" out of range");
  7741. }
  7742. }
  7743. #endif // HAS_SERVOS
  7744. #if ENABLED(BABYSTEPPING)
  7745. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7746. FORCE_INLINE void mod_zprobe_zoffset(const float &offs) {
  7747. zprobe_zoffset += offs;
  7748. SERIAL_ECHO_START();
  7749. SERIAL_ECHOLNPAIR(MSG_PROBE_Z_OFFSET ": ", zprobe_zoffset);
  7750. }
  7751. #endif
  7752. /**
  7753. * M290: Babystepping
  7754. */
  7755. inline void gcode_M290() {
  7756. #if ENABLED(BABYSTEP_XY)
  7757. for (uint8_t a = X_AXIS; a <= Z_AXIS; a++)
  7758. if (parser.seenval(axis_codes[a]) || (a == Z_AXIS && parser.seenval('S'))) {
  7759. const float offs = constrain(parser.value_axis_units((AxisEnum)a), -2, 2);
  7760. thermalManager.babystep_axis((AxisEnum)a, offs * planner.axis_steps_per_mm[a]);
  7761. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7762. if (a == Z_AXIS && (!parser.seen('P') || parser.value_bool())) mod_zprobe_zoffset(offs);
  7763. #endif
  7764. }
  7765. #else
  7766. if (parser.seenval('Z') || parser.seenval('S')) {
  7767. const float offs = constrain(parser.value_axis_units(Z_AXIS), -2, 2);
  7768. thermalManager.babystep_axis(Z_AXIS, offs * planner.axis_steps_per_mm[Z_AXIS]);
  7769. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7770. if (!parser.seen('P') || parser.value_bool()) mod_zprobe_zoffset(offs);
  7771. #endif
  7772. }
  7773. #endif
  7774. }
  7775. #endif // BABYSTEPPING
  7776. #if HAS_BUZZER
  7777. /**
  7778. * M300: Play beep sound S<frequency Hz> P<duration ms>
  7779. */
  7780. inline void gcode_M300() {
  7781. uint16_t const frequency = parser.ushortval('S', 260);
  7782. uint16_t duration = parser.ushortval('P', 1000);
  7783. // Limits the tone duration to 0-5 seconds.
  7784. NOMORE(duration, 5000);
  7785. BUZZ(duration, frequency);
  7786. }
  7787. #endif // HAS_BUZZER
  7788. #if ENABLED(PIDTEMP)
  7789. /**
  7790. * M301: Set PID parameters P I D (and optionally C, L)
  7791. *
  7792. * P[float] Kp term
  7793. * I[float] Ki term (unscaled)
  7794. * D[float] Kd term (unscaled)
  7795. *
  7796. * With PID_EXTRUSION_SCALING:
  7797. *
  7798. * C[float] Kc term
  7799. * L[float] LPQ length
  7800. */
  7801. inline void gcode_M301() {
  7802. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  7803. // default behaviour (omitting E parameter) is to update for extruder 0 only
  7804. const uint8_t e = parser.byteval('E'); // extruder being updated
  7805. if (e < HOTENDS) { // catch bad input value
  7806. if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
  7807. if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
  7808. if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
  7809. #if ENABLED(PID_EXTRUSION_SCALING)
  7810. if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
  7811. if (parser.seen('L')) lpq_len = parser.value_float();
  7812. NOMORE(lpq_len, LPQ_MAX_LEN);
  7813. #endif
  7814. thermalManager.updatePID();
  7815. SERIAL_ECHO_START();
  7816. #if ENABLED(PID_PARAMS_PER_HOTEND)
  7817. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  7818. #endif // PID_PARAMS_PER_HOTEND
  7819. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  7820. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  7821. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  7822. #if ENABLED(PID_EXTRUSION_SCALING)
  7823. //Kc does not have scaling applied above, or in resetting defaults
  7824. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  7825. #endif
  7826. SERIAL_EOL();
  7827. }
  7828. else {
  7829. SERIAL_ERROR_START();
  7830. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  7831. }
  7832. }
  7833. #endif // PIDTEMP
  7834. #if ENABLED(PIDTEMPBED)
  7835. inline void gcode_M304() {
  7836. if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
  7837. if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
  7838. if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
  7839. SERIAL_ECHO_START();
  7840. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  7841. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  7842. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  7843. }
  7844. #endif // PIDTEMPBED
  7845. #if defined(CHDK) || HAS_PHOTOGRAPH
  7846. /**
  7847. * M240: Trigger a camera by emulating a Canon RC-1
  7848. * See http://www.doc-diy.net/photo/rc-1_hacked/
  7849. */
  7850. inline void gcode_M240() {
  7851. #ifdef CHDK
  7852. OUT_WRITE(CHDK, HIGH);
  7853. chdkHigh = millis();
  7854. chdkActive = true;
  7855. #elif HAS_PHOTOGRAPH
  7856. const uint8_t NUM_PULSES = 16;
  7857. const float PULSE_LENGTH = 0.01524;
  7858. for (int i = 0; i < NUM_PULSES; i++) {
  7859. WRITE(PHOTOGRAPH_PIN, HIGH);
  7860. _delay_ms(PULSE_LENGTH);
  7861. WRITE(PHOTOGRAPH_PIN, LOW);
  7862. _delay_ms(PULSE_LENGTH);
  7863. }
  7864. delay(7.33);
  7865. for (int i = 0; i < NUM_PULSES; i++) {
  7866. WRITE(PHOTOGRAPH_PIN, HIGH);
  7867. _delay_ms(PULSE_LENGTH);
  7868. WRITE(PHOTOGRAPH_PIN, LOW);
  7869. _delay_ms(PULSE_LENGTH);
  7870. }
  7871. #endif // !CHDK && HAS_PHOTOGRAPH
  7872. }
  7873. #endif // CHDK || PHOTOGRAPH_PIN
  7874. #if HAS_LCD_CONTRAST
  7875. /**
  7876. * M250: Read and optionally set the LCD contrast
  7877. */
  7878. inline void gcode_M250() {
  7879. if (parser.seen('C')) set_lcd_contrast(parser.value_int());
  7880. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  7881. SERIAL_PROTOCOL(lcd_contrast);
  7882. SERIAL_EOL();
  7883. }
  7884. #endif // HAS_LCD_CONTRAST
  7885. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7886. /**
  7887. * M302: Allow cold extrudes, or set the minimum extrude temperature
  7888. *
  7889. * S<temperature> sets the minimum extrude temperature
  7890. * P<bool> enables (1) or disables (0) cold extrusion
  7891. *
  7892. * Examples:
  7893. *
  7894. * M302 ; report current cold extrusion state
  7895. * M302 P0 ; enable cold extrusion checking
  7896. * M302 P1 ; disables cold extrusion checking
  7897. * M302 S0 ; always allow extrusion (disables checking)
  7898. * M302 S170 ; only allow extrusion above 170
  7899. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  7900. */
  7901. inline void gcode_M302() {
  7902. const bool seen_S = parser.seen('S');
  7903. if (seen_S) {
  7904. thermalManager.extrude_min_temp = parser.value_celsius();
  7905. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  7906. }
  7907. if (parser.seen('P'))
  7908. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
  7909. else if (!seen_S) {
  7910. // Report current state
  7911. SERIAL_ECHO_START();
  7912. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  7913. SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
  7914. SERIAL_ECHOLNPGM("C)");
  7915. }
  7916. }
  7917. #endif // PREVENT_COLD_EXTRUSION
  7918. /**
  7919. * M303: PID relay autotune
  7920. *
  7921. * S<temperature> sets the target temperature. (default 150C)
  7922. * E<extruder> (-1 for the bed) (default 0)
  7923. * C<cycles>
  7924. * U<bool> with a non-zero value will apply the result to current settings
  7925. */
  7926. inline void gcode_M303() {
  7927. #if HAS_PID_HEATING
  7928. const int e = parser.intval('E'), c = parser.intval('C', 5);
  7929. const bool u = parser.boolval('U');
  7930. int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
  7931. if (WITHIN(e, 0, HOTENDS - 1))
  7932. target_extruder = e;
  7933. #if DISABLED(BUSY_WHILE_HEATING)
  7934. KEEPALIVE_STATE(NOT_BUSY);
  7935. #endif
  7936. thermalManager.PID_autotune(temp, e, c, u);
  7937. #if DISABLED(BUSY_WHILE_HEATING)
  7938. KEEPALIVE_STATE(IN_HANDLER);
  7939. #endif
  7940. #else
  7941. SERIAL_ERROR_START();
  7942. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  7943. #endif
  7944. }
  7945. #if ENABLED(MORGAN_SCARA)
  7946. bool SCARA_move_to_cal(const uint8_t delta_a, const uint8_t delta_b) {
  7947. if (IsRunning()) {
  7948. forward_kinematics_SCARA(delta_a, delta_b);
  7949. destination[X_AXIS] = cartes[X_AXIS];
  7950. destination[Y_AXIS] = cartes[Y_AXIS];
  7951. destination[Z_AXIS] = current_position[Z_AXIS];
  7952. prepare_move_to_destination();
  7953. return true;
  7954. }
  7955. return false;
  7956. }
  7957. /**
  7958. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  7959. */
  7960. inline bool gcode_M360() {
  7961. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  7962. return SCARA_move_to_cal(0, 120);
  7963. }
  7964. /**
  7965. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  7966. */
  7967. inline bool gcode_M361() {
  7968. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  7969. return SCARA_move_to_cal(90, 130);
  7970. }
  7971. /**
  7972. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  7973. */
  7974. inline bool gcode_M362() {
  7975. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  7976. return SCARA_move_to_cal(60, 180);
  7977. }
  7978. /**
  7979. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  7980. */
  7981. inline bool gcode_M363() {
  7982. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  7983. return SCARA_move_to_cal(50, 90);
  7984. }
  7985. /**
  7986. * M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
  7987. */
  7988. inline bool gcode_M364() {
  7989. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  7990. return SCARA_move_to_cal(45, 135);
  7991. }
  7992. #endif // SCARA
  7993. #if ENABLED(EXT_SOLENOID)
  7994. void enable_solenoid(const uint8_t num) {
  7995. switch (num) {
  7996. case 0:
  7997. OUT_WRITE(SOL0_PIN, HIGH);
  7998. break;
  7999. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  8000. case 1:
  8001. OUT_WRITE(SOL1_PIN, HIGH);
  8002. break;
  8003. #endif
  8004. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  8005. case 2:
  8006. OUT_WRITE(SOL2_PIN, HIGH);
  8007. break;
  8008. #endif
  8009. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  8010. case 3:
  8011. OUT_WRITE(SOL3_PIN, HIGH);
  8012. break;
  8013. #endif
  8014. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  8015. case 4:
  8016. OUT_WRITE(SOL4_PIN, HIGH);
  8017. break;
  8018. #endif
  8019. default:
  8020. SERIAL_ECHO_START();
  8021. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  8022. break;
  8023. }
  8024. }
  8025. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  8026. void disable_all_solenoids() {
  8027. OUT_WRITE(SOL0_PIN, LOW);
  8028. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  8029. OUT_WRITE(SOL1_PIN, LOW);
  8030. #endif
  8031. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  8032. OUT_WRITE(SOL2_PIN, LOW);
  8033. #endif
  8034. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  8035. OUT_WRITE(SOL3_PIN, LOW);
  8036. #endif
  8037. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  8038. OUT_WRITE(SOL4_PIN, LOW);
  8039. #endif
  8040. }
  8041. /**
  8042. * M380: Enable solenoid on the active extruder
  8043. */
  8044. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  8045. /**
  8046. * M381: Disable all solenoids
  8047. */
  8048. inline void gcode_M381() { disable_all_solenoids(); }
  8049. #endif // EXT_SOLENOID
  8050. /**
  8051. * M400: Finish all moves
  8052. */
  8053. inline void gcode_M400() { stepper.synchronize(); }
  8054. #if HAS_BED_PROBE
  8055. /**
  8056. * M401: Engage Z Servo endstop if available
  8057. */
  8058. inline void gcode_M401() { DEPLOY_PROBE(); }
  8059. /**
  8060. * M402: Retract Z Servo endstop if enabled
  8061. */
  8062. inline void gcode_M402() { STOW_PROBE(); }
  8063. #endif // HAS_BED_PROBE
  8064. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8065. /**
  8066. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  8067. */
  8068. inline void gcode_M404() {
  8069. if (parser.seen('W')) {
  8070. filament_width_nominal = parser.value_linear_units();
  8071. planner.volumetric_area_nominal = CIRCLE_AREA(filament_width_nominal * 0.5);
  8072. }
  8073. else {
  8074. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  8075. SERIAL_PROTOCOLLN(filament_width_nominal);
  8076. }
  8077. }
  8078. /**
  8079. * M405: Turn on filament sensor for control
  8080. */
  8081. inline void gcode_M405() {
  8082. // This is technically a linear measurement, but since it's quantized to centimeters and is a different
  8083. // unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
  8084. if (parser.seen('D')) {
  8085. meas_delay_cm = parser.value_byte();
  8086. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  8087. }
  8088. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  8089. const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio();
  8090. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  8091. measurement_delay[i] = temp_ratio;
  8092. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  8093. }
  8094. filament_sensor = true;
  8095. }
  8096. /**
  8097. * M406: Turn off filament sensor for control
  8098. */
  8099. inline void gcode_M406() {
  8100. filament_sensor = false;
  8101. planner.calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
  8102. }
  8103. /**
  8104. * M407: Get measured filament diameter on serial output
  8105. */
  8106. inline void gcode_M407() {
  8107. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  8108. SERIAL_PROTOCOLLN(filament_width_meas);
  8109. }
  8110. #endif // FILAMENT_WIDTH_SENSOR
  8111. void quickstop_stepper() {
  8112. stepper.quick_stop();
  8113. stepper.synchronize();
  8114. set_current_from_steppers_for_axis(ALL_AXES);
  8115. SYNC_PLAN_POSITION_KINEMATIC();
  8116. }
  8117. #if HAS_LEVELING
  8118. /**
  8119. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  8120. *
  8121. * S[bool] Turns leveling on or off
  8122. * Z[height] Sets the Z fade height (0 or none to disable)
  8123. * V[bool] Verbose - Print the leveling grid
  8124. *
  8125. * With AUTO_BED_LEVELING_UBL only:
  8126. *
  8127. * L[index] Load UBL mesh from index (0 is default)
  8128. */
  8129. inline void gcode_M420() {
  8130. const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  8131. #if ENABLED(AUTO_BED_LEVELING_UBL)
  8132. // L to load a mesh from the EEPROM
  8133. if (parser.seen('L')) {
  8134. #if ENABLED(EEPROM_SETTINGS)
  8135. const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.storage_slot;
  8136. const int16_t a = settings.calc_num_meshes();
  8137. if (!a) {
  8138. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  8139. return;
  8140. }
  8141. if (!WITHIN(storage_slot, 0, a - 1)) {
  8142. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  8143. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  8144. return;
  8145. }
  8146. settings.load_mesh(storage_slot);
  8147. ubl.storage_slot = storage_slot;
  8148. #else
  8149. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  8150. return;
  8151. #endif
  8152. }
  8153. // L to load a mesh from the EEPROM
  8154. if (parser.seen('L') || parser.seen('V')) {
  8155. ubl.display_map(0); // Currently only supports one map type
  8156. SERIAL_ECHOLNPAIR("ubl.mesh_is_valid = ", ubl.mesh_is_valid());
  8157. SERIAL_ECHOLNPAIR("ubl.storage_slot = ", ubl.storage_slot);
  8158. }
  8159. #endif // AUTO_BED_LEVELING_UBL
  8160. // V to print the matrix or mesh
  8161. if (parser.seen('V')) {
  8162. #if ABL_PLANAR
  8163. planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
  8164. #else
  8165. if (leveling_is_valid()) {
  8166. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8167. print_bilinear_leveling_grid();
  8168. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8169. print_bilinear_leveling_grid_virt();
  8170. #endif
  8171. #elif ENABLED(MESH_BED_LEVELING)
  8172. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  8173. mbl_mesh_report();
  8174. #endif
  8175. }
  8176. #endif
  8177. }
  8178. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  8179. if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units(), false);
  8180. #endif
  8181. bool to_enable = false;
  8182. if (parser.seen('S')) {
  8183. to_enable = parser.value_bool();
  8184. set_bed_leveling_enabled(to_enable);
  8185. }
  8186. const bool new_status = planner.leveling_active;
  8187. if (to_enable && !new_status) {
  8188. SERIAL_ERROR_START();
  8189. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  8190. }
  8191. SERIAL_ECHO_START();
  8192. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  8193. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  8194. SERIAL_ECHO_START();
  8195. SERIAL_ECHOPGM("Fade Height ");
  8196. if (planner.z_fade_height > 0.0)
  8197. SERIAL_ECHOLN(planner.z_fade_height);
  8198. else
  8199. SERIAL_ECHOLNPGM(MSG_OFF);
  8200. #endif
  8201. // Report change in position
  8202. if (memcmp(oldpos, current_position, sizeof(oldpos)))
  8203. report_current_position();
  8204. }
  8205. #endif
  8206. #if ENABLED(MESH_BED_LEVELING)
  8207. /**
  8208. * M421: Set a single Mesh Bed Leveling Z coordinate
  8209. *
  8210. * Usage:
  8211. * M421 X<linear> Y<linear> Z<linear>
  8212. * M421 X<linear> Y<linear> Q<offset>
  8213. * M421 I<xindex> J<yindex> Z<linear>
  8214. * M421 I<xindex> J<yindex> Q<offset>
  8215. */
  8216. inline void gcode_M421() {
  8217. const bool hasX = parser.seen('X'), hasI = parser.seen('I');
  8218. const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(parser.value_linear_units()) : -1;
  8219. const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
  8220. const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(parser.value_linear_units()) : -1;
  8221. const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
  8222. if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
  8223. SERIAL_ERROR_START();
  8224. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8225. }
  8226. else if (ix < 0 || iy < 0) {
  8227. SERIAL_ERROR_START();
  8228. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8229. }
  8230. else
  8231. mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
  8232. }
  8233. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8234. /**
  8235. * M421: Set a single Mesh Bed Leveling Z coordinate
  8236. *
  8237. * Usage:
  8238. * M421 I<xindex> J<yindex> Z<linear>
  8239. * M421 I<xindex> J<yindex> Q<offset>
  8240. */
  8241. inline void gcode_M421() {
  8242. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  8243. const bool hasI = ix >= 0,
  8244. hasJ = iy >= 0,
  8245. hasZ = parser.seen('Z'),
  8246. hasQ = !hasZ && parser.seen('Q');
  8247. if (!hasI || !hasJ || !(hasZ || hasQ)) {
  8248. SERIAL_ERROR_START();
  8249. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8250. }
  8251. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  8252. SERIAL_ERROR_START();
  8253. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8254. }
  8255. else {
  8256. z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
  8257. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8258. bed_level_virt_interpolate();
  8259. #endif
  8260. }
  8261. }
  8262. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  8263. /**
  8264. * M421: Set a single Mesh Bed Leveling Z coordinate
  8265. *
  8266. * Usage:
  8267. * M421 I<xindex> J<yindex> Z<linear>
  8268. * M421 I<xindex> J<yindex> Q<offset>
  8269. * M421 C Z<linear>
  8270. * M421 C Q<offset>
  8271. */
  8272. inline void gcode_M421() {
  8273. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  8274. const bool hasI = ix >= 0,
  8275. hasJ = iy >= 0,
  8276. hasC = parser.seen('C'),
  8277. hasZ = parser.seen('Z'),
  8278. hasQ = !hasZ && parser.seen('Q');
  8279. if (hasC) {
  8280. const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL);
  8281. ix = location.x_index;
  8282. iy = location.y_index;
  8283. }
  8284. if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
  8285. SERIAL_ERROR_START();
  8286. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8287. }
  8288. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  8289. SERIAL_ERROR_START();
  8290. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8291. }
  8292. else
  8293. ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
  8294. }
  8295. #endif // AUTO_BED_LEVELING_UBL
  8296. #if HAS_M206_COMMAND
  8297. /**
  8298. * M428: Set home_offset based on the distance between the
  8299. * current_position and the nearest "reference point."
  8300. * If an axis is past center its endstop position
  8301. * is the reference-point. Otherwise it uses 0. This allows
  8302. * the Z offset to be set near the bed when using a max endstop.
  8303. *
  8304. * M428 can't be used more than 2cm away from 0 or an endstop.
  8305. *
  8306. * Use M206 to set these values directly.
  8307. */
  8308. inline void gcode_M428() {
  8309. if (axis_unhomed_error()) return;
  8310. float diff[XYZ];
  8311. LOOP_XYZ(i) {
  8312. diff[i] = base_home_pos((AxisEnum)i) - current_position[i];
  8313. if (!WITHIN(diff[i], -20, 20) && home_dir((AxisEnum)i) > 0)
  8314. diff[i] = -current_position[i];
  8315. if (!WITHIN(diff[i], -20, 20)) {
  8316. SERIAL_ERROR_START();
  8317. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  8318. LCD_ALERTMESSAGEPGM("Err: Too far!");
  8319. BUZZ(200, 40);
  8320. return;
  8321. }
  8322. }
  8323. LOOP_XYZ(i) set_home_offset((AxisEnum)i, diff[i]);
  8324. report_current_position();
  8325. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  8326. BUZZ(100, 659);
  8327. BUZZ(100, 698);
  8328. }
  8329. #endif // HAS_M206_COMMAND
  8330. /**
  8331. * M500: Store settings in EEPROM
  8332. */
  8333. inline void gcode_M500() {
  8334. (void)settings.save();
  8335. }
  8336. /**
  8337. * M501: Read settings from EEPROM
  8338. */
  8339. inline void gcode_M501() {
  8340. (void)settings.load();
  8341. }
  8342. /**
  8343. * M502: Revert to default settings
  8344. */
  8345. inline void gcode_M502() {
  8346. (void)settings.reset();
  8347. }
  8348. #if DISABLED(DISABLE_M503)
  8349. /**
  8350. * M503: print settings currently in memory
  8351. */
  8352. inline void gcode_M503() {
  8353. (void)settings.report(parser.seen('S') && !parser.value_bool());
  8354. }
  8355. #endif
  8356. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8357. /**
  8358. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  8359. */
  8360. inline void gcode_M540() {
  8361. if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
  8362. }
  8363. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  8364. #if HAS_BED_PROBE
  8365. inline void gcode_M851() {
  8366. SERIAL_ECHO_START();
  8367. SERIAL_ECHOPGM(MSG_PROBE_Z_OFFSET);
  8368. if (parser.seen('Z')) {
  8369. const float value = parser.value_linear_units();
  8370. if (!WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  8371. SERIAL_ECHOLNPGM(" " MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  8372. return;
  8373. }
  8374. zprobe_zoffset = value;
  8375. }
  8376. SERIAL_ECHOLNPAIR(": ", zprobe_zoffset);
  8377. }
  8378. #endif // HAS_BED_PROBE
  8379. #if ENABLED(SKEW_CORRECTION_GCODE)
  8380. /**
  8381. * M852: Get or set the machine skew factors. Reports current values with no arguments.
  8382. *
  8383. * S[xy_factor] - Alias for 'I'
  8384. * I[xy_factor] - New XY skew factor
  8385. * J[xz_factor] - New XZ skew factor
  8386. * K[yz_factor] - New YZ skew factor
  8387. */
  8388. inline void gcode_M852() {
  8389. uint8_t ijk = 0, badval = 0, setval = 0;
  8390. if (parser.seen('I') || parser.seen('S')) {
  8391. ++ijk;
  8392. const float value = parser.value_linear_units();
  8393. if (WITHIN(value, SKEW_FACTOR_MIN, SKEW_FACTOR_MAX)) {
  8394. if (planner.xy_skew_factor != value) {
  8395. planner.xy_skew_factor = value;
  8396. ++setval;
  8397. }
  8398. }
  8399. else
  8400. ++badval;
  8401. }
  8402. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  8403. if (parser.seen('J')) {
  8404. ++ijk;
  8405. const float value = parser.value_linear_units();
  8406. if (WITHIN(value, SKEW_FACTOR_MIN, SKEW_FACTOR_MAX)) {
  8407. if (planner.xz_skew_factor != value) {
  8408. planner.xz_skew_factor = value;
  8409. ++setval;
  8410. }
  8411. }
  8412. else
  8413. ++badval;
  8414. }
  8415. if (parser.seen('K')) {
  8416. ++ijk;
  8417. const float value = parser.value_linear_units();
  8418. if (WITHIN(value, SKEW_FACTOR_MIN, SKEW_FACTOR_MAX)) {
  8419. if (planner.yz_skew_factor != value) {
  8420. planner.yz_skew_factor = value;
  8421. ++setval;
  8422. }
  8423. }
  8424. else
  8425. ++badval;
  8426. }
  8427. #endif
  8428. if (badval)
  8429. SERIAL_ECHOLNPGM(MSG_SKEW_MIN " " STRINGIFY(SKEW_FACTOR_MIN) " " MSG_SKEW_MAX " " STRINGIFY(SKEW_FACTOR_MAX));
  8430. // When skew is changed the current position changes
  8431. if (setval) {
  8432. set_current_from_steppers_for_axis(ALL_AXES);
  8433. SYNC_PLAN_POSITION_KINEMATIC();
  8434. report_current_position();
  8435. }
  8436. if (!ijk) {
  8437. SERIAL_ECHO_START();
  8438. SERIAL_ECHOPAIR(MSG_SKEW_FACTOR " XY: ", planner.xy_skew_factor);
  8439. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  8440. SERIAL_ECHOPAIR(" XZ: ", planner.xz_skew_factor);
  8441. SERIAL_ECHOLNPAIR(" YZ: ", planner.yz_skew_factor);
  8442. #else
  8443. SERIAL_EOL();
  8444. #endif
  8445. }
  8446. }
  8447. #endif // SKEW_CORRECTION_GCODE
  8448. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  8449. /**
  8450. * M600: Pause for filament change
  8451. *
  8452. * E[distance] - Retract the filament this far (negative value)
  8453. * Z[distance] - Move the Z axis by this distance
  8454. * X[position] - Move to this X position, with Y
  8455. * Y[position] - Move to this Y position, with X
  8456. * U[distance] - Retract distance for removal (negative value) (manual reload)
  8457. * L[distance] - Extrude distance for insertion (positive value) (manual reload)
  8458. * B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
  8459. *
  8460. * Default values are used for omitted arguments.
  8461. *
  8462. */
  8463. inline void gcode_M600() {
  8464. #if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
  8465. // Don't allow filament change without homing first
  8466. if (axis_unhomed_error()) home_all_axes();
  8467. #endif
  8468. // Initial retract before move to filament change position
  8469. const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
  8470. #ifdef PAUSE_PARK_RETRACT_LENGTH
  8471. - (PAUSE_PARK_RETRACT_LENGTH)
  8472. #endif
  8473. ;
  8474. // Lift Z axis
  8475. const float z_lift = parser.linearval('Z', 0
  8476. #ifdef PAUSE_PARK_Z_ADD
  8477. + PAUSE_PARK_Z_ADD
  8478. #endif
  8479. );
  8480. // Move XY axes to filament exchange position
  8481. const float x_pos = parser.linearval('X', 0
  8482. #ifdef PAUSE_PARK_X_POS
  8483. + PAUSE_PARK_X_POS
  8484. #endif
  8485. );
  8486. const float y_pos = parser.linearval('Y', 0
  8487. #ifdef PAUSE_PARK_Y_POS
  8488. + PAUSE_PARK_Y_POS
  8489. #endif
  8490. );
  8491. // Unload filament
  8492. const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
  8493. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  8494. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  8495. #endif
  8496. ;
  8497. // Load filament
  8498. const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  8499. #ifdef FILAMENT_CHANGE_LOAD_LENGTH
  8500. + FILAMENT_CHANGE_LOAD_LENGTH
  8501. #endif
  8502. ;
  8503. const int beep_count = parser.intval('B',
  8504. #ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8505. FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8506. #else
  8507. -1
  8508. #endif
  8509. );
  8510. const bool job_running = print_job_timer.isRunning();
  8511. if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
  8512. wait_for_filament_reload(beep_count);
  8513. resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
  8514. }
  8515. // Resume the print job timer if it was running
  8516. if (job_running) print_job_timer.start();
  8517. }
  8518. #endif // ADVANCED_PAUSE_FEATURE
  8519. #if ENABLED(MK2_MULTIPLEXER)
  8520. inline void select_multiplexed_stepper(const uint8_t e) {
  8521. stepper.synchronize();
  8522. disable_e_steppers();
  8523. WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  8524. WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  8525. WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
  8526. safe_delay(100);
  8527. }
  8528. /**
  8529. * M702: Unload all extruders
  8530. */
  8531. inline void gcode_M702() {
  8532. for (uint8_t s = 0; s < E_STEPPERS; s++) {
  8533. select_multiplexed_stepper(e);
  8534. // TODO: standard unload filament function
  8535. // MK2 firmware behavior:
  8536. // - Make sure temperature is high enough
  8537. // - Raise Z to at least 15 to make room
  8538. // - Extrude 1cm of filament in 1 second
  8539. // - Under 230C quickly purge ~12mm, over 230C purge ~10mm
  8540. // - Change E max feedrate to 80, eject the filament from the tube. Sync.
  8541. // - Restore E max feedrate to 50
  8542. }
  8543. // Go back to the last active extruder
  8544. select_multiplexed_stepper(active_extruder);
  8545. disable_e_steppers();
  8546. }
  8547. #endif // MK2_MULTIPLEXER
  8548. #if ENABLED(DUAL_X_CARRIAGE)
  8549. /**
  8550. * M605: Set dual x-carriage movement mode
  8551. *
  8552. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  8553. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  8554. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  8555. * units x-offset and an optional differential hotend temperature of
  8556. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  8557. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  8558. *
  8559. * Note: the X axis should be homed after changing dual x-carriage mode.
  8560. */
  8561. inline void gcode_M605() {
  8562. stepper.synchronize();
  8563. if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
  8564. switch (dual_x_carriage_mode) {
  8565. case DXC_FULL_CONTROL_MODE:
  8566. case DXC_AUTO_PARK_MODE:
  8567. break;
  8568. case DXC_DUPLICATION_MODE:
  8569. if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
  8570. if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
  8571. SERIAL_ECHO_START();
  8572. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  8573. SERIAL_CHAR(' ');
  8574. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  8575. SERIAL_CHAR(',');
  8576. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  8577. SERIAL_CHAR(' ');
  8578. SERIAL_ECHO(duplicate_extruder_x_offset);
  8579. SERIAL_CHAR(',');
  8580. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  8581. break;
  8582. default:
  8583. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  8584. break;
  8585. }
  8586. active_extruder_parked = false;
  8587. extruder_duplication_enabled = false;
  8588. delayed_move_time = 0;
  8589. }
  8590. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  8591. inline void gcode_M605() {
  8592. stepper.synchronize();
  8593. extruder_duplication_enabled = parser.intval('S') == (int)DXC_DUPLICATION_MODE;
  8594. SERIAL_ECHO_START();
  8595. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  8596. }
  8597. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  8598. #if ENABLED(LIN_ADVANCE)
  8599. /**
  8600. * M900: Set and/or Get advance K factor and WH/D ratio
  8601. *
  8602. * K<factor> Set advance K factor
  8603. * R<ratio> Set ratio directly (overrides WH/D)
  8604. * W<width> H<height> D<diam> Set ratio from WH/D
  8605. */
  8606. inline void gcode_M900() {
  8607. stepper.synchronize();
  8608. const float newK = parser.floatval('K', -1);
  8609. if (newK >= 0) planner.extruder_advance_k = newK;
  8610. float newR = parser.floatval('R', -1);
  8611. if (newR < 0) {
  8612. const float newD = parser.floatval('D', -1),
  8613. newW = parser.floatval('W', -1),
  8614. newH = parser.floatval('H', -1);
  8615. if (newD >= 0 && newW >= 0 && newH >= 0)
  8616. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  8617. }
  8618. if (newR >= 0) planner.advance_ed_ratio = newR;
  8619. SERIAL_ECHO_START();
  8620. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  8621. SERIAL_ECHOPGM(" E/D=");
  8622. const float ratio = planner.advance_ed_ratio;
  8623. if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
  8624. SERIAL_EOL();
  8625. }
  8626. #endif // LIN_ADVANCE
  8627. #if HAS_TRINAMIC
  8628. static bool report_tmc_status = false;
  8629. const char extended_axis_codes[11][3] = { "X", "X2", "Y", "Y2", "Z", "Z2", "E0", "E1", "E2", "E3", "E4" };
  8630. enum TMC_AxisEnum {
  8631. TMC_X,
  8632. TMC_X2,
  8633. TMC_Y,
  8634. TMC_Y2,
  8635. TMC_Z,
  8636. TMC_Z2,
  8637. TMC_E0,
  8638. TMC_E1,
  8639. TMC_E2,
  8640. TMC_E3,
  8641. TMC_E4
  8642. };
  8643. #if ENABLED(TMC_DEBUG)
  8644. enum TMC_debug_enum {
  8645. TMC_CODES,
  8646. TMC_ENABLED,
  8647. TMC_CURRENT,
  8648. TMC_RMS_CURRENT,
  8649. TMC_MAX_CURRENT,
  8650. TMC_IRUN,
  8651. TMC_IHOLD,
  8652. TMC_CS_ACTUAL,
  8653. TMC_PWM_SCALE,
  8654. TMC_VSENSE,
  8655. TMC_STEALTHCHOP,
  8656. TMC_MICROSTEPS,
  8657. TMC_TSTEP,
  8658. TMC_TPWMTHRS,
  8659. TMC_TPWMTHRS_MMS,
  8660. TMC_OTPW,
  8661. TMC_OTPW_TRIGGERED,
  8662. TMC_TOFF,
  8663. TMC_TBL,
  8664. TMC_HEND,
  8665. TMC_HSTRT,
  8666. TMC_SGT
  8667. };
  8668. enum TMC_drv_status_enum {
  8669. TMC_DRV_CODES,
  8670. TMC_STST,
  8671. TMC_OLB,
  8672. TMC_OLA,
  8673. TMC_S2GB,
  8674. TMC_S2GA,
  8675. TMC_DRV_OTPW,
  8676. TMC_OT,
  8677. TMC_STALLGUARD,
  8678. TMC_DRV_CS_ACTUAL,
  8679. TMC_FSACTIVE,
  8680. TMC_SG_RESULT,
  8681. TMC_DRV_STATUS_HEX,
  8682. TMC_T157,
  8683. TMC_T150,
  8684. TMC_T143,
  8685. TMC_T120,
  8686. TMC_STEALTH,
  8687. TMC_S2VSB,
  8688. TMC_S2VSA
  8689. };
  8690. static void drv_status_print_hex(const char name[], const uint32_t drv_status) {
  8691. SERIAL_ECHO(name);
  8692. SERIAL_ECHOPGM(" = 0x");
  8693. for(int B=24; B>=8; B-=8){
  8694. MYSERIAL.print((drv_status>>(B+4))&0xF, HEX);
  8695. MYSERIAL.print((drv_status>>B)&0xF, HEX);
  8696. MYSERIAL.print(':');
  8697. }
  8698. MYSERIAL.print((drv_status>>4)&0xF, HEX);
  8699. MYSERIAL.print((drv_status)&0xF, HEX);
  8700. SERIAL_EOL();
  8701. }
  8702. #if ENABLED(HAVE_TMC2130)
  8703. static void tmc_status(TMC2130Stepper &st, const TMC_debug_enum i) {
  8704. switch(i) {
  8705. case TMC_PWM_SCALE: MYSERIAL.print(st.PWM_SCALE(), DEC); break;
  8706. case TMC_TSTEP: SERIAL_ECHO(st.TSTEP()); break;
  8707. case TMC_SGT: MYSERIAL.print(st.sgt(), DEC); break;
  8708. case TMC_STEALTHCHOP: serialprintPGM(st.stealthChop() ? PSTR("true") : PSTR("false")); break;
  8709. default: break;
  8710. }
  8711. }
  8712. static void tmc_parse_drv_status(TMC2130Stepper &st, const TMC_drv_status_enum i) {
  8713. switch(i) {
  8714. case TMC_STALLGUARD: if (st.stallguard()) SERIAL_ECHOPGM("X"); break;
  8715. case TMC_SG_RESULT: MYSERIAL.print(st.sg_result(), DEC); break;
  8716. case TMC_FSACTIVE: if (st.fsactive()) SERIAL_ECHOPGM("X"); break;
  8717. default: break;
  8718. }
  8719. }
  8720. #endif
  8721. #if ENABLED(HAVE_TMC2208)
  8722. static void tmc_status(TMC2208Stepper &st, const TMC_debug_enum i) {
  8723. switch(i) {
  8724. case TMC_TSTEP:
  8725. {
  8726. uint32_t data = 0;
  8727. st.TSTEP(&data);
  8728. MYSERIAL.print(data);
  8729. break;
  8730. }
  8731. case TMC_PWM_SCALE: MYSERIAL.print(st.pwm_scale_sum(), DEC); break;
  8732. case TMC_STEALTHCHOP: serialprintPGM(st.stealth() ? PSTR("true") : PSTR("false")); break;
  8733. case TMC_S2VSA: if (st.s2vsa()) SERIAL_ECHOPGM("X"); break;
  8734. case TMC_S2VSB: if (st.s2vsb()) SERIAL_ECHOPGM("X"); break;
  8735. default: break;
  8736. }
  8737. }
  8738. static void tmc_parse_drv_status(TMC2208Stepper &st, const TMC_drv_status_enum i) {
  8739. switch(i) {
  8740. case TMC_T157: if (st.t157()) SERIAL_ECHOPGM("X"); break;
  8741. case TMC_T150: if (st.t150()) SERIAL_ECHOPGM("X"); break;
  8742. case TMC_T143: if (st.t143()) SERIAL_ECHOPGM("X"); break;
  8743. case TMC_T120: if (st.t120()) SERIAL_ECHOPGM("X"); break;
  8744. default: break;
  8745. }
  8746. }
  8747. #endif
  8748. template <typename TMC>
  8749. static void tmc_status(TMC &st, TMC_AxisEnum axis, const TMC_debug_enum i, const float spmm) {
  8750. SERIAL_ECHO('\t');
  8751. switch(i) {
  8752. case TMC_CODES: SERIAL_ECHO(extended_axis_codes[axis]); break;
  8753. case TMC_ENABLED: serialprintPGM(st.isEnabled() ? PSTR("true") : PSTR("false")); break;
  8754. case TMC_CURRENT: SERIAL_ECHO(st.getCurrent()); break;
  8755. case TMC_RMS_CURRENT: MYSERIAL.print(st.rms_current()); break;
  8756. case TMC_MAX_CURRENT: MYSERIAL.print((float)st.rms_current()*1.41, 0); break;
  8757. case TMC_IRUN:
  8758. MYSERIAL.print(st.irun(), DEC);
  8759. SERIAL_ECHOPGM("/31");
  8760. break;
  8761. case TMC_IHOLD:
  8762. MYSERIAL.print(st.ihold(), DEC);
  8763. SERIAL_ECHOPGM("/31");
  8764. break;
  8765. case TMC_CS_ACTUAL:
  8766. MYSERIAL.print(st.cs_actual(), DEC);
  8767. SERIAL_ECHOPGM("/31");
  8768. break;
  8769. case TMC_VSENSE: serialprintPGM(st.vsense() ? PSTR("1=.18") : PSTR("0=.325")); break;
  8770. case TMC_MICROSTEPS: SERIAL_ECHO(st.microsteps()); break;
  8771. case TMC_TPWMTHRS:
  8772. {
  8773. uint32_t tpwmthrs_val = st.TPWMTHRS();
  8774. SERIAL_ECHO(tpwmthrs_val);
  8775. }
  8776. break;
  8777. case TMC_TPWMTHRS_MMS:
  8778. {
  8779. uint32_t tpwmthrs_val = st.TPWMTHRS();
  8780. tpwmthrs_val ? SERIAL_ECHO(12650000UL * st.microsteps() / (256 * tpwmthrs_val * spmm)) : SERIAL_ECHO('-');
  8781. }
  8782. break;
  8783. case TMC_OTPW: serialprintPGM(st.otpw() ? PSTR("true") : PSTR("false")); break;
  8784. case TMC_OTPW_TRIGGERED: serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false")); break;
  8785. case TMC_TOFF: MYSERIAL.print(st.toff(), DEC); break;
  8786. case TMC_TBL: MYSERIAL.print(st.blank_time(), DEC); break;
  8787. case TMC_HEND: MYSERIAL.print(st.hysterisis_end(), DEC); break;
  8788. case TMC_HSTRT: MYSERIAL.print(st.hysterisis_start(), DEC); break;
  8789. default: tmc_status(st, i); break;
  8790. }
  8791. }
  8792. template <typename TMC>
  8793. static void tmc_parse_drv_status(TMC &st, TMC_AxisEnum axis, const TMC_drv_status_enum i) {
  8794. SERIAL_ECHOPGM("\t");
  8795. switch(i) {
  8796. case TMC_DRV_CODES: SERIAL_ECHO(extended_axis_codes[axis]); break;
  8797. case TMC_STST: if (st.stst()) SERIAL_ECHOPGM("X"); break;
  8798. case TMC_OLB: if (st.olb()) SERIAL_ECHOPGM("X"); break;
  8799. case TMC_OLA: if (st.ola()) SERIAL_ECHOPGM("X"); break;
  8800. case TMC_S2GB: if (st.s2gb()) SERIAL_ECHOPGM("X"); break;
  8801. case TMC_S2GA: if (st.s2ga()) SERIAL_ECHOPGM("X"); break;
  8802. case TMC_DRV_OTPW: if (st.otpw()) SERIAL_ECHOPGM("X"); break;
  8803. case TMC_OT: if (st.ot()) SERIAL_ECHOPGM("X"); break;
  8804. case TMC_DRV_CS_ACTUAL: MYSERIAL.print(st.cs_actual(), DEC); break;
  8805. case TMC_DRV_STATUS_HEX:drv_status_print_hex(extended_axis_codes[axis], st.DRV_STATUS()); break;
  8806. default: tmc_parse_drv_status(st, i); break;
  8807. }
  8808. }
  8809. static void tmc_debug_loop(const TMC_debug_enum i) {
  8810. #if X_IS_TRINAMIC
  8811. tmc_status(stepperX, TMC_X, i, planner.axis_steps_per_mm[X_AXIS]);
  8812. #endif
  8813. #if X2_IS_TRINAMIC
  8814. tmc_status(stepperX2, TMC_X2, i, planner.axis_steps_per_mm[X_AXIS]);
  8815. #endif
  8816. #if Y_IS_TRINAMIC
  8817. tmc_status(stepperY, TMC_Y, i, planner.axis_steps_per_mm[Y_AXIS]);
  8818. #endif
  8819. #if Y2_IS_TRINAMIC
  8820. tmc_status(stepperY2, TMC_Y2, i, planner.axis_steps_per_mm[Y_AXIS]);
  8821. #endif
  8822. #if Z_IS_TRINAMIC
  8823. tmc_status(stepperZ, TMC_Z, i, planner.axis_steps_per_mm[Z_AXIS]);
  8824. #endif
  8825. #if Z2_IS_TRINAMIC
  8826. tmc_status(stepperZ2, TMC_Z2, i, planner.axis_steps_per_mm[Z_AXIS]);
  8827. #endif
  8828. #if E0_IS_TRINAMIC
  8829. tmc_status(stepperE0, TMC_E0, i, planner.axis_steps_per_mm[E_AXIS]);
  8830. #endif
  8831. #if E1_IS_TRINAMIC
  8832. tmc_status(stepperE1, TMC_E1, i, planner.axis_steps_per_mm[E_AXIS+1]);
  8833. #endif
  8834. #if E2_IS_TRINAMIC
  8835. tmc_status(stepperE2, TMC_E2, i, planner.axis_steps_per_mm[E_AXIS+2]);
  8836. #endif
  8837. #if E3_IS_TRINAMIC
  8838. tmc_status(stepperE3, TMC_E3, i, planner.axis_steps_per_mm[E_AXIS+3]);
  8839. #endif
  8840. #if E4_IS_TRINAMIC
  8841. tmc_status(stepperE4, TMC_E4, i, planner.axis_steps_per_mm[E_AXIS+4]);
  8842. #endif
  8843. SERIAL_EOL();
  8844. }
  8845. static void drv_status_loop(const TMC_drv_status_enum i) {
  8846. #if X_IS_TRINAMIC
  8847. tmc_parse_drv_status(stepperX, TMC_X, i);
  8848. #endif
  8849. #if X2_IS_TRINAMIC
  8850. tmc_parse_drv_status(stepperX2, TMC_X2, i);
  8851. #endif
  8852. #if Y_IS_TRINAMIC
  8853. tmc_parse_drv_status(stepperY, TMC_Y, i);
  8854. #endif
  8855. #if Y2_IS_TRINAMIC
  8856. tmc_parse_drv_status(stepperY2, TMC_Y2, i);
  8857. #endif
  8858. #if Z_IS_TRINAMIC
  8859. tmc_parse_drv_status(stepperZ, TMC_Z, i);
  8860. #endif
  8861. #if Z2_IS_TRINAMIC
  8862. tmc_parse_drv_status(stepperZ2, TMC_Z2, i);
  8863. #endif
  8864. #if E0_IS_TRINAMIC
  8865. tmc_parse_drv_status(stepperE0, TMC_E0, i);
  8866. #endif
  8867. #if E1_IS_TRINAMIC
  8868. tmc_parse_drv_status(stepperE1, TMC_E1, i);
  8869. #endif
  8870. #if E2_IS_TRINAMIC
  8871. tmc_parse_drv_status(stepperE2, TMC_E2, i);
  8872. #endif
  8873. #if E3_IS_TRINAMIC
  8874. tmc_parse_drv_status(stepperE3, TMC_E3, i);
  8875. #endif
  8876. #if E4_IS_TRINAMIC
  8877. tmc_parse_drv_status(stepperE4, TMC_E4, i);
  8878. #endif
  8879. SERIAL_EOL();
  8880. }
  8881. inline void gcode_M122() {
  8882. if (parser.seen('S')) {
  8883. if (parser.value_bool()) {
  8884. SERIAL_ECHOLNPGM("axis:pwm_scale |status_response|");
  8885. report_tmc_status = true;
  8886. } else
  8887. report_tmc_status = false;
  8888. } else {
  8889. SERIAL_ECHOPGM("\t"); tmc_debug_loop(TMC_CODES);
  8890. SERIAL_ECHOPGM("Enabled\t"); tmc_debug_loop(TMC_ENABLED);
  8891. SERIAL_ECHOPGM("Set current"); tmc_debug_loop(TMC_CURRENT);
  8892. SERIAL_ECHOPGM("RMS current"); tmc_debug_loop(TMC_RMS_CURRENT);
  8893. SERIAL_ECHOPGM("MAX current"); tmc_debug_loop(TMC_MAX_CURRENT);
  8894. SERIAL_ECHOPGM("Run current"); tmc_debug_loop(TMC_IRUN);
  8895. SERIAL_ECHOPGM("Hold current"); tmc_debug_loop(TMC_IHOLD);
  8896. SERIAL_ECHOPGM("CS actual\t"); tmc_debug_loop(TMC_CS_ACTUAL);
  8897. SERIAL_ECHOPGM("PWM scale"); tmc_debug_loop(TMC_PWM_SCALE);
  8898. SERIAL_ECHOPGM("vsense\t"); tmc_debug_loop(TMC_VSENSE);
  8899. SERIAL_ECHOPGM("stealthChop"); tmc_debug_loop(TMC_STEALTHCHOP);
  8900. SERIAL_ECHOPGM("msteps\t"); tmc_debug_loop(TMC_MICROSTEPS);
  8901. SERIAL_ECHOPGM("tstep\t"); tmc_debug_loop(TMC_TSTEP);
  8902. SERIAL_ECHOPGM("pwm\nthreshold\t"); tmc_debug_loop(TMC_TPWMTHRS);
  8903. SERIAL_ECHOPGM("[mm/s]\t"); tmc_debug_loop(TMC_TPWMTHRS_MMS);
  8904. SERIAL_ECHOPGM("OT prewarn"); tmc_debug_loop(TMC_OTPW);
  8905. SERIAL_ECHOPGM("OT prewarn has\nbeen triggered"); tmc_debug_loop(TMC_OTPW_TRIGGERED);
  8906. SERIAL_ECHOPGM("off time\t"); tmc_debug_loop(TMC_TOFF);
  8907. SERIAL_ECHOPGM("blank time"); tmc_debug_loop(TMC_TBL);
  8908. SERIAL_ECHOPGM("hysterisis\n-end\t"); tmc_debug_loop(TMC_HEND);
  8909. SERIAL_ECHOPGM("-start\t"); tmc_debug_loop(TMC_HSTRT);
  8910. SERIAL_ECHOPGM("Stallguard thrs"); tmc_debug_loop(TMC_SGT);
  8911. SERIAL_ECHOPGM("DRVSTATUS"); drv_status_loop(TMC_DRV_CODES);
  8912. #if ENABLED(HAVE_TMC2130)
  8913. SERIAL_ECHOPGM("stallguard\t"); drv_status_loop(TMC_STALLGUARD);
  8914. SERIAL_ECHOPGM("sg_result\t"); drv_status_loop(TMC_SG_RESULT);
  8915. SERIAL_ECHOPGM("fsactive\t"); drv_status_loop(TMC_FSACTIVE);
  8916. #endif
  8917. SERIAL_ECHOPGM("stst\t"); drv_status_loop(TMC_STST);
  8918. SERIAL_ECHOPGM("olb\t"); drv_status_loop(TMC_OLB);
  8919. SERIAL_ECHOPGM("ola\t"); drv_status_loop(TMC_OLA);
  8920. SERIAL_ECHOPGM("s2gb\t"); drv_status_loop(TMC_S2GB);
  8921. SERIAL_ECHOPGM("s2ga\t"); drv_status_loop(TMC_S2GA);
  8922. SERIAL_ECHOPGM("otpw\t"); drv_status_loop(TMC_DRV_OTPW);
  8923. SERIAL_ECHOPGM("ot\t"); drv_status_loop(TMC_OT);
  8924. #if ENABLED(HAVE_TMC2208)
  8925. SERIAL_ECHOPGM("157C\t"); drv_status_loop(TMC_T157);
  8926. SERIAL_ECHOPGM("150C\t"); drv_status_loop(TMC_T150);
  8927. SERIAL_ECHOPGM("143C\t"); drv_status_loop(TMC_T143);
  8928. SERIAL_ECHOPGM("120C\t"); drv_status_loop(TMC_T120);
  8929. SERIAL_ECHOPGM("s2vsa\t"); drv_status_loop(TMC_S2VSA);
  8930. SERIAL_ECHOPGM("s2vsb\t"); drv_status_loop(TMC_S2VSB);
  8931. #endif
  8932. SERIAL_ECHOLNPGM("Driver registers:");drv_status_loop(TMC_DRV_STATUS_HEX);
  8933. }
  8934. }
  8935. #endif
  8936. template<typename TMC>
  8937. static void tmc_get_current(TMC &st, const char name[]) {
  8938. SERIAL_ECHO(name);
  8939. SERIAL_ECHOPGM(" axis driver current: ");
  8940. SERIAL_ECHOLN(st.getCurrent());
  8941. }
  8942. template<typename TMC>
  8943. static void tmc_set_current(TMC &st, const char name[], const int mA) {
  8944. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  8945. tmc_get_current(st, name);
  8946. }
  8947. template<typename TMC>
  8948. static void tmc_report_otpw(TMC &st, const char name[]) {
  8949. SERIAL_ECHO(name);
  8950. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  8951. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  8952. SERIAL_EOL();
  8953. }
  8954. template<typename TMC>
  8955. static void tmc_clear_otpw(TMC &st, const char name[]) {
  8956. st.clear_otpw();
  8957. SERIAL_ECHO(name);
  8958. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  8959. }
  8960. template<typename TMC>
  8961. static void tmc_get_pwmthrs(TMC &st, const char name[], const uint16_t spmm) {
  8962. SERIAL_ECHO(name);
  8963. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  8964. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.TPWMTHRS() * spmm));
  8965. }
  8966. template<typename TMC>
  8967. static void tmc_set_pwmthrs(TMC &st, const char name[], const int32_t thrs, const uint32_t spmm) {
  8968. st.TPWMTHRS(12650000UL * st.microsteps() / (256 * thrs * spmm));
  8969. tmc_get_pwmthrs(st, name, spmm);
  8970. }
  8971. template<typename TMC>
  8972. static void tmc_get_sgt(TMC &st, const char name[]) {
  8973. SERIAL_ECHO(name);
  8974. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  8975. MYSERIAL.println(st.sgt(), DEC);
  8976. }
  8977. template<typename TMC>
  8978. static void tmc_set_sgt(TMC &st, const char name[], const int8_t sgt_val) {
  8979. st.sgt(sgt_val);
  8980. tmc_get_sgt(st, name);
  8981. }
  8982. /**
  8983. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8984. * Report driver currents when no axis specified
  8985. */
  8986. inline void gcode_M906() {
  8987. uint16_t values[XYZE];
  8988. LOOP_XYZE(i)
  8989. values[i] = parser.intval(axis_codes[i]);
  8990. #if X_IS_TRINAMIC
  8991. if (values[X_AXIS]) tmc_set_current(stepperX, extended_axis_codes[TMC_X], values[X_AXIS]);
  8992. else tmc_get_current(stepperX, extended_axis_codes[TMC_X]);
  8993. #endif
  8994. #if X2_IS_TRINAMIC
  8995. if (values[X_AXIS]) tmc_set_current(stepperX2, extended_axis_codes[TMC_X2], values[X_AXIS]);
  8996. else tmc_get_current(stepperX2, extended_axis_codes[TMC_X2]);
  8997. #endif
  8998. #if Y_IS_TRINAMIC
  8999. if (values[Y_AXIS]) tmc_set_current(stepperY, extended_axis_codes[TMC_Y], values[Y_AXIS]);
  9000. else tmc_get_current(stepperY, extended_axis_codes[TMC_Y]);
  9001. #endif
  9002. #if Y2_IS_TRINAMIC
  9003. if (values[Y_AXIS]) tmc_set_current(stepperY2, extended_axis_codes[TMC_Y2], values[Y_AXIS]);
  9004. else tmc_get_current(stepperY2, extended_axis_codes[TMC_Y2]);
  9005. #endif
  9006. #if Z_IS_TRINAMIC
  9007. if (values[Z_AXIS]) tmc_set_current(stepperZ, extended_axis_codes[TMC_Z], values[Z_AXIS]);
  9008. else tmc_get_current(stepperZ, extended_axis_codes[TMC_Z]);
  9009. #endif
  9010. #if Z2_IS_TRINAMIC
  9011. if (values[Z_AXIS]) tmc_set_current(stepperZ2, extended_axis_codes[TMC_Z2], values[Z_AXIS]);
  9012. else tmc_get_current(stepperZ2, extended_axis_codes[TMC_Z2]);
  9013. #endif
  9014. #if E0_IS_TRINAMIC
  9015. if (values[E_AXIS]) tmc_set_current(stepperE0, extended_axis_codes[TMC_E0], values[E_AXIS]);
  9016. else tmc_get_current(stepperE0, extended_axis_codes[TMC_E0]);
  9017. #endif
  9018. #if E1_IS_TRINAMIC
  9019. if (values[E_AXIS]) tmc_set_current(stepperE1, extended_axis_codes[TMC_E1], values[E_AXIS]);
  9020. else tmc_get_current(stepperE1, extended_axis_codes[TMC_E1]);
  9021. #endif
  9022. #if E2_IS_TRINAMIC
  9023. if (values[E_AXIS]) tmc_set_current(stepperE2, extended_axis_codes[TMC_E2], values[E_AXIS]);
  9024. else tmc_get_current(stepperE2, extended_axis_codes[TMC_E2]);
  9025. #endif
  9026. #if E3_IS_TRINAMIC
  9027. if (values[E_AXIS]) tmc_set_current(stepperE3, extended_axis_codes[TMC_E3], values[E_AXIS]);
  9028. else tmc_get_current(stepperE3, extended_axis_codes[TMC_E3]);
  9029. #endif
  9030. #if E4_IS_TRINAMIC
  9031. if (values[E_AXIS]) tmc_set_current(stepperE4, extended_axis_codes[TMC_E4], values[E_AXIS]);
  9032. else tmc_get_current(stepperE4, extended_axis_codes[TMC_E4]);
  9033. #endif
  9034. }
  9035. /**
  9036. * M911: Report TMC stepper driver overtemperature pre-warn flag
  9037. * The flag is held by the library and persist until manually cleared by M912
  9038. */
  9039. inline void gcode_M911() {
  9040. #if ENABLED(X_IS_TMC2130) || (ENABLED(X_IS_TMC2208) && PIN_EXISTS(X_SERIAL_RX)) || ENABLED(IS_TRAMS)
  9041. tmc_report_otpw(stepperX, extended_axis_codes[TMC_X]);
  9042. #endif
  9043. #if ENABLED(Y_IS_TMC2130) || (ENABLED(Y_IS_TMC2208) && PIN_EXISTS(Y_SERIAL_RX)) || ENABLED(IS_TRAMS)
  9044. tmc_report_otpw(stepperY, extended_axis_codes[TMC_Y]);
  9045. #endif
  9046. #if ENABLED(Z_IS_TMC2130) || (ENABLED(Z_IS_TMC2208) && PIN_EXISTS(Z_SERIAL_RX)) || ENABLED(IS_TRAMS)
  9047. tmc_report_otpw(stepperZ, extended_axis_codes[TMC_Z]);
  9048. #endif
  9049. #if ENABLED(E0_IS_TMC2130) || (ENABLED(E0_IS_TMC2208) && PIN_EXISTS(E0_SERIAL_RX)) || ENABLED(IS_TRAMS)
  9050. tmc_report_otpw(stepperE0, extended_axis_codes[TMC_E0]);
  9051. #endif
  9052. }
  9053. /**
  9054. * M912: Clear TMC stepper driver overtemperature pre-warn flag held by the library
  9055. */
  9056. inline void gcode_M912() {
  9057. const bool clearX = parser.seen(axis_codes[X_AXIS]), clearY = parser.seen(axis_codes[Y_AXIS]), clearZ = parser.seen(axis_codes[Z_AXIS]), clearE = parser.seen(axis_codes[E_AXIS]),
  9058. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  9059. #if ENABLED(X_IS_TMC2130) || ENABLED(IS_TRAMS) || (ENABLED(X_IS_TMC2208) && PIN_EXISTS(X_SERIAL_RX))
  9060. if (clearX || clearAll) tmc_clear_otpw(stepperX, extended_axis_codes[TMC_X]);
  9061. #endif
  9062. #if ENABLED(X2_IS_TMC2130) || (ENABLED(X2_IS_TMC2208) && PIN_EXISTS(X_SERIAL_RX))
  9063. if (clearX || clearAll) tmc_clear_otpw(stepperX, extended_axis_codes[TMC_X]);
  9064. #endif
  9065. #if ENABLED(Y_IS_TMC2130) || (ENABLED(Y_IS_TMC2208) && PIN_EXISTS(Y_SERIAL_RX))
  9066. if (clearY || clearAll) tmc_clear_otpw(stepperY, extended_axis_codes[TMC_Y]);
  9067. #endif
  9068. #if ENABLED(Z_IS_TMC2130) || (ENABLED(Z_IS_TMC2208) && PIN_EXISTS(Z_SERIAL_RX))
  9069. if (clearZ || clearAll) tmc_clear_otpw(stepperZ, extended_axis_codes[TMC_Z]);
  9070. #endif
  9071. #if ENABLED(E0_IS_TMC2130) || (ENABLED(E0_IS_TMC2208) && PIN_EXISTS(E0_SERIAL_RX))
  9072. if (clearE || clearAll) tmc_clear_otpw(stepperE0, extended_axis_codes[TMC_E0]);
  9073. #endif
  9074. }
  9075. /**
  9076. * M913: Set HYBRID_THRESHOLD speed.
  9077. */
  9078. #if ENABLED(HYBRID_THRESHOLD)
  9079. inline void gcode_M913() {
  9080. uint16_t values[XYZE];
  9081. LOOP_XYZE(i)
  9082. values[i] = parser.intval(axis_codes[i]);
  9083. #if X_IS_TRINAMIC
  9084. if (values[X_AXIS]) tmc_set_pwmthrs(stepperX, extended_axis_codes[TMC_X], values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  9085. else tmc_get_pwmthrs(stepperX, extended_axis_codes[TMC_X], planner.axis_steps_per_mm[X_AXIS]);
  9086. #endif
  9087. #if X2_IS_TRINAMIC
  9088. if (values[X_AXIS]) tmc_set_pwmthrs(stepperX2, extended_axis_codes[TMC_X2], values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  9089. else tmc_get_pwmthrs(stepperX, extended_axis_codes[TMC_X2], planner.axis_steps_per_mm[X_AXIS]);
  9090. #endif
  9091. #if Y_IS_TRINAMIC
  9092. if (values[Y_AXIS]) tmc_set_pwmthrs(stepperY, extended_axis_codes[TMC_Y], values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  9093. else tmc_get_pwmthrs(stepperY, extended_axis_codes[TMC_Y], planner.axis_steps_per_mm[Y_AXIS]);
  9094. #endif
  9095. #if Y2_IS_TRINAMIC
  9096. if (values[Y_AXIS]) tmc_set_pwmthrs(stepperY2, extended_axis_codes[TMC_Y2], values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  9097. else tmc_get_pwmthrs(stepperY, extended_axis_codes[TMC_Y2], planner.axis_steps_per_mm[Y_AXIS]);
  9098. #endif
  9099. #if Z_IS_TRINAMIC
  9100. if (values[Z_AXIS]) tmc_set_pwmthrs(stepperZ, extended_axis_codes[TMC_Z], values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  9101. else tmc_get_pwmthrs(stepperZ, extended_axis_codes[TMC_Z], planner.axis_steps_per_mm[Z_AXIS]);
  9102. #endif
  9103. #if Z2_IS_TRINAMIC
  9104. if (values[Z_AXIS]) tmc_set_pwmthrs(stepperZ2, extended_axis_codes[TMC_Z2], values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  9105. else tmc_get_pwmthrs(stepperZ, extended_axis_codes[TMC_Z2], planner.axis_steps_per_mm[Z_AXIS]);
  9106. #endif
  9107. #if E0_IS_TRINAMIC
  9108. if (values[E_AXIS]) tmc_set_pwmthrs(stepperE0, extended_axis_codes[TMC_E0], values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  9109. else tmc_get_pwmthrs(stepperE0, extended_axis_codes[TMC_E0], planner.axis_steps_per_mm[E_AXIS]);
  9110. #endif
  9111. #if E1_IS_TRINAMIC
  9112. if (values[E_AXIS]) tmc_set_pwmthrs(stepperE1, extended_axis_codes[TMC_E1], values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  9113. else tmc_get_pwmthrs(stepperE1, extended_axis_codes[TMC_E1], planner.axis_steps_per_mm[E_AXIS]);
  9114. #endif
  9115. #if E2_IS_TRINAMIC
  9116. if (values[E_AXIS]) tmc_set_pwmthrs(stepperE2, extended_axis_codes[TMC_E2], values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  9117. else tmc_get_pwmthrs(stepperE2, extended_axis_codes[TMC_E2], planner.axis_steps_per_mm[E_AXIS]);
  9118. #endif
  9119. #if E3_IS_TRINAMIC
  9120. if (values[E_AXIS]) tmc_set_pwmthrs(stepperE3, extended_axis_codes[TMC_E3], values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  9121. else tmc_get_pwmthrs(stepperE3, extended_axis_codes[TMC_E3], planner.axis_steps_per_mm[E_AXIS]);
  9122. #endif
  9123. #if E4_IS_TRINAMIC
  9124. if (values[E_AXIS]) tmc_set_pwmthrs(stepperE4, extended_axis_codes[TMC_E4], values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  9125. else tmc_get_pwmthrs(stepperE4, extended_axis_codes[TMC_E4], planner.axis_steps_per_mm[E_AXIS]);
  9126. #endif
  9127. }
  9128. #endif // HYBRID_THRESHOLD
  9129. /**
  9130. * M914: Set SENSORLESS_HOMING sensitivity.
  9131. */
  9132. #if ENABLED(SENSORLESS_HOMING)
  9133. inline void gcode_M914() {
  9134. #if ENABLED(X_IS_TMC2130) || ENABLED(IS_TRAMS)
  9135. if (parser.seen(axis_codes[X_AXIS])) tmc_set_sgt(stepperX, extended_axis_codes[TMC_X], parser.value_int());
  9136. else tmc_get_sgt(stepperX, extended_axis_codes[TMC_X]);
  9137. #endif
  9138. #if ENABLED(X2_IS_TMC2130)
  9139. if (parser.seen(axis_codes[X_AXIS])) tmc_set_sgt(stepperX2, extended_axis_codes[TMC_X2], parser.value_int());
  9140. else tmc_get_sgt(stepperX2, extended_axis_codes[TMC_X2]);
  9141. #endif
  9142. #if ENABLED(Y_IS_TMC2130) || ENABLED(IS_TRAMS)
  9143. if (parser.seen(axis_codes[Y_AXIS])) tmc_set_sgt(stepperY, extended_axis_codes[TMC_Y], parser.value_int());
  9144. else tmc_get_sgt(stepperY, extended_axis_codes[TMC_Y]);
  9145. #endif
  9146. #if ENABLED(Y2_IS_TMC2130)
  9147. if (parser.seen(axis_codes[Y_AXIS])) tmc_set_sgt(stepperY2, extended_axis_codes[TMC_Y2], parser.value_int());
  9148. else tmc_get_sgt(stepperY2, extended_axis_codes[TMC_Y2]);
  9149. #endif
  9150. }
  9151. #endif // SENSORLESS_HOMING
  9152. /**
  9153. * TMC Z axis calibration routine
  9154. */
  9155. #if ENABLED(TMC_Z_CALIBRATION) && (Z_IS_TRINAMIC || Z2_IS_TRINAMIC)
  9156. inline void gcode_M915() {
  9157. uint16_t _rms = parser.seenval('S') ? parser.value_int() : CALIBRATION_CURRENT;
  9158. uint16_t _z = parser.seenval('Z') ? parser.value_int() : CALIBRATION_EXTRA_HEIGHT;
  9159. if (!axis_known_position[Z_AXIS]) {
  9160. SERIAL_ECHOLNPGM("\nPlease home Z axis first");
  9161. return;
  9162. }
  9163. uint16_t Z_current_1 = stepperZ.getCurrent();
  9164. uint16_t Z2_current_1 = stepperZ.getCurrent();
  9165. stepperZ.setCurrent(_rms, R_SENSE, HOLD_MULTIPLIER);
  9166. stepperZ2.setCurrent(_rms, R_SENSE, HOLD_MULTIPLIER);
  9167. SERIAL_ECHOPAIR("\nCalibration current: Z", _rms);
  9168. soft_endstops_enabled = false;
  9169. do_blocking_move_to_z(Z_MAX_POS+_z);
  9170. stepperZ.setCurrent(Z_current_1, R_SENSE, HOLD_MULTIPLIER);
  9171. stepperZ2.setCurrent(Z2_current_1, R_SENSE, HOLD_MULTIPLIER);
  9172. do_blocking_move_to_z(Z_MAX_POS);
  9173. soft_endstops_enabled = true;
  9174. SERIAL_ECHOLNPGM("\nHoming Z because we lost steps");
  9175. home_z_safely();
  9176. }
  9177. #endif
  9178. #endif // HAS_TRINAMIC
  9179. /**
  9180. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  9181. */
  9182. inline void gcode_M907() {
  9183. #if HAS_DIGIPOTSS
  9184. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
  9185. if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
  9186. if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
  9187. #elif HAS_MOTOR_CURRENT_PWM
  9188. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  9189. if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
  9190. #endif
  9191. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  9192. if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
  9193. #endif
  9194. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  9195. if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
  9196. #endif
  9197. #endif
  9198. #if ENABLED(DIGIPOT_I2C)
  9199. // this one uses actual amps in floating point
  9200. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
  9201. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  9202. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
  9203. #endif
  9204. #if ENABLED(DAC_STEPPER_CURRENT)
  9205. if (parser.seen('S')) {
  9206. const float dac_percent = parser.value_float();
  9207. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  9208. }
  9209. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
  9210. #endif
  9211. }
  9212. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  9213. /**
  9214. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  9215. */
  9216. inline void gcode_M908() {
  9217. #if HAS_DIGIPOTSS
  9218. stepper.digitalPotWrite(
  9219. parser.intval('P'),
  9220. parser.intval('S')
  9221. );
  9222. #endif
  9223. #ifdef DAC_STEPPER_CURRENT
  9224. dac_current_raw(
  9225. parser.byteval('P', -1),
  9226. parser.ushortval('S', 0)
  9227. );
  9228. #endif
  9229. }
  9230. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  9231. inline void gcode_M909() { dac_print_values(); }
  9232. inline void gcode_M910() { dac_commit_eeprom(); }
  9233. #endif
  9234. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  9235. #if HAS_MICROSTEPS
  9236. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  9237. inline void gcode_M350() {
  9238. if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
  9239. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
  9240. if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
  9241. stepper.microstep_readings();
  9242. }
  9243. /**
  9244. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  9245. * S# determines MS1 or MS2, X# sets the pin high/low.
  9246. */
  9247. inline void gcode_M351() {
  9248. if (parser.seenval('S')) switch (parser.value_byte()) {
  9249. case 1:
  9250. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
  9251. if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
  9252. break;
  9253. case 2:
  9254. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
  9255. if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
  9256. break;
  9257. }
  9258. stepper.microstep_readings();
  9259. }
  9260. #endif // HAS_MICROSTEPS
  9261. #if HAS_CASE_LIGHT
  9262. #ifndef INVERT_CASE_LIGHT
  9263. #define INVERT_CASE_LIGHT false
  9264. #endif
  9265. uint8_t case_light_brightness; // LCD routine wants INT
  9266. bool case_light_on;
  9267. void update_case_light() {
  9268. pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
  9269. if (case_light_on) {
  9270. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN))
  9271. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness);
  9272. else
  9273. WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH);
  9274. }
  9275. else {
  9276. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN))
  9277. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 : 0);
  9278. else
  9279. WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
  9280. }
  9281. }
  9282. #endif // HAS_CASE_LIGHT
  9283. /**
  9284. * M355: Turn case light on/off and set brightness
  9285. *
  9286. * P<byte> Set case light brightness (PWM pin required - ignored otherwise)
  9287. *
  9288. * S<bool> Set case light on/off
  9289. *
  9290. * When S turns on the light on a PWM pin then the current brightness level is used/restored
  9291. *
  9292. * M355 P200 S0 turns off the light & sets the brightness level
  9293. * M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
  9294. */
  9295. inline void gcode_M355() {
  9296. #if HAS_CASE_LIGHT
  9297. uint8_t args = 0;
  9298. if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
  9299. if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
  9300. if (args) update_case_light();
  9301. // always report case light status
  9302. SERIAL_ECHO_START();
  9303. if (!case_light_on) {
  9304. SERIAL_ECHOLN("Case light: off");
  9305. }
  9306. else {
  9307. if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
  9308. else SERIAL_ECHOLNPAIR("Case light: ", (int)case_light_brightness);
  9309. }
  9310. #else
  9311. SERIAL_ERROR_START();
  9312. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  9313. #endif // HAS_CASE_LIGHT
  9314. }
  9315. #if ENABLED(MIXING_EXTRUDER)
  9316. /**
  9317. * M163: Set a single mix factor for a mixing extruder
  9318. * This is called "weight" by some systems.
  9319. *
  9320. * S[index] The channel index to set
  9321. * P[float] The mix value
  9322. *
  9323. */
  9324. inline void gcode_M163() {
  9325. const int mix_index = parser.intval('S');
  9326. if (mix_index < MIXING_STEPPERS) {
  9327. float mix_value = parser.floatval('P');
  9328. NOLESS(mix_value, 0.0);
  9329. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  9330. }
  9331. }
  9332. #if MIXING_VIRTUAL_TOOLS > 1
  9333. /**
  9334. * M164: Store the current mix factors as a virtual tool.
  9335. *
  9336. * S[index] The virtual tool to store
  9337. *
  9338. */
  9339. inline void gcode_M164() {
  9340. const int tool_index = parser.intval('S');
  9341. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  9342. normalize_mix();
  9343. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9344. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  9345. }
  9346. }
  9347. #endif
  9348. #if ENABLED(DIRECT_MIXING_IN_G1)
  9349. /**
  9350. * M165: Set multiple mix factors for a mixing extruder.
  9351. * Factors that are left out will be set to 0.
  9352. * All factors together must add up to 1.0.
  9353. *
  9354. * A[factor] Mix factor for extruder stepper 1
  9355. * B[factor] Mix factor for extruder stepper 2
  9356. * C[factor] Mix factor for extruder stepper 3
  9357. * D[factor] Mix factor for extruder stepper 4
  9358. * H[factor] Mix factor for extruder stepper 5
  9359. * I[factor] Mix factor for extruder stepper 6
  9360. *
  9361. */
  9362. inline void gcode_M165() { gcode_get_mix(); }
  9363. #endif
  9364. #endif // MIXING_EXTRUDER
  9365. /**
  9366. * M999: Restart after being stopped
  9367. *
  9368. * Default behaviour is to flush the serial buffer and request
  9369. * a resend to the host starting on the last N line received.
  9370. *
  9371. * Sending "M999 S1" will resume printing without flushing the
  9372. * existing command buffer.
  9373. *
  9374. */
  9375. inline void gcode_M999() {
  9376. Running = true;
  9377. lcd_reset_alert_level();
  9378. if (parser.boolval('S')) return;
  9379. // gcode_LastN = Stopped_gcode_LastN;
  9380. FlushSerialRequestResend();
  9381. }
  9382. #if ENABLED(SWITCHING_EXTRUDER)
  9383. #if EXTRUDERS > 3
  9384. #define REQ_ANGLES 4
  9385. #define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
  9386. #else
  9387. #define REQ_ANGLES 2
  9388. #define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
  9389. #endif
  9390. inline void move_extruder_servo(const uint8_t e) {
  9391. constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  9392. static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  9393. stepper.synchronize();
  9394. #if EXTRUDERS & 1
  9395. if (e < EXTRUDERS - 1)
  9396. #endif
  9397. {
  9398. MOVE_SERVO(_SERVO_NR, angles[e]);
  9399. safe_delay(500);
  9400. }
  9401. }
  9402. #endif // SWITCHING_EXTRUDER
  9403. #if ENABLED(SWITCHING_NOZZLE)
  9404. inline void move_nozzle_servo(const uint8_t e) {
  9405. const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  9406. stepper.synchronize();
  9407. MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
  9408. safe_delay(500);
  9409. }
  9410. #endif
  9411. inline void invalid_extruder_error(const uint8_t e) {
  9412. SERIAL_ECHO_START();
  9413. SERIAL_CHAR('T');
  9414. SERIAL_ECHO_F(e, DEC);
  9415. SERIAL_CHAR(' ');
  9416. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  9417. }
  9418. #if ENABLED(PARKING_EXTRUDER)
  9419. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9420. #define PE_MAGNET_ON_STATE !PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  9421. #else
  9422. #define PE_MAGNET_ON_STATE PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  9423. #endif
  9424. void pe_set_magnet(const uint8_t extruder_num, const uint8_t state) {
  9425. switch (extruder_num) {
  9426. case 1: OUT_WRITE(SOL1_PIN, state); break;
  9427. default: OUT_WRITE(SOL0_PIN, state); break;
  9428. }
  9429. #if PARKING_EXTRUDER_SOLENOIDS_DELAY > 0
  9430. dwell(PARKING_EXTRUDER_SOLENOIDS_DELAY);
  9431. #endif
  9432. }
  9433. inline void pe_activate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, PE_MAGNET_ON_STATE); }
  9434. inline void pe_deactivate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, !PE_MAGNET_ON_STATE); }
  9435. #endif // PARKING_EXTRUDER
  9436. #if HAS_FANMUX
  9437. void fanmux_switch(const uint8_t e) {
  9438. WRITE(FANMUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  9439. #if PIN_EXISTS(FANMUX1)
  9440. WRITE(FANMUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  9441. #if PIN_EXISTS(FANMUX2)
  9442. WRITE(FANMUX2, TEST(e, 2) ? HIGH : LOW);
  9443. #endif
  9444. #endif
  9445. }
  9446. FORCE_INLINE void fanmux_init(void) {
  9447. SET_OUTPUT(FANMUX0_PIN);
  9448. #if PIN_EXISTS(FANMUX1)
  9449. SET_OUTPUT(FANMUX1_PIN);
  9450. #if PIN_EXISTS(FANMUX2)
  9451. SET_OUTPUT(FANMUX2_PIN);
  9452. #endif
  9453. #endif
  9454. fanmux_switch(0);
  9455. }
  9456. #endif // HAS_FANMUX
  9457. /**
  9458. * Perform a tool-change, which may result in moving the
  9459. * previous tool out of the way and the new tool into place.
  9460. */
  9461. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  9462. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  9463. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  9464. return invalid_extruder_error(tmp_extruder);
  9465. // T0-Tnnn: Switch virtual tool by changing the mix
  9466. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  9467. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  9468. #else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  9469. if (tmp_extruder >= EXTRUDERS)
  9470. return invalid_extruder_error(tmp_extruder);
  9471. #if HOTENDS > 1
  9472. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  9473. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  9474. if (tmp_extruder != active_extruder) {
  9475. if (!no_move && axis_unhomed_error()) {
  9476. no_move = true;
  9477. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9478. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("No move on toolchange");
  9479. #endif
  9480. }
  9481. // Save current position to destination, for use later
  9482. set_destination_from_current();
  9483. #if ENABLED(DUAL_X_CARRIAGE)
  9484. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9485. if (DEBUGGING(LEVELING)) {
  9486. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  9487. switch (dual_x_carriage_mode) {
  9488. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  9489. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  9490. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  9491. }
  9492. }
  9493. #endif
  9494. const float xhome = x_home_pos(active_extruder);
  9495. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  9496. && IsRunning()
  9497. && (delayed_move_time || current_position[X_AXIS] != xhome)
  9498. ) {
  9499. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  9500. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9501. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  9502. #endif
  9503. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9504. if (DEBUGGING(LEVELING)) {
  9505. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  9506. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  9507. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  9508. }
  9509. #endif
  9510. // Park old head: 1) raise 2) move to park position 3) lower
  9511. for (uint8_t i = 0; i < 3; i++)
  9512. planner.buffer_line(
  9513. i == 0 ? current_position[X_AXIS] : xhome,
  9514. current_position[Y_AXIS],
  9515. i == 2 ? current_position[Z_AXIS] : raised_z,
  9516. current_position[E_AXIS],
  9517. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  9518. active_extruder
  9519. );
  9520. stepper.synchronize();
  9521. }
  9522. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  9523. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  9524. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  9525. // Activate the new extruder ahead of calling set_axis_is_at_home!
  9526. active_extruder = tmp_extruder;
  9527. // This function resets the max/min values - the current position may be overwritten below.
  9528. set_axis_is_at_home(X_AXIS);
  9529. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9530. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  9531. #endif
  9532. // Only when auto-parking are carriages safe to move
  9533. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  9534. switch (dual_x_carriage_mode) {
  9535. case DXC_FULL_CONTROL_MODE:
  9536. // New current position is the position of the activated extruder
  9537. current_position[X_AXIS] = inactive_extruder_x_pos;
  9538. // Save the inactive extruder's position (from the old current_position)
  9539. inactive_extruder_x_pos = destination[X_AXIS];
  9540. break;
  9541. case DXC_AUTO_PARK_MODE:
  9542. // record raised toolhead position for use by unpark
  9543. COPY(raised_parked_position, current_position);
  9544. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  9545. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9546. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  9547. #endif
  9548. active_extruder_parked = true;
  9549. delayed_move_time = 0;
  9550. break;
  9551. case DXC_DUPLICATION_MODE:
  9552. // If the new extruder is the left one, set it "parked"
  9553. // This triggers the second extruder to move into the duplication position
  9554. active_extruder_parked = (active_extruder == 0);
  9555. if (active_extruder_parked)
  9556. current_position[X_AXIS] = inactive_extruder_x_pos;
  9557. else
  9558. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  9559. inactive_extruder_x_pos = destination[X_AXIS];
  9560. extruder_duplication_enabled = false;
  9561. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9562. if (DEBUGGING(LEVELING)) {
  9563. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  9564. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  9565. }
  9566. #endif
  9567. break;
  9568. }
  9569. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9570. if (DEBUGGING(LEVELING)) {
  9571. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  9572. DEBUG_POS("New extruder (parked)", current_position);
  9573. }
  9574. #endif
  9575. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  9576. #else // !DUAL_X_CARRIAGE
  9577. #if ENABLED(PARKING_EXTRUDER) // Dual Parking extruder
  9578. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  9579. float z_raise = PARKING_EXTRUDER_SECURITY_RAISE;
  9580. if (!no_move) {
  9581. const float parkingposx[] = PARKING_EXTRUDER_PARKING_X,
  9582. midpos = (parkingposx[0] + parkingposx[1]) * 0.5 + hotend_offset[X_AXIS][active_extruder],
  9583. grabpos = parkingposx[tmp_extruder] + hotend_offset[X_AXIS][active_extruder]
  9584. + (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE);
  9585. /**
  9586. * Steps:
  9587. * 1. Raise Z-Axis to give enough clearance
  9588. * 2. Move to park position of old extruder
  9589. * 3. Disengage magnetic field, wait for delay
  9590. * 4. Move near new extruder
  9591. * 5. Engage magnetic field for new extruder
  9592. * 6. Move to parking incl. offset of new extruder
  9593. * 7. Lower Z-Axis
  9594. */
  9595. // STEP 1
  9596. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9597. SERIAL_ECHOLNPGM("Starting Autopark");
  9598. if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position);
  9599. #endif
  9600. current_position[Z_AXIS] += z_raise;
  9601. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9602. SERIAL_ECHOLNPGM("(1) Raise Z-Axis ");
  9603. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving to Raised Z-Position", current_position);
  9604. #endif
  9605. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  9606. stepper.synchronize();
  9607. // STEP 2
  9608. current_position[X_AXIS] = parkingposx[active_extruder] + hotend_offset[X_AXIS][active_extruder];
  9609. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9610. SERIAL_ECHOLNPAIR("(2) Park extruder ", active_extruder);
  9611. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving ParkPos", current_position);
  9612. #endif
  9613. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9614. stepper.synchronize();
  9615. // STEP 3
  9616. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9617. SERIAL_ECHOLNPGM("(3) Disengage magnet ");
  9618. #endif
  9619. pe_deactivate_magnet(active_extruder);
  9620. // STEP 4
  9621. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9622. SERIAL_ECHOLNPGM("(4) Move to position near new extruder");
  9623. #endif
  9624. current_position[X_AXIS] += (active_extruder == 0 ? 10 : -10); // move 10mm away from parked extruder
  9625. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9626. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving away from parked extruder", current_position);
  9627. #endif
  9628. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9629. stepper.synchronize();
  9630. // STEP 5
  9631. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9632. SERIAL_ECHOLNPGM("(5) Engage magnetic field");
  9633. #endif
  9634. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9635. pe_activate_magnet(active_extruder); //just save power for inverted magnets
  9636. #endif
  9637. pe_activate_magnet(tmp_extruder);
  9638. // STEP 6
  9639. current_position[X_AXIS] = grabpos + (tmp_extruder == 0 ? (+10) : (-10));
  9640. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9641. current_position[X_AXIS] = grabpos;
  9642. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9643. SERIAL_ECHOLNPAIR("(6) Unpark extruder ", tmp_extruder);
  9644. if (DEBUGGING(LEVELING)) DEBUG_POS("Move UnparkPos", current_position);
  9645. #endif
  9646. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS]/2, active_extruder);
  9647. stepper.synchronize();
  9648. // Step 7
  9649. current_position[X_AXIS] = midpos - hotend_offset[X_AXIS][tmp_extruder];
  9650. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9651. SERIAL_ECHOLNPGM("(7) Move midway between hotends");
  9652. if (DEBUGGING(LEVELING)) DEBUG_POS("Move midway to new extruder", current_position);
  9653. #endif
  9654. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9655. stepper.synchronize();
  9656. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9657. SERIAL_ECHOLNPGM("Autopark done.");
  9658. #endif
  9659. }
  9660. else { // nomove == true
  9661. // Only engage magnetic field for new extruder
  9662. pe_activate_magnet(tmp_extruder);
  9663. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9664. pe_activate_magnet(active_extruder); // Just save power for inverted magnets
  9665. #endif
  9666. }
  9667. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][tmp_extruder] - hotend_offset[Z_AXIS][active_extruder]; // Apply Zoffset
  9668. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9669. if (DEBUGGING(LEVELING)) DEBUG_POS("Applying Z-offset", current_position);
  9670. #endif
  9671. #endif // dualParking extruder
  9672. #if ENABLED(SWITCHING_NOZZLE)
  9673. #define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR)
  9674. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  9675. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  9676. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  9677. // Always raise by some amount (destination copied from current_position earlier)
  9678. current_position[Z_AXIS] += z_raise;
  9679. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  9680. move_nozzle_servo(tmp_extruder);
  9681. #endif
  9682. /**
  9683. * Set current_position to the position of the new nozzle.
  9684. * Offsets are based on linear distance, so we need to get
  9685. * the resulting position in coordinate space.
  9686. *
  9687. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  9688. * - With mesh leveling, update Z for the new position
  9689. * - Otherwise, just use the raw linear distance
  9690. *
  9691. * Software endstops are altered here too. Consider a case where:
  9692. * E0 at X=0 ... E1 at X=10
  9693. * When we switch to E1 now X=10, but E1 can't move left.
  9694. * To express this we apply the change in XY to the software endstops.
  9695. * E1 can move farther right than E0, so the right limit is extended.
  9696. *
  9697. * Note that we don't adjust the Z software endstops. Why not?
  9698. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  9699. * because the bed is 1mm lower at the new position. As long as
  9700. * the first nozzle is out of the way, the carriage should be
  9701. * allowed to move 1mm lower. This technically "breaks" the
  9702. * Z software endstop. But this is technically correct (and
  9703. * there is no viable alternative).
  9704. */
  9705. #if ABL_PLANAR
  9706. // Offset extruder, make sure to apply the bed level rotation matrix
  9707. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  9708. hotend_offset[Y_AXIS][tmp_extruder],
  9709. 0),
  9710. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  9711. hotend_offset[Y_AXIS][active_extruder],
  9712. 0),
  9713. offset_vec = tmp_offset_vec - act_offset_vec;
  9714. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9715. if (DEBUGGING(LEVELING)) {
  9716. tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
  9717. act_offset_vec.debug(PSTR("act_offset_vec"));
  9718. offset_vec.debug(PSTR("offset_vec (BEFORE)"));
  9719. }
  9720. #endif
  9721. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  9722. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9723. if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
  9724. #endif
  9725. // Adjustments to the current position
  9726. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  9727. current_position[Z_AXIS] += offset_vec.z;
  9728. #else // !ABL_PLANAR
  9729. const float xydiff[2] = {
  9730. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  9731. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  9732. };
  9733. #if ENABLED(MESH_BED_LEVELING)
  9734. if (planner.leveling_active) {
  9735. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9736. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  9737. #endif
  9738. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  9739. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  9740. z1 = current_position[Z_AXIS], z2 = z1;
  9741. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  9742. planner.apply_leveling(x2, y2, z2);
  9743. current_position[Z_AXIS] += z2 - z1;
  9744. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9745. if (DEBUGGING(LEVELING))
  9746. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  9747. #endif
  9748. }
  9749. #endif // MESH_BED_LEVELING
  9750. #endif // !HAS_ABL
  9751. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9752. if (DEBUGGING(LEVELING)) {
  9753. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  9754. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  9755. SERIAL_ECHOLNPGM(" }");
  9756. }
  9757. #endif
  9758. // The newly-selected extruder XY is actually at...
  9759. current_position[X_AXIS] += xydiff[X_AXIS];
  9760. current_position[Y_AXIS] += xydiff[Y_AXIS];
  9761. // Set the new active extruder
  9762. active_extruder = tmp_extruder;
  9763. #endif // !DUAL_X_CARRIAGE
  9764. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9765. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  9766. #endif
  9767. // Tell the planner the new "current position"
  9768. SYNC_PLAN_POSITION_KINEMATIC();
  9769. // Move to the "old position" (move the extruder into place)
  9770. #if ENABLED(SWITCHING_NOZZLE)
  9771. destination[Z_AXIS] += z_diff; // Include the Z restore with the "move back"
  9772. #endif
  9773. if (!no_move && IsRunning()) {
  9774. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9775. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  9776. #endif
  9777. // Move back to the original (or tweaked) position
  9778. do_blocking_move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS]);
  9779. }
  9780. #if ENABLED(SWITCHING_NOZZLE)
  9781. else {
  9782. // Move back down. (Including when the new tool is higher.)
  9783. do_blocking_move_to_z(destination[Z_AXIS], planner.max_feedrate_mm_s[Z_AXIS]);
  9784. }
  9785. #endif
  9786. } // (tmp_extruder != active_extruder)
  9787. stepper.synchronize();
  9788. #if ENABLED(EXT_SOLENOID) && !ENABLED(PARKING_EXTRUDER)
  9789. disable_all_solenoids();
  9790. enable_solenoid_on_active_extruder();
  9791. #endif // EXT_SOLENOID
  9792. feedrate_mm_s = old_feedrate_mm_s;
  9793. #else // HOTENDS <= 1
  9794. UNUSED(fr_mm_s);
  9795. UNUSED(no_move);
  9796. #if ENABLED(MK2_MULTIPLEXER)
  9797. if (tmp_extruder >= E_STEPPERS)
  9798. return invalid_extruder_error(tmp_extruder);
  9799. select_multiplexed_stepper(tmp_extruder);
  9800. #endif
  9801. // Set the new active extruder
  9802. active_extruder = tmp_extruder;
  9803. #endif // HOTENDS <= 1
  9804. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  9805. stepper.synchronize();
  9806. move_extruder_servo(active_extruder);
  9807. #endif
  9808. #if HAS_FANMUX
  9809. fanmux_switch(active_extruder);
  9810. #endif
  9811. SERIAL_ECHO_START();
  9812. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  9813. #endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  9814. }
  9815. /**
  9816. * T0-T3: Switch tool, usually switching extruders
  9817. *
  9818. * F[units/min] Set the movement feedrate
  9819. * S1 Don't move the tool in XY after change
  9820. */
  9821. inline void gcode_T(const uint8_t tmp_extruder) {
  9822. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9823. if (DEBUGGING(LEVELING)) {
  9824. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  9825. SERIAL_CHAR(')');
  9826. SERIAL_EOL();
  9827. DEBUG_POS("BEFORE", current_position);
  9828. }
  9829. #endif
  9830. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  9831. tool_change(tmp_extruder);
  9832. #elif HOTENDS > 1
  9833. tool_change(
  9834. tmp_extruder,
  9835. MMM_TO_MMS(parser.linearval('F')),
  9836. (tmp_extruder == active_extruder) || parser.boolval('S')
  9837. );
  9838. #endif
  9839. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9840. if (DEBUGGING(LEVELING)) {
  9841. DEBUG_POS("AFTER", current_position);
  9842. SERIAL_ECHOLNPGM("<<< gcode_T");
  9843. }
  9844. #endif
  9845. }
  9846. /**
  9847. * Process the parsed command and dispatch it to its handler
  9848. */
  9849. void process_parsed_command() {
  9850. KEEPALIVE_STATE(IN_HANDLER);
  9851. // Handle a known G, M, or T
  9852. switch (parser.command_letter) {
  9853. case 'G': switch (parser.codenum) {
  9854. // G0, G1
  9855. case 0:
  9856. case 1:
  9857. #if IS_SCARA
  9858. gcode_G0_G1(parser.codenum == 0);
  9859. #else
  9860. gcode_G0_G1();
  9861. #endif
  9862. break;
  9863. // G2, G3
  9864. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  9865. case 2: // G2: CW ARC
  9866. case 3: // G3: CCW ARC
  9867. gcode_G2_G3(parser.codenum == 2);
  9868. break;
  9869. #endif
  9870. // G4 Dwell
  9871. case 4:
  9872. gcode_G4();
  9873. break;
  9874. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9875. case 5: // G5: Cubic B_spline
  9876. gcode_G5();
  9877. break;
  9878. #endif // BEZIER_CURVE_SUPPORT
  9879. #if ENABLED(FWRETRACT)
  9880. case 10: // G10: retract
  9881. gcode_G10();
  9882. break;
  9883. case 11: // G11: retract_recover
  9884. gcode_G11();
  9885. break;
  9886. #endif // FWRETRACT
  9887. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  9888. case 12:
  9889. gcode_G12(); // G12: Nozzle Clean
  9890. break;
  9891. #endif // NOZZLE_CLEAN_FEATURE
  9892. #if ENABLED(CNC_WORKSPACE_PLANES)
  9893. case 17: // G17: Select Plane XY
  9894. gcode_G17();
  9895. break;
  9896. case 18: // G18: Select Plane ZX
  9897. gcode_G18();
  9898. break;
  9899. case 19: // G19: Select Plane YZ
  9900. gcode_G19();
  9901. break;
  9902. #endif // CNC_WORKSPACE_PLANES
  9903. #if ENABLED(INCH_MODE_SUPPORT)
  9904. case 20: // G20: Inch Mode
  9905. gcode_G20();
  9906. break;
  9907. case 21: // G21: MM Mode
  9908. gcode_G21();
  9909. break;
  9910. #endif // INCH_MODE_SUPPORT
  9911. #if ENABLED(G26_MESH_VALIDATION)
  9912. case 26: // G26: Mesh Validation Pattern generation
  9913. gcode_G26();
  9914. break;
  9915. #endif // G26_MESH_VALIDATION
  9916. #if ENABLED(NOZZLE_PARK_FEATURE)
  9917. case 27: // G27: Nozzle Park
  9918. gcode_G27();
  9919. break;
  9920. #endif // NOZZLE_PARK_FEATURE
  9921. case 28: // G28: Home all axes, one at a time
  9922. gcode_G28(false);
  9923. break;
  9924. #if HAS_LEVELING
  9925. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  9926. // or provides access to the UBL System if enabled.
  9927. gcode_G29();
  9928. break;
  9929. #endif // HAS_LEVELING
  9930. #if HAS_BED_PROBE
  9931. case 30: // G30 Single Z probe
  9932. gcode_G30();
  9933. break;
  9934. #if ENABLED(Z_PROBE_SLED)
  9935. case 31: // G31: dock the sled
  9936. gcode_G31();
  9937. break;
  9938. case 32: // G32: undock the sled
  9939. gcode_G32();
  9940. break;
  9941. #endif // Z_PROBE_SLED
  9942. #endif // HAS_BED_PROBE
  9943. #if ENABLED(DELTA_AUTO_CALIBRATION)
  9944. case 33: // G33: Delta Auto-Calibration
  9945. gcode_G33();
  9946. break;
  9947. #endif // DELTA_AUTO_CALIBRATION
  9948. #if ENABLED(G38_PROBE_TARGET)
  9949. case 38: // G38.2 & G38.3
  9950. if (parser.subcode == 2 || parser.subcode == 3)
  9951. gcode_G38(parser.subcode == 2);
  9952. break;
  9953. #endif
  9954. case 90: // G90
  9955. relative_mode = false;
  9956. break;
  9957. case 91: // G91
  9958. relative_mode = true;
  9959. break;
  9960. case 92: // G92
  9961. gcode_G92();
  9962. break;
  9963. #if HAS_MESH
  9964. case 42:
  9965. gcode_G42();
  9966. break;
  9967. #endif
  9968. #if ENABLED(DEBUG_GCODE_PARSER)
  9969. case 800:
  9970. parser.debug(); // GCode Parser Test for G
  9971. break;
  9972. #endif
  9973. }
  9974. break;
  9975. case 'M': switch (parser.codenum) {
  9976. #if HAS_RESUME_CONTINUE
  9977. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  9978. case 1: // M1: Conditional stop - Wait for user button press on LCD
  9979. gcode_M0_M1();
  9980. break;
  9981. #endif // ULTIPANEL
  9982. #if ENABLED(SPINDLE_LASER_ENABLE)
  9983. case 3:
  9984. gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
  9985. break; // synchronizes with movement commands
  9986. case 4:
  9987. gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
  9988. break; // synchronizes with movement commands
  9989. case 5:
  9990. gcode_M5(); // M5 - turn spindle/laser off
  9991. break; // synchronizes with movement commands
  9992. #endif
  9993. case 17: // M17: Enable all stepper motors
  9994. gcode_M17();
  9995. break;
  9996. #if ENABLED(SDSUPPORT)
  9997. case 20: // M20: list SD card
  9998. gcode_M20(); break;
  9999. case 21: // M21: init SD card
  10000. gcode_M21(); break;
  10001. case 22: // M22: release SD card
  10002. gcode_M22(); break;
  10003. case 23: // M23: Select file
  10004. gcode_M23(); break;
  10005. case 24: // M24: Start SD print
  10006. gcode_M24(); break;
  10007. case 25: // M25: Pause SD print
  10008. gcode_M25(); break;
  10009. case 26: // M26: Set SD index
  10010. gcode_M26(); break;
  10011. case 27: // M27: Get SD status
  10012. gcode_M27(); break;
  10013. case 28: // M28: Start SD write
  10014. gcode_M28(); break;
  10015. case 29: // M29: Stop SD write
  10016. gcode_M29(); break;
  10017. case 30: // M30 <filename> Delete File
  10018. gcode_M30(); break;
  10019. case 32: // M32: Select file and start SD print
  10020. gcode_M32(); break;
  10021. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  10022. case 33: // M33: Get the long full path to a file or folder
  10023. gcode_M33(); break;
  10024. #endif
  10025. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  10026. case 34: // M34: Set SD card sorting options
  10027. gcode_M34(); break;
  10028. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  10029. case 928: // M928: Start SD write
  10030. gcode_M928(); break;
  10031. #endif // SDSUPPORT
  10032. case 31: // M31: Report time since the start of SD print or last M109
  10033. gcode_M31(); break;
  10034. case 42: // M42: Change pin state
  10035. gcode_M42(); break;
  10036. #if ENABLED(PINS_DEBUGGING)
  10037. case 43: // M43: Read pin state
  10038. gcode_M43(); break;
  10039. #endif
  10040. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  10041. case 48: // M48: Z probe repeatability test
  10042. gcode_M48();
  10043. break;
  10044. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  10045. #if ENABLED(G26_MESH_VALIDATION)
  10046. case 49: // M49: Turn on or off G26 debug flag for verbose output
  10047. gcode_M49();
  10048. break;
  10049. #endif // G26_MESH_VALIDATION
  10050. #if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
  10051. case 73: // M73: Set print progress percentage
  10052. gcode_M73(); break;
  10053. #endif
  10054. case 75: // M75: Start print timer
  10055. gcode_M75(); break;
  10056. case 76: // M76: Pause print timer
  10057. gcode_M76(); break;
  10058. case 77: // M77: Stop print timer
  10059. gcode_M77(); break;
  10060. #if ENABLED(PRINTCOUNTER)
  10061. case 78: // M78: Show print statistics
  10062. gcode_M78(); break;
  10063. #endif
  10064. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  10065. case 100: // M100: Free Memory Report
  10066. gcode_M100();
  10067. break;
  10068. #endif
  10069. case 104: // M104: Set hot end temperature
  10070. gcode_M104();
  10071. break;
  10072. case 110: // M110: Set Current Line Number
  10073. gcode_M110();
  10074. break;
  10075. case 111: // M111: Set debug level
  10076. gcode_M111();
  10077. break;
  10078. #if DISABLED(EMERGENCY_PARSER)
  10079. case 108: // M108: Cancel Waiting
  10080. gcode_M108();
  10081. break;
  10082. case 112: // M112: Emergency Stop
  10083. gcode_M112();
  10084. break;
  10085. case 410: // M410 quickstop - Abort all the planned moves.
  10086. gcode_M410();
  10087. break;
  10088. #endif
  10089. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  10090. case 113: // M113: Set Host Keepalive interval
  10091. gcode_M113();
  10092. break;
  10093. #endif
  10094. case 140: // M140: Set bed temperature
  10095. gcode_M140();
  10096. break;
  10097. case 105: // M105: Report current temperature
  10098. gcode_M105();
  10099. KEEPALIVE_STATE(NOT_BUSY);
  10100. return; // "ok" already printed
  10101. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  10102. case 155: // M155: Set temperature auto-report interval
  10103. gcode_M155();
  10104. break;
  10105. #endif
  10106. case 109: // M109: Wait for hotend temperature to reach target
  10107. gcode_M109();
  10108. break;
  10109. #if HAS_TEMP_BED
  10110. case 190: // M190: Wait for bed temperature to reach target
  10111. gcode_M190();
  10112. break;
  10113. #endif // HAS_TEMP_BED
  10114. #if FAN_COUNT > 0
  10115. case 106: // M106: Fan On
  10116. gcode_M106();
  10117. break;
  10118. case 107: // M107: Fan Off
  10119. gcode_M107();
  10120. break;
  10121. #endif // FAN_COUNT > 0
  10122. #if ENABLED(PARK_HEAD_ON_PAUSE)
  10123. case 125: // M125: Store current position and move to filament change position
  10124. gcode_M125(); break;
  10125. #endif
  10126. #if ENABLED(BARICUDA)
  10127. // PWM for HEATER_1_PIN
  10128. #if HAS_HEATER_1
  10129. case 126: // M126: valve open
  10130. gcode_M126();
  10131. break;
  10132. case 127: // M127: valve closed
  10133. gcode_M127();
  10134. break;
  10135. #endif // HAS_HEATER_1
  10136. // PWM for HEATER_2_PIN
  10137. #if HAS_HEATER_2
  10138. case 128: // M128: valve open
  10139. gcode_M128();
  10140. break;
  10141. case 129: // M129: valve closed
  10142. gcode_M129();
  10143. break;
  10144. #endif // HAS_HEATER_2
  10145. #endif // BARICUDA
  10146. #if HAS_POWER_SWITCH
  10147. case 80: // M80: Turn on Power Supply
  10148. gcode_M80();
  10149. break;
  10150. #endif // HAS_POWER_SWITCH
  10151. case 81: // M81: Turn off Power, including Power Supply, if possible
  10152. gcode_M81();
  10153. break;
  10154. case 82: // M82: Set E axis normal mode (same as other axes)
  10155. gcode_M82();
  10156. break;
  10157. case 83: // M83: Set E axis relative mode
  10158. gcode_M83();
  10159. break;
  10160. case 18: // M18 => M84
  10161. case 84: // M84: Disable all steppers or set timeout
  10162. gcode_M18_M84();
  10163. break;
  10164. case 85: // M85: Set inactivity stepper shutdown timeout
  10165. gcode_M85();
  10166. break;
  10167. case 92: // M92: Set the steps-per-unit for one or more axes
  10168. gcode_M92();
  10169. break;
  10170. case 114: // M114: Report current position
  10171. gcode_M114();
  10172. break;
  10173. case 115: // M115: Report capabilities
  10174. gcode_M115();
  10175. break;
  10176. case 117: // M117: Set LCD message text, if possible
  10177. gcode_M117();
  10178. break;
  10179. case 118: // M118: Display a message in the host console
  10180. gcode_M118();
  10181. break;
  10182. case 119: // M119: Report endstop states
  10183. gcode_M119();
  10184. break;
  10185. case 120: // M120: Enable endstops
  10186. gcode_M120();
  10187. break;
  10188. case 121: // M121: Disable endstops
  10189. gcode_M121();
  10190. break;
  10191. #if ENABLED(ULTIPANEL)
  10192. case 145: // M145: Set material heatup parameters
  10193. gcode_M145();
  10194. break;
  10195. #endif
  10196. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  10197. case 149: // M149: Set temperature units
  10198. gcode_M149();
  10199. break;
  10200. #endif
  10201. #if HAS_COLOR_LEDS
  10202. case 150: // M150: Set Status LED Color
  10203. gcode_M150();
  10204. break;
  10205. #endif // HAS_COLOR_LEDS
  10206. #if ENABLED(MIXING_EXTRUDER)
  10207. case 163: // M163: Set a component weight for mixing extruder
  10208. gcode_M163();
  10209. break;
  10210. #if MIXING_VIRTUAL_TOOLS > 1
  10211. case 164: // M164: Save current mix as a virtual extruder
  10212. gcode_M164();
  10213. break;
  10214. #endif
  10215. #if ENABLED(DIRECT_MIXING_IN_G1)
  10216. case 165: // M165: Set multiple mix weights
  10217. gcode_M165();
  10218. break;
  10219. #endif
  10220. #endif
  10221. case 200: // M200: Set filament diameter, E to cubic units
  10222. gcode_M200();
  10223. break;
  10224. case 201: // M201: Set max acceleration for print moves (units/s^2)
  10225. gcode_M201();
  10226. break;
  10227. #if 0 // Not used for Sprinter/grbl gen6
  10228. case 202: // M202
  10229. gcode_M202();
  10230. break;
  10231. #endif
  10232. case 203: // M203: Set max feedrate (units/sec)
  10233. gcode_M203();
  10234. break;
  10235. case 204: // M204: Set acceleration
  10236. gcode_M204();
  10237. break;
  10238. case 205: // M205: Set advanced settings
  10239. gcode_M205();
  10240. break;
  10241. #if HAS_M206_COMMAND
  10242. case 206: // M206: Set home offsets
  10243. gcode_M206();
  10244. break;
  10245. #endif
  10246. #if ENABLED(DELTA)
  10247. case 665: // M665: Set delta configurations
  10248. gcode_M665();
  10249. break;
  10250. #endif
  10251. #if ENABLED(DELTA) || ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  10252. case 666: // M666: Set delta or dual endstop adjustment
  10253. gcode_M666();
  10254. break;
  10255. #endif
  10256. #if ENABLED(FWRETRACT)
  10257. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  10258. gcode_M207();
  10259. break;
  10260. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  10261. gcode_M208();
  10262. break;
  10263. case 209: // M209: Turn Automatic Retract Detection on/off
  10264. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209();
  10265. break;
  10266. #endif // FWRETRACT
  10267. case 211: // M211: Enable, Disable, and/or Report software endstops
  10268. gcode_M211();
  10269. break;
  10270. #if HOTENDS > 1
  10271. case 218: // M218: Set a tool offset
  10272. gcode_M218();
  10273. break;
  10274. #endif // HOTENDS > 1
  10275. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  10276. gcode_M220();
  10277. break;
  10278. case 221: // M221: Set Flow Percentage
  10279. gcode_M221();
  10280. break;
  10281. case 226: // M226: Wait until a pin reaches a state
  10282. gcode_M226();
  10283. break;
  10284. #if HAS_SERVOS
  10285. case 280: // M280: Set servo position absolute
  10286. gcode_M280();
  10287. break;
  10288. #endif // HAS_SERVOS
  10289. #if ENABLED(BABYSTEPPING)
  10290. case 290: // M290: Babystepping
  10291. gcode_M290();
  10292. break;
  10293. #endif // BABYSTEPPING
  10294. #if HAS_BUZZER
  10295. case 300: // M300: Play beep tone
  10296. gcode_M300();
  10297. break;
  10298. #endif // HAS_BUZZER
  10299. #if ENABLED(PIDTEMP)
  10300. case 301: // M301: Set hotend PID parameters
  10301. gcode_M301();
  10302. break;
  10303. #endif // PIDTEMP
  10304. #if ENABLED(PIDTEMPBED)
  10305. case 304: // M304: Set bed PID parameters
  10306. gcode_M304();
  10307. break;
  10308. #endif // PIDTEMPBED
  10309. #if defined(CHDK) || HAS_PHOTOGRAPH
  10310. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  10311. gcode_M240();
  10312. break;
  10313. #endif // CHDK || PHOTOGRAPH_PIN
  10314. #if HAS_LCD_CONTRAST
  10315. case 250: // M250: Set LCD contrast
  10316. gcode_M250();
  10317. break;
  10318. #endif // HAS_LCD_CONTRAST
  10319. #if ENABLED(EXPERIMENTAL_I2CBUS)
  10320. case 260: // M260: Send data to an i2c slave
  10321. gcode_M260();
  10322. break;
  10323. case 261: // M261: Request data from an i2c slave
  10324. gcode_M261();
  10325. break;
  10326. #endif // EXPERIMENTAL_I2CBUS
  10327. #if ENABLED(PREVENT_COLD_EXTRUSION)
  10328. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  10329. gcode_M302();
  10330. break;
  10331. #endif // PREVENT_COLD_EXTRUSION
  10332. case 303: // M303: PID autotune
  10333. gcode_M303();
  10334. break;
  10335. #if ENABLED(MORGAN_SCARA)
  10336. case 360: // M360: SCARA Theta pos1
  10337. if (gcode_M360()) return;
  10338. break;
  10339. case 361: // M361: SCARA Theta pos2
  10340. if (gcode_M361()) return;
  10341. break;
  10342. case 362: // M362: SCARA Psi pos1
  10343. if (gcode_M362()) return;
  10344. break;
  10345. case 363: // M363: SCARA Psi pos2
  10346. if (gcode_M363()) return;
  10347. break;
  10348. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  10349. if (gcode_M364()) return;
  10350. break;
  10351. #endif // SCARA
  10352. case 400: // M400: Finish all moves
  10353. gcode_M400();
  10354. break;
  10355. #if HAS_BED_PROBE
  10356. case 401: // M401: Deploy probe
  10357. gcode_M401();
  10358. break;
  10359. case 402: // M402: Stow probe
  10360. gcode_M402();
  10361. break;
  10362. #endif // HAS_BED_PROBE
  10363. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  10364. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  10365. gcode_M404();
  10366. break;
  10367. case 405: // M405: Turn on filament sensor for control
  10368. gcode_M405();
  10369. break;
  10370. case 406: // M406: Turn off filament sensor for control
  10371. gcode_M406();
  10372. break;
  10373. case 407: // M407: Display measured filament diameter
  10374. gcode_M407();
  10375. break;
  10376. #endif // FILAMENT_WIDTH_SENSOR
  10377. #if HAS_LEVELING
  10378. case 420: // M420: Enable/Disable Bed Leveling
  10379. gcode_M420();
  10380. break;
  10381. #endif
  10382. #if HAS_MESH
  10383. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  10384. gcode_M421();
  10385. break;
  10386. #endif
  10387. #if HAS_M206_COMMAND
  10388. case 428: // M428: Apply current_position to home_offset
  10389. gcode_M428();
  10390. break;
  10391. #endif
  10392. case 500: // M500: Store settings in EEPROM
  10393. gcode_M500();
  10394. break;
  10395. case 501: // M501: Read settings from EEPROM
  10396. gcode_M501();
  10397. break;
  10398. case 502: // M502: Revert to default settings
  10399. gcode_M502();
  10400. break;
  10401. #if DISABLED(DISABLE_M503)
  10402. case 503: // M503: print settings currently in memory
  10403. gcode_M503();
  10404. break;
  10405. #endif
  10406. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  10407. case 540: // M540: Set abort on endstop hit for SD printing
  10408. gcode_M540();
  10409. break;
  10410. #endif
  10411. #if HAS_BED_PROBE
  10412. case 851: // M851: Set Z Probe Z Offset
  10413. gcode_M851();
  10414. break;
  10415. #endif // HAS_BED_PROBE
  10416. #if ENABLED(SKEW_CORRECTION_GCODE)
  10417. case 852: // M852: Set Skew factors
  10418. gcode_M852();
  10419. break;
  10420. #endif
  10421. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  10422. case 600: // M600: Pause for filament change
  10423. gcode_M600();
  10424. break;
  10425. #endif // ADVANCED_PAUSE_FEATURE
  10426. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  10427. case 605: // M605: Set Dual X Carriage movement mode
  10428. gcode_M605();
  10429. break;
  10430. #endif // DUAL_X_CARRIAGE
  10431. #if ENABLED(MK2_MULTIPLEXER)
  10432. case 702: // M702: Unload all extruders
  10433. gcode_M702();
  10434. break;
  10435. #endif
  10436. #if ENABLED(LIN_ADVANCE)
  10437. case 900: // M900: Set advance K factor.
  10438. gcode_M900();
  10439. break;
  10440. #endif
  10441. case 907: // M907: Set digital trimpot motor current using axis codes.
  10442. gcode_M907();
  10443. break;
  10444. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  10445. case 908: // M908: Control digital trimpot directly.
  10446. gcode_M908();
  10447. break;
  10448. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  10449. case 909: // M909: Print digipot/DAC current value
  10450. gcode_M909();
  10451. break;
  10452. case 910: // M910: Commit digipot/DAC value to external EEPROM
  10453. gcode_M910();
  10454. break;
  10455. #endif
  10456. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  10457. #if ENABLED(HAVE_TMC2130) || ENABLED(HAVE_TMC2208)
  10458. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  10459. gcode_M906();
  10460. break;
  10461. case 911: // M911: Report TMC prewarn triggered flags
  10462. gcode_M911();
  10463. break;
  10464. case 912: // M911: Clear TMC prewarn triggered flags
  10465. gcode_M912();
  10466. break;
  10467. #if ENABLED(TMC_DEBUG)
  10468. case 122: // Debug TMC steppers
  10469. gcode_M122();
  10470. break;
  10471. #endif
  10472. #if ENABLED(HYBRID_THRESHOLD)
  10473. case 913: // M913: Set HYBRID_THRESHOLD speed.
  10474. gcode_M913();
  10475. break;
  10476. #endif
  10477. #if ENABLED(SENSORLESS_HOMING)
  10478. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  10479. gcode_M914();
  10480. break;
  10481. #endif
  10482. #if ENABLED(TMC_Z_CALIBRATION) && (Z_IS_TRINAMIC || Z2_IS_TRINAMIC)
  10483. case 915: // M915: TMC Z axis calibration routine
  10484. gcode_M915();
  10485. break;
  10486. #endif
  10487. #endif
  10488. #if HAS_MICROSTEPS
  10489. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  10490. gcode_M350();
  10491. break;
  10492. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  10493. gcode_M351();
  10494. break;
  10495. #endif // HAS_MICROSTEPS
  10496. case 355: // M355 set case light brightness
  10497. gcode_M355();
  10498. break;
  10499. #if ENABLED(DEBUG_GCODE_PARSER)
  10500. case 800:
  10501. parser.debug(); // GCode Parser Test for M
  10502. break;
  10503. #endif
  10504. #if ENABLED(I2C_POSITION_ENCODERS)
  10505. case 860: // M860 Report encoder module position
  10506. gcode_M860();
  10507. break;
  10508. case 861: // M861 Report encoder module status
  10509. gcode_M861();
  10510. break;
  10511. case 862: // M862 Perform axis test
  10512. gcode_M862();
  10513. break;
  10514. case 863: // M863 Calibrate steps/mm
  10515. gcode_M863();
  10516. break;
  10517. case 864: // M864 Change module address
  10518. gcode_M864();
  10519. break;
  10520. case 865: // M865 Check module firmware version
  10521. gcode_M865();
  10522. break;
  10523. case 866: // M866 Report axis error count
  10524. gcode_M866();
  10525. break;
  10526. case 867: // M867 Toggle error correction
  10527. gcode_M867();
  10528. break;
  10529. case 868: // M868 Set error correction threshold
  10530. gcode_M868();
  10531. break;
  10532. case 869: // M869 Report axis error
  10533. gcode_M869();
  10534. break;
  10535. #endif // I2C_POSITION_ENCODERS
  10536. case 999: // M999: Restart after being Stopped
  10537. gcode_M999();
  10538. break;
  10539. }
  10540. break;
  10541. case 'T':
  10542. gcode_T(parser.codenum);
  10543. break;
  10544. default: parser.unknown_command_error();
  10545. }
  10546. KEEPALIVE_STATE(NOT_BUSY);
  10547. ok_to_send();
  10548. }
  10549. void process_next_command() {
  10550. char * const current_command = command_queue[cmd_queue_index_r];
  10551. if (DEBUGGING(ECHO)) {
  10552. SERIAL_ECHO_START();
  10553. SERIAL_ECHOLN(current_command);
  10554. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  10555. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  10556. M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
  10557. #endif
  10558. }
  10559. // Parse the next command in the queue
  10560. parser.parse(current_command);
  10561. process_parsed_command();
  10562. }
  10563. /**
  10564. * Send a "Resend: nnn" message to the host to
  10565. * indicate that a command needs to be re-sent.
  10566. */
  10567. void FlushSerialRequestResend() {
  10568. //char command_queue[cmd_queue_index_r][100]="Resend:";
  10569. MYSERIAL.flush();
  10570. SERIAL_PROTOCOLPGM(MSG_RESEND);
  10571. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  10572. ok_to_send();
  10573. }
  10574. /**
  10575. * Send an "ok" message to the host, indicating
  10576. * that a command was successfully processed.
  10577. *
  10578. * If ADVANCED_OK is enabled also include:
  10579. * N<int> Line number of the command, if any
  10580. * P<int> Planner space remaining
  10581. * B<int> Block queue space remaining
  10582. */
  10583. void ok_to_send() {
  10584. refresh_cmd_timeout();
  10585. if (!send_ok[cmd_queue_index_r]) return;
  10586. SERIAL_PROTOCOLPGM(MSG_OK);
  10587. #if ENABLED(ADVANCED_OK)
  10588. char* p = command_queue[cmd_queue_index_r];
  10589. if (*p == 'N') {
  10590. SERIAL_PROTOCOL(' ');
  10591. SERIAL_ECHO(*p++);
  10592. while (NUMERIC_SIGNED(*p))
  10593. SERIAL_ECHO(*p++);
  10594. }
  10595. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  10596. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  10597. #endif
  10598. SERIAL_EOL();
  10599. }
  10600. #if HAS_SOFTWARE_ENDSTOPS
  10601. /**
  10602. * Constrain the given coordinates to the software endstops.
  10603. *
  10604. * For DELTA/SCARA the XY constraint is based on the smallest
  10605. * radius within the set software endstops.
  10606. */
  10607. void clamp_to_software_endstops(float target[XYZ]) {
  10608. if (!soft_endstops_enabled) return;
  10609. #if IS_KINEMATIC
  10610. const float dist_2 = HYPOT2(target[X_AXIS], target[Y_AXIS]);
  10611. if (dist_2 > soft_endstop_radius_2) {
  10612. const float ratio = soft_endstop_radius / SQRT(dist_2); // 200 / 300 = 0.66
  10613. target[X_AXIS] *= ratio;
  10614. target[Y_AXIS] *= ratio;
  10615. }
  10616. #else
  10617. #if ENABLED(MIN_SOFTWARE_ENDSTOP_X)
  10618. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  10619. #endif
  10620. #if ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
  10621. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  10622. #endif
  10623. #if ENABLED(MAX_SOFTWARE_ENDSTOP_X)
  10624. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  10625. #endif
  10626. #if ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
  10627. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  10628. #endif
  10629. #endif
  10630. #if ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
  10631. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  10632. #endif
  10633. #if ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
  10634. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  10635. #endif
  10636. }
  10637. #endif
  10638. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10639. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  10640. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  10641. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  10642. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  10643. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  10644. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  10645. #else
  10646. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  10647. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  10648. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  10649. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  10650. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  10651. #endif
  10652. // Get the Z adjustment for non-linear bed leveling
  10653. float bilinear_z_offset(const float raw[XYZ]) {
  10654. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  10655. last_x = -999.999, last_y = -999.999;
  10656. // Whole units for the grid line indices. Constrained within bounds.
  10657. static int8_t gridx, gridy, nextx, nexty,
  10658. last_gridx = -99, last_gridy = -99;
  10659. // XY relative to the probed area
  10660. const float rx = raw[X_AXIS] - bilinear_start[X_AXIS],
  10661. ry = raw[Y_AXIS] - bilinear_start[Y_AXIS];
  10662. #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
  10663. // Keep using the last grid box
  10664. #define FAR_EDGE_OR_BOX 2
  10665. #else
  10666. // Just use the grid far edge
  10667. #define FAR_EDGE_OR_BOX 1
  10668. #endif
  10669. if (last_x != rx) {
  10670. last_x = rx;
  10671. ratio_x = rx * ABL_BG_FACTOR(X_AXIS);
  10672. const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
  10673. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  10674. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  10675. // Beyond the grid maintain height at grid edges
  10676. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  10677. #endif
  10678. gridx = gx;
  10679. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  10680. }
  10681. if (last_y != ry || last_gridx != gridx) {
  10682. if (last_y != ry) {
  10683. last_y = ry;
  10684. ratio_y = ry * ABL_BG_FACTOR(Y_AXIS);
  10685. const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
  10686. ratio_y -= gy;
  10687. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  10688. // Beyond the grid maintain height at grid edges
  10689. NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
  10690. #endif
  10691. gridy = gy;
  10692. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  10693. }
  10694. if (last_gridx != gridx || last_gridy != gridy) {
  10695. last_gridx = gridx;
  10696. last_gridy = gridy;
  10697. // Z at the box corners
  10698. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  10699. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  10700. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  10701. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  10702. }
  10703. // Bilinear interpolate. Needed since ry or gridx has changed.
  10704. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  10705. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  10706. D = R - L;
  10707. }
  10708. const float offset = L + ratio_x * D; // the offset almost always changes
  10709. /*
  10710. static float last_offset = 0;
  10711. if (FABS(last_offset - offset) > 0.2) {
  10712. SERIAL_ECHOPGM("Sudden Shift at ");
  10713. SERIAL_ECHOPAIR("x=", rx);
  10714. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  10715. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  10716. SERIAL_ECHOPAIR(" y=", ry);
  10717. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  10718. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  10719. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  10720. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  10721. SERIAL_ECHOPAIR(" z1=", z1);
  10722. SERIAL_ECHOPAIR(" z2=", z2);
  10723. SERIAL_ECHOPAIR(" z3=", z3);
  10724. SERIAL_ECHOLNPAIR(" z4=", z4);
  10725. SERIAL_ECHOPAIR(" L=", L);
  10726. SERIAL_ECHOPAIR(" R=", R);
  10727. SERIAL_ECHOLNPAIR(" offset=", offset);
  10728. }
  10729. last_offset = offset;
  10730. //*/
  10731. return offset;
  10732. }
  10733. #endif // AUTO_BED_LEVELING_BILINEAR
  10734. #if ENABLED(DELTA)
  10735. /**
  10736. * Recalculate factors used for delta kinematics whenever
  10737. * settings have been changed (e.g., by M665).
  10738. */
  10739. void recalc_delta_settings() {
  10740. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  10741. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  10742. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]); // front left tower
  10743. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]);
  10744. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]); // front right tower
  10745. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]);
  10746. delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]); // back middle tower
  10747. delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]);
  10748. delta_diagonal_rod_2_tower[A_AXIS] = sq(delta_diagonal_rod + drt[A_AXIS]);
  10749. delta_diagonal_rod_2_tower[B_AXIS] = sq(delta_diagonal_rod + drt[B_AXIS]);
  10750. delta_diagonal_rod_2_tower[C_AXIS] = sq(delta_diagonal_rod + drt[C_AXIS]);
  10751. update_software_endstops(Z_AXIS);
  10752. axis_homed[X_AXIS] = axis_homed[Y_AXIS] = axis_homed[Z_AXIS] = false;
  10753. }
  10754. #if ENABLED(DELTA_FAST_SQRT)
  10755. /**
  10756. * Fast inverse sqrt from Quake III Arena
  10757. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  10758. */
  10759. float Q_rsqrt(const float number) {
  10760. long i;
  10761. float x2, y;
  10762. const float threehalfs = 1.5f;
  10763. x2 = number * 0.5f;
  10764. y = number;
  10765. i = * ( long * ) &y; // evil floating point bit level hacking
  10766. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  10767. y = * ( float * ) &i;
  10768. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  10769. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  10770. return y;
  10771. }
  10772. #endif
  10773. /**
  10774. * Delta Inverse Kinematics
  10775. *
  10776. * Calculate the tower positions for a given machine
  10777. * position, storing the result in the delta[] array.
  10778. *
  10779. * This is an expensive calculation, requiring 3 square
  10780. * roots per segmented linear move, and strains the limits
  10781. * of a Mega2560 with a Graphical Display.
  10782. *
  10783. * Suggested optimizations include:
  10784. *
  10785. * - Disable the home_offset (M206) and/or position_shift (G92)
  10786. * features to remove up to 12 float additions.
  10787. *
  10788. * - Use a fast-inverse-sqrt function and add the reciprocal.
  10789. * (see above)
  10790. */
  10791. #define DELTA_DEBUG() do { \
  10792. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  10793. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  10794. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  10795. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  10796. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  10797. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  10798. }while(0)
  10799. void inverse_kinematics(const float raw[XYZ]) {
  10800. DELTA_RAW_IK();
  10801. // DELTA_DEBUG();
  10802. }
  10803. /**
  10804. * Calculate the highest Z position where the
  10805. * effector has the full range of XY motion.
  10806. */
  10807. float delta_safe_distance_from_top() {
  10808. float cartesian[XYZ] = { 0, 0, 0 };
  10809. inverse_kinematics(cartesian);
  10810. float distance = delta[A_AXIS];
  10811. cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS;
  10812. inverse_kinematics(cartesian);
  10813. return FABS(distance - delta[A_AXIS]);
  10814. }
  10815. /**
  10816. * Delta Forward Kinematics
  10817. *
  10818. * See the Wikipedia article "Trilateration"
  10819. * https://en.wikipedia.org/wiki/Trilateration
  10820. *
  10821. * Establish a new coordinate system in the plane of the
  10822. * three carriage points. This system has its origin at
  10823. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  10824. * plane with a Z component of zero.
  10825. * We will define unit vectors in this coordinate system
  10826. * in our original coordinate system. Then when we calculate
  10827. * the Xnew, Ynew and Znew values, we can translate back into
  10828. * the original system by moving along those unit vectors
  10829. * by the corresponding values.
  10830. *
  10831. * Variable names matched to Marlin, c-version, and avoid the
  10832. * use of any vector library.
  10833. *
  10834. * by Andreas Hardtung 2016-06-07
  10835. * based on a Java function from "Delta Robot Kinematics V3"
  10836. * by Steve Graves
  10837. *
  10838. * The result is stored in the cartes[] array.
  10839. */
  10840. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  10841. // Create a vector in old coordinates along x axis of new coordinate
  10842. const float p12[] = {
  10843. delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS],
  10844. delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS],
  10845. z2 - z1
  10846. },
  10847. // Get the Magnitude of vector.
  10848. d = SQRT(sq(p12[0]) + sq(p12[1]) + sq(p12[2])),
  10849. // Create unit vector by dividing by magnitude.
  10850. ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d },
  10851. // Get the vector from the origin of the new system to the third point.
  10852. p13[3] = {
  10853. delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS],
  10854. delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS],
  10855. z3 - z1
  10856. },
  10857. // Use the dot product to find the component of this vector on the X axis.
  10858. i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2],
  10859. // Create a vector along the x axis that represents the x component of p13.
  10860. iex[] = { ex[0] * i, ex[1] * i, ex[2] * i };
  10861. // Subtract the X component from the original vector leaving only Y. We use the
  10862. // variable that will be the unit vector after we scale it.
  10863. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  10864. // The magnitude of Y component
  10865. const float j = SQRT(sq(ey[0]) + sq(ey[1]) + sq(ey[2]));
  10866. // Convert to a unit vector
  10867. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  10868. // The cross product of the unit x and y is the unit z
  10869. // float[] ez = vectorCrossProd(ex, ey);
  10870. const float ez[3] = {
  10871. ex[1] * ey[2] - ex[2] * ey[1],
  10872. ex[2] * ey[0] - ex[0] * ey[2],
  10873. ex[0] * ey[1] - ex[1] * ey[0]
  10874. },
  10875. // We now have the d, i and j values defined in Wikipedia.
  10876. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  10877. Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  10878. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  10879. Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  10880. // Start from the origin of the old coordinates and add vectors in the
  10881. // old coords that represent the Xnew, Ynew and Znew to find the point
  10882. // in the old system.
  10883. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  10884. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  10885. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  10886. }
  10887. void forward_kinematics_DELTA(float point[ABC]) {
  10888. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  10889. }
  10890. #endif // DELTA
  10891. /**
  10892. * Get the stepper positions in the cartes[] array.
  10893. * Forward kinematics are applied for DELTA and SCARA.
  10894. *
  10895. * The result is in the current coordinate space with
  10896. * leveling applied. The coordinates need to be run through
  10897. * unapply_leveling to obtain machine coordinates suitable
  10898. * for current_position, etc.
  10899. */
  10900. void get_cartesian_from_steppers() {
  10901. #if ENABLED(DELTA)
  10902. forward_kinematics_DELTA(
  10903. stepper.get_axis_position_mm(A_AXIS),
  10904. stepper.get_axis_position_mm(B_AXIS),
  10905. stepper.get_axis_position_mm(C_AXIS)
  10906. );
  10907. #else
  10908. #if IS_SCARA
  10909. forward_kinematics_SCARA(
  10910. stepper.get_axis_position_degrees(A_AXIS),
  10911. stepper.get_axis_position_degrees(B_AXIS)
  10912. );
  10913. #else
  10914. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  10915. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  10916. #endif
  10917. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  10918. #endif
  10919. }
  10920. /**
  10921. * Set the current_position for an axis based on
  10922. * the stepper positions, removing any leveling that
  10923. * may have been applied.
  10924. *
  10925. * To prevent small shifts in axis position always call
  10926. * SYNC_PLAN_POSITION_KINEMATIC after updating axes with this.
  10927. *
  10928. * To keep hosts in sync, always call report_current_position
  10929. * after updating the current_position.
  10930. */
  10931. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  10932. get_cartesian_from_steppers();
  10933. #if PLANNER_LEVELING
  10934. planner.unapply_leveling(cartes);
  10935. #endif
  10936. if (axis == ALL_AXES)
  10937. COPY(current_position, cartes);
  10938. else
  10939. current_position[axis] = cartes[axis];
  10940. }
  10941. #if IS_CARTESIAN
  10942. #if ENABLED(SEGMENT_LEVELED_MOVES)
  10943. /**
  10944. * Prepare a segmented move on a CARTESIAN setup.
  10945. *
  10946. * This calls planner.buffer_line several times, adding
  10947. * small incremental moves. This allows the planner to
  10948. * apply more detailed bed leveling to the full move.
  10949. */
  10950. inline void segmented_line_to_destination(const float &fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) {
  10951. const float xdiff = destination[X_AXIS] - current_position[X_AXIS],
  10952. ydiff = destination[Y_AXIS] - current_position[Y_AXIS];
  10953. // If the move is only in Z/E don't split up the move
  10954. if (!xdiff && !ydiff) {
  10955. planner.buffer_line_kinematic(destination, fr_mm_s, active_extruder);
  10956. return;
  10957. }
  10958. // Remaining cartesian distances
  10959. const float zdiff = destination[Z_AXIS] - current_position[Z_AXIS],
  10960. ediff = destination[E_AXIS] - current_position[E_AXIS];
  10961. // Get the linear distance in XYZ
  10962. // If the move is very short, check the E move distance
  10963. // No E move either? Game over.
  10964. float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff));
  10965. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(ediff);
  10966. if (UNEAR_ZERO(cartesian_mm)) return;
  10967. // The length divided by the segment size
  10968. // At least one segment is required
  10969. uint16_t segments = cartesian_mm / segment_size;
  10970. NOLESS(segments, 1);
  10971. // The approximate length of each segment
  10972. const float inv_segments = 1.0 / float(segments),
  10973. segment_distance[XYZE] = {
  10974. xdiff * inv_segments,
  10975. ydiff * inv_segments,
  10976. zdiff * inv_segments,
  10977. ediff * inv_segments
  10978. };
  10979. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  10980. // SERIAL_ECHOLNPAIR(" segments=", segments);
  10981. // Get the raw current position as starting point
  10982. float raw[XYZE];
  10983. COPY(raw, current_position);
  10984. // Calculate and execute the segments
  10985. while (--segments) {
  10986. static millis_t next_idle_ms = millis() + 200UL;
  10987. thermalManager.manage_heater(); // This returns immediately if not really needed.
  10988. if (ELAPSED(millis(), next_idle_ms)) {
  10989. next_idle_ms = millis() + 200UL;
  10990. idle();
  10991. }
  10992. LOOP_XYZE(i) raw[i] += segment_distance[i];
  10993. planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder);
  10994. }
  10995. // Since segment_distance is only approximate,
  10996. // the final move must be to the exact destination.
  10997. planner.buffer_line_kinematic(destination, fr_mm_s, active_extruder);
  10998. }
  10999. #elif ENABLED(MESH_BED_LEVELING)
  11000. /**
  11001. * Prepare a mesh-leveled linear move in a Cartesian setup,
  11002. * splitting the move where it crosses mesh borders.
  11003. */
  11004. void mesh_line_to_destination(const float fr_mm_s, uint8_t x_splits=0xFF, uint8_t y_splits=0xFF) {
  11005. // Get current and destination cells for this line
  11006. int cx1 = mbl.cell_index_x(current_position[X_AXIS]),
  11007. cy1 = mbl.cell_index_y(current_position[Y_AXIS]),
  11008. cx2 = mbl.cell_index_x(destination[X_AXIS]),
  11009. cy2 = mbl.cell_index_y(destination[Y_AXIS]);
  11010. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  11011. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  11012. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  11013. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  11014. // Start and end in the same cell? No split needed.
  11015. if (cx1 == cx2 && cy1 == cy2) {
  11016. buffer_line_to_destination(fr_mm_s);
  11017. set_current_from_destination();
  11018. return;
  11019. }
  11020. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  11021. float normalized_dist, end[XYZE];
  11022. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  11023. // Crosses on the X and not already split on this X?
  11024. // The x_splits flags are insurance against rounding errors.
  11025. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  11026. // Split on the X grid line
  11027. CBI(x_splits, gcx);
  11028. COPY(end, destination);
  11029. destination[X_AXIS] = mbl.index_to_xpos[gcx];
  11030. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  11031. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  11032. }
  11033. // Crosses on the Y and not already split on this Y?
  11034. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  11035. // Split on the Y grid line
  11036. CBI(y_splits, gcy);
  11037. COPY(end, destination);
  11038. destination[Y_AXIS] = mbl.index_to_ypos[gcy];
  11039. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  11040. destination[X_AXIS] = MBL_SEGMENT_END(X);
  11041. }
  11042. else {
  11043. // Must already have been split on these border(s)
  11044. // This should be a rare case.
  11045. buffer_line_to_destination(fr_mm_s);
  11046. set_current_from_destination();
  11047. return;
  11048. }
  11049. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  11050. destination[E_AXIS] = MBL_SEGMENT_END(E);
  11051. // Do the split and look for more borders
  11052. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  11053. // Restore destination from stack
  11054. COPY(destination, end);
  11055. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  11056. }
  11057. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  11058. #define CELL_INDEX(A,V) ((V - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  11059. /**
  11060. * Prepare a bilinear-leveled linear move on Cartesian,
  11061. * splitting the move where it crosses grid borders.
  11062. */
  11063. void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits=0xFFFF, uint16_t y_splits=0xFFFF) {
  11064. // Get current and destination cells for this line
  11065. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  11066. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  11067. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  11068. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  11069. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  11070. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  11071. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  11072. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  11073. // Start and end in the same cell? No split needed.
  11074. if (cx1 == cx2 && cy1 == cy2) {
  11075. buffer_line_to_destination(fr_mm_s);
  11076. set_current_from_destination();
  11077. return;
  11078. }
  11079. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  11080. float normalized_dist, end[XYZE];
  11081. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  11082. // Crosses on the X and not already split on this X?
  11083. // The x_splits flags are insurance against rounding errors.
  11084. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  11085. // Split on the X grid line
  11086. CBI(x_splits, gcx);
  11087. COPY(end, destination);
  11088. destination[X_AXIS] = bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx;
  11089. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  11090. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  11091. }
  11092. // Crosses on the Y and not already split on this Y?
  11093. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  11094. // Split on the Y grid line
  11095. CBI(y_splits, gcy);
  11096. COPY(end, destination);
  11097. destination[Y_AXIS] = bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy;
  11098. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  11099. destination[X_AXIS] = LINE_SEGMENT_END(X);
  11100. }
  11101. else {
  11102. // Must already have been split on these border(s)
  11103. // This should be a rare case.
  11104. buffer_line_to_destination(fr_mm_s);
  11105. set_current_from_destination();
  11106. return;
  11107. }
  11108. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  11109. destination[E_AXIS] = LINE_SEGMENT_END(E);
  11110. // Do the split and look for more borders
  11111. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  11112. // Restore destination from stack
  11113. COPY(destination, end);
  11114. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  11115. }
  11116. #endif // AUTO_BED_LEVELING_BILINEAR
  11117. #endif // IS_CARTESIAN
  11118. #if !UBL_SEGMENTED
  11119. #if IS_KINEMATIC
  11120. /**
  11121. * Prepare a linear move in a DELTA or SCARA setup.
  11122. *
  11123. * This calls planner.buffer_line several times, adding
  11124. * small incremental moves for DELTA or SCARA.
  11125. *
  11126. * For Unified Bed Leveling (Delta or Segmented Cartesian)
  11127. * the ubl.prepare_segmented_line_to method replaces this.
  11128. */
  11129. inline bool prepare_kinematic_move_to(const float (&rtarget)[XYZE]) {
  11130. // Get the top feedrate of the move in the XY plane
  11131. const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  11132. const float xdiff = rtarget[X_AXIS] - current_position[X_AXIS],
  11133. ydiff = rtarget[Y_AXIS] - current_position[Y_AXIS];
  11134. // If the move is only in Z/E don't split up the move
  11135. if (!xdiff && !ydiff) {
  11136. planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);
  11137. return false;
  11138. }
  11139. // Fail if attempting move outside printable radius
  11140. if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) return true;
  11141. // Remaining cartesian distances
  11142. const float zdiff = rtarget[Z_AXIS] - current_position[Z_AXIS],
  11143. ediff = rtarget[E_AXIS] - current_position[E_AXIS];
  11144. // Get the linear distance in XYZ
  11145. // If the move is very short, check the E move distance
  11146. // No E move either? Game over.
  11147. float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff));
  11148. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(ediff);
  11149. if (UNEAR_ZERO(cartesian_mm)) return true;
  11150. // Minimum number of seconds to move the given distance
  11151. const float seconds = cartesian_mm / _feedrate_mm_s;
  11152. // The number of segments-per-second times the duration
  11153. // gives the number of segments
  11154. uint16_t segments = delta_segments_per_second * seconds;
  11155. // For SCARA minimum segment size is 0.25mm
  11156. #if IS_SCARA
  11157. NOMORE(segments, cartesian_mm * 4);
  11158. #endif
  11159. // At least one segment is required
  11160. NOLESS(segments, 1);
  11161. // The approximate length of each segment
  11162. const float inv_segments = 1.0 / float(segments),
  11163. segment_distance[XYZE] = {
  11164. xdiff * inv_segments,
  11165. ydiff * inv_segments,
  11166. zdiff * inv_segments,
  11167. ediff * inv_segments
  11168. };
  11169. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  11170. // SERIAL_ECHOPAIR(" seconds=", seconds);
  11171. // SERIAL_ECHOLNPAIR(" segments=", segments);
  11172. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  11173. // SCARA needs to scale the feed rate from mm/s to degrees/s
  11174. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  11175. inverse_secs = inv_segment_length * _feedrate_mm_s;
  11176. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  11177. oldB = stepper.get_axis_position_degrees(B_AXIS);
  11178. #endif
  11179. // Get the current position as starting point
  11180. float raw[XYZE];
  11181. COPY(raw, current_position);
  11182. // Calculate and execute the segments
  11183. while (--segments) {
  11184. static millis_t next_idle_ms = millis() + 200UL;
  11185. thermalManager.manage_heater(); // This returns immediately if not really needed.
  11186. if (ELAPSED(millis(), next_idle_ms)) {
  11187. next_idle_ms = millis() + 200UL;
  11188. idle();
  11189. }
  11190. LOOP_XYZE(i) raw[i] += segment_distance[i];
  11191. #if ENABLED(DELTA)
  11192. DELTA_RAW_IK(); // Delta can inline its kinematics
  11193. #else
  11194. inverse_kinematics(raw);
  11195. #endif
  11196. ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled
  11197. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  11198. // For SCARA scale the feed rate from mm/s to degrees/s
  11199. // Use ratio between the length of the move and the larger angle change
  11200. const float adiff = abs(delta[A_AXIS] - oldA),
  11201. bdiff = abs(delta[B_AXIS] - oldB);
  11202. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], max(adiff, bdiff) * inverse_secs, active_extruder);
  11203. oldA = delta[A_AXIS];
  11204. oldB = delta[B_AXIS];
  11205. #else
  11206. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder);
  11207. #endif
  11208. }
  11209. // Since segment_distance is only approximate,
  11210. // the final move must be to the exact destination.
  11211. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  11212. // For SCARA scale the feed rate from mm/s to degrees/s
  11213. // With segments > 1 length is 1 segment, otherwise total length
  11214. inverse_kinematics(rtarget);
  11215. ADJUST_DELTA(rtarget);
  11216. const float adiff = abs(delta[A_AXIS] - oldA),
  11217. bdiff = abs(delta[B_AXIS] - oldB);
  11218. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], max(adiff, bdiff) * inverse_secs, active_extruder);
  11219. #else
  11220. planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);
  11221. #endif
  11222. return false;
  11223. }
  11224. #else // !IS_KINEMATIC
  11225. /**
  11226. * Prepare a linear move in a Cartesian setup.
  11227. *
  11228. * When a mesh-based leveling system is active, moves are segmented
  11229. * according to the configuration of the leveling system.
  11230. *
  11231. * Returns true if current_position[] was set to destination[]
  11232. */
  11233. inline bool prepare_move_to_destination_cartesian() {
  11234. #if HAS_MESH
  11235. if (planner.leveling_active && planner.leveling_active_at_z(destination[Z_AXIS])) {
  11236. #if ENABLED(AUTO_BED_LEVELING_UBL)
  11237. ubl.line_to_destination_cartesian(MMS_SCALED(feedrate_mm_s), active_extruder); // UBL's motion routine needs to know about
  11238. return true; // all moves, including Z-only moves.
  11239. #elif ENABLED(SEGMENT_LEVELED_MOVES)
  11240. segmented_line_to_destination(MMS_SCALED(feedrate_mm_s));
  11241. return false;
  11242. #else
  11243. /**
  11244. * For MBL and ABL-BILINEAR only segment moves when X or Y are involved.
  11245. * Otherwise fall through to do a direct single move.
  11246. */
  11247. if (current_position[X_AXIS] != destination[X_AXIS] || current_position[Y_AXIS] != destination[Y_AXIS]) {
  11248. #if ENABLED(MESH_BED_LEVELING)
  11249. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  11250. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  11251. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  11252. #endif
  11253. return true;
  11254. }
  11255. #endif
  11256. }
  11257. #endif // HAS_MESH
  11258. buffer_line_to_destination(MMS_SCALED(feedrate_mm_s));
  11259. return false;
  11260. }
  11261. #endif // !IS_KINEMATIC
  11262. #endif // !UBL_SEGMENTED
  11263. #if ENABLED(DUAL_X_CARRIAGE)
  11264. /**
  11265. * Unpark the carriage, if needed
  11266. */
  11267. inline bool dual_x_carriage_unpark() {
  11268. if (active_extruder_parked)
  11269. switch (dual_x_carriage_mode) {
  11270. case DXC_FULL_CONTROL_MODE: break;
  11271. case DXC_AUTO_PARK_MODE:
  11272. if (current_position[E_AXIS] == destination[E_AXIS]) {
  11273. // This is a travel move (with no extrusion)
  11274. // Skip it, but keep track of the current position
  11275. // (so it can be used as the start of the next non-travel move)
  11276. if (delayed_move_time != 0xFFFFFFFFUL) {
  11277. set_current_from_destination();
  11278. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  11279. delayed_move_time = millis();
  11280. return true;
  11281. }
  11282. }
  11283. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  11284. for (uint8_t i = 0; i < 3; i++)
  11285. planner.buffer_line(
  11286. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  11287. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  11288. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  11289. current_position[E_AXIS],
  11290. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  11291. active_extruder
  11292. );
  11293. delayed_move_time = 0;
  11294. active_extruder_parked = false;
  11295. #if ENABLED(DEBUG_LEVELING_FEATURE)
  11296. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  11297. #endif
  11298. break;
  11299. case DXC_DUPLICATION_MODE:
  11300. if (active_extruder == 0) {
  11301. #if ENABLED(DEBUG_LEVELING_FEATURE)
  11302. if (DEBUGGING(LEVELING)) {
  11303. SERIAL_ECHOPAIR("Set planner X", inactive_extruder_x_pos);
  11304. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  11305. }
  11306. #endif
  11307. // move duplicate extruder into correct duplication position.
  11308. planner.set_position_mm(
  11309. inactive_extruder_x_pos,
  11310. current_position[Y_AXIS],
  11311. current_position[Z_AXIS],
  11312. current_position[E_AXIS]
  11313. );
  11314. planner.buffer_line(
  11315. current_position[X_AXIS] + duplicate_extruder_x_offset,
  11316. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  11317. planner.max_feedrate_mm_s[X_AXIS], 1
  11318. );
  11319. SYNC_PLAN_POSITION_KINEMATIC();
  11320. stepper.synchronize();
  11321. extruder_duplication_enabled = true;
  11322. active_extruder_parked = false;
  11323. #if ENABLED(DEBUG_LEVELING_FEATURE)
  11324. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  11325. #endif
  11326. }
  11327. else {
  11328. #if ENABLED(DEBUG_LEVELING_FEATURE)
  11329. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  11330. #endif
  11331. }
  11332. break;
  11333. }
  11334. return false;
  11335. }
  11336. #endif // DUAL_X_CARRIAGE
  11337. /**
  11338. * Prepare a single move and get ready for the next one
  11339. *
  11340. * This may result in several calls to planner.buffer_line to
  11341. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  11342. *
  11343. * Make sure current_position[E] and destination[E] are good
  11344. * before calling or cold/lengthy extrusion may get missed.
  11345. */
  11346. void prepare_move_to_destination() {
  11347. clamp_to_software_endstops(destination);
  11348. refresh_cmd_timeout();
  11349. #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
  11350. if (!DEBUGGING(DRYRUN)) {
  11351. if (destination[E_AXIS] != current_position[E_AXIS]) {
  11352. #if ENABLED(PREVENT_COLD_EXTRUSION)
  11353. if (thermalManager.tooColdToExtrude(active_extruder)) {
  11354. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  11355. SERIAL_ECHO_START();
  11356. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  11357. }
  11358. #endif // PREVENT_COLD_EXTRUSION
  11359. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  11360. if (FABS(destination[E_AXIS] - current_position[E_AXIS]) * planner.e_factor[active_extruder] > (EXTRUDE_MAXLENGTH)) {
  11361. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  11362. SERIAL_ECHO_START();
  11363. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  11364. }
  11365. #endif // PREVENT_LENGTHY_EXTRUDE
  11366. }
  11367. }
  11368. #endif
  11369. #if ENABLED(DUAL_X_CARRIAGE)
  11370. if (dual_x_carriage_unpark()) return;
  11371. #endif
  11372. if (
  11373. #if UBL_SEGMENTED
  11374. ubl.prepare_segmented_line_to(destination, MMS_SCALED(feedrate_mm_s))
  11375. #elif IS_KINEMATIC
  11376. prepare_kinematic_move_to(destination)
  11377. #else
  11378. prepare_move_to_destination_cartesian()
  11379. #endif
  11380. ) return;
  11381. set_current_from_destination();
  11382. }
  11383. #if ENABLED(ARC_SUPPORT)
  11384. #if N_ARC_CORRECTION < 1
  11385. #undef N_ARC_CORRECTION
  11386. #define N_ARC_CORRECTION 1
  11387. #endif
  11388. /**
  11389. * Plan an arc in 2 dimensions
  11390. *
  11391. * The arc is approximated by generating many small linear segments.
  11392. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  11393. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  11394. * larger segments will tend to be more efficient. Your slicer should have
  11395. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  11396. */
  11397. void plan_arc(
  11398. const float (&cart)[XYZE], // Destination position
  11399. const float (&offset)[2], // Center of rotation relative to current_position
  11400. const bool clockwise // Clockwise?
  11401. ) {
  11402. #if ENABLED(CNC_WORKSPACE_PLANES)
  11403. AxisEnum p_axis, q_axis, l_axis;
  11404. switch (workspace_plane) {
  11405. default:
  11406. case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
  11407. case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
  11408. case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
  11409. }
  11410. #else
  11411. constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
  11412. #endif
  11413. // Radius vector from center to current location
  11414. float r_P = -offset[0], r_Q = -offset[1];
  11415. const float radius = HYPOT(r_P, r_Q),
  11416. center_P = current_position[p_axis] - r_P,
  11417. center_Q = current_position[q_axis] - r_Q,
  11418. rt_X = cart[p_axis] - center_P,
  11419. rt_Y = cart[q_axis] - center_Q,
  11420. linear_travel = cart[l_axis] - current_position[l_axis],
  11421. extruder_travel = cart[E_AXIS] - current_position[E_AXIS];
  11422. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  11423. float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
  11424. if (angular_travel < 0) angular_travel += RADIANS(360);
  11425. if (clockwise) angular_travel -= RADIANS(360);
  11426. // Make a circle if the angular rotation is 0 and the target is current position
  11427. if (angular_travel == 0 && current_position[p_axis] == cart[p_axis] && current_position[q_axis] == cart[q_axis])
  11428. angular_travel = RADIANS(360);
  11429. const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
  11430. if (mm_of_travel < 0.001) return;
  11431. uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
  11432. NOLESS(segments, 1);
  11433. /**
  11434. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  11435. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  11436. * r_T = [cos(phi) -sin(phi);
  11437. * sin(phi) cos(phi)] * r ;
  11438. *
  11439. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  11440. * defined from the circle center to the initial position. Each line segment is formed by successive
  11441. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  11442. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  11443. * all double numbers are single precision on the Arduino. (True double precision will not have
  11444. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  11445. * tool precision in some cases. Therefore, arc path correction is implemented.
  11446. *
  11447. * Small angle approximation may be used to reduce computation overhead further. This approximation
  11448. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  11449. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  11450. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  11451. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  11452. * issue for CNC machines with the single precision Arduino calculations.
  11453. *
  11454. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  11455. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  11456. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  11457. * This is important when there are successive arc motions.
  11458. */
  11459. // Vector rotation matrix values
  11460. float arc_target[XYZE];
  11461. const float theta_per_segment = angular_travel / segments,
  11462. linear_per_segment = linear_travel / segments,
  11463. extruder_per_segment = extruder_travel / segments,
  11464. sin_T = theta_per_segment,
  11465. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  11466. // Initialize the linear axis
  11467. arc_target[l_axis] = current_position[l_axis];
  11468. // Initialize the extruder axis
  11469. arc_target[E_AXIS] = current_position[E_AXIS];
  11470. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  11471. millis_t next_idle_ms = millis() + 200UL;
  11472. #if N_ARC_CORRECTION > 1
  11473. int8_t arc_recalc_count = N_ARC_CORRECTION;
  11474. #endif
  11475. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  11476. thermalManager.manage_heater();
  11477. if (ELAPSED(millis(), next_idle_ms)) {
  11478. next_idle_ms = millis() + 200UL;
  11479. idle();
  11480. }
  11481. #if N_ARC_CORRECTION > 1
  11482. if (--arc_recalc_count) {
  11483. // Apply vector rotation matrix to previous r_P / 1
  11484. const float r_new_Y = r_P * sin_T + r_Q * cos_T;
  11485. r_P = r_P * cos_T - r_Q * sin_T;
  11486. r_Q = r_new_Y;
  11487. }
  11488. else
  11489. #endif
  11490. {
  11491. #if N_ARC_CORRECTION > 1
  11492. arc_recalc_count = N_ARC_CORRECTION;
  11493. #endif
  11494. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  11495. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  11496. // To reduce stuttering, the sin and cos could be computed at different times.
  11497. // For now, compute both at the same time.
  11498. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
  11499. r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
  11500. r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
  11501. }
  11502. // Update arc_target location
  11503. arc_target[p_axis] = center_P + r_P;
  11504. arc_target[q_axis] = center_Q + r_Q;
  11505. arc_target[l_axis] += linear_per_segment;
  11506. arc_target[E_AXIS] += extruder_per_segment;
  11507. clamp_to_software_endstops(arc_target);
  11508. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  11509. }
  11510. // Ensure last segment arrives at target location.
  11511. planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder);
  11512. // As far as the parser is concerned, the position is now == target. In reality the
  11513. // motion control system might still be processing the action and the real tool position
  11514. // in any intermediate location.
  11515. set_current_from_destination();
  11516. } // plan_arc
  11517. #endif // ARC_SUPPORT
  11518. #if ENABLED(BEZIER_CURVE_SUPPORT)
  11519. void plan_cubic_move(const float (&offset)[4]) {
  11520. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  11521. // As far as the parser is concerned, the position is now == destination. In reality the
  11522. // motion control system might still be processing the action and the real tool position
  11523. // in any intermediate location.
  11524. set_current_from_destination();
  11525. }
  11526. #endif // BEZIER_CURVE_SUPPORT
  11527. #if ENABLED(USE_CONTROLLER_FAN)
  11528. void controllerFan() {
  11529. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  11530. nextMotorCheck = 0; // Last time the state was checked
  11531. const millis_t ms = millis();
  11532. if (ELAPSED(ms, nextMotorCheck)) {
  11533. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  11534. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
  11535. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  11536. #if E_STEPPERS > 1
  11537. || E1_ENABLE_READ == E_ENABLE_ON
  11538. #if HAS_X2_ENABLE
  11539. || X2_ENABLE_READ == X_ENABLE_ON
  11540. #endif
  11541. #if E_STEPPERS > 2
  11542. || E2_ENABLE_READ == E_ENABLE_ON
  11543. #if E_STEPPERS > 3
  11544. || E3_ENABLE_READ == E_ENABLE_ON
  11545. #if E_STEPPERS > 4
  11546. || E4_ENABLE_READ == E_ENABLE_ON
  11547. #endif // E_STEPPERS > 4
  11548. #endif // E_STEPPERS > 3
  11549. #endif // E_STEPPERS > 2
  11550. #endif // E_STEPPERS > 1
  11551. ) {
  11552. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  11553. }
  11554. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  11555. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  11556. // allows digital or PWM fan output to be used (see M42 handling)
  11557. WRITE(CONTROLLER_FAN_PIN, speed);
  11558. analogWrite(CONTROLLER_FAN_PIN, speed);
  11559. }
  11560. }
  11561. #endif // USE_CONTROLLER_FAN
  11562. #if ENABLED(MORGAN_SCARA)
  11563. /**
  11564. * Morgan SCARA Forward Kinematics. Results in cartes[].
  11565. * Maths and first version by QHARLEY.
  11566. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  11567. */
  11568. void forward_kinematics_SCARA(const float &a, const float &b) {
  11569. float a_sin = sin(RADIANS(a)) * L1,
  11570. a_cos = cos(RADIANS(a)) * L1,
  11571. b_sin = sin(RADIANS(b)) * L2,
  11572. b_cos = cos(RADIANS(b)) * L2;
  11573. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  11574. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  11575. /*
  11576. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  11577. SERIAL_ECHOPAIR(" b=", b);
  11578. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  11579. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  11580. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  11581. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  11582. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  11583. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  11584. //*/
  11585. }
  11586. /**
  11587. * Morgan SCARA Inverse Kinematics. Results in delta[].
  11588. *
  11589. * See http://forums.reprap.org/read.php?185,283327
  11590. *
  11591. * Maths and first version by QHARLEY.
  11592. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  11593. */
  11594. void inverse_kinematics(const float raw[XYZ]) {
  11595. static float C2, S2, SK1, SK2, THETA, PSI;
  11596. float sx = raw[X_AXIS] - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  11597. sy = raw[Y_AXIS] - SCARA_OFFSET_Y; // With scaling factor.
  11598. if (L1 == L2)
  11599. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  11600. else
  11601. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  11602. S2 = SQRT(1 - sq(C2));
  11603. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  11604. SK1 = L1 + L2 * C2;
  11605. // Rotated Arm2 gives the distance from Arm1 to Arm2
  11606. SK2 = L2 * S2;
  11607. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  11608. THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
  11609. // Angle of Arm2
  11610. PSI = ATAN2(S2, C2);
  11611. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  11612. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  11613. delta[C_AXIS] = raw[Z_AXIS];
  11614. /*
  11615. DEBUG_POS("SCARA IK", raw);
  11616. DEBUG_POS("SCARA IK", delta);
  11617. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  11618. SERIAL_ECHOPAIR(",", sy);
  11619. SERIAL_ECHOPAIR(" C2=", C2);
  11620. SERIAL_ECHOPAIR(" S2=", S2);
  11621. SERIAL_ECHOPAIR(" Theta=", THETA);
  11622. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  11623. //*/
  11624. }
  11625. #endif // MORGAN_SCARA
  11626. #if ENABLED(TEMP_STAT_LEDS)
  11627. static bool red_led = false;
  11628. static millis_t next_status_led_update_ms = 0;
  11629. void handle_status_leds(void) {
  11630. if (ELAPSED(millis(), next_status_led_update_ms)) {
  11631. next_status_led_update_ms += 500; // Update every 0.5s
  11632. float max_temp = 0.0;
  11633. #if HAS_TEMP_BED
  11634. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  11635. #endif
  11636. HOTEND_LOOP()
  11637. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  11638. const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  11639. if (new_led != red_led) {
  11640. red_led = new_led;
  11641. #if PIN_EXISTS(STAT_LED_RED)
  11642. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  11643. #if PIN_EXISTS(STAT_LED_BLUE)
  11644. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  11645. #endif
  11646. #else
  11647. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  11648. #endif
  11649. }
  11650. }
  11651. }
  11652. #endif
  11653. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11654. void handle_filament_runout() {
  11655. if (!filament_ran_out) {
  11656. filament_ran_out = true;
  11657. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  11658. stepper.synchronize();
  11659. }
  11660. }
  11661. #endif // FILAMENT_RUNOUT_SENSOR
  11662. #if ENABLED(FAST_PWM_FAN)
  11663. void setPwmFrequency(uint8_t pin, int val) {
  11664. val &= 0x07;
  11665. switch (digitalPinToTimer(pin)) {
  11666. #ifdef TCCR0A
  11667. #if !AVR_AT90USB1286_FAMILY
  11668. case TIMER0A:
  11669. #endif
  11670. case TIMER0B: //_SET_CS(0, val);
  11671. break;
  11672. #endif
  11673. #ifdef TCCR1A
  11674. case TIMER1A: case TIMER1B: //_SET_CS(1, val);
  11675. break;
  11676. #endif
  11677. #if defined(TCCR2) || defined(TCCR2A)
  11678. #ifdef TCCR2
  11679. case TIMER2:
  11680. #endif
  11681. #ifdef TCCR2A
  11682. case TIMER2A: case TIMER2B:
  11683. #endif
  11684. _SET_CS(2, val); break;
  11685. #endif
  11686. #ifdef TCCR3A
  11687. case TIMER3A: case TIMER3B: case TIMER3C: _SET_CS(3, val); break;
  11688. #endif
  11689. #ifdef TCCR4A
  11690. case TIMER4A: case TIMER4B: case TIMER4C: _SET_CS(4, val); break;
  11691. #endif
  11692. #ifdef TCCR5A
  11693. case TIMER5A: case TIMER5B: case TIMER5C: _SET_CS(5, val); break;
  11694. #endif
  11695. }
  11696. }
  11697. #endif // FAST_PWM_FAN
  11698. void enable_all_steppers() {
  11699. enable_X();
  11700. enable_Y();
  11701. enable_Z();
  11702. enable_E0();
  11703. enable_E1();
  11704. enable_E2();
  11705. enable_E3();
  11706. enable_E4();
  11707. }
  11708. void disable_e_steppers() {
  11709. disable_E0();
  11710. disable_E1();
  11711. disable_E2();
  11712. disable_E3();
  11713. disable_E4();
  11714. }
  11715. void disable_all_steppers() {
  11716. disable_X();
  11717. disable_Y();
  11718. disable_Z();
  11719. disable_e_steppers();
  11720. }
  11721. #if ENABLED(MONITOR_DRIVER_STATUS)
  11722. /*
  11723. * Check for over temperature or short to ground error flags.
  11724. * Report and log warning of overtemperature condition.
  11725. * Reduce driver current in a persistent otpw condition.
  11726. * Keep track of otpw counter so we don't reduce current on a single instance,
  11727. * and so we don't repeatedly report warning before the condition is cleared.
  11728. */
  11729. struct TMC_driver_data {
  11730. uint32_t drv_status;
  11731. bool is_otpw;
  11732. bool is_ot;
  11733. bool is_error;
  11734. };
  11735. #if ENABLED(HAVE_TMC2130)
  11736. static uint32_t get_pwm_scale(TMC2130Stepper &st) { return st.PWM_SCALE(); }
  11737. static uint8_t get_status_response(TMC2130Stepper &st) { return st.status_response&0xF; }
  11738. static TMC_driver_data get_driver_data(TMC2130Stepper &st) {
  11739. constexpr uint32_t OTPW_bm = 0x4000000UL;
  11740. constexpr uint8_t OTPW_bp = 26;
  11741. constexpr uint32_t OT_bm = 0x2000000UL;
  11742. constexpr uint8_t OT_bp = 25;
  11743. constexpr uint8_t DRIVER_ERROR_bm = 0x2UL;
  11744. constexpr uint8_t DRIVER_ERROR_bp = 1;
  11745. TMC_driver_data data;
  11746. data.drv_status = st.DRV_STATUS();
  11747. data.is_otpw = (data.drv_status & OTPW_bm)>>OTPW_bp;
  11748. data.is_ot = (data.drv_status & OT_bm)>>OT_bp;
  11749. data.is_error = (st.status_response & DRIVER_ERROR_bm)>>DRIVER_ERROR_bp;
  11750. return data;
  11751. }
  11752. #endif
  11753. #if ENABLED(HAVE_TMC2208)
  11754. static uint32_t get_pwm_scale(TMC2208Stepper &st) { return st.pwm_scale_sum(); }
  11755. static uint8_t get_status_response(TMC2208Stepper &st) {
  11756. uint32_t drv_status = st.DRV_STATUS();
  11757. uint8_t gstat = st.GSTAT();
  11758. uint8_t response = 0;
  11759. response |= (drv_status >> (31-3)) & 0b1000;
  11760. response |= gstat & 0b11;
  11761. return response;
  11762. }
  11763. static TMC_driver_data get_driver_data(TMC2208Stepper &st) {
  11764. constexpr uint32_t OTPW_bm = 0b1ul;
  11765. constexpr uint8_t OTPW_bp = 0;
  11766. constexpr uint32_t OT_bm = 0b10ul;
  11767. constexpr uint8_t OT_bp = 1;
  11768. TMC_driver_data data;
  11769. data.drv_status = st.DRV_STATUS();
  11770. data.is_otpw = (data.drv_status & OTPW_bm)>>OTPW_bp;
  11771. data.is_ot = (data.drv_status & OT_bm)>>OT_bp;
  11772. data.is_error = st.drv_err();
  11773. return data;
  11774. }
  11775. #endif
  11776. template<typename TMC>
  11777. uint8_t monitor_tmc_driver(TMC &st, const char axisID, uint8_t otpw_cnt) {
  11778. TMC_driver_data data = get_driver_data(st);
  11779. #if ENABLED(STOP_ON_ERROR)
  11780. if (data.is_error) {
  11781. SERIAL_EOL();
  11782. SERIAL_ECHO(axisID);
  11783. SERIAL_ECHO(" driver error detected:");
  11784. if (data.is_ot) SERIAL_ECHO("\novertemperature");
  11785. if (st.s2ga()) SERIAL_ECHO("\nshort to ground (coil A)");
  11786. if (st.s2gb()) SERIAL_ECHO("\nshort to ground (coil B)");
  11787. SERIAL_EOL();
  11788. #if ENABLED(TMC_DEBUG)
  11789. gcode_M122();
  11790. #endif
  11791. kill(PSTR("Driver error"));
  11792. }
  11793. #endif
  11794. // Report if a warning was triggered
  11795. if (data.is_otpw && otpw_cnt==0) {
  11796. char timestamp[10];
  11797. duration_t elapsed = print_job_timer.duration();
  11798. const bool has_days = (elapsed.value > 60*60*24L);
  11799. (void)elapsed.toDigital(timestamp, has_days);
  11800. SERIAL_EOL();
  11801. SERIAL_ECHO(timestamp);
  11802. SERIAL_ECHOPGM(": ");
  11803. SERIAL_ECHO(axisID);
  11804. SERIAL_ECHOPGM(" driver overtemperature warning! (");
  11805. SERIAL_ECHO(st.getCurrent());
  11806. SERIAL_ECHOLN("mA)");
  11807. }
  11808. #if CURRENT_STEP_DOWN > 0
  11809. // Decrease current if is_otpw is true and driver is enabled and there's been more then 4 warnings
  11810. if (data.is_otpw && !st.isEnabled() && otpw_cnt > 4) {
  11811. st.setCurrent(st.getCurrent() - CURRENT_STEP_DOWN, R_SENSE, HOLD_MULTIPLIER);
  11812. #if ENABLED(REPORT_CURRENT_CHANGE)
  11813. SERIAL_ECHO(axisID);
  11814. SERIAL_ECHOLNPAIR(" current decreased to ", st.getCurrent());
  11815. #endif
  11816. }
  11817. #endif
  11818. if (data.is_otpw) {
  11819. otpw_cnt++;
  11820. st.flag_otpw = true;
  11821. }
  11822. else if (otpw_cnt>0) otpw_cnt--;
  11823. if (report_tmc_status) {
  11824. const uint32_t pwm_scale = get_pwm_scale(st);
  11825. SERIAL_ECHO(axisID);
  11826. SERIAL_ECHOPAIR(":", pwm_scale);
  11827. SERIAL_ECHO(" |0b"); MYSERIAL.print(get_status_response(st), BIN);
  11828. SERIAL_ECHO("| ");
  11829. if (data.is_error) SERIAL_ECHO('E');
  11830. else if (data.is_ot) SERIAL_ECHO('O');
  11831. else if (data.is_otpw) SERIAL_ECHO('W');
  11832. else if (otpw_cnt>0) MYSERIAL.print(otpw_cnt, DEC);
  11833. else if (st.flag_otpw) SERIAL_ECHO('F');
  11834. SERIAL_ECHO("\t");
  11835. }
  11836. return otpw_cnt;
  11837. }
  11838. void monitor_tmc_driver() {
  11839. static millis_t next_cOT = 0;
  11840. if (ELAPSED(millis(), next_cOT)) {
  11841. next_cOT = millis() + 500;
  11842. #if ENABLED(X_IS_TMC2130)|| (ENABLED(X_IS_TMC2208) && defined(X_HARDWARE_SERIAL)) || ENABLED(IS_TRAMS)
  11843. static uint8_t x_otpw_cnt = 0;
  11844. x_otpw_cnt = monitor_tmc_driver(stepperX, axis_codes[X_AXIS], x_otpw_cnt);
  11845. #endif
  11846. #if ENABLED(Y_IS_TMC2130)|| (ENABLED(Y_IS_TMC2208) && defined(Y_HARDWARE_SERIAL)) || ENABLED(IS_TRAMS)
  11847. static uint8_t y_otpw_cnt = 0;
  11848. y_otpw_cnt = monitor_tmc_driver(stepperY, axis_codes[Y_AXIS], y_otpw_cnt);
  11849. #endif
  11850. #if ENABLED(Z_IS_TMC2130)|| (ENABLED(Z_IS_TMC2208) && defined(Z_HARDWARE_SERIAL)) || ENABLED(IS_TRAMS)
  11851. static uint8_t z_otpw_cnt = 0;
  11852. z_otpw_cnt = monitor_tmc_driver(stepperZ, axis_codes[Z_AXIS], z_otpw_cnt);
  11853. #endif
  11854. #if ENABLED(X2_IS_TMC2130) || (ENABLED(X2_IS_TMC2208) && defined(X2_HARDWARE_SERIAL))
  11855. static uint8_t x2_otpw_cnt = 0;
  11856. x2_otpw_cnt = monitor_tmc_driver(stepperX2, axis_codes[X_AXIS], x2_otpw_cnt);
  11857. #endif
  11858. #if ENABLED(Y2_IS_TMC2130) || (ENABLED(Y2_IS_TMC2208) && defined(Y2_HARDWARE_SERIAL))
  11859. static uint8_t y2_otpw_cnt = 0;
  11860. y2_otpw_cnt = monitor_tmc_driver(stepperY2, axis_codes[Y_AXIS], y2_otpw_cnt);
  11861. #endif
  11862. #if ENABLED(Z2_IS_TMC2130) || (ENABLED(Z2_IS_TMC2208) && defined(Z2_HARDWARE_SERIAL))
  11863. static uint8_t z2_otpw_cnt = 0;
  11864. z2_otpw_cnt = monitor_tmc_driver(stepperZ2, axis_codes[Z_AXIS], z2_otpw_cnt);
  11865. #endif
  11866. #if ENABLED(E0_IS_TMC2130)|| (ENABLED(E0_IS_TMC2208) && defined(E0_HARDWARE_SERIAL)) || ENABLED(IS_TRAMS)
  11867. static uint8_t e0_otpw_cnt = 0;
  11868. e0_otpw_cnt = monitor_tmc_driver(stepperE0, axis_codes[E_AXIS], e0_otpw_cnt);
  11869. #endif
  11870. #if ENABLED(E1_IS_TMC2130) || (ENABLED(E1_IS_TMC2208) && defined(E1_HARDWARE_SERIAL))
  11871. static uint8_t e1_otpw_cnt = 0;
  11872. e1_otpw_cnt = monitor_tmc_driver(stepperE1, axis_codes[E_AXIS], e1_otpw_cnt);
  11873. #endif
  11874. #if ENABLED(E2_IS_TMC2130) || (ENABLED(E2_IS_TMC2208) && defined(E2_HARDWARE_SERIAL))
  11875. static uint8_t e2_otpw_cnt = 0;
  11876. e2_otpw_cnt = monitor_tmc_driver(stepperE2, axis_codes[E_AXIS], e2_otpw_cnt);
  11877. #endif
  11878. #if ENABLED(E3_IS_TMC2130) || (ENABLED(E3_IS_TMC2208) && defined(E3_HARDWARE_SERIAL))
  11879. static uint8_t e3_otpw_cnt = 0;
  11880. e3_otpw_cnt = monitor_tmc_driver(stepperE3, axis_codes[E_AXIS], e3_otpw_cnt);
  11881. #endif
  11882. #if ENABLED(E4_IS_TMC2130) || (ENABLED(E4_IS_TMC2208) && defined(E4_HARDWARE_SERIAL))
  11883. static uint8_t e4_otpw_cnt = 0;
  11884. e4_otpw_cnt = monitor_tmc_driver(stepperE4, axis_codes[E_AXIS], e4_otpw_cnt);
  11885. #endif
  11886. if (report_tmc_status) SERIAL_EOL();
  11887. }
  11888. }
  11889. #endif // MONITOR_DRIVER_STATUS
  11890. /**
  11891. * Manage several activities:
  11892. * - Check for Filament Runout
  11893. * - Keep the command buffer full
  11894. * - Check for maximum inactive time between commands
  11895. * - Check for maximum inactive time between stepper commands
  11896. * - Check if pin CHDK needs to go LOW
  11897. * - Check for KILL button held down
  11898. * - Check for HOME button held down
  11899. * - Check if cooling fan needs to be switched on
  11900. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  11901. */
  11902. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  11903. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11904. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  11905. handle_filament_runout();
  11906. #endif
  11907. if (commands_in_queue < BUFSIZE) get_available_commands();
  11908. const millis_t ms = millis();
  11909. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  11910. SERIAL_ERROR_START();
  11911. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
  11912. kill(PSTR(MSG_KILLED));
  11913. }
  11914. // Prevent steppers timing-out in the middle of M600
  11915. #if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
  11916. #define MOVE_AWAY_TEST !move_away_flag
  11917. #else
  11918. #define MOVE_AWAY_TEST true
  11919. #endif
  11920. if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  11921. && !ignore_stepper_queue && !planner.blocks_queued()) {
  11922. #if ENABLED(DISABLE_INACTIVE_X)
  11923. disable_X();
  11924. #endif
  11925. #if ENABLED(DISABLE_INACTIVE_Y)
  11926. disable_Y();
  11927. #endif
  11928. #if ENABLED(DISABLE_INACTIVE_Z)
  11929. disable_Z();
  11930. #endif
  11931. #if ENABLED(DISABLE_INACTIVE_E)
  11932. disable_e_steppers();
  11933. #endif
  11934. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  11935. ubl.lcd_map_control = defer_return_to_status = false;
  11936. #endif
  11937. }
  11938. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  11939. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  11940. chdkActive = false;
  11941. WRITE(CHDK, LOW);
  11942. }
  11943. #endif
  11944. #if HAS_KILL
  11945. // Check if the kill button was pressed and wait just in case it was an accidental
  11946. // key kill key press
  11947. // -------------------------------------------------------------------------------
  11948. static int killCount = 0; // make the inactivity button a bit less responsive
  11949. const int KILL_DELAY = 750;
  11950. if (!READ(KILL_PIN))
  11951. killCount++;
  11952. else if (killCount > 0)
  11953. killCount--;
  11954. // Exceeded threshold and we can confirm that it was not accidental
  11955. // KILL the machine
  11956. // ----------------------------------------------------------------
  11957. if (killCount >= KILL_DELAY) {
  11958. SERIAL_ERROR_START();
  11959. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  11960. kill(PSTR(MSG_KILLED));
  11961. }
  11962. #endif
  11963. #if HAS_HOME
  11964. // Check to see if we have to home, use poor man's debouncer
  11965. // ---------------------------------------------------------
  11966. static int homeDebounceCount = 0; // poor man's debouncing count
  11967. const int HOME_DEBOUNCE_DELAY = 2500;
  11968. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  11969. if (!homeDebounceCount) {
  11970. enqueue_and_echo_commands_P(PSTR("G28"));
  11971. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  11972. }
  11973. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  11974. homeDebounceCount++;
  11975. else
  11976. homeDebounceCount = 0;
  11977. }
  11978. #endif
  11979. #if ENABLED(USE_CONTROLLER_FAN)
  11980. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  11981. #endif
  11982. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  11983. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  11984. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  11985. #if ENABLED(SWITCHING_EXTRUDER)
  11986. const bool oldstatus = E0_ENABLE_READ;
  11987. enable_E0();
  11988. #else // !SWITCHING_EXTRUDER
  11989. bool oldstatus;
  11990. switch (active_extruder) {
  11991. default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  11992. #if E_STEPPERS > 1
  11993. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  11994. #if E_STEPPERS > 2
  11995. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  11996. #if E_STEPPERS > 3
  11997. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  11998. #if E_STEPPERS > 4
  11999. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  12000. #endif // E_STEPPERS > 4
  12001. #endif // E_STEPPERS > 3
  12002. #endif // E_STEPPERS > 2
  12003. #endif // E_STEPPERS > 1
  12004. }
  12005. #endif // !SWITCHING_EXTRUDER
  12006. previous_cmd_ms = ms; // refresh_cmd_timeout()
  12007. const float olde = current_position[E_AXIS];
  12008. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  12009. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  12010. current_position[E_AXIS] = olde;
  12011. planner.set_e_position_mm(olde);
  12012. stepper.synchronize();
  12013. #if ENABLED(SWITCHING_EXTRUDER)
  12014. E0_ENABLE_WRITE(oldstatus);
  12015. #else
  12016. switch (active_extruder) {
  12017. case 0: E0_ENABLE_WRITE(oldstatus); break;
  12018. #if E_STEPPERS > 1
  12019. case 1: E1_ENABLE_WRITE(oldstatus); break;
  12020. #if E_STEPPERS > 2
  12021. case 2: E2_ENABLE_WRITE(oldstatus); break;
  12022. #if E_STEPPERS > 3
  12023. case 3: E3_ENABLE_WRITE(oldstatus); break;
  12024. #if E_STEPPERS > 4
  12025. case 4: E4_ENABLE_WRITE(oldstatus); break;
  12026. #endif // E_STEPPERS > 4
  12027. #endif // E_STEPPERS > 3
  12028. #endif // E_STEPPERS > 2
  12029. #endif // E_STEPPERS > 1
  12030. }
  12031. #endif // !SWITCHING_EXTRUDER
  12032. }
  12033. #endif // EXTRUDER_RUNOUT_PREVENT
  12034. #if ENABLED(DUAL_X_CARRIAGE)
  12035. // handle delayed move timeout
  12036. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  12037. // travel moves have been received so enact them
  12038. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  12039. set_destination_from_current();
  12040. prepare_move_to_destination();
  12041. }
  12042. #endif
  12043. #if ENABLED(TEMP_STAT_LEDS)
  12044. handle_status_leds();
  12045. #endif
  12046. #if ENABLED(MONITOR_DRIVER_STATUS)
  12047. monitor_tmc_driver();
  12048. #endif
  12049. planner.check_axes_activity();
  12050. }
  12051. /**
  12052. * Standard idle routine keeps the machine alive
  12053. */
  12054. void idle(
  12055. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  12056. bool no_stepper_sleep/*=false*/
  12057. #endif
  12058. ) {
  12059. #if ENABLED(MAX7219_DEBUG)
  12060. Max7219_idle_tasks();
  12061. #endif // MAX7219_DEBUG
  12062. lcd_update();
  12063. host_keepalive();
  12064. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  12065. thermalManager.auto_report_temperatures();
  12066. #endif
  12067. manage_inactivity(
  12068. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  12069. no_stepper_sleep
  12070. #endif
  12071. );
  12072. thermalManager.manage_heater();
  12073. #if ENABLED(PRINTCOUNTER)
  12074. print_job_timer.tick();
  12075. #endif
  12076. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  12077. buzzer.tick();
  12078. #endif
  12079. #if ENABLED(I2C_POSITION_ENCODERS)
  12080. if (planner.blocks_queued() &&
  12081. ( (blockBufferIndexRef != planner.block_buffer_head) ||
  12082. ((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
  12083. blockBufferIndexRef = planner.block_buffer_head;
  12084. I2CPEM.update();
  12085. lastUpdateMillis = millis();
  12086. }
  12087. #endif
  12088. }
  12089. /**
  12090. * Kill all activity and lock the machine.
  12091. * After this the machine will need to be reset.
  12092. */
  12093. void kill(const char* lcd_msg) {
  12094. SERIAL_ERROR_START();
  12095. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  12096. thermalManager.disable_all_heaters();
  12097. disable_all_steppers();
  12098. #if ENABLED(ULTRA_LCD)
  12099. kill_screen(lcd_msg);
  12100. #else
  12101. UNUSED(lcd_msg);
  12102. #endif
  12103. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  12104. cli(); // Stop interrupts
  12105. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  12106. thermalManager.disable_all_heaters(); //turn off heaters again
  12107. #ifdef ACTION_ON_KILL
  12108. SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);
  12109. #endif
  12110. #if HAS_POWER_SWITCH
  12111. SET_INPUT(PS_ON_PIN);
  12112. #endif
  12113. suicide();
  12114. while (1) {
  12115. #if ENABLED(USE_WATCHDOG)
  12116. watchdog_reset();
  12117. #endif
  12118. } // Wait for reset
  12119. }
  12120. /**
  12121. * Turn off heaters and stop the print in progress
  12122. * After a stop the machine may be resumed with M999
  12123. */
  12124. void stop() {
  12125. thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
  12126. #if ENABLED(PROBING_FANS_OFF)
  12127. if (fans_paused) fans_pause(false); // put things back the way they were
  12128. #endif
  12129. if (IsRunning()) {
  12130. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  12131. SERIAL_ERROR_START();
  12132. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  12133. LCD_MESSAGEPGM(MSG_STOPPED);
  12134. safe_delay(350); // allow enough time for messages to get out before stopping
  12135. Running = false;
  12136. }
  12137. }
  12138. /**
  12139. * Marlin entry-point: Set up before the program loop
  12140. * - Set up the kill pin, filament runout, power hold
  12141. * - Start the serial port
  12142. * - Print startup messages and diagnostics
  12143. * - Get EEPROM or default settings
  12144. * - Initialize managers for:
  12145. * • temperature
  12146. * • planner
  12147. * • watchdog
  12148. * • stepper
  12149. * • photo pin
  12150. * • servos
  12151. * • LCD controller
  12152. * • Digipot I2C
  12153. * • Z probe sled
  12154. * • status LEDs
  12155. */
  12156. void setup() {
  12157. #if ENABLED(MAX7219_DEBUG)
  12158. Max7219_init();
  12159. #endif
  12160. #if ENABLED(DISABLE_JTAG)
  12161. // Disable JTAG on AT90USB chips to free up pins for IO
  12162. MCUCR = 0x80;
  12163. MCUCR = 0x80;
  12164. #endif
  12165. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  12166. setup_filrunoutpin();
  12167. #endif
  12168. setup_killpin();
  12169. setup_powerhold();
  12170. #if HAS_STEPPER_RESET
  12171. disableStepperDrivers();
  12172. #endif
  12173. MYSERIAL.begin(BAUDRATE);
  12174. SERIAL_PROTOCOLLNPGM("start");
  12175. SERIAL_ECHO_START();
  12176. #if ENABLED(HAVE_TMC2208)
  12177. tmc2208_serial_begin();
  12178. #endif
  12179. // Check startup - does nothing if bootloader sets MCUSR to 0
  12180. byte mcu = MCUSR;
  12181. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  12182. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  12183. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  12184. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  12185. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  12186. MCUSR = 0;
  12187. SERIAL_ECHOPGM(MSG_MARLIN);
  12188. SERIAL_CHAR(' ');
  12189. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  12190. SERIAL_EOL();
  12191. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  12192. SERIAL_ECHO_START();
  12193. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  12194. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  12195. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  12196. SERIAL_ECHO_START();
  12197. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  12198. #endif
  12199. SERIAL_ECHO_START();
  12200. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  12201. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  12202. // Send "ok" after commands by default
  12203. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  12204. // Load data from EEPROM if available (or use defaults)
  12205. // This also updates variables in the planner, elsewhere
  12206. (void)settings.load();
  12207. #if HAS_M206_COMMAND
  12208. // Initialize current position based on home_offset
  12209. COPY(current_position, home_offset);
  12210. #else
  12211. ZERO(current_position);
  12212. #endif
  12213. // Vital to init stepper/planner equivalent for current_position
  12214. SYNC_PLAN_POSITION_KINEMATIC();
  12215. thermalManager.init(); // Initialize temperature loop
  12216. #if ENABLED(USE_WATCHDOG)
  12217. watchdog_init();
  12218. #endif
  12219. stepper.init(); // Initialize stepper, this enables interrupts!
  12220. servo_init();
  12221. #if HAS_PHOTOGRAPH
  12222. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  12223. #endif
  12224. #if HAS_CASE_LIGHT
  12225. case_light_on = CASE_LIGHT_DEFAULT_ON;
  12226. case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
  12227. update_case_light();
  12228. #endif
  12229. #if ENABLED(SPINDLE_LASER_ENABLE)
  12230. OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
  12231. #if SPINDLE_DIR_CHANGE
  12232. OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
  12233. #endif
  12234. #if ENABLED(SPINDLE_LASER_PWM)
  12235. SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
  12236. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
  12237. #endif
  12238. #endif
  12239. #if HAS_BED_PROBE
  12240. endstops.enable_z_probe(false);
  12241. #endif
  12242. #if ENABLED(USE_CONTROLLER_FAN)
  12243. SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
  12244. #endif
  12245. #if HAS_STEPPER_RESET
  12246. enableStepperDrivers();
  12247. #endif
  12248. #if ENABLED(DIGIPOT_I2C)
  12249. digipot_i2c_init();
  12250. #endif
  12251. #if ENABLED(DAC_STEPPER_CURRENT)
  12252. dac_init();
  12253. #endif
  12254. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  12255. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  12256. #endif
  12257. #if HAS_HOME
  12258. SET_INPUT_PULLUP(HOME_PIN);
  12259. #endif
  12260. #if PIN_EXISTS(STAT_LED_RED)
  12261. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  12262. #endif
  12263. #if PIN_EXISTS(STAT_LED_BLUE)
  12264. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  12265. #endif
  12266. #if HAS_COLOR_LEDS
  12267. leds.setup();
  12268. #endif
  12269. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  12270. SET_OUTPUT(RGB_LED_R_PIN);
  12271. SET_OUTPUT(RGB_LED_G_PIN);
  12272. SET_OUTPUT(RGB_LED_B_PIN);
  12273. #if ENABLED(RGBW_LED)
  12274. SET_OUTPUT(RGB_LED_W_PIN);
  12275. #endif
  12276. #endif
  12277. #if ENABLED(MK2_MULTIPLEXER)
  12278. SET_OUTPUT(E_MUX0_PIN);
  12279. SET_OUTPUT(E_MUX1_PIN);
  12280. SET_OUTPUT(E_MUX2_PIN);
  12281. #endif
  12282. #if HAS_FANMUX
  12283. fanmux_init();
  12284. #endif
  12285. lcd_init();
  12286. #if ENABLED(SHOW_BOOTSCREEN)
  12287. lcd_bootscreen();
  12288. #endif
  12289. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  12290. // Virtual Tools 0, 1, 2, 3 = Filament 1, 2, 3, 4, etc.
  12291. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS && t < MIXING_STEPPERS; t++)
  12292. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  12293. mixing_virtual_tool_mix[t][i] = (t == i) ? 1.0 : 0.0;
  12294. // Remaining virtual tools are 100% filament 1
  12295. #if MIXING_STEPPERS < MIXING_VIRTUAL_TOOLS
  12296. for (uint8_t t = MIXING_STEPPERS; t < MIXING_VIRTUAL_TOOLS; t++)
  12297. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  12298. mixing_virtual_tool_mix[t][i] = (i == 0) ? 1.0 : 0.0;
  12299. #endif
  12300. // Initialize mixing to tool 0 color
  12301. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  12302. mixing_factor[i] = mixing_virtual_tool_mix[0][i];
  12303. #endif
  12304. #if ENABLED(BLTOUCH)
  12305. // Make sure any BLTouch error condition is cleared
  12306. bltouch_command(BLTOUCH_RESET);
  12307. set_bltouch_deployed(true);
  12308. set_bltouch_deployed(false);
  12309. #endif
  12310. #if ENABLED(I2C_POSITION_ENCODERS)
  12311. I2CPEM.init();
  12312. #endif
  12313. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  12314. i2c.onReceive(i2c_on_receive);
  12315. i2c.onRequest(i2c_on_request);
  12316. #endif
  12317. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  12318. setup_endstop_interrupts();
  12319. #endif
  12320. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  12321. move_extruder_servo(0); // Initialize extruder servo
  12322. #endif
  12323. #if ENABLED(SWITCHING_NOZZLE)
  12324. move_nozzle_servo(0); // Initialize nozzle servo
  12325. #endif
  12326. #if ENABLED(PARKING_EXTRUDER)
  12327. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  12328. pe_activate_magnet(0);
  12329. pe_activate_magnet(1);
  12330. #else
  12331. pe_deactivate_magnet(0);
  12332. pe_deactivate_magnet(1);
  12333. #endif
  12334. #endif
  12335. #if ENABLED(MKS_12864OLED)
  12336. SET_OUTPUT(LCD_PINS_DC);
  12337. OUT_WRITE(LCD_PINS_RS, LOW);
  12338. delay(1000);
  12339. WRITE(LCD_PINS_RS, HIGH);
  12340. #endif
  12341. }
  12342. /**
  12343. * The main Marlin program loop
  12344. *
  12345. * - Save or log commands to SD
  12346. * - Process available commands (if not saving)
  12347. * - Call heater manager
  12348. * - Call inactivity manager
  12349. * - Call endstop manager
  12350. * - Call LCD update
  12351. */
  12352. void loop() {
  12353. if (commands_in_queue < BUFSIZE) get_available_commands();
  12354. #if ENABLED(SDSUPPORT)
  12355. card.checkautostart(false);
  12356. #endif
  12357. if (commands_in_queue) {
  12358. #if ENABLED(SDSUPPORT)
  12359. if (card.saving) {
  12360. char* command = command_queue[cmd_queue_index_r];
  12361. if (strstr_P(command, PSTR("M29"))) {
  12362. // M29 closes the file
  12363. card.closefile();
  12364. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  12365. #if ENABLED(SERIAL_STATS_DROPPED_RX)
  12366. SERIAL_ECHOLNPAIR("Dropped bytes: ", customizedSerial.dropped());
  12367. #endif
  12368. #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
  12369. SERIAL_ECHOLNPAIR("Max RX Queue Size: ", customizedSerial.rxMaxEnqueued());
  12370. #endif
  12371. ok_to_send();
  12372. }
  12373. else {
  12374. // Write the string from the read buffer to SD
  12375. card.write_command(command);
  12376. if (card.logging)
  12377. process_next_command(); // The card is saving because it's logging
  12378. else
  12379. ok_to_send();
  12380. }
  12381. }
  12382. else
  12383. process_next_command();
  12384. #else
  12385. process_next_command();
  12386. #endif // SDSUPPORT
  12387. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  12388. if (commands_in_queue) {
  12389. --commands_in_queue;
  12390. if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
  12391. }
  12392. }
  12393. endstops.report_state();
  12394. idle();
  12395. }