My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 50KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "stepper.h"
  45. #ifdef ARDUINO_ARCH_AVR
  46. #include "speed_lookuptable.h"
  47. #endif
  48. #include "endstops.h"
  49. #include "planner.h"
  50. #include "../Marlin.h"
  51. #include "../module/temperature.h"
  52. #include "../lcd/ultralcd.h"
  53. #include "../core/language.h"
  54. #include "../sd/cardreader.h"
  55. #if MB(ALLIGATOR)
  56. #include "../feature/dac/dac_dac084s085.h"
  57. #endif
  58. #if HAS_LEVELING
  59. #include "../feature/bedlevel/bedlevel.h"
  60. #endif
  61. #if HAS_DIGIPOTSS
  62. #include <SPI.h>
  63. #endif
  64. Stepper stepper; // Singleton
  65. // public:
  66. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  67. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  68. bool Stepper::abort_on_endstop_hit = false;
  69. #endif
  70. #if ENABLED(Z_DUAL_ENDSTOPS)
  71. bool Stepper::performing_homing = false;
  72. #endif
  73. #if HAS_MOTOR_CURRENT_PWM
  74. uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load()
  75. #endif
  76. // private:
  77. uint8_t Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  78. uint16_t Stepper::cleaning_buffer_counter = 0;
  79. #if ENABLED(Z_DUAL_ENDSTOPS)
  80. bool Stepper::locked_z_motor = false;
  81. bool Stepper::locked_z2_motor = false;
  82. #endif
  83. long Stepper::counter_X = 0,
  84. Stepper::counter_Y = 0,
  85. Stepper::counter_Z = 0,
  86. Stepper::counter_E = 0;
  87. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  88. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  89. constexpr HAL_TIMER_TYPE ADV_NEVER = HAL_TIMER_TYPE_MAX;
  90. HAL_TIMER_TYPE Stepper::nextMainISR = 0,
  91. Stepper::nextAdvanceISR = ADV_NEVER,
  92. Stepper::eISR_Rate = ADV_NEVER;
  93. #if ENABLED(LIN_ADVANCE)
  94. volatile int Stepper::e_steps[E_STEPPERS];
  95. int Stepper::final_estep_rate,
  96. Stepper::current_estep_rate[E_STEPPERS],
  97. Stepper::current_adv_steps[E_STEPPERS];
  98. #else
  99. long Stepper::e_steps[E_STEPPERS],
  100. Stepper::final_advance = 0,
  101. Stepper::old_advance = 0,
  102. Stepper::advance_rate,
  103. Stepper::advance;
  104. #endif
  105. /**
  106. * See https://github.com/MarlinFirmware/Marlin/issues/5699#issuecomment-309264382
  107. *
  108. * This fix isn't perfect and may lose steps - but better than locking up completely
  109. * in future the planner should slow down if advance stepping rate would be too high
  110. */
  111. FORCE_INLINE uint16_t adv_rate(const int steps, const uint16_t timer, const uint8_t loops) {
  112. if (steps) {
  113. const uint16_t rate = (timer * loops) / abs(steps);
  114. //return constrain(rate, 1, ADV_NEVER - 1)
  115. return rate ? rate : 1;
  116. }
  117. return ADV_NEVER;
  118. }
  119. #endif // ADVANCE || LIN_ADVANCE
  120. long Stepper::acceleration_time, Stepper::deceleration_time;
  121. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  122. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  123. #if ENABLED(MIXING_EXTRUDER)
  124. long Stepper::counter_m[MIXING_STEPPERS];
  125. #endif
  126. HAL_TIMER_TYPE Stepper::acc_step_rate; // needed for deceleration start point
  127. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  128. HAL_TIMER_TYPE Stepper::OCR1A_nominal;
  129. volatile long Stepper::endstops_trigsteps[XYZ];
  130. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  131. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  132. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  133. #elif ENABLED(DUAL_X_CARRIAGE)
  134. #define X_APPLY_DIR(v,ALWAYS) \
  135. if (extruder_duplication_enabled || ALWAYS) { \
  136. X_DIR_WRITE(v); \
  137. X2_DIR_WRITE(v); \
  138. } \
  139. else { \
  140. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  141. }
  142. #define X_APPLY_STEP(v,ALWAYS) \
  143. if (extruder_duplication_enabled || ALWAYS) { \
  144. X_STEP_WRITE(v); \
  145. X2_STEP_WRITE(v); \
  146. } \
  147. else { \
  148. if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  149. }
  150. #else
  151. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  152. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  153. #endif
  154. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  155. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  156. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  157. #else
  158. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  159. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  160. #endif
  161. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  162. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  163. #if ENABLED(Z_DUAL_ENDSTOPS)
  164. #define Z_APPLY_STEP(v,Q) \
  165. if (performing_homing) { \
  166. if (Z_HOME_DIR < 0) { \
  167. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  168. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  169. } \
  170. else { \
  171. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  172. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  173. } \
  174. } \
  175. else { \
  176. Z_STEP_WRITE(v); \
  177. Z2_STEP_WRITE(v); \
  178. }
  179. #else
  180. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  181. #endif
  182. #else
  183. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  184. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  185. #endif
  186. #if DISABLED(MIXING_EXTRUDER)
  187. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  188. #endif
  189. /**
  190. * __________________________
  191. * /| |\ _________________ ^
  192. * / | | \ /| |\ |
  193. * / | | \ / | | \ s
  194. * / | | | | | \ p
  195. * / | | | | | \ e
  196. * +-----+------------------------+---+--+---------------+----+ e
  197. * | BLOCK 1 | BLOCK 2 | d
  198. *
  199. * time ----->
  200. *
  201. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  202. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  203. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  204. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  205. */
  206. void Stepper::wake_up() {
  207. // TCNT1 = 0;
  208. ENABLE_STEPPER_DRIVER_INTERRUPT();
  209. }
  210. /**
  211. * Set the stepper direction of each axis
  212. *
  213. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  214. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  215. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  216. */
  217. void Stepper::set_directions() {
  218. #define SET_STEP_DIR(AXIS) \
  219. if (motor_direction(AXIS ##_AXIS)) { \
  220. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  221. count_direction[AXIS ##_AXIS] = -1; \
  222. } \
  223. else { \
  224. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  225. count_direction[AXIS ##_AXIS] = 1; \
  226. }
  227. #if HAS_X_DIR
  228. SET_STEP_DIR(X); // A
  229. #endif
  230. #if HAS_Y_DIR
  231. SET_STEP_DIR(Y); // B
  232. #endif
  233. #if HAS_Z_DIR
  234. SET_STEP_DIR(Z); // C
  235. #endif
  236. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  237. if (motor_direction(E_AXIS)) {
  238. REV_E_DIR();
  239. count_direction[E_AXIS] = -1;
  240. }
  241. else {
  242. NORM_E_DIR();
  243. count_direction[E_AXIS] = 1;
  244. }
  245. #endif // !ADVANCE && !LIN_ADVANCE
  246. }
  247. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  248. extern volatile uint8_t e_hit;
  249. #endif
  250. /**
  251. * Stepper Driver Interrupt
  252. *
  253. * Directly pulses the stepper motors at high frequency.
  254. *
  255. * AVR :
  256. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  257. *
  258. * OCR1A Frequency
  259. * 1 2 MHz
  260. * 50 40 KHz
  261. * 100 20 KHz - capped max rate
  262. * 200 10 KHz - nominal max rate
  263. * 2000 1 KHz - sleep rate
  264. * 4000 500 Hz - init rate
  265. */
  266. HAL_STEP_TIMER_ISR {
  267. HAL_timer_isr_prologue(STEP_TIMER_NUM);
  268. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  269. Stepper::advance_isr_scheduler();
  270. #else
  271. Stepper::isr();
  272. #endif
  273. }
  274. void Stepper::isr() {
  275. HAL_TIMER_TYPE ocr_val;
  276. #define ENDSTOP_NOMINAL_OCR_VAL 3000 // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
  277. #define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
  278. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  279. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  280. DISABLE_TEMPERATURE_INTERRUPT(); // Temperature ISR
  281. DISABLE_STEPPER_DRIVER_INTERRUPT();
  282. #if !defined(CPU_32_BIT)
  283. sei();
  284. #endif
  285. #endif
  286. #define _SPLIT(L) (ocr_val = (HAL_TIMER_TYPE)L)
  287. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) || defined(CPU_32_BIT)
  288. #define SPLIT(L) _SPLIT(L)
  289. #else // sample endstops in between step pulses
  290. static uint32_t step_remaining = 0;
  291. #define SPLIT(L) do { \
  292. _SPLIT(L); \
  293. if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \
  294. const uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
  295. ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
  296. step_remaining = (uint16_t)L - ocr_val; \
  297. } \
  298. }while(0)
  299. if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step
  300. endstops.update();
  301. if (step_remaining > ENDSTOP_NOMINAL_OCR_VAL) {
  302. step_remaining -= ENDSTOP_NOMINAL_OCR_VAL;
  303. ocr_val = ENDSTOP_NOMINAL_OCR_VAL;
  304. }
  305. else {
  306. ocr_val = step_remaining;
  307. step_remaining = 0; // last one before the ISR that does the step
  308. }
  309. _NEXT_ISR(ocr_val);
  310. NOLESS(OCR1A, TCNT1 + 16);
  311. HAL_ENABLE_ISRs(); // re-enable ISRs
  312. return;
  313. }
  314. #endif
  315. if (cleaning_buffer_counter) {
  316. --cleaning_buffer_counter;
  317. current_block = NULL;
  318. planner.discard_current_block();
  319. #ifdef SD_FINISHED_RELEASECOMMAND
  320. if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  321. #endif
  322. _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 10000); // Run at max speed - 10 KHz
  323. HAL_ENABLE_ISRs(); // re-enable ISRs
  324. return;
  325. }
  326. // If there is no current block, attempt to pop one from the buffer
  327. if (!current_block) {
  328. // Anything in the buffer?
  329. current_block = planner.get_current_block();
  330. if (current_block) {
  331. trapezoid_generator_reset();
  332. // Initialize Bresenham counters to 1/2 the ceiling
  333. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  334. #if ENABLED(MIXING_EXTRUDER)
  335. MIXING_STEPPERS_LOOP(i)
  336. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  337. #endif
  338. step_events_completed = 0;
  339. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  340. e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
  341. // No 'change' can be detected.
  342. #endif
  343. #if ENABLED(Z_LATE_ENABLE)
  344. if (current_block->steps[Z_AXIS] > 0) {
  345. enable_Z();
  346. _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 1000); // Run at slow speed - 1 KHz
  347. HAL_ENABLE_ISRs(); // re-enable ISRs
  348. return;
  349. }
  350. #endif
  351. // #if ENABLED(ADVANCE)
  352. // e_steps[TOOL_E_INDEX] = 0;
  353. // #endif
  354. }
  355. else {
  356. _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 1000); // Run at slow speed - 1 KHz
  357. HAL_ENABLE_ISRs(); // re-enable ISRs
  358. return;
  359. }
  360. }
  361. // Update endstops state, if enabled
  362. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  363. if (e_hit && ENDSTOPS_ENABLED) {
  364. endstops.update();
  365. e_hit--;
  366. }
  367. #else
  368. if (ENDSTOPS_ENABLED) endstops.update();
  369. #endif
  370. // Take multiple steps per interrupt (For high speed moves)
  371. bool all_steps_done = false;
  372. for (uint8_t i = step_loops; i--;) {
  373. #if ENABLED(LIN_ADVANCE)
  374. counter_E += current_block->steps[E_AXIS];
  375. if (counter_E > 0) {
  376. counter_E -= current_block->step_event_count;
  377. #if DISABLED(MIXING_EXTRUDER)
  378. // Don't step E here for mixing extruder
  379. count_position[E_AXIS] += count_direction[E_AXIS];
  380. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  381. #endif
  382. }
  383. #if ENABLED(MIXING_EXTRUDER)
  384. // Step mixing steppers proportionally
  385. const bool dir = motor_direction(E_AXIS);
  386. MIXING_STEPPERS_LOOP(j) {
  387. counter_m[j] += current_block->steps[E_AXIS];
  388. if (counter_m[j] > 0) {
  389. counter_m[j] -= current_block->mix_event_count[j];
  390. dir ? --e_steps[j] : ++e_steps[j];
  391. }
  392. }
  393. #endif
  394. #elif ENABLED(ADVANCE)
  395. // Always count the unified E axis
  396. counter_E += current_block->steps[E_AXIS];
  397. if (counter_E > 0) {
  398. counter_E -= current_block->step_event_count;
  399. #if DISABLED(MIXING_EXTRUDER)
  400. // Don't step E here for mixing extruder
  401. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  402. #endif
  403. }
  404. #if ENABLED(MIXING_EXTRUDER)
  405. // Step mixing steppers proportionally
  406. const bool dir = motor_direction(E_AXIS);
  407. MIXING_STEPPERS_LOOP(j) {
  408. counter_m[j] += current_block->steps[E_AXIS];
  409. if (counter_m[j] > 0) {
  410. counter_m[j] -= current_block->mix_event_count[j];
  411. dir ? --e_steps[j] : ++e_steps[j];
  412. }
  413. }
  414. #endif // MIXING_EXTRUDER
  415. #endif // ADVANCE or LIN_ADVANCE
  416. #define _COUNTER(AXIS) counter_## AXIS
  417. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  418. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  419. // Advance the Bresenham counter; start a pulse if the axis needs a step
  420. #define PULSE_START(AXIS) \
  421. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  422. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  423. // Stop an active pulse, reset the Bresenham counter, update the position
  424. #define PULSE_STOP(AXIS) \
  425. if (_COUNTER(AXIS) > 0) { \
  426. _COUNTER(AXIS) -= current_block->step_event_count; \
  427. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  428. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  429. }
  430. /**
  431. * Estimate the number of cycles that the stepper logic already takes
  432. * up between the start and stop of the X stepper pulse.
  433. *
  434. * Currently this uses very modest estimates of around 5 cycles.
  435. * True values may be derived by careful testing.
  436. *
  437. * Once any delay is added, the cost of the delay code itself
  438. * may be subtracted from this value to get a more accurate delay.
  439. * Delays under 20 cycles (1.25µs) will be very accurate, using NOPs.
  440. * Longer delays use a loop. The resolution is 8 cycles.
  441. */
  442. #if HAS_X_STEP
  443. #define _CYCLE_APPROX_1 5
  444. #else
  445. #define _CYCLE_APPROX_1 0
  446. #endif
  447. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  448. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
  449. #else
  450. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1
  451. #endif
  452. #if HAS_Y_STEP
  453. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
  454. #else
  455. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2
  456. #endif
  457. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  458. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
  459. #else
  460. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3
  461. #endif
  462. #if HAS_Z_STEP
  463. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
  464. #else
  465. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4
  466. #endif
  467. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  468. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
  469. #else
  470. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5
  471. #endif
  472. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  473. #if ENABLED(MIXING_EXTRUDER)
  474. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
  475. #else
  476. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
  477. #endif
  478. #else
  479. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6
  480. #endif
  481. #define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
  482. #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
  483. /**
  484. * If a minimum pulse time was specified get the timer 0 value.
  485. *
  486. * TCNT0 has an 8x prescaler, so it increments every 8 cycles.
  487. * That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
  488. * 20 counts of TCNT0 -by itself- is a good pulse delay.
  489. * 10µs = 160 or 200 cycles.
  490. */
  491. #if EXTRA_CYCLES_XYZE > 20
  492. uint32_t pulse_start = HAL_timer_get_current_count(STEP_TIMER_NUM);
  493. #endif
  494. #if HAS_X_STEP
  495. PULSE_START(X);
  496. #endif
  497. #if HAS_Y_STEP
  498. PULSE_START(Y);
  499. #endif
  500. #if HAS_Z_STEP
  501. PULSE_START(Z);
  502. #endif
  503. // For non-advance use linear interpolation for E also
  504. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  505. #if ENABLED(MIXING_EXTRUDER)
  506. // Keep updating the single E axis
  507. counter_E += current_block->steps[E_AXIS];
  508. // Tick the counters used for this mix
  509. MIXING_STEPPERS_LOOP(j) {
  510. // Step mixing steppers (proportionally)
  511. counter_m[j] += current_block->steps[E_AXIS];
  512. // Step when the counter goes over zero
  513. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  514. }
  515. #else // !MIXING_EXTRUDER
  516. PULSE_START(E);
  517. #endif
  518. #endif // !ADVANCE && !LIN_ADVANCE
  519. // For minimum pulse time wait before stopping pulses
  520. #if EXTRA_CYCLES_XYZE > 20
  521. while (EXTRA_CYCLES_XYZE > (uint32_t)(HAL_timer_get_current_count(STEP_TIMER_NUM) - pulse_start) * (STEPPER_TIMER_PRESCALE)) { /* nada */ }
  522. pulse_start = HAL_timer_get_current_count(STEP_TIMER_NUM);
  523. #elif EXTRA_CYCLES_XYZE > 0
  524. DELAY_NOPS(EXTRA_CYCLES_XYZE);
  525. #endif
  526. #if HAS_X_STEP
  527. PULSE_STOP(X);
  528. #endif
  529. #if HAS_Y_STEP
  530. PULSE_STOP(Y);
  531. #endif
  532. #if HAS_Z_STEP
  533. PULSE_STOP(Z);
  534. #endif
  535. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  536. #if ENABLED(MIXING_EXTRUDER)
  537. // Always step the single E axis
  538. if (counter_E > 0) {
  539. counter_E -= current_block->step_event_count;
  540. count_position[E_AXIS] += count_direction[E_AXIS];
  541. }
  542. MIXING_STEPPERS_LOOP(j) {
  543. if (counter_m[j] > 0) {
  544. counter_m[j] -= current_block->mix_event_count[j];
  545. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  546. }
  547. }
  548. #else // !MIXING_EXTRUDER
  549. PULSE_STOP(E);
  550. #endif
  551. #endif // !ADVANCE && !LIN_ADVANCE
  552. if (++step_events_completed >= current_block->step_event_count) {
  553. all_steps_done = true;
  554. break;
  555. }
  556. // For minimum pulse time wait after stopping pulses also
  557. #if EXTRA_CYCLES_XYZE > 20
  558. if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(HAL_timer_get_current_count(STEP_TIMER_NUM) - pulse_start) * (STEPPER_TIMER_PRESCALE)) { /* nada */ }
  559. #elif EXTRA_CYCLES_XYZE > 0
  560. if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE);
  561. #endif
  562. } // steps_loop
  563. #if ENABLED(LIN_ADVANCE)
  564. if (current_block->use_advance_lead) {
  565. const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  566. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  567. #if ENABLED(MIXING_EXTRUDER)
  568. // Mixing extruders apply advance lead proportionally
  569. MIXING_STEPPERS_LOOP(j)
  570. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  571. #else
  572. // For most extruders, advance the single E stepper
  573. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  574. #endif
  575. }
  576. #endif
  577. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  578. // If we have esteps to execute, fire the next advance_isr "now"
  579. if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
  580. #endif
  581. // Calculate new timer value
  582. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  583. #ifdef CPU_32_BIT
  584. MultiU32X24toH32(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  585. #else
  586. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  587. #endif
  588. acc_step_rate += current_block->initial_rate;
  589. // upper limit
  590. NOMORE(acc_step_rate, current_block->nominal_rate);
  591. // step_rate to timer interval
  592. const HAL_TIMER_TYPE timer = calc_timer(acc_step_rate);
  593. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  594. _NEXT_ISR(ocr_val);
  595. acceleration_time += timer;
  596. #if ENABLED(LIN_ADVANCE)
  597. if (current_block->use_advance_lead) {
  598. #if ENABLED(MIXING_EXTRUDER)
  599. MIXING_STEPPERS_LOOP(j)
  600. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  601. #else
  602. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  603. #endif
  604. }
  605. #elif ENABLED(ADVANCE)
  606. advance += advance_rate * step_loops;
  607. //NOLESS(advance, current_block->advance);
  608. const long advance_whole = advance >> 8,
  609. advance_factor = advance_whole - old_advance;
  610. // Do E steps + advance steps
  611. #if ENABLED(MIXING_EXTRUDER)
  612. // ...for mixing steppers proportionally
  613. MIXING_STEPPERS_LOOP(j)
  614. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  615. #else
  616. // ...for the active extruder
  617. e_steps[TOOL_E_INDEX] += advance_factor;
  618. #endif
  619. old_advance = advance_whole;
  620. #endif // ADVANCE or LIN_ADVANCE
  621. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  622. // TODO: HAL
  623. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
  624. #endif
  625. }
  626. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  627. HAL_TIMER_TYPE step_rate;
  628. #ifdef CPU_32_BIT
  629. MultiU32X24toH32(step_rate, deceleration_time, current_block->acceleration_rate);
  630. #else
  631. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  632. #endif
  633. if (step_rate < acc_step_rate) { // Still decelerating?
  634. step_rate = acc_step_rate - step_rate;
  635. NOLESS(step_rate, current_block->final_rate);
  636. }
  637. else
  638. step_rate = current_block->final_rate;
  639. // step_rate to timer interval
  640. const HAL_TIMER_TYPE timer = calc_timer(step_rate);
  641. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  642. _NEXT_ISR(ocr_val);
  643. deceleration_time += timer;
  644. #if ENABLED(LIN_ADVANCE)
  645. if (current_block->use_advance_lead) {
  646. #if ENABLED(MIXING_EXTRUDER)
  647. MIXING_STEPPERS_LOOP(j)
  648. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  649. #else
  650. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  651. #endif
  652. }
  653. #elif ENABLED(ADVANCE)
  654. advance -= advance_rate * step_loops;
  655. NOLESS(advance, final_advance);
  656. // Do E steps + advance steps
  657. const long advance_whole = advance >> 8,
  658. advance_factor = advance_whole - old_advance;
  659. #if ENABLED(MIXING_EXTRUDER)
  660. MIXING_STEPPERS_LOOP(j)
  661. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  662. #else
  663. e_steps[TOOL_E_INDEX] += advance_factor;
  664. #endif
  665. old_advance = advance_whole;
  666. #endif // ADVANCE or LIN_ADVANCE
  667. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  668. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
  669. #endif
  670. }
  671. else {
  672. #if ENABLED(LIN_ADVANCE)
  673. if (current_block->use_advance_lead)
  674. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  675. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], OCR1A_nominal, step_loops_nominal);
  676. #endif
  677. SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  678. _NEXT_ISR(ocr_val);
  679. // ensure we're running at the correct step rate, even if we just came off an acceleration
  680. step_loops = step_loops_nominal;
  681. }
  682. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  683. #ifdef CPU_32_BIT
  684. // Make sure stepper interrupt does not monopolise CPU by adjusting count to give about 8 us room
  685. uint32_t stepper_timer_count = HAL_timer_get_count(STEP_TIMER_NUM),
  686. stepper_timer_current_count = HAL_timer_get_current_count(STEP_TIMER_NUM) + 8 * HAL_TICKS_PER_US;
  687. HAL_timer_set_count(STEP_TIMER_NUM, max(stepper_timer_count, stepper_timer_current_count));
  688. #else
  689. NOLESS(OCR1A, TCNT1 + 16);
  690. #endif
  691. #endif
  692. // If current block is finished, reset pointer
  693. if (all_steps_done) {
  694. current_block = NULL;
  695. planner.discard_current_block();
  696. }
  697. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  698. HAL_ENABLE_ISRs(); // re-enable ISRs
  699. #endif
  700. }
  701. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  702. #define CYCLES_EATEN_E (E_STEPPERS * 5)
  703. #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
  704. // Timer interrupt for E. e_steps is set in the main routine;
  705. void Stepper::advance_isr() {
  706. nextAdvanceISR = eISR_Rate;
  707. #if ENABLED(MK2_MULTIPLEXER)
  708. // Even-numbered steppers are reversed
  709. #define SET_E_STEP_DIR(INDEX) \
  710. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? !INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0) : INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0))
  711. #else
  712. #define SET_E_STEP_DIR(INDEX) \
  713. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  714. #endif
  715. #define START_E_PULSE(INDEX) \
  716. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  717. #define STOP_E_PULSE(INDEX) \
  718. if (e_steps[INDEX]) { \
  719. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  720. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  721. }
  722. SET_E_STEP_DIR(0);
  723. #if E_STEPPERS > 1
  724. SET_E_STEP_DIR(1);
  725. #if E_STEPPERS > 2
  726. SET_E_STEP_DIR(2);
  727. #if E_STEPPERS > 3
  728. SET_E_STEP_DIR(3);
  729. #if E_STEPPERS > 4
  730. SET_E_STEP_DIR(4);
  731. #endif
  732. #endif
  733. #endif
  734. #endif
  735. // Step all E steppers that have steps
  736. for (uint8_t i = step_loops; i--;) {
  737. #if EXTRA_CYCLES_E > 20
  738. uint32_t pulse_start = TCNT0;
  739. #endif
  740. START_E_PULSE(0);
  741. #if E_STEPPERS > 1
  742. START_E_PULSE(1);
  743. #if E_STEPPERS > 2
  744. START_E_PULSE(2);
  745. #if E_STEPPERS > 3
  746. START_E_PULSE(3);
  747. #if E_STEPPERS > 4
  748. START_E_PULSE(4);
  749. #endif
  750. #endif
  751. #endif
  752. #endif
  753. // For minimum pulse time wait before stopping pulses
  754. #if EXTRA_CYCLES_E > 20
  755. while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  756. pulse_start = TCNT0;
  757. #elif EXTRA_CYCLES_E > 0
  758. DELAY_NOPS(EXTRA_CYCLES_E);
  759. #endif
  760. STOP_E_PULSE(0);
  761. #if E_STEPPERS > 1
  762. STOP_E_PULSE(1);
  763. #if E_STEPPERS > 2
  764. STOP_E_PULSE(2);
  765. #if E_STEPPERS > 3
  766. STOP_E_PULSE(3);
  767. #if E_STEPPERS > 4
  768. STOP_E_PULSE(4);
  769. #endif
  770. #endif
  771. #endif
  772. #endif
  773. // For minimum pulse time wait before looping
  774. #if EXTRA_CYCLES_E > 20
  775. if (i) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  776. #elif EXTRA_CYCLES_E > 0
  777. if (i) DELAY_NOPS(EXTRA_CYCLES_E);
  778. #endif
  779. } // steps_loop
  780. }
  781. void Stepper::advance_isr_scheduler() {
  782. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  783. DISABLE_TEMPERATURE_INTERRUPT(); // Temperature ISR
  784. DISABLE_STEPPER_DRIVER_INTERRUPT();
  785. sei();
  786. // Run main stepping ISR if flagged
  787. if (!nextMainISR) isr();
  788. // Run Advance stepping ISR if flagged
  789. if (!nextAdvanceISR) advance_isr();
  790. // Is the next advance ISR scheduled before the next main ISR?
  791. if (nextAdvanceISR <= nextMainISR) {
  792. // Set up the next interrupt
  793. HAL_timer_set_count(STEP_TIMER_NUM, nextAdvanceISR);
  794. // New interval for the next main ISR
  795. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  796. // Will call Stepper::advance_isr on the next interrupt
  797. nextAdvanceISR = 0;
  798. }
  799. else {
  800. // The next main ISR comes first
  801. HAL_timer_set_count(STEP_TIMER_NUM, nextMainISR);
  802. // New interval for the next advance ISR, if any
  803. if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  804. nextAdvanceISR -= nextMainISR;
  805. // Will call Stepper::isr on the next interrupt
  806. nextMainISR = 0;
  807. }
  808. // Don't run the ISR faster than possible
  809. #ifdef CPU_32_BIT
  810. // Make sure stepper interrupt does not monopolise CPU by adjusting count to give about 8 us room
  811. uint32_t stepper_timer_count = HAL_timer_get_count(STEP_TIMER_NUM),
  812. stepper_timer_current_count = HAL_timer_get_current_count(STEP_TIMER_NUM) + 8 * HAL_TICKS_PER_US;
  813. HAL_timer_set_count(STEP_TIMER_NUM, max(stepper_timer_count, stepper_timer_current_count));
  814. #else
  815. NOLESS(OCR1A, TCNT1 + 16);
  816. #endif
  817. // Restore original ISR settings
  818. HAL_ENABLE_ISRs();
  819. }
  820. #endif // ADVANCE or LIN_ADVANCE
  821. void Stepper::init() {
  822. // Init Digipot Motor Current
  823. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  824. digipot_init();
  825. #endif
  826. #if MB(ALLIGATOR)
  827. const float motor_current[] = MOTOR_CURRENT;
  828. unsigned int digipot_motor = 0;
  829. for (uint8_t i = 0; i < 3 + EXTRUDERS; i++) {
  830. digipot_motor = 255 * (motor_current[i] / 2.5);
  831. dac084s085::setValue(i, digipot_motor);
  832. }
  833. #endif//MB(ALLIGATOR)
  834. // Init Microstepping Pins
  835. #if HAS_MICROSTEPS
  836. microstep_init();
  837. #endif
  838. // Init TMC Steppers
  839. #if ENABLED(HAVE_TMCDRIVER)
  840. tmc_init();
  841. #endif
  842. // Init TMC2130 Steppers
  843. #if ENABLED(HAVE_TMC2130)
  844. tmc2130_init();
  845. #endif
  846. // Init L6470 Steppers
  847. #if ENABLED(HAVE_L6470DRIVER)
  848. L6470_init();
  849. #endif
  850. // Init Dir Pins
  851. #if HAS_X_DIR
  852. X_DIR_INIT;
  853. #endif
  854. #if HAS_X2_DIR
  855. X2_DIR_INIT;
  856. #endif
  857. #if HAS_Y_DIR
  858. Y_DIR_INIT;
  859. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  860. Y2_DIR_INIT;
  861. #endif
  862. #endif
  863. #if HAS_Z_DIR
  864. Z_DIR_INIT;
  865. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  866. Z2_DIR_INIT;
  867. #endif
  868. #endif
  869. #if HAS_E0_DIR
  870. E0_DIR_INIT;
  871. #endif
  872. #if HAS_E1_DIR
  873. E1_DIR_INIT;
  874. #endif
  875. #if HAS_E2_DIR
  876. E2_DIR_INIT;
  877. #endif
  878. #if HAS_E3_DIR
  879. E3_DIR_INIT;
  880. #endif
  881. #if HAS_E4_DIR
  882. E4_DIR_INIT;
  883. #endif
  884. // Init Enable Pins - steppers default to disabled.
  885. #if HAS_X_ENABLE
  886. X_ENABLE_INIT;
  887. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  888. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  889. X2_ENABLE_INIT;
  890. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  891. #endif
  892. #endif
  893. #if HAS_Y_ENABLE
  894. Y_ENABLE_INIT;
  895. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  896. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  897. Y2_ENABLE_INIT;
  898. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  899. #endif
  900. #endif
  901. #if HAS_Z_ENABLE
  902. Z_ENABLE_INIT;
  903. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  904. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  905. Z2_ENABLE_INIT;
  906. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  907. #endif
  908. #endif
  909. #if HAS_E0_ENABLE
  910. E0_ENABLE_INIT;
  911. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  912. #endif
  913. #if HAS_E1_ENABLE
  914. E1_ENABLE_INIT;
  915. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  916. #endif
  917. #if HAS_E2_ENABLE
  918. E2_ENABLE_INIT;
  919. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  920. #endif
  921. #if HAS_E3_ENABLE
  922. E3_ENABLE_INIT;
  923. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  924. #endif
  925. #if HAS_E4_ENABLE
  926. E4_ENABLE_INIT;
  927. if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
  928. #endif
  929. // Init endstops and pullups
  930. endstops.init();
  931. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  932. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  933. #define _DISABLE(AXIS) disable_## AXIS()
  934. #define AXIS_INIT(AXIS, PIN) \
  935. _STEP_INIT(AXIS); \
  936. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  937. _DISABLE(AXIS)
  938. #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
  939. // Init Step Pins
  940. #if HAS_X_STEP
  941. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  942. X2_STEP_INIT;
  943. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  944. #endif
  945. AXIS_INIT(X, X);
  946. #endif
  947. #if HAS_Y_STEP
  948. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  949. Y2_STEP_INIT;
  950. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  951. #endif
  952. AXIS_INIT(Y, Y);
  953. #endif
  954. #if HAS_Z_STEP
  955. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  956. Z2_STEP_INIT;
  957. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  958. #endif
  959. AXIS_INIT(Z, Z);
  960. #endif
  961. #if HAS_E0_STEP
  962. E_AXIS_INIT(0);
  963. #endif
  964. #if HAS_E1_STEP
  965. E_AXIS_INIT(1);
  966. #endif
  967. #if HAS_E2_STEP
  968. E_AXIS_INIT(2);
  969. #endif
  970. #if HAS_E3_STEP
  971. E_AXIS_INIT(3);
  972. #endif
  973. #if HAS_E4_STEP
  974. E_AXIS_INIT(4);
  975. #endif
  976. #ifdef ARDUINO_ARCH_AVR
  977. // waveform generation = 0100 = CTC
  978. SET_WGM(1, CTC_OCRnA);
  979. // output mode = 00 (disconnected)
  980. SET_COMA(1, NORMAL);
  981. // Set the timer pre-scaler
  982. // Generally we use a divider of 8, resulting in a 2MHz timer
  983. // frequency on a 16MHz MCU. If you are going to change this, be
  984. // sure to regenerate speed_lookuptable.h with
  985. // create_speed_lookuptable.py
  986. SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
  987. // Init Stepper ISR to 122 Hz for quick starting
  988. OCR1A = 0x4000;
  989. TCNT1 = 0;
  990. #else
  991. // Init Stepper ISR to 122 Hz for quick starting
  992. HAL_timer_start(STEP_TIMER_NUM, 122);
  993. #endif
  994. ENABLE_STEPPER_DRIVER_INTERRUPT();
  995. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  996. for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0;
  997. #if ENABLED(LIN_ADVANCE)
  998. ZERO(current_adv_steps);
  999. #endif
  1000. #endif // ADVANCE || LIN_ADVANCE
  1001. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  1002. sei();
  1003. set_directions(); // Init directions to last_direction_bits = 0
  1004. }
  1005. /**
  1006. * Block until all buffered steps are executed
  1007. */
  1008. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  1009. /**
  1010. * Set the stepper positions directly in steps
  1011. *
  1012. * The input is based on the typical per-axis XYZ steps.
  1013. * For CORE machines XYZ needs to be translated to ABC.
  1014. *
  1015. * This allows get_axis_position_mm to correctly
  1016. * derive the current XYZ position later on.
  1017. */
  1018. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  1019. synchronize(); // Bad to set stepper counts in the middle of a move
  1020. CRITICAL_SECTION_START;
  1021. #if CORE_IS_XY
  1022. // corexy positioning
  1023. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  1024. count_position[A_AXIS] = a + b;
  1025. count_position[B_AXIS] = CORESIGN(a - b);
  1026. count_position[Z_AXIS] = c;
  1027. #elif CORE_IS_XZ
  1028. // corexz planning
  1029. count_position[A_AXIS] = a + c;
  1030. count_position[Y_AXIS] = b;
  1031. count_position[C_AXIS] = CORESIGN(a - c);
  1032. #elif CORE_IS_YZ
  1033. // coreyz planning
  1034. count_position[X_AXIS] = a;
  1035. count_position[B_AXIS] = b + c;
  1036. count_position[C_AXIS] = CORESIGN(b - c);
  1037. #else
  1038. // default non-h-bot planning
  1039. count_position[X_AXIS] = a;
  1040. count_position[Y_AXIS] = b;
  1041. count_position[Z_AXIS] = c;
  1042. #endif
  1043. count_position[E_AXIS] = e;
  1044. CRITICAL_SECTION_END;
  1045. }
  1046. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  1047. CRITICAL_SECTION_START;
  1048. count_position[axis] = v;
  1049. CRITICAL_SECTION_END;
  1050. }
  1051. void Stepper::set_e_position(const long &e) {
  1052. CRITICAL_SECTION_START;
  1053. count_position[E_AXIS] = e;
  1054. CRITICAL_SECTION_END;
  1055. }
  1056. /**
  1057. * Get a stepper's position in steps.
  1058. */
  1059. long Stepper::position(AxisEnum axis) {
  1060. CRITICAL_SECTION_START;
  1061. const long count_pos = count_position[axis];
  1062. CRITICAL_SECTION_END;
  1063. return count_pos;
  1064. }
  1065. /**
  1066. * Get an axis position according to stepper position(s)
  1067. * For CORE machines apply translation from ABC to XYZ.
  1068. */
  1069. float Stepper::get_axis_position_mm(AxisEnum axis) {
  1070. float axis_steps;
  1071. #if IS_CORE
  1072. // Requesting one of the "core" axes?
  1073. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  1074. CRITICAL_SECTION_START;
  1075. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  1076. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  1077. axis_steps = 0.5f * (
  1078. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1079. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1080. );
  1081. CRITICAL_SECTION_END;
  1082. }
  1083. else
  1084. axis_steps = position(axis);
  1085. #else
  1086. axis_steps = position(axis);
  1087. #endif
  1088. return axis_steps * planner.steps_to_mm[axis];
  1089. }
  1090. void Stepper::finish_and_disable() {
  1091. synchronize();
  1092. disable_all_steppers();
  1093. }
  1094. void Stepper::quick_stop() {
  1095. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL)
  1096. if (!ubl.lcd_map_control)
  1097. #endif
  1098. cleaning_buffer_counter = 5000;
  1099. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1100. while (planner.blocks_queued()) planner.discard_current_block();
  1101. current_block = NULL;
  1102. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1103. #if ENABLED(ULTRA_LCD)
  1104. planner.clear_block_buffer_runtime();
  1105. #endif
  1106. }
  1107. void Stepper::endstop_triggered(AxisEnum axis) {
  1108. #if IS_CORE
  1109. endstops_trigsteps[axis] = 0.5f * (
  1110. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1111. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1112. );
  1113. #else // !COREXY && !COREXZ && !COREYZ
  1114. endstops_trigsteps[axis] = count_position[axis];
  1115. #endif // !COREXY && !COREXZ && !COREYZ
  1116. kill_current_block();
  1117. }
  1118. void Stepper::report_positions() {
  1119. CRITICAL_SECTION_START;
  1120. const long xpos = count_position[X_AXIS],
  1121. ypos = count_position[Y_AXIS],
  1122. zpos = count_position[Z_AXIS];
  1123. CRITICAL_SECTION_END;
  1124. #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
  1125. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  1126. #else
  1127. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1128. #endif
  1129. SERIAL_PROTOCOL(xpos);
  1130. #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
  1131. SERIAL_PROTOCOLPGM(" B:");
  1132. #else
  1133. SERIAL_PROTOCOLPGM(" Y:");
  1134. #endif
  1135. SERIAL_PROTOCOL(ypos);
  1136. #if CORE_IS_XZ || CORE_IS_YZ
  1137. SERIAL_PROTOCOLPGM(" C:");
  1138. #else
  1139. SERIAL_PROTOCOLPGM(" Z:");
  1140. #endif
  1141. SERIAL_PROTOCOL(zpos);
  1142. SERIAL_EOL();
  1143. }
  1144. #if ENABLED(BABYSTEPPING)
  1145. #if ENABLED(DELTA)
  1146. #define CYCLES_EATEN_BABYSTEP (2 * 15)
  1147. #else
  1148. #define CYCLES_EATEN_BABYSTEP 0
  1149. #endif
  1150. #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
  1151. #define _ENABLE(AXIS) enable_## AXIS()
  1152. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1153. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1154. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1155. #if EXTRA_CYCLES_BABYSTEP > 20
  1156. #define _SAVE_START const uint32_t pulse_start = TCNT0
  1157. #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  1158. #else
  1159. #define _SAVE_START NOOP
  1160. #if EXTRA_CYCLES_BABYSTEP > 0
  1161. #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
  1162. #elif STEP_PULSE_CYCLES > 0
  1163. #define _PULSE_WAIT NOOP
  1164. #elif ENABLED(DELTA)
  1165. #define _PULSE_WAIT delayMicroseconds(2);
  1166. #else
  1167. #define _PULSE_WAIT delayMicroseconds(4);
  1168. #endif
  1169. #endif
  1170. #define BABYSTEP_AXIS(AXIS, INVERT) { \
  1171. const uint8_t old_dir = _READ_DIR(AXIS); \
  1172. _ENABLE(AXIS); \
  1173. _SAVE_START; \
  1174. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1175. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1176. _PULSE_WAIT; \
  1177. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1178. _APPLY_DIR(AXIS, old_dir); \
  1179. }
  1180. // MUST ONLY BE CALLED BY AN ISR,
  1181. // No other ISR should ever interrupt this!
  1182. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  1183. cli();
  1184. switch (axis) {
  1185. #if ENABLED(BABYSTEP_XY)
  1186. case X_AXIS:
  1187. BABYSTEP_AXIS(X, false);
  1188. break;
  1189. case Y_AXIS:
  1190. BABYSTEP_AXIS(Y, false);
  1191. break;
  1192. #endif
  1193. case Z_AXIS: {
  1194. #if DISABLED(DELTA)
  1195. BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z);
  1196. #else // DELTA
  1197. const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1198. enable_X();
  1199. enable_Y();
  1200. enable_Z();
  1201. const uint8_t old_x_dir_pin = X_DIR_READ,
  1202. old_y_dir_pin = Y_DIR_READ,
  1203. old_z_dir_pin = Z_DIR_READ;
  1204. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1205. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1206. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1207. _SAVE_START;
  1208. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1209. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1210. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1211. _PULSE_WAIT;
  1212. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1213. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1214. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1215. // Restore direction bits
  1216. X_DIR_WRITE(old_x_dir_pin);
  1217. Y_DIR_WRITE(old_y_dir_pin);
  1218. Z_DIR_WRITE(old_z_dir_pin);
  1219. #endif
  1220. } break;
  1221. default: break;
  1222. }
  1223. sei();
  1224. }
  1225. #endif // BABYSTEPPING
  1226. /**
  1227. * Software-controlled Stepper Motor Current
  1228. */
  1229. #if HAS_DIGIPOTSS
  1230. // From Arduino DigitalPotControl example
  1231. void Stepper::digitalPotWrite(const int16_t address, const int16_t value) {
  1232. WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
  1233. SPI.transfer(address); // Send the address and value via SPI
  1234. SPI.transfer(value);
  1235. WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
  1236. //delay(10);
  1237. }
  1238. #endif // HAS_DIGIPOTSS
  1239. #if HAS_MOTOR_CURRENT_PWM
  1240. void Stepper::refresh_motor_power() {
  1241. for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
  1242. switch (i) {
  1243. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1244. case 0:
  1245. #endif
  1246. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1247. case 1:
  1248. #endif
  1249. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1250. case 2:
  1251. #endif
  1252. digipot_current(i, motor_current_setting[i]);
  1253. default: break;
  1254. }
  1255. }
  1256. }
  1257. #endif // HAS_MOTOR_CURRENT_PWM
  1258. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1259. void Stepper::digipot_current(const uint8_t driver, const int current) {
  1260. #if HAS_DIGIPOTSS
  1261. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1262. digitalPotWrite(digipot_ch[driver], current);
  1263. #elif HAS_MOTOR_CURRENT_PWM
  1264. if (WITHIN(driver, 0, 2))
  1265. motor_current_setting[driver] = current; // update motor_current_setting
  1266. #define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1267. switch (driver) {
  1268. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1269. case 0: _WRITE_CURRENT_PWM(XY); break;
  1270. #endif
  1271. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1272. case 1: _WRITE_CURRENT_PWM(Z); break;
  1273. #endif
  1274. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1275. case 2: _WRITE_CURRENT_PWM(E); break;
  1276. #endif
  1277. }
  1278. #endif
  1279. }
  1280. void Stepper::digipot_init() {
  1281. #if HAS_DIGIPOTSS
  1282. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1283. SPI.begin();
  1284. SET_OUTPUT(DIGIPOTSS_PIN);
  1285. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1286. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1287. digipot_current(i, digipot_motor_current[i]);
  1288. }
  1289. #elif HAS_MOTOR_CURRENT_PWM
  1290. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1291. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1292. #endif
  1293. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1294. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1295. #endif
  1296. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1297. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1298. #endif
  1299. refresh_motor_power();
  1300. // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1301. SET_CS5(PRESCALER_1);
  1302. #endif
  1303. }
  1304. #endif
  1305. #if HAS_MICROSTEPS
  1306. /**
  1307. * Software-controlled Microstepping
  1308. */
  1309. void Stepper::microstep_init() {
  1310. SET_OUTPUT(X_MS1_PIN);
  1311. SET_OUTPUT(X_MS2_PIN);
  1312. #if HAS_Y_MICROSTEPS
  1313. SET_OUTPUT(Y_MS1_PIN);
  1314. SET_OUTPUT(Y_MS2_PIN);
  1315. #endif
  1316. #if HAS_Z_MICROSTEPS
  1317. SET_OUTPUT(Z_MS1_PIN);
  1318. SET_OUTPUT(Z_MS2_PIN);
  1319. #endif
  1320. #if HAS_E0_MICROSTEPS
  1321. SET_OUTPUT(E0_MS1_PIN);
  1322. SET_OUTPUT(E0_MS2_PIN);
  1323. #endif
  1324. #if HAS_E1_MICROSTEPS
  1325. SET_OUTPUT(E1_MS1_PIN);
  1326. SET_OUTPUT(E1_MS2_PIN);
  1327. #endif
  1328. #if HAS_E2_MICROSTEPS
  1329. SET_OUTPUT(E2_MS1_PIN);
  1330. SET_OUTPUT(E2_MS2_PIN);
  1331. #endif
  1332. #if HAS_E3_MICROSTEPS
  1333. SET_OUTPUT(E3_MS1_PIN);
  1334. SET_OUTPUT(E3_MS2_PIN);
  1335. #endif
  1336. #if HAS_E4_MICROSTEPS
  1337. SET_OUTPUT(E4_MS1_PIN);
  1338. SET_OUTPUT(E4_MS2_PIN);
  1339. #endif
  1340. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1341. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1342. microstep_mode(i, microstep_modes[i]);
  1343. }
  1344. void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {
  1345. if (ms1 >= 0) switch (driver) {
  1346. case 0: WRITE(X_MS1_PIN, ms1); break;
  1347. #if HAS_Y_MICROSTEPS
  1348. case 1: WRITE(Y_MS1_PIN, ms1); break;
  1349. #endif
  1350. #if HAS_Z_MICROSTEPS
  1351. case 2: WRITE(Z_MS1_PIN, ms1); break;
  1352. #endif
  1353. #if HAS_E0_MICROSTEPS
  1354. case 3: WRITE(E0_MS1_PIN, ms1); break;
  1355. #endif
  1356. #if HAS_E1_MICROSTEPS
  1357. case 4: WRITE(E1_MS1_PIN, ms1); break;
  1358. #endif
  1359. #if HAS_E2_MICROSTEPS
  1360. case 5: WRITE(E2_MS1_PIN, ms1); break;
  1361. #endif
  1362. #if HAS_E3_MICROSTEPS
  1363. case 6: WRITE(E3_MS1_PIN, ms1); break;
  1364. #endif
  1365. #if HAS_E4_MICROSTEPS
  1366. case 7: WRITE(E4_MS1_PIN, ms1); break;
  1367. #endif
  1368. }
  1369. if (ms2 >= 0) switch (driver) {
  1370. case 0: WRITE(X_MS2_PIN, ms2); break;
  1371. #if HAS_Y_MICROSTEPS
  1372. case 1: WRITE(Y_MS2_PIN, ms2); break;
  1373. #endif
  1374. #if HAS_Z_MICROSTEPS
  1375. case 2: WRITE(Z_MS2_PIN, ms2); break;
  1376. #endif
  1377. #if HAS_E0_MICROSTEPS
  1378. case 3: WRITE(E0_MS2_PIN, ms2); break;
  1379. #endif
  1380. #if HAS_E1_MICROSTEPS
  1381. case 4: WRITE(E1_MS2_PIN, ms2); break;
  1382. #endif
  1383. #if HAS_E2_MICROSTEPS
  1384. case 5: WRITE(E2_MS2_PIN, ms2); break;
  1385. #endif
  1386. #if HAS_E3_MICROSTEPS
  1387. case 6: WRITE(E3_MS2_PIN, ms2); break;
  1388. #endif
  1389. #if HAS_E4_MICROSTEPS
  1390. case 7: WRITE(E4_MS2_PIN, ms2); break;
  1391. #endif
  1392. }
  1393. }
  1394. void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
  1395. switch (stepping_mode) {
  1396. case 1: microstep_ms(driver, MICROSTEP1); break;
  1397. case 2: microstep_ms(driver, MICROSTEP2); break;
  1398. case 4: microstep_ms(driver, MICROSTEP4); break;
  1399. case 8: microstep_ms(driver, MICROSTEP8); break;
  1400. case 16: microstep_ms(driver, MICROSTEP16); break;
  1401. #if MB(ALLIGATOR)
  1402. case 32: microstep_ms(driver, MICROSTEP32); break;
  1403. #endif
  1404. }
  1405. }
  1406. void Stepper::microstep_readings() {
  1407. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1408. SERIAL_PROTOCOLPGM("X: ");
  1409. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1410. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1411. #if HAS_Y_MICROSTEPS
  1412. SERIAL_PROTOCOLPGM("Y: ");
  1413. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1414. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1415. #endif
  1416. #if HAS_Z_MICROSTEPS
  1417. SERIAL_PROTOCOLPGM("Z: ");
  1418. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1419. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1420. #endif
  1421. #if HAS_E0_MICROSTEPS
  1422. SERIAL_PROTOCOLPGM("E0: ");
  1423. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1424. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1425. #endif
  1426. #if HAS_E1_MICROSTEPS
  1427. SERIAL_PROTOCOLPGM("E1: ");
  1428. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1429. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1430. #endif
  1431. #if HAS_E2_MICROSTEPS
  1432. SERIAL_PROTOCOLPGM("E2: ");
  1433. SERIAL_PROTOCOL(READ(E2_MS1_PIN));
  1434. SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
  1435. #endif
  1436. #if HAS_E3_MICROSTEPS
  1437. SERIAL_PROTOCOLPGM("E3: ");
  1438. SERIAL_PROTOCOL(READ(E3_MS1_PIN));
  1439. SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
  1440. #endif
  1441. #if HAS_E4_MICROSTEPS
  1442. SERIAL_PROTOCOLPGM("E4: ");
  1443. SERIAL_PROTOCOL(READ(E4_MS1_PIN));
  1444. SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
  1445. #endif
  1446. }
  1447. #endif // HAS_MICROSTEPS