My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

temperature.h 12KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * temperature.h - temperature controller
  24. */
  25. #ifndef TEMPERATURE_H
  26. #define TEMPERATURE_H
  27. #include "Marlin.h"
  28. #include "planner.h"
  29. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  30. #include "stepper.h"
  31. #endif
  32. #ifndef SOFT_PWM_SCALE
  33. #define SOFT_PWM_SCALE 0
  34. #endif
  35. #if HOTENDS == 1
  36. #define HOTEND_ARG 0
  37. #define HOTEND_INDEX 0
  38. #define EXTRUDER_ARG 0
  39. #else
  40. #define HOTEND_ARG hotend
  41. #define HOTEND_INDEX e
  42. #define EXTRUDER_ARG active_extruder
  43. #endif
  44. class Temperature {
  45. public:
  46. static int current_temperature_raw[HOTENDS];
  47. static float current_temperature[HOTENDS];
  48. static int target_temperature[HOTENDS];
  49. static int current_temperature_bed_raw;
  50. static float current_temperature_bed;
  51. static int target_temperature_bed;
  52. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  53. static float redundant_temperature;
  54. #endif
  55. static unsigned char soft_pwm_bed;
  56. #if ENABLED(FAN_SOFT_PWM)
  57. static unsigned char fanSpeedSoftPwm[FAN_COUNT];
  58. #endif
  59. #if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED)
  60. #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
  61. #endif
  62. #if ENABLED(PIDTEMP)
  63. #if ENABLED(PID_PARAMS_PER_HOTEND)
  64. static float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS];
  65. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  66. static float Kc[HOTENDS];
  67. #endif
  68. #define PID_PARAM(param, e) Temperature::param[e]
  69. #else
  70. static float Kp, Ki, Kd;
  71. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  72. static float Kc;
  73. #endif
  74. #define PID_PARAM(param, e) Temperature::param
  75. #endif // PID_PARAMS_PER_HOTEND
  76. // Apply the scale factors to the PID values
  77. #define scalePID_i(i) ( (i) * PID_dT )
  78. #define unscalePID_i(i) ( (i) / PID_dT )
  79. #define scalePID_d(d) ( (d) / PID_dT )
  80. #define unscalePID_d(d) ( (d) * PID_dT )
  81. #endif
  82. #if ENABLED(PIDTEMPBED)
  83. static float bedKp, bedKi, bedKd;
  84. #endif
  85. #if ENABLED(BABYSTEPPING)
  86. static volatile int babystepsTodo[3];
  87. #endif
  88. #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
  89. static int watch_target_temp[HOTENDS];
  90. static millis_t watch_heater_next_ms[HOTENDS];
  91. #endif
  92. #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
  93. static int watch_target_bed_temp;
  94. static millis_t watch_bed_next_ms;
  95. #endif
  96. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  97. static float extrude_min_temp;
  98. static bool tooColdToExtrude(uint8_t e) {
  99. #if HOTENDS == 1
  100. UNUSED(e);
  101. #endif
  102. return degHotend(HOTEND_INDEX) < extrude_min_temp;
  103. }
  104. #else
  105. static bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
  106. #endif
  107. private:
  108. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  109. static int redundant_temperature_raw;
  110. static float redundant_temperature;
  111. #endif
  112. static volatile bool temp_meas_ready;
  113. #if ENABLED(PIDTEMP)
  114. static float temp_iState[HOTENDS];
  115. static float temp_dState[HOTENDS];
  116. static float pTerm[HOTENDS];
  117. static float iTerm[HOTENDS];
  118. static float dTerm[HOTENDS];
  119. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  120. static float cTerm[HOTENDS];
  121. static long last_position[HOTENDS];
  122. static long lpq[LPQ_MAX_LEN];
  123. static int lpq_ptr;
  124. #endif
  125. static float pid_error[HOTENDS];
  126. static float temp_iState_min[HOTENDS];
  127. static float temp_iState_max[HOTENDS];
  128. static bool pid_reset[HOTENDS];
  129. #endif
  130. #if ENABLED(PIDTEMPBED)
  131. static float temp_iState_bed;
  132. static float temp_dState_bed;
  133. static float pTerm_bed;
  134. static float iTerm_bed;
  135. static float dTerm_bed;
  136. static float pid_error_bed;
  137. static float temp_iState_min_bed;
  138. static float temp_iState_max_bed;
  139. #else
  140. static millis_t next_bed_check_ms;
  141. #endif
  142. static unsigned long raw_temp_value[4];
  143. static unsigned long raw_temp_bed_value;
  144. // Init min and max temp with extreme values to prevent false errors during startup
  145. static int minttemp_raw[HOTENDS];
  146. static int maxttemp_raw[HOTENDS];
  147. static int minttemp[HOTENDS];
  148. static int maxttemp[HOTENDS];
  149. #ifdef BED_MINTEMP
  150. static int bed_minttemp_raw;
  151. #endif
  152. #ifdef BED_MAXTEMP
  153. static int bed_maxttemp_raw;
  154. #endif
  155. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  156. static int meas_shift_index; // Index of a delayed sample in buffer
  157. #endif
  158. #if HAS_AUTO_FAN
  159. static millis_t next_auto_fan_check_ms;
  160. #endif
  161. static unsigned char soft_pwm[HOTENDS];
  162. #if ENABLED(FAN_SOFT_PWM)
  163. static unsigned char soft_pwm_fan[FAN_COUNT];
  164. #endif
  165. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  166. static int current_raw_filwidth; //Holds measured filament diameter - one extruder only
  167. #endif
  168. public:
  169. /**
  170. * Instance Methods
  171. */
  172. Temperature();
  173. void init();
  174. /**
  175. * Static (class) methods
  176. */
  177. static float analog2temp(int raw, uint8_t e);
  178. static float analog2tempBed(int raw);
  179. /**
  180. * Called from the Temperature ISR
  181. */
  182. static void isr();
  183. /**
  184. * Call periodically to manage heaters
  185. */
  186. static void manage_heater();
  187. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  188. static float analog2widthFil(); // Convert raw Filament Width to millimeters
  189. static int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio
  190. #endif
  191. //high level conversion routines, for use outside of temperature.cpp
  192. //inline so that there is no performance decrease.
  193. //deg=degreeCelsius
  194. static float degHotend(uint8_t hotend) {
  195. #if HOTENDS == 1
  196. UNUSED(hotend);
  197. #endif
  198. return current_temperature[HOTEND_ARG];
  199. }
  200. static float degBed() { return current_temperature_bed; }
  201. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  202. static float rawHotendTemp(uint8_t hotend) {
  203. #if HOTENDS == 1
  204. UNUSED(hotend);
  205. #endif
  206. return current_temperature_raw[HOTEND_ARG];
  207. }
  208. static float rawBedTemp() { return current_temperature_bed_raw; }
  209. #endif
  210. static float degTargetHotend(uint8_t hotend) {
  211. #if HOTENDS == 1
  212. UNUSED(hotend);
  213. #endif
  214. return target_temperature[HOTEND_ARG];
  215. }
  216. static float degTargetBed() { return target_temperature_bed; }
  217. #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
  218. static void start_watching_heater(int e = 0);
  219. #endif
  220. #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
  221. static void start_watching_bed();
  222. #endif
  223. static void setTargetHotend(const float& celsius, uint8_t hotend) {
  224. #if HOTENDS == 1
  225. UNUSED(hotend);
  226. #endif
  227. target_temperature[HOTEND_ARG] = celsius;
  228. #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
  229. start_watching_heater(HOTEND_ARG);
  230. #endif
  231. }
  232. static void setTargetBed(const float& celsius) {
  233. target_temperature_bed = celsius;
  234. #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
  235. start_watching_bed();
  236. #endif
  237. }
  238. static bool isHeatingHotend(uint8_t hotend) {
  239. #if HOTENDS == 1
  240. UNUSED(hotend);
  241. #endif
  242. return target_temperature[HOTEND_ARG] > current_temperature[HOTEND_ARG];
  243. }
  244. static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
  245. static bool isCoolingHotend(uint8_t hotend) {
  246. #if HOTENDS == 1
  247. UNUSED(hotend);
  248. #endif
  249. return target_temperature[HOTEND_ARG] < current_temperature[HOTEND_ARG];
  250. }
  251. static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
  252. /**
  253. * The software PWM power for a heater
  254. */
  255. static int getHeaterPower(int heater);
  256. /**
  257. * Switch off all heaters, set all target temperatures to 0
  258. */
  259. static void disable_all_heaters();
  260. /**
  261. * Perform auto-tuning for hotend or bed in response to M303
  262. */
  263. #if HAS_PID_HEATING
  264. static void PID_autotune(float temp, int hotend, int ncycles, bool set_result=false);
  265. #endif
  266. /**
  267. * Update the temp manager when PID values change
  268. */
  269. static void updatePID();
  270. static void autotempShutdown() {
  271. #if ENABLED(AUTOTEMP)
  272. if (planner.autotemp_enabled) {
  273. planner.autotemp_enabled = false;
  274. if (degTargetHotend(EXTRUDER_ARG) > planner.autotemp_min)
  275. setTargetHotend(0, EXTRUDER_ARG);
  276. }
  277. #endif
  278. }
  279. #if ENABLED(BABYSTEPPING)
  280. static void babystep_axis(AxisEnum axis, int distance) {
  281. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  282. #if ENABLED(BABYSTEP_XY)
  283. switch (axis) {
  284. case CORE_AXIS_1: // X on CoreXY and CoreXZ, Y on CoreYZ
  285. babystepsTodo[CORE_AXIS_1] += distance * 2;
  286. babystepsTodo[CORE_AXIS_2] += distance * 2;
  287. break;
  288. case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ and CoreYZ
  289. babystepsTodo[CORE_AXIS_1] += distance * 2;
  290. babystepsTodo[CORE_AXIS_2] -= distance * 2;
  291. break;
  292. case NORMAL_AXIS: // Z on CoreXY, Y on CoreXZ, X on CoreYZ
  293. babystepsTodo[NORMAL_AXIS] += distance;
  294. break;
  295. }
  296. #elif ENABLED(COREXZ) || ENABLED(COREYZ)
  297. // Only Z stepping needs to be handled here
  298. babystepsTodo[CORE_AXIS_1] += distance * 2;
  299. babystepsTodo[CORE_AXIS_2] -= distance * 2;
  300. #else
  301. babystepsTodo[Z_AXIS] += distance;
  302. #endif
  303. #else
  304. babystepsTodo[axis] += distance;
  305. #endif
  306. }
  307. #endif // BABYSTEPPING
  308. private:
  309. static void set_current_temp_raw();
  310. static void updateTemperaturesFromRawValues();
  311. #if ENABLED(HEATER_0_USES_MAX6675)
  312. static int read_max6675();
  313. #endif
  314. static void checkExtruderAutoFans();
  315. static float get_pid_output(int e);
  316. #if ENABLED(PIDTEMPBED)
  317. static float get_pid_output_bed();
  318. #endif
  319. static void _temp_error(int e, const char* serial_msg, const char* lcd_msg);
  320. static void min_temp_error(uint8_t e);
  321. static void max_temp_error(uint8_t e);
  322. #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
  323. typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
  324. static void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
  325. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  326. static TRState thermal_runaway_state_machine[HOTENDS];
  327. static millis_t thermal_runaway_timer[HOTENDS];
  328. #endif
  329. #if HAS_THERMALLY_PROTECTED_BED
  330. static TRState thermal_runaway_bed_state_machine;
  331. static millis_t thermal_runaway_bed_timer;
  332. #endif
  333. #endif // THERMAL_PROTECTION
  334. };
  335. extern Temperature thermalManager;
  336. #endif // TEMPERATURE_H