My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G31 - Dock sled (Z_PROBE_SLED only)
  67. // G32 - Undock sled (Z_PROBE_SLED only)
  68. // G90 - Use Absolute Coordinates
  69. // G91 - Use Relative Coordinates
  70. // G92 - Set current position to coordinates given
  71. // M Codes
  72. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  73. // M1 - Same as M0
  74. // M17 - Enable/Power all stepper motors
  75. // M18 - Disable all stepper motors; same as M84
  76. // M20 - List SD card
  77. // M21 - Init SD card
  78. // M22 - Release SD card
  79. // M23 - Select SD file (M23 filename.g)
  80. // M24 - Start/resume SD print
  81. // M25 - Pause SD print
  82. // M26 - Set SD position in bytes (M26 S12345)
  83. // M27 - Report SD print status
  84. // M28 - Start SD write (M28 filename.g)
  85. // M29 - Stop SD write
  86. // M30 - Delete file from SD (M30 filename.g)
  87. // M31 - Output time since last M109 or SD card start to serial
  88. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  89. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  90. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  91. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  92. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  93. // M80 - Turn on Power Supply
  94. // M81 - Turn off Power Supply
  95. // M82 - Set E codes absolute (default)
  96. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  97. // M84 - Disable steppers until next move,
  98. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  99. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  100. // M92 - Set axis_steps_per_unit - same syntax as G92
  101. // M104 - Set extruder target temp
  102. // M105 - Read current temp
  103. // M106 - Fan on
  104. // M107 - Fan off
  105. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  106. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  107. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  108. // M112 - Emergency stop
  109. // M114 - Output current position to serial port
  110. // M115 - Capabilities string
  111. // M117 - display message
  112. // M119 - Output Endstop status to serial port
  113. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  114. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  115. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  116. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  117. // M140 - Set bed target temp
  118. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  119. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  120. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  121. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  122. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  123. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  124. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  125. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  126. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  127. // M206 - set additional homing offset
  128. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  129. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  130. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  131. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  132. // M220 S<factor in percent>- set speed factor override percentage
  133. // M221 S<factor in percent>- set extrude factor override percentage
  134. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  135. // M240 - Trigger a camera to take a photograph
  136. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  137. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  138. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  139. // M301 - Set PID parameters P I and D
  140. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  141. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  142. // M304 - Set bed PID parameters P I and D
  143. // M400 - Finish all moves
  144. // M401 - Lower z-probe if present
  145. // M402 - Raise z-probe if present
  146. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  147. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  148. // M406 - Turn off Filament Sensor extrusion control
  149. // M407 - Displays measured filament diameter
  150. // M500 - stores parameters in EEPROM
  151. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  152. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  153. // M503 - print the current settings (from memory not from EEPROM)
  154. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  155. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  156. // M665 - set delta configurations
  157. // M666 - set delta endstop adjustment
  158. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  159. // M907 - Set digital trimpot motor current using axis codes.
  160. // M908 - Control digital trimpot directly.
  161. // M350 - Set microstepping mode.
  162. // M351 - Toggle MS1 MS2 pins directly.
  163. // ************ SCARA Specific - This can change to suit future G-code regulations
  164. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  165. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  166. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  167. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  168. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  169. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  170. //************* SCARA End ***************
  171. // M928 - Start SD logging (M928 filename.g) - ended by M29
  172. // M999 - Restart after being stopped by error
  173. //Stepper Movement Variables
  174. //===========================================================================
  175. //=============================imported variables============================
  176. //===========================================================================
  177. //===========================================================================
  178. //=============================public variables=============================
  179. //===========================================================================
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  185. int feedmultiply=100; //100->1 200->2
  186. int saved_feedmultiply;
  187. int extrudemultiply=100; //100->1 200->2
  188. int extruder_multiply[EXTRUDERS] = {100
  189. #if EXTRUDERS > 1
  190. , 100
  191. #if EXTRUDERS > 2
  192. , 100
  193. #if EXTRUDERS > 3
  194. , 100
  195. #endif
  196. #endif
  197. #endif
  198. };
  199. bool volumetric_enabled = false;
  200. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  201. #if EXTRUDERS > 1
  202. , DEFAULT_NOMINAL_FILAMENT_DIA
  203. #if EXTRUDERS > 2
  204. , DEFAULT_NOMINAL_FILAMENT_DIA
  205. #if EXTRUDERS > 3
  206. , DEFAULT_NOMINAL_FILAMENT_DIA
  207. #endif
  208. #endif
  209. #endif
  210. };
  211. float volumetric_multiplier[EXTRUDERS] = {1.0
  212. #if EXTRUDERS > 1
  213. , 1.0
  214. #if EXTRUDERS > 2
  215. , 1.0
  216. #if EXTRUDERS > 3
  217. , 1.0
  218. #endif
  219. #endif
  220. #endif
  221. };
  222. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  223. float add_homing[3]={0,0,0};
  224. #ifdef DELTA
  225. float endstop_adj[3]={0,0,0};
  226. #endif
  227. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  228. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  229. bool axis_known_position[3] = {false, false, false};
  230. float zprobe_zoffset;
  231. // Extruder offset
  232. #if EXTRUDERS > 1
  233. #ifndef DUAL_X_CARRIAGE
  234. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  235. #else
  236. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  237. #endif
  238. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  239. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  240. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  241. #endif
  242. };
  243. #endif
  244. uint8_t active_extruder = 0;
  245. int fanSpeed=0;
  246. #ifdef SERVO_ENDSTOPS
  247. int servo_endstops[] = SERVO_ENDSTOPS;
  248. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  249. #endif
  250. #ifdef BARICUDA
  251. int ValvePressure=0;
  252. int EtoPPressure=0;
  253. #endif
  254. #ifdef FWRETRACT
  255. bool autoretract_enabled=false;
  256. bool retracted[EXTRUDERS]={false
  257. #if EXTRUDERS > 1
  258. , false
  259. #if EXTRUDERS > 2
  260. , false
  261. #if EXTRUDERS > 3
  262. , false
  263. #endif
  264. #endif
  265. #endif
  266. };
  267. bool retracted_swap[EXTRUDERS]={false
  268. #if EXTRUDERS > 1
  269. , false
  270. #if EXTRUDERS > 2
  271. , false
  272. #if EXTRUDERS > 3
  273. , false
  274. #endif
  275. #endif
  276. #endif
  277. };
  278. float retract_length = RETRACT_LENGTH;
  279. float retract_length_swap = RETRACT_LENGTH_SWAP;
  280. float retract_feedrate = RETRACT_FEEDRATE;
  281. float retract_zlift = RETRACT_ZLIFT;
  282. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  283. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  284. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  285. #endif // FWRETRACT
  286. #ifdef ULTIPANEL
  287. #ifdef PS_DEFAULT_OFF
  288. bool powersupply = false;
  289. #else
  290. bool powersupply = true;
  291. #endif
  292. #endif
  293. #ifdef DELTA
  294. float delta[3] = {0.0, 0.0, 0.0};
  295. #define SIN_60 0.8660254037844386
  296. #define COS_60 0.5
  297. // these are the default values, can be overriden with M665
  298. float delta_radius= DELTA_RADIUS;
  299. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  300. float delta_tower1_y= -COS_60*delta_radius;
  301. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  302. float delta_tower2_y= -COS_60*delta_radius;
  303. float delta_tower3_x= 0.0; // back middle tower
  304. float delta_tower3_y= delta_radius;
  305. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  306. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  307. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  308. #endif
  309. #ifdef SCARA // Build size scaling
  310. float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
  311. #endif
  312. bool cancel_heatup = false ;
  313. #ifdef FILAMENT_SENSOR
  314. //Variables for Filament Sensor input
  315. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  316. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  317. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  318. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  319. int delay_index1=0; //index into ring buffer
  320. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  321. float delay_dist=0; //delay distance counter
  322. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  323. #endif
  324. const char errormagic[] PROGMEM = "Error:";
  325. const char echomagic[] PROGMEM = "echo:";
  326. //===========================================================================
  327. //=============================Private Variables=============================
  328. //===========================================================================
  329. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  330. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  331. #ifndef DELTA
  332. static float delta[3] = {0.0, 0.0, 0.0};
  333. #endif
  334. static float offset[3] = {0.0, 0.0, 0.0};
  335. static bool home_all_axis = true;
  336. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  337. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  338. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  339. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  340. static bool fromsd[BUFSIZE];
  341. static int bufindr = 0;
  342. static int bufindw = 0;
  343. static int buflen = 0;
  344. //static int i = 0;
  345. static char serial_char;
  346. static int serial_count = 0;
  347. static boolean comment_mode = false;
  348. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  349. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  350. //static float tt = 0;
  351. //static float bt = 0;
  352. //Inactivity shutdown variables
  353. static unsigned long previous_millis_cmd = 0;
  354. static unsigned long max_inactive_time = 0;
  355. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  356. unsigned long starttime=0;
  357. unsigned long stoptime=0;
  358. static uint8_t tmp_extruder;
  359. bool Stopped=false;
  360. #if NUM_SERVOS > 0
  361. Servo servos[NUM_SERVOS];
  362. #endif
  363. bool CooldownNoWait = true;
  364. bool target_direction;
  365. //Insert variables if CHDK is defined
  366. #ifdef CHDK
  367. unsigned long chdkHigh = 0;
  368. boolean chdkActive = false;
  369. #endif
  370. //===========================================================================
  371. //=============================Routines======================================
  372. //===========================================================================
  373. void get_arc_coordinates();
  374. bool setTargetedHotend(int code);
  375. void serial_echopair_P(const char *s_P, float v)
  376. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  377. void serial_echopair_P(const char *s_P, double v)
  378. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  379. void serial_echopair_P(const char *s_P, unsigned long v)
  380. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  381. #ifdef SDSUPPORT
  382. #include "SdFatUtil.h"
  383. int freeMemory() { return SdFatUtil::FreeRam(); }
  384. #else
  385. extern "C" {
  386. extern unsigned int __bss_end;
  387. extern unsigned int __heap_start;
  388. extern void *__brkval;
  389. int freeMemory() {
  390. int free_memory;
  391. if ((int)__brkval == 0)
  392. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  393. else
  394. free_memory = ((int)&free_memory) - ((int)__brkval);
  395. return free_memory;
  396. }
  397. }
  398. #endif //!SDSUPPORT
  399. //adds an command to the main command buffer
  400. //thats really done in a non-safe way.
  401. //needs overworking someday
  402. void enquecommand(const char *cmd)
  403. {
  404. if(buflen < BUFSIZE)
  405. {
  406. //this is dangerous if a mixing of serial and this happens
  407. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  408. SERIAL_ECHO_START;
  409. SERIAL_ECHOPGM(MSG_Enqueing);
  410. SERIAL_ECHO(cmdbuffer[bufindw]);
  411. SERIAL_ECHOLNPGM("\"");
  412. bufindw= (bufindw + 1)%BUFSIZE;
  413. buflen += 1;
  414. }
  415. }
  416. void enquecommand_P(const char *cmd)
  417. {
  418. if(buflen < BUFSIZE)
  419. {
  420. //this is dangerous if a mixing of serial and this happens
  421. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  422. SERIAL_ECHO_START;
  423. SERIAL_ECHOPGM(MSG_Enqueing);
  424. SERIAL_ECHO(cmdbuffer[bufindw]);
  425. SERIAL_ECHOLNPGM("\"");
  426. bufindw= (bufindw + 1)%BUFSIZE;
  427. buflen += 1;
  428. }
  429. }
  430. void setup_killpin()
  431. {
  432. #if defined(KILL_PIN) && KILL_PIN > -1
  433. SET_INPUT(KILL_PIN);
  434. WRITE(KILL_PIN,HIGH);
  435. #endif
  436. }
  437. // Set home pin
  438. void setup_homepin(void)
  439. {
  440. #if defined(HOME_PIN) && HOME_PIN > -1
  441. SET_INPUT(HOME_PIN);
  442. WRITE(HOME_PIN,HIGH);
  443. #endif
  444. }
  445. void setup_photpin()
  446. {
  447. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  448. SET_OUTPUT(PHOTOGRAPH_PIN);
  449. WRITE(PHOTOGRAPH_PIN, LOW);
  450. #endif
  451. }
  452. void setup_powerhold()
  453. {
  454. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  455. SET_OUTPUT(SUICIDE_PIN);
  456. WRITE(SUICIDE_PIN, HIGH);
  457. #endif
  458. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  459. SET_OUTPUT(PS_ON_PIN);
  460. #if defined(PS_DEFAULT_OFF)
  461. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  462. #else
  463. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  464. #endif
  465. #endif
  466. }
  467. void suicide()
  468. {
  469. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  470. SET_OUTPUT(SUICIDE_PIN);
  471. WRITE(SUICIDE_PIN, LOW);
  472. #endif
  473. }
  474. void servo_init()
  475. {
  476. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  477. servos[0].attach(SERVO0_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  480. servos[1].attach(SERVO1_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  483. servos[2].attach(SERVO2_PIN);
  484. #endif
  485. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  486. servos[3].attach(SERVO3_PIN);
  487. #endif
  488. #if (NUM_SERVOS >= 5)
  489. #error "TODO: enter initalisation code for more servos"
  490. #endif
  491. // Set position of Servo Endstops that are defined
  492. #ifdef SERVO_ENDSTOPS
  493. for(int8_t i = 0; i < 3; i++)
  494. {
  495. if(servo_endstops[i] > -1) {
  496. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  497. }
  498. }
  499. #endif
  500. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  501. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  502. servos[servo_endstops[Z_AXIS]].detach();
  503. #endif
  504. }
  505. void setup()
  506. {
  507. setup_killpin();
  508. setup_powerhold();
  509. MYSERIAL.begin(BAUDRATE);
  510. SERIAL_PROTOCOLLNPGM("start");
  511. SERIAL_ECHO_START;
  512. // Check startup - does nothing if bootloader sets MCUSR to 0
  513. byte mcu = MCUSR;
  514. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  515. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  516. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  517. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  518. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  519. MCUSR=0;
  520. SERIAL_ECHOPGM(MSG_MARLIN);
  521. SERIAL_ECHOLNPGM(VERSION_STRING);
  522. #ifdef STRING_VERSION_CONFIG_H
  523. #ifdef STRING_CONFIG_H_AUTHOR
  524. SERIAL_ECHO_START;
  525. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  526. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  527. SERIAL_ECHOPGM(MSG_AUTHOR);
  528. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  529. SERIAL_ECHOPGM("Compiled: ");
  530. SERIAL_ECHOLNPGM(__DATE__);
  531. #endif // STRING_CONFIG_H_AUTHOR
  532. #endif // STRING_VERSION_CONFIG_H
  533. SERIAL_ECHO_START;
  534. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  535. SERIAL_ECHO(freeMemory());
  536. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  537. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  538. for(int8_t i = 0; i < BUFSIZE; i++)
  539. {
  540. fromsd[i] = false;
  541. }
  542. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  543. Config_RetrieveSettings();
  544. tp_init(); // Initialize temperature loop
  545. plan_init(); // Initialize planner;
  546. watchdog_init();
  547. st_init(); // Initialize stepper, this enables interrupts!
  548. setup_photpin();
  549. servo_init();
  550. lcd_init();
  551. _delay_ms(1000); // wait 1sec to display the splash screen
  552. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  553. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  554. #endif
  555. #ifdef DIGIPOT_I2C
  556. digipot_i2c_init();
  557. #endif
  558. #ifdef Z_PROBE_SLED
  559. pinMode(SERVO0_PIN, OUTPUT);
  560. digitalWrite(SERVO0_PIN, LOW); // turn it off
  561. #endif // Z_PROBE_SLED
  562. setup_homepin();
  563. }
  564. void loop()
  565. {
  566. if(buflen < (BUFSIZE-1))
  567. get_command();
  568. #ifdef SDSUPPORT
  569. card.checkautostart(false);
  570. #endif
  571. if(buflen)
  572. {
  573. #ifdef SDSUPPORT
  574. if(card.saving)
  575. {
  576. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  577. {
  578. card.write_command(cmdbuffer[bufindr]);
  579. if(card.logging)
  580. {
  581. process_commands();
  582. }
  583. else
  584. {
  585. SERIAL_PROTOCOLLNPGM(MSG_OK);
  586. }
  587. }
  588. else
  589. {
  590. card.closefile();
  591. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  592. }
  593. }
  594. else
  595. {
  596. process_commands();
  597. }
  598. #else
  599. process_commands();
  600. #endif //SDSUPPORT
  601. buflen = (buflen-1);
  602. bufindr = (bufindr + 1)%BUFSIZE;
  603. }
  604. //check heater every n milliseconds
  605. manage_heater();
  606. manage_inactivity();
  607. checkHitEndstops();
  608. lcd_update();
  609. }
  610. void get_command()
  611. {
  612. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  613. serial_char = MYSERIAL.read();
  614. if(serial_char == '\n' ||
  615. serial_char == '\r' ||
  616. (serial_char == ':' && comment_mode == false) ||
  617. serial_count >= (MAX_CMD_SIZE - 1) )
  618. {
  619. if(!serial_count) { //if empty line
  620. comment_mode = false; //for new command
  621. return;
  622. }
  623. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  624. if(!comment_mode){
  625. comment_mode = false; //for new command
  626. fromsd[bufindw] = false;
  627. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  628. {
  629. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  630. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  631. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  632. SERIAL_ERROR_START;
  633. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  634. SERIAL_ERRORLN(gcode_LastN);
  635. //Serial.println(gcode_N);
  636. FlushSerialRequestResend();
  637. serial_count = 0;
  638. return;
  639. }
  640. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  641. {
  642. byte checksum = 0;
  643. byte count = 0;
  644. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  645. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  646. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  647. SERIAL_ERROR_START;
  648. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  649. SERIAL_ERRORLN(gcode_LastN);
  650. FlushSerialRequestResend();
  651. serial_count = 0;
  652. return;
  653. }
  654. //if no errors, continue parsing
  655. }
  656. else
  657. {
  658. SERIAL_ERROR_START;
  659. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  660. SERIAL_ERRORLN(gcode_LastN);
  661. FlushSerialRequestResend();
  662. serial_count = 0;
  663. return;
  664. }
  665. gcode_LastN = gcode_N;
  666. //if no errors, continue parsing
  667. }
  668. else // if we don't receive 'N' but still see '*'
  669. {
  670. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  671. {
  672. SERIAL_ERROR_START;
  673. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  674. SERIAL_ERRORLN(gcode_LastN);
  675. serial_count = 0;
  676. return;
  677. }
  678. }
  679. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  680. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  681. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  682. case 0:
  683. case 1:
  684. case 2:
  685. case 3:
  686. if (Stopped == true) {
  687. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  688. LCD_MESSAGEPGM(MSG_STOPPED);
  689. }
  690. break;
  691. default:
  692. break;
  693. }
  694. }
  695. //If command was e-stop process now
  696. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  697. kill();
  698. bufindw = (bufindw + 1)%BUFSIZE;
  699. buflen += 1;
  700. }
  701. serial_count = 0; //clear buffer
  702. }
  703. else
  704. {
  705. if(serial_char == ';') comment_mode = true;
  706. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  707. }
  708. }
  709. #ifdef SDSUPPORT
  710. if(!card.sdprinting || serial_count!=0){
  711. return;
  712. }
  713. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  714. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  715. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  716. static bool stop_buffering=false;
  717. if(buflen==0) stop_buffering=false;
  718. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  719. int16_t n=card.get();
  720. serial_char = (char)n;
  721. if(serial_char == '\n' ||
  722. serial_char == '\r' ||
  723. (serial_char == '#' && comment_mode == false) ||
  724. (serial_char == ':' && comment_mode == false) ||
  725. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  726. {
  727. if(card.eof()){
  728. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  729. stoptime=millis();
  730. char time[30];
  731. unsigned long t=(stoptime-starttime)/1000;
  732. int hours, minutes;
  733. minutes=(t/60)%60;
  734. hours=t/60/60;
  735. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  736. SERIAL_ECHO_START;
  737. SERIAL_ECHOLN(time);
  738. lcd_setstatus(time);
  739. card.printingHasFinished();
  740. card.checkautostart(true);
  741. }
  742. if(serial_char=='#')
  743. stop_buffering=true;
  744. if(!serial_count)
  745. {
  746. comment_mode = false; //for new command
  747. return; //if empty line
  748. }
  749. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  750. // if(!comment_mode){
  751. fromsd[bufindw] = true;
  752. buflen += 1;
  753. bufindw = (bufindw + 1)%BUFSIZE;
  754. // }
  755. comment_mode = false; //for new command
  756. serial_count = 0; //clear buffer
  757. }
  758. else
  759. {
  760. if(serial_char == ';') comment_mode = true;
  761. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  762. }
  763. }
  764. #endif //SDSUPPORT
  765. }
  766. float code_value()
  767. {
  768. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  769. }
  770. long code_value_long()
  771. {
  772. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  773. }
  774. bool code_seen(char code)
  775. {
  776. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  777. return (strchr_pointer != NULL); //Return True if a character was found
  778. }
  779. #define DEFINE_PGM_READ_ANY(type, reader) \
  780. static inline type pgm_read_any(const type *p) \
  781. { return pgm_read_##reader##_near(p); }
  782. DEFINE_PGM_READ_ANY(float, float);
  783. DEFINE_PGM_READ_ANY(signed char, byte);
  784. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  785. static const PROGMEM type array##_P[3] = \
  786. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  787. static inline type array(int axis) \
  788. { return pgm_read_any(&array##_P[axis]); }
  789. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  790. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  791. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  792. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  793. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  794. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  795. #ifdef DUAL_X_CARRIAGE
  796. #if EXTRUDERS == 1 || defined(COREXY) \
  797. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  798. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  799. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  800. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  801. #endif
  802. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  803. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  804. #endif
  805. #define DXC_FULL_CONTROL_MODE 0
  806. #define DXC_AUTO_PARK_MODE 1
  807. #define DXC_DUPLICATION_MODE 2
  808. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  809. static float x_home_pos(int extruder) {
  810. if (extruder == 0)
  811. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  812. else
  813. // In dual carriage mode the extruder offset provides an override of the
  814. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  815. // This allow soft recalibration of the second extruder offset position without firmware reflash
  816. // (through the M218 command).
  817. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  818. }
  819. static int x_home_dir(int extruder) {
  820. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  821. }
  822. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  823. static bool active_extruder_parked = false; // used in mode 1 & 2
  824. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  825. static unsigned long delayed_move_time = 0; // used in mode 1
  826. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  827. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  828. bool extruder_duplication_enabled = false; // used in mode 2
  829. #endif //DUAL_X_CARRIAGE
  830. static void axis_is_at_home(int axis) {
  831. #ifdef DUAL_X_CARRIAGE
  832. if (axis == X_AXIS) {
  833. if (active_extruder != 0) {
  834. current_position[X_AXIS] = x_home_pos(active_extruder);
  835. min_pos[X_AXIS] = X2_MIN_POS;
  836. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  837. return;
  838. }
  839. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  840. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  841. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  842. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  843. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  844. return;
  845. }
  846. }
  847. #endif
  848. #ifdef SCARA
  849. float homeposition[3];
  850. char i;
  851. if (axis < 2)
  852. {
  853. for (i=0; i<3; i++)
  854. {
  855. homeposition[i] = base_home_pos(i);
  856. }
  857. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  858. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  859. // Works out real Homeposition angles using inverse kinematics,
  860. // and calculates homing offset using forward kinematics
  861. calculate_delta(homeposition);
  862. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  863. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  864. for (i=0; i<2; i++)
  865. {
  866. delta[i] -= add_homing[i];
  867. }
  868. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  869. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  870. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  871. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  872. calculate_SCARA_forward_Transform(delta);
  873. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  874. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  875. current_position[axis] = delta[axis];
  876. // SCARA home positions are based on configuration since the actual limits are determined by the
  877. // inverse kinematic transform.
  878. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  879. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  880. }
  881. else
  882. {
  883. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  884. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  885. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  886. }
  887. #else
  888. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  889. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  890. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  891. #endif
  892. }
  893. #ifdef ENABLE_AUTO_BED_LEVELING
  894. #ifdef AUTO_BED_LEVELING_GRID
  895. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  896. {
  897. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  898. planeNormal.debug("planeNormal");
  899. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  900. //bedLevel.debug("bedLevel");
  901. //plan_bed_level_matrix.debug("bed level before");
  902. //vector_3 uncorrected_position = plan_get_position_mm();
  903. //uncorrected_position.debug("position before");
  904. vector_3 corrected_position = plan_get_position();
  905. // corrected_position.debug("position after");
  906. current_position[X_AXIS] = corrected_position.x;
  907. current_position[Y_AXIS] = corrected_position.y;
  908. current_position[Z_AXIS] = corrected_position.z;
  909. // put the bed at 0 so we don't go below it.
  910. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  911. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  912. }
  913. #else // not AUTO_BED_LEVELING_GRID
  914. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  915. plan_bed_level_matrix.set_to_identity();
  916. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  917. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  918. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  919. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  920. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  921. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  922. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  923. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  924. vector_3 corrected_position = plan_get_position();
  925. current_position[X_AXIS] = corrected_position.x;
  926. current_position[Y_AXIS] = corrected_position.y;
  927. current_position[Z_AXIS] = corrected_position.z;
  928. // put the bed at 0 so we don't go below it.
  929. current_position[Z_AXIS] = zprobe_zoffset;
  930. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  931. }
  932. #endif // AUTO_BED_LEVELING_GRID
  933. static void run_z_probe() {
  934. plan_bed_level_matrix.set_to_identity();
  935. feedrate = homing_feedrate[Z_AXIS];
  936. // move down until you find the bed
  937. float zPosition = -10;
  938. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  939. st_synchronize();
  940. // we have to let the planner know where we are right now as it is not where we said to go.
  941. zPosition = st_get_position_mm(Z_AXIS);
  942. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  943. // move up the retract distance
  944. zPosition += home_retract_mm(Z_AXIS);
  945. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  946. st_synchronize();
  947. // move back down slowly to find bed
  948. feedrate = homing_feedrate[Z_AXIS]/4;
  949. zPosition -= home_retract_mm(Z_AXIS) * 2;
  950. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  951. st_synchronize();
  952. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  953. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  954. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  955. }
  956. static void do_blocking_move_to(float x, float y, float z) {
  957. float oldFeedRate = feedrate;
  958. feedrate = homing_feedrate[Z_AXIS];
  959. current_position[Z_AXIS] = z;
  960. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  961. st_synchronize();
  962. feedrate = XY_TRAVEL_SPEED;
  963. current_position[X_AXIS] = x;
  964. current_position[Y_AXIS] = y;
  965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  966. st_synchronize();
  967. feedrate = oldFeedRate;
  968. }
  969. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  970. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  971. }
  972. static void setup_for_endstop_move() {
  973. saved_feedrate = feedrate;
  974. saved_feedmultiply = feedmultiply;
  975. feedmultiply = 100;
  976. previous_millis_cmd = millis();
  977. enable_endstops(true);
  978. }
  979. static void clean_up_after_endstop_move() {
  980. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  981. enable_endstops(false);
  982. #endif
  983. feedrate = saved_feedrate;
  984. feedmultiply = saved_feedmultiply;
  985. previous_millis_cmd = millis();
  986. }
  987. static void engage_z_probe() {
  988. // Engage Z Servo endstop if enabled
  989. #ifdef SERVO_ENDSTOPS
  990. if (servo_endstops[Z_AXIS] > -1) {
  991. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  992. servos[servo_endstops[Z_AXIS]].attach(0);
  993. #endif
  994. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  995. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  996. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  997. servos[servo_endstops[Z_AXIS]].detach();
  998. #endif
  999. }
  1000. #endif
  1001. }
  1002. static void retract_z_probe() {
  1003. // Retract Z Servo endstop if enabled
  1004. #ifdef SERVO_ENDSTOPS
  1005. if (servo_endstops[Z_AXIS] > -1) {
  1006. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1007. servos[servo_endstops[Z_AXIS]].attach(0);
  1008. #endif
  1009. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1010. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1011. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1012. servos[servo_endstops[Z_AXIS]].detach();
  1013. #endif
  1014. }
  1015. #endif
  1016. }
  1017. /// Probe bed height at position (x,y), returns the measured z value
  1018. static float probe_pt(float x, float y, float z_before, int retract_action=0) {
  1019. // move to right place
  1020. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1021. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1022. #ifndef Z_PROBE_SLED
  1023. if ((retract_action==0) || (retract_action==1))
  1024. engage_z_probe(); // Engage Z Servo endstop if available
  1025. #endif // Z_PROBE_SLED
  1026. run_z_probe();
  1027. float measured_z = current_position[Z_AXIS];
  1028. #ifndef Z_PROBE_SLED
  1029. if ((retract_action==0) || (retract_action==3))
  1030. retract_z_probe();
  1031. #endif // Z_PROBE_SLED
  1032. SERIAL_PROTOCOLPGM(MSG_BED);
  1033. SERIAL_PROTOCOLPGM(" x: ");
  1034. SERIAL_PROTOCOL(x);
  1035. SERIAL_PROTOCOLPGM(" y: ");
  1036. SERIAL_PROTOCOL(y);
  1037. SERIAL_PROTOCOLPGM(" z: ");
  1038. SERIAL_PROTOCOL(measured_z);
  1039. SERIAL_PROTOCOLPGM("\n");
  1040. return measured_z;
  1041. }
  1042. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1043. static void homeaxis(int axis) {
  1044. #define HOMEAXIS_DO(LETTER) \
  1045. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1046. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1047. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1048. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1049. 0) {
  1050. int axis_home_dir = home_dir(axis);
  1051. #ifdef DUAL_X_CARRIAGE
  1052. if (axis == X_AXIS)
  1053. axis_home_dir = x_home_dir(active_extruder);
  1054. #endif
  1055. current_position[axis] = 0;
  1056. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1057. #ifndef Z_PROBE_SLED
  1058. // Engage Servo endstop if enabled
  1059. #ifdef SERVO_ENDSTOPS
  1060. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1061. if (axis==Z_AXIS) {
  1062. engage_z_probe();
  1063. }
  1064. else
  1065. #endif
  1066. if (servo_endstops[axis] > -1) {
  1067. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1068. }
  1069. #endif
  1070. #endif // Z_PROBE_SLED
  1071. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1072. feedrate = homing_feedrate[axis];
  1073. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1074. st_synchronize();
  1075. current_position[axis] = 0;
  1076. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1077. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1078. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1079. st_synchronize();
  1080. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1081. #ifdef DELTA
  1082. feedrate = homing_feedrate[axis]/10;
  1083. #else
  1084. feedrate = homing_feedrate[axis]/2 ;
  1085. #endif
  1086. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1087. st_synchronize();
  1088. #ifdef DELTA
  1089. // retrace by the amount specified in endstop_adj
  1090. if (endstop_adj[axis] * axis_home_dir < 0) {
  1091. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1092. destination[axis] = endstop_adj[axis];
  1093. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1094. st_synchronize();
  1095. }
  1096. #endif
  1097. axis_is_at_home(axis);
  1098. destination[axis] = current_position[axis];
  1099. feedrate = 0.0;
  1100. endstops_hit_on_purpose();
  1101. axis_known_position[axis] = true;
  1102. // Retract Servo endstop if enabled
  1103. #ifdef SERVO_ENDSTOPS
  1104. if (servo_endstops[axis] > -1) {
  1105. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1106. }
  1107. #endif
  1108. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1109. #ifndef Z_PROBE_SLED
  1110. if (axis==Z_AXIS) retract_z_probe();
  1111. #endif
  1112. #endif
  1113. }
  1114. }
  1115. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1116. void refresh_cmd_timeout(void)
  1117. {
  1118. previous_millis_cmd = millis();
  1119. }
  1120. #ifdef FWRETRACT
  1121. void retract(bool retracting, bool swapretract = false) {
  1122. if(retracting && !retracted[active_extruder]) {
  1123. destination[X_AXIS]=current_position[X_AXIS];
  1124. destination[Y_AXIS]=current_position[Y_AXIS];
  1125. destination[Z_AXIS]=current_position[Z_AXIS];
  1126. destination[E_AXIS]=current_position[E_AXIS];
  1127. if (swapretract) {
  1128. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1129. } else {
  1130. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1131. }
  1132. plan_set_e_position(current_position[E_AXIS]);
  1133. float oldFeedrate = feedrate;
  1134. feedrate=retract_feedrate*60;
  1135. retracted[active_extruder]=true;
  1136. prepare_move();
  1137. if(retract_zlift > 0.01) {
  1138. current_position[Z_AXIS]-=retract_zlift;
  1139. #ifdef DELTA
  1140. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1141. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1142. #else
  1143. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1144. #endif
  1145. prepare_move();
  1146. }
  1147. feedrate = oldFeedrate;
  1148. } else if(!retracting && retracted[active_extruder]) {
  1149. destination[X_AXIS]=current_position[X_AXIS];
  1150. destination[Y_AXIS]=current_position[Y_AXIS];
  1151. destination[Z_AXIS]=current_position[Z_AXIS];
  1152. destination[E_AXIS]=current_position[E_AXIS];
  1153. if(retract_zlift > 0.01) {
  1154. current_position[Z_AXIS]+=retract_zlift;
  1155. #ifdef DELTA
  1156. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1157. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1158. #else
  1159. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1160. #endif
  1161. //prepare_move();
  1162. }
  1163. if (swapretract) {
  1164. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1165. } else {
  1166. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1167. }
  1168. plan_set_e_position(current_position[E_AXIS]);
  1169. float oldFeedrate = feedrate;
  1170. feedrate=retract_recover_feedrate*60;
  1171. retracted[active_extruder]=false;
  1172. prepare_move();
  1173. feedrate = oldFeedrate;
  1174. }
  1175. } //retract
  1176. #endif //FWRETRACT
  1177. #ifdef Z_PROBE_SLED
  1178. //
  1179. // Method to dock/undock a sled designed by Charles Bell.
  1180. //
  1181. // dock[in] If true, move to MAX_X and engage the electromagnet
  1182. // offset[in] The additional distance to move to adjust docking location
  1183. //
  1184. static void dock_sled(bool dock, int offset=0) {
  1185. int z_loc;
  1186. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1187. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1188. SERIAL_ECHO_START;
  1189. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1190. return;
  1191. }
  1192. if (dock) {
  1193. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1194. current_position[Y_AXIS],
  1195. current_position[Z_AXIS]);
  1196. // turn off magnet
  1197. digitalWrite(SERVO0_PIN, LOW);
  1198. } else {
  1199. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1200. z_loc = Z_RAISE_BEFORE_PROBING;
  1201. else
  1202. z_loc = current_position[Z_AXIS];
  1203. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1204. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1205. // turn on magnet
  1206. digitalWrite(SERVO0_PIN, HIGH);
  1207. }
  1208. }
  1209. #endif
  1210. void process_commands()
  1211. {
  1212. unsigned long codenum; //throw away variable
  1213. char *starpos = NULL;
  1214. #ifdef ENABLE_AUTO_BED_LEVELING
  1215. float x_tmp, y_tmp, z_tmp, real_z;
  1216. #endif
  1217. if(code_seen('G'))
  1218. {
  1219. switch((int)code_value())
  1220. {
  1221. case 0: // G0 -> G1
  1222. case 1: // G1
  1223. if(Stopped == false) {
  1224. get_coordinates(); // For X Y Z E F
  1225. #ifdef FWRETRACT
  1226. if(autoretract_enabled)
  1227. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1228. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1229. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1230. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1231. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1232. retract(!retracted);
  1233. return;
  1234. }
  1235. }
  1236. #endif //FWRETRACT
  1237. prepare_move();
  1238. //ClearToSend();
  1239. }
  1240. break;
  1241. #ifndef SCARA //disable arc support
  1242. case 2: // G2 - CW ARC
  1243. if(Stopped == false) {
  1244. get_arc_coordinates();
  1245. prepare_arc_move(true);
  1246. }
  1247. break;
  1248. case 3: // G3 - CCW ARC
  1249. if(Stopped == false) {
  1250. get_arc_coordinates();
  1251. prepare_arc_move(false);
  1252. }
  1253. break;
  1254. #endif
  1255. case 4: // G4 dwell
  1256. LCD_MESSAGEPGM(MSG_DWELL);
  1257. codenum = 0;
  1258. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1259. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1260. st_synchronize();
  1261. codenum += millis(); // keep track of when we started waiting
  1262. previous_millis_cmd = millis();
  1263. while(millis() < codenum) {
  1264. manage_heater();
  1265. manage_inactivity();
  1266. lcd_update();
  1267. }
  1268. break;
  1269. #ifdef FWRETRACT
  1270. case 10: // G10 retract
  1271. #if EXTRUDERS > 1
  1272. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1273. retract(true,retracted_swap[active_extruder]);
  1274. #else
  1275. retract(true);
  1276. #endif
  1277. break;
  1278. case 11: // G11 retract_recover
  1279. #if EXTRUDERS > 1
  1280. retract(false,retracted_swap[active_extruder]);
  1281. #else
  1282. retract(false);
  1283. #endif
  1284. break;
  1285. #endif //FWRETRACT
  1286. case 28: //G28 Home all Axis one at a time
  1287. #ifdef ENABLE_AUTO_BED_LEVELING
  1288. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1289. #endif //ENABLE_AUTO_BED_LEVELING
  1290. saved_feedrate = feedrate;
  1291. saved_feedmultiply = feedmultiply;
  1292. feedmultiply = 100;
  1293. previous_millis_cmd = millis();
  1294. enable_endstops(true);
  1295. for(int8_t i=0; i < NUM_AXIS; i++) {
  1296. destination[i] = current_position[i];
  1297. }
  1298. feedrate = 0.0;
  1299. #ifdef DELTA
  1300. // A delta can only safely home all axis at the same time
  1301. // all axis have to home at the same time
  1302. // Move all carriages up together until the first endstop is hit.
  1303. current_position[X_AXIS] = 0;
  1304. current_position[Y_AXIS] = 0;
  1305. current_position[Z_AXIS] = 0;
  1306. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1307. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1308. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1309. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1310. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1311. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1312. st_synchronize();
  1313. endstops_hit_on_purpose();
  1314. current_position[X_AXIS] = destination[X_AXIS];
  1315. current_position[Y_AXIS] = destination[Y_AXIS];
  1316. current_position[Z_AXIS] = destination[Z_AXIS];
  1317. // take care of back off and rehome now we are all at the top
  1318. HOMEAXIS(X);
  1319. HOMEAXIS(Y);
  1320. HOMEAXIS(Z);
  1321. calculate_delta(current_position);
  1322. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1323. #else // NOT DELTA
  1324. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1325. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1326. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1327. HOMEAXIS(Z);
  1328. }
  1329. #endif
  1330. #ifdef QUICK_HOME
  1331. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1332. {
  1333. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1334. #ifndef DUAL_X_CARRIAGE
  1335. int x_axis_home_dir = home_dir(X_AXIS);
  1336. #else
  1337. int x_axis_home_dir = x_home_dir(active_extruder);
  1338. extruder_duplication_enabled = false;
  1339. #endif
  1340. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1341. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1342. feedrate = homing_feedrate[X_AXIS];
  1343. if(homing_feedrate[Y_AXIS]<feedrate)
  1344. feedrate = homing_feedrate[Y_AXIS];
  1345. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1346. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1347. } else {
  1348. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1349. }
  1350. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1351. st_synchronize();
  1352. axis_is_at_home(X_AXIS);
  1353. axis_is_at_home(Y_AXIS);
  1354. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1355. destination[X_AXIS] = current_position[X_AXIS];
  1356. destination[Y_AXIS] = current_position[Y_AXIS];
  1357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1358. feedrate = 0.0;
  1359. st_synchronize();
  1360. endstops_hit_on_purpose();
  1361. current_position[X_AXIS] = destination[X_AXIS];
  1362. current_position[Y_AXIS] = destination[Y_AXIS];
  1363. #ifndef SCARA
  1364. current_position[Z_AXIS] = destination[Z_AXIS];
  1365. #endif
  1366. }
  1367. #endif
  1368. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1369. {
  1370. #ifdef DUAL_X_CARRIAGE
  1371. int tmp_extruder = active_extruder;
  1372. extruder_duplication_enabled = false;
  1373. active_extruder = !active_extruder;
  1374. HOMEAXIS(X);
  1375. inactive_extruder_x_pos = current_position[X_AXIS];
  1376. active_extruder = tmp_extruder;
  1377. HOMEAXIS(X);
  1378. // reset state used by the different modes
  1379. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1380. delayed_move_time = 0;
  1381. active_extruder_parked = true;
  1382. #else
  1383. HOMEAXIS(X);
  1384. #endif
  1385. }
  1386. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1387. HOMEAXIS(Y);
  1388. }
  1389. if(code_seen(axis_codes[X_AXIS]))
  1390. {
  1391. if(code_value_long() != 0) {
  1392. #ifdef SCARA
  1393. current_position[X_AXIS]=code_value();
  1394. #else
  1395. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1396. #endif
  1397. }
  1398. }
  1399. if(code_seen(axis_codes[Y_AXIS])) {
  1400. if(code_value_long() != 0) {
  1401. #ifdef SCARA
  1402. current_position[Y_AXIS]=code_value();
  1403. #else
  1404. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1405. #endif
  1406. }
  1407. }
  1408. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1409. #ifndef Z_SAFE_HOMING
  1410. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1411. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1412. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1413. feedrate = max_feedrate[Z_AXIS];
  1414. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1415. st_synchronize();
  1416. #endif
  1417. HOMEAXIS(Z);
  1418. }
  1419. #else // Z Safe mode activated.
  1420. if(home_all_axis) {
  1421. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1422. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1423. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1424. feedrate = XY_TRAVEL_SPEED/60;
  1425. current_position[Z_AXIS] = 0;
  1426. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1427. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1428. st_synchronize();
  1429. current_position[X_AXIS] = destination[X_AXIS];
  1430. current_position[Y_AXIS] = destination[Y_AXIS];
  1431. HOMEAXIS(Z);
  1432. }
  1433. // Let's see if X and Y are homed and probe is inside bed area.
  1434. if(code_seen(axis_codes[Z_AXIS])) {
  1435. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1436. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1437. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1438. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1439. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1440. current_position[Z_AXIS] = 0;
  1441. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1442. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1443. feedrate = max_feedrate[Z_AXIS];
  1444. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1445. st_synchronize();
  1446. HOMEAXIS(Z);
  1447. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1448. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1449. SERIAL_ECHO_START;
  1450. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1451. } else {
  1452. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1453. SERIAL_ECHO_START;
  1454. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1455. }
  1456. }
  1457. #endif
  1458. #endif
  1459. if(code_seen(axis_codes[Z_AXIS])) {
  1460. if(code_value_long() != 0) {
  1461. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1462. }
  1463. }
  1464. #ifdef ENABLE_AUTO_BED_LEVELING
  1465. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1466. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1467. }
  1468. #endif
  1469. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1470. #endif // else DELTA
  1471. #ifdef SCARA
  1472. calculate_delta(current_position);
  1473. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1474. #endif // SCARA
  1475. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1476. enable_endstops(false);
  1477. #endif
  1478. feedrate = saved_feedrate;
  1479. feedmultiply = saved_feedmultiply;
  1480. previous_millis_cmd = millis();
  1481. endstops_hit_on_purpose();
  1482. break;
  1483. #ifdef ENABLE_AUTO_BED_LEVELING
  1484. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1485. {
  1486. #if Z_MIN_PIN == -1
  1487. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1488. #endif
  1489. // Prevent user from running a G29 without first homing in X and Y
  1490. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1491. {
  1492. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1493. SERIAL_ECHO_START;
  1494. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1495. break; // abort G29, since we don't know where we are
  1496. }
  1497. #ifdef Z_PROBE_SLED
  1498. dock_sled(false);
  1499. #endif // Z_PROBE_SLED
  1500. st_synchronize();
  1501. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1502. //vector_3 corrected_position = plan_get_position_mm();
  1503. //corrected_position.debug("position before G29");
  1504. plan_bed_level_matrix.set_to_identity();
  1505. vector_3 uncorrected_position = plan_get_position();
  1506. //uncorrected_position.debug("position durring G29");
  1507. current_position[X_AXIS] = uncorrected_position.x;
  1508. current_position[Y_AXIS] = uncorrected_position.y;
  1509. current_position[Z_AXIS] = uncorrected_position.z;
  1510. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1511. setup_for_endstop_move();
  1512. feedrate = homing_feedrate[Z_AXIS];
  1513. #ifdef AUTO_BED_LEVELING_GRID
  1514. // probe at the points of a lattice grid
  1515. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1516. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1517. // solve the plane equation ax + by + d = z
  1518. // A is the matrix with rows [x y 1] for all the probed points
  1519. // B is the vector of the Z positions
  1520. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1521. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1522. // "A" matrix of the linear system of equations
  1523. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1524. // "B" vector of Z points
  1525. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1526. int probePointCounter = 0;
  1527. bool zig = true;
  1528. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1529. {
  1530. int xProbe, xInc;
  1531. if (zig)
  1532. {
  1533. xProbe = LEFT_PROBE_BED_POSITION;
  1534. //xEnd = RIGHT_PROBE_BED_POSITION;
  1535. xInc = xGridSpacing;
  1536. zig = false;
  1537. } else // zag
  1538. {
  1539. xProbe = RIGHT_PROBE_BED_POSITION;
  1540. //xEnd = LEFT_PROBE_BED_POSITION;
  1541. xInc = -xGridSpacing;
  1542. zig = true;
  1543. }
  1544. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1545. {
  1546. float z_before;
  1547. if (probePointCounter == 0)
  1548. {
  1549. // raise before probing
  1550. z_before = Z_RAISE_BEFORE_PROBING;
  1551. } else
  1552. {
  1553. // raise extruder
  1554. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1555. }
  1556. float measured_z;
  1557. //Enhanced G29 - Do not retract servo between probes
  1558. if (code_seen('E') || code_seen('e') )
  1559. {
  1560. if ((yProbe==FRONT_PROBE_BED_POSITION) && (xCount==0))
  1561. {
  1562. measured_z = probe_pt(xProbe, yProbe, z_before,1);
  1563. } else if ((yProbe==FRONT_PROBE_BED_POSITION + (yGridSpacing * (AUTO_BED_LEVELING_GRID_POINTS-1))) && (xCount == AUTO_BED_LEVELING_GRID_POINTS-1))
  1564. {
  1565. measured_z = probe_pt(xProbe, yProbe, z_before,3);
  1566. } else {
  1567. measured_z = probe_pt(xProbe, yProbe, z_before,2);
  1568. }
  1569. } else {
  1570. measured_z = probe_pt(xProbe, yProbe, z_before);
  1571. }
  1572. eqnBVector[probePointCounter] = measured_z;
  1573. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1574. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1575. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1576. probePointCounter++;
  1577. xProbe += xInc;
  1578. }
  1579. }
  1580. clean_up_after_endstop_move();
  1581. // solve lsq problem
  1582. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1583. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1584. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1585. SERIAL_PROTOCOLPGM(" b: ");
  1586. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1587. SERIAL_PROTOCOLPGM(" d: ");
  1588. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1589. set_bed_level_equation_lsq(plane_equation_coefficients);
  1590. free(plane_equation_coefficients);
  1591. #else // AUTO_BED_LEVELING_GRID not defined
  1592. // Probe at 3 arbitrary points
  1593. // Enhanced G29
  1594. float z_at_pt_1,z_at_pt_2,z_at_pt_3;
  1595. if (code_seen('E') || code_seen('e') )
  1596. {
  1597. // probe 1
  1598. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING,1);
  1599. // probe 2
  1600. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,2);
  1601. // probe 3
  1602. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,3);
  1603. }
  1604. else
  1605. {
  1606. // probe 1
  1607. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1608. // probe 2
  1609. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1610. // probe 3
  1611. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1612. }
  1613. clean_up_after_endstop_move();
  1614. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1615. #endif // AUTO_BED_LEVELING_GRID
  1616. st_synchronize();
  1617. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1618. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1619. // When the bed is uneven, this height must be corrected.
  1620. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1621. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1622. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1623. z_tmp = current_position[Z_AXIS];
  1624. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1625. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1626. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1627. #ifdef Z_PROBE_SLED
  1628. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1629. #endif // Z_PROBE_SLED
  1630. }
  1631. break;
  1632. #ifndef Z_PROBE_SLED
  1633. case 30: // G30 Single Z Probe
  1634. {
  1635. engage_z_probe(); // Engage Z Servo endstop if available
  1636. st_synchronize();
  1637. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1638. setup_for_endstop_move();
  1639. feedrate = homing_feedrate[Z_AXIS];
  1640. run_z_probe();
  1641. SERIAL_PROTOCOLPGM(MSG_BED);
  1642. SERIAL_PROTOCOLPGM(" X: ");
  1643. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1644. SERIAL_PROTOCOLPGM(" Y: ");
  1645. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1646. SERIAL_PROTOCOLPGM(" Z: ");
  1647. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1648. SERIAL_PROTOCOLPGM("\n");
  1649. clean_up_after_endstop_move();
  1650. retract_z_probe(); // Retract Z Servo endstop if available
  1651. }
  1652. break;
  1653. #else
  1654. case 31: // dock the sled
  1655. dock_sled(true);
  1656. break;
  1657. case 32: // undock the sled
  1658. dock_sled(false);
  1659. break;
  1660. #endif // Z_PROBE_SLED
  1661. #endif // ENABLE_AUTO_BED_LEVELING
  1662. case 90: // G90
  1663. relative_mode = false;
  1664. break;
  1665. case 91: // G91
  1666. relative_mode = true;
  1667. break;
  1668. case 92: // G92
  1669. if(!code_seen(axis_codes[E_AXIS]))
  1670. st_synchronize();
  1671. for(int8_t i=0; i < NUM_AXIS; i++) {
  1672. if(code_seen(axis_codes[i])) {
  1673. if(i == E_AXIS) {
  1674. current_position[i] = code_value();
  1675. plan_set_e_position(current_position[E_AXIS]);
  1676. }
  1677. else {
  1678. #ifdef SCARA
  1679. if (i == X_AXIS || i == Y_AXIS) {
  1680. current_position[i] = code_value();
  1681. }
  1682. else {
  1683. current_position[i] = code_value()+add_homing[i];
  1684. }
  1685. #else
  1686. current_position[i] = code_value()+add_homing[i];
  1687. #endif
  1688. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1689. }
  1690. }
  1691. }
  1692. break;
  1693. }
  1694. }
  1695. else if(code_seen('M'))
  1696. {
  1697. switch( (int)code_value() )
  1698. {
  1699. #ifdef ULTIPANEL
  1700. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1701. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1702. {
  1703. char *src = strchr_pointer + 2;
  1704. codenum = 0;
  1705. bool hasP = false, hasS = false;
  1706. if (code_seen('P')) {
  1707. codenum = code_value(); // milliseconds to wait
  1708. hasP = codenum > 0;
  1709. }
  1710. if (code_seen('S')) {
  1711. codenum = code_value() * 1000; // seconds to wait
  1712. hasS = codenum > 0;
  1713. }
  1714. starpos = strchr(src, '*');
  1715. if (starpos != NULL) *(starpos) = '\0';
  1716. while (*src == ' ') ++src;
  1717. if (!hasP && !hasS && *src != '\0') {
  1718. lcd_setstatus(src);
  1719. } else {
  1720. LCD_MESSAGEPGM(MSG_USERWAIT);
  1721. }
  1722. lcd_ignore_click();
  1723. st_synchronize();
  1724. previous_millis_cmd = millis();
  1725. if (codenum > 0){
  1726. codenum += millis(); // keep track of when we started waiting
  1727. while(millis() < codenum && !lcd_clicked()){
  1728. manage_heater();
  1729. manage_inactivity();
  1730. lcd_update();
  1731. }
  1732. lcd_ignore_click(false);
  1733. }else{
  1734. if (!lcd_detected())
  1735. break;
  1736. while(!lcd_clicked()){
  1737. manage_heater();
  1738. manage_inactivity();
  1739. lcd_update();
  1740. }
  1741. }
  1742. if (IS_SD_PRINTING)
  1743. LCD_MESSAGEPGM(MSG_RESUMING);
  1744. else
  1745. LCD_MESSAGEPGM(WELCOME_MSG);
  1746. }
  1747. break;
  1748. #endif
  1749. case 17:
  1750. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1751. enable_x();
  1752. enable_y();
  1753. enable_z();
  1754. enable_e0();
  1755. enable_e1();
  1756. enable_e2();
  1757. break;
  1758. #ifdef SDSUPPORT
  1759. case 20: // M20 - list SD card
  1760. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1761. card.ls();
  1762. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1763. break;
  1764. case 21: // M21 - init SD card
  1765. card.initsd();
  1766. break;
  1767. case 22: //M22 - release SD card
  1768. card.release();
  1769. break;
  1770. case 23: //M23 - Select file
  1771. starpos = (strchr(strchr_pointer + 4,'*'));
  1772. if(starpos!=NULL)
  1773. *(starpos)='\0';
  1774. card.openFile(strchr_pointer + 4,true);
  1775. break;
  1776. case 24: //M24 - Start SD print
  1777. card.startFileprint();
  1778. starttime=millis();
  1779. break;
  1780. case 25: //M25 - Pause SD print
  1781. card.pauseSDPrint();
  1782. break;
  1783. case 26: //M26 - Set SD index
  1784. if(card.cardOK && code_seen('S')) {
  1785. card.setIndex(code_value_long());
  1786. }
  1787. break;
  1788. case 27: //M27 - Get SD status
  1789. card.getStatus();
  1790. break;
  1791. case 28: //M28 - Start SD write
  1792. starpos = (strchr(strchr_pointer + 4,'*'));
  1793. if(starpos != NULL){
  1794. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1795. strchr_pointer = strchr(npos,' ') + 1;
  1796. *(starpos) = '\0';
  1797. }
  1798. card.openFile(strchr_pointer+4,false);
  1799. break;
  1800. case 29: //M29 - Stop SD write
  1801. //processed in write to file routine above
  1802. //card,saving = false;
  1803. break;
  1804. case 30: //M30 <filename> Delete File
  1805. if (card.cardOK){
  1806. card.closefile();
  1807. starpos = (strchr(strchr_pointer + 4,'*'));
  1808. if(starpos != NULL){
  1809. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1810. strchr_pointer = strchr(npos,' ') + 1;
  1811. *(starpos) = '\0';
  1812. }
  1813. card.removeFile(strchr_pointer + 4);
  1814. }
  1815. break;
  1816. case 32: //M32 - Select file and start SD print
  1817. {
  1818. if(card.sdprinting) {
  1819. st_synchronize();
  1820. }
  1821. starpos = (strchr(strchr_pointer + 4,'*'));
  1822. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1823. if(namestartpos==NULL)
  1824. {
  1825. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1826. }
  1827. else
  1828. namestartpos++; //to skip the '!'
  1829. if(starpos!=NULL)
  1830. *(starpos)='\0';
  1831. bool call_procedure=(code_seen('P'));
  1832. if(strchr_pointer>namestartpos)
  1833. call_procedure=false; //false alert, 'P' found within filename
  1834. if( card.cardOK )
  1835. {
  1836. card.openFile(namestartpos,true,!call_procedure);
  1837. if(code_seen('S'))
  1838. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1839. card.setIndex(code_value_long());
  1840. card.startFileprint();
  1841. if(!call_procedure)
  1842. starttime=millis(); //procedure calls count as normal print time.
  1843. }
  1844. } break;
  1845. case 928: //M928 - Start SD write
  1846. starpos = (strchr(strchr_pointer + 5,'*'));
  1847. if(starpos != NULL){
  1848. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1849. strchr_pointer = strchr(npos,' ') + 1;
  1850. *(starpos) = '\0';
  1851. }
  1852. card.openLogFile(strchr_pointer+5);
  1853. break;
  1854. #endif //SDSUPPORT
  1855. case 31: //M31 take time since the start of the SD print or an M109 command
  1856. {
  1857. stoptime=millis();
  1858. char time[30];
  1859. unsigned long t=(stoptime-starttime)/1000;
  1860. int sec,min;
  1861. min=t/60;
  1862. sec=t%60;
  1863. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1864. SERIAL_ECHO_START;
  1865. SERIAL_ECHOLN(time);
  1866. lcd_setstatus(time);
  1867. autotempShutdown();
  1868. }
  1869. break;
  1870. case 42: //M42 -Change pin status via gcode
  1871. if (code_seen('S'))
  1872. {
  1873. int pin_status = code_value();
  1874. int pin_number = LED_PIN;
  1875. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1876. pin_number = code_value();
  1877. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1878. {
  1879. if (sensitive_pins[i] == pin_number)
  1880. {
  1881. pin_number = -1;
  1882. break;
  1883. }
  1884. }
  1885. #if defined(FAN_PIN) && FAN_PIN > -1
  1886. if (pin_number == FAN_PIN)
  1887. fanSpeed = pin_status;
  1888. #endif
  1889. if (pin_number > -1)
  1890. {
  1891. pinMode(pin_number, OUTPUT);
  1892. digitalWrite(pin_number, pin_status);
  1893. analogWrite(pin_number, pin_status);
  1894. }
  1895. }
  1896. break;
  1897. // M48 Z-Probe repeatability measurement function.
  1898. //
  1899. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  1900. //
  1901. // This function assumes the bed has been homed. Specificaly, that a G28 command
  1902. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  1903. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  1904. // regenerated.
  1905. //
  1906. // The number of samples will default to 10 if not specified. You can use upper or lower case
  1907. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  1908. // N for its communication protocol and will get horribly confused if you send it a capital N.
  1909. //
  1910. #ifdef ENABLE_AUTO_BED_LEVELING
  1911. #ifdef Z_PROBE_REPEATABILITY_TEST
  1912. case 48: // M48 Z-Probe repeatability
  1913. {
  1914. #if Z_MIN_PIN == -1
  1915. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  1916. #endif
  1917. double sum=0.0;
  1918. double mean=0.0;
  1919. double sigma=0.0;
  1920. double sample_set[50];
  1921. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  1922. double X_current, Y_current, Z_current;
  1923. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  1924. if (code_seen('V') || code_seen('v')) {
  1925. verbose_level = code_value();
  1926. if (verbose_level<0 || verbose_level>4 ) {
  1927. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  1928. goto Sigma_Exit;
  1929. }
  1930. }
  1931. if (verbose_level > 0) {
  1932. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  1933. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  1934. }
  1935. if (code_seen('n')) {
  1936. n_samples = code_value();
  1937. if (n_samples<4 || n_samples>50 ) {
  1938. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  1939. goto Sigma_Exit;
  1940. }
  1941. }
  1942. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  1943. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  1944. Z_current = st_get_position_mm(Z_AXIS);
  1945. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1946. ext_position = st_get_position_mm(E_AXIS);
  1947. if (code_seen('E') || code_seen('e') )
  1948. engage_probe_for_each_reading++;
  1949. if (code_seen('X') || code_seen('x') ) {
  1950. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  1951. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  1952. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  1953. goto Sigma_Exit;
  1954. }
  1955. }
  1956. if (code_seen('Y') || code_seen('y') ) {
  1957. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1958. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  1959. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  1960. goto Sigma_Exit;
  1961. }
  1962. }
  1963. if (code_seen('L') || code_seen('l') ) {
  1964. n_legs = code_value();
  1965. if ( n_legs==1 )
  1966. n_legs = 2;
  1967. if ( n_legs<0 || n_legs>15 ) {
  1968. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  1969. goto Sigma_Exit;
  1970. }
  1971. }
  1972. //
  1973. // Do all the preliminary setup work. First raise the probe.
  1974. //
  1975. st_synchronize();
  1976. plan_bed_level_matrix.set_to_identity();
  1977. plan_buffer_line( X_current, Y_current, Z_start_location,
  1978. ext_position,
  1979. homing_feedrate[Z_AXIS]/60,
  1980. active_extruder);
  1981. st_synchronize();
  1982. //
  1983. // Now get everything to the specified probe point So we can safely do a probe to
  1984. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  1985. // use that as a starting point for each probe.
  1986. //
  1987. if (verbose_level > 2)
  1988. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  1989. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1990. ext_position,
  1991. homing_feedrate[X_AXIS]/60,
  1992. active_extruder);
  1993. st_synchronize();
  1994. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  1995. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  1996. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1997. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  1998. //
  1999. // OK, do the inital probe to get us close to the bed.
  2000. // Then retrace the right amount and use that in subsequent probes
  2001. //
  2002. engage_z_probe();
  2003. setup_for_endstop_move();
  2004. run_z_probe();
  2005. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2006. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2007. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2008. ext_position,
  2009. homing_feedrate[X_AXIS]/60,
  2010. active_extruder);
  2011. st_synchronize();
  2012. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2013. if (engage_probe_for_each_reading)
  2014. retract_z_probe();
  2015. for( n=0; n<n_samples; n++) {
  2016. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2017. if ( n_legs) {
  2018. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2019. int rotational_direction, l;
  2020. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2021. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2022. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2023. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2024. //SERIAL_ECHOPAIR(" theta: ",theta);
  2025. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2026. //SERIAL_PROTOCOLLNPGM("");
  2027. for( l=0; l<n_legs-1; l++) {
  2028. if (rotational_direction==1)
  2029. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2030. else
  2031. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2032. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2033. if ( radius<0.0 )
  2034. radius = -radius;
  2035. X_current = X_probe_location + cos(theta) * radius;
  2036. Y_current = Y_probe_location + sin(theta) * radius;
  2037. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2038. X_current = X_MIN_POS;
  2039. if ( X_current>X_MAX_POS)
  2040. X_current = X_MAX_POS;
  2041. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2042. Y_current = Y_MIN_POS;
  2043. if ( Y_current>Y_MAX_POS)
  2044. Y_current = Y_MAX_POS;
  2045. if (verbose_level>3 ) {
  2046. SERIAL_ECHOPAIR("x: ", X_current);
  2047. SERIAL_ECHOPAIR("y: ", Y_current);
  2048. SERIAL_PROTOCOLLNPGM("");
  2049. }
  2050. do_blocking_move_to( X_current, Y_current, Z_current );
  2051. }
  2052. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2053. }
  2054. if (engage_probe_for_each_reading) {
  2055. engage_z_probe();
  2056. delay(1000);
  2057. }
  2058. setup_for_endstop_move();
  2059. run_z_probe();
  2060. sample_set[n] = current_position[Z_AXIS];
  2061. //
  2062. // Get the current mean for the data points we have so far
  2063. //
  2064. sum=0.0;
  2065. for( j=0; j<=n; j++) {
  2066. sum = sum + sample_set[j];
  2067. }
  2068. mean = sum / (double (n+1));
  2069. //
  2070. // Now, use that mean to calculate the standard deviation for the
  2071. // data points we have so far
  2072. //
  2073. sum=0.0;
  2074. for( j=0; j<=n; j++) {
  2075. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2076. }
  2077. sigma = sqrt( sum / (double (n+1)) );
  2078. if (verbose_level > 1) {
  2079. SERIAL_PROTOCOL(n+1);
  2080. SERIAL_PROTOCOL(" of ");
  2081. SERIAL_PROTOCOL(n_samples);
  2082. SERIAL_PROTOCOLPGM(" z: ");
  2083. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2084. }
  2085. if (verbose_level > 2) {
  2086. SERIAL_PROTOCOL(" mean: ");
  2087. SERIAL_PROTOCOL_F(mean,6);
  2088. SERIAL_PROTOCOL(" sigma: ");
  2089. SERIAL_PROTOCOL_F(sigma,6);
  2090. }
  2091. if (verbose_level > 0)
  2092. SERIAL_PROTOCOLPGM("\n");
  2093. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2094. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2095. st_synchronize();
  2096. if (engage_probe_for_each_reading) {
  2097. retract_z_probe();
  2098. delay(1000);
  2099. }
  2100. }
  2101. retract_z_probe();
  2102. delay(1000);
  2103. clean_up_after_endstop_move();
  2104. // enable_endstops(true);
  2105. if (verbose_level > 0) {
  2106. SERIAL_PROTOCOLPGM("Mean: ");
  2107. SERIAL_PROTOCOL_F(mean, 6);
  2108. SERIAL_PROTOCOLPGM("\n");
  2109. }
  2110. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2111. SERIAL_PROTOCOL_F(sigma, 6);
  2112. SERIAL_PROTOCOLPGM("\n\n");
  2113. Sigma_Exit:
  2114. break;
  2115. }
  2116. #endif // Z_PROBE_REPEATABILITY_TEST
  2117. #endif // ENABLE_AUTO_BED_LEVELING
  2118. case 104: // M104
  2119. if(setTargetedHotend(104)){
  2120. break;
  2121. }
  2122. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2123. #ifdef DUAL_X_CARRIAGE
  2124. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2125. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2126. #endif
  2127. setWatch();
  2128. break;
  2129. case 112: // M112 -Emergency Stop
  2130. kill();
  2131. break;
  2132. case 140: // M140 set bed temp
  2133. if (code_seen('S')) setTargetBed(code_value());
  2134. break;
  2135. case 105 : // M105
  2136. if(setTargetedHotend(105)){
  2137. break;
  2138. }
  2139. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2140. SERIAL_PROTOCOLPGM("ok T:");
  2141. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2142. SERIAL_PROTOCOLPGM(" /");
  2143. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2144. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2145. SERIAL_PROTOCOLPGM(" B:");
  2146. SERIAL_PROTOCOL_F(degBed(),1);
  2147. SERIAL_PROTOCOLPGM(" /");
  2148. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2149. #endif //TEMP_BED_PIN
  2150. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2151. SERIAL_PROTOCOLPGM(" T");
  2152. SERIAL_PROTOCOL(cur_extruder);
  2153. SERIAL_PROTOCOLPGM(":");
  2154. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2155. SERIAL_PROTOCOLPGM(" /");
  2156. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2157. }
  2158. #else
  2159. SERIAL_ERROR_START;
  2160. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2161. #endif
  2162. SERIAL_PROTOCOLPGM(" @:");
  2163. #ifdef EXTRUDER_WATTS
  2164. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2165. SERIAL_PROTOCOLPGM("W");
  2166. #else
  2167. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2168. #endif
  2169. SERIAL_PROTOCOLPGM(" B@:");
  2170. #ifdef BED_WATTS
  2171. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2172. SERIAL_PROTOCOLPGM("W");
  2173. #else
  2174. SERIAL_PROTOCOL(getHeaterPower(-1));
  2175. #endif
  2176. #ifdef SHOW_TEMP_ADC_VALUES
  2177. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2178. SERIAL_PROTOCOLPGM(" ADC B:");
  2179. SERIAL_PROTOCOL_F(degBed(),1);
  2180. SERIAL_PROTOCOLPGM("C->");
  2181. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2182. #endif
  2183. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2184. SERIAL_PROTOCOLPGM(" T");
  2185. SERIAL_PROTOCOL(cur_extruder);
  2186. SERIAL_PROTOCOLPGM(":");
  2187. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2188. SERIAL_PROTOCOLPGM("C->");
  2189. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2190. }
  2191. #endif
  2192. SERIAL_PROTOCOLLN("");
  2193. return;
  2194. break;
  2195. case 109:
  2196. {// M109 - Wait for extruder heater to reach target.
  2197. if(setTargetedHotend(109)){
  2198. break;
  2199. }
  2200. LCD_MESSAGEPGM(MSG_HEATING);
  2201. #ifdef AUTOTEMP
  2202. autotemp_enabled=false;
  2203. #endif
  2204. if (code_seen('S')) {
  2205. setTargetHotend(code_value(), tmp_extruder);
  2206. #ifdef DUAL_X_CARRIAGE
  2207. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2208. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2209. #endif
  2210. CooldownNoWait = true;
  2211. } else if (code_seen('R')) {
  2212. setTargetHotend(code_value(), tmp_extruder);
  2213. #ifdef DUAL_X_CARRIAGE
  2214. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2215. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2216. #endif
  2217. CooldownNoWait = false;
  2218. }
  2219. #ifdef AUTOTEMP
  2220. if (code_seen('S')) autotemp_min=code_value();
  2221. if (code_seen('B')) autotemp_max=code_value();
  2222. if (code_seen('F'))
  2223. {
  2224. autotemp_factor=code_value();
  2225. autotemp_enabled=true;
  2226. }
  2227. #endif
  2228. setWatch();
  2229. codenum = millis();
  2230. /* See if we are heating up or cooling down */
  2231. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2232. cancel_heatup = false;
  2233. #ifdef TEMP_RESIDENCY_TIME
  2234. long residencyStart;
  2235. residencyStart = -1;
  2236. /* continue to loop until we have reached the target temp
  2237. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2238. while((!cancel_heatup)&&((residencyStart == -1) ||
  2239. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2240. #else
  2241. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2242. #endif //TEMP_RESIDENCY_TIME
  2243. if( (millis() - codenum) > 1000UL )
  2244. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2245. SERIAL_PROTOCOLPGM("T:");
  2246. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2247. SERIAL_PROTOCOLPGM(" E:");
  2248. SERIAL_PROTOCOL((int)tmp_extruder);
  2249. #ifdef TEMP_RESIDENCY_TIME
  2250. SERIAL_PROTOCOLPGM(" W:");
  2251. if(residencyStart > -1)
  2252. {
  2253. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2254. SERIAL_PROTOCOLLN( codenum );
  2255. }
  2256. else
  2257. {
  2258. SERIAL_PROTOCOLLN( "?" );
  2259. }
  2260. #else
  2261. SERIAL_PROTOCOLLN("");
  2262. #endif
  2263. codenum = millis();
  2264. }
  2265. manage_heater();
  2266. manage_inactivity();
  2267. lcd_update();
  2268. #ifdef TEMP_RESIDENCY_TIME
  2269. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2270. or when current temp falls outside the hysteresis after target temp was reached */
  2271. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2272. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2273. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2274. {
  2275. residencyStart = millis();
  2276. }
  2277. #endif //TEMP_RESIDENCY_TIME
  2278. }
  2279. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2280. starttime=millis();
  2281. previous_millis_cmd = millis();
  2282. }
  2283. break;
  2284. case 190: // M190 - Wait for bed heater to reach target.
  2285. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2286. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2287. if (code_seen('S')) {
  2288. setTargetBed(code_value());
  2289. CooldownNoWait = true;
  2290. } else if (code_seen('R')) {
  2291. setTargetBed(code_value());
  2292. CooldownNoWait = false;
  2293. }
  2294. codenum = millis();
  2295. cancel_heatup = false;
  2296. target_direction = isHeatingBed(); // true if heating, false if cooling
  2297. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2298. {
  2299. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2300. {
  2301. float tt=degHotend(active_extruder);
  2302. SERIAL_PROTOCOLPGM("T:");
  2303. SERIAL_PROTOCOL(tt);
  2304. SERIAL_PROTOCOLPGM(" E:");
  2305. SERIAL_PROTOCOL((int)active_extruder);
  2306. SERIAL_PROTOCOLPGM(" B:");
  2307. SERIAL_PROTOCOL_F(degBed(),1);
  2308. SERIAL_PROTOCOLLN("");
  2309. codenum = millis();
  2310. }
  2311. manage_heater();
  2312. manage_inactivity();
  2313. lcd_update();
  2314. }
  2315. LCD_MESSAGEPGM(MSG_BED_DONE);
  2316. previous_millis_cmd = millis();
  2317. #endif
  2318. break;
  2319. #if defined(FAN_PIN) && FAN_PIN > -1
  2320. case 106: //M106 Fan On
  2321. if (code_seen('S')){
  2322. fanSpeed=constrain(code_value(),0,255);
  2323. }
  2324. else {
  2325. fanSpeed=255;
  2326. }
  2327. break;
  2328. case 107: //M107 Fan Off
  2329. fanSpeed = 0;
  2330. break;
  2331. #endif //FAN_PIN
  2332. #ifdef BARICUDA
  2333. // PWM for HEATER_1_PIN
  2334. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2335. case 126: //M126 valve open
  2336. if (code_seen('S')){
  2337. ValvePressure=constrain(code_value(),0,255);
  2338. }
  2339. else {
  2340. ValvePressure=255;
  2341. }
  2342. break;
  2343. case 127: //M127 valve closed
  2344. ValvePressure = 0;
  2345. break;
  2346. #endif //HEATER_1_PIN
  2347. // PWM for HEATER_2_PIN
  2348. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2349. case 128: //M128 valve open
  2350. if (code_seen('S')){
  2351. EtoPPressure=constrain(code_value(),0,255);
  2352. }
  2353. else {
  2354. EtoPPressure=255;
  2355. }
  2356. break;
  2357. case 129: //M129 valve closed
  2358. EtoPPressure = 0;
  2359. break;
  2360. #endif //HEATER_2_PIN
  2361. #endif
  2362. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2363. case 80: // M80 - Turn on Power Supply
  2364. SET_OUTPUT(PS_ON_PIN); //GND
  2365. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2366. // If you have a switch on suicide pin, this is useful
  2367. // if you want to start another print with suicide feature after
  2368. // a print without suicide...
  2369. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2370. SET_OUTPUT(SUICIDE_PIN);
  2371. WRITE(SUICIDE_PIN, HIGH);
  2372. #endif
  2373. #ifdef ULTIPANEL
  2374. powersupply = true;
  2375. LCD_MESSAGEPGM(WELCOME_MSG);
  2376. lcd_update();
  2377. #endif
  2378. break;
  2379. #endif
  2380. case 81: // M81 - Turn off Power Supply
  2381. disable_heater();
  2382. st_synchronize();
  2383. disable_e0();
  2384. disable_e1();
  2385. disable_e2();
  2386. finishAndDisableSteppers();
  2387. fanSpeed = 0;
  2388. delay(1000); // Wait a little before to switch off
  2389. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2390. st_synchronize();
  2391. suicide();
  2392. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2393. SET_OUTPUT(PS_ON_PIN);
  2394. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2395. #endif
  2396. #ifdef ULTIPANEL
  2397. powersupply = false;
  2398. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2399. lcd_update();
  2400. #endif
  2401. break;
  2402. case 82:
  2403. axis_relative_modes[3] = false;
  2404. break;
  2405. case 83:
  2406. axis_relative_modes[3] = true;
  2407. break;
  2408. case 18: //compatibility
  2409. case 84: // M84
  2410. if(code_seen('S')){
  2411. stepper_inactive_time = code_value() * 1000;
  2412. }
  2413. else
  2414. {
  2415. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2416. if(all_axis)
  2417. {
  2418. st_synchronize();
  2419. disable_e0();
  2420. disable_e1();
  2421. disable_e2();
  2422. finishAndDisableSteppers();
  2423. }
  2424. else
  2425. {
  2426. st_synchronize();
  2427. if(code_seen('X')) disable_x();
  2428. if(code_seen('Y')) disable_y();
  2429. if(code_seen('Z')) disable_z();
  2430. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2431. if(code_seen('E')) {
  2432. disable_e0();
  2433. disable_e1();
  2434. disable_e2();
  2435. }
  2436. #endif
  2437. }
  2438. }
  2439. break;
  2440. case 85: // M85
  2441. if(code_seen('S')) {
  2442. max_inactive_time = code_value() * 1000;
  2443. }
  2444. break;
  2445. case 92: // M92
  2446. for(int8_t i=0; i < NUM_AXIS; i++)
  2447. {
  2448. if(code_seen(axis_codes[i]))
  2449. {
  2450. if(i == 3) { // E
  2451. float value = code_value();
  2452. if(value < 20.0) {
  2453. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2454. max_e_jerk *= factor;
  2455. max_feedrate[i] *= factor;
  2456. axis_steps_per_sqr_second[i] *= factor;
  2457. }
  2458. axis_steps_per_unit[i] = value;
  2459. }
  2460. else {
  2461. axis_steps_per_unit[i] = code_value();
  2462. }
  2463. }
  2464. }
  2465. break;
  2466. case 115: // M115
  2467. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2468. break;
  2469. case 117: // M117 display message
  2470. starpos = (strchr(strchr_pointer + 5,'*'));
  2471. if(starpos!=NULL)
  2472. *(starpos)='\0';
  2473. lcd_setstatus(strchr_pointer + 5);
  2474. break;
  2475. case 114: // M114
  2476. SERIAL_PROTOCOLPGM("X:");
  2477. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2478. SERIAL_PROTOCOLPGM(" Y:");
  2479. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2480. SERIAL_PROTOCOLPGM(" Z:");
  2481. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2482. SERIAL_PROTOCOLPGM(" E:");
  2483. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2484. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2485. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2486. SERIAL_PROTOCOLPGM(" Y:");
  2487. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2488. SERIAL_PROTOCOLPGM(" Z:");
  2489. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2490. SERIAL_PROTOCOLLN("");
  2491. #ifdef SCARA
  2492. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2493. SERIAL_PROTOCOL(delta[X_AXIS]);
  2494. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2495. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2496. SERIAL_PROTOCOLLN("");
  2497. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2498. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2499. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2500. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2501. SERIAL_PROTOCOLLN("");
  2502. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2503. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2504. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2505. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2506. SERIAL_PROTOCOLLN("");
  2507. SERIAL_PROTOCOLLN("");
  2508. #endif
  2509. break;
  2510. case 120: // M120
  2511. enable_endstops(false) ;
  2512. break;
  2513. case 121: // M121
  2514. enable_endstops(true) ;
  2515. break;
  2516. case 119: // M119
  2517. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2518. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2519. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2520. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2521. #endif
  2522. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2523. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2524. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2525. #endif
  2526. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2527. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2528. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2529. #endif
  2530. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2531. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2532. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2533. #endif
  2534. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2535. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2536. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2537. #endif
  2538. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2539. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2540. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2541. #endif
  2542. break;
  2543. //TODO: update for all axis, use for loop
  2544. #ifdef BLINKM
  2545. case 150: // M150
  2546. {
  2547. byte red;
  2548. byte grn;
  2549. byte blu;
  2550. if(code_seen('R')) red = code_value();
  2551. if(code_seen('U')) grn = code_value();
  2552. if(code_seen('B')) blu = code_value();
  2553. SendColors(red,grn,blu);
  2554. }
  2555. break;
  2556. #endif //BLINKM
  2557. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2558. {
  2559. tmp_extruder = active_extruder;
  2560. if(code_seen('T')) {
  2561. tmp_extruder = code_value();
  2562. if(tmp_extruder >= EXTRUDERS) {
  2563. SERIAL_ECHO_START;
  2564. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2565. break;
  2566. }
  2567. }
  2568. float area = .0;
  2569. if(code_seen('D')) {
  2570. float diameter = (float)code_value();
  2571. if (diameter == 0.0) {
  2572. // setting any extruder filament size disables volumetric on the assumption that
  2573. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2574. // for all extruders
  2575. volumetric_enabled = false;
  2576. } else {
  2577. filament_size[tmp_extruder] = (float)code_value();
  2578. // make sure all extruders have some sane value for the filament size
  2579. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  2580. #if EXTRUDERS > 1
  2581. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  2582. #if EXTRUDERS > 2
  2583. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  2584. #if EXTRUDERS > 3
  2585. filament_size[3] = (filament_size[3] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[3]);
  2586. #endif //EXTRUDERS > 3
  2587. #endif //EXTRUDERS > 2
  2588. #endif //EXTRUDERS > 1
  2589. volumetric_enabled = true;
  2590. }
  2591. } else {
  2592. //reserved for setting filament diameter via UFID or filament measuring device
  2593. break;
  2594. }
  2595. calculate_volumetric_multipliers();
  2596. }
  2597. break;
  2598. case 201: // M201
  2599. for(int8_t i=0; i < NUM_AXIS; i++)
  2600. {
  2601. if(code_seen(axis_codes[i]))
  2602. {
  2603. max_acceleration_units_per_sq_second[i] = code_value();
  2604. }
  2605. }
  2606. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2607. reset_acceleration_rates();
  2608. break;
  2609. #if 0 // Not used for Sprinter/grbl gen6
  2610. case 202: // M202
  2611. for(int8_t i=0; i < NUM_AXIS; i++) {
  2612. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2613. }
  2614. break;
  2615. #endif
  2616. case 203: // M203 max feedrate mm/sec
  2617. for(int8_t i=0; i < NUM_AXIS; i++) {
  2618. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2619. }
  2620. break;
  2621. case 204: // M204 acclereration S normal moves T filmanent only moves
  2622. {
  2623. if(code_seen('S')) acceleration = code_value() ;
  2624. if(code_seen('T')) retract_acceleration = code_value() ;
  2625. }
  2626. break;
  2627. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2628. {
  2629. if(code_seen('S')) minimumfeedrate = code_value();
  2630. if(code_seen('T')) mintravelfeedrate = code_value();
  2631. if(code_seen('B')) minsegmenttime = code_value() ;
  2632. if(code_seen('X')) max_xy_jerk = code_value() ;
  2633. if(code_seen('Z')) max_z_jerk = code_value() ;
  2634. if(code_seen('E')) max_e_jerk = code_value() ;
  2635. }
  2636. break;
  2637. case 206: // M206 additional homing offset
  2638. for(int8_t i=0; i < 3; i++)
  2639. {
  2640. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2641. }
  2642. #ifdef SCARA
  2643. if(code_seen('T')) // Theta
  2644. {
  2645. add_homing[X_AXIS] = code_value() ;
  2646. }
  2647. if(code_seen('P')) // Psi
  2648. {
  2649. add_homing[Y_AXIS] = code_value() ;
  2650. }
  2651. #endif
  2652. break;
  2653. #ifdef DELTA
  2654. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2655. if(code_seen('L')) {
  2656. delta_diagonal_rod= code_value();
  2657. }
  2658. if(code_seen('R')) {
  2659. delta_radius= code_value();
  2660. }
  2661. if(code_seen('S')) {
  2662. delta_segments_per_second= code_value();
  2663. }
  2664. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2665. break;
  2666. case 666: // M666 set delta endstop adjustemnt
  2667. for(int8_t i=0; i < 3; i++)
  2668. {
  2669. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2670. }
  2671. break;
  2672. #endif
  2673. #ifdef FWRETRACT
  2674. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2675. {
  2676. if(code_seen('S'))
  2677. {
  2678. retract_length = code_value() ;
  2679. }
  2680. if(code_seen('F'))
  2681. {
  2682. retract_feedrate = code_value()/60 ;
  2683. }
  2684. if(code_seen('Z'))
  2685. {
  2686. retract_zlift = code_value() ;
  2687. }
  2688. }break;
  2689. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2690. {
  2691. if(code_seen('S'))
  2692. {
  2693. retract_recover_length = code_value() ;
  2694. }
  2695. if(code_seen('F'))
  2696. {
  2697. retract_recover_feedrate = code_value()/60 ;
  2698. }
  2699. }break;
  2700. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2701. {
  2702. if(code_seen('S'))
  2703. {
  2704. int t= code_value() ;
  2705. switch(t)
  2706. {
  2707. case 0:
  2708. {
  2709. autoretract_enabled=false;
  2710. retracted[0]=false;
  2711. #if EXTRUDERS > 1
  2712. retracted[1]=false;
  2713. #endif
  2714. #if EXTRUDERS > 2
  2715. retracted[2]=false;
  2716. #endif
  2717. #if EXTRUDERS > 3
  2718. retracted[3]=false;
  2719. #endif
  2720. }break;
  2721. case 1:
  2722. {
  2723. autoretract_enabled=true;
  2724. retracted[0]=false;
  2725. #if EXTRUDERS > 1
  2726. retracted[1]=false;
  2727. #endif
  2728. #if EXTRUDERS > 2
  2729. retracted[2]=false;
  2730. #endif
  2731. #if EXTRUDERS > 3
  2732. retracted[3]=false;
  2733. #endif
  2734. }break;
  2735. default:
  2736. SERIAL_ECHO_START;
  2737. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2738. SERIAL_ECHO(cmdbuffer[bufindr]);
  2739. SERIAL_ECHOLNPGM("\"");
  2740. }
  2741. }
  2742. }break;
  2743. #endif // FWRETRACT
  2744. #if EXTRUDERS > 1
  2745. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2746. {
  2747. if(setTargetedHotend(218)){
  2748. break;
  2749. }
  2750. if(code_seen('X'))
  2751. {
  2752. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2753. }
  2754. if(code_seen('Y'))
  2755. {
  2756. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2757. }
  2758. #ifdef DUAL_X_CARRIAGE
  2759. if(code_seen('Z'))
  2760. {
  2761. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2762. }
  2763. #endif
  2764. SERIAL_ECHO_START;
  2765. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2766. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2767. {
  2768. SERIAL_ECHO(" ");
  2769. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2770. SERIAL_ECHO(",");
  2771. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2772. #ifdef DUAL_X_CARRIAGE
  2773. SERIAL_ECHO(",");
  2774. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2775. #endif
  2776. }
  2777. SERIAL_ECHOLN("");
  2778. }break;
  2779. #endif
  2780. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2781. {
  2782. if(code_seen('S'))
  2783. {
  2784. feedmultiply = code_value() ;
  2785. }
  2786. }
  2787. break;
  2788. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2789. {
  2790. if(code_seen('S'))
  2791. {
  2792. int tmp_code = code_value();
  2793. if (code_seen('T'))
  2794. {
  2795. if(setTargetedHotend(221)){
  2796. break;
  2797. }
  2798. extruder_multiply[tmp_extruder] = tmp_code;
  2799. }
  2800. else
  2801. {
  2802. extrudemultiply = tmp_code ;
  2803. }
  2804. }
  2805. }
  2806. break;
  2807. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2808. {
  2809. if(code_seen('P')){
  2810. int pin_number = code_value(); // pin number
  2811. int pin_state = -1; // required pin state - default is inverted
  2812. if(code_seen('S')) pin_state = code_value(); // required pin state
  2813. if(pin_state >= -1 && pin_state <= 1){
  2814. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2815. {
  2816. if (sensitive_pins[i] == pin_number)
  2817. {
  2818. pin_number = -1;
  2819. break;
  2820. }
  2821. }
  2822. if (pin_number > -1)
  2823. {
  2824. int target = LOW;
  2825. st_synchronize();
  2826. pinMode(pin_number, INPUT);
  2827. switch(pin_state){
  2828. case 1:
  2829. target = HIGH;
  2830. break;
  2831. case 0:
  2832. target = LOW;
  2833. break;
  2834. case -1:
  2835. target = !digitalRead(pin_number);
  2836. break;
  2837. }
  2838. while(digitalRead(pin_number) != target){
  2839. manage_heater();
  2840. manage_inactivity();
  2841. lcd_update();
  2842. }
  2843. }
  2844. }
  2845. }
  2846. }
  2847. break;
  2848. #if NUM_SERVOS > 0
  2849. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2850. {
  2851. int servo_index = -1;
  2852. int servo_position = 0;
  2853. if (code_seen('P'))
  2854. servo_index = code_value();
  2855. if (code_seen('S')) {
  2856. servo_position = code_value();
  2857. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2858. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2859. servos[servo_index].attach(0);
  2860. #endif
  2861. servos[servo_index].write(servo_position);
  2862. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2863. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2864. servos[servo_index].detach();
  2865. #endif
  2866. }
  2867. else {
  2868. SERIAL_ECHO_START;
  2869. SERIAL_ECHO("Servo ");
  2870. SERIAL_ECHO(servo_index);
  2871. SERIAL_ECHOLN(" out of range");
  2872. }
  2873. }
  2874. else if (servo_index >= 0) {
  2875. SERIAL_PROTOCOL(MSG_OK);
  2876. SERIAL_PROTOCOL(" Servo ");
  2877. SERIAL_PROTOCOL(servo_index);
  2878. SERIAL_PROTOCOL(": ");
  2879. SERIAL_PROTOCOL(servos[servo_index].read());
  2880. SERIAL_PROTOCOLLN("");
  2881. }
  2882. }
  2883. break;
  2884. #endif // NUM_SERVOS > 0
  2885. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2886. case 300: // M300
  2887. {
  2888. int beepS = code_seen('S') ? code_value() : 110;
  2889. int beepP = code_seen('P') ? code_value() : 1000;
  2890. if (beepS > 0)
  2891. {
  2892. #if BEEPER > 0
  2893. tone(BEEPER, beepS);
  2894. delay(beepP);
  2895. noTone(BEEPER);
  2896. #elif defined(ULTRALCD)
  2897. lcd_buzz(beepS, beepP);
  2898. #elif defined(LCD_USE_I2C_BUZZER)
  2899. lcd_buzz(beepP, beepS);
  2900. #endif
  2901. }
  2902. else
  2903. {
  2904. delay(beepP);
  2905. }
  2906. }
  2907. break;
  2908. #endif // M300
  2909. #ifdef PIDTEMP
  2910. case 301: // M301
  2911. {
  2912. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  2913. // default behaviour (omitting E parameter) is to update for extruder 0 only
  2914. int e = 0; // extruder being updated
  2915. if (code_seen('E'))
  2916. {
  2917. e = (int)code_value();
  2918. }
  2919. if (e < EXTRUDERS) // catch bad input value
  2920. {
  2921. if (code_seen('P')) PID_PARAM(Kp,e) = code_value();
  2922. if (code_seen('I')) PID_PARAM(Ki,e) = scalePID_i(code_value());
  2923. if (code_seen('D')) PID_PARAM(Kd,e) = scalePID_d(code_value());
  2924. #ifdef PID_ADD_EXTRUSION_RATE
  2925. if (code_seen('C')) PID_PARAM(Kc,e) = code_value();
  2926. #endif
  2927. updatePID();
  2928. SERIAL_PROTOCOL(MSG_OK);
  2929. #ifdef PID_PARAMS_PER_EXTRUDER
  2930. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  2931. SERIAL_PROTOCOL(e);
  2932. #endif // PID_PARAMS_PER_EXTRUDER
  2933. SERIAL_PROTOCOL(" p:");
  2934. SERIAL_PROTOCOL(PID_PARAM(Kp,e));
  2935. SERIAL_PROTOCOL(" i:");
  2936. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki,e)));
  2937. SERIAL_PROTOCOL(" d:");
  2938. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd,e)));
  2939. #ifdef PID_ADD_EXTRUSION_RATE
  2940. SERIAL_PROTOCOL(" c:");
  2941. //Kc does not have scaling applied above, or in resetting defaults
  2942. SERIAL_PROTOCOL(PID_PARAM(Kc,e));
  2943. #endif
  2944. SERIAL_PROTOCOLLN("");
  2945. }
  2946. else
  2947. {
  2948. SERIAL_ECHO_START;
  2949. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2950. }
  2951. }
  2952. break;
  2953. #endif //PIDTEMP
  2954. #ifdef PIDTEMPBED
  2955. case 304: // M304
  2956. {
  2957. if(code_seen('P')) bedKp = code_value();
  2958. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2959. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2960. updatePID();
  2961. SERIAL_PROTOCOL(MSG_OK);
  2962. SERIAL_PROTOCOL(" p:");
  2963. SERIAL_PROTOCOL(bedKp);
  2964. SERIAL_PROTOCOL(" i:");
  2965. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2966. SERIAL_PROTOCOL(" d:");
  2967. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2968. SERIAL_PROTOCOLLN("");
  2969. }
  2970. break;
  2971. #endif //PIDTEMP
  2972. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2973. {
  2974. #ifdef CHDK
  2975. SET_OUTPUT(CHDK);
  2976. WRITE(CHDK, HIGH);
  2977. chdkHigh = millis();
  2978. chdkActive = true;
  2979. #else
  2980. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2981. const uint8_t NUM_PULSES=16;
  2982. const float PULSE_LENGTH=0.01524;
  2983. for(int i=0; i < NUM_PULSES; i++) {
  2984. WRITE(PHOTOGRAPH_PIN, HIGH);
  2985. _delay_ms(PULSE_LENGTH);
  2986. WRITE(PHOTOGRAPH_PIN, LOW);
  2987. _delay_ms(PULSE_LENGTH);
  2988. }
  2989. delay(7.33);
  2990. for(int i=0; i < NUM_PULSES; i++) {
  2991. WRITE(PHOTOGRAPH_PIN, HIGH);
  2992. _delay_ms(PULSE_LENGTH);
  2993. WRITE(PHOTOGRAPH_PIN, LOW);
  2994. _delay_ms(PULSE_LENGTH);
  2995. }
  2996. #endif
  2997. #endif //chdk end if
  2998. }
  2999. break;
  3000. #ifdef DOGLCD
  3001. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3002. {
  3003. if (code_seen('C')) {
  3004. lcd_setcontrast( ((int)code_value())&63 );
  3005. }
  3006. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3007. SERIAL_PROTOCOL(lcd_contrast);
  3008. SERIAL_PROTOCOLLN("");
  3009. }
  3010. break;
  3011. #endif
  3012. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3013. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3014. {
  3015. float temp = .0;
  3016. if (code_seen('S')) temp=code_value();
  3017. set_extrude_min_temp(temp);
  3018. }
  3019. break;
  3020. #endif
  3021. case 303: // M303 PID autotune
  3022. {
  3023. float temp = 150.0;
  3024. int e=0;
  3025. int c=5;
  3026. if (code_seen('E')) e=code_value();
  3027. if (e<0)
  3028. temp=70;
  3029. if (code_seen('S')) temp=code_value();
  3030. if (code_seen('C')) c=code_value();
  3031. PID_autotune(temp, e, c);
  3032. }
  3033. break;
  3034. #ifdef SCARA
  3035. case 360: // M360 SCARA Theta pos1
  3036. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3037. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3038. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3039. if(Stopped == false) {
  3040. //get_coordinates(); // For X Y Z E F
  3041. delta[X_AXIS] = 0;
  3042. delta[Y_AXIS] = 120;
  3043. calculate_SCARA_forward_Transform(delta);
  3044. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3045. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3046. prepare_move();
  3047. //ClearToSend();
  3048. return;
  3049. }
  3050. break;
  3051. case 361: // SCARA Theta pos2
  3052. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3053. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3054. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3055. if(Stopped == false) {
  3056. //get_coordinates(); // For X Y Z E F
  3057. delta[X_AXIS] = 90;
  3058. delta[Y_AXIS] = 130;
  3059. calculate_SCARA_forward_Transform(delta);
  3060. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3061. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3062. prepare_move();
  3063. //ClearToSend();
  3064. return;
  3065. }
  3066. break;
  3067. case 362: // SCARA Psi pos1
  3068. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3069. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3070. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3071. if(Stopped == false) {
  3072. //get_coordinates(); // For X Y Z E F
  3073. delta[X_AXIS] = 60;
  3074. delta[Y_AXIS] = 180;
  3075. calculate_SCARA_forward_Transform(delta);
  3076. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3077. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3078. prepare_move();
  3079. //ClearToSend();
  3080. return;
  3081. }
  3082. break;
  3083. case 363: // SCARA Psi pos2
  3084. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3085. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3086. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3087. if(Stopped == false) {
  3088. //get_coordinates(); // For X Y Z E F
  3089. delta[X_AXIS] = 50;
  3090. delta[Y_AXIS] = 90;
  3091. calculate_SCARA_forward_Transform(delta);
  3092. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3093. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3094. prepare_move();
  3095. //ClearToSend();
  3096. return;
  3097. }
  3098. break;
  3099. case 364: // SCARA Psi pos3 (90 deg to Theta)
  3100. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3101. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3102. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3103. if(Stopped == false) {
  3104. //get_coordinates(); // For X Y Z E F
  3105. delta[X_AXIS] = 45;
  3106. delta[Y_AXIS] = 135;
  3107. calculate_SCARA_forward_Transform(delta);
  3108. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3109. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3110. prepare_move();
  3111. //ClearToSend();
  3112. return;
  3113. }
  3114. break;
  3115. case 365: // M364 Set SCARA scaling for X Y Z
  3116. for(int8_t i=0; i < 3; i++)
  3117. {
  3118. if(code_seen(axis_codes[i]))
  3119. {
  3120. axis_scaling[i] = code_value();
  3121. }
  3122. }
  3123. break;
  3124. #endif
  3125. case 400: // M400 finish all moves
  3126. {
  3127. st_synchronize();
  3128. }
  3129. break;
  3130. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3131. case 401:
  3132. {
  3133. engage_z_probe(); // Engage Z Servo endstop if available
  3134. }
  3135. break;
  3136. case 402:
  3137. {
  3138. retract_z_probe(); // Retract Z Servo endstop if enabled
  3139. }
  3140. break;
  3141. #endif
  3142. #ifdef FILAMENT_SENSOR
  3143. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3144. {
  3145. #if (FILWIDTH_PIN > -1)
  3146. if(code_seen('N')) filament_width_nominal=code_value();
  3147. else{
  3148. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3149. SERIAL_PROTOCOLLN(filament_width_nominal);
  3150. }
  3151. #endif
  3152. }
  3153. break;
  3154. case 405: //M405 Turn on filament sensor for control
  3155. {
  3156. if(code_seen('D')) meas_delay_cm=code_value();
  3157. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3158. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3159. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3160. {
  3161. int temp_ratio = widthFil_to_size_ratio();
  3162. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3163. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3164. }
  3165. delay_index1=0;
  3166. delay_index2=0;
  3167. }
  3168. filament_sensor = true ;
  3169. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3170. //SERIAL_PROTOCOL(filament_width_meas);
  3171. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3172. //SERIAL_PROTOCOL(extrudemultiply);
  3173. }
  3174. break;
  3175. case 406: //M406 Turn off filament sensor for control
  3176. {
  3177. filament_sensor = false ;
  3178. }
  3179. break;
  3180. case 407: //M407 Display measured filament diameter
  3181. {
  3182. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3183. SERIAL_PROTOCOLLN(filament_width_meas);
  3184. }
  3185. break;
  3186. #endif
  3187. case 500: // M500 Store settings in EEPROM
  3188. {
  3189. Config_StoreSettings();
  3190. }
  3191. break;
  3192. case 501: // M501 Read settings from EEPROM
  3193. {
  3194. Config_RetrieveSettings();
  3195. }
  3196. break;
  3197. case 502: // M502 Revert to default settings
  3198. {
  3199. Config_ResetDefault();
  3200. }
  3201. break;
  3202. case 503: // M503 print settings currently in memory
  3203. {
  3204. Config_PrintSettings();
  3205. }
  3206. break;
  3207. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3208. case 540:
  3209. {
  3210. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3211. }
  3212. break;
  3213. #endif
  3214. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3215. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3216. {
  3217. float value;
  3218. if (code_seen('Z'))
  3219. {
  3220. value = code_value();
  3221. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3222. {
  3223. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3224. SERIAL_ECHO_START;
  3225. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3226. SERIAL_PROTOCOLLN("");
  3227. }
  3228. else
  3229. {
  3230. SERIAL_ECHO_START;
  3231. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3232. SERIAL_ECHOPGM(MSG_Z_MIN);
  3233. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3234. SERIAL_ECHOPGM(MSG_Z_MAX);
  3235. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3236. SERIAL_PROTOCOLLN("");
  3237. }
  3238. }
  3239. else
  3240. {
  3241. SERIAL_ECHO_START;
  3242. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3243. SERIAL_ECHO(-zprobe_zoffset);
  3244. SERIAL_PROTOCOLLN("");
  3245. }
  3246. break;
  3247. }
  3248. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3249. #ifdef FILAMENTCHANGEENABLE
  3250. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3251. {
  3252. float target[4];
  3253. float lastpos[4];
  3254. target[X_AXIS]=current_position[X_AXIS];
  3255. target[Y_AXIS]=current_position[Y_AXIS];
  3256. target[Z_AXIS]=current_position[Z_AXIS];
  3257. target[E_AXIS]=current_position[E_AXIS];
  3258. lastpos[X_AXIS]=current_position[X_AXIS];
  3259. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3260. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3261. lastpos[E_AXIS]=current_position[E_AXIS];
  3262. //retract by E
  3263. if(code_seen('E'))
  3264. {
  3265. target[E_AXIS]+= code_value();
  3266. }
  3267. else
  3268. {
  3269. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3270. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3271. #endif
  3272. }
  3273. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3274. //lift Z
  3275. if(code_seen('Z'))
  3276. {
  3277. target[Z_AXIS]+= code_value();
  3278. }
  3279. else
  3280. {
  3281. #ifdef FILAMENTCHANGE_ZADD
  3282. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3283. #endif
  3284. }
  3285. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3286. //move xy
  3287. if(code_seen('X'))
  3288. {
  3289. target[X_AXIS]+= code_value();
  3290. }
  3291. else
  3292. {
  3293. #ifdef FILAMENTCHANGE_XPOS
  3294. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3295. #endif
  3296. }
  3297. if(code_seen('Y'))
  3298. {
  3299. target[Y_AXIS]= code_value();
  3300. }
  3301. else
  3302. {
  3303. #ifdef FILAMENTCHANGE_YPOS
  3304. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3305. #endif
  3306. }
  3307. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3308. if(code_seen('L'))
  3309. {
  3310. target[E_AXIS]+= code_value();
  3311. }
  3312. else
  3313. {
  3314. #ifdef FILAMENTCHANGE_FINALRETRACT
  3315. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3316. #endif
  3317. }
  3318. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3319. //finish moves
  3320. st_synchronize();
  3321. //disable extruder steppers so filament can be removed
  3322. disable_e0();
  3323. disable_e1();
  3324. disable_e2();
  3325. delay(100);
  3326. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3327. uint8_t cnt=0;
  3328. while(!lcd_clicked()){
  3329. cnt++;
  3330. manage_heater();
  3331. manage_inactivity(true);
  3332. lcd_update();
  3333. if(cnt==0)
  3334. {
  3335. #if BEEPER > 0
  3336. SET_OUTPUT(BEEPER);
  3337. WRITE(BEEPER,HIGH);
  3338. delay(3);
  3339. WRITE(BEEPER,LOW);
  3340. delay(3);
  3341. #else
  3342. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3343. lcd_buzz(1000/6,100);
  3344. #else
  3345. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3346. #endif
  3347. #endif
  3348. }
  3349. }
  3350. //return to normal
  3351. if(code_seen('L'))
  3352. {
  3353. target[E_AXIS]+= -code_value();
  3354. }
  3355. else
  3356. {
  3357. #ifdef FILAMENTCHANGE_FINALRETRACT
  3358. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  3359. #endif
  3360. }
  3361. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3362. plan_set_e_position(current_position[E_AXIS]);
  3363. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  3364. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  3365. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  3366. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  3367. }
  3368. break;
  3369. #endif //FILAMENTCHANGEENABLE
  3370. #ifdef DUAL_X_CARRIAGE
  3371. case 605: // Set dual x-carriage movement mode:
  3372. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3373. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3374. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3375. // millimeters x-offset and an optional differential hotend temperature of
  3376. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3377. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3378. //
  3379. // Note: the X axis should be homed after changing dual x-carriage mode.
  3380. {
  3381. st_synchronize();
  3382. if (code_seen('S'))
  3383. dual_x_carriage_mode = code_value();
  3384. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3385. {
  3386. if (code_seen('X'))
  3387. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3388. if (code_seen('R'))
  3389. duplicate_extruder_temp_offset = code_value();
  3390. SERIAL_ECHO_START;
  3391. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3392. SERIAL_ECHO(" ");
  3393. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3394. SERIAL_ECHO(",");
  3395. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3396. SERIAL_ECHO(" ");
  3397. SERIAL_ECHO(duplicate_extruder_x_offset);
  3398. SERIAL_ECHO(",");
  3399. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3400. }
  3401. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3402. {
  3403. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3404. }
  3405. active_extruder_parked = false;
  3406. extruder_duplication_enabled = false;
  3407. delayed_move_time = 0;
  3408. }
  3409. break;
  3410. #endif //DUAL_X_CARRIAGE
  3411. case 907: // M907 Set digital trimpot motor current using axis codes.
  3412. {
  3413. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3414. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3415. if(code_seen('B')) digipot_current(4,code_value());
  3416. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3417. #endif
  3418. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3419. if(code_seen('X')) digipot_current(0, code_value());
  3420. #endif
  3421. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3422. if(code_seen('Z')) digipot_current(1, code_value());
  3423. #endif
  3424. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3425. if(code_seen('E')) digipot_current(2, code_value());
  3426. #endif
  3427. #ifdef DIGIPOT_I2C
  3428. // this one uses actual amps in floating point
  3429. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3430. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3431. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3432. #endif
  3433. }
  3434. break;
  3435. case 908: // M908 Control digital trimpot directly.
  3436. {
  3437. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3438. uint8_t channel,current;
  3439. if(code_seen('P')) channel=code_value();
  3440. if(code_seen('S')) current=code_value();
  3441. digitalPotWrite(channel, current);
  3442. #endif
  3443. }
  3444. break;
  3445. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3446. {
  3447. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3448. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3449. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3450. if(code_seen('B')) microstep_mode(4,code_value());
  3451. microstep_readings();
  3452. #endif
  3453. }
  3454. break;
  3455. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3456. {
  3457. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3458. if(code_seen('S')) switch((int)code_value())
  3459. {
  3460. case 1:
  3461. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3462. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3463. break;
  3464. case 2:
  3465. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3466. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3467. break;
  3468. }
  3469. microstep_readings();
  3470. #endif
  3471. }
  3472. break;
  3473. case 999: // M999: Restart after being stopped
  3474. Stopped = false;
  3475. lcd_reset_alert_level();
  3476. gcode_LastN = Stopped_gcode_LastN;
  3477. FlushSerialRequestResend();
  3478. break;
  3479. }
  3480. }
  3481. else if(code_seen('T'))
  3482. {
  3483. tmp_extruder = code_value();
  3484. if(tmp_extruder >= EXTRUDERS) {
  3485. SERIAL_ECHO_START;
  3486. SERIAL_ECHO("T");
  3487. SERIAL_ECHO(tmp_extruder);
  3488. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3489. }
  3490. else {
  3491. boolean make_move = false;
  3492. if(code_seen('F')) {
  3493. make_move = true;
  3494. next_feedrate = code_value();
  3495. if(next_feedrate > 0.0) {
  3496. feedrate = next_feedrate;
  3497. }
  3498. }
  3499. #if EXTRUDERS > 1
  3500. if(tmp_extruder != active_extruder) {
  3501. // Save current position to return to after applying extruder offset
  3502. memcpy(destination, current_position, sizeof(destination));
  3503. #ifdef DUAL_X_CARRIAGE
  3504. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3505. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3506. {
  3507. // Park old head: 1) raise 2) move to park position 3) lower
  3508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3509. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3510. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3511. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3512. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3513. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3514. st_synchronize();
  3515. }
  3516. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3517. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3518. extruder_offset[Y_AXIS][active_extruder] +
  3519. extruder_offset[Y_AXIS][tmp_extruder];
  3520. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3521. extruder_offset[Z_AXIS][active_extruder] +
  3522. extruder_offset[Z_AXIS][tmp_extruder];
  3523. active_extruder = tmp_extruder;
  3524. // This function resets the max/min values - the current position may be overwritten below.
  3525. axis_is_at_home(X_AXIS);
  3526. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3527. {
  3528. current_position[X_AXIS] = inactive_extruder_x_pos;
  3529. inactive_extruder_x_pos = destination[X_AXIS];
  3530. }
  3531. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3532. {
  3533. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3534. if (active_extruder == 0 || active_extruder_parked)
  3535. current_position[X_AXIS] = inactive_extruder_x_pos;
  3536. else
  3537. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3538. inactive_extruder_x_pos = destination[X_AXIS];
  3539. extruder_duplication_enabled = false;
  3540. }
  3541. else
  3542. {
  3543. // record raised toolhead position for use by unpark
  3544. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3545. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3546. active_extruder_parked = true;
  3547. delayed_move_time = 0;
  3548. }
  3549. #else
  3550. // Offset extruder (only by XY)
  3551. int i;
  3552. for(i = 0; i < 2; i++) {
  3553. current_position[i] = current_position[i] -
  3554. extruder_offset[i][active_extruder] +
  3555. extruder_offset[i][tmp_extruder];
  3556. }
  3557. // Set the new active extruder and position
  3558. active_extruder = tmp_extruder;
  3559. #endif //else DUAL_X_CARRIAGE
  3560. #ifdef DELTA
  3561. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3562. //sent position to plan_set_position();
  3563. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3564. #else
  3565. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3566. #endif
  3567. // Move to the old position if 'F' was in the parameters
  3568. if(make_move && Stopped == false) {
  3569. prepare_move();
  3570. }
  3571. }
  3572. #endif
  3573. SERIAL_ECHO_START;
  3574. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3575. SERIAL_PROTOCOLLN((int)active_extruder);
  3576. }
  3577. }
  3578. else
  3579. {
  3580. SERIAL_ECHO_START;
  3581. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3582. SERIAL_ECHO(cmdbuffer[bufindr]);
  3583. SERIAL_ECHOLNPGM("\"");
  3584. }
  3585. ClearToSend();
  3586. }
  3587. void FlushSerialRequestResend()
  3588. {
  3589. //char cmdbuffer[bufindr][100]="Resend:";
  3590. MYSERIAL.flush();
  3591. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3592. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3593. ClearToSend();
  3594. }
  3595. void ClearToSend()
  3596. {
  3597. previous_millis_cmd = millis();
  3598. #ifdef SDSUPPORT
  3599. if(fromsd[bufindr])
  3600. return;
  3601. #endif //SDSUPPORT
  3602. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3603. }
  3604. void get_coordinates()
  3605. {
  3606. bool seen[4]={false,false,false,false};
  3607. for(int8_t i=0; i < NUM_AXIS; i++) {
  3608. if(code_seen(axis_codes[i]))
  3609. {
  3610. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3611. seen[i]=true;
  3612. }
  3613. else destination[i] = current_position[i]; //Are these else lines really needed?
  3614. }
  3615. if(code_seen('F')) {
  3616. next_feedrate = code_value();
  3617. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3618. }
  3619. }
  3620. void get_arc_coordinates()
  3621. {
  3622. #ifdef SF_ARC_FIX
  3623. bool relative_mode_backup = relative_mode;
  3624. relative_mode = true;
  3625. #endif
  3626. get_coordinates();
  3627. #ifdef SF_ARC_FIX
  3628. relative_mode=relative_mode_backup;
  3629. #endif
  3630. if(code_seen('I')) {
  3631. offset[0] = code_value();
  3632. }
  3633. else {
  3634. offset[0] = 0.0;
  3635. }
  3636. if(code_seen('J')) {
  3637. offset[1] = code_value();
  3638. }
  3639. else {
  3640. offset[1] = 0.0;
  3641. }
  3642. }
  3643. void clamp_to_software_endstops(float target[3])
  3644. {
  3645. if (min_software_endstops) {
  3646. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3647. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3648. float negative_z_offset = 0;
  3649. #ifdef ENABLE_AUTO_BED_LEVELING
  3650. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  3651. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  3652. #endif
  3653. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  3654. }
  3655. if (max_software_endstops) {
  3656. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3657. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3658. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3659. }
  3660. }
  3661. #ifdef DELTA
  3662. void recalc_delta_settings(float radius, float diagonal_rod)
  3663. {
  3664. delta_tower1_x= -SIN_60*radius; // front left tower
  3665. delta_tower1_y= -COS_60*radius;
  3666. delta_tower2_x= SIN_60*radius; // front right tower
  3667. delta_tower2_y= -COS_60*radius;
  3668. delta_tower3_x= 0.0; // back middle tower
  3669. delta_tower3_y= radius;
  3670. delta_diagonal_rod_2= sq(diagonal_rod);
  3671. }
  3672. void calculate_delta(float cartesian[3])
  3673. {
  3674. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3675. - sq(delta_tower1_x-cartesian[X_AXIS])
  3676. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3677. ) + cartesian[Z_AXIS];
  3678. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3679. - sq(delta_tower2_x-cartesian[X_AXIS])
  3680. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3681. ) + cartesian[Z_AXIS];
  3682. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3683. - sq(delta_tower3_x-cartesian[X_AXIS])
  3684. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3685. ) + cartesian[Z_AXIS];
  3686. /*
  3687. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3688. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3689. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3690. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3691. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3692. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3693. */
  3694. }
  3695. #endif
  3696. void prepare_move()
  3697. {
  3698. clamp_to_software_endstops(destination);
  3699. previous_millis_cmd = millis();
  3700. #ifdef SCARA //for now same as delta-code
  3701. float difference[NUM_AXIS];
  3702. for (int8_t i=0; i < NUM_AXIS; i++) {
  3703. difference[i] = destination[i] - current_position[i];
  3704. }
  3705. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3706. sq(difference[Y_AXIS]) +
  3707. sq(difference[Z_AXIS]));
  3708. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3709. if (cartesian_mm < 0.000001) { return; }
  3710. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3711. int steps = max(1, int(scara_segments_per_second * seconds));
  3712. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3713. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3714. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3715. for (int s = 1; s <= steps; s++) {
  3716. float fraction = float(s) / float(steps);
  3717. for(int8_t i=0; i < NUM_AXIS; i++) {
  3718. destination[i] = current_position[i] + difference[i] * fraction;
  3719. }
  3720. calculate_delta(destination);
  3721. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  3722. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  3723. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  3724. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3725. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3726. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3727. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3728. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3729. active_extruder);
  3730. }
  3731. #endif // SCARA
  3732. #ifdef DELTA
  3733. float difference[NUM_AXIS];
  3734. for (int8_t i=0; i < NUM_AXIS; i++) {
  3735. difference[i] = destination[i] - current_position[i];
  3736. }
  3737. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3738. sq(difference[Y_AXIS]) +
  3739. sq(difference[Z_AXIS]));
  3740. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3741. if (cartesian_mm < 0.000001) { return; }
  3742. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3743. int steps = max(1, int(delta_segments_per_second * seconds));
  3744. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3745. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3746. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3747. for (int s = 1; s <= steps; s++) {
  3748. float fraction = float(s) / float(steps);
  3749. for(int8_t i=0; i < NUM_AXIS; i++) {
  3750. destination[i] = current_position[i] + difference[i] * fraction;
  3751. }
  3752. calculate_delta(destination);
  3753. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3754. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3755. active_extruder);
  3756. }
  3757. #endif // DELTA
  3758. #ifdef DUAL_X_CARRIAGE
  3759. if (active_extruder_parked)
  3760. {
  3761. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3762. {
  3763. // move duplicate extruder into correct duplication position.
  3764. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3765. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3766. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3767. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3768. st_synchronize();
  3769. extruder_duplication_enabled = true;
  3770. active_extruder_parked = false;
  3771. }
  3772. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3773. {
  3774. if (current_position[E_AXIS] == destination[E_AXIS])
  3775. {
  3776. // this is a travel move - skit it but keep track of current position (so that it can later
  3777. // be used as start of first non-travel move)
  3778. if (delayed_move_time != 0xFFFFFFFFUL)
  3779. {
  3780. memcpy(current_position, destination, sizeof(current_position));
  3781. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3782. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3783. delayed_move_time = millis();
  3784. return;
  3785. }
  3786. }
  3787. delayed_move_time = 0;
  3788. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3789. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3790. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3791. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3792. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3793. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3794. active_extruder_parked = false;
  3795. }
  3796. }
  3797. #endif //DUAL_X_CARRIAGE
  3798. #if ! (defined DELTA || defined SCARA)
  3799. // Do not use feedmultiply for E or Z only moves
  3800. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3801. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3802. }
  3803. else {
  3804. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3805. }
  3806. #endif // !(DELTA || SCARA)
  3807. for(int8_t i=0; i < NUM_AXIS; i++) {
  3808. current_position[i] = destination[i];
  3809. }
  3810. }
  3811. void prepare_arc_move(char isclockwise) {
  3812. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3813. // Trace the arc
  3814. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3815. // As far as the parser is concerned, the position is now == target. In reality the
  3816. // motion control system might still be processing the action and the real tool position
  3817. // in any intermediate location.
  3818. for(int8_t i=0; i < NUM_AXIS; i++) {
  3819. current_position[i] = destination[i];
  3820. }
  3821. previous_millis_cmd = millis();
  3822. }
  3823. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3824. #if defined(FAN_PIN)
  3825. #if CONTROLLERFAN_PIN == FAN_PIN
  3826. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3827. #endif
  3828. #endif
  3829. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3830. unsigned long lastMotorCheck = 0;
  3831. void controllerFan()
  3832. {
  3833. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3834. {
  3835. lastMotorCheck = millis();
  3836. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3837. #if EXTRUDERS > 2
  3838. || !READ(E2_ENABLE_PIN)
  3839. #endif
  3840. #if EXTRUDER > 1
  3841. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3842. || !READ(X2_ENABLE_PIN)
  3843. #endif
  3844. || !READ(E1_ENABLE_PIN)
  3845. #endif
  3846. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3847. {
  3848. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3849. }
  3850. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3851. {
  3852. digitalWrite(CONTROLLERFAN_PIN, 0);
  3853. analogWrite(CONTROLLERFAN_PIN, 0);
  3854. }
  3855. else
  3856. {
  3857. // allows digital or PWM fan output to be used (see M42 handling)
  3858. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3859. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3860. }
  3861. }
  3862. }
  3863. #endif
  3864. #ifdef SCARA
  3865. void calculate_SCARA_forward_Transform(float f_scara[3])
  3866. {
  3867. // Perform forward kinematics, and place results in delta[3]
  3868. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3869. float x_sin, x_cos, y_sin, y_cos;
  3870. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3871. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3872. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3873. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3874. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3875. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3876. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  3877. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  3878. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  3879. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  3880. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  3881. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  3882. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  3883. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3884. }
  3885. void calculate_delta(float cartesian[3]){
  3886. //reverse kinematics.
  3887. // Perform reversed kinematics, and place results in delta[3]
  3888. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3889. float SCARA_pos[2];
  3890. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  3891. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  3892. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  3893. #if (Linkage_1 == Linkage_2)
  3894. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  3895. #else
  3896. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  3897. #endif
  3898. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  3899. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  3900. SCARA_K2 = Linkage_2 * SCARA_S2;
  3901. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  3902. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  3903. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  3904. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  3905. delta[Z_AXIS] = cartesian[Z_AXIS];
  3906. /*
  3907. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3908. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3909. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3910. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  3911. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  3912. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3913. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3914. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3915. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  3916. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  3917. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  3918. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  3919. SERIAL_ECHOLN(" ");*/
  3920. }
  3921. #endif
  3922. #ifdef TEMP_STAT_LEDS
  3923. static bool blue_led = false;
  3924. static bool red_led = false;
  3925. static uint32_t stat_update = 0;
  3926. void handle_status_leds(void) {
  3927. float max_temp = 0.0;
  3928. if(millis() > stat_update) {
  3929. stat_update += 500; // Update every 0.5s
  3930. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3931. max_temp = max(max_temp, degHotend(cur_extruder));
  3932. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3933. }
  3934. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3935. max_temp = max(max_temp, degTargetBed());
  3936. max_temp = max(max_temp, degBed());
  3937. #endif
  3938. if((max_temp > 55.0) && (red_led == false)) {
  3939. digitalWrite(STAT_LED_RED, 1);
  3940. digitalWrite(STAT_LED_BLUE, 0);
  3941. red_led = true;
  3942. blue_led = false;
  3943. }
  3944. if((max_temp < 54.0) && (blue_led == false)) {
  3945. digitalWrite(STAT_LED_RED, 0);
  3946. digitalWrite(STAT_LED_BLUE, 1);
  3947. red_led = false;
  3948. blue_led = true;
  3949. }
  3950. }
  3951. }
  3952. #endif
  3953. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  3954. {
  3955. #if defined(KILL_PIN) && KILL_PIN > -1
  3956. static int killCount = 0; // make the inactivity button a bit less responsive
  3957. const int KILL_DELAY = 10000;
  3958. #endif
  3959. #if defined(HOME_PIN) && HOME_PIN > -1
  3960. static int homeDebounceCount = 0; // poor man's debouncing count
  3961. const int HOME_DEBOUNCE_DELAY = 10000;
  3962. #endif
  3963. if(buflen < (BUFSIZE-1))
  3964. get_command();
  3965. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3966. if(max_inactive_time)
  3967. kill();
  3968. if(stepper_inactive_time) {
  3969. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3970. {
  3971. if(blocks_queued() == false && ignore_stepper_queue == false) {
  3972. disable_x();
  3973. disable_y();
  3974. disable_z();
  3975. disable_e0();
  3976. disable_e1();
  3977. disable_e2();
  3978. }
  3979. }
  3980. }
  3981. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3982. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  3983. {
  3984. chdkActive = false;
  3985. WRITE(CHDK, LOW);
  3986. }
  3987. #endif
  3988. #if defined(KILL_PIN) && KILL_PIN > -1
  3989. // Check if the kill button was pressed and wait just in case it was an accidental
  3990. // key kill key press
  3991. // -------------------------------------------------------------------------------
  3992. if( 0 == READ(KILL_PIN) )
  3993. {
  3994. killCount++;
  3995. }
  3996. else if (killCount > 0)
  3997. {
  3998. killCount--;
  3999. }
  4000. // Exceeded threshold and we can confirm that it was not accidental
  4001. // KILL the machine
  4002. // ----------------------------------------------------------------
  4003. if ( killCount >= KILL_DELAY)
  4004. {
  4005. kill();
  4006. }
  4007. #endif
  4008. #if defined(HOME_PIN) && HOME_PIN > -1
  4009. // Check to see if we have to home, use poor man's debouncer
  4010. // ---------------------------------------------------------
  4011. if ( 0 == READ(HOME_PIN) )
  4012. {
  4013. if (homeDebounceCount == 0)
  4014. {
  4015. enquecommand_P((PSTR("G28")));
  4016. homeDebounceCount++;
  4017. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4018. }
  4019. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4020. {
  4021. homeDebounceCount++;
  4022. }
  4023. else
  4024. {
  4025. homeDebounceCount = 0;
  4026. }
  4027. }
  4028. #endif
  4029. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4030. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4031. #endif
  4032. #ifdef EXTRUDER_RUNOUT_PREVENT
  4033. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4034. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4035. {
  4036. bool oldstatus=READ(E0_ENABLE_PIN);
  4037. enable_e0();
  4038. float oldepos=current_position[E_AXIS];
  4039. float oldedes=destination[E_AXIS];
  4040. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4041. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4042. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4043. current_position[E_AXIS]=oldepos;
  4044. destination[E_AXIS]=oldedes;
  4045. plan_set_e_position(oldepos);
  4046. previous_millis_cmd=millis();
  4047. st_synchronize();
  4048. WRITE(E0_ENABLE_PIN,oldstatus);
  4049. }
  4050. #endif
  4051. #if defined(DUAL_X_CARRIAGE)
  4052. // handle delayed move timeout
  4053. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4054. {
  4055. // travel moves have been received so enact them
  4056. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4057. memcpy(destination,current_position,sizeof(destination));
  4058. prepare_move();
  4059. }
  4060. #endif
  4061. #ifdef TEMP_STAT_LEDS
  4062. handle_status_leds();
  4063. #endif
  4064. check_axes_activity();
  4065. }
  4066. void kill()
  4067. {
  4068. cli(); // Stop interrupts
  4069. disable_heater();
  4070. disable_x();
  4071. disable_y();
  4072. disable_z();
  4073. disable_e0();
  4074. disable_e1();
  4075. disable_e2();
  4076. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4077. pinMode(PS_ON_PIN,INPUT);
  4078. #endif
  4079. SERIAL_ERROR_START;
  4080. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4081. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4082. // FMC small patch to update the LCD before ending
  4083. sei(); // enable interrupts
  4084. for ( int i=5; i--; lcd_update())
  4085. {
  4086. delay(200);
  4087. }
  4088. cli(); // disable interrupts
  4089. suicide();
  4090. while(1) { /* Intentionally left empty */ } // Wait for reset
  4091. }
  4092. void Stop()
  4093. {
  4094. disable_heater();
  4095. if(Stopped == false) {
  4096. Stopped = true;
  4097. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4098. SERIAL_ERROR_START;
  4099. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4100. LCD_MESSAGEPGM(MSG_STOPPED);
  4101. }
  4102. }
  4103. bool IsStopped() { return Stopped; };
  4104. #ifdef FAST_PWM_FAN
  4105. void setPwmFrequency(uint8_t pin, int val)
  4106. {
  4107. val &= 0x07;
  4108. switch(digitalPinToTimer(pin))
  4109. {
  4110. #if defined(TCCR0A)
  4111. case TIMER0A:
  4112. case TIMER0B:
  4113. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4114. // TCCR0B |= val;
  4115. break;
  4116. #endif
  4117. #if defined(TCCR1A)
  4118. case TIMER1A:
  4119. case TIMER1B:
  4120. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4121. // TCCR1B |= val;
  4122. break;
  4123. #endif
  4124. #if defined(TCCR2)
  4125. case TIMER2:
  4126. case TIMER2:
  4127. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4128. TCCR2 |= val;
  4129. break;
  4130. #endif
  4131. #if defined(TCCR2A)
  4132. case TIMER2A:
  4133. case TIMER2B:
  4134. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4135. TCCR2B |= val;
  4136. break;
  4137. #endif
  4138. #if defined(TCCR3A)
  4139. case TIMER3A:
  4140. case TIMER3B:
  4141. case TIMER3C:
  4142. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4143. TCCR3B |= val;
  4144. break;
  4145. #endif
  4146. #if defined(TCCR4A)
  4147. case TIMER4A:
  4148. case TIMER4B:
  4149. case TIMER4C:
  4150. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4151. TCCR4B |= val;
  4152. break;
  4153. #endif
  4154. #if defined(TCCR5A)
  4155. case TIMER5A:
  4156. case TIMER5B:
  4157. case TIMER5C:
  4158. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4159. TCCR5B |= val;
  4160. break;
  4161. #endif
  4162. }
  4163. }
  4164. #endif //FAST_PWM_FAN
  4165. bool setTargetedHotend(int code){
  4166. tmp_extruder = active_extruder;
  4167. if(code_seen('T')) {
  4168. tmp_extruder = code_value();
  4169. if(tmp_extruder >= EXTRUDERS) {
  4170. SERIAL_ECHO_START;
  4171. switch(code){
  4172. case 104:
  4173. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4174. break;
  4175. case 105:
  4176. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4177. break;
  4178. case 109:
  4179. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4180. break;
  4181. case 218:
  4182. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4183. break;
  4184. case 221:
  4185. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4186. break;
  4187. }
  4188. SERIAL_ECHOLN(tmp_extruder);
  4189. return true;
  4190. }
  4191. }
  4192. return false;
  4193. }
  4194. float calculate_volumetric_multiplier(float diameter) {
  4195. float area = .0;
  4196. float radius = .0;
  4197. radius = diameter * .5;
  4198. if (! volumetric_enabled || radius == 0) {
  4199. area = 1;
  4200. }
  4201. else {
  4202. area = M_PI * pow(radius, 2);
  4203. }
  4204. return 1.0 / area;
  4205. }
  4206. void calculate_volumetric_multipliers() {
  4207. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4208. #if EXTRUDERS > 1
  4209. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4210. #if EXTRUDERS > 2
  4211. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4212. #if EXTRUDERS > 3
  4213. volumetric_multiplier[3] = calculate_volumetric_multiplier(filament_size[3]);
  4214. #endif //EXTRUDERS > 3
  4215. #endif //EXTRUDERS > 2
  4216. #endif //EXTRUDERS > 1
  4217. }