My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

stepper.cpp 50KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL)
  54. #include "ubl.h"
  55. #endif
  56. #if HAS_DIGIPOTSS
  57. #include <SPI.h>
  58. #endif
  59. Stepper stepper; // Singleton
  60. // public:
  61. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  62. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  63. bool Stepper::abort_on_endstop_hit = false;
  64. #endif
  65. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  66. bool Stepper::performing_homing = false;
  67. #endif
  68. #if HAS_MOTOR_CURRENT_PWM
  69. uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load()
  70. #endif
  71. // private:
  72. uint8_t Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  73. int16_t Stepper::cleaning_buffer_counter = 0;
  74. #if ENABLED(X_DUAL_ENDSTOPS)
  75. bool Stepper::locked_x_motor = false, Stepper::locked_x2_motor = false;
  76. #endif
  77. #if ENABLED(Y_DUAL_ENDSTOPS)
  78. bool Stepper::locked_y_motor = false, Stepper::locked_y2_motor = false;
  79. #endif
  80. #if ENABLED(Z_DUAL_ENDSTOPS)
  81. bool Stepper::locked_z_motor = false, Stepper::locked_z2_motor = false;
  82. #endif
  83. long Stepper::counter_X = 0,
  84. Stepper::counter_Y = 0,
  85. Stepper::counter_Z = 0,
  86. Stepper::counter_E = 0;
  87. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  88. #if ENABLED(LIN_ADVANCE)
  89. constexpr uint16_t ADV_NEVER = 65535;
  90. uint16_t Stepper::nextMainISR = 0,
  91. Stepper::nextAdvanceISR = ADV_NEVER,
  92. Stepper::eISR_Rate = ADV_NEVER;
  93. volatile int Stepper::e_steps[E_STEPPERS];
  94. int Stepper::final_estep_rate,
  95. Stepper::current_estep_rate[E_STEPPERS],
  96. Stepper::current_adv_steps[E_STEPPERS];
  97. /**
  98. * See https://github.com/MarlinFirmware/Marlin/issues/5699#issuecomment-309264382
  99. *
  100. * This fix isn't perfect and may lose steps - but better than locking up completely
  101. * in future the planner should slow down if advance stepping rate would be too high
  102. */
  103. FORCE_INLINE uint16_t adv_rate(const int steps, const uint16_t timer, const uint8_t loops) {
  104. if (steps) {
  105. const uint16_t rate = (timer * loops) / abs(steps);
  106. //return constrain(rate, 1, ADV_NEVER - 1)
  107. return rate ? rate : 1;
  108. }
  109. return ADV_NEVER;
  110. }
  111. #endif // LIN_ADVANCE
  112. long Stepper::acceleration_time, Stepper::deceleration_time;
  113. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  114. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  115. #if ENABLED(MIXING_EXTRUDER)
  116. long Stepper::counter_m[MIXING_STEPPERS];
  117. #endif
  118. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  119. uint16_t Stepper::OCR1A_nominal,
  120. Stepper::acc_step_rate; // needed for deceleration start point
  121. volatile long Stepper::endstops_trigsteps[XYZ];
  122. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  123. #define LOCKED_X_MOTOR locked_x_motor
  124. #define LOCKED_Y_MOTOR locked_y_motor
  125. #define LOCKED_Z_MOTOR locked_z_motor
  126. #define LOCKED_X2_MOTOR locked_x2_motor
  127. #define LOCKED_Y2_MOTOR locked_y2_motor
  128. #define LOCKED_Z2_MOTOR locked_z2_motor
  129. #define DUAL_ENDSTOP_APPLY_STEP(AXIS,v) \
  130. if (performing_homing) { \
  131. if (AXIS##_HOME_DIR < 0) { \
  132. if (!(TEST(endstops.old_endstop_bits, AXIS##_MIN) && (count_direction[AXIS##_AXIS] < 0)) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
  133. if (!(TEST(endstops.old_endstop_bits, AXIS##2_MIN) && (count_direction[AXIS##_AXIS] < 0)) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
  134. } \
  135. else { \
  136. if (!(TEST(endstops.old_endstop_bits, AXIS##_MAX) && (count_direction[AXIS##_AXIS] > 0)) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
  137. if (!(TEST(endstops.old_endstop_bits, AXIS##2_MAX) && (count_direction[AXIS##_AXIS] > 0)) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
  138. } \
  139. } \
  140. else { \
  141. AXIS##_STEP_WRITE(v); \
  142. AXIS##2_STEP_WRITE(v); \
  143. }
  144. #endif
  145. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  146. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  147. #if ENABLED(DUAL_X_CARRIAGE)
  148. #define X_APPLY_DIR(v,ALWAYS) \
  149. if (extruder_duplication_enabled || ALWAYS) { \
  150. X_DIR_WRITE(v); \
  151. X2_DIR_WRITE(v); \
  152. } \
  153. else { \
  154. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  155. }
  156. #define X_APPLY_STEP(v,ALWAYS) \
  157. if (extruder_duplication_enabled || ALWAYS) { \
  158. X_STEP_WRITE(v); \
  159. X2_STEP_WRITE(v); \
  160. } \
  161. else { \
  162. if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  163. }
  164. #elif ENABLED(X_DUAL_ENDSTOPS)
  165. #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
  166. #else
  167. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  168. #endif
  169. #else
  170. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  171. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  172. #endif
  173. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  174. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  175. #if ENABLED(Y_DUAL_ENDSTOPS)
  176. #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
  177. #else
  178. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  179. #endif
  180. #else
  181. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  182. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  183. #endif
  184. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  185. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  186. #if ENABLED(Z_DUAL_ENDSTOPS)
  187. #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
  188. #else
  189. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  190. #endif
  191. #else
  192. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  193. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  194. #endif
  195. #if DISABLED(MIXING_EXTRUDER)
  196. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  197. #endif
  198. // intRes = longIn1 * longIn2 >> 24
  199. // uses:
  200. // r26 to store 0
  201. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  202. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  203. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  204. // B0 A0 are bits 24-39 and are the returned value
  205. // C1 B1 A1 is longIn1
  206. // D2 C2 B2 A2 is longIn2
  207. //
  208. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  209. asm volatile ( \
  210. "clr r26 \n\t" \
  211. "mul %A1, %B2 \n\t" \
  212. "mov r27, r1 \n\t" \
  213. "mul %B1, %C2 \n\t" \
  214. "movw %A0, r0 \n\t" \
  215. "mul %C1, %C2 \n\t" \
  216. "add %B0, r0 \n\t" \
  217. "mul %C1, %B2 \n\t" \
  218. "add %A0, r0 \n\t" \
  219. "adc %B0, r1 \n\t" \
  220. "mul %A1, %C2 \n\t" \
  221. "add r27, r0 \n\t" \
  222. "adc %A0, r1 \n\t" \
  223. "adc %B0, r26 \n\t" \
  224. "mul %B1, %B2 \n\t" \
  225. "add r27, r0 \n\t" \
  226. "adc %A0, r1 \n\t" \
  227. "adc %B0, r26 \n\t" \
  228. "mul %C1, %A2 \n\t" \
  229. "add r27, r0 \n\t" \
  230. "adc %A0, r1 \n\t" \
  231. "adc %B0, r26 \n\t" \
  232. "mul %B1, %A2 \n\t" \
  233. "add r27, r1 \n\t" \
  234. "adc %A0, r26 \n\t" \
  235. "adc %B0, r26 \n\t" \
  236. "lsr r27 \n\t" \
  237. "adc %A0, r26 \n\t" \
  238. "adc %B0, r26 \n\t" \
  239. "mul %D2, %A1 \n\t" \
  240. "add %A0, r0 \n\t" \
  241. "adc %B0, r1 \n\t" \
  242. "mul %D2, %B1 \n\t" \
  243. "add %B0, r0 \n\t" \
  244. "clr r1 \n\t" \
  245. : \
  246. "=&r" (intRes) \
  247. : \
  248. "d" (longIn1), \
  249. "d" (longIn2) \
  250. : \
  251. "r26" , "r27" \
  252. )
  253. // Some useful constants
  254. /**
  255. * __________________________
  256. * /| |\ _________________ ^
  257. * / | | \ /| |\ |
  258. * / | | \ / | | \ s
  259. * / | | | | | \ p
  260. * / | | | | | \ e
  261. * +-----+------------------------+---+--+---------------+----+ e
  262. * | BLOCK 1 | BLOCK 2 | d
  263. *
  264. * time ----->
  265. *
  266. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  267. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  268. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  269. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  270. */
  271. void Stepper::wake_up() {
  272. // TCNT1 = 0;
  273. ENABLE_STEPPER_DRIVER_INTERRUPT();
  274. }
  275. /**
  276. * Set the stepper direction of each axis
  277. *
  278. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  279. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  280. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  281. */
  282. void Stepper::set_directions() {
  283. #define SET_STEP_DIR(AXIS) \
  284. if (motor_direction(AXIS ##_AXIS)) { \
  285. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  286. count_direction[AXIS ##_AXIS] = -1; \
  287. } \
  288. else { \
  289. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  290. count_direction[AXIS ##_AXIS] = 1; \
  291. }
  292. #if HAS_X_DIR
  293. SET_STEP_DIR(X); // A
  294. #endif
  295. #if HAS_Y_DIR
  296. SET_STEP_DIR(Y); // B
  297. #endif
  298. #if HAS_Z_DIR
  299. SET_STEP_DIR(Z); // C
  300. #endif
  301. #if DISABLED(LIN_ADVANCE)
  302. if (motor_direction(E_AXIS)) {
  303. REV_E_DIR();
  304. count_direction[E_AXIS] = -1;
  305. }
  306. else {
  307. NORM_E_DIR();
  308. count_direction[E_AXIS] = 1;
  309. }
  310. #endif // !LIN_ADVANCE
  311. }
  312. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  313. extern volatile uint8_t e_hit;
  314. #endif
  315. /**
  316. * Stepper Driver Interrupt
  317. *
  318. * Directly pulses the stepper motors at high frequency.
  319. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  320. *
  321. * OCR1A Frequency
  322. * 1 2 MHz
  323. * 50 40 KHz
  324. * 100 20 KHz - capped max rate
  325. * 200 10 KHz - nominal max rate
  326. * 2000 1 KHz - sleep rate
  327. * 4000 500 Hz - init rate
  328. */
  329. ISR(TIMER1_COMPA_vect) {
  330. #if ENABLED(LIN_ADVANCE)
  331. Stepper::advance_isr_scheduler();
  332. #else
  333. Stepper::isr();
  334. #endif
  335. }
  336. #define _ENABLE_ISRs() do { cli(); if (thermalManager.in_temp_isr) CBI(TIMSK0, OCIE0B); else SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0)
  337. void Stepper::isr() {
  338. uint16_t ocr_val;
  339. #define ENDSTOP_NOMINAL_OCR_VAL 3000 // Check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
  340. #define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
  341. #if DISABLED(LIN_ADVANCE)
  342. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  343. CBI(TIMSK0, OCIE0B); // Temperature ISR
  344. DISABLE_STEPPER_DRIVER_INTERRUPT();
  345. sei();
  346. #endif
  347. #define _SPLIT(L) (ocr_val = (uint16_t)L)
  348. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  349. #define SPLIT(L) _SPLIT(L)
  350. #else // !ENDSTOP_INTERRUPTS_FEATURE : Sample endstops between stepping ISRs
  351. static uint32_t step_remaining = 0;
  352. #define SPLIT(L) do { \
  353. _SPLIT(L); \
  354. if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \
  355. const uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
  356. ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
  357. step_remaining = (uint16_t)L - ocr_val; \
  358. } \
  359. }while(0)
  360. if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step
  361. endstops.update();
  362. // Next ISR either for endstops or stepping
  363. ocr_val = step_remaining <= ENDSTOP_NOMINAL_OCR_VAL ? step_remaining : ENDSTOP_NOMINAL_OCR_VAL;
  364. step_remaining -= ocr_val;
  365. _NEXT_ISR(ocr_val);
  366. NOLESS(OCR1A, TCNT1 + 16);
  367. _ENABLE_ISRs(); // re-enable ISRs
  368. return;
  369. }
  370. #endif // !ENDSTOP_INTERRUPTS_FEATURE
  371. //
  372. // When cleaning, discard the current block and run fast
  373. //
  374. if (cleaning_buffer_counter) {
  375. if (cleaning_buffer_counter < 0) { // Count up for endstop hit
  376. if (current_block) planner.discard_current_block(); // Discard the active block that led to the trigger
  377. if (!planner.discard_continued_block()) // Discard next CONTINUED block
  378. cleaning_buffer_counter = 0; // Keep discarding until non-CONTINUED
  379. }
  380. else {
  381. planner.discard_current_block();
  382. --cleaning_buffer_counter; // Count down for abort print
  383. #ifdef SD_FINISHED_RELEASECOMMAND
  384. if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  385. #endif
  386. }
  387. current_block = NULL; // Prep to get a new block after cleaning
  388. _NEXT_ISR(200); // Run at max speed - 10 KHz
  389. _ENABLE_ISRs();
  390. return;
  391. }
  392. // If there is no current block, attempt to pop one from the buffer
  393. bool first_step = false;
  394. if (!current_block) {
  395. // Anything in the buffer?
  396. if ((current_block = planner.get_current_block())) {
  397. trapezoid_generator_reset();
  398. TCNT1 = 0; // make sure first pulse is not truncated
  399. first_step = true;
  400. // Initialize Bresenham counters to 1/2 the ceiling
  401. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  402. #if ENABLED(MIXING_EXTRUDER)
  403. MIXING_STEPPERS_LOOP(i)
  404. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  405. #endif
  406. step_events_completed = 0;
  407. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  408. e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
  409. // No 'change' can be detected.
  410. #endif
  411. #if ENABLED(Z_LATE_ENABLE)
  412. if (current_block->steps[Z_AXIS] > 0) {
  413. enable_Z();
  414. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  415. _ENABLE_ISRs(); // re-enable ISRs
  416. return;
  417. }
  418. #endif
  419. }
  420. else {
  421. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  422. _ENABLE_ISRs(); // re-enable ISRs
  423. return;
  424. }
  425. }
  426. // Update endstops state, if enabled
  427. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  428. if (e_hit && ENDSTOPS_ENABLED) {
  429. endstops.update();
  430. e_hit--;
  431. }
  432. #else
  433. if (ENDSTOPS_ENABLED) endstops.update();
  434. #endif
  435. // Take multiple steps per interrupt (For high speed moves)
  436. bool all_steps_done = false;
  437. for (uint8_t i = step_loops; i--;) {
  438. #if ENABLED(LIN_ADVANCE)
  439. counter_E += current_block->steps[E_AXIS];
  440. if (counter_E > 0) {
  441. counter_E -= current_block->step_event_count;
  442. #if DISABLED(MIXING_EXTRUDER)
  443. // Don't step E here for mixing extruder
  444. count_position[E_AXIS] += count_direction[E_AXIS];
  445. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  446. #endif
  447. }
  448. #if ENABLED(MIXING_EXTRUDER)
  449. // Step mixing steppers proportionally
  450. const bool dir = motor_direction(E_AXIS);
  451. MIXING_STEPPERS_LOOP(j) {
  452. counter_m[j] += current_block->steps[E_AXIS];
  453. if (counter_m[j] > 0) {
  454. counter_m[j] -= current_block->mix_event_count[j];
  455. dir ? --e_steps[j] : ++e_steps[j];
  456. }
  457. }
  458. #endif
  459. #endif // LIN_ADVANCE
  460. #define _COUNTER(AXIS) counter_## AXIS
  461. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  462. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  463. // Advance the Bresenham counter; start a pulse if the axis needs a step
  464. #define PULSE_START(AXIS) \
  465. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  466. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  467. // Stop an active pulse, reset the Bresenham counter, update the position
  468. #define PULSE_STOP(AXIS) \
  469. if (_COUNTER(AXIS) > 0) { \
  470. _COUNTER(AXIS) -= current_block->step_event_count; \
  471. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  472. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  473. }
  474. /**
  475. * Estimate the number of cycles that the stepper logic already takes
  476. * up between the start and stop of the X stepper pulse.
  477. *
  478. * Currently this uses very modest estimates of around 5 cycles.
  479. * True values may be derived by careful testing.
  480. *
  481. * Once any delay is added, the cost of the delay code itself
  482. * may be subtracted from this value to get a more accurate delay.
  483. * Delays under 20 cycles (1.25µs) will be very accurate, using NOPs.
  484. * Longer delays use a loop. The resolution is 8 cycles.
  485. */
  486. #if HAS_X_STEP
  487. #define _CYCLE_APPROX_1 5
  488. #else
  489. #define _CYCLE_APPROX_1 0
  490. #endif
  491. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  492. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
  493. #else
  494. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1
  495. #endif
  496. #if HAS_Y_STEP
  497. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
  498. #else
  499. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2
  500. #endif
  501. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  502. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
  503. #else
  504. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3
  505. #endif
  506. #if HAS_Z_STEP
  507. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
  508. #else
  509. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4
  510. #endif
  511. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  512. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
  513. #else
  514. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5
  515. #endif
  516. #if DISABLED(LIN_ADVANCE)
  517. #if ENABLED(MIXING_EXTRUDER)
  518. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
  519. #else
  520. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
  521. #endif
  522. #else
  523. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6
  524. #endif
  525. #define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
  526. #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
  527. /**
  528. * If a minimum pulse time was specified get the timer 0 value.
  529. *
  530. * TCNT0 has an 8x prescaler, so it increments every 8 cycles.
  531. * That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
  532. * 20 counts of TCNT0 -by itself- is a good pulse delay.
  533. * 10µs = 160 or 200 cycles.
  534. */
  535. #if EXTRA_CYCLES_XYZE > 20
  536. uint32_t pulse_start = TCNT0;
  537. #endif
  538. #if HAS_X_STEP
  539. PULSE_START(X);
  540. #endif
  541. #if HAS_Y_STEP
  542. PULSE_START(Y);
  543. #endif
  544. #if HAS_Z_STEP
  545. PULSE_START(Z);
  546. #endif
  547. // For non-advance use linear interpolation for E also
  548. #if DISABLED(LIN_ADVANCE)
  549. #if ENABLED(MIXING_EXTRUDER)
  550. // Keep updating the single E axis
  551. counter_E += current_block->steps[E_AXIS];
  552. // Tick the counters used for this mix
  553. MIXING_STEPPERS_LOOP(j) {
  554. // Step mixing steppers (proportionally)
  555. counter_m[j] += current_block->steps[E_AXIS];
  556. // Step when the counter goes over zero
  557. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  558. }
  559. #else // !MIXING_EXTRUDER
  560. PULSE_START(E);
  561. #endif
  562. #endif // !LIN_ADVANCE
  563. // For minimum pulse time wait before stopping pulses
  564. #if EXTRA_CYCLES_XYZE > 20
  565. while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  566. pulse_start = TCNT0;
  567. #elif EXTRA_CYCLES_XYZE > 0
  568. DELAY_NOPS(EXTRA_CYCLES_XYZE);
  569. #endif
  570. #if HAS_X_STEP
  571. PULSE_STOP(X);
  572. #endif
  573. #if HAS_Y_STEP
  574. PULSE_STOP(Y);
  575. #endif
  576. #if HAS_Z_STEP
  577. PULSE_STOP(Z);
  578. #endif
  579. #if DISABLED(LIN_ADVANCE)
  580. #if ENABLED(MIXING_EXTRUDER)
  581. // Always step the single E axis
  582. if (counter_E > 0) {
  583. counter_E -= current_block->step_event_count;
  584. count_position[E_AXIS] += count_direction[E_AXIS];
  585. }
  586. MIXING_STEPPERS_LOOP(j) {
  587. if (counter_m[j] > 0) {
  588. counter_m[j] -= current_block->mix_event_count[j];
  589. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  590. }
  591. }
  592. #else // !MIXING_EXTRUDER
  593. PULSE_STOP(E);
  594. #endif
  595. #endif // !LIN_ADVANCE
  596. if (++step_events_completed >= current_block->step_event_count) {
  597. all_steps_done = true;
  598. break;
  599. }
  600. // For minimum pulse time wait after stopping pulses also
  601. #if EXTRA_CYCLES_XYZE > 20
  602. if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  603. #elif EXTRA_CYCLES_XYZE > 0
  604. if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE);
  605. #endif
  606. } // steps_loop
  607. #if ENABLED(LIN_ADVANCE)
  608. if (current_block->use_advance_lead) {
  609. const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  610. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  611. #if ENABLED(MIXING_EXTRUDER)
  612. // Mixing extruders apply advance lead proportionally
  613. MIXING_STEPPERS_LOOP(j)
  614. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  615. #else
  616. // For most extruders, advance the single E stepper
  617. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  618. #endif
  619. }
  620. // If we have esteps to execute, fire the next advance_isr "now"
  621. if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
  622. #endif // LIN_ADVANCE
  623. // Calculate new timer value
  624. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  625. if (first_step) {
  626. acc_step_rate = current_block->initial_rate;
  627. acceleration_time = 0;
  628. }
  629. else {
  630. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  631. acc_step_rate += current_block->initial_rate;
  632. }
  633. // upper limit
  634. NOMORE(acc_step_rate, current_block->nominal_rate);
  635. // step_rate to timer interval
  636. const uint16_t interval = calc_timer_interval(acc_step_rate);
  637. SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  638. _NEXT_ISR(ocr_val);
  639. acceleration_time += interval;
  640. #if ENABLED(LIN_ADVANCE)
  641. if (current_block->use_advance_lead) {
  642. #if ENABLED(MIXING_EXTRUDER)
  643. MIXING_STEPPERS_LOOP(j)
  644. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  645. #else
  646. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  647. #endif
  648. }
  649. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], interval, step_loops);
  650. #endif // LIN_ADVANCE
  651. }
  652. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  653. uint16_t step_rate;
  654. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  655. if (step_rate < acc_step_rate) { // Still decelerating?
  656. step_rate = acc_step_rate - step_rate;
  657. NOLESS(step_rate, current_block->final_rate);
  658. }
  659. else
  660. step_rate = current_block->final_rate;
  661. // step_rate to timer interval
  662. const uint16_t interval = calc_timer_interval(step_rate);
  663. SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  664. _NEXT_ISR(ocr_val);
  665. deceleration_time += interval;
  666. #if ENABLED(LIN_ADVANCE)
  667. if (current_block->use_advance_lead) {
  668. #if ENABLED(MIXING_EXTRUDER)
  669. MIXING_STEPPERS_LOOP(j)
  670. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  671. #else
  672. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  673. #endif
  674. }
  675. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], interval, step_loops);
  676. #endif // LIN_ADVANCE
  677. }
  678. else {
  679. #if ENABLED(LIN_ADVANCE)
  680. if (current_block->use_advance_lead)
  681. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  682. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], OCR1A_nominal, step_loops_nominal);
  683. #endif
  684. SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  685. _NEXT_ISR(ocr_val);
  686. // ensure we're running at the correct step rate, even if we just came off an acceleration
  687. step_loops = step_loops_nominal;
  688. }
  689. #if DISABLED(LIN_ADVANCE)
  690. NOLESS(OCR1A, TCNT1 + 16);
  691. #endif
  692. // If current block is finished, reset pointer
  693. if (all_steps_done) {
  694. current_block = NULL;
  695. planner.discard_current_block();
  696. }
  697. #if DISABLED(LIN_ADVANCE)
  698. _ENABLE_ISRs(); // re-enable ISRs
  699. #endif
  700. }
  701. #if ENABLED(LIN_ADVANCE)
  702. #define CYCLES_EATEN_E (E_STEPPERS * 5)
  703. #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
  704. // Timer interrupt for E. e_steps is set in the main routine;
  705. void Stepper::advance_isr() {
  706. nextAdvanceISR = eISR_Rate;
  707. #if ENABLED(MK2_MULTIPLEXER)
  708. // Even-numbered steppers are reversed
  709. #define SET_E_STEP_DIR(INDEX) \
  710. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? !INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0) : INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0))
  711. #else
  712. #define SET_E_STEP_DIR(INDEX) \
  713. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  714. #endif
  715. #define START_E_PULSE(INDEX) \
  716. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  717. #define STOP_E_PULSE(INDEX) \
  718. if (e_steps[INDEX]) { \
  719. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  720. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  721. }
  722. SET_E_STEP_DIR(0);
  723. #if E_STEPPERS > 1
  724. SET_E_STEP_DIR(1);
  725. #if E_STEPPERS > 2
  726. SET_E_STEP_DIR(2);
  727. #if E_STEPPERS > 3
  728. SET_E_STEP_DIR(3);
  729. #if E_STEPPERS > 4
  730. SET_E_STEP_DIR(4);
  731. #endif
  732. #endif
  733. #endif
  734. #endif
  735. // Step all E steppers that have steps
  736. for (uint8_t i = step_loops; i--;) {
  737. #if EXTRA_CYCLES_E > 20
  738. uint32_t pulse_start = TCNT0;
  739. #endif
  740. START_E_PULSE(0);
  741. #if E_STEPPERS > 1
  742. START_E_PULSE(1);
  743. #if E_STEPPERS > 2
  744. START_E_PULSE(2);
  745. #if E_STEPPERS > 3
  746. START_E_PULSE(3);
  747. #if E_STEPPERS > 4
  748. START_E_PULSE(4);
  749. #endif
  750. #endif
  751. #endif
  752. #endif
  753. // For minimum pulse time wait before stopping pulses
  754. #if EXTRA_CYCLES_E > 20
  755. while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  756. pulse_start = TCNT0;
  757. #elif EXTRA_CYCLES_E > 0
  758. DELAY_NOPS(EXTRA_CYCLES_E);
  759. #endif
  760. STOP_E_PULSE(0);
  761. #if E_STEPPERS > 1
  762. STOP_E_PULSE(1);
  763. #if E_STEPPERS > 2
  764. STOP_E_PULSE(2);
  765. #if E_STEPPERS > 3
  766. STOP_E_PULSE(3);
  767. #if E_STEPPERS > 4
  768. STOP_E_PULSE(4);
  769. #endif
  770. #endif
  771. #endif
  772. #endif
  773. // For minimum pulse time wait before looping
  774. #if EXTRA_CYCLES_E > 20
  775. if (i) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  776. #elif EXTRA_CYCLES_E > 0
  777. if (i) DELAY_NOPS(EXTRA_CYCLES_E);
  778. #endif
  779. } // steps_loop
  780. }
  781. void Stepper::advance_isr_scheduler() {
  782. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  783. CBI(TIMSK0, OCIE0B); // Temperature ISR
  784. DISABLE_STEPPER_DRIVER_INTERRUPT();
  785. sei();
  786. // Run main stepping ISR if flagged
  787. if (!nextMainISR) isr();
  788. // Run Advance stepping ISR if flagged
  789. if (!nextAdvanceISR) advance_isr();
  790. // Is the next advance ISR scheduled before the next main ISR?
  791. if (nextAdvanceISR <= nextMainISR) {
  792. // Set up the next interrupt
  793. OCR1A = nextAdvanceISR;
  794. // New interval for the next main ISR
  795. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  796. // Will call Stepper::advance_isr on the next interrupt
  797. nextAdvanceISR = 0;
  798. }
  799. else {
  800. // The next main ISR comes first
  801. OCR1A = nextMainISR;
  802. // New interval for the next advance ISR, if any
  803. if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  804. nextAdvanceISR -= nextMainISR;
  805. // Will call Stepper::isr on the next interrupt
  806. nextMainISR = 0;
  807. }
  808. // Don't run the ISR faster than possible
  809. NOLESS(OCR1A, TCNT1 + 16);
  810. // Restore original ISR settings
  811. _ENABLE_ISRs();
  812. }
  813. #endif // LIN_ADVANCE
  814. void Stepper::init() {
  815. // Init Digipot Motor Current
  816. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  817. digipot_init();
  818. #endif
  819. // Init Microstepping Pins
  820. #if HAS_MICROSTEPS
  821. microstep_init();
  822. #endif
  823. // Init TMC Steppers
  824. #if ENABLED(HAVE_TMCDRIVER)
  825. tmc_init();
  826. #endif
  827. // Init TMC2130 Steppers
  828. #if ENABLED(HAVE_TMC2130)
  829. tmc2130_init();
  830. #endif
  831. // Init TMC2208 Steppers
  832. #if ENABLED(HAVE_TMC2208)
  833. tmc2208_init();
  834. #endif
  835. // TRAMS, TMC2130 and TMC2208 advanced settings
  836. #if HAS_TRINAMIC
  837. TMC_ADV()
  838. #endif
  839. // Init L6470 Steppers
  840. #if ENABLED(HAVE_L6470DRIVER)
  841. L6470_init();
  842. #endif
  843. // Init Dir Pins
  844. #if HAS_X_DIR
  845. X_DIR_INIT;
  846. #endif
  847. #if HAS_X2_DIR
  848. X2_DIR_INIT;
  849. #endif
  850. #if HAS_Y_DIR
  851. Y_DIR_INIT;
  852. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  853. Y2_DIR_INIT;
  854. #endif
  855. #endif
  856. #if HAS_Z_DIR
  857. Z_DIR_INIT;
  858. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  859. Z2_DIR_INIT;
  860. #endif
  861. #endif
  862. #if HAS_E0_DIR
  863. E0_DIR_INIT;
  864. #endif
  865. #if HAS_E1_DIR
  866. E1_DIR_INIT;
  867. #endif
  868. #if HAS_E2_DIR
  869. E2_DIR_INIT;
  870. #endif
  871. #if HAS_E3_DIR
  872. E3_DIR_INIT;
  873. #endif
  874. #if HAS_E4_DIR
  875. E4_DIR_INIT;
  876. #endif
  877. // Init Enable Pins - steppers default to disabled.
  878. #if HAS_X_ENABLE
  879. X_ENABLE_INIT;
  880. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  881. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  882. X2_ENABLE_INIT;
  883. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  884. #endif
  885. #endif
  886. #if HAS_Y_ENABLE
  887. Y_ENABLE_INIT;
  888. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  889. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  890. Y2_ENABLE_INIT;
  891. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  892. #endif
  893. #endif
  894. #if HAS_Z_ENABLE
  895. Z_ENABLE_INIT;
  896. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  897. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  898. Z2_ENABLE_INIT;
  899. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  900. #endif
  901. #endif
  902. #if HAS_E0_ENABLE
  903. E0_ENABLE_INIT;
  904. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  905. #endif
  906. #if HAS_E1_ENABLE
  907. E1_ENABLE_INIT;
  908. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  909. #endif
  910. #if HAS_E2_ENABLE
  911. E2_ENABLE_INIT;
  912. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  913. #endif
  914. #if HAS_E3_ENABLE
  915. E3_ENABLE_INIT;
  916. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  917. #endif
  918. #if HAS_E4_ENABLE
  919. E4_ENABLE_INIT;
  920. if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
  921. #endif
  922. // Init endstops and pullups
  923. endstops.init();
  924. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  925. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  926. #define _DISABLE(AXIS) disable_## AXIS()
  927. #define AXIS_INIT(AXIS, PIN) \
  928. _STEP_INIT(AXIS); \
  929. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  930. _DISABLE(AXIS)
  931. #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
  932. // Init Step Pins
  933. #if HAS_X_STEP
  934. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  935. X2_STEP_INIT;
  936. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  937. #endif
  938. AXIS_INIT(X, X);
  939. #endif
  940. #if HAS_Y_STEP
  941. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  942. Y2_STEP_INIT;
  943. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  944. #endif
  945. AXIS_INIT(Y, Y);
  946. #endif
  947. #if HAS_Z_STEP
  948. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  949. Z2_STEP_INIT;
  950. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  951. #endif
  952. AXIS_INIT(Z, Z);
  953. #endif
  954. #if HAS_E0_STEP
  955. E_AXIS_INIT(0);
  956. #endif
  957. #if HAS_E1_STEP
  958. E_AXIS_INIT(1);
  959. #endif
  960. #if HAS_E2_STEP
  961. E_AXIS_INIT(2);
  962. #endif
  963. #if HAS_E3_STEP
  964. E_AXIS_INIT(3);
  965. #endif
  966. #if HAS_E4_STEP
  967. E_AXIS_INIT(4);
  968. #endif
  969. // waveform generation = 0100 = CTC
  970. SET_WGM(1, CTC_OCRnA);
  971. // output mode = 00 (disconnected)
  972. SET_COMA(1, NORMAL);
  973. // Set the timer pre-scaler
  974. // Generally we use a divider of 8, resulting in a 2MHz timer
  975. // frequency on a 16MHz MCU. If you are going to change this, be
  976. // sure to regenerate speed_lookuptable.h with
  977. // create_speed_lookuptable.py
  978. SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
  979. // Init Stepper ISR to 122 Hz for quick starting
  980. OCR1A = 0x4000;
  981. TCNT1 = 0;
  982. ENABLE_STEPPER_DRIVER_INTERRUPT();
  983. #if ENABLED(LIN_ADVANCE)
  984. for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0;
  985. ZERO(current_adv_steps);
  986. #endif
  987. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  988. sei();
  989. set_directions(); // Init directions to last_direction_bits = 0
  990. }
  991. /**
  992. * Block until all buffered steps are executed / cleaned
  993. */
  994. void Stepper::synchronize() { while (planner.blocks_queued() || cleaning_buffer_counter) idle(); }
  995. /**
  996. * Set the stepper positions directly in steps
  997. *
  998. * The input is based on the typical per-axis XYZ steps.
  999. * For CORE machines XYZ needs to be translated to ABC.
  1000. *
  1001. * This allows get_axis_position_mm to correctly
  1002. * derive the current XYZ position later on.
  1003. */
  1004. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  1005. synchronize(); // Bad to set stepper counts in the middle of a move
  1006. CRITICAL_SECTION_START;
  1007. #if CORE_IS_XY
  1008. // corexy positioning
  1009. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  1010. count_position[A_AXIS] = a + b;
  1011. count_position[B_AXIS] = CORESIGN(a - b);
  1012. count_position[Z_AXIS] = c;
  1013. #elif CORE_IS_XZ
  1014. // corexz planning
  1015. count_position[A_AXIS] = a + c;
  1016. count_position[Y_AXIS] = b;
  1017. count_position[C_AXIS] = CORESIGN(a - c);
  1018. #elif CORE_IS_YZ
  1019. // coreyz planning
  1020. count_position[X_AXIS] = a;
  1021. count_position[B_AXIS] = b + c;
  1022. count_position[C_AXIS] = CORESIGN(b - c);
  1023. #else
  1024. // default non-h-bot planning
  1025. count_position[X_AXIS] = a;
  1026. count_position[Y_AXIS] = b;
  1027. count_position[Z_AXIS] = c;
  1028. #endif
  1029. count_position[E_AXIS] = e;
  1030. CRITICAL_SECTION_END;
  1031. }
  1032. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  1033. CRITICAL_SECTION_START;
  1034. count_position[axis] = v;
  1035. CRITICAL_SECTION_END;
  1036. }
  1037. void Stepper::set_e_position(const long &e) {
  1038. CRITICAL_SECTION_START;
  1039. count_position[E_AXIS] = e;
  1040. CRITICAL_SECTION_END;
  1041. }
  1042. /**
  1043. * Get a stepper's position in steps.
  1044. */
  1045. long Stepper::position(const AxisEnum axis) {
  1046. CRITICAL_SECTION_START;
  1047. const long count_pos = count_position[axis];
  1048. CRITICAL_SECTION_END;
  1049. return count_pos;
  1050. }
  1051. /**
  1052. * Get an axis position according to stepper position(s)
  1053. * For CORE machines apply translation from ABC to XYZ.
  1054. */
  1055. float Stepper::get_axis_position_mm(const AxisEnum axis) {
  1056. float axis_steps;
  1057. #if IS_CORE
  1058. // Requesting one of the "core" axes?
  1059. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  1060. CRITICAL_SECTION_START;
  1061. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  1062. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  1063. axis_steps = 0.5f * (
  1064. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1065. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1066. );
  1067. CRITICAL_SECTION_END;
  1068. }
  1069. else
  1070. axis_steps = position(axis);
  1071. #else
  1072. axis_steps = position(axis);
  1073. #endif
  1074. return axis_steps * planner.steps_to_mm[axis];
  1075. }
  1076. void Stepper::finish_and_disable() {
  1077. synchronize();
  1078. disable_all_steppers();
  1079. }
  1080. void Stepper::quick_stop() {
  1081. cleaning_buffer_counter = 5000;
  1082. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1083. while (planner.blocks_queued()) planner.discard_current_block();
  1084. current_block = NULL;
  1085. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1086. #if ENABLED(ULTRA_LCD)
  1087. planner.clear_block_buffer_runtime();
  1088. #endif
  1089. }
  1090. void Stepper::endstop_triggered(AxisEnum axis) {
  1091. #if IS_CORE
  1092. endstops_trigsteps[axis] = 0.5f * (
  1093. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1094. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1095. );
  1096. #else // !COREXY && !COREXZ && !COREYZ
  1097. endstops_trigsteps[axis] = count_position[axis];
  1098. #endif // !COREXY && !COREXZ && !COREYZ
  1099. kill_current_block();
  1100. cleaning_buffer_counter = -1; // Discard the rest of the move
  1101. }
  1102. void Stepper::report_positions() {
  1103. CRITICAL_SECTION_START;
  1104. const long xpos = count_position[X_AXIS],
  1105. ypos = count_position[Y_AXIS],
  1106. zpos = count_position[Z_AXIS];
  1107. CRITICAL_SECTION_END;
  1108. #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
  1109. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  1110. #else
  1111. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1112. #endif
  1113. SERIAL_PROTOCOL(xpos);
  1114. #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
  1115. SERIAL_PROTOCOLPGM(" B:");
  1116. #else
  1117. SERIAL_PROTOCOLPGM(" Y:");
  1118. #endif
  1119. SERIAL_PROTOCOL(ypos);
  1120. #if CORE_IS_XZ || CORE_IS_YZ
  1121. SERIAL_PROTOCOLPGM(" C:");
  1122. #else
  1123. SERIAL_PROTOCOLPGM(" Z:");
  1124. #endif
  1125. SERIAL_PROTOCOL(zpos);
  1126. SERIAL_EOL();
  1127. }
  1128. #if ENABLED(BABYSTEPPING)
  1129. #if ENABLED(DELTA)
  1130. #define CYCLES_EATEN_BABYSTEP (2 * 15)
  1131. #else
  1132. #define CYCLES_EATEN_BABYSTEP 0
  1133. #endif
  1134. #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
  1135. #define _ENABLE(AXIS) enable_## AXIS()
  1136. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1137. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1138. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1139. #if EXTRA_CYCLES_BABYSTEP > 20
  1140. #define _SAVE_START const uint32_t pulse_start = TCNT0
  1141. #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  1142. #else
  1143. #define _SAVE_START NOOP
  1144. #if EXTRA_CYCLES_BABYSTEP > 0
  1145. #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
  1146. #elif STEP_PULSE_CYCLES > 0
  1147. #define _PULSE_WAIT NOOP
  1148. #elif ENABLED(DELTA)
  1149. #define _PULSE_WAIT delayMicroseconds(2);
  1150. #else
  1151. #define _PULSE_WAIT delayMicroseconds(4);
  1152. #endif
  1153. #endif
  1154. #define BABYSTEP_AXIS(AXIS, INVERT) { \
  1155. const uint8_t old_dir = _READ_DIR(AXIS); \
  1156. _ENABLE(AXIS); \
  1157. _SAVE_START; \
  1158. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1159. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1160. _PULSE_WAIT; \
  1161. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1162. _APPLY_DIR(AXIS, old_dir); \
  1163. }
  1164. // MUST ONLY BE CALLED BY AN ISR,
  1165. // No other ISR should ever interrupt this!
  1166. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  1167. cli();
  1168. switch (axis) {
  1169. #if ENABLED(BABYSTEP_XY)
  1170. case X_AXIS:
  1171. BABYSTEP_AXIS(X, false);
  1172. break;
  1173. case Y_AXIS:
  1174. BABYSTEP_AXIS(Y, false);
  1175. break;
  1176. #endif
  1177. case Z_AXIS: {
  1178. #if DISABLED(DELTA)
  1179. BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z);
  1180. #else // DELTA
  1181. const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1182. enable_X();
  1183. enable_Y();
  1184. enable_Z();
  1185. const uint8_t old_x_dir_pin = X_DIR_READ,
  1186. old_y_dir_pin = Y_DIR_READ,
  1187. old_z_dir_pin = Z_DIR_READ;
  1188. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1189. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1190. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1191. _SAVE_START;
  1192. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1193. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1194. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1195. _PULSE_WAIT;
  1196. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1197. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1198. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1199. // Restore direction bits
  1200. X_DIR_WRITE(old_x_dir_pin);
  1201. Y_DIR_WRITE(old_y_dir_pin);
  1202. Z_DIR_WRITE(old_z_dir_pin);
  1203. #endif
  1204. } break;
  1205. default: break;
  1206. }
  1207. sei();
  1208. }
  1209. #endif // BABYSTEPPING
  1210. /**
  1211. * Software-controlled Stepper Motor Current
  1212. */
  1213. #if HAS_DIGIPOTSS
  1214. // From Arduino DigitalPotControl example
  1215. void Stepper::digitalPotWrite(const int16_t address, const int16_t value) {
  1216. WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
  1217. SPI.transfer(address); // Send the address and value via SPI
  1218. SPI.transfer(value);
  1219. WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
  1220. //delay(10);
  1221. }
  1222. #endif // HAS_DIGIPOTSS
  1223. #if HAS_MOTOR_CURRENT_PWM
  1224. void Stepper::refresh_motor_power() {
  1225. for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
  1226. switch (i) {
  1227. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1228. case 0:
  1229. #endif
  1230. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1231. case 1:
  1232. #endif
  1233. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1234. case 2:
  1235. #endif
  1236. digipot_current(i, motor_current_setting[i]);
  1237. default: break;
  1238. }
  1239. }
  1240. }
  1241. #endif // HAS_MOTOR_CURRENT_PWM
  1242. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1243. void Stepper::digipot_current(const uint8_t driver, const int current) {
  1244. #if HAS_DIGIPOTSS
  1245. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1246. digitalPotWrite(digipot_ch[driver], current);
  1247. #elif HAS_MOTOR_CURRENT_PWM
  1248. if (WITHIN(driver, 0, 2))
  1249. motor_current_setting[driver] = current; // update motor_current_setting
  1250. #define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1251. switch (driver) {
  1252. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1253. case 0: _WRITE_CURRENT_PWM(XY); break;
  1254. #endif
  1255. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1256. case 1: _WRITE_CURRENT_PWM(Z); break;
  1257. #endif
  1258. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1259. case 2: _WRITE_CURRENT_PWM(E); break;
  1260. #endif
  1261. }
  1262. #endif
  1263. }
  1264. void Stepper::digipot_init() {
  1265. #if HAS_DIGIPOTSS
  1266. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1267. SPI.begin();
  1268. SET_OUTPUT(DIGIPOTSS_PIN);
  1269. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1270. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1271. digipot_current(i, digipot_motor_current[i]);
  1272. }
  1273. #elif HAS_MOTOR_CURRENT_PWM
  1274. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1275. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1276. #endif
  1277. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1278. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1279. #endif
  1280. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1281. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1282. #endif
  1283. refresh_motor_power();
  1284. // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1285. SET_CS5(PRESCALER_1);
  1286. #endif
  1287. }
  1288. #endif
  1289. #if HAS_MICROSTEPS
  1290. /**
  1291. * Software-controlled Microstepping
  1292. */
  1293. void Stepper::microstep_init() {
  1294. SET_OUTPUT(X_MS1_PIN);
  1295. SET_OUTPUT(X_MS2_PIN);
  1296. #if HAS_Y_MICROSTEPS
  1297. SET_OUTPUT(Y_MS1_PIN);
  1298. SET_OUTPUT(Y_MS2_PIN);
  1299. #endif
  1300. #if HAS_Z_MICROSTEPS
  1301. SET_OUTPUT(Z_MS1_PIN);
  1302. SET_OUTPUT(Z_MS2_PIN);
  1303. #endif
  1304. #if HAS_E0_MICROSTEPS
  1305. SET_OUTPUT(E0_MS1_PIN);
  1306. SET_OUTPUT(E0_MS2_PIN);
  1307. #endif
  1308. #if HAS_E1_MICROSTEPS
  1309. SET_OUTPUT(E1_MS1_PIN);
  1310. SET_OUTPUT(E1_MS2_PIN);
  1311. #endif
  1312. #if HAS_E2_MICROSTEPS
  1313. SET_OUTPUT(E2_MS1_PIN);
  1314. SET_OUTPUT(E2_MS2_PIN);
  1315. #endif
  1316. #if HAS_E3_MICROSTEPS
  1317. SET_OUTPUT(E3_MS1_PIN);
  1318. SET_OUTPUT(E3_MS2_PIN);
  1319. #endif
  1320. #if HAS_E4_MICROSTEPS
  1321. SET_OUTPUT(E4_MS1_PIN);
  1322. SET_OUTPUT(E4_MS2_PIN);
  1323. #endif
  1324. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1325. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1326. microstep_mode(i, microstep_modes[i]);
  1327. }
  1328. void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {
  1329. if (ms1 >= 0) switch (driver) {
  1330. case 0: WRITE(X_MS1_PIN, ms1); break;
  1331. #if HAS_Y_MICROSTEPS
  1332. case 1: WRITE(Y_MS1_PIN, ms1); break;
  1333. #endif
  1334. #if HAS_Z_MICROSTEPS
  1335. case 2: WRITE(Z_MS1_PIN, ms1); break;
  1336. #endif
  1337. #if HAS_E0_MICROSTEPS
  1338. case 3: WRITE(E0_MS1_PIN, ms1); break;
  1339. #endif
  1340. #if HAS_E1_MICROSTEPS
  1341. case 4: WRITE(E1_MS1_PIN, ms1); break;
  1342. #endif
  1343. #if HAS_E2_MICROSTEPS
  1344. case 5: WRITE(E2_MS1_PIN, ms1); break;
  1345. #endif
  1346. #if HAS_E3_MICROSTEPS
  1347. case 6: WRITE(E3_MS1_PIN, ms1); break;
  1348. #endif
  1349. #if HAS_E4_MICROSTEPS
  1350. case 7: WRITE(E4_MS1_PIN, ms1); break;
  1351. #endif
  1352. }
  1353. if (ms2 >= 0) switch (driver) {
  1354. case 0: WRITE(X_MS2_PIN, ms2); break;
  1355. #if HAS_Y_MICROSTEPS
  1356. case 1: WRITE(Y_MS2_PIN, ms2); break;
  1357. #endif
  1358. #if HAS_Z_MICROSTEPS
  1359. case 2: WRITE(Z_MS2_PIN, ms2); break;
  1360. #endif
  1361. #if HAS_E0_MICROSTEPS
  1362. case 3: WRITE(E0_MS2_PIN, ms2); break;
  1363. #endif
  1364. #if HAS_E1_MICROSTEPS
  1365. case 4: WRITE(E1_MS2_PIN, ms2); break;
  1366. #endif
  1367. #if HAS_E2_MICROSTEPS
  1368. case 5: WRITE(E2_MS2_PIN, ms2); break;
  1369. #endif
  1370. #if HAS_E3_MICROSTEPS
  1371. case 6: WRITE(E3_MS2_PIN, ms2); break;
  1372. #endif
  1373. #if HAS_E4_MICROSTEPS
  1374. case 7: WRITE(E4_MS2_PIN, ms2); break;
  1375. #endif
  1376. }
  1377. }
  1378. void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
  1379. switch (stepping_mode) {
  1380. case 1: microstep_ms(driver, MICROSTEP1); break;
  1381. case 2: microstep_ms(driver, MICROSTEP2); break;
  1382. case 4: microstep_ms(driver, MICROSTEP4); break;
  1383. case 8: microstep_ms(driver, MICROSTEP8); break;
  1384. case 16: microstep_ms(driver, MICROSTEP16); break;
  1385. }
  1386. }
  1387. void Stepper::microstep_readings() {
  1388. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1389. SERIAL_PROTOCOLPGM("X: ");
  1390. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1391. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1392. #if HAS_Y_MICROSTEPS
  1393. SERIAL_PROTOCOLPGM("Y: ");
  1394. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1395. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1396. #endif
  1397. #if HAS_Z_MICROSTEPS
  1398. SERIAL_PROTOCOLPGM("Z: ");
  1399. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1400. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1401. #endif
  1402. #if HAS_E0_MICROSTEPS
  1403. SERIAL_PROTOCOLPGM("E0: ");
  1404. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1405. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1406. #endif
  1407. #if HAS_E1_MICROSTEPS
  1408. SERIAL_PROTOCOLPGM("E1: ");
  1409. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1410. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1411. #endif
  1412. #if HAS_E2_MICROSTEPS
  1413. SERIAL_PROTOCOLPGM("E2: ");
  1414. SERIAL_PROTOCOL(READ(E2_MS1_PIN));
  1415. SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
  1416. #endif
  1417. #if HAS_E3_MICROSTEPS
  1418. SERIAL_PROTOCOLPGM("E3: ");
  1419. SERIAL_PROTOCOL(READ(E3_MS1_PIN));
  1420. SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
  1421. #endif
  1422. #if HAS_E4_MICROSTEPS
  1423. SERIAL_PROTOCOLPGM("E4: ");
  1424. SERIAL_PROTOCOL(READ(E4_MS1_PIN));
  1425. SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
  1426. #endif
  1427. }
  1428. #endif // HAS_MICROSTEPS