My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.cpp 56KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * planner.cpp
  24. *
  25. * Buffer movement commands and manage the acceleration profile plan
  26. *
  27. * Derived from Grbl
  28. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  29. *
  30. * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
  31. *
  32. *
  33. * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  34. *
  35. * s == speed, a == acceleration, t == time, d == distance
  36. *
  37. * Basic definitions:
  38. * Speed[s_, a_, t_] := s + (a*t)
  39. * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  40. *
  41. * Distance to reach a specific speed with a constant acceleration:
  42. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  43. * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  44. *
  45. * Speed after a given distance of travel with constant acceleration:
  46. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  47. * m -> Sqrt[2 a d + s^2]
  48. *
  49. * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  50. *
  51. * When to start braking (di) to reach a specified destination speed (s2) after accelerating
  52. * from initial speed s1 without ever stopping at a plateau:
  53. * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  54. * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  55. *
  56. * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  57. *
  58. */
  59. #include "MarlinConfig.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "ultralcd.h"
  64. #include "language.h"
  65. #include "ubl.h"
  66. #include "gcode.h"
  67. #include "Marlin.h"
  68. #if ENABLED(MESH_BED_LEVELING)
  69. #include "mesh_bed_leveling.h"
  70. #endif
  71. Planner planner;
  72. // public:
  73. /**
  74. * A ring buffer of moves described in steps
  75. */
  76. block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
  77. volatile uint8_t Planner::block_buffer_head = 0, // Index of the next block to be pushed
  78. Planner::block_buffer_tail = 0;
  79. float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
  80. Planner::axis_steps_per_mm[XYZE_N],
  81. Planner::steps_to_mm[XYZE_N];
  82. #if ENABLED(DISTINCT_E_FACTORS)
  83. uint8_t Planner::last_extruder = 0; // Respond to extruder change
  84. #endif
  85. int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
  86. float Planner::e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
  87. Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
  88. Planner::volumetric_area_nominal = CIRCLE_AREA((DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5), // Nominal cross-sectional area
  89. Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
  90. uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N],
  91. Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
  92. uint32_t Planner::min_segment_time_us;
  93. // Initialized by settings.load()
  94. float Planner::min_feedrate_mm_s,
  95. Planner::acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  96. Planner::retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  97. Planner::travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  98. Planner::max_jerk[XYZE], // The largest speed change requiring no acceleration
  99. Planner::min_travel_feedrate_mm_s;
  100. #if HAS_LEVELING
  101. bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled
  102. #if ABL_PLANAR
  103. matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
  104. #endif
  105. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  106. float Planner::z_fade_height, // Initialized by settings.load()
  107. Planner::inverse_z_fade_height,
  108. Planner::last_fade_z;
  109. #endif
  110. #else
  111. constexpr bool Planner::leveling_active;
  112. #endif
  113. #if ENABLED(SKEW_CORRECTION)
  114. #if ENABLED(SKEW_CORRECTION_GCODE)
  115. float Planner::xy_skew_factor;
  116. #else
  117. constexpr float Planner::xy_skew_factor;
  118. #endif
  119. #if ENABLED(SKEW_CORRECTION_FOR_Z) && ENABLED(SKEW_CORRECTION_GCODE)
  120. float Planner::xz_skew_factor, Planner::yz_skew_factor;
  121. #else
  122. constexpr float Planner::xz_skew_factor, Planner::yz_skew_factor;
  123. #endif
  124. #endif
  125. #if ENABLED(AUTOTEMP)
  126. float Planner::autotemp_max = 250,
  127. Planner::autotemp_min = 210,
  128. Planner::autotemp_factor = 0.1;
  129. bool Planner::autotemp_enabled = false;
  130. #endif
  131. // private:
  132. int32_t Planner::position[NUM_AXIS] = { 0 };
  133. uint32_t Planner::cutoff_long;
  134. float Planner::previous_speed[NUM_AXIS],
  135. Planner::previous_nominal_speed;
  136. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  137. uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
  138. #endif
  139. #ifdef XY_FREQUENCY_LIMIT
  140. // Old direction bits. Used for speed calculations
  141. unsigned char Planner::old_direction_bits = 0;
  142. // Segment times (in µs). Used for speed calculations
  143. uint32_t Planner::axis_segment_time_us[2][3] = { { MAX_FREQ_TIME_US + 1, 0, 0 }, { MAX_FREQ_TIME_US + 1, 0, 0 } };
  144. #endif
  145. #if ENABLED(LIN_ADVANCE)
  146. float Planner::extruder_advance_k, // Initialized by settings.load()
  147. Planner::advance_ed_ratio; // Initialized by settings.load()
  148. #endif
  149. #if ENABLED(ULTRA_LCD)
  150. volatile uint32_t Planner::block_buffer_runtime_us = 0;
  151. #endif
  152. /**
  153. * Class and Instance Methods
  154. */
  155. Planner::Planner() { init(); }
  156. void Planner::init() {
  157. block_buffer_head = block_buffer_tail = 0;
  158. ZERO(position);
  159. ZERO(previous_speed);
  160. previous_nominal_speed = 0.0;
  161. #if ABL_PLANAR
  162. bed_level_matrix.set_to_identity();
  163. #endif
  164. }
  165. #define MINIMAL_STEP_RATE 120
  166. /**
  167. * Calculate trapezoid parameters, multiplying the entry- and exit-speeds
  168. * by the provided factors.
  169. */
  170. void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) {
  171. uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor),
  172. final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second)
  173. // Limit minimal step rate (Otherwise the timer will overflow.)
  174. NOLESS(initial_rate, MINIMAL_STEP_RATE);
  175. NOLESS(final_rate, MINIMAL_STEP_RATE);
  176. const int32_t accel = block->acceleration_steps_per_s2;
  177. // Steps required for acceleration, deceleration to/from nominal rate
  178. int32_t accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
  179. decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)),
  180. // Steps between acceleration and deceleration, if any
  181. plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
  182. // Does accelerate_steps + decelerate_steps exceed step_event_count?
  183. // Then we can't possibly reach the nominal rate, there will be no cruising.
  184. // Use intersection_distance() to calculate accel / braking time in order to
  185. // reach the final_rate exactly at the end of this block.
  186. if (plateau_steps < 0) {
  187. accelerate_steps = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
  188. NOLESS(accelerate_steps, 0); // Check limits due to numerical round-off
  189. accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  190. plateau_steps = 0;
  191. }
  192. // block->accelerate_until = accelerate_steps;
  193. // block->decelerate_after = accelerate_steps+plateau_steps;
  194. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  195. if (!TEST(block->flag, BLOCK_BIT_BUSY)) { // Don't update variables if block is busy.
  196. block->accelerate_until = accelerate_steps;
  197. block->decelerate_after = accelerate_steps + plateau_steps;
  198. block->initial_rate = initial_rate;
  199. block->final_rate = final_rate;
  200. }
  201. CRITICAL_SECTION_END;
  202. }
  203. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  204. // This method will calculate the junction jerk as the euclidean distance between the nominal
  205. // velocities of the respective blocks.
  206. //inline float junction_jerk(block_t *before, block_t *after) {
  207. // return SQRT(
  208. // POW((before->speed_x-after->speed_x), 2)+POW((before->speed_y-after->speed_y), 2));
  209. //}
  210. // The kernel called by recalculate() when scanning the plan from last to first entry.
  211. void Planner::reverse_pass_kernel(block_t* const current, const block_t * const next) {
  212. if (!current || !next) return;
  213. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  214. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  215. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  216. float max_entry_speed = current->max_entry_speed;
  217. if (current->entry_speed != max_entry_speed) {
  218. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  219. // for max allowable speed if block is decelerating and nominal length is false.
  220. current->entry_speed = (TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) || max_entry_speed <= next->entry_speed)
  221. ? max_entry_speed
  222. : min(max_entry_speed, max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
  223. SBI(current->flag, BLOCK_BIT_RECALCULATE);
  224. }
  225. }
  226. /**
  227. * recalculate() needs to go over the current plan twice.
  228. * Once in reverse and once forward. This implements the reverse pass.
  229. */
  230. void Planner::reverse_pass() {
  231. if (movesplanned() > 3) {
  232. const uint8_t endnr = BLOCK_MOD(block_buffer_tail + 2); // tail is running. tail+1 shouldn't be altered because it's connected to the running block.
  233. // tail+2 because the index is not yet advanced when checked
  234. uint8_t blocknr = prev_block_index(block_buffer_head);
  235. block_t* current = &block_buffer[blocknr];
  236. do {
  237. const block_t * const next = current;
  238. blocknr = prev_block_index(blocknr);
  239. current = &block_buffer[blocknr];
  240. if (TEST(current->flag, BLOCK_BIT_START_FROM_FULL_HALT)) // Up to this every block is already optimized.
  241. break;
  242. reverse_pass_kernel(current, next);
  243. } while (blocknr != endnr);
  244. }
  245. }
  246. // The kernel called by recalculate() when scanning the plan from first to last entry.
  247. void Planner::forward_pass_kernel(const block_t * const previous, block_t* const current) {
  248. if (!previous) return;
  249. // If the previous block is an acceleration block, but it is not long enough to complete the
  250. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  251. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  252. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  253. if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH)) {
  254. if (previous->entry_speed < current->entry_speed) {
  255. float entry_speed = min(current->entry_speed,
  256. max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
  257. // Check for junction speed change
  258. if (current->entry_speed != entry_speed) {
  259. current->entry_speed = entry_speed;
  260. SBI(current->flag, BLOCK_BIT_RECALCULATE);
  261. }
  262. }
  263. }
  264. }
  265. /**
  266. * recalculate() needs to go over the current plan twice.
  267. * Once in reverse and once forward. This implements the forward pass.
  268. */
  269. void Planner::forward_pass() {
  270. block_t* block[3] = { NULL, NULL, NULL };
  271. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  272. block[0] = block[1];
  273. block[1] = block[2];
  274. block[2] = &block_buffer[b];
  275. forward_pass_kernel(block[0], block[1]);
  276. }
  277. forward_pass_kernel(block[1], block[2]);
  278. }
  279. /**
  280. * Recalculate the trapezoid speed profiles for all blocks in the plan
  281. * according to the entry_factor for each junction. Must be called by
  282. * recalculate() after updating the blocks.
  283. */
  284. void Planner::recalculate_trapezoids() {
  285. int8_t block_index = block_buffer_tail;
  286. block_t *current, *next = NULL;
  287. while (block_index != block_buffer_head) {
  288. current = next;
  289. next = &block_buffer[block_index];
  290. if (current) {
  291. // Recalculate if current block entry or exit junction speed has changed.
  292. if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) {
  293. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  294. const float nomr = 1.0 / current->nominal_speed;
  295. calculate_trapezoid_for_block(current, current->entry_speed * nomr, next->entry_speed * nomr);
  296. CBI(current->flag, BLOCK_BIT_RECALCULATE); // Reset current only to ensure next trapezoid is computed
  297. }
  298. }
  299. block_index = next_block_index(block_index);
  300. }
  301. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  302. if (next) {
  303. const float nomr = 1.0 / next->nominal_speed;
  304. calculate_trapezoid_for_block(next, next->entry_speed * nomr, (MINIMUM_PLANNER_SPEED) * nomr);
  305. CBI(next->flag, BLOCK_BIT_RECALCULATE);
  306. }
  307. }
  308. /*
  309. * Recalculate the motion plan according to the following algorithm:
  310. *
  311. * 1. Go over every block in reverse order...
  312. *
  313. * Calculate a junction speed reduction (block_t.entry_factor) so:
  314. *
  315. * a. The junction jerk is within the set limit, and
  316. *
  317. * b. No speed reduction within one block requires faster
  318. * deceleration than the one, true constant acceleration.
  319. *
  320. * 2. Go over every block in chronological order...
  321. *
  322. * Dial down junction speed reduction values if:
  323. * a. The speed increase within one block would require faster
  324. * acceleration than the one, true constant acceleration.
  325. *
  326. * After that, all blocks will have an entry_factor allowing all speed changes to
  327. * be performed using only the one, true constant acceleration, and where no junction
  328. * jerk is jerkier than the set limit, Jerky. Finally it will:
  329. *
  330. * 3. Recalculate "trapezoids" for all blocks.
  331. */
  332. void Planner::recalculate() {
  333. reverse_pass();
  334. forward_pass();
  335. recalculate_trapezoids();
  336. }
  337. #if ENABLED(AUTOTEMP)
  338. void Planner::getHighESpeed() {
  339. static float oldt = 0;
  340. if (!autotemp_enabled) return;
  341. if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
  342. float high = 0.0;
  343. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  344. block_t* block = &block_buffer[b];
  345. if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
  346. float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
  347. NOLESS(high, se);
  348. }
  349. }
  350. float t = autotemp_min + high * autotemp_factor;
  351. t = constrain(t, autotemp_min, autotemp_max);
  352. if (t < oldt) t = t * (1 - (AUTOTEMP_OLDWEIGHT)) + oldt * (AUTOTEMP_OLDWEIGHT);
  353. oldt = t;
  354. thermalManager.setTargetHotend(t, 0);
  355. }
  356. #endif // AUTOTEMP
  357. /**
  358. * Maintain fans, paste extruder pressure,
  359. */
  360. void Planner::check_axes_activity() {
  361. unsigned char axis_active[NUM_AXIS] = { 0 },
  362. tail_fan_speed[FAN_COUNT];
  363. #if ENABLED(BARICUDA)
  364. #if HAS_HEATER_1
  365. uint8_t tail_valve_pressure;
  366. #endif
  367. #if HAS_HEATER_2
  368. uint8_t tail_e_to_p_pressure;
  369. #endif
  370. #endif
  371. if (blocks_queued()) {
  372. #if FAN_COUNT > 0
  373. for (uint8_t i = 0; i < FAN_COUNT; i++)
  374. tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i];
  375. #endif
  376. block_t* block;
  377. #if ENABLED(BARICUDA)
  378. block = &block_buffer[block_buffer_tail];
  379. #if HAS_HEATER_1
  380. tail_valve_pressure = block->valve_pressure;
  381. #endif
  382. #if HAS_HEATER_2
  383. tail_e_to_p_pressure = block->e_to_p_pressure;
  384. #endif
  385. #endif
  386. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  387. block = &block_buffer[b];
  388. LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++;
  389. }
  390. }
  391. else {
  392. #if FAN_COUNT > 0
  393. for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
  394. #endif
  395. #if ENABLED(BARICUDA)
  396. #if HAS_HEATER_1
  397. tail_valve_pressure = baricuda_valve_pressure;
  398. #endif
  399. #if HAS_HEATER_2
  400. tail_e_to_p_pressure = baricuda_e_to_p_pressure;
  401. #endif
  402. #endif
  403. }
  404. #if ENABLED(DISABLE_X)
  405. if (!axis_active[X_AXIS]) disable_X();
  406. #endif
  407. #if ENABLED(DISABLE_Y)
  408. if (!axis_active[Y_AXIS]) disable_Y();
  409. #endif
  410. #if ENABLED(DISABLE_Z)
  411. if (!axis_active[Z_AXIS]) disable_Z();
  412. #endif
  413. #if ENABLED(DISABLE_E)
  414. if (!axis_active[E_AXIS]) disable_e_steppers();
  415. #endif
  416. #if FAN_COUNT > 0
  417. #if FAN_KICKSTART_TIME > 0
  418. static millis_t fan_kick_end[FAN_COUNT] = { 0 };
  419. #define KICKSTART_FAN(f) \
  420. if (tail_fan_speed[f]) { \
  421. millis_t ms = millis(); \
  422. if (fan_kick_end[f] == 0) { \
  423. fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
  424. tail_fan_speed[f] = 255; \
  425. } else if (PENDING(ms, fan_kick_end[f])) \
  426. tail_fan_speed[f] = 255; \
  427. } else fan_kick_end[f] = 0
  428. #if HAS_FAN0
  429. KICKSTART_FAN(0);
  430. #endif
  431. #if HAS_FAN1
  432. KICKSTART_FAN(1);
  433. #endif
  434. #if HAS_FAN2
  435. KICKSTART_FAN(2);
  436. #endif
  437. #endif // FAN_KICKSTART_TIME > 0
  438. #ifdef FAN_MIN_PWM
  439. #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
  440. #else
  441. #define CALC_FAN_SPEED(f) tail_fan_speed[f]
  442. #endif
  443. #if ENABLED(FAN_SOFT_PWM)
  444. #if HAS_FAN0
  445. thermalManager.soft_pwm_amount_fan[0] = CALC_FAN_SPEED(0);
  446. #endif
  447. #if HAS_FAN1
  448. thermalManager.soft_pwm_amount_fan[1] = CALC_FAN_SPEED(1);
  449. #endif
  450. #if HAS_FAN2
  451. thermalManager.soft_pwm_amount_fan[2] = CALC_FAN_SPEED(2);
  452. #endif
  453. #else
  454. #if HAS_FAN0
  455. analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
  456. #endif
  457. #if HAS_FAN1
  458. analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
  459. #endif
  460. #if HAS_FAN2
  461. analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
  462. #endif
  463. #endif
  464. #endif // FAN_COUNT > 0
  465. #if ENABLED(AUTOTEMP)
  466. getHighESpeed();
  467. #endif
  468. #if ENABLED(BARICUDA)
  469. #if HAS_HEATER_1
  470. analogWrite(HEATER_1_PIN, tail_valve_pressure);
  471. #endif
  472. #if HAS_HEATER_2
  473. analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
  474. #endif
  475. #endif
  476. }
  477. /**
  478. * Get a volumetric multiplier from a filament diameter.
  479. * This is the reciprocal of the circular cross-section area.
  480. * Return 1.0 with volumetric off or a diameter of 0.0.
  481. */
  482. inline float calculate_volumetric_multiplier(const float &diameter) {
  483. return (parser.volumetric_enabled && diameter) ? 1.0 / CIRCLE_AREA(diameter * 0.5) : 1.0;
  484. }
  485. /**
  486. * Convert the filament sizes into volumetric multipliers.
  487. * The multiplier converts a given E value into a length.
  488. */
  489. void Planner::calculate_volumetric_multipliers() {
  490. for (uint8_t i = 0; i < COUNT(filament_size); i++) {
  491. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  492. refresh_e_factor(i);
  493. }
  494. }
  495. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  496. /**
  497. * Convert the ratio value given by the filament width sensor
  498. * into a volumetric multiplier. Conversion differs when using
  499. * linear extrusion vs volumetric extrusion.
  500. */
  501. void Planner::calculate_volumetric_for_width_sensor(const int8_t encoded_ratio) {
  502. // Reconstitute the nominal/measured ratio
  503. const float nom_meas_ratio = 1.0 + 0.01 * encoded_ratio,
  504. ratio_2 = sq(nom_meas_ratio);
  505. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled
  506. ? ratio_2 / CIRCLE_AREA(filament_width_nominal * 0.5) // Volumetric uses a true volumetric multiplier
  507. : ratio_2; // Linear squares the ratio, which scales the volume
  508. refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM);
  509. }
  510. #endif
  511. #if PLANNER_LEVELING
  512. /**
  513. * rx, ry, rz - Cartesian positions in mm
  514. * Leveled XYZ on completion
  515. */
  516. void Planner::apply_leveling(float &rx, float &ry, float &rz) {
  517. #if ENABLED(SKEW_CORRECTION)
  518. skew(rx, ry, rz);
  519. #endif
  520. if (!leveling_active) return;
  521. #if ABL_PLANAR
  522. float dx = rx - (X_TILT_FULCRUM),
  523. dy = ry - (Y_TILT_FULCRUM);
  524. apply_rotation_xyz(bed_level_matrix, dx, dy, rz);
  525. rx = dx + X_TILT_FULCRUM;
  526. ry = dy + Y_TILT_FULCRUM;
  527. #else
  528. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  529. const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
  530. if (!fade_scaling_factor) return;
  531. #elif HAS_MESH
  532. constexpr float fade_scaling_factor = 1.0;
  533. #endif
  534. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  535. const float raw[XYZ] = { rx, ry, 0 };
  536. #endif
  537. rz += (
  538. #if ENABLED(AUTO_BED_LEVELING_UBL)
  539. ubl.get_z_correction(rx, ry) * fade_scaling_factor
  540. #elif ENABLED(MESH_BED_LEVELING)
  541. mbl.get_z(rx, ry
  542. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  543. , fade_scaling_factor
  544. #endif
  545. )
  546. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  547. bilinear_z_offset(raw) * fade_scaling_factor
  548. #else
  549. 0
  550. #endif
  551. );
  552. #endif
  553. }
  554. void Planner::unapply_leveling(float raw[XYZ]) {
  555. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  556. const float fade_scaling_factor = fade_scaling_factor_for_z(raw[Z_AXIS]);
  557. #else
  558. constexpr float fade_scaling_factor = 1.0;
  559. #endif
  560. if (leveling_active && fade_scaling_factor) {
  561. #if ABL_PLANAR
  562. matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
  563. float dx = raw[X_AXIS] - (X_TILT_FULCRUM),
  564. dy = raw[Y_AXIS] - (Y_TILT_FULCRUM);
  565. apply_rotation_xyz(inverse, dx, dy, raw[Z_AXIS]);
  566. raw[X_AXIS] = dx + X_TILT_FULCRUM;
  567. raw[Y_AXIS] = dy + Y_TILT_FULCRUM;
  568. #else // !ABL_PLANAR
  569. raw[Z_AXIS] -= (
  570. #if ENABLED(AUTO_BED_LEVELING_UBL)
  571. ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]) * fade_scaling_factor
  572. #elif ENABLED(MESH_BED_LEVELING)
  573. mbl.get_z(raw[X_AXIS], raw[Y_AXIS]
  574. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  575. , fade_scaling_factor
  576. #endif
  577. )
  578. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  579. bilinear_z_offset(raw) * fade_scaling_factor
  580. #else
  581. 0
  582. #endif
  583. );
  584. #endif // !ABL_PLANAR
  585. }
  586. #if ENABLED(SKEW_CORRECTION)
  587. unskew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]);
  588. #endif
  589. }
  590. #endif // PLANNER_LEVELING
  591. /**
  592. * Planner::_buffer_steps
  593. *
  594. * Add a new linear movement to the buffer (in terms of steps).
  595. *
  596. * target - target position in steps units
  597. * fr_mm_s - (target) speed of the move
  598. * extruder - target extruder
  599. */
  600. void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const uint8_t extruder) {
  601. const int32_t da = target[X_AXIS] - position[X_AXIS],
  602. db = target[Y_AXIS] - position[Y_AXIS],
  603. dc = target[Z_AXIS] - position[Z_AXIS];
  604. int32_t de = target[E_AXIS] - position[E_AXIS];
  605. /* <-- add a slash to enable
  606. SERIAL_ECHOPAIR(" _buffer_steps FR:", fr_mm_s);
  607. SERIAL_ECHOPAIR(" A:", target[A_AXIS]);
  608. SERIAL_ECHOPAIR(" (", da);
  609. SERIAL_ECHOPAIR(" steps) B:", target[B_AXIS]);
  610. SERIAL_ECHOPAIR(" (", db);
  611. SERIAL_ECHOPAIR(" steps) C:", target[C_AXIS]);
  612. SERIAL_ECHOPAIR(" (", dc);
  613. SERIAL_ECHOPAIR(" steps) E:", target[E_AXIS]);
  614. SERIAL_ECHOPAIR(" (", de);
  615. SERIAL_ECHOLNPGM(" steps)");
  616. //*/
  617. #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
  618. if (de) {
  619. #if ENABLED(PREVENT_COLD_EXTRUSION)
  620. if (thermalManager.tooColdToExtrude(extruder)) {
  621. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  622. de = 0; // no difference
  623. SERIAL_ECHO_START();
  624. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  625. }
  626. #endif // PREVENT_COLD_EXTRUSION
  627. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  628. if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
  629. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  630. de = 0; // no difference
  631. SERIAL_ECHO_START();
  632. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  633. }
  634. #endif // PREVENT_LENGTHY_EXTRUDE
  635. }
  636. #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
  637. // Compute direction bit-mask for this block
  638. uint8_t dm = 0;
  639. #if CORE_IS_XY
  640. if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
  641. if (db < 0) SBI(dm, Y_HEAD); // ...and Y
  642. if (dc < 0) SBI(dm, Z_AXIS);
  643. if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
  644. if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction
  645. #elif CORE_IS_XZ
  646. if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
  647. if (db < 0) SBI(dm, Y_AXIS);
  648. if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
  649. if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
  650. if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
  651. #elif CORE_IS_YZ
  652. if (da < 0) SBI(dm, X_AXIS);
  653. if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
  654. if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
  655. if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
  656. if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
  657. #else
  658. if (da < 0) SBI(dm, X_AXIS);
  659. if (db < 0) SBI(dm, Y_AXIS);
  660. if (dc < 0) SBI(dm, Z_AXIS);
  661. #endif
  662. if (de < 0) SBI(dm, E_AXIS);
  663. const float esteps_float = de * e_factor[extruder];
  664. const int32_t esteps = abs(esteps_float) + 0.5;
  665. // Calculate the buffer head after we push this byte
  666. const uint8_t next_buffer_head = next_block_index(block_buffer_head);
  667. // If the buffer is full: good! That means we are well ahead of the robot.
  668. // Rest here until there is room in the buffer.
  669. while (block_buffer_tail == next_buffer_head) idle();
  670. // Prepare to set up new block
  671. block_t* block = &block_buffer[block_buffer_head];
  672. // Clear all flags, including the "busy" bit
  673. block->flag = 0x00;
  674. // Set direction bits
  675. block->direction_bits = dm;
  676. // Number of steps for each axis
  677. // See http://www.corexy.com/theory.html
  678. #if CORE_IS_XY
  679. block->steps[A_AXIS] = labs(da + db);
  680. block->steps[B_AXIS] = labs(da - db);
  681. block->steps[Z_AXIS] = labs(dc);
  682. #elif CORE_IS_XZ
  683. block->steps[A_AXIS] = labs(da + dc);
  684. block->steps[Y_AXIS] = labs(db);
  685. block->steps[C_AXIS] = labs(da - dc);
  686. #elif CORE_IS_YZ
  687. block->steps[X_AXIS] = labs(da);
  688. block->steps[B_AXIS] = labs(db + dc);
  689. block->steps[C_AXIS] = labs(db - dc);
  690. #else
  691. // default non-h-bot planning
  692. block->steps[X_AXIS] = labs(da);
  693. block->steps[Y_AXIS] = labs(db);
  694. block->steps[Z_AXIS] = labs(dc);
  695. #endif
  696. block->steps[E_AXIS] = esteps;
  697. block->step_event_count = MAX4(block->steps[X_AXIS], block->steps[Y_AXIS], block->steps[Z_AXIS], esteps);
  698. // Bail if this is a zero-length block
  699. if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return;
  700. // For a mixing extruder, get a magnified step_event_count for each
  701. #if ENABLED(MIXING_EXTRUDER)
  702. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  703. block->mix_event_count[i] = mixing_factor[i] * block->step_event_count;
  704. #endif
  705. #if FAN_COUNT > 0
  706. for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
  707. #endif
  708. #if ENABLED(BARICUDA)
  709. block->valve_pressure = baricuda_valve_pressure;
  710. block->e_to_p_pressure = baricuda_e_to_p_pressure;
  711. #endif
  712. block->active_extruder = extruder;
  713. //enable active axes
  714. #if CORE_IS_XY
  715. if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
  716. enable_X();
  717. enable_Y();
  718. }
  719. #if DISABLED(Z_LATE_ENABLE)
  720. if (block->steps[Z_AXIS]) enable_Z();
  721. #endif
  722. #elif CORE_IS_XZ
  723. if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
  724. enable_X();
  725. enable_Z();
  726. }
  727. if (block->steps[Y_AXIS]) enable_Y();
  728. #elif CORE_IS_YZ
  729. if (block->steps[B_AXIS] || block->steps[C_AXIS]) {
  730. enable_Y();
  731. enable_Z();
  732. }
  733. if (block->steps[X_AXIS]) enable_X();
  734. #else
  735. if (block->steps[X_AXIS]) enable_X();
  736. if (block->steps[Y_AXIS]) enable_Y();
  737. #if DISABLED(Z_LATE_ENABLE)
  738. if (block->steps[Z_AXIS]) enable_Z();
  739. #endif
  740. #endif
  741. // Enable extruder(s)
  742. if (esteps) {
  743. #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
  744. #define DISABLE_IDLE_E(N) if (!g_uc_extruder_last_move[N]) disable_E##N();
  745. for (uint8_t i = 0; i < EXTRUDERS; i++)
  746. if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
  747. switch(extruder) {
  748. case 0:
  749. enable_E0();
  750. g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
  751. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  752. if (extruder_duplication_enabled) {
  753. enable_E1();
  754. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  755. }
  756. #endif
  757. #if EXTRUDERS > 1
  758. DISABLE_IDLE_E(1);
  759. #if EXTRUDERS > 2
  760. DISABLE_IDLE_E(2);
  761. #if EXTRUDERS > 3
  762. DISABLE_IDLE_E(3);
  763. #if EXTRUDERS > 4
  764. DISABLE_IDLE_E(4);
  765. #endif // EXTRUDERS > 4
  766. #endif // EXTRUDERS > 3
  767. #endif // EXTRUDERS > 2
  768. #endif // EXTRUDERS > 1
  769. break;
  770. #if EXTRUDERS > 1
  771. case 1:
  772. enable_E1();
  773. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  774. DISABLE_IDLE_E(0);
  775. #if EXTRUDERS > 2
  776. DISABLE_IDLE_E(2);
  777. #if EXTRUDERS > 3
  778. DISABLE_IDLE_E(3);
  779. #if EXTRUDERS > 4
  780. DISABLE_IDLE_E(4);
  781. #endif // EXTRUDERS > 4
  782. #endif // EXTRUDERS > 3
  783. #endif // EXTRUDERS > 2
  784. break;
  785. #if EXTRUDERS > 2
  786. case 2:
  787. enable_E2();
  788. g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
  789. DISABLE_IDLE_E(0);
  790. DISABLE_IDLE_E(1);
  791. #if EXTRUDERS > 3
  792. DISABLE_IDLE_E(3);
  793. #if EXTRUDERS > 4
  794. DISABLE_IDLE_E(4);
  795. #endif
  796. #endif
  797. break;
  798. #if EXTRUDERS > 3
  799. case 3:
  800. enable_E3();
  801. g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
  802. DISABLE_IDLE_E(0);
  803. DISABLE_IDLE_E(1);
  804. DISABLE_IDLE_E(2);
  805. #if EXTRUDERS > 4
  806. DISABLE_IDLE_E(4);
  807. #endif
  808. break;
  809. #if EXTRUDERS > 4
  810. case 4:
  811. enable_E4();
  812. g_uc_extruder_last_move[4] = (BLOCK_BUFFER_SIZE) * 2;
  813. DISABLE_IDLE_E(0);
  814. DISABLE_IDLE_E(1);
  815. DISABLE_IDLE_E(2);
  816. DISABLE_IDLE_E(3);
  817. break;
  818. #endif // EXTRUDERS > 4
  819. #endif // EXTRUDERS > 3
  820. #endif // EXTRUDERS > 2
  821. #endif // EXTRUDERS > 1
  822. }
  823. #else
  824. enable_E0();
  825. enable_E1();
  826. enable_E2();
  827. enable_E3();
  828. enable_E4();
  829. #endif
  830. }
  831. if (esteps)
  832. NOLESS(fr_mm_s, min_feedrate_mm_s);
  833. else
  834. NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
  835. /**
  836. * This part of the code calculates the total length of the movement.
  837. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  838. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  839. * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  840. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  841. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  842. */
  843. #if IS_CORE
  844. float delta_mm[Z_HEAD + 1];
  845. #if CORE_IS_XY
  846. delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
  847. delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
  848. delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
  849. delta_mm[A_AXIS] = (da + db) * steps_to_mm[A_AXIS];
  850. delta_mm[B_AXIS] = CORESIGN(da - db) * steps_to_mm[B_AXIS];
  851. #elif CORE_IS_XZ
  852. delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
  853. delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
  854. delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
  855. delta_mm[A_AXIS] = (da + dc) * steps_to_mm[A_AXIS];
  856. delta_mm[C_AXIS] = CORESIGN(da - dc) * steps_to_mm[C_AXIS];
  857. #elif CORE_IS_YZ
  858. delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
  859. delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
  860. delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
  861. delta_mm[B_AXIS] = (db + dc) * steps_to_mm[B_AXIS];
  862. delta_mm[C_AXIS] = CORESIGN(db - dc) * steps_to_mm[C_AXIS];
  863. #endif
  864. #else
  865. float delta_mm[XYZE];
  866. delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
  867. delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
  868. delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
  869. #endif
  870. delta_mm[E_AXIS] = esteps_float * steps_to_mm[E_AXIS_N];
  871. if (block->steps[X_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Y_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Z_AXIS] < MIN_STEPS_PER_SEGMENT) {
  872. block->millimeters = FABS(delta_mm[E_AXIS]);
  873. }
  874. else {
  875. block->millimeters = SQRT(
  876. #if CORE_IS_XY
  877. sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
  878. #elif CORE_IS_XZ
  879. sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
  880. #elif CORE_IS_YZ
  881. sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
  882. #else
  883. sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
  884. #endif
  885. );
  886. }
  887. const float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
  888. // Calculate inverse time for this move. No divide by zero due to previous checks.
  889. // Example: At 120mm/s a 60mm move takes 0.5s. So this will give 2.0.
  890. float inverse_secs = fr_mm_s * inverse_millimeters;
  891. const uint8_t moves_queued = movesplanned();
  892. // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
  893. #if ENABLED(SLOWDOWN) || ENABLED(ULTRA_LCD) || defined(XY_FREQUENCY_LIMIT)
  894. // Segment time im micro seconds
  895. uint32_t segment_time_us = LROUND(1000000.0 / inverse_secs);
  896. #endif
  897. #if ENABLED(SLOWDOWN)
  898. if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) {
  899. if (segment_time_us < min_segment_time_us) {
  900. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  901. const uint32_t nst = segment_time_us + LROUND(2 * (min_segment_time_us - segment_time_us) / moves_queued);
  902. inverse_secs = 1000000.0 / nst;
  903. #if defined(XY_FREQUENCY_LIMIT) || ENABLED(ULTRA_LCD)
  904. segment_time_us = nst;
  905. #endif
  906. }
  907. }
  908. #endif
  909. #if ENABLED(ULTRA_LCD)
  910. CRITICAL_SECTION_START
  911. block_buffer_runtime_us += segment_time_us;
  912. CRITICAL_SECTION_END
  913. #endif
  914. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  915. static float filwidth_e_count = 0, filwidth_delay_dist = 0;
  916. //FMM update ring buffer used for delay with filament measurements
  917. if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized
  918. constexpr int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
  919. // increment counters with next move in e axis
  920. filwidth_e_count += delta_mm[E_AXIS];
  921. filwidth_delay_dist += delta_mm[E_AXIS];
  922. // Only get new measurements on forward E movement
  923. if (!UNEAR_ZERO(filwidth_e_count)) {
  924. // Loop the delay distance counter (modulus by the mm length)
  925. while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
  926. // Convert into an index into the measurement array
  927. filwidth_delay_index[0] = int8_t(filwidth_delay_dist * 0.1);
  928. // If the index has changed (must have gone forward)...
  929. if (filwidth_delay_index[0] != filwidth_delay_index[1]) {
  930. filwidth_e_count = 0; // Reset the E movement counter
  931. const uint8_t meas_sample = thermalManager.widthFil_to_size_ratio();
  932. do {
  933. filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot
  934. measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement
  935. } while (filwidth_delay_index[0] != filwidth_delay_index[1]); // More slots to fill?
  936. }
  937. }
  938. }
  939. #endif
  940. // Calculate and limit speed in mm/sec for each axis, calculate minimum acceleration ratio
  941. float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
  942. float max_stepper_speed = 0, min_axis_accel_ratio = 1; // ratio < 1 means acceleration ramp needed
  943. LOOP_XYZE(i) {
  944. const float cs = FABS((current_speed[i] = delta_mm[i] * inverse_secs));
  945. if (cs > max_jerk[i])
  946. NOMORE(min_axis_accel_ratio, max_jerk[i] / cs);
  947. NOLESS(max_stepper_speed, cs);
  948. #if ENABLED(DISTINCT_E_FACTORS)
  949. if (i == E_AXIS) i += extruder;
  950. #endif
  951. if (cs > max_feedrate_mm_s[i]) NOMORE(speed_factor, max_feedrate_mm_s[i] / cs);
  952. }
  953. // Max segment time in µs.
  954. #ifdef XY_FREQUENCY_LIMIT
  955. // Check and limit the xy direction change frequency
  956. const unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  957. old_direction_bits = block->direction_bits;
  958. segment_time_us = LROUND((float)segment_time_us / speed_factor);
  959. uint32_t xs0 = axis_segment_time_us[X_AXIS][0],
  960. xs1 = axis_segment_time_us[X_AXIS][1],
  961. xs2 = axis_segment_time_us[X_AXIS][2],
  962. ys0 = axis_segment_time_us[Y_AXIS][0],
  963. ys1 = axis_segment_time_us[Y_AXIS][1],
  964. ys2 = axis_segment_time_us[Y_AXIS][2];
  965. if (TEST(direction_change, X_AXIS)) {
  966. xs2 = axis_segment_time_us[X_AXIS][2] = xs1;
  967. xs1 = axis_segment_time_us[X_AXIS][1] = xs0;
  968. xs0 = 0;
  969. }
  970. xs0 = axis_segment_time_us[X_AXIS][0] = xs0 + segment_time_us;
  971. if (TEST(direction_change, Y_AXIS)) {
  972. ys2 = axis_segment_time_us[Y_AXIS][2] = axis_segment_time_us[Y_AXIS][1];
  973. ys1 = axis_segment_time_us[Y_AXIS][1] = axis_segment_time_us[Y_AXIS][0];
  974. ys0 = 0;
  975. }
  976. ys0 = axis_segment_time_us[Y_AXIS][0] = ys0 + segment_time_us;
  977. const uint32_t max_x_segment_time = MAX3(xs0, xs1, xs2),
  978. max_y_segment_time = MAX3(ys0, ys1, ys2),
  979. min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
  980. if (min_xy_segment_time < MAX_FREQ_TIME_US) {
  981. const float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME_US);
  982. NOMORE(speed_factor, low_sf);
  983. }
  984. #endif // XY_FREQUENCY_LIMIT
  985. block->nominal_speed = max_stepper_speed; // (mm/sec) Always > 0
  986. block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
  987. // Correct the speed
  988. if (speed_factor < 1.0) {
  989. LOOP_XYZE(i) current_speed[i] *= speed_factor;
  990. block->nominal_speed *= speed_factor;
  991. block->nominal_rate *= speed_factor;
  992. }
  993. float safe_speed = block->nominal_speed * min_axis_accel_ratio;
  994. static float previous_safe_speed;
  995. // Compute and limit the acceleration rate for the trapezoid generator.
  996. const float steps_per_mm = block->step_event_count * inverse_millimeters;
  997. uint32_t accel;
  998. if (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) {
  999. // convert to: acceleration steps/sec^2
  1000. accel = CEIL(retract_acceleration * steps_per_mm);
  1001. }
  1002. else {
  1003. #define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
  1004. if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
  1005. const uint32_t comp = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count; \
  1006. if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \
  1007. } \
  1008. }while(0)
  1009. #define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \
  1010. if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
  1011. const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \
  1012. if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \
  1013. } \
  1014. }while(0)
  1015. // Start with print or travel acceleration
  1016. accel = CEIL((esteps ? acceleration : travel_acceleration) * steps_per_mm);
  1017. #if ENABLED(DISTINCT_E_FACTORS)
  1018. #define ACCEL_IDX extruder
  1019. #else
  1020. #define ACCEL_IDX 0
  1021. #endif
  1022. // Limit acceleration per axis
  1023. if (block->step_event_count <= cutoff_long) {
  1024. LIMIT_ACCEL_LONG(X_AXIS, 0);
  1025. LIMIT_ACCEL_LONG(Y_AXIS, 0);
  1026. LIMIT_ACCEL_LONG(Z_AXIS, 0);
  1027. LIMIT_ACCEL_LONG(E_AXIS, ACCEL_IDX);
  1028. }
  1029. else {
  1030. LIMIT_ACCEL_FLOAT(X_AXIS, 0);
  1031. LIMIT_ACCEL_FLOAT(Y_AXIS, 0);
  1032. LIMIT_ACCEL_FLOAT(Z_AXIS, 0);
  1033. LIMIT_ACCEL_FLOAT(E_AXIS, ACCEL_IDX);
  1034. }
  1035. }
  1036. block->acceleration_steps_per_s2 = accel;
  1037. block->acceleration = accel / steps_per_mm;
  1038. block->acceleration_rate = (long)(accel * 16777216.0 / ((F_CPU) * 0.125)); // * 8.388608
  1039. // Initial limit on the segment entry velocity
  1040. float vmax_junction;
  1041. #if 0 // Use old jerk for now
  1042. float junction_deviation = 0.1;
  1043. // Compute path unit vector
  1044. double unit_vec[XYZ] = {
  1045. delta_mm[X_AXIS] * inverse_millimeters,
  1046. delta_mm[Y_AXIS] * inverse_millimeters,
  1047. delta_mm[Z_AXIS] * inverse_millimeters
  1048. };
  1049. /*
  1050. Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  1051. Let a circle be tangent to both previous and current path line segments, where the junction
  1052. deviation is defined as the distance from the junction to the closest edge of the circle,
  1053. collinear with the circle center.
  1054. The circular segment joining the two paths represents the path of centripetal acceleration.
  1055. Solve for max velocity based on max acceleration about the radius of the circle, defined
  1056. indirectly by junction deviation.
  1057. This may be also viewed as path width or max_jerk in the previous grbl version. This approach
  1058. does not actually deviate from path, but used as a robust way to compute cornering speeds, as
  1059. it takes into account the nonlinearities of both the junction angle and junction velocity.
  1060. */
  1061. vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  1062. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  1063. if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) {
  1064. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  1065. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  1066. const float cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  1067. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  1068. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS];
  1069. // Skip and use default max junction speed for 0 degree acute junction.
  1070. if (cos_theta < 0.95) {
  1071. vmax_junction = min(previous_nominal_speed, block->nominal_speed);
  1072. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  1073. if (cos_theta > -0.95) {
  1074. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  1075. float sin_theta_d2 = SQRT(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
  1076. NOMORE(vmax_junction, SQRT(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
  1077. }
  1078. }
  1079. }
  1080. #endif
  1081. if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) {
  1082. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1083. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1084. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1085. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1086. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1087. vmax_junction = min(block->nominal_speed, previous_nominal_speed);
  1088. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1089. float v_factor = 1;
  1090. uint8_t limited = 0;
  1091. // Now limit the jerk in all axes.
  1092. const float smaller_speed_factor = vmax_junction / previous_nominal_speed;
  1093. LOOP_XYZE(axis) {
  1094. // Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
  1095. float v_exit = previous_speed[axis] * smaller_speed_factor,
  1096. v_entry = current_speed[axis];
  1097. if (limited) {
  1098. v_exit *= v_factor;
  1099. v_entry *= v_factor;
  1100. }
  1101. // Calculate jerk depending on whether the axis is coasting in the same direction or reversing.
  1102. const float jerk = (v_exit > v_entry)
  1103. ? // coasting axis reversal
  1104. ( (v_entry > 0 || v_exit < 0) ? (v_exit - v_entry) : max(v_exit, -v_entry) )
  1105. : // v_exit <= v_entry coasting axis reversal
  1106. ( (v_entry < 0 || v_exit > 0) ? (v_entry - v_exit) : max(-v_exit, v_entry) );
  1107. if (jerk > max_jerk[axis]) {
  1108. v_factor *= max_jerk[axis] / jerk;
  1109. ++limited;
  1110. }
  1111. }
  1112. if (limited) vmax_junction *= v_factor;
  1113. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1114. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1115. const float vmax_junction_threshold = vmax_junction * 0.99f;
  1116. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1117. // Not coasting. The machine will stop and start the movements anyway,
  1118. // better to start the segment from start.
  1119. SBI(block->flag, BLOCK_BIT_START_FROM_FULL_HALT);
  1120. vmax_junction = safe_speed;
  1121. }
  1122. }
  1123. else {
  1124. SBI(block->flag, BLOCK_BIT_START_FROM_FULL_HALT);
  1125. vmax_junction = safe_speed;
  1126. }
  1127. // Max entry speed of this block equals the max exit speed of the previous block.
  1128. block->max_entry_speed = vmax_junction;
  1129. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  1130. const float v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
  1131. block->entry_speed = min(vmax_junction, v_allowable);
  1132. // Initialize planner efficiency flags
  1133. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1134. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1135. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1136. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1137. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1138. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1139. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1140. block->flag |= BLOCK_FLAG_RECALCULATE | (block->nominal_speed <= v_allowable ? BLOCK_FLAG_NOMINAL_LENGTH : 0);
  1141. // Update previous path unit_vector and nominal speed
  1142. COPY(previous_speed, current_speed);
  1143. previous_nominal_speed = block->nominal_speed;
  1144. previous_safe_speed = safe_speed;
  1145. #if ENABLED(LIN_ADVANCE)
  1146. /**
  1147. *
  1148. * Use LIN_ADVANCE for blocks if all these are true:
  1149. *
  1150. * esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS]) : This is a print move
  1151. *
  1152. * extruder_advance_k : There is an advance factor set.
  1153. *
  1154. * esteps != block->step_event_count : A problem occurs if the move before a retract is too small.
  1155. * In that case, the retract and move will be executed together.
  1156. * This leads to too many advance steps due to a huge e_acceleration.
  1157. * The math is good, but we must avoid retract moves with advance!
  1158. * de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1159. */
  1160. block->use_advance_lead = esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS])
  1161. && extruder_advance_k
  1162. && (uint32_t)esteps != block->step_event_count
  1163. && de > 0;
  1164. if (block->use_advance_lead)
  1165. block->abs_adv_steps_multiplier8 = LROUND(
  1166. extruder_advance_k
  1167. * (UNEAR_ZERO(advance_ed_ratio) ? de * steps_to_mm[E_AXIS_N] / HYPOT(da * steps_to_mm[X_AXIS], db * steps_to_mm[Y_AXIS]) : advance_ed_ratio) // Use the fixed ratio, if set
  1168. * (block->nominal_speed / (float)block->nominal_rate)
  1169. * axis_steps_per_mm[E_AXIS_N] * 256.0
  1170. );
  1171. #endif // LIN_ADVANCE
  1172. const float bnsr = 1.0 / block->nominal_speed;
  1173. calculate_trapezoid_for_block(block, block->entry_speed * bnsr, safe_speed * bnsr);
  1174. // Move buffer head
  1175. block_buffer_head = next_buffer_head;
  1176. // Update the position (only when a move was queued)
  1177. static_assert(COUNT(target) > 1, "Parameter to _buffer_steps must be (&target)[XYZE]!");
  1178. COPY(position, target);
  1179. recalculate();
  1180. } // _buffer_steps()
  1181. /**
  1182. * Planner::buffer_segment
  1183. *
  1184. * Add a new linear movement to the buffer in axis units.
  1185. *
  1186. * Leveling and kinematics should be applied ahead of calling this.
  1187. *
  1188. * a,b,c,e - target positions in mm and/or degrees
  1189. * fr_mm_s - (target) speed of the move
  1190. * extruder - target extruder
  1191. */
  1192. void Planner::buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder) {
  1193. // When changing extruders recalculate steps corresponding to the E position
  1194. #if ENABLED(DISTINCT_E_FACTORS)
  1195. if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
  1196. position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
  1197. last_extruder = extruder;
  1198. }
  1199. #endif
  1200. // The target position of the tool in absolute steps
  1201. // Calculate target position in absolute steps
  1202. const int32_t target[XYZE] = {
  1203. LROUND(a * axis_steps_per_mm[X_AXIS]),
  1204. LROUND(b * axis_steps_per_mm[Y_AXIS]),
  1205. LROUND(c * axis_steps_per_mm[Z_AXIS]),
  1206. LROUND(e * axis_steps_per_mm[E_AXIS_N])
  1207. };
  1208. /* <-- add a slash to enable
  1209. SERIAL_ECHOPAIR(" buffer_segment FR:", fr_mm_s);
  1210. #if IS_KINEMATIC
  1211. SERIAL_ECHOPAIR(" A:", a);
  1212. SERIAL_ECHOPAIR(" (", position[A_AXIS]);
  1213. SERIAL_ECHOPAIR("->", target[A_AXIS]);
  1214. SERIAL_ECHOPAIR(") B:", b);
  1215. #else
  1216. SERIAL_ECHOPAIR(" X:", a);
  1217. SERIAL_ECHOPAIR(" (", position[X_AXIS]);
  1218. SERIAL_ECHOPAIR("->", target[X_AXIS]);
  1219. SERIAL_ECHOPAIR(") Y:", b);
  1220. #endif
  1221. SERIAL_ECHOPAIR(" (", position[Y_AXIS]);
  1222. SERIAL_ECHOPAIR("->", target[Y_AXIS]);
  1223. #if ENABLED(DELTA)
  1224. SERIAL_ECHOPAIR(") C:", c);
  1225. #else
  1226. SERIAL_ECHOPAIR(") Z:", c);
  1227. #endif
  1228. SERIAL_ECHOPAIR(" (", position[Z_AXIS]);
  1229. SERIAL_ECHOPAIR("->", target[Z_AXIS]);
  1230. SERIAL_ECHOPAIR(") E:", e);
  1231. SERIAL_ECHOPAIR(" (", position[E_AXIS]);
  1232. SERIAL_ECHOPAIR("->", target[E_AXIS]);
  1233. SERIAL_ECHOLNPGM(")");
  1234. //*/
  1235. // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
  1236. if (DEBUGGING(DRYRUN))
  1237. position[E_AXIS] = target[E_AXIS];
  1238. // Always split the first move into two (if not homing or probing)
  1239. if (!blocks_queued()) {
  1240. #define _BETWEEN(A) (position[A##_AXIS] + target[A##_AXIS]) >> 1
  1241. const int32_t between[XYZE] = { _BETWEEN(X), _BETWEEN(Y), _BETWEEN(Z), _BETWEEN(E) };
  1242. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1243. _buffer_steps(between, fr_mm_s, extruder);
  1244. const uint8_t next = block_buffer_head;
  1245. _buffer_steps(target, fr_mm_s, extruder);
  1246. SBI(block_buffer[next].flag, BLOCK_BIT_CONTINUED);
  1247. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1248. }
  1249. else
  1250. _buffer_steps(target, fr_mm_s, extruder);
  1251. stepper.wake_up();
  1252. } // buffer_segment()
  1253. /**
  1254. * Directly set the planner XYZ position (and stepper positions)
  1255. * converting mm (or angles for SCARA) into steps.
  1256. *
  1257. * On CORE machines stepper ABC will be translated from the given XYZ.
  1258. */
  1259. void Planner::_set_position_mm(const float &a, const float &b, const float &c, const float &e) {
  1260. #if ENABLED(DISTINCT_E_FACTORS)
  1261. #define _EINDEX (E_AXIS + active_extruder)
  1262. last_extruder = active_extruder;
  1263. #else
  1264. #define _EINDEX E_AXIS
  1265. #endif
  1266. const int32_t na = position[X_AXIS] = LROUND(a * axis_steps_per_mm[X_AXIS]),
  1267. nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]),
  1268. nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]),
  1269. ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
  1270. stepper.set_position(na, nb, nc, ne);
  1271. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1272. ZERO(previous_speed);
  1273. }
  1274. void Planner::set_position_mm_kinematic(const float (&cart)[XYZE]) {
  1275. #if PLANNER_LEVELING
  1276. float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
  1277. apply_leveling(raw);
  1278. #else
  1279. const float (&raw)[XYZE] = cart;
  1280. #endif
  1281. #if IS_KINEMATIC
  1282. inverse_kinematics(raw);
  1283. _set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS]);
  1284. #else
  1285. _set_position_mm(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS]);
  1286. #endif
  1287. }
  1288. /**
  1289. * Sync from the stepper positions. (e.g., after an interrupted move)
  1290. */
  1291. void Planner::sync_from_steppers() {
  1292. LOOP_XYZE(i)
  1293. position[i] = stepper.position((AxisEnum)i);
  1294. }
  1295. /**
  1296. * Setters for planner position (also setting stepper position).
  1297. */
  1298. void Planner::set_position_mm(const AxisEnum axis, const float &v) {
  1299. #if ENABLED(DISTINCT_E_FACTORS)
  1300. const uint8_t axis_index = axis + (axis == E_AXIS ? active_extruder : 0);
  1301. last_extruder = active_extruder;
  1302. #else
  1303. const uint8_t axis_index = axis;
  1304. #endif
  1305. position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
  1306. stepper.set_position(axis, v);
  1307. previous_speed[axis] = 0.0;
  1308. }
  1309. // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
  1310. void Planner::reset_acceleration_rates() {
  1311. #if ENABLED(DISTINCT_E_FACTORS)
  1312. #define HIGHEST_CONDITION (i < E_AXIS || i == E_AXIS + active_extruder)
  1313. #else
  1314. #define HIGHEST_CONDITION true
  1315. #endif
  1316. uint32_t highest_rate = 1;
  1317. LOOP_XYZE_N(i) {
  1318. max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
  1319. if (HIGHEST_CONDITION) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]);
  1320. }
  1321. cutoff_long = 4294967295UL / highest_rate;
  1322. }
  1323. // Recalculate position, steps_to_mm if axis_steps_per_mm changes!
  1324. void Planner::refresh_positioning() {
  1325. LOOP_XYZE_N(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i];
  1326. set_position_mm_kinematic(current_position);
  1327. reset_acceleration_rates();
  1328. }
  1329. #if ENABLED(AUTOTEMP)
  1330. void Planner::autotemp_M104_M109() {
  1331. autotemp_enabled = parser.seen('F');
  1332. if (autotemp_enabled) autotemp_factor = parser.value_celsius_diff();
  1333. if (parser.seen('S')) autotemp_min = parser.value_celsius();
  1334. if (parser.seen('B')) autotemp_max = parser.value_celsius();
  1335. }
  1336. #endif