My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

delta.cpp 9.4KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * delta.cpp
  24. */
  25. #include "../inc/MarlinConfig.h"
  26. #if ENABLED(DELTA)
  27. #include "delta.h"
  28. #include "motion.h"
  29. // For homing:
  30. #include "planner.h"
  31. #include "endstops.h"
  32. #include "../lcd/ultralcd.h"
  33. #include "../MarlinCore.h"
  34. #if HAS_BED_PROBE
  35. #include "probe.h"
  36. #endif
  37. #if ENABLED(SENSORLESS_HOMING)
  38. #include "../feature/tmc_util.h"
  39. #include "stepper/indirection.h"
  40. #endif
  41. #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
  42. #include "../core/debug_out.h"
  43. // Initialized by settings.load()
  44. float delta_height;
  45. abc_float_t delta_endstop_adj{0};
  46. float delta_radius,
  47. delta_diagonal_rod,
  48. delta_segments_per_second;
  49. abc_float_t delta_tower_angle_trim;
  50. xy_float_t delta_tower[ABC];
  51. abc_float_t delta_diagonal_rod_2_tower;
  52. float delta_clip_start_height = Z_MAX_POS;
  53. float delta_safe_distance_from_top();
  54. /**
  55. * Recalculate factors used for delta kinematics whenever
  56. * settings have been changed (e.g., by M665).
  57. */
  58. void recalc_delta_settings() {
  59. constexpr abc_float_t trt = DELTA_RADIUS_TRIM_TOWER,
  60. drt = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  61. delta_tower[A_AXIS].set(cos(RADIANS(210 + delta_tower_angle_trim.a)) * (delta_radius + trt.a), // front left tower
  62. sin(RADIANS(210 + delta_tower_angle_trim.a)) * (delta_radius + trt.a));
  63. delta_tower[B_AXIS].set(cos(RADIANS(330 + delta_tower_angle_trim.b)) * (delta_radius + trt.b), // front right tower
  64. sin(RADIANS(330 + delta_tower_angle_trim.b)) * (delta_radius + trt.b));
  65. delta_tower[C_AXIS].set(cos(RADIANS( 90 + delta_tower_angle_trim.c)) * (delta_radius + trt.c), // back middle tower
  66. sin(RADIANS( 90 + delta_tower_angle_trim.c)) * (delta_radius + trt.c));
  67. delta_diagonal_rod_2_tower.set(sq(delta_diagonal_rod + drt.a),
  68. sq(delta_diagonal_rod + drt.b),
  69. sq(delta_diagonal_rod + drt.c));
  70. update_software_endstops(Z_AXIS);
  71. set_all_unhomed();
  72. }
  73. /**
  74. * Get a safe radius for calibration
  75. */
  76. #if ENABLED(DELTA_AUTO_CALIBRATION)
  77. float calibration_radius_factor = 1;
  78. #endif
  79. float delta_calibration_radius() {
  80. return FLOOR((DELTA_PRINTABLE_RADIUS - _MAX(HYPOT(probe_offset_xy.x, probe_offset_xy.y), MIN_PROBE_EDGE)) * calibration_radius_factor);
  81. }
  82. /**
  83. * Delta Inverse Kinematics
  84. *
  85. * Calculate the tower positions for a given machine
  86. * position, storing the result in the delta[] array.
  87. *
  88. * This is an expensive calculation, requiring 3 square
  89. * roots per segmented linear move, and strains the limits
  90. * of a Mega2560 with a Graphical Display.
  91. *
  92. * Suggested optimizations include:
  93. *
  94. * - Disable the home_offset (M206) and/or position_shift (G92)
  95. * features to remove up to 12 float additions.
  96. */
  97. #define DELTA_DEBUG(VAR) do { \
  98. SERIAL_ECHOLNPAIR_P(PSTR("Cartesian X"), VAR.x, SP_Y_STR, VAR.y, SP_Z_STR, VAR.z); \
  99. SERIAL_ECHOLNPAIR("Delta A", delta.a, " B", delta.b, " C", delta.c); \
  100. }while(0)
  101. void inverse_kinematics(const xyz_pos_t &raw) {
  102. #if HAS_HOTEND_OFFSET
  103. // Delta hotend offsets must be applied in Cartesian space with no "spoofing"
  104. xyz_pos_t pos = { raw.x - hotend_offset[active_extruder].x,
  105. raw.y - hotend_offset[active_extruder].y,
  106. raw.z };
  107. DELTA_IK(pos);
  108. //DELTA_DEBUG(pos);
  109. #else
  110. DELTA_IK(raw);
  111. //DELTA_DEBUG(raw);
  112. #endif
  113. }
  114. /**
  115. * Calculate the highest Z position where the
  116. * effector has the full range of XY motion.
  117. */
  118. float delta_safe_distance_from_top() {
  119. xyz_pos_t cartesian{0};
  120. inverse_kinematics(cartesian);
  121. const float centered_extent = delta.a;
  122. cartesian.y = DELTA_PRINTABLE_RADIUS;
  123. inverse_kinematics(cartesian);
  124. return ABS(centered_extent - delta.a);
  125. }
  126. /**
  127. * Delta Forward Kinematics
  128. *
  129. * See the Wikipedia article "Trilateration"
  130. * https://en.wikipedia.org/wiki/Trilateration
  131. *
  132. * Establish a new coordinate system in the plane of the
  133. * three carriage points. This system has its origin at
  134. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  135. * plane with a Z component of zero.
  136. * We will define unit vectors in this coordinate system
  137. * in our original coordinate system. Then when we calculate
  138. * the Xnew, Ynew and Znew values, we can translate back into
  139. * the original system by moving along those unit vectors
  140. * by the corresponding values.
  141. *
  142. * Variable names matched to Marlin, c-version, and avoid the
  143. * use of any vector library.
  144. *
  145. * by Andreas Hardtung 2016-06-07
  146. * based on a Java function from "Delta Robot Kinematics V3"
  147. * by Steve Graves
  148. *
  149. * The result is stored in the cartes[] array.
  150. */
  151. void forward_kinematics_DELTA(const float &z1, const float &z2, const float &z3) {
  152. // Create a vector in old coordinates along x axis of new coordinate
  153. const float p12[3] = { delta_tower[B_AXIS].x - delta_tower[A_AXIS].x, delta_tower[B_AXIS].y - delta_tower[A_AXIS].y, z2 - z1 },
  154. // Get the reciprocal of Magnitude of vector.
  155. d2 = sq(p12[0]) + sq(p12[1]) + sq(p12[2]), inv_d = RSQRT(d2),
  156. // Create unit vector by multiplying by the inverse of the magnitude.
  157. ex[3] = { p12[0] * inv_d, p12[1] * inv_d, p12[2] * inv_d },
  158. // Get the vector from the origin of the new system to the third point.
  159. p13[3] = { delta_tower[C_AXIS].x - delta_tower[A_AXIS].x, delta_tower[C_AXIS].y - delta_tower[A_AXIS].y, z3 - z1 },
  160. // Use the dot product to find the component of this vector on the X axis.
  161. i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2],
  162. // Create a vector along the x axis that represents the x component of p13.
  163. iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  164. // Subtract the X component from the original vector leaving only Y. We use the
  165. // variable that will be the unit vector after we scale it.
  166. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  167. // The magnitude and the inverse of the magnitude of Y component
  168. const float j2 = sq(ey[0]) + sq(ey[1]) + sq(ey[2]), inv_j = RSQRT(j2);
  169. // Convert to a unit vector
  170. ey[0] *= inv_j; ey[1] *= inv_j; ey[2] *= inv_j;
  171. // The cross product of the unit x and y is the unit z
  172. // float[] ez = vectorCrossProd(ex, ey);
  173. const float ez[3] = {
  174. ex[1] * ey[2] - ex[2] * ey[1],
  175. ex[2] * ey[0] - ex[0] * ey[2],
  176. ex[0] * ey[1] - ex[1] * ey[0]
  177. },
  178. // We now have the d, i and j values defined in Wikipedia.
  179. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  180. Xnew = (delta_diagonal_rod_2_tower.a - delta_diagonal_rod_2_tower.b + d2) * inv_d * 0.5,
  181. Ynew = ((delta_diagonal_rod_2_tower.a - delta_diagonal_rod_2_tower.c + sq(i) + j2) * 0.5 - i * Xnew) * inv_j,
  182. Znew = SQRT(delta_diagonal_rod_2_tower.a - HYPOT2(Xnew, Ynew));
  183. // Start from the origin of the old coordinates and add vectors in the
  184. // old coords that represent the Xnew, Ynew and Znew to find the point
  185. // in the old system.
  186. cartes.set(delta_tower[A_AXIS].x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew,
  187. delta_tower[A_AXIS].y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew,
  188. z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew);
  189. }
  190. /**
  191. * A delta can only safely home all axes at the same time
  192. * This is like quick_home_xy() but for 3 towers.
  193. */
  194. void home_delta() {
  195. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  196. // Init the current position of all carriages to 0,0,0
  197. current_position.reset();
  198. destination.reset();
  199. sync_plan_position();
  200. // Disable stealthChop if used. Enable diag1 pin on driver.
  201. #if ENABLED(SENSORLESS_HOMING)
  202. sensorless_t stealth_states {
  203. tmc_enable_stallguard(stepperX),
  204. tmc_enable_stallguard(stepperY),
  205. tmc_enable_stallguard(stepperZ)
  206. };
  207. #endif
  208. // Move all carriages together linearly until an endstop is hit.
  209. current_position.z = (delta_height + 10
  210. #if HAS_BED_PROBE
  211. - probe_offset.z
  212. #endif
  213. );
  214. line_to_current_position(homing_feedrate(X_AXIS));
  215. planner.synchronize();
  216. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  217. #if ENABLED(SENSORLESS_HOMING)
  218. tmc_disable_stallguard(stepperX, stealth_states.x);
  219. tmc_disable_stallguard(stepperY, stealth_states.y);
  220. tmc_disable_stallguard(stepperZ, stealth_states.z);
  221. #endif
  222. endstops.validate_homing_move();
  223. // At least one carriage has reached the top.
  224. // Now re-home each carriage separately.
  225. homeaxis(A_AXIS);
  226. homeaxis(B_AXIS);
  227. homeaxis(C_AXIS);
  228. // Set all carriages to their home positions
  229. // Do this here all at once for Delta, because
  230. // XYZ isn't ABC. Applying this per-tower would
  231. // give the impression that they are the same.
  232. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  233. sync_plan_position();
  234. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  235. }
  236. #endif // DELTA