My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * G29.cpp - Auto Bed Leveling
  24. */
  25. #include "../../../inc/MarlinConfig.h"
  26. #if HAS_ABL_NOT_UBL
  27. #include "../../gcode.h"
  28. #include "../../../feature/bedlevel/bedlevel.h"
  29. #include "../../../module/motion.h"
  30. #include "../../../module/planner.h"
  31. #include "../../../module/stepper.h"
  32. #include "../../../module/probe.h"
  33. #include "../../queue.h"
  34. #if HAS_DISPLAY
  35. #include "../../../lcd/ultralcd.h"
  36. #endif
  37. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  38. #include "../../../libs/least_squares_fit.h"
  39. #endif
  40. #if ABL_PLANAR
  41. #include "../../../libs/vector_3.h"
  42. #endif
  43. #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
  44. #include "../../../core/debug_out.h"
  45. #if ENABLED(EXTENSIBLE_UI)
  46. #include "../../../lcd/extensible_ui/ui_api.h"
  47. #endif
  48. #if HOTENDS > 1
  49. #include "../../../module/tool_change.h"
  50. #endif
  51. #if ABL_GRID
  52. #if ENABLED(PROBE_Y_FIRST)
  53. #define PR_OUTER_VAR meshCount.x
  54. #define PR_OUTER_END abl_grid_points.x
  55. #define PR_INNER_VAR meshCount.y
  56. #define PR_INNER_END abl_grid_points.y
  57. #else
  58. #define PR_OUTER_VAR meshCount.y
  59. #define PR_OUTER_END abl_grid_points.y
  60. #define PR_INNER_VAR meshCount.x
  61. #define PR_INNER_END abl_grid_points.x
  62. #endif
  63. #endif
  64. #if ENABLED(G29_RETRY_AND_RECOVER)
  65. #define G29_RETURN(b) return b;
  66. #else
  67. #define G29_RETURN(b) return;
  68. #endif
  69. /**
  70. * G29: Detailed Z probe, probes the bed at 3 or more points.
  71. * Will fail if the printer has not been homed with G28.
  72. *
  73. * Enhanced G29 Auto Bed Leveling Probe Routine
  74. *
  75. * O Auto-level only if needed
  76. *
  77. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  78. * or alter the bed level data. Useful to check the topology
  79. * after a first run of G29.
  80. *
  81. * J Jettison current bed leveling data
  82. *
  83. * V Set the verbose level (0-4). Example: "G29 V3"
  84. *
  85. * Parameters With LINEAR leveling only:
  86. *
  87. * P Set the size of the grid that will be probed (P x P points).
  88. * Example: "G29 P4"
  89. *
  90. * X Set the X size of the grid that will be probed (X x Y points).
  91. * Example: "G29 X7 Y5"
  92. *
  93. * Y Set the Y size of the grid that will be probed (X x Y points).
  94. *
  95. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  96. * This is useful for manual bed leveling and finding flaws in the bed (to
  97. * assist with part placement).
  98. * Not supported by non-linear delta printer bed leveling.
  99. *
  100. * Parameters With LINEAR and BILINEAR leveling only:
  101. *
  102. * S Set the XY travel speed between probe points (in units/min)
  103. *
  104. * H Set bounds to a centered square H x H units in size
  105. *
  106. * -or-
  107. *
  108. * F Set the Front limit of the probing grid
  109. * B Set the Back limit of the probing grid
  110. * L Set the Left limit of the probing grid
  111. * R Set the Right limit of the probing grid
  112. *
  113. * Parameters with DEBUG_LEVELING_FEATURE only:
  114. *
  115. * C Make a totally fake grid with no actual probing.
  116. * For use in testing when no probing is possible.
  117. *
  118. * Parameters with BILINEAR leveling only:
  119. *
  120. * Z Supply an additional Z probe offset
  121. *
  122. * Extra parameters with PROBE_MANUALLY:
  123. *
  124. * To do manual probing simply repeat G29 until the procedure is complete.
  125. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  126. *
  127. * Q Query leveling and G29 state
  128. *
  129. * A Abort current leveling procedure
  130. *
  131. * Extra parameters with BILINEAR only:
  132. *
  133. * W Write a mesh point. (If G29 is idle.)
  134. * I X index for mesh point
  135. * J Y index for mesh point
  136. * X X for mesh point, overrides I
  137. * Y Y for mesh point, overrides J
  138. * Z Z for mesh point. Otherwise, raw current Z.
  139. *
  140. * Without PROBE_MANUALLY:
  141. *
  142. * E By default G29 will engage the Z probe, test the bed, then disengage.
  143. * Include "E" to engage/disengage the Z probe for each sample.
  144. * There's no extra effect if you have a fixed Z probe.
  145. *
  146. */
  147. G29_TYPE GcodeSuite::G29() {
  148. #if EITHER(DEBUG_LEVELING_FEATURE, PROBE_MANUALLY)
  149. const bool seenQ = parser.seen('Q');
  150. #else
  151. constexpr bool seenQ = false;
  152. #endif
  153. // G29 Q is also available if debugging
  154. #if ENABLED(DEBUG_LEVELING_FEATURE)
  155. const uint8_t old_debug_flags = marlin_debug_flags;
  156. if (seenQ) marlin_debug_flags |= MARLIN_DEBUG_LEVELING;
  157. if (DEBUGGING(LEVELING)) {
  158. DEBUG_POS(">>> G29", current_position);
  159. log_machine_info();
  160. }
  161. marlin_debug_flags = old_debug_flags;
  162. #if DISABLED(PROBE_MANUALLY)
  163. if (seenQ) G29_RETURN(false);
  164. #endif
  165. #endif
  166. #if ENABLED(PROBE_MANUALLY)
  167. const bool seenA = parser.seen('A');
  168. #else
  169. constexpr bool seenA = false;
  170. #endif
  171. const bool no_action = seenA || seenQ,
  172. faux =
  173. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  174. parser.boolval('C')
  175. #else
  176. no_action
  177. #endif
  178. ;
  179. // Don't allow auto-leveling without homing first
  180. if (axis_unhomed_error()) G29_RETURN(false);
  181. if (!no_action && planner.leveling_active && parser.boolval('O')) { // Auto-level only if needed
  182. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> Auto-level not needed, skip\n<<< G29");
  183. G29_RETURN(false);
  184. }
  185. // Define local vars 'static' for manual probing, 'auto' otherwise
  186. #if ENABLED(PROBE_MANUALLY)
  187. #define ABL_VAR static
  188. #else
  189. #define ABL_VAR
  190. #endif
  191. ABL_VAR int verbose_level;
  192. ABL_VAR xy_pos_t probePos;
  193. ABL_VAR float measured_z;
  194. ABL_VAR bool dryrun, abl_should_enable;
  195. #if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
  196. ABL_VAR int abl_probe_index;
  197. #endif
  198. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  199. ABL_VAR bool saved_soft_endstops_state = true;
  200. #endif
  201. #if ABL_GRID
  202. #if ENABLED(PROBE_MANUALLY)
  203. ABL_VAR xy_int8_t meshCount;
  204. #endif
  205. ABL_VAR xy_pos_t probe_position_lf, probe_position_rb;
  206. ABL_VAR xy_float_t gridSpacing = { 0, 0 };
  207. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  208. ABL_VAR bool do_topography_map;
  209. ABL_VAR xy_uint8_t abl_grid_points;
  210. #else // Bilinear
  211. constexpr xy_uint8_t abl_grid_points = { GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y };
  212. #endif
  213. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  214. ABL_VAR int abl_points;
  215. #elif ENABLED(PROBE_MANUALLY) // Bilinear
  216. int constexpr abl_points = GRID_MAX_POINTS;
  217. #endif
  218. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  219. ABL_VAR float zoffset;
  220. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  221. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  222. ABL_VAR float eqnAMatrix[(GRID_MAX_POINTS) * 3], // "A" matrix of the linear system of equations
  223. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  224. mean;
  225. #endif
  226. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  227. #if ENABLED(PROBE_MANUALLY)
  228. int constexpr abl_points = 3; // used to show total points
  229. #endif
  230. vector_3 points[3];
  231. get_three_probe_points(points);
  232. #endif // AUTO_BED_LEVELING_3POINT
  233. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  234. struct linear_fit_data lsf_results;
  235. incremental_LSF_reset(&lsf_results);
  236. #endif
  237. /**
  238. * On the initial G29 fetch command parameters.
  239. */
  240. if (!g29_in_progress) {
  241. #if HOTENDS > 1
  242. if (active_extruder != 0) tool_change(0);
  243. #endif
  244. #if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
  245. abl_probe_index = -1;
  246. #endif
  247. abl_should_enable = planner.leveling_active;
  248. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  249. const bool seen_w = parser.seen('W');
  250. if (seen_w) {
  251. if (!leveling_is_valid()) {
  252. SERIAL_ERROR_MSG("No bilinear grid");
  253. G29_RETURN(false);
  254. }
  255. const float rz = parser.seenval('Z') ? RAW_Z_POSITION(parser.value_linear_units()) : current_position.z;
  256. if (!WITHIN(rz, -10, 10)) {
  257. SERIAL_ERROR_MSG("Bad Z value");
  258. G29_RETURN(false);
  259. }
  260. const float rx = RAW_X_POSITION(parser.linearval('X', NAN)),
  261. ry = RAW_Y_POSITION(parser.linearval('Y', NAN));
  262. int8_t i = parser.byteval('I', -1), j = parser.byteval('J', -1);
  263. if (!isnan(rx) && !isnan(ry)) {
  264. // Get nearest i / j from rx / ry
  265. i = (rx - bilinear_start.x + 0.5 * gridSpacing.x) / gridSpacing.x;
  266. j = (ry - bilinear_start.y + 0.5 * gridSpacing.y) / gridSpacing.y;
  267. LIMIT(i, 0, GRID_MAX_POINTS_X - 1);
  268. LIMIT(j, 0, GRID_MAX_POINTS_Y - 1);
  269. }
  270. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  271. set_bed_leveling_enabled(false);
  272. z_values[i][j] = rz;
  273. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  274. bed_level_virt_interpolate();
  275. #endif
  276. #if ENABLED(EXTENSIBLE_UI)
  277. ExtUI::onMeshUpdate(i, j, rz);
  278. #endif
  279. set_bed_leveling_enabled(abl_should_enable);
  280. if (abl_should_enable) report_current_position();
  281. }
  282. G29_RETURN(false);
  283. } // parser.seen('W')
  284. #else
  285. constexpr bool seen_w = false;
  286. #endif
  287. // Jettison bed leveling data
  288. if (!seen_w && parser.seen('J')) {
  289. reset_bed_level();
  290. G29_RETURN(false);
  291. }
  292. verbose_level = parser.intval('V');
  293. if (!WITHIN(verbose_level, 0, 4)) {
  294. SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).");
  295. G29_RETURN(false);
  296. }
  297. dryrun = parser.boolval('D')
  298. #if ENABLED(PROBE_MANUALLY)
  299. || no_action
  300. #endif
  301. ;
  302. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  303. do_topography_map = verbose_level > 2 || parser.boolval('T');
  304. // X and Y specify points in each direction, overriding the default
  305. // These values may be saved with the completed mesh
  306. abl_grid_points.set(
  307. parser.byteval('X', GRID_MAX_POINTS_X),
  308. parser.byteval('Y', GRID_MAX_POINTS_Y)
  309. );
  310. if (parser.seenval('P')) abl_grid_points.x = abl_grid_points.y = parser.value_int();
  311. if (!WITHIN(abl_grid_points.x, 2, GRID_MAX_POINTS_X)) {
  312. SERIAL_ECHOLNPGM("?Probe points (X) implausible (2-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  313. G29_RETURN(false);
  314. }
  315. if (!WITHIN(abl_grid_points.y, 2, GRID_MAX_POINTS_Y)) {
  316. SERIAL_ECHOLNPGM("?Probe points (Y) implausible (2-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  317. G29_RETURN(false);
  318. }
  319. abl_points = abl_grid_points.x * abl_grid_points.y;
  320. mean = 0;
  321. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  322. zoffset = parser.linearval('Z');
  323. #endif
  324. #if ABL_GRID
  325. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  326. const float x_min = probe_min_x(), x_max = probe_max_x(),
  327. y_min = probe_min_y(), y_max = probe_max_y();
  328. if (parser.seen('H')) {
  329. const int16_t size = (int16_t)parser.value_linear_units();
  330. probe_position_lf.set(
  331. _MAX(X_CENTER - size / 2, x_min),
  332. _MAX(Y_CENTER - size / 2, y_min)
  333. );
  334. probe_position_rb.set(
  335. _MIN(probe_position_lf.x + size, x_max),
  336. _MIN(probe_position_lf.y + size, y_max)
  337. );
  338. }
  339. else {
  340. probe_position_lf.set(
  341. parser.seenval('L') ? RAW_X_POSITION(parser.value_linear_units()) : x_min,
  342. parser.seenval('F') ? RAW_Y_POSITION(parser.value_linear_units()) : y_min
  343. );
  344. probe_position_rb.set(
  345. parser.seenval('R') ? RAW_X_POSITION(parser.value_linear_units()) : x_max,
  346. parser.seenval('B') ? RAW_Y_POSITION(parser.value_linear_units()) : y_max
  347. );
  348. }
  349. if (
  350. #if IS_SCARA || ENABLED(DELTA)
  351. !position_is_reachable_by_probe(probe_position_lf.x, 0)
  352. || !position_is_reachable_by_probe(probe_position_rb.x, 0)
  353. || !position_is_reachable_by_probe(0, probe_position_lf.y)
  354. || !position_is_reachable_by_probe(0, probe_position_rb.y)
  355. #else
  356. !position_is_reachable_by_probe(probe_position_lf)
  357. || !position_is_reachable_by_probe(probe_position_rb)
  358. #endif
  359. ) {
  360. SERIAL_ECHOLNPGM("? (L,R,F,B) out of bounds.");
  361. G29_RETURN(false);
  362. }
  363. // probe at the points of a lattice grid
  364. gridSpacing.set((probe_position_rb.x - probe_position_lf.x) / (abl_grid_points.x - 1),
  365. (probe_position_rb.y - probe_position_lf.y) / (abl_grid_points.y - 1));
  366. #endif // ABL_GRID
  367. if (verbose_level > 0) {
  368. SERIAL_ECHOPGM("G29 Auto Bed Leveling");
  369. if (dryrun) SERIAL_ECHOPGM(" (DRYRUN)");
  370. SERIAL_EOL();
  371. }
  372. planner.synchronize();
  373. // Disable auto bed leveling during G29.
  374. // Be formal so G29 can be done successively without G28.
  375. if (!no_action) set_bed_leveling_enabled(false);
  376. #if HAS_BED_PROBE
  377. // Deploy the probe. Probe will raise if needed.
  378. if (DEPLOY_PROBE()) {
  379. set_bed_leveling_enabled(abl_should_enable);
  380. G29_RETURN(false);
  381. }
  382. #endif
  383. if (!faux) remember_feedrate_scaling_off();
  384. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  385. #if ENABLED(PROBE_MANUALLY)
  386. if (!no_action)
  387. #endif
  388. if (gridSpacing != bilinear_grid_spacing || probe_position_lf != bilinear_start) {
  389. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  390. reset_bed_level();
  391. // Initialize a grid with the given dimensions
  392. bilinear_grid_spacing = gridSpacing;
  393. bilinear_start = probe_position_lf;
  394. // Can't re-enable (on error) until the new grid is written
  395. abl_should_enable = false;
  396. }
  397. #endif // AUTO_BED_LEVELING_BILINEAR
  398. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  399. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> 3-point Leveling");
  400. // Probe at 3 arbitrary points
  401. points[0].z = points[1].z = points[2].z = 0;
  402. #endif // AUTO_BED_LEVELING_3POINT
  403. } // !g29_in_progress
  404. #if ENABLED(PROBE_MANUALLY)
  405. // For manual probing, get the next index to probe now.
  406. // On the first probe this will be incremented to 0.
  407. if (!no_action) {
  408. ++abl_probe_index;
  409. g29_in_progress = true;
  410. }
  411. // Abort current G29 procedure, go back to idle state
  412. if (seenA && g29_in_progress) {
  413. SERIAL_ECHOLNPGM("Manual G29 aborted");
  414. #if HAS_SOFTWARE_ENDSTOPS
  415. soft_endstops_enabled = saved_soft_endstops_state;
  416. #endif
  417. set_bed_leveling_enabled(abl_should_enable);
  418. g29_in_progress = false;
  419. #if ENABLED(LCD_BED_LEVELING)
  420. ui.wait_for_bl_move = false;
  421. #endif
  422. }
  423. // Query G29 status
  424. if (verbose_level || seenQ) {
  425. SERIAL_ECHOPGM("Manual G29 ");
  426. if (g29_in_progress) {
  427. SERIAL_ECHOPAIR("point ", _MIN(abl_probe_index + 1, abl_points));
  428. SERIAL_ECHOLNPAIR(" of ", abl_points);
  429. }
  430. else
  431. SERIAL_ECHOLNPGM("idle");
  432. }
  433. if (no_action) G29_RETURN(false);
  434. if (abl_probe_index == 0) {
  435. // For the initial G29 S2 save software endstop state
  436. #if HAS_SOFTWARE_ENDSTOPS
  437. saved_soft_endstops_state = soft_endstops_enabled;
  438. #endif
  439. // Move close to the bed before the first point
  440. do_blocking_move_to_z(0);
  441. }
  442. else {
  443. #if EITHER(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_3POINT)
  444. const uint16_t index = abl_probe_index - 1;
  445. #endif
  446. // For G29 after adjusting Z.
  447. // Save the previous Z before going to the next point
  448. measured_z = current_position.z;
  449. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  450. mean += measured_z;
  451. eqnBVector[index] = measured_z;
  452. eqnAMatrix[index + 0 * abl_points] = probePos.x;
  453. eqnAMatrix[index + 1 * abl_points] = probePos.y;
  454. eqnAMatrix[index + 2 * abl_points] = 1;
  455. incremental_LSF(&lsf_results, probePos, measured_z);
  456. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  457. points[index].z = measured_z;
  458. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  459. const float newz = measured_z + zoffset;
  460. z_values[meshCount.x][meshCount.y] = newz;
  461. #if ENABLED(EXTENSIBLE_UI)
  462. ExtUI::onMeshUpdate(meshCount, newz);
  463. #endif
  464. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR_P(PSTR("Save X"), meshCount.x, SP_Y_STR, meshCount.y, SP_Z_STR, measured_z + zoffset);
  465. #endif
  466. }
  467. //
  468. // If there's another point to sample, move there with optional lift.
  469. //
  470. #if ABL_GRID
  471. // Skip any unreachable points
  472. while (abl_probe_index < abl_points) {
  473. // Set meshCount.x, meshCount.y based on abl_probe_index, with zig-zag
  474. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  475. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  476. // Probe in reverse order for every other row/column
  477. bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  478. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  479. probePos = probe_position_lf + gridSpacing * meshCount.asFloat();
  480. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  481. indexIntoAB[meshCount.x][meshCount.y] = abl_probe_index;
  482. #endif
  483. // Keep looping till a reachable point is found
  484. if (position_is_reachable(probePos)) break;
  485. ++abl_probe_index;
  486. }
  487. // Is there a next point to move to?
  488. if (abl_probe_index < abl_points) {
  489. _manual_goto_xy(probePos); // Can be used here too!
  490. #if HAS_SOFTWARE_ENDSTOPS
  491. // Disable software endstops to allow manual adjustment
  492. // If G29 is not completed, they will not be re-enabled
  493. soft_endstops_enabled = false;
  494. #endif
  495. G29_RETURN(false);
  496. }
  497. else {
  498. // Leveling done! Fall through to G29 finishing code below
  499. SERIAL_ECHOLNPGM("Grid probing done.");
  500. // Re-enable software endstops, if needed
  501. #if HAS_SOFTWARE_ENDSTOPS
  502. soft_endstops_enabled = saved_soft_endstops_state;
  503. #endif
  504. }
  505. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  506. // Probe at 3 arbitrary points
  507. if (abl_probe_index < abl_points) {
  508. probePos = points[abl_probe_index];
  509. _manual_goto_xy(probePos);
  510. #if HAS_SOFTWARE_ENDSTOPS
  511. // Disable software endstops to allow manual adjustment
  512. // If G29 is not completed, they will not be re-enabled
  513. soft_endstops_enabled = false;
  514. #endif
  515. G29_RETURN(false);
  516. }
  517. else {
  518. SERIAL_ECHOLNPGM("3-point probing done.");
  519. // Re-enable software endstops, if needed
  520. #if HAS_SOFTWARE_ENDSTOPS
  521. soft_endstops_enabled = saved_soft_endstops_state;
  522. #endif
  523. if (!dryrun) {
  524. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  525. if (planeNormal.z < 0) planeNormal *= -1;
  526. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  527. // Can't re-enable (on error) until the new grid is written
  528. abl_should_enable = false;
  529. }
  530. }
  531. #endif // AUTO_BED_LEVELING_3POINT
  532. #else // !PROBE_MANUALLY
  533. {
  534. const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
  535. measured_z = 0;
  536. #if ABL_GRID
  537. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  538. measured_z = 0;
  539. xy_int8_t meshCount;
  540. // Outer loop is X with PROBE_Y_FIRST enabled
  541. // Outer loop is Y with PROBE_Y_FIRST disabled
  542. for (PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
  543. int8_t inStart, inStop, inInc;
  544. if (zig) { // Zig away from origin
  545. inStart = 0; // Left or front
  546. inStop = PR_INNER_END; // Right or back
  547. inInc = 1; // Zig right
  548. }
  549. else { // Zag towards origin
  550. inStart = PR_INNER_END - 1; // Right or back
  551. inStop = -1; // Left or front
  552. inInc = -1; // Zag left
  553. }
  554. zig ^= true; // zag
  555. // An index to print current state
  556. uint8_t pt_index = (PR_OUTER_VAR) * (PR_INNER_END) + 1;
  557. // Inner loop is Y with PROBE_Y_FIRST enabled
  558. // Inner loop is X with PROBE_Y_FIRST disabled
  559. for (PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; pt_index++, PR_INNER_VAR += inInc) {
  560. probePos = probe_position_lf + gridSpacing * meshCount.asFloat();
  561. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  562. indexIntoAB[meshCount.x][meshCount.y] = ++abl_probe_index; // 0...
  563. #endif
  564. #if IS_KINEMATIC
  565. // Avoid probing outside the round or hexagonal area
  566. if (!position_is_reachable_by_probe(probePos)) continue;
  567. #endif
  568. if (verbose_level) SERIAL_ECHOLNPAIR("Probing mesh point ", int(pt_index), "/", int(GRID_MAX_POINTS), ".");
  569. #if HAS_DISPLAY
  570. ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_MESH), int(pt_index), int(GRID_MAX_POINTS));
  571. #endif
  572. measured_z = faux ? 0.001f * random(-100, 101) : probe_at_point(probePos, raise_after, verbose_level);
  573. if (isnan(measured_z)) {
  574. set_bed_leveling_enabled(abl_should_enable);
  575. break; // Breaks out of both loops
  576. }
  577. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  578. mean += measured_z;
  579. eqnBVector[abl_probe_index] = measured_z;
  580. eqnAMatrix[abl_probe_index + 0 * abl_points] = probePos.x;
  581. eqnAMatrix[abl_probe_index + 1 * abl_points] = probePos.y;
  582. eqnAMatrix[abl_probe_index + 2 * abl_points] = 1;
  583. incremental_LSF(&lsf_results, probePos, measured_z);
  584. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  585. z_values[meshCount.x][meshCount.y] = measured_z + zoffset;
  586. #if ENABLED(EXTENSIBLE_UI)
  587. ExtUI::onMeshUpdate(meshCount, z_values[meshCount.x][meshCount.y]);
  588. #endif
  589. #endif
  590. abl_should_enable = false;
  591. idle();
  592. } // inner
  593. } // outer
  594. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  595. // Probe at 3 arbitrary points
  596. for (uint8_t i = 0; i < 3; ++i) {
  597. if (verbose_level) SERIAL_ECHOLNPAIR("Probing point ", int(i), "/3.");
  598. #if HAS_DISPLAY
  599. ui.status_printf_P(0, PSTR(S_FMT " %i/3"), GET_TEXT(MSG_PROBING_MESH), int(i));
  600. #endif
  601. // Retain the last probe position
  602. probePos = points[i];
  603. measured_z = faux ? 0.001 * random(-100, 101) : probe_at_point(probePos, raise_after, verbose_level);
  604. if (isnan(measured_z)) {
  605. set_bed_leveling_enabled(abl_should_enable);
  606. break;
  607. }
  608. points[i].z = measured_z;
  609. }
  610. if (!dryrun && !isnan(measured_z)) {
  611. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  612. if (planeNormal.z < 0) planeNormal *= -1;
  613. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  614. // Can't re-enable (on error) until the new grid is written
  615. abl_should_enable = false;
  616. }
  617. #endif // AUTO_BED_LEVELING_3POINT
  618. #if HAS_DISPLAY
  619. ui.reset_status();
  620. #endif
  621. // Stow the probe. No raise for FIX_MOUNTED_PROBE.
  622. if (STOW_PROBE()) {
  623. set_bed_leveling_enabled(abl_should_enable);
  624. measured_z = NAN;
  625. }
  626. }
  627. #endif // !PROBE_MANUALLY
  628. //
  629. // G29 Finishing Code
  630. //
  631. // Unless this is a dry run, auto bed leveling will
  632. // definitely be enabled after this point.
  633. //
  634. // If code above wants to continue leveling, it should
  635. // return or loop before this point.
  636. //
  637. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  638. #if ENABLED(PROBE_MANUALLY)
  639. g29_in_progress = false;
  640. #if ENABLED(LCD_BED_LEVELING)
  641. ui.wait_for_bl_move = false;
  642. #endif
  643. #endif
  644. // Calculate leveling, print reports, correct the position
  645. if (!isnan(measured_z)) {
  646. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  647. if (!dryrun) extrapolate_unprobed_bed_level();
  648. print_bilinear_leveling_grid();
  649. refresh_bed_level();
  650. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  651. print_bilinear_leveling_grid_virt();
  652. #endif
  653. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  654. // For LINEAR leveling calculate matrix, print reports, correct the position
  655. /**
  656. * solve the plane equation ax + by + d = z
  657. * A is the matrix with rows [x y 1] for all the probed points
  658. * B is the vector of the Z positions
  659. * the normal vector to the plane is formed by the coefficients of the
  660. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  661. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  662. */
  663. struct { float a, b, d; } plane_equation_coefficients;
  664. finish_incremental_LSF(&lsf_results);
  665. plane_equation_coefficients.a = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
  666. plane_equation_coefficients.b = -lsf_results.B; // but that is not yet tested.
  667. plane_equation_coefficients.d = -lsf_results.D;
  668. mean /= abl_points;
  669. if (verbose_level) {
  670. SERIAL_ECHOPAIR_F("Eqn coefficients: a: ", plane_equation_coefficients.a, 8);
  671. SERIAL_ECHOPAIR_F(" b: ", plane_equation_coefficients.b, 8);
  672. SERIAL_ECHOPAIR_F(" d: ", plane_equation_coefficients.d, 8);
  673. if (verbose_level > 2)
  674. SERIAL_ECHOPAIR_F("\nMean of sampled points: ", mean, 8);
  675. SERIAL_EOL();
  676. }
  677. // Create the matrix but don't correct the position yet
  678. if (!dryrun)
  679. planner.bed_level_matrix = matrix_3x3::create_look_at(
  680. vector_3(-plane_equation_coefficients.a, -plane_equation_coefficients.b, 1) // We can eliminate the '-' here and up above
  681. );
  682. // Show the Topography map if enabled
  683. if (do_topography_map) {
  684. float min_diff = 999;
  685. auto print_topo_map = [&](PGM_P const title, const bool get_min) {
  686. serialprintPGM(title);
  687. for (int8_t yy = abl_grid_points.y - 1; yy >= 0; yy--) {
  688. for (uint8_t xx = 0; xx < abl_grid_points.x; xx++) {
  689. const int ind = indexIntoAB[xx][yy];
  690. xyz_float_t tmp = { eqnAMatrix[ind + 0 * abl_points],
  691. eqnAMatrix[ind + 1 * abl_points], 0 };
  692. apply_rotation_xyz(planner.bed_level_matrix, tmp);
  693. if (get_min) NOMORE(min_diff, eqnBVector[ind] - tmp.z);
  694. const float subval = get_min ? mean : tmp.z + min_diff,
  695. diff = eqnBVector[ind] - subval;
  696. SERIAL_CHAR(' '); if (diff >= 0.0) SERIAL_CHAR('+'); // Include + for column alignment
  697. SERIAL_ECHO_F(diff, 5);
  698. } // xx
  699. SERIAL_EOL();
  700. } // yy
  701. SERIAL_EOL();
  702. };
  703. print_topo_map(PSTR("\nBed Height Topography:\n"
  704. " +--- BACK --+\n"
  705. " | |\n"
  706. " L | (+) | R\n"
  707. " E | | I\n"
  708. " F | (-) N (+) | G\n"
  709. " T | | H\n"
  710. " | (-) | T\n"
  711. " | |\n"
  712. " O-- FRONT --+\n"
  713. " (0,0)\n"), true);
  714. if (verbose_level > 3)
  715. print_topo_map(PSTR("\nCorrected Bed Height vs. Bed Topology:\n"), false);
  716. } //do_topography_map
  717. #endif // AUTO_BED_LEVELING_LINEAR
  718. #if ABL_PLANAR
  719. // For LINEAR and 3POINT leveling correct the current position
  720. if (verbose_level > 0)
  721. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  722. if (!dryrun) {
  723. //
  724. // Correct the current XYZ position based on the tilted plane.
  725. //
  726. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  727. xyze_pos_t converted = current_position;
  728. planner.force_unapply_leveling(converted); // use conversion machinery
  729. // Use the last measured distance to the bed, if possible
  730. if ( NEAR(current_position.x, probePos.x - probe_offset_xy.x)
  731. && NEAR(current_position.y, probePos.y - probe_offset_xy.y)
  732. ) {
  733. const float simple_z = current_position.z - measured_z;
  734. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Probed Z", simple_z, " Matrix Z", converted.z, " Discrepancy ", simple_z - converted.z);
  735. converted.z = simple_z;
  736. }
  737. // The rotated XY and corrected Z are now current_position
  738. current_position = converted;
  739. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  740. }
  741. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  742. if (!dryrun) {
  743. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("G29 uncorrected Z:", current_position.z);
  744. // Unapply the offset because it is going to be immediately applied
  745. // and cause compensation movement in Z
  746. current_position.z -= bilinear_z_offset(current_position);
  747. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(" corrected Z:", current_position.z);
  748. }
  749. #endif // ABL_PLANAR
  750. // Auto Bed Leveling is complete! Enable if possible.
  751. planner.leveling_active = dryrun ? abl_should_enable : true;
  752. } // !isnan(measured_z)
  753. // Restore state after probing
  754. if (!faux) restore_feedrate_and_scaling();
  755. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("<<< G29");
  756. if (planner.leveling_active)
  757. sync_plan_position();
  758. #if HAS_BED_PROBE && defined(Z_AFTER_PROBING)
  759. move_z_after_probing();
  760. #endif
  761. #ifdef Z_PROBE_END_SCRIPT
  762. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  763. planner.synchronize();
  764. process_subcommands_now_P(PSTR(Z_PROBE_END_SCRIPT));
  765. #endif
  766. report_current_position();
  767. G29_RETURN(isnan(measured_z));
  768. }
  769. #endif // HAS_ABL_NOT_UBL