My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 137KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <https://www.gnu.org/licenses/>.
  41. */
  42. /**
  43. * Timer calculations informed by the 'RepRap cartesian firmware' by Zack Smith
  44. * and Philipp Tiefenbacher.
  45. */
  46. /**
  47. * __________________________
  48. * /| |\ _________________ ^
  49. * / | | \ /| |\ |
  50. * / | | \ / | | \ s
  51. * / | | | | | \ p
  52. * / | | | | | \ e
  53. * +-----+------------------------+---+--+---------------+----+ e
  54. * | BLOCK 1 | BLOCK 2 | d
  55. *
  56. * time ----->
  57. *
  58. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  59. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  60. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  61. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  62. */
  63. /**
  64. * Marlin uses the Bresenham algorithm. For a detailed explanation of theory and
  65. * method see https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
  66. */
  67. /**
  68. * Jerk controlled movements planner added Apr 2018 by Eduardo José Tagle.
  69. * Equations based on Synthethos TinyG2 sources, but the fixed-point
  70. * implementation is new, as we are running the ISR with a variable period.
  71. * Also implemented the Bézier velocity curve evaluation in ARM assembler,
  72. * to avoid impacting ISR speed.
  73. */
  74. #include "stepper.h"
  75. Stepper stepper; // Singleton
  76. #define BABYSTEPPING_EXTRA_DIR_WAIT
  77. #ifdef __AVR__
  78. #include "stepper/speed_lookuptable.h"
  79. #endif
  80. #include "endstops.h"
  81. #include "planner.h"
  82. #include "motion.h"
  83. #include "../lcd/marlinui.h"
  84. #include "../gcode/queue.h"
  85. #include "../sd/cardreader.h"
  86. #include "../MarlinCore.h"
  87. #include "../HAL/shared/Delay.h"
  88. #if ENABLED(INTEGRATED_BABYSTEPPING)
  89. #include "../feature/babystep.h"
  90. #endif
  91. #if MB(ALLIGATOR)
  92. #include "../feature/dac/dac_dac084s085.h"
  93. #endif
  94. #if HAS_MOTOR_CURRENT_SPI
  95. #include <SPI.h>
  96. #endif
  97. #if ENABLED(MIXING_EXTRUDER)
  98. #include "../feature/mixing.h"
  99. #endif
  100. #if HAS_FILAMENT_RUNOUT_DISTANCE
  101. #include "../feature/runout.h"
  102. #endif
  103. #if ENABLED(AUTO_POWER_CONTROL)
  104. #include "../feature/power.h"
  105. #endif
  106. #if ENABLED(POWER_LOSS_RECOVERY)
  107. #include "../feature/powerloss.h"
  108. #endif
  109. #if HAS_CUTTER
  110. #include "../feature/spindle_laser.h"
  111. #endif
  112. #if ENABLED(EXTENSIBLE_UI)
  113. #include "../lcd/extui/ui_api.h"
  114. #endif
  115. // public:
  116. #if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
  117. bool Stepper::separate_multi_axis = false;
  118. #endif
  119. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  120. bool Stepper::initialized; // = false
  121. uint32_t Stepper::motor_current_setting[MOTOR_CURRENT_COUNT]; // Initialized by settings.load()
  122. #if HAS_MOTOR_CURRENT_SPI
  123. constexpr uint32_t Stepper::digipot_count[];
  124. #endif
  125. #endif
  126. stepper_flags_t Stepper::axis_enabled; // {0}
  127. // private:
  128. block_t* Stepper::current_block; // (= nullptr) A pointer to the block currently being traced
  129. axis_bits_t Stepper::last_direction_bits, // = 0
  130. Stepper::axis_did_move; // = 0
  131. bool Stepper::abort_current_block;
  132. #if DISABLED(MIXING_EXTRUDER) && HAS_MULTI_EXTRUDER
  133. uint8_t Stepper::last_moved_extruder = 0xFF;
  134. #endif
  135. #if ENABLED(X_DUAL_ENDSTOPS)
  136. bool Stepper::locked_X_motor = false, Stepper::locked_X2_motor = false;
  137. #endif
  138. #if ENABLED(Y_DUAL_ENDSTOPS)
  139. bool Stepper::locked_Y_motor = false, Stepper::locked_Y2_motor = false;
  140. #endif
  141. #if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
  142. bool Stepper::locked_Z_motor = false, Stepper::locked_Z2_motor = false
  143. #if NUM_Z_STEPPERS >= 3
  144. , Stepper::locked_Z3_motor = false
  145. #if NUM_Z_STEPPERS >= 4
  146. , Stepper::locked_Z4_motor = false
  147. #endif
  148. #endif
  149. ;
  150. #endif
  151. uint32_t Stepper::acceleration_time, Stepper::deceleration_time;
  152. uint8_t Stepper::steps_per_isr;
  153. #if ENABLED(FREEZE_FEATURE)
  154. bool Stepper::frozen; // = false
  155. #endif
  156. IF_DISABLED(ADAPTIVE_STEP_SMOOTHING, constexpr) uint8_t Stepper::oversampling_factor;
  157. xyze_long_t Stepper::delta_error{0};
  158. xyze_ulong_t Stepper::advance_dividend{0};
  159. uint32_t Stepper::advance_divisor = 0,
  160. Stepper::step_events_completed = 0, // The number of step events executed in the current block
  161. Stepper::accelerate_until, // The count at which to stop accelerating
  162. Stepper::decelerate_after, // The count at which to start decelerating
  163. Stepper::step_event_count; // The total event count for the current block
  164. #if EITHER(HAS_MULTI_EXTRUDER, MIXING_EXTRUDER)
  165. uint8_t Stepper::stepper_extruder;
  166. #else
  167. constexpr uint8_t Stepper::stepper_extruder;
  168. #endif
  169. #if ENABLED(S_CURVE_ACCELERATION)
  170. int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler
  171. int32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B"); // B coefficient in Bézier speed curve with alias for assembler
  172. int32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C"); // C coefficient in Bézier speed curve with alias for assembler
  173. uint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F"); // F coefficient in Bézier speed curve with alias for assembler
  174. uint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler
  175. #ifdef __AVR__
  176. bool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negative
  177. #endif
  178. bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not
  179. #endif
  180. #if ENABLED(LIN_ADVANCE)
  181. uint32_t Stepper::nextAdvanceISR = LA_ADV_NEVER,
  182. Stepper::LA_isr_rate = LA_ADV_NEVER;
  183. uint16_t Stepper::LA_current_adv_steps = 0,
  184. Stepper::LA_final_adv_steps,
  185. Stepper::LA_max_adv_steps;
  186. int8_t Stepper::LA_steps = 0;
  187. bool Stepper::LA_use_advance_lead;
  188. #endif // LIN_ADVANCE
  189. #if ENABLED(INTEGRATED_BABYSTEPPING)
  190. uint32_t Stepper::nextBabystepISR = BABYSTEP_NEVER;
  191. #endif
  192. #if ENABLED(DIRECT_STEPPING)
  193. page_step_state_t Stepper::page_step_state;
  194. #endif
  195. int32_t Stepper::ticks_nominal = -1;
  196. #if DISABLED(S_CURVE_ACCELERATION)
  197. uint32_t Stepper::acc_step_rate; // needed for deceleration start point
  198. #endif
  199. xyz_long_t Stepper::endstops_trigsteps;
  200. xyze_long_t Stepper::count_position{0};
  201. xyze_int8_t Stepper::count_direction{0};
  202. #define MINDIR(A) (count_direction[_AXIS(A)] < 0)
  203. #define MAXDIR(A) (count_direction[_AXIS(A)] > 0)
  204. #define STEPTEST(A,M,I) TERN0(HAS_ ##A## ##I## _ ##M, !(TEST(endstops.state(), A## ##I## _ ##M) && M## DIR(A)) && !locked_ ##A## ##I## _motor)
  205. #define DUAL_ENDSTOP_APPLY_STEP(A,V) \
  206. if (separate_multi_axis) { \
  207. if (ENABLED(A##_HOME_TO_MIN)) { \
  208. if (STEPTEST(A,MIN, )) A## _STEP_WRITE(V); \
  209. if (STEPTEST(A,MIN,2)) A##2_STEP_WRITE(V); \
  210. } \
  211. else if (ENABLED(A##_HOME_TO_MAX)) { \
  212. if (STEPTEST(A,MAX, )) A## _STEP_WRITE(V); \
  213. if (STEPTEST(A,MAX,2)) A##2_STEP_WRITE(V); \
  214. } \
  215. } \
  216. else { \
  217. A##_STEP_WRITE(V); \
  218. A##2_STEP_WRITE(V); \
  219. }
  220. #define DUAL_SEPARATE_APPLY_STEP(A,V) \
  221. if (separate_multi_axis) { \
  222. if (!locked_##A## _motor) A## _STEP_WRITE(V); \
  223. if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
  224. } \
  225. else { \
  226. A##_STEP_WRITE(V); \
  227. A##2_STEP_WRITE(V); \
  228. }
  229. #define TRIPLE_ENDSTOP_APPLY_STEP(A,V) \
  230. if (separate_multi_axis) { \
  231. if (ENABLED(A##_HOME_TO_MIN)) { \
  232. if (STEPTEST(A,MIN, )) A## _STEP_WRITE(V); \
  233. if (STEPTEST(A,MIN,2)) A##2_STEP_WRITE(V); \
  234. if (STEPTEST(A,MIN,3)) A##3_STEP_WRITE(V); \
  235. } \
  236. else if (ENABLED(A##_HOME_TO_MAX)) { \
  237. if (STEPTEST(A,MAX, )) A## _STEP_WRITE(V); \
  238. if (STEPTEST(A,MAX,2)) A##2_STEP_WRITE(V); \
  239. if (STEPTEST(A,MAX,3)) A##3_STEP_WRITE(V); \
  240. } \
  241. } \
  242. else { \
  243. A##_STEP_WRITE(V); \
  244. A##2_STEP_WRITE(V); \
  245. A##3_STEP_WRITE(V); \
  246. }
  247. #define TRIPLE_SEPARATE_APPLY_STEP(A,V) \
  248. if (separate_multi_axis) { \
  249. if (!locked_##A## _motor) A## _STEP_WRITE(V); \
  250. if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
  251. if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \
  252. } \
  253. else { \
  254. A## _STEP_WRITE(V); \
  255. A##2_STEP_WRITE(V); \
  256. A##3_STEP_WRITE(V); \
  257. }
  258. #define QUAD_ENDSTOP_APPLY_STEP(A,V) \
  259. if (separate_multi_axis) { \
  260. if (ENABLED(A##_HOME_TO_MIN)) { \
  261. if (STEPTEST(A,MIN, )) A## _STEP_WRITE(V); \
  262. if (STEPTEST(A,MIN,2)) A##2_STEP_WRITE(V); \
  263. if (STEPTEST(A,MIN,3)) A##3_STEP_WRITE(V); \
  264. if (STEPTEST(A,MIN,4)) A##4_STEP_WRITE(V); \
  265. } \
  266. else if (ENABLED(A##_HOME_TO_MAX)) { \
  267. if (STEPTEST(A,MAX, )) A## _STEP_WRITE(V); \
  268. if (STEPTEST(A,MAX,2)) A##2_STEP_WRITE(V); \
  269. if (STEPTEST(A,MAX,3)) A##3_STEP_WRITE(V); \
  270. if (STEPTEST(A,MAX,4)) A##4_STEP_WRITE(V); \
  271. } \
  272. } \
  273. else { \
  274. A## _STEP_WRITE(V); \
  275. A##2_STEP_WRITE(V); \
  276. A##3_STEP_WRITE(V); \
  277. A##4_STEP_WRITE(V); \
  278. }
  279. #define QUAD_SEPARATE_APPLY_STEP(A,V) \
  280. if (separate_multi_axis) { \
  281. if (!locked_##A## _motor) A## _STEP_WRITE(V); \
  282. if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
  283. if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \
  284. if (!locked_##A##4_motor) A##4_STEP_WRITE(V); \
  285. } \
  286. else { \
  287. A## _STEP_WRITE(V); \
  288. A##2_STEP_WRITE(V); \
  289. A##3_STEP_WRITE(V); \
  290. A##4_STEP_WRITE(V); \
  291. }
  292. #if HAS_DUAL_X_STEPPERS
  293. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) ^ ENABLED(INVERT_X2_VS_X_DIR)); }while(0)
  294. #if ENABLED(X_DUAL_ENDSTOPS)
  295. #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
  296. #else
  297. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  298. #endif
  299. #elif ENABLED(DUAL_X_CARRIAGE)
  300. #define X_APPLY_DIR(v,ALWAYS) do{ \
  301. if (extruder_duplication_enabled || ALWAYS) { X_DIR_WRITE(v); X2_DIR_WRITE((v) ^ idex_mirrored_mode); } \
  302. else if (last_moved_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  303. }while(0)
  304. #define X_APPLY_STEP(v,ALWAYS) do{ \
  305. if (extruder_duplication_enabled || ALWAYS) { X_STEP_WRITE(v); X2_STEP_WRITE(v); } \
  306. else if (last_moved_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  307. }while(0)
  308. #else
  309. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  310. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  311. #endif
  312. #if HAS_DUAL_Y_STEPPERS
  313. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) ^ ENABLED(INVERT_Y2_VS_Y_DIR)); }while(0)
  314. #if ENABLED(Y_DUAL_ENDSTOPS)
  315. #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
  316. #else
  317. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  318. #endif
  319. #elif HAS_Y_AXIS
  320. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  321. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  322. #endif
  323. #if NUM_Z_STEPPERS == 4
  324. #define Z_APPLY_DIR(v,Q) do{ \
  325. Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); \
  326. Z3_DIR_WRITE((v) ^ ENABLED(INVERT_Z3_VS_Z_DIR)); Z4_DIR_WRITE((v) ^ ENABLED(INVERT_Z4_VS_Z_DIR)); \
  327. }while(0)
  328. #if ENABLED(Z_MULTI_ENDSTOPS)
  329. #define Z_APPLY_STEP(v,Q) QUAD_ENDSTOP_APPLY_STEP(Z,v)
  330. #elif ENABLED(Z_STEPPER_AUTO_ALIGN)
  331. #define Z_APPLY_STEP(v,Q) QUAD_SEPARATE_APPLY_STEP(Z,v)
  332. #else
  333. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); Z3_STEP_WRITE(v); Z4_STEP_WRITE(v); }while(0)
  334. #endif
  335. #elif NUM_Z_STEPPERS == 3
  336. #define Z_APPLY_DIR(v,Q) do{ \
  337. Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); Z3_DIR_WRITE((v) ^ ENABLED(INVERT_Z3_VS_Z_DIR)); \
  338. }while(0)
  339. #if ENABLED(Z_MULTI_ENDSTOPS)
  340. #define Z_APPLY_STEP(v,Q) TRIPLE_ENDSTOP_APPLY_STEP(Z,v)
  341. #elif ENABLED(Z_STEPPER_AUTO_ALIGN)
  342. #define Z_APPLY_STEP(v,Q) TRIPLE_SEPARATE_APPLY_STEP(Z,v)
  343. #else
  344. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); Z3_STEP_WRITE(v); }while(0)
  345. #endif
  346. #elif NUM_Z_STEPPERS == 2
  347. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); }while(0)
  348. #if ENABLED(Z_MULTI_ENDSTOPS)
  349. #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
  350. #elif ENABLED(Z_STEPPER_AUTO_ALIGN)
  351. #define Z_APPLY_STEP(v,Q) DUAL_SEPARATE_APPLY_STEP(Z,v)
  352. #else
  353. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  354. #endif
  355. #elif HAS_Z_AXIS
  356. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  357. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  358. #endif
  359. #if HAS_I_AXIS
  360. #define I_APPLY_DIR(v,Q) I_DIR_WRITE(v)
  361. #define I_APPLY_STEP(v,Q) I_STEP_WRITE(v)
  362. #endif
  363. #if HAS_J_AXIS
  364. #define J_APPLY_DIR(v,Q) J_DIR_WRITE(v)
  365. #define J_APPLY_STEP(v,Q) J_STEP_WRITE(v)
  366. #endif
  367. #if HAS_K_AXIS
  368. #define K_APPLY_DIR(v,Q) K_DIR_WRITE(v)
  369. #define K_APPLY_STEP(v,Q) K_STEP_WRITE(v)
  370. #endif
  371. #if HAS_U_AXIS
  372. #define U_APPLY_DIR(v,Q) U_DIR_WRITE(v)
  373. #define U_APPLY_STEP(v,Q) U_STEP_WRITE(v)
  374. #endif
  375. #if HAS_V_AXIS
  376. #define V_APPLY_DIR(v,Q) V_DIR_WRITE(v)
  377. #define V_APPLY_STEP(v,Q) V_STEP_WRITE(v)
  378. #endif
  379. #if HAS_W_AXIS
  380. #define W_APPLY_DIR(v,Q) W_DIR_WRITE(v)
  381. #define W_APPLY_STEP(v,Q) W_STEP_WRITE(v)
  382. #endif
  383. #if DISABLED(MIXING_EXTRUDER)
  384. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(stepper_extruder, v)
  385. #endif
  386. #define CYCLES_TO_NS(CYC) (1000UL * (CYC) / ((F_CPU) / 1000000))
  387. #define NS_PER_PULSE_TIMER_TICK (1000000000UL / (STEPPER_TIMER_RATE))
  388. // Round up when converting from ns to timer ticks
  389. #define NS_TO_PULSE_TIMER_TICKS(NS) (((NS) + (NS_PER_PULSE_TIMER_TICK) / 2) / (NS_PER_PULSE_TIMER_TICK))
  390. #define TIMER_SETUP_NS (CYCLES_TO_NS(TIMER_READ_ADD_AND_STORE_CYCLES))
  391. #define PULSE_HIGH_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_HIGH_NS - _MIN(_MIN_PULSE_HIGH_NS, TIMER_SETUP_NS)))
  392. #define PULSE_LOW_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_LOW_NS - _MIN(_MIN_PULSE_LOW_NS, TIMER_SETUP_NS)))
  393. #define USING_TIMED_PULSE() hal_timer_t start_pulse_count = 0
  394. #define START_TIMED_PULSE(DIR) (start_pulse_count = HAL_timer_get_count(MF_TIMER_PULSE))
  395. #define AWAIT_TIMED_PULSE(DIR) while (PULSE_##DIR##_TICK_COUNT > HAL_timer_get_count(MF_TIMER_PULSE) - start_pulse_count) { }
  396. #define START_HIGH_PULSE() START_TIMED_PULSE(HIGH)
  397. #define AWAIT_HIGH_PULSE() AWAIT_TIMED_PULSE(HIGH)
  398. #define START_LOW_PULSE() START_TIMED_PULSE(LOW)
  399. #define AWAIT_LOW_PULSE() AWAIT_TIMED_PULSE(LOW)
  400. #if MINIMUM_STEPPER_PRE_DIR_DELAY > 0
  401. #define DIR_WAIT_BEFORE() DELAY_NS(MINIMUM_STEPPER_PRE_DIR_DELAY)
  402. #else
  403. #define DIR_WAIT_BEFORE()
  404. #endif
  405. #if MINIMUM_STEPPER_POST_DIR_DELAY > 0
  406. #define DIR_WAIT_AFTER() DELAY_NS(MINIMUM_STEPPER_POST_DIR_DELAY)
  407. #else
  408. #define DIR_WAIT_AFTER()
  409. #endif
  410. void Stepper::enable_axis(const AxisEnum axis) {
  411. #define _CASE_ENABLE(N) case N##_AXIS: ENABLE_AXIS_##N(); break;
  412. switch (axis) {
  413. MAIN_AXIS_MAP(_CASE_ENABLE)
  414. default: break;
  415. }
  416. mark_axis_enabled(axis);
  417. }
  418. bool Stepper::disable_axis(const AxisEnum axis) {
  419. mark_axis_disabled(axis);
  420. TERN_(DWIN_LCD_PROUI, set_axis_untrusted(axis)); // MRISCOC workaround: https://github.com/MarlinFirmware/Marlin/issues/23095
  421. // If all the axes that share the enabled bit are disabled
  422. const bool can_disable = can_axis_disable(axis);
  423. if (can_disable) {
  424. #define _CASE_DISABLE(N) case N##_AXIS: DISABLE_AXIS_##N(); break;
  425. switch (axis) {
  426. MAIN_AXIS_MAP(_CASE_DISABLE)
  427. default: break;
  428. }
  429. }
  430. return can_disable;
  431. }
  432. #if HAS_EXTRUDERS
  433. void Stepper::enable_extruder(E_TERN_(const uint8_t eindex)) {
  434. IF_DISABLED(HAS_MULTI_EXTRUDER, constexpr uint8_t eindex = 0);
  435. #define _CASE_ENA_E(N) case N: ENABLE_AXIS_E##N(); mark_axis_enabled(E_AXIS E_OPTARG(eindex)); break;
  436. switch (eindex) {
  437. REPEAT(E_STEPPERS, _CASE_ENA_E)
  438. }
  439. }
  440. bool Stepper::disable_extruder(E_TERN_(const uint8_t eindex/*=0*/)) {
  441. IF_DISABLED(HAS_MULTI_EXTRUDER, constexpr uint8_t eindex = 0);
  442. mark_axis_disabled(E_AXIS E_OPTARG(eindex));
  443. const bool can_disable = can_axis_disable(E_AXIS E_OPTARG(eindex));
  444. if (can_disable) {
  445. #define _CASE_DIS_E(N) case N: DISABLE_AXIS_E##N(); break;
  446. switch (eindex) { REPEAT(E_STEPPERS, _CASE_DIS_E) }
  447. }
  448. return can_disable;
  449. }
  450. void Stepper::enable_e_steppers() {
  451. #define _ENA_E(N) ENABLE_EXTRUDER(N);
  452. REPEAT(EXTRUDERS, _ENA_E)
  453. }
  454. void Stepper::disable_e_steppers() {
  455. #define _DIS_E(N) DISABLE_EXTRUDER(N);
  456. REPEAT(EXTRUDERS, _DIS_E)
  457. }
  458. #endif
  459. void Stepper::enable_all_steppers() {
  460. TERN_(AUTO_POWER_CONTROL, powerManager.power_on());
  461. NUM_AXIS_CODE(
  462. enable_axis(X_AXIS), enable_axis(Y_AXIS), enable_axis(Z_AXIS),
  463. enable_axis(I_AXIS), enable_axis(J_AXIS), enable_axis(K_AXIS),
  464. enable_axis(U_AXIS), enable_axis(V_AXIS), enable_axis(W_AXIS)
  465. );
  466. enable_e_steppers();
  467. TERN_(EXTENSIBLE_UI, ExtUI::onSteppersEnabled());
  468. }
  469. void Stepper::disable_all_steppers() {
  470. NUM_AXIS_CODE(
  471. disable_axis(X_AXIS), disable_axis(Y_AXIS), disable_axis(Z_AXIS),
  472. disable_axis(I_AXIS), disable_axis(J_AXIS), disable_axis(K_AXIS),
  473. disable_axis(U_AXIS), disable_axis(V_AXIS), disable_axis(W_AXIS)
  474. );
  475. disable_e_steppers();
  476. TERN_(EXTENSIBLE_UI, ExtUI::onSteppersDisabled());
  477. }
  478. /**
  479. * Set the stepper direction of each axis
  480. *
  481. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  482. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  483. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  484. */
  485. void Stepper::set_directions() {
  486. DIR_WAIT_BEFORE();
  487. #define SET_STEP_DIR(A) \
  488. if (motor_direction(_AXIS(A))) { \
  489. A##_APPLY_DIR(INVERT_##A##_DIR, false); \
  490. count_direction[_AXIS(A)] = -1; \
  491. } \
  492. else { \
  493. A##_APPLY_DIR(!INVERT_##A##_DIR, false); \
  494. count_direction[_AXIS(A)] = 1; \
  495. }
  496. TERN_(HAS_X_DIR, SET_STEP_DIR(X)); // A
  497. TERN_(HAS_Y_DIR, SET_STEP_DIR(Y)); // B
  498. TERN_(HAS_Z_DIR, SET_STEP_DIR(Z)); // C
  499. TERN_(HAS_I_DIR, SET_STEP_DIR(I));
  500. TERN_(HAS_J_DIR, SET_STEP_DIR(J));
  501. TERN_(HAS_K_DIR, SET_STEP_DIR(K));
  502. TERN_(HAS_U_DIR, SET_STEP_DIR(U));
  503. TERN_(HAS_V_DIR, SET_STEP_DIR(V));
  504. TERN_(HAS_W_DIR, SET_STEP_DIR(W));
  505. #if DISABLED(LIN_ADVANCE)
  506. #if ENABLED(MIXING_EXTRUDER)
  507. // Because this is valid for the whole block we don't know
  508. // what E steppers will step. Likely all. Set all.
  509. if (motor_direction(E_AXIS)) {
  510. MIXER_STEPPER_LOOP(j) REV_E_DIR(j);
  511. count_direction.e = -1;
  512. }
  513. else {
  514. MIXER_STEPPER_LOOP(j) NORM_E_DIR(j);
  515. count_direction.e = 1;
  516. }
  517. #elif HAS_EXTRUDERS
  518. if (motor_direction(E_AXIS)) {
  519. REV_E_DIR(stepper_extruder);
  520. count_direction.e = -1;
  521. }
  522. else {
  523. NORM_E_DIR(stepper_extruder);
  524. count_direction.e = 1;
  525. }
  526. #endif
  527. #endif // !LIN_ADVANCE
  528. DIR_WAIT_AFTER();
  529. }
  530. #if ENABLED(S_CURVE_ACCELERATION)
  531. /**
  532. * This uses a quintic (fifth-degree) Bézier polynomial for the velocity curve, giving
  533. * a "linear pop" velocity curve; with pop being the sixth derivative of position:
  534. * velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th
  535. *
  536. * The Bézier curve takes the form:
  537. *
  538. * V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t)
  539. *
  540. * Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t)
  541. * through B_5(t) are the Bernstein basis as follows:
  542. *
  543. * B_0(t) = (1-t)^5 = -t^5 + 5t^4 - 10t^3 + 10t^2 - 5t + 1
  544. * B_1(t) = 5(1-t)^4 * t = 5t^5 - 20t^4 + 30t^3 - 20t^2 + 5t
  545. * B_2(t) = 10(1-t)^3 * t^2 = -10t^5 + 30t^4 - 30t^3 + 10t^2
  546. * B_3(t) = 10(1-t)^2 * t^3 = 10t^5 - 20t^4 + 10t^3
  547. * B_4(t) = 5(1-t) * t^4 = -5t^5 + 5t^4
  548. * B_5(t) = t^5 = t^5
  549. * ^ ^ ^ ^ ^ ^
  550. * | | | | | |
  551. * A B C D E F
  552. *
  553. * Unfortunately, we cannot use forward-differencing to calculate each position through
  554. * the curve, as Marlin uses variable timer periods. So, we require a formula of the form:
  555. *
  556. * V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F
  557. *
  558. * Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5
  559. * through t of the Bézier form of V(t), we can determine that:
  560. *
  561. * A = -P_0 + 5*P_1 - 10*P_2 + 10*P_3 - 5*P_4 + P_5
  562. * B = 5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 + 5*P_4
  563. * C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3
  564. * D = 10*P_0 - 20*P_1 + 10*P_2
  565. * E = - 5*P_0 + 5*P_1
  566. * F = P_0
  567. *
  568. * Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0,
  569. * We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity),
  570. * which, after simplification, resolves to:
  571. *
  572. * A = - 6*P_i + 6*P_t = 6*(P_t - P_i)
  573. * B = 15*P_i - 15*P_t = 15*(P_i - P_t)
  574. * C = -10*P_i + 10*P_t = 10*(P_t - P_i)
  575. * D = 0
  576. * E = 0
  577. * F = P_i
  578. *
  579. * As the t is evaluated in non uniform steps here, there is no other way rather than evaluating
  580. * the Bézier curve at each point:
  581. *
  582. * V_f(t) = A*t^5 + B*t^4 + C*t^3 + F [0 <= t <= 1]
  583. *
  584. * Floating point arithmetic execution time cost is prohibitive, so we will transform the math to
  585. * use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps
  586. * per second (driver pulses should at least be 2µS hi/2µS lo), and allocating 2 bits to avoid
  587. * overflows on the evaluation of the Bézier curve, means we can use
  588. *
  589. * t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned
  590. * A: signed Q24.7 , |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign
  591. * B: signed Q24.7 , |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign
  592. * C: signed Q24.7 , |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign
  593. * F: signed Q24.7 , |range = +/- 250000 * 128 = 32000000 = 0x01E84800 | 25 bits + sign
  594. *
  595. * The trapezoid generator state contains the following information, that we will use to create and evaluate
  596. * the Bézier curve:
  597. *
  598. * blk->step_event_count [TS] = The total count of steps for this movement. (=distance)
  599. * blk->initial_rate [VI] = The initial steps per second (=velocity)
  600. * blk->final_rate [VF] = The ending steps per second (=velocity)
  601. * and the count of events completed (step_events_completed) [CS] (=distance until now)
  602. *
  603. * Note the abbreviations we use in the following formulae are between []s
  604. *
  605. * For Any 32bit CPU:
  606. *
  607. * At the start of each trapezoid, calculate the coefficients A,B,C,F and Advance [AV], as follows:
  608. *
  609. * A = 6*128*(VF - VI) = 768*(VF - VI)
  610. * B = 15*128*(VI - VF) = 1920*(VI - VF)
  611. * C = 10*128*(VF - VI) = 1280*(VF - VI)
  612. * F = 128*VI = 128*VI
  613. * AV = (1<<32)/TS ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR)
  614. *
  615. * And for each point, evaluate the curve with the following sequence:
  616. *
  617. * void lsrs(uint32_t& d, uint32_t s, int cnt) {
  618. * d = s >> cnt;
  619. * }
  620. * void lsls(uint32_t& d, uint32_t s, int cnt) {
  621. * d = s << cnt;
  622. * }
  623. * void lsrs(int32_t& d, uint32_t s, int cnt) {
  624. * d = uint32_t(s) >> cnt;
  625. * }
  626. * void lsls(int32_t& d, uint32_t s, int cnt) {
  627. * d = uint32_t(s) << cnt;
  628. * }
  629. * void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) {
  630. * uint64_t res = uint64_t(op1) * op2;
  631. * rlo = uint32_t(res & 0xFFFFFFFF);
  632. * rhi = uint32_t((res >> 32) & 0xFFFFFFFF);
  633. * }
  634. * void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) {
  635. * int64_t mul = int64_t(op1) * op2;
  636. * int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U)));
  637. * mul += s;
  638. * rlo = int32_t(mul & 0xFFFFFFFF);
  639. * rhi = int32_t((mul >> 32) & 0xFFFFFFFF);
  640. * }
  641. * int32_t _eval_bezier_curve_arm(uint32_t curr_step) {
  642. * uint32_t flo = 0;
  643. * uint32_t fhi = bezier_AV * curr_step;
  644. * uint32_t t = fhi;
  645. * int32_t alo = bezier_F;
  646. * int32_t ahi = 0;
  647. * int32_t A = bezier_A;
  648. * int32_t B = bezier_B;
  649. * int32_t C = bezier_C;
  650. *
  651. * lsrs(ahi, alo, 1); // a = F << 31
  652. * lsls(alo, alo, 31); //
  653. * umull(flo, fhi, fhi, t); // f *= t
  654. * umull(flo, fhi, fhi, t); // f>>=32; f*=t
  655. * lsrs(flo, fhi, 1); //
  656. * smlal(alo, ahi, flo, C); // a+=(f>>33)*C
  657. * umull(flo, fhi, fhi, t); // f>>=32; f*=t
  658. * lsrs(flo, fhi, 1); //
  659. * smlal(alo, ahi, flo, B); // a+=(f>>33)*B
  660. * umull(flo, fhi, fhi, t); // f>>=32; f*=t
  661. * lsrs(flo, fhi, 1); // f>>=33;
  662. * smlal(alo, ahi, flo, A); // a+=(f>>33)*A;
  663. * lsrs(alo, ahi, 6); // a>>=38
  664. *
  665. * return alo;
  666. * }
  667. *
  668. * This is rewritten in ARM assembly for optimal performance (43 cycles to execute).
  669. *
  670. * For AVR, the precision of coefficients is scaled so the Bézier curve can be evaluated in real-time:
  671. * Let's reduce precision as much as possible. After some experimentation we found that:
  672. *
  673. * Assume t and AV with 24 bits is enough
  674. * A = 6*(VF - VI)
  675. * B = 15*(VI - VF)
  676. * C = 10*(VF - VI)
  677. * F = VI
  678. * AV = (1<<24)/TS (this is computed at the planner, to offload expensive calculations from the ISR)
  679. *
  680. * Instead of storing sign for each coefficient, we will store its absolute value,
  681. * and flag the sign of the A coefficient, so we can save to store the sign bit.
  682. * It always holds that sign(A) = - sign(B) = sign(C)
  683. *
  684. * So, the resulting range of the coefficients are:
  685. *
  686. * t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned
  687. * A: signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits
  688. * B: signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits
  689. * C: signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits
  690. * F: signed Q24 , range = 250000 = 250000 = 0x0ED090 | 20 bits
  691. *
  692. * And for each curve, estimate its coefficients with:
  693. *
  694. * void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) {
  695. * // Calculate the Bézier coefficients
  696. * if (v1 < v0) {
  697. * A_negative = true;
  698. * bezier_A = 6 * (v0 - v1);
  699. * bezier_B = 15 * (v0 - v1);
  700. * bezier_C = 10 * (v0 - v1);
  701. * }
  702. * else {
  703. * A_negative = false;
  704. * bezier_A = 6 * (v1 - v0);
  705. * bezier_B = 15 * (v1 - v0);
  706. * bezier_C = 10 * (v1 - v0);
  707. * }
  708. * bezier_F = v0;
  709. * }
  710. *
  711. * And for each point, evaluate the curve with the following sequence:
  712. *
  713. * // unsigned multiplication of 24 bits x 24bits, return upper 16 bits
  714. * void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) {
  715. * r = (uint64_t(op1) * op2) >> 8;
  716. * }
  717. * // unsigned multiplication of 16 bits x 16bits, return upper 16 bits
  718. * void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) {
  719. * r = (uint32_t(op1) * op2) >> 16;
  720. * }
  721. * // unsigned multiplication of 16 bits x 24bits, return upper 24 bits
  722. * void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) {
  723. * r = uint24_t((uint64_t(op1) * op2) >> 16);
  724. * }
  725. *
  726. * int32_t _eval_bezier_curve(uint32_t curr_step) {
  727. * // To save computing, the first step is always the initial speed
  728. * if (!curr_step)
  729. * return bezier_F;
  730. *
  731. * uint16_t t;
  732. * umul24x24to16hi(t, bezier_AV, curr_step); // t: Range 0 - 1^16 = 16 bits
  733. * uint16_t f = t;
  734. * umul16x16to16hi(f, f, t); // Range 16 bits (unsigned)
  735. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^3 (unsigned)
  736. * uint24_t acc = bezier_F; // Range 20 bits (unsigned)
  737. * if (A_negative) {
  738. * uint24_t v;
  739. * umul16x24to24hi(v, f, bezier_C); // Range 21bits
  740. * acc -= v;
  741. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
  742. * umul16x24to24hi(v, f, bezier_B); // Range 22bits
  743. * acc += v;
  744. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
  745. * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
  746. * acc -= v;
  747. * }
  748. * else {
  749. * uint24_t v;
  750. * umul16x24to24hi(v, f, bezier_C); // Range 21bits
  751. * acc += v;
  752. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
  753. * umul16x24to24hi(v, f, bezier_B); // Range 22bits
  754. * acc -= v;
  755. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
  756. * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
  757. * acc += v;
  758. * }
  759. * return acc;
  760. * }
  761. * These functions are translated to assembler for optimal performance.
  762. * Coefficient calculation takes 70 cycles. Bezier point evaluation takes 150 cycles.
  763. */
  764. #ifdef __AVR__
  765. // For AVR we use assembly to maximize speed
  766. void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
  767. // Store advance
  768. bezier_AV = av;
  769. // Calculate the rest of the coefficients
  770. uint8_t r2 = v0 & 0xFF;
  771. uint8_t r3 = (v0 >> 8) & 0xFF;
  772. uint8_t r12 = (v0 >> 16) & 0xFF;
  773. uint8_t r5 = v1 & 0xFF;
  774. uint8_t r6 = (v1 >> 8) & 0xFF;
  775. uint8_t r7 = (v1 >> 16) & 0xFF;
  776. uint8_t r4,r8,r9,r10,r11;
  777. __asm__ __volatile__(
  778. /* Calculate the Bézier coefficients */
  779. /* %10:%1:%0 = v0*/
  780. /* %5:%4:%3 = v1*/
  781. /* %7:%6:%10 = temporary*/
  782. /* %9 = val (must be high register!)*/
  783. /* %10 (must be high register!)*/
  784. /* Store initial velocity*/
  785. A("sts bezier_F, %0")
  786. A("sts bezier_F+1, %1")
  787. A("sts bezier_F+2, %10") /* bezier_F = %10:%1:%0 = v0 */
  788. /* Get delta speed */
  789. A("ldi %2,-1") /* %2 = 0xFF, means A_negative = true */
  790. A("clr %8") /* %8 = 0 */
  791. A("sub %0,%3")
  792. A("sbc %1,%4")
  793. A("sbc %10,%5") /* v0 -= v1, C=1 if result is negative */
  794. A("brcc 1f") /* branch if result is positive (C=0), that means v0 >= v1 */
  795. /* Result was negative, get the absolute value*/
  796. A("com %10")
  797. A("com %1")
  798. A("neg %0")
  799. A("sbc %1,%2")
  800. A("sbc %10,%2") /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */
  801. A("clr %2") /* %2 = 0, means A_negative = false */
  802. /* Store negative flag*/
  803. L("1")
  804. A("sts A_negative, %2") /* Store negative flag */
  805. /* Compute coefficients A,B and C [20 cycles worst case]*/
  806. A("ldi %9,6") /* %9 = 6 */
  807. A("mul %0,%9") /* r1:r0 = 6*LO(v0-v1) */
  808. A("sts bezier_A, r0")
  809. A("mov %6,r1")
  810. A("clr %7") /* %7:%6:r0 = 6*LO(v0-v1) */
  811. A("mul %1,%9") /* r1:r0 = 6*MI(v0-v1) */
  812. A("add %6,r0")
  813. A("adc %7,r1") /* %7:%6:?? += 6*MI(v0-v1) << 8 */
  814. A("mul %10,%9") /* r1:r0 = 6*HI(v0-v1) */
  815. A("add %7,r0") /* %7:%6:?? += 6*HI(v0-v1) << 16 */
  816. A("sts bezier_A+1, %6")
  817. A("sts bezier_A+2, %7") /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */
  818. A("ldi %9,15") /* %9 = 15 */
  819. A("mul %0,%9") /* r1:r0 = 5*LO(v0-v1) */
  820. A("sts bezier_B, r0")
  821. A("mov %6,r1")
  822. A("clr %7") /* %7:%6:?? = 5*LO(v0-v1) */
  823. A("mul %1,%9") /* r1:r0 = 5*MI(v0-v1) */
  824. A("add %6,r0")
  825. A("adc %7,r1") /* %7:%6:?? += 5*MI(v0-v1) << 8 */
  826. A("mul %10,%9") /* r1:r0 = 5*HI(v0-v1) */
  827. A("add %7,r0") /* %7:%6:?? += 5*HI(v0-v1) << 16 */
  828. A("sts bezier_B+1, %6")
  829. A("sts bezier_B+2, %7") /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */
  830. A("ldi %9,10") /* %9 = 10 */
  831. A("mul %0,%9") /* r1:r0 = 10*LO(v0-v1) */
  832. A("sts bezier_C, r0")
  833. A("mov %6,r1")
  834. A("clr %7") /* %7:%6:?? = 10*LO(v0-v1) */
  835. A("mul %1,%9") /* r1:r0 = 10*MI(v0-v1) */
  836. A("add %6,r0")
  837. A("adc %7,r1") /* %7:%6:?? += 10*MI(v0-v1) << 8 */
  838. A("mul %10,%9") /* r1:r0 = 10*HI(v0-v1) */
  839. A("add %7,r0") /* %7:%6:?? += 10*HI(v0-v1) << 16 */
  840. A("sts bezier_C+1, %6")
  841. " sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */
  842. : "+r" (r2),
  843. "+d" (r3),
  844. "=r" (r4),
  845. "+r" (r5),
  846. "+r" (r6),
  847. "+r" (r7),
  848. "=r" (r8),
  849. "=r" (r9),
  850. "=r" (r10),
  851. "=d" (r11),
  852. "+r" (r12)
  853. :
  854. : "r0", "r1", "cc", "memory"
  855. );
  856. }
  857. FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
  858. // If dealing with the first step, save expensive computing and return the initial speed
  859. if (!curr_step)
  860. return bezier_F;
  861. uint8_t r0 = 0; /* Zero register */
  862. uint8_t r2 = (curr_step) & 0xFF;
  863. uint8_t r3 = (curr_step >> 8) & 0xFF;
  864. uint8_t r4 = (curr_step >> 16) & 0xFF;
  865. uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */
  866. __asm__ __volatile(
  867. /* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/
  868. A("lds %9,bezier_AV") /* %9 = LO(AV)*/
  869. A("mul %9,%2") /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/
  870. A("mov %7,r1") /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/
  871. A("clr %8") /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/
  872. A("lds %10,bezier_AV+1") /* %10 = MI(AV)*/
  873. A("mul %10,%2") /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/
  874. A("add %7,r0")
  875. A("adc %8,r1") /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/
  876. A("lds r1,bezier_AV+2") /* r11 = HI(AV)*/
  877. A("mul r1,%2") /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/
  878. A("add %8,r0") /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/
  879. A("mul %9,%3") /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/
  880. A("add %7,r0")
  881. A("adc %8,r1") /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/
  882. A("mul %10,%3") /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/
  883. A("add %8,r0") /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/
  884. A("mul %9,%4") /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/
  885. A("add %8,r0") /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/
  886. /* %8:%7 = t*/
  887. /* uint16_t f = t;*/
  888. A("mov %5,%7") /* %6:%5 = f*/
  889. A("mov %6,%8")
  890. /* %6:%5 = f*/
  891. /* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */
  892. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  893. A("mov %9,r1") /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/
  894. A("clr %10") /* %10 = 0*/
  895. A("clr %11") /* %11 = 0*/
  896. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  897. A("add %9,r0") /* %9 += LO(LO(f) * HI(t))*/
  898. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  899. A("adc %11,%0") /* %11 += carry*/
  900. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  901. A("add %9,r0") /* %9 += LO(HI(f) * LO(t))*/
  902. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t)) */
  903. A("adc %11,%0") /* %11 += carry*/
  904. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  905. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  906. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  907. A("mov %5,%10") /* %6:%5 = */
  908. A("mov %6,%11") /* f = %10:%11*/
  909. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
  910. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  911. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  912. A("clr %10") /* %10 = 0*/
  913. A("clr %11") /* %11 = 0*/
  914. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  915. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  916. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  917. A("adc %11,%0") /* %11 += carry*/
  918. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  919. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  920. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  921. A("adc %11,%0") /* %11 += carry*/
  922. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  923. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  924. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  925. A("mov %5,%10") /* %6:%5 =*/
  926. A("mov %6,%11") /* f = %10:%11*/
  927. /* [15 +17*2] = [49]*/
  928. /* %4:%3:%2 will be acc from now on*/
  929. /* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/
  930. A("clr %9") /* "decimal place we get for free"*/
  931. A("lds %2,bezier_F")
  932. A("lds %3,bezier_F+1")
  933. A("lds %4,bezier_F+2") /* %4:%3:%2 = acc*/
  934. /* if (A_negative) {*/
  935. A("lds r0,A_negative")
  936. A("or r0,%0") /* Is flag signalling negative? */
  937. A("brne 3f") /* If yes, Skip next instruction if A was negative*/
  938. A("rjmp 1f") /* Otherwise, jump */
  939. /* uint24_t v; */
  940. /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */
  941. /* acc -= v; */
  942. L("3")
  943. A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
  944. A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
  945. A("sub %9,r1")
  946. A("sbc %2,%0")
  947. A("sbc %3,%0")
  948. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/
  949. A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
  950. A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  951. A("sub %9,r0")
  952. A("sbc %2,r1")
  953. A("sbc %3,%0")
  954. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/
  955. A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
  956. A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  957. A("sub %2,r0")
  958. A("sbc %3,r1")
  959. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/
  960. A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
  961. A("sub %9,r0")
  962. A("sbc %2,r1")
  963. A("sbc %3,%0")
  964. A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/
  965. A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
  966. A("sub %2,r0")
  967. A("sbc %3,r1")
  968. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/
  969. A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
  970. A("sub %3,r0")
  971. A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/
  972. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
  973. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  974. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  975. A("clr %10") /* %10 = 0*/
  976. A("clr %11") /* %11 = 0*/
  977. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  978. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  979. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  980. A("adc %11,%0") /* %11 += carry*/
  981. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  982. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  983. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  984. A("adc %11,%0") /* %11 += carry*/
  985. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  986. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  987. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  988. A("mov %5,%10") /* %6:%5 =*/
  989. A("mov %6,%11") /* f = %10:%11*/
  990. /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
  991. /* acc += v; */
  992. A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
  993. A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
  994. A("add %9,r1")
  995. A("adc %2,%0")
  996. A("adc %3,%0")
  997. A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/
  998. A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
  999. A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1000. A("add %9,r0")
  1001. A("adc %2,r1")
  1002. A("adc %3,%0")
  1003. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/
  1004. A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
  1005. A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1006. A("add %2,r0")
  1007. A("adc %3,r1")
  1008. A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/
  1009. A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
  1010. A("add %9,r0")
  1011. A("adc %2,r1")
  1012. A("adc %3,%0")
  1013. A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/
  1014. A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
  1015. A("add %2,r0")
  1016. A("adc %3,r1")
  1017. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/
  1018. A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
  1019. A("add %3,r0")
  1020. A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/
  1021. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
  1022. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  1023. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  1024. A("clr %10") /* %10 = 0*/
  1025. A("clr %11") /* %11 = 0*/
  1026. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  1027. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  1028. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  1029. A("adc %11,%0") /* %11 += carry*/
  1030. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  1031. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  1032. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  1033. A("adc %11,%0") /* %11 += carry*/
  1034. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  1035. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  1036. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  1037. A("mov %5,%10") /* %6:%5 =*/
  1038. A("mov %6,%11") /* f = %10:%11*/
  1039. /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
  1040. /* acc -= v; */
  1041. A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
  1042. A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
  1043. A("sub %9,r1")
  1044. A("sbc %2,%0")
  1045. A("sbc %3,%0")
  1046. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/
  1047. A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
  1048. A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1049. A("sub %9,r0")
  1050. A("sbc %2,r1")
  1051. A("sbc %3,%0")
  1052. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/
  1053. A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
  1054. A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1055. A("sub %2,r0")
  1056. A("sbc %3,r1")
  1057. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/
  1058. A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
  1059. A("sub %9,r0")
  1060. A("sbc %2,r1")
  1061. A("sbc %3,%0")
  1062. A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/
  1063. A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
  1064. A("sub %2,r0")
  1065. A("sbc %3,r1")
  1066. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/
  1067. A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
  1068. A("sub %3,r0")
  1069. A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/
  1070. A("jmp 2f") /* Done!*/
  1071. L("1")
  1072. /* uint24_t v; */
  1073. /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/
  1074. /* acc += v; */
  1075. A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
  1076. A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
  1077. A("add %9,r1")
  1078. A("adc %2,%0")
  1079. A("adc %3,%0")
  1080. A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/
  1081. A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
  1082. A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  1083. A("add %9,r0")
  1084. A("adc %2,r1")
  1085. A("adc %3,%0")
  1086. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/
  1087. A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
  1088. A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  1089. A("add %2,r0")
  1090. A("adc %3,r1")
  1091. A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/
  1092. A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
  1093. A("add %9,r0")
  1094. A("adc %2,r1")
  1095. A("adc %3,%0")
  1096. A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/
  1097. A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
  1098. A("add %2,r0")
  1099. A("adc %3,r1")
  1100. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/
  1101. A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
  1102. A("add %3,r0")
  1103. A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/
  1104. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
  1105. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  1106. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  1107. A("clr %10") /* %10 = 0*/
  1108. A("clr %11") /* %11 = 0*/
  1109. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  1110. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  1111. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  1112. A("adc %11,%0") /* %11 += carry*/
  1113. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  1114. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  1115. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  1116. A("adc %11,%0") /* %11 += carry*/
  1117. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  1118. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  1119. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  1120. A("mov %5,%10") /* %6:%5 =*/
  1121. A("mov %6,%11") /* f = %10:%11*/
  1122. /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
  1123. /* acc -= v;*/
  1124. A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
  1125. A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
  1126. A("sub %9,r1")
  1127. A("sbc %2,%0")
  1128. A("sbc %3,%0")
  1129. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/
  1130. A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
  1131. A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1132. A("sub %9,r0")
  1133. A("sbc %2,r1")
  1134. A("sbc %3,%0")
  1135. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/
  1136. A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
  1137. A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1138. A("sub %2,r0")
  1139. A("sbc %3,r1")
  1140. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/
  1141. A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
  1142. A("sub %9,r0")
  1143. A("sbc %2,r1")
  1144. A("sbc %3,%0")
  1145. A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/
  1146. A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
  1147. A("sub %2,r0")
  1148. A("sbc %3,r1")
  1149. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/
  1150. A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
  1151. A("sub %3,r0")
  1152. A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/
  1153. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
  1154. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  1155. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  1156. A("clr %10") /* %10 = 0*/
  1157. A("clr %11") /* %11 = 0*/
  1158. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  1159. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  1160. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  1161. A("adc %11,%0") /* %11 += carry*/
  1162. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  1163. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  1164. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  1165. A("adc %11,%0") /* %11 += carry*/
  1166. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  1167. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  1168. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  1169. A("mov %5,%10") /* %6:%5 =*/
  1170. A("mov %6,%11") /* f = %10:%11*/
  1171. /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
  1172. /* acc += v; */
  1173. A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
  1174. A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
  1175. A("add %9,r1")
  1176. A("adc %2,%0")
  1177. A("adc %3,%0")
  1178. A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/
  1179. A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
  1180. A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1181. A("add %9,r0")
  1182. A("adc %2,r1")
  1183. A("adc %3,%0")
  1184. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/
  1185. A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
  1186. A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1187. A("add %2,r0")
  1188. A("adc %3,r1")
  1189. A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/
  1190. A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
  1191. A("add %9,r0")
  1192. A("adc %2,r1")
  1193. A("adc %3,%0")
  1194. A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/
  1195. A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
  1196. A("add %2,r0")
  1197. A("adc %3,r1")
  1198. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/
  1199. A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
  1200. A("add %3,r0")
  1201. A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/
  1202. L("2")
  1203. " clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */
  1204. : "+r"(r0),
  1205. "+r"(r1),
  1206. "+r"(r2),
  1207. "+r"(r3),
  1208. "+r"(r4),
  1209. "+r"(r5),
  1210. "+r"(r6),
  1211. "+r"(r7),
  1212. "+r"(r8),
  1213. "+r"(r9),
  1214. "+r"(r10),
  1215. "+r"(r11)
  1216. :
  1217. :"cc","r0","r1"
  1218. );
  1219. return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16);
  1220. }
  1221. #else
  1222. // For all the other 32bit CPUs
  1223. FORCE_INLINE void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
  1224. // Calculate the Bézier coefficients
  1225. bezier_A = 768 * (v1 - v0);
  1226. bezier_B = 1920 * (v0 - v1);
  1227. bezier_C = 1280 * (v1 - v0);
  1228. bezier_F = 128 * v0;
  1229. bezier_AV = av;
  1230. }
  1231. FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
  1232. #if (defined(__arm__) || defined(__thumb__)) && !defined(STM32G0B1xx) // TODO: Test define STM32G0xx versus STM32G0B1xx
  1233. // For ARM Cortex M3/M4 CPUs, we have the optimized assembler version, that takes 43 cycles to execute
  1234. uint32_t flo = 0;
  1235. uint32_t fhi = bezier_AV * curr_step;
  1236. uint32_t t = fhi;
  1237. int32_t alo = bezier_F;
  1238. int32_t ahi = 0;
  1239. int32_t A = bezier_A;
  1240. int32_t B = bezier_B;
  1241. int32_t C = bezier_C;
  1242. __asm__ __volatile__(
  1243. ".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
  1244. A("lsrs %[ahi],%[alo],#1") // a = F << 31 1 cycles
  1245. A("lsls %[alo],%[alo],#31") // 1 cycles
  1246. A("umull %[flo],%[fhi],%[fhi],%[t]") // f *= t 5 cycles [fhi:flo=64bits]
  1247. A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
  1248. A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
  1249. A("smlal %[alo],%[ahi],%[flo],%[C]") // a+=(f>>33)*C; 5 cycles
  1250. A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
  1251. A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
  1252. A("smlal %[alo],%[ahi],%[flo],%[B]") // a+=(f>>33)*B; 5 cycles
  1253. A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
  1254. A("lsrs %[flo],%[fhi],#1") // f>>=33; 1 cycles [31bits]
  1255. A("smlal %[alo],%[ahi],%[flo],%[A]") // a+=(f>>33)*A; 5 cycles
  1256. A("lsrs %[alo],%[ahi],#6") // a>>=38 1 cycles
  1257. : [alo]"+r"( alo ) ,
  1258. [flo]"+r"( flo ) ,
  1259. [fhi]"+r"( fhi ) ,
  1260. [ahi]"+r"( ahi ) ,
  1261. [A]"+r"( A ) , // <== Note: Even if A, B, C, and t registers are INPUT ONLY
  1262. [B]"+r"( B ) , // GCC does bad optimizations on the code if we list them as
  1263. [C]"+r"( C ) , // such, breaking this function. So, to avoid that problem,
  1264. [t]"+r"( t ) // we list all registers as input-outputs.
  1265. :
  1266. : "cc"
  1267. );
  1268. return alo;
  1269. #else
  1270. // For non ARM targets, we provide a fallback implementation. Really doubt it
  1271. // will be useful, unless the processor is fast and 32bit
  1272. uint32_t t = bezier_AV * curr_step; // t: Range 0 - 1^32 = 32 bits
  1273. uint64_t f = t;
  1274. f *= t; // Range 32*2 = 64 bits (unsigned)
  1275. f >>= 32; // Range 32 bits (unsigned)
  1276. f *= t; // Range 32*2 = 64 bits (unsigned)
  1277. f >>= 32; // Range 32 bits : f = t^3 (unsigned)
  1278. int64_t acc = (int64_t) bezier_F << 31; // Range 63 bits (signed)
  1279. acc += ((uint32_t) f >> 1) * (int64_t) bezier_C; // Range 29bits + 31 = 60bits (plus sign)
  1280. f *= t; // Range 32*2 = 64 bits
  1281. f >>= 32; // Range 32 bits : f = t^3 (unsigned)
  1282. acc += ((uint32_t) f >> 1) * (int64_t) bezier_B; // Range 29bits + 31 = 60bits (plus sign)
  1283. f *= t; // Range 32*2 = 64 bits
  1284. f >>= 32; // Range 32 bits : f = t^3 (unsigned)
  1285. acc += ((uint32_t) f >> 1) * (int64_t) bezier_A; // Range 28bits + 31 = 59bits (plus sign)
  1286. acc >>= (31 + 7); // Range 24bits (plus sign)
  1287. return (int32_t) acc;
  1288. #endif
  1289. }
  1290. #endif
  1291. #endif // S_CURVE_ACCELERATION
  1292. /**
  1293. * Stepper Driver Interrupt
  1294. *
  1295. * Directly pulses the stepper motors at high frequency.
  1296. */
  1297. HAL_STEP_TIMER_ISR() {
  1298. HAL_timer_isr_prologue(MF_TIMER_STEP);
  1299. Stepper::isr();
  1300. HAL_timer_isr_epilogue(MF_TIMER_STEP);
  1301. }
  1302. #ifdef CPU_32_BIT
  1303. #define STEP_MULTIPLY(A,B) MultiU32X24toH32(A, B)
  1304. #else
  1305. #define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B)
  1306. #endif
  1307. void Stepper::isr() {
  1308. static uint32_t nextMainISR = 0; // Interval until the next main Stepper Pulse phase (0 = Now)
  1309. #ifndef __AVR__
  1310. // Disable interrupts, to avoid ISR preemption while we reprogram the period
  1311. // (AVR enters the ISR with global interrupts disabled, so no need to do it here)
  1312. hal.isr_off();
  1313. #endif
  1314. // Program timer compare for the maximum period, so it does NOT
  1315. // flag an interrupt while this ISR is running - So changes from small
  1316. // periods to big periods are respected and the timer does not reset to 0
  1317. HAL_timer_set_compare(MF_TIMER_STEP, hal_timer_t(HAL_TIMER_TYPE_MAX));
  1318. // Count of ticks for the next ISR
  1319. hal_timer_t next_isr_ticks = 0;
  1320. // Limit the amount of iterations
  1321. uint8_t max_loops = 10;
  1322. // We need this variable here to be able to use it in the following loop
  1323. hal_timer_t min_ticks;
  1324. do {
  1325. // Enable ISRs to reduce USART processing latency
  1326. hal.isr_on();
  1327. if (!nextMainISR) pulse_phase_isr(); // 0 = Do coordinated axes Stepper pulses
  1328. #if ENABLED(LIN_ADVANCE)
  1329. if (!nextAdvanceISR) nextAdvanceISR = advance_isr(); // 0 = Do Linear Advance E Stepper pulses
  1330. #endif
  1331. #if ENABLED(INTEGRATED_BABYSTEPPING)
  1332. const bool is_babystep = (nextBabystepISR == 0); // 0 = Do Babystepping (XY)Z pulses
  1333. if (is_babystep) nextBabystepISR = babystepping_isr();
  1334. #endif
  1335. // ^== Time critical. NOTHING besides pulse generation should be above here!!!
  1336. if (!nextMainISR) nextMainISR = block_phase_isr(); // Manage acc/deceleration, get next block
  1337. #if ENABLED(INTEGRATED_BABYSTEPPING)
  1338. if (is_babystep) // Avoid ANY stepping too soon after baby-stepping
  1339. NOLESS(nextMainISR, (BABYSTEP_TICKS) / 8); // FULL STOP for 125µs after a baby-step
  1340. if (nextBabystepISR != BABYSTEP_NEVER) // Avoid baby-stepping too close to axis Stepping
  1341. NOLESS(nextBabystepISR, nextMainISR / 2); // TODO: Only look at axes enabled for baby-stepping
  1342. #endif
  1343. // Get the interval to the next ISR call
  1344. const uint32_t interval = _MIN(
  1345. uint32_t(HAL_TIMER_TYPE_MAX), // Come back in a very long time
  1346. nextMainISR // Time until the next Pulse / Block phase
  1347. OPTARG(LIN_ADVANCE, nextAdvanceISR) // Come back early for Linear Advance?
  1348. OPTARG(INTEGRATED_BABYSTEPPING, nextBabystepISR) // Come back early for Babystepping?
  1349. );
  1350. //
  1351. // Compute remaining time for each ISR phase
  1352. // NEVER : The phase is idle
  1353. // Zero : The phase will occur on the next ISR call
  1354. // Non-zero : The phase will occur on a future ISR call
  1355. //
  1356. nextMainISR -= interval;
  1357. #if ENABLED(LIN_ADVANCE)
  1358. if (nextAdvanceISR != LA_ADV_NEVER) nextAdvanceISR -= interval;
  1359. #endif
  1360. #if ENABLED(INTEGRATED_BABYSTEPPING)
  1361. if (nextBabystepISR != BABYSTEP_NEVER) nextBabystepISR -= interval;
  1362. #endif
  1363. /**
  1364. * This needs to avoid a race-condition caused by interleaving
  1365. * of interrupts required by both the LA and Stepper algorithms.
  1366. *
  1367. * Assume the following tick times for stepper pulses:
  1368. * Stepper ISR (S): 1 1000 2000 3000 4000
  1369. * Linear Adv. (E): 10 1010 2010 3010 4010
  1370. *
  1371. * The current algorithm tries to interleave them, giving:
  1372. * 1:S 10:E 1000:S 1010:E 2000:S 2010:E 3000:S 3010:E 4000:S 4010:E
  1373. *
  1374. * Ideal timing would yield these delta periods:
  1375. * 1:S 9:E 990:S 10:E 990:S 10:E 990:S 10:E 990:S 10:E
  1376. *
  1377. * But, since each event must fire an ISR with a minimum duration, the
  1378. * minimum delta might be 900, so deltas under 900 get rounded up:
  1379. * 900:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E
  1380. *
  1381. * It works, but divides the speed of all motors by half, leading to a sudden
  1382. * reduction to 1/2 speed! Such jumps in speed lead to lost steps (not even
  1383. * accounting for double/quad stepping, which makes it even worse).
  1384. */
  1385. // Compute the tick count for the next ISR
  1386. next_isr_ticks += interval;
  1387. /**
  1388. * The following section must be done with global interrupts disabled.
  1389. * We want nothing to interrupt it, as that could mess the calculations
  1390. * we do for the next value to program in the period register of the
  1391. * stepper timer and lead to skipped ISRs (if the value we happen to program
  1392. * is less than the current count due to something preempting between the
  1393. * read and the write of the new period value).
  1394. */
  1395. hal.isr_off();
  1396. /**
  1397. * Get the current tick value + margin
  1398. * Assuming at least 6µs between calls to this ISR...
  1399. * On AVR the ISR epilogue+prologue is estimated at 100 instructions - Give 8µs as margin
  1400. * On ARM the ISR epilogue+prologue is estimated at 20 instructions - Give 1µs as margin
  1401. */
  1402. min_ticks = HAL_timer_get_count(MF_TIMER_STEP) + hal_timer_t(
  1403. #ifdef __AVR__
  1404. 8
  1405. #else
  1406. 1
  1407. #endif
  1408. * (STEPPER_TIMER_TICKS_PER_US)
  1409. );
  1410. /**
  1411. * NB: If for some reason the stepper monopolizes the MPU, eventually the
  1412. * timer will wrap around (and so will 'next_isr_ticks'). So, limit the
  1413. * loop to 10 iterations. Beyond that, there's no way to ensure correct pulse
  1414. * timing, since the MCU isn't fast enough.
  1415. */
  1416. if (!--max_loops) next_isr_ticks = min_ticks;
  1417. // Advance pulses if not enough time to wait for the next ISR
  1418. } while (next_isr_ticks < min_ticks);
  1419. // Now 'next_isr_ticks' contains the period to the next Stepper ISR - And we are
  1420. // sure that the time has not arrived yet - Warrantied by the scheduler
  1421. // Set the next ISR to fire at the proper time
  1422. HAL_timer_set_compare(MF_TIMER_STEP, hal_timer_t(next_isr_ticks));
  1423. // Don't forget to finally reenable interrupts
  1424. hal.isr_on();
  1425. }
  1426. #if MINIMUM_STEPPER_PULSE || MAXIMUM_STEPPER_RATE
  1427. #define ISR_PULSE_CONTROL 1
  1428. #endif
  1429. #if ISR_PULSE_CONTROL && DISABLED(I2S_STEPPER_STREAM)
  1430. #define ISR_MULTI_STEPS 1
  1431. #endif
  1432. /**
  1433. * This phase of the ISR should ONLY create the pulses for the steppers.
  1434. * This prevents jitter caused by the interval between the start of the
  1435. * interrupt and the start of the pulses. DON'T add any logic ahead of the
  1436. * call to this method that might cause variation in the timing. The aim
  1437. * is to keep pulse timing as regular as possible.
  1438. */
  1439. void Stepper::pulse_phase_isr() {
  1440. // If we must abort the current block, do so!
  1441. if (abort_current_block) {
  1442. abort_current_block = false;
  1443. if (current_block) discard_current_block();
  1444. }
  1445. // If there is no current block, do nothing
  1446. if (!current_block) return;
  1447. // Skipping step processing causes motion to freeze
  1448. if (TERN0(FREEZE_FEATURE, frozen)) return;
  1449. // Count of pending loops and events for this iteration
  1450. const uint32_t pending_events = step_event_count - step_events_completed;
  1451. uint8_t events_to_do = _MIN(pending_events, steps_per_isr);
  1452. // Just update the value we will get at the end of the loop
  1453. step_events_completed += events_to_do;
  1454. // Take multiple steps per interrupt (For high speed moves)
  1455. #if ISR_MULTI_STEPS
  1456. bool firstStep = true;
  1457. USING_TIMED_PULSE();
  1458. #endif
  1459. xyze_bool_t step_needed{0};
  1460. do {
  1461. #define _APPLY_STEP(AXIS, INV, ALWAYS) AXIS ##_APPLY_STEP(INV, ALWAYS)
  1462. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  1463. // Determine if a pulse is needed using Bresenham
  1464. #define PULSE_PREP(AXIS) do{ \
  1465. delta_error[_AXIS(AXIS)] += advance_dividend[_AXIS(AXIS)]; \
  1466. step_needed[_AXIS(AXIS)] = (delta_error[_AXIS(AXIS)] >= 0); \
  1467. if (step_needed[_AXIS(AXIS)]) { \
  1468. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  1469. delta_error[_AXIS(AXIS)] -= advance_divisor; \
  1470. } \
  1471. }while(0)
  1472. // Start an active pulse if needed
  1473. #define PULSE_START(AXIS) do{ \
  1474. if (step_needed[_AXIS(AXIS)]) { \
  1475. _APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), 0); \
  1476. } \
  1477. }while(0)
  1478. // Stop an active pulse if needed
  1479. #define PULSE_STOP(AXIS) do { \
  1480. if (step_needed[_AXIS(AXIS)]) { \
  1481. _APPLY_STEP(AXIS, _INVERT_STEP_PIN(AXIS), 0); \
  1482. } \
  1483. }while(0)
  1484. // Direct Stepping page?
  1485. const bool is_page = current_block->is_page();
  1486. #if ENABLED(DIRECT_STEPPING)
  1487. // Direct stepping is currently not ready for HAS_I_AXIS
  1488. if (is_page) {
  1489. #if STEPPER_PAGE_FORMAT == SP_4x4D_128
  1490. #define PAGE_SEGMENT_UPDATE(AXIS, VALUE) do{ \
  1491. if ((VALUE) < 7) SBI(dm, _AXIS(AXIS)); \
  1492. else if ((VALUE) > 7) CBI(dm, _AXIS(AXIS)); \
  1493. page_step_state.sd[_AXIS(AXIS)] = VALUE; \
  1494. page_step_state.bd[_AXIS(AXIS)] += VALUE; \
  1495. }while(0)
  1496. #define PAGE_PULSE_PREP(AXIS) do{ \
  1497. step_needed[_AXIS(AXIS)] = \
  1498. pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x7]); \
  1499. }while(0)
  1500. switch (page_step_state.segment_steps) {
  1501. case DirectStepping::Config::SEGMENT_STEPS:
  1502. page_step_state.segment_idx += 2;
  1503. page_step_state.segment_steps = 0;
  1504. // fallthru
  1505. case 0: {
  1506. const uint8_t low = page_step_state.page[page_step_state.segment_idx],
  1507. high = page_step_state.page[page_step_state.segment_idx + 1];
  1508. axis_bits_t dm = last_direction_bits;
  1509. PAGE_SEGMENT_UPDATE(X, low >> 4);
  1510. PAGE_SEGMENT_UPDATE(Y, low & 0xF);
  1511. PAGE_SEGMENT_UPDATE(Z, high >> 4);
  1512. PAGE_SEGMENT_UPDATE(E, high & 0xF);
  1513. if (dm != last_direction_bits)
  1514. set_directions(dm);
  1515. } break;
  1516. default: break;
  1517. }
  1518. PAGE_PULSE_PREP(X);
  1519. PAGE_PULSE_PREP(Y);
  1520. PAGE_PULSE_PREP(Z);
  1521. TERN_(HAS_EXTRUDERS, PAGE_PULSE_PREP(E));
  1522. page_step_state.segment_steps++;
  1523. #elif STEPPER_PAGE_FORMAT == SP_4x2_256
  1524. #define PAGE_SEGMENT_UPDATE(AXIS, VALUE) \
  1525. page_step_state.sd[_AXIS(AXIS)] = VALUE; \
  1526. page_step_state.bd[_AXIS(AXIS)] += VALUE;
  1527. #define PAGE_PULSE_PREP(AXIS) do{ \
  1528. step_needed[_AXIS(AXIS)] = \
  1529. pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x3]); \
  1530. }while(0)
  1531. switch (page_step_state.segment_steps) {
  1532. case DirectStepping::Config::SEGMENT_STEPS:
  1533. page_step_state.segment_idx++;
  1534. page_step_state.segment_steps = 0;
  1535. // fallthru
  1536. case 0: {
  1537. const uint8_t b = page_step_state.page[page_step_state.segment_idx];
  1538. PAGE_SEGMENT_UPDATE(X, (b >> 6) & 0x3);
  1539. PAGE_SEGMENT_UPDATE(Y, (b >> 4) & 0x3);
  1540. PAGE_SEGMENT_UPDATE(Z, (b >> 2) & 0x3);
  1541. PAGE_SEGMENT_UPDATE(E, (b >> 0) & 0x3);
  1542. } break;
  1543. default: break;
  1544. }
  1545. PAGE_PULSE_PREP(X);
  1546. PAGE_PULSE_PREP(Y);
  1547. PAGE_PULSE_PREP(Z);
  1548. TERN_(HAS_EXTRUDERS, PAGE_PULSE_PREP(E));
  1549. page_step_state.segment_steps++;
  1550. #elif STEPPER_PAGE_FORMAT == SP_4x1_512
  1551. #define PAGE_PULSE_PREP(AXIS, BITS) do{ \
  1552. step_needed[_AXIS(AXIS)] = (steps >> BITS) & 0x1; \
  1553. if (step_needed[_AXIS(AXIS)]) \
  1554. page_step_state.bd[_AXIS(AXIS)]++; \
  1555. }while(0)
  1556. uint8_t steps = page_step_state.page[page_step_state.segment_idx >> 1];
  1557. if (page_step_state.segment_idx & 0x1) steps >>= 4;
  1558. PAGE_PULSE_PREP(X, 3);
  1559. PAGE_PULSE_PREP(Y, 2);
  1560. PAGE_PULSE_PREP(Z, 1);
  1561. PAGE_PULSE_PREP(E, 0);
  1562. page_step_state.segment_idx++;
  1563. #else
  1564. #error "Unknown direct stepping page format!"
  1565. #endif
  1566. }
  1567. #endif // DIRECT_STEPPING
  1568. if (!is_page) {
  1569. // Determine if pulses are needed
  1570. #if HAS_X_STEP
  1571. PULSE_PREP(X);
  1572. #endif
  1573. #if HAS_Y_STEP
  1574. PULSE_PREP(Y);
  1575. #endif
  1576. #if HAS_Z_STEP
  1577. PULSE_PREP(Z);
  1578. #endif
  1579. #if HAS_I_STEP
  1580. PULSE_PREP(I);
  1581. #endif
  1582. #if HAS_J_STEP
  1583. PULSE_PREP(J);
  1584. #endif
  1585. #if HAS_K_STEP
  1586. PULSE_PREP(K);
  1587. #endif
  1588. #if HAS_U_STEP
  1589. PULSE_PREP(U);
  1590. #endif
  1591. #if HAS_V_STEP
  1592. PULSE_PREP(V);
  1593. #endif
  1594. #if HAS_W_STEP
  1595. PULSE_PREP(W);
  1596. #endif
  1597. #if EITHER(LIN_ADVANCE, MIXING_EXTRUDER)
  1598. delta_error.e += advance_dividend.e;
  1599. if (delta_error.e >= 0) {
  1600. #if ENABLED(LIN_ADVANCE)
  1601. delta_error.e -= advance_divisor;
  1602. // Don't step E here - But remember the number of steps to perform
  1603. motor_direction(E_AXIS) ? --LA_steps : ++LA_steps;
  1604. #else
  1605. count_position.e += count_direction.e;
  1606. step_needed.e = true;
  1607. #endif
  1608. }
  1609. #elif HAS_E0_STEP
  1610. PULSE_PREP(E);
  1611. #endif
  1612. }
  1613. #if ISR_MULTI_STEPS
  1614. if (firstStep)
  1615. firstStep = false;
  1616. else
  1617. AWAIT_LOW_PULSE();
  1618. #endif
  1619. // Pulse start
  1620. #if HAS_X_STEP
  1621. PULSE_START(X);
  1622. #endif
  1623. #if HAS_Y_STEP
  1624. PULSE_START(Y);
  1625. #endif
  1626. #if HAS_Z_STEP
  1627. PULSE_START(Z);
  1628. #endif
  1629. #if HAS_I_STEP
  1630. PULSE_START(I);
  1631. #endif
  1632. #if HAS_J_STEP
  1633. PULSE_START(J);
  1634. #endif
  1635. #if HAS_K_STEP
  1636. PULSE_START(K);
  1637. #endif
  1638. #if HAS_U_STEP
  1639. PULSE_START(U);
  1640. #endif
  1641. #if HAS_V_STEP
  1642. PULSE_START(V);
  1643. #endif
  1644. #if HAS_W_STEP
  1645. PULSE_START(W);
  1646. #endif
  1647. #if DISABLED(LIN_ADVANCE)
  1648. #if ENABLED(MIXING_EXTRUDER)
  1649. if (step_needed.e) E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN);
  1650. #elif HAS_E0_STEP
  1651. PULSE_START(E);
  1652. #endif
  1653. #endif
  1654. TERN_(I2S_STEPPER_STREAM, i2s_push_sample());
  1655. // TODO: need to deal with MINIMUM_STEPPER_PULSE over i2s
  1656. #if ISR_MULTI_STEPS
  1657. START_HIGH_PULSE();
  1658. AWAIT_HIGH_PULSE();
  1659. #endif
  1660. // Pulse stop
  1661. #if HAS_X_STEP
  1662. PULSE_STOP(X);
  1663. #endif
  1664. #if HAS_Y_STEP
  1665. PULSE_STOP(Y);
  1666. #endif
  1667. #if HAS_Z_STEP
  1668. PULSE_STOP(Z);
  1669. #endif
  1670. #if HAS_I_STEP
  1671. PULSE_STOP(I);
  1672. #endif
  1673. #if HAS_J_STEP
  1674. PULSE_STOP(J);
  1675. #endif
  1676. #if HAS_K_STEP
  1677. PULSE_STOP(K);
  1678. #endif
  1679. #if HAS_U_STEP
  1680. PULSE_STOP(U);
  1681. #endif
  1682. #if HAS_V_STEP
  1683. PULSE_STOP(V);
  1684. #endif
  1685. #if HAS_W_STEP
  1686. PULSE_STOP(W);
  1687. #endif
  1688. #if DISABLED(LIN_ADVANCE)
  1689. #if ENABLED(MIXING_EXTRUDER)
  1690. if (delta_error.e >= 0) {
  1691. delta_error.e -= advance_divisor;
  1692. E_STEP_WRITE(mixer.get_stepper(), INVERT_E_STEP_PIN);
  1693. }
  1694. #elif HAS_E0_STEP
  1695. PULSE_STOP(E);
  1696. #endif
  1697. #endif
  1698. #if ISR_MULTI_STEPS
  1699. if (events_to_do) START_LOW_PULSE();
  1700. #endif
  1701. } while (--events_to_do);
  1702. }
  1703. // This is the last half of the stepper interrupt: This one processes and
  1704. // properly schedules blocks from the planner. This is executed after creating
  1705. // the step pulses, so it is not time critical, as pulses are already done.
  1706. uint32_t Stepper::block_phase_isr() {
  1707. // If no queued movements, just wait 1ms for the next block
  1708. uint32_t interval = (STEPPER_TIMER_RATE) / 1000UL;
  1709. // If there is a current block
  1710. if (current_block) {
  1711. // If current block is finished, reset pointer and finalize state
  1712. if (step_events_completed >= step_event_count) {
  1713. #if ENABLED(DIRECT_STEPPING)
  1714. // Direct stepping is currently not ready for HAS_I_AXIS
  1715. #if STEPPER_PAGE_FORMAT == SP_4x4D_128
  1716. #define PAGE_SEGMENT_UPDATE_POS(AXIS) \
  1717. count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] - 128 * 7;
  1718. #elif STEPPER_PAGE_FORMAT == SP_4x1_512 || STEPPER_PAGE_FORMAT == SP_4x2_256
  1719. #define PAGE_SEGMENT_UPDATE_POS(AXIS) \
  1720. count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] * count_direction[_AXIS(AXIS)];
  1721. #endif
  1722. if (current_block->is_page()) {
  1723. PAGE_SEGMENT_UPDATE_POS(X);
  1724. PAGE_SEGMENT_UPDATE_POS(Y);
  1725. PAGE_SEGMENT_UPDATE_POS(Z);
  1726. PAGE_SEGMENT_UPDATE_POS(E);
  1727. }
  1728. #endif
  1729. TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.block_completed(current_block));
  1730. discard_current_block();
  1731. }
  1732. else {
  1733. // Step events not completed yet...
  1734. // Are we in acceleration phase ?
  1735. if (step_events_completed <= accelerate_until) { // Calculate new timer value
  1736. #if ENABLED(S_CURVE_ACCELERATION)
  1737. // Get the next speed to use (Jerk limited!)
  1738. uint32_t acc_step_rate = acceleration_time < current_block->acceleration_time
  1739. ? _eval_bezier_curve(acceleration_time)
  1740. : current_block->cruise_rate;
  1741. #else
  1742. acc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate;
  1743. NOMORE(acc_step_rate, current_block->nominal_rate);
  1744. #endif
  1745. // acc_step_rate is in steps/second
  1746. // step_rate to timer interval and steps per stepper isr
  1747. interval = calc_timer_interval(acc_step_rate, &steps_per_isr);
  1748. acceleration_time += interval;
  1749. #if ENABLED(LIN_ADVANCE)
  1750. if (LA_use_advance_lead) {
  1751. // Fire ISR if final adv_rate is reached
  1752. if (LA_steps && LA_isr_rate != current_block->advance_speed) nextAdvanceISR = 0;
  1753. }
  1754. else if (LA_steps) nextAdvanceISR = 0;
  1755. #endif
  1756. /**
  1757. * Adjust Laser Power - Accelerating
  1758. *
  1759. * isPowered - True when a move is powered.
  1760. * isEnabled - laser power is active.
  1761. *
  1762. * Laser power variables are calulated and stored in this block by the planner code.
  1763. * trap_ramp_active_pwr - the active power in this block across accel or decel trap steps.
  1764. * trap_ramp_entry_incr - holds the precalculated value to increase the current power per accel step.
  1765. *
  1766. * Apply the starting active power and then increase power per step by the trap_ramp_entry_incr value if positive.
  1767. */
  1768. #if ENABLED(LASER_POWER_TRAP)
  1769. if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) {
  1770. if (planner.laser_inline.status.isPowered && planner.laser_inline.status.isEnabled) {
  1771. if (current_block->laser.trap_ramp_entry_incr > 0) {
  1772. cutter.apply_power(current_block->laser.trap_ramp_active_pwr);
  1773. current_block->laser.trap_ramp_active_pwr += current_block->laser.trap_ramp_entry_incr;
  1774. }
  1775. }
  1776. // Not a powered move.
  1777. else cutter.apply_power(0);
  1778. }
  1779. #endif
  1780. }
  1781. // Are we in Deceleration phase ?
  1782. else if (step_events_completed > decelerate_after) {
  1783. uint32_t step_rate;
  1784. #if ENABLED(S_CURVE_ACCELERATION)
  1785. // If this is the 1st time we process the 2nd half of the trapezoid...
  1786. if (!bezier_2nd_half) {
  1787. // Initialize the Bézier speed curve
  1788. _calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);
  1789. bezier_2nd_half = true;
  1790. // The first point starts at cruise rate. Just save evaluation of the Bézier curve
  1791. step_rate = current_block->cruise_rate;
  1792. }
  1793. else {
  1794. // Calculate the next speed to use
  1795. step_rate = deceleration_time < current_block->deceleration_time
  1796. ? _eval_bezier_curve(deceleration_time)
  1797. : current_block->final_rate;
  1798. }
  1799. #else
  1800. // Using the old trapezoidal control
  1801. step_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate);
  1802. if (step_rate < acc_step_rate) { // Still decelerating?
  1803. step_rate = acc_step_rate - step_rate;
  1804. NOLESS(step_rate, current_block->final_rate);
  1805. }
  1806. else
  1807. step_rate = current_block->final_rate;
  1808. #endif
  1809. // step_rate to timer interval and steps per stepper isr
  1810. interval = calc_timer_interval(step_rate, &steps_per_isr);
  1811. deceleration_time += interval;
  1812. #if ENABLED(LIN_ADVANCE)
  1813. if (LA_use_advance_lead) {
  1814. // Wake up eISR on first deceleration loop and fire ISR if final adv_rate is reached
  1815. if (step_events_completed <= decelerate_after + steps_per_isr || (LA_steps && LA_isr_rate != current_block->advance_speed)) {
  1816. initiateLA();
  1817. LA_isr_rate = current_block->advance_speed;
  1818. }
  1819. }
  1820. else if (LA_steps) nextAdvanceISR = 0;
  1821. #endif // LIN_ADVANCE
  1822. /*
  1823. * Adjust Laser Power - Decelerating
  1824. * trap_ramp_entry_decr - holds the precalculated value to decrease the current power per decel step.
  1825. */
  1826. #if ENABLED(LASER_POWER_TRAP)
  1827. if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) {
  1828. if (planner.laser_inline.status.isPowered && planner.laser_inline.status.isEnabled) {
  1829. if (current_block->laser.trap_ramp_exit_decr > 0) {
  1830. current_block->laser.trap_ramp_active_pwr -= current_block->laser.trap_ramp_exit_decr;
  1831. cutter.apply_power(current_block->laser.trap_ramp_active_pwr);
  1832. }
  1833. // Not a powered move.
  1834. else cutter.apply_power(0);
  1835. }
  1836. }
  1837. #endif
  1838. }
  1839. else { // Must be in cruise phase otherwise
  1840. #if ENABLED(LIN_ADVANCE)
  1841. // If there are any esteps, fire the next advance_isr "now"
  1842. if (LA_steps && LA_isr_rate != current_block->advance_speed) initiateLA();
  1843. #endif
  1844. // Calculate the ticks_nominal for this nominal speed, if not done yet
  1845. if (ticks_nominal < 0) {
  1846. // step_rate to timer interval and loops for the nominal speed
  1847. ticks_nominal = calc_timer_interval(current_block->nominal_rate, &steps_per_isr);
  1848. }
  1849. // The timer interval is just the nominal value for the nominal speed
  1850. interval = ticks_nominal;
  1851. }
  1852. /**
  1853. * Adjust Laser Power - Cruise
  1854. * power - direct or floor adjusted active laser power.
  1855. */
  1856. #if ENABLED(LASER_POWER_TRAP)
  1857. if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) {
  1858. if (step_events_completed + 1 == accelerate_until) {
  1859. if (planner.laser_inline.status.isPowered && planner.laser_inline.status.isEnabled) {
  1860. if (current_block->laser.trap_ramp_entry_incr > 0) {
  1861. current_block->laser.trap_ramp_active_pwr = current_block->laser.power;
  1862. cutter.apply_power(current_block->laser.power);
  1863. }
  1864. }
  1865. // Not a powered move.
  1866. else cutter.apply_power(0);
  1867. }
  1868. }
  1869. #endif
  1870. }
  1871. #if ENABLED(LASER_FEATURE)
  1872. /**
  1873. * CUTTER_MODE_DYNAMIC is experimental and developing.
  1874. * Super-fast method to dynamically adjust the laser power OCR value based on the input feedrate in mm-per-minute.
  1875. * TODO: Set up Min/Max OCR offsets to allow tuning and scaling of various lasers.
  1876. * TODO: Integrate accel/decel +-rate into the dynamic laser power calc.
  1877. */
  1878. if (cutter.cutter_mode == CUTTER_MODE_DYNAMIC
  1879. && planner.laser_inline.status.isPowered // isPowered flag set on any parsed G1, G2, G3, or G5 move; cleared on any others.
  1880. && cutter.last_block_power != current_block->laser.power // Prevent constant update without change
  1881. ) {
  1882. cutter.apply_power(current_block->laser.power);
  1883. cutter.last_block_power = current_block->laser.power;
  1884. }
  1885. #endif
  1886. }
  1887. else { // !current_block
  1888. #if ENABLED(LASER_FEATURE)
  1889. if (cutter.cutter_mode == CUTTER_MODE_DYNAMIC)
  1890. cutter.apply_power(0); // No movement in dynamic mode so turn Laser off
  1891. #endif
  1892. }
  1893. // If there is no current block at this point, attempt to pop one from the buffer
  1894. // and prepare its movement
  1895. if (!current_block) {
  1896. // Anything in the buffer?
  1897. if ((current_block = planner.get_current_block())) {
  1898. // Sync block? Sync the stepper counts or fan speeds and return
  1899. while (current_block->is_sync()) {
  1900. #if ENABLED(LASER_POWER_SYNC)
  1901. if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) {
  1902. if (current_block->is_pwr_sync()) {
  1903. planner.laser_inline.status.isSyncPower = true;
  1904. cutter.apply_power(current_block->laser.power);
  1905. }
  1906. }
  1907. #endif
  1908. TERN_(LASER_SYNCHRONOUS_M106_M107, if (current_block->is_fan_sync()) planner.sync_fan_speeds(current_block->fan_speed));
  1909. if (!(current_block->is_fan_sync() || current_block->is_pwr_sync())) _set_position(current_block->position);
  1910. discard_current_block();
  1911. // Try to get a new block
  1912. if (!(current_block = planner.get_current_block()))
  1913. return interval; // No more queued movements!
  1914. }
  1915. // For non-inline cutter, grossly apply power
  1916. #if HAS_CUTTER
  1917. if (cutter.cutter_mode == CUTTER_MODE_STANDARD) {
  1918. cutter.apply_power(current_block->cutter_power);
  1919. }
  1920. #endif
  1921. #if ENABLED(POWER_LOSS_RECOVERY)
  1922. recovery.info.sdpos = current_block->sdpos;
  1923. recovery.info.current_position = current_block->start_position;
  1924. #endif
  1925. #if ENABLED(DIRECT_STEPPING)
  1926. if (current_block->is_page()) {
  1927. page_step_state.segment_steps = 0;
  1928. page_step_state.segment_idx = 0;
  1929. page_step_state.page = page_manager.get_page(current_block->page_idx);
  1930. page_step_state.bd.reset();
  1931. if (DirectStepping::Config::DIRECTIONAL)
  1932. current_block->direction_bits = last_direction_bits;
  1933. if (!page_step_state.page) {
  1934. discard_current_block();
  1935. return interval;
  1936. }
  1937. }
  1938. #endif
  1939. // Flag all moving axes for proper endstop handling
  1940. #if IS_CORE
  1941. // Define conditions for checking endstops
  1942. #define S_(N) current_block->steps[CORE_AXIS_##N]
  1943. #define D_(N) TEST(current_block->direction_bits, CORE_AXIS_##N)
  1944. #endif
  1945. #if CORE_IS_XY || CORE_IS_XZ
  1946. /**
  1947. * Head direction in -X axis for CoreXY and CoreXZ bots.
  1948. *
  1949. * If steps differ, both axes are moving.
  1950. * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z, handled below)
  1951. * If DeltaA == DeltaB, the movement is only in the 1st axis (X)
  1952. */
  1953. #if EITHER(COREXY, COREXZ)
  1954. #define X_CMP(A,B) ((A)==(B))
  1955. #else
  1956. #define X_CMP(A,B) ((A)!=(B))
  1957. #endif
  1958. #define X_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && X_CMP(D_(1),D_(2))) )
  1959. #elif ENABLED(MARKFORGED_XY)
  1960. #define X_MOVE_TEST (current_block->steps.a != current_block->steps.b)
  1961. #else
  1962. #define X_MOVE_TEST !!current_block->steps.a
  1963. #endif
  1964. #if CORE_IS_XY || CORE_IS_YZ
  1965. /**
  1966. * Head direction in -Y axis for CoreXY / CoreYZ bots.
  1967. *
  1968. * If steps differ, both axes are moving
  1969. * If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y)
  1970. * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z)
  1971. */
  1972. #if EITHER(COREYX, COREYZ)
  1973. #define Y_CMP(A,B) ((A)==(B))
  1974. #else
  1975. #define Y_CMP(A,B) ((A)!=(B))
  1976. #endif
  1977. #define Y_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Y_CMP(D_(1),D_(2))) )
  1978. #elif ENABLED(MARKFORGED_YX)
  1979. #define Y_MOVE_TEST (current_block->steps.a != current_block->steps.b)
  1980. #else
  1981. #define Y_MOVE_TEST !!current_block->steps.b
  1982. #endif
  1983. #if CORE_IS_XZ || CORE_IS_YZ
  1984. /**
  1985. * Head direction in -Z axis for CoreXZ or CoreYZ bots.
  1986. *
  1987. * If steps differ, both axes are moving
  1988. * If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y, already handled above)
  1989. * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Z)
  1990. */
  1991. #if EITHER(COREZX, COREZY)
  1992. #define Z_CMP(A,B) ((A)==(B))
  1993. #else
  1994. #define Z_CMP(A,B) ((A)!=(B))
  1995. #endif
  1996. #define Z_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Z_CMP(D_(1),D_(2))) )
  1997. #else
  1998. #define Z_MOVE_TEST !!current_block->steps.c
  1999. #endif
  2000. axis_bits_t axis_bits = 0;
  2001. NUM_AXIS_CODE(
  2002. if (X_MOVE_TEST) SBI(axis_bits, A_AXIS),
  2003. if (Y_MOVE_TEST) SBI(axis_bits, B_AXIS),
  2004. if (Z_MOVE_TEST) SBI(axis_bits, C_AXIS),
  2005. if (current_block->steps.i) SBI(axis_bits, I_AXIS),
  2006. if (current_block->steps.j) SBI(axis_bits, J_AXIS),
  2007. if (current_block->steps.k) SBI(axis_bits, K_AXIS),
  2008. if (current_block->steps.u) SBI(axis_bits, U_AXIS),
  2009. if (current_block->steps.v) SBI(axis_bits, V_AXIS),
  2010. if (current_block->steps.w) SBI(axis_bits, W_AXIS)
  2011. );
  2012. //if (current_block->steps.e) SBI(axis_bits, E_AXIS);
  2013. //if (current_block->steps.a) SBI(axis_bits, X_HEAD);
  2014. //if (current_block->steps.b) SBI(axis_bits, Y_HEAD);
  2015. //if (current_block->steps.c) SBI(axis_bits, Z_HEAD);
  2016. axis_did_move = axis_bits;
  2017. // No acceleration / deceleration time elapsed so far
  2018. acceleration_time = deceleration_time = 0;
  2019. #if ENABLED(ADAPTIVE_STEP_SMOOTHING)
  2020. uint8_t oversampling = 0; // Assume no axis smoothing (via oversampling)
  2021. // Decide if axis smoothing is possible
  2022. uint32_t max_rate = current_block->nominal_rate; // Get the step event rate
  2023. while (max_rate < MIN_STEP_ISR_FREQUENCY) { // As long as more ISRs are possible...
  2024. max_rate <<= 1; // Try to double the rate
  2025. if (max_rate < MIN_STEP_ISR_FREQUENCY) // Don't exceed the estimated ISR limit
  2026. ++oversampling; // Increase the oversampling (used for left-shift)
  2027. }
  2028. oversampling_factor = oversampling; // For all timer interval calculations
  2029. #else
  2030. constexpr uint8_t oversampling = 0;
  2031. #endif
  2032. // Based on the oversampling factor, do the calculations
  2033. step_event_count = current_block->step_event_count << oversampling;
  2034. // Initialize Bresenham delta errors to 1/2
  2035. delta_error = -int32_t(step_event_count);
  2036. // Calculate Bresenham dividends and divisors
  2037. advance_dividend = current_block->steps << 1;
  2038. advance_divisor = step_event_count << 1;
  2039. // No step events completed so far
  2040. step_events_completed = 0;
  2041. // Compute the acceleration and deceleration points
  2042. accelerate_until = current_block->accelerate_until << oversampling;
  2043. decelerate_after = current_block->decelerate_after << oversampling;
  2044. TERN_(MIXING_EXTRUDER, mixer.stepper_setup(current_block->b_color));
  2045. E_TERN_(stepper_extruder = current_block->extruder);
  2046. // Initialize the trapezoid generator from the current block.
  2047. #if ENABLED(LIN_ADVANCE)
  2048. #if DISABLED(MIXING_EXTRUDER) && E_STEPPERS > 1
  2049. // If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
  2050. if (stepper_extruder != last_moved_extruder) LA_current_adv_steps = 0;
  2051. #endif
  2052. if ((LA_use_advance_lead = current_block->use_advance_lead)) {
  2053. LA_final_adv_steps = current_block->final_adv_steps;
  2054. LA_max_adv_steps = current_block->max_adv_steps;
  2055. initiateLA(); // Start the ISR
  2056. LA_isr_rate = current_block->advance_speed;
  2057. }
  2058. else LA_isr_rate = LA_ADV_NEVER;
  2059. #endif
  2060. if ( ENABLED(DUAL_X_CARRIAGE) // TODO: Find out why this fixes "jittery" small circles
  2061. || current_block->direction_bits != last_direction_bits
  2062. || TERN(MIXING_EXTRUDER, false, stepper_extruder != last_moved_extruder)
  2063. ) {
  2064. E_TERN_(last_moved_extruder = stepper_extruder);
  2065. set_directions(current_block->direction_bits);
  2066. }
  2067. #if ENABLED(LASER_FEATURE)
  2068. if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) { // Planner controls the laser
  2069. if (planner.laser_inline.status.isSyncPower)
  2070. // If the previous block was a M3 sync power then skip the trap power init otherwise it will 0 the sync power.
  2071. planner.laser_inline.status.isSyncPower = false; // Clear the flag to process subsequent trap calc's.
  2072. else if (current_block->laser.status.isEnabled) {
  2073. #if ENABLED(LASER_POWER_TRAP)
  2074. TERN_(DEBUG_LASER_TRAP, SERIAL_ECHO_MSG("InitTrapPwr:",current_block->laser.trap_ramp_active_pwr));
  2075. cutter.apply_power(current_block->laser.status.isPowered ? current_block->laser.trap_ramp_active_pwr : 0);
  2076. #else
  2077. TERN_(DEBUG_CUTTER_POWER, SERIAL_ECHO_MSG("InlinePwr:",current_block->laser.power));
  2078. cutter.apply_power(current_block->laser.status.isPowered ? current_block->laser.power : 0);
  2079. #endif
  2080. }
  2081. }
  2082. #endif // LASER_FEATURE
  2083. // If the endstop is already pressed, endstop interrupts won't invoke
  2084. // endstop_triggered and the move will grind. So check here for a
  2085. // triggered endstop, which marks the block for discard on the next ISR.
  2086. endstops.update();
  2087. #if ENABLED(Z_LATE_ENABLE)
  2088. // If delayed Z enable, enable it now. This option will severely interfere with
  2089. // timing between pulses when chaining motion between blocks, and it could lead
  2090. // to lost steps in both X and Y axis, so avoid using it unless strictly necessary!!
  2091. if (current_block->steps.z) enable_axis(Z_AXIS);
  2092. #endif
  2093. // Mark the time_nominal as not calculated yet
  2094. ticks_nominal = -1;
  2095. #if ENABLED(S_CURVE_ACCELERATION)
  2096. // Initialize the Bézier speed curve
  2097. _calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);
  2098. // We haven't started the 2nd half of the trapezoid
  2099. bezier_2nd_half = false;
  2100. #else
  2101. // Set as deceleration point the initial rate of the block
  2102. acc_step_rate = current_block->initial_rate;
  2103. #endif
  2104. // Calculate the initial timer interval
  2105. interval = calc_timer_interval(current_block->initial_rate, &steps_per_isr);
  2106. }
  2107. }
  2108. // Return the interval to wait
  2109. return interval;
  2110. }
  2111. #if ENABLED(LIN_ADVANCE)
  2112. // Timer interrupt for E. LA_steps is set in the main routine
  2113. uint32_t Stepper::advance_isr() {
  2114. uint32_t interval;
  2115. if (LA_use_advance_lead) {
  2116. if (step_events_completed > decelerate_after && LA_current_adv_steps > LA_final_adv_steps) {
  2117. LA_steps--;
  2118. LA_current_adv_steps--;
  2119. interval = LA_isr_rate;
  2120. }
  2121. else if (step_events_completed < decelerate_after && LA_current_adv_steps < LA_max_adv_steps) {
  2122. LA_steps++;
  2123. LA_current_adv_steps++;
  2124. interval = LA_isr_rate;
  2125. }
  2126. else
  2127. interval = LA_isr_rate = LA_ADV_NEVER;
  2128. }
  2129. else
  2130. interval = LA_ADV_NEVER;
  2131. if (!LA_steps) return interval; // Leave pins alone if there are no steps!
  2132. DIR_WAIT_BEFORE();
  2133. #if ENABLED(MIXING_EXTRUDER)
  2134. // We don't know which steppers will be stepped because LA loop follows,
  2135. // with potentially multiple steps. Set all.
  2136. if (LA_steps > 0) {
  2137. MIXER_STEPPER_LOOP(j) NORM_E_DIR(j);
  2138. count_direction.e = 1;
  2139. }
  2140. else if (LA_steps < 0) {
  2141. MIXER_STEPPER_LOOP(j) REV_E_DIR(j);
  2142. count_direction.e = -1;
  2143. }
  2144. #else
  2145. if (LA_steps > 0) {
  2146. NORM_E_DIR(stepper_extruder);
  2147. count_direction.e = 1;
  2148. }
  2149. else if (LA_steps < 0) {
  2150. REV_E_DIR(stepper_extruder);
  2151. count_direction.e = -1;
  2152. }
  2153. #endif
  2154. DIR_WAIT_AFTER();
  2155. //const hal_timer_t added_step_ticks = hal_timer_t(ADDED_STEP_TICKS);
  2156. // Step E stepper if we have steps
  2157. #if ISR_MULTI_STEPS
  2158. bool firstStep = true;
  2159. USING_TIMED_PULSE();
  2160. #endif
  2161. while (LA_steps) {
  2162. #if ISR_MULTI_STEPS
  2163. if (firstStep)
  2164. firstStep = false;
  2165. else
  2166. AWAIT_LOW_PULSE();
  2167. #endif
  2168. count_position.e += count_direction.e;
  2169. // Set the STEP pulse ON
  2170. #if ENABLED(MIXING_EXTRUDER)
  2171. E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN);
  2172. #else
  2173. E_STEP_WRITE(stepper_extruder, !INVERT_E_STEP_PIN);
  2174. #endif
  2175. // Enforce a minimum duration for STEP pulse ON
  2176. #if ISR_PULSE_CONTROL
  2177. START_HIGH_PULSE();
  2178. #endif
  2179. LA_steps < 0 ? ++LA_steps : --LA_steps;
  2180. #if ISR_PULSE_CONTROL
  2181. AWAIT_HIGH_PULSE();
  2182. #endif
  2183. // Set the STEP pulse OFF
  2184. #if ENABLED(MIXING_EXTRUDER)
  2185. E_STEP_WRITE(mixer.get_stepper(), INVERT_E_STEP_PIN);
  2186. #else
  2187. E_STEP_WRITE(stepper_extruder, INVERT_E_STEP_PIN);
  2188. #endif
  2189. // For minimum pulse time wait before looping
  2190. // Just wait for the requested pulse duration
  2191. #if ISR_PULSE_CONTROL
  2192. if (LA_steps) START_LOW_PULSE();
  2193. #endif
  2194. } // LA_steps
  2195. return interval;
  2196. }
  2197. #endif // LIN_ADVANCE
  2198. #if ENABLED(INTEGRATED_BABYSTEPPING)
  2199. // Timer interrupt for baby-stepping
  2200. uint32_t Stepper::babystepping_isr() {
  2201. babystep.task();
  2202. return babystep.has_steps() ? BABYSTEP_TICKS : BABYSTEP_NEVER;
  2203. }
  2204. #endif
  2205. // Check if the given block is busy or not - Must not be called from ISR contexts
  2206. // The current_block could change in the middle of the read by an Stepper ISR, so
  2207. // we must explicitly prevent that!
  2208. bool Stepper::is_block_busy(const block_t * const block) {
  2209. #ifdef __AVR__
  2210. // A SW memory barrier, to ensure GCC does not overoptimize loops
  2211. #define sw_barrier() asm volatile("": : :"memory");
  2212. // Keep reading until 2 consecutive reads return the same value,
  2213. // meaning there was no update in-between caused by an interrupt.
  2214. // This works because stepper ISRs happen at a slower rate than
  2215. // successive reads of a variable, so 2 consecutive reads with
  2216. // the same value means no interrupt updated it.
  2217. block_t *vold, *vnew = current_block;
  2218. sw_barrier();
  2219. do {
  2220. vold = vnew;
  2221. vnew = current_block;
  2222. sw_barrier();
  2223. } while (vold != vnew);
  2224. #else
  2225. block_t *vnew = current_block;
  2226. #endif
  2227. // Return if the block is busy or not
  2228. return block == vnew;
  2229. }
  2230. void Stepper::init() {
  2231. #if MB(ALLIGATOR)
  2232. const float motor_current[] = MOTOR_CURRENT;
  2233. unsigned int digipot_motor = 0;
  2234. LOOP_L_N(i, 3 + EXTRUDERS) {
  2235. digipot_motor = 255 * (motor_current[i] / 2.5);
  2236. dac084s085::setValue(i, digipot_motor);
  2237. }
  2238. #endif
  2239. // Init Microstepping Pins
  2240. TERN_(HAS_MICROSTEPS, microstep_init());
  2241. // Init Dir Pins
  2242. TERN_(HAS_X_DIR, X_DIR_INIT());
  2243. TERN_(HAS_X2_DIR, X2_DIR_INIT());
  2244. #if HAS_Y_DIR
  2245. Y_DIR_INIT();
  2246. #if BOTH(HAS_DUAL_Y_STEPPERS, HAS_Y2_DIR)
  2247. Y2_DIR_INIT();
  2248. #endif
  2249. #endif
  2250. #if HAS_Z_DIR
  2251. Z_DIR_INIT();
  2252. #if NUM_Z_STEPPERS >= 2 && HAS_Z2_DIR
  2253. Z2_DIR_INIT();
  2254. #endif
  2255. #if NUM_Z_STEPPERS >= 3 && HAS_Z3_DIR
  2256. Z3_DIR_INIT();
  2257. #endif
  2258. #if NUM_Z_STEPPERS >= 4 && HAS_Z4_DIR
  2259. Z4_DIR_INIT();
  2260. #endif
  2261. #endif
  2262. #if HAS_I_DIR
  2263. I_DIR_INIT();
  2264. #endif
  2265. #if HAS_J_DIR
  2266. J_DIR_INIT();
  2267. #endif
  2268. #if HAS_K_DIR
  2269. K_DIR_INIT();
  2270. #endif
  2271. #if HAS_U_DIR
  2272. U_DIR_INIT();
  2273. #endif
  2274. #if HAS_V_DIR
  2275. V_DIR_INIT();
  2276. #endif
  2277. #if HAS_W_DIR
  2278. W_DIR_INIT();
  2279. #endif
  2280. #if HAS_E0_DIR
  2281. E0_DIR_INIT();
  2282. #endif
  2283. #if HAS_E1_DIR
  2284. E1_DIR_INIT();
  2285. #endif
  2286. #if HAS_E2_DIR
  2287. E2_DIR_INIT();
  2288. #endif
  2289. #if HAS_E3_DIR
  2290. E3_DIR_INIT();
  2291. #endif
  2292. #if HAS_E4_DIR
  2293. E4_DIR_INIT();
  2294. #endif
  2295. #if HAS_E5_DIR
  2296. E5_DIR_INIT();
  2297. #endif
  2298. #if HAS_E6_DIR
  2299. E6_DIR_INIT();
  2300. #endif
  2301. #if HAS_E7_DIR
  2302. E7_DIR_INIT();
  2303. #endif
  2304. // Init Enable Pins - steppers default to disabled.
  2305. #if HAS_X_ENABLE
  2306. X_ENABLE_INIT();
  2307. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  2308. #if BOTH(HAS_X2_STEPPER, HAS_X2_ENABLE)
  2309. X2_ENABLE_INIT();
  2310. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  2311. #endif
  2312. #endif
  2313. #if HAS_Y_ENABLE
  2314. Y_ENABLE_INIT();
  2315. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  2316. #if BOTH(HAS_DUAL_Y_STEPPERS, HAS_Y2_ENABLE)
  2317. Y2_ENABLE_INIT();
  2318. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  2319. #endif
  2320. #endif
  2321. #if HAS_Z_ENABLE
  2322. Z_ENABLE_INIT();
  2323. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  2324. #if NUM_Z_STEPPERS >= 2 && HAS_Z2_ENABLE
  2325. Z2_ENABLE_INIT();
  2326. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  2327. #endif
  2328. #if NUM_Z_STEPPERS >= 3 && HAS_Z3_ENABLE
  2329. Z3_ENABLE_INIT();
  2330. if (!Z_ENABLE_ON) Z3_ENABLE_WRITE(HIGH);
  2331. #endif
  2332. #if NUM_Z_STEPPERS >= 4 && HAS_Z4_ENABLE
  2333. Z4_ENABLE_INIT();
  2334. if (!Z_ENABLE_ON) Z4_ENABLE_WRITE(HIGH);
  2335. #endif
  2336. #endif
  2337. #if HAS_I_ENABLE
  2338. I_ENABLE_INIT();
  2339. if (!I_ENABLE_ON) I_ENABLE_WRITE(HIGH);
  2340. #endif
  2341. #if HAS_J_ENABLE
  2342. J_ENABLE_INIT();
  2343. if (!J_ENABLE_ON) J_ENABLE_WRITE(HIGH);
  2344. #endif
  2345. #if HAS_K_ENABLE
  2346. K_ENABLE_INIT();
  2347. if (!K_ENABLE_ON) K_ENABLE_WRITE(HIGH);
  2348. #endif
  2349. #if HAS_U_ENABLE
  2350. U_ENABLE_INIT();
  2351. if (!U_ENABLE_ON) U_ENABLE_WRITE(HIGH);
  2352. #endif
  2353. #if HAS_V_ENABLE
  2354. V_ENABLE_INIT();
  2355. if (!V_ENABLE_ON) V_ENABLE_WRITE(HIGH);
  2356. #endif
  2357. #if HAS_W_ENABLE
  2358. W_ENABLE_INIT();
  2359. if (!W_ENABLE_ON) W_ENABLE_WRITE(HIGH);
  2360. #endif
  2361. #if HAS_E0_ENABLE
  2362. E0_ENABLE_INIT();
  2363. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  2364. #endif
  2365. #if HAS_E1_ENABLE
  2366. E1_ENABLE_INIT();
  2367. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  2368. #endif
  2369. #if HAS_E2_ENABLE
  2370. E2_ENABLE_INIT();
  2371. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  2372. #endif
  2373. #if HAS_E3_ENABLE
  2374. E3_ENABLE_INIT();
  2375. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  2376. #endif
  2377. #if HAS_E4_ENABLE
  2378. E4_ENABLE_INIT();
  2379. if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
  2380. #endif
  2381. #if HAS_E5_ENABLE
  2382. E5_ENABLE_INIT();
  2383. if (!E_ENABLE_ON) E5_ENABLE_WRITE(HIGH);
  2384. #endif
  2385. #if HAS_E6_ENABLE
  2386. E6_ENABLE_INIT();
  2387. if (!E_ENABLE_ON) E6_ENABLE_WRITE(HIGH);
  2388. #endif
  2389. #if HAS_E7_ENABLE
  2390. E7_ENABLE_INIT();
  2391. if (!E_ENABLE_ON) E7_ENABLE_WRITE(HIGH);
  2392. #endif
  2393. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT()
  2394. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  2395. #define _DISABLE_AXIS(AXIS) DISABLE_AXIS_## AXIS()
  2396. #define AXIS_INIT(AXIS, PIN) \
  2397. _STEP_INIT(AXIS); \
  2398. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  2399. _DISABLE_AXIS(AXIS)
  2400. #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
  2401. // Init Step Pins
  2402. #if HAS_X_STEP
  2403. #if HAS_X2_STEPPER
  2404. X2_STEP_INIT();
  2405. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  2406. #endif
  2407. AXIS_INIT(X, X);
  2408. #endif
  2409. #if HAS_Y_STEP
  2410. #if HAS_DUAL_Y_STEPPERS
  2411. Y2_STEP_INIT();
  2412. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  2413. #endif
  2414. AXIS_INIT(Y, Y);
  2415. #endif
  2416. #if HAS_Z_STEP
  2417. #if NUM_Z_STEPPERS >= 2
  2418. Z2_STEP_INIT();
  2419. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  2420. #endif
  2421. #if NUM_Z_STEPPERS >= 3
  2422. Z3_STEP_INIT();
  2423. Z3_STEP_WRITE(INVERT_Z_STEP_PIN);
  2424. #endif
  2425. #if NUM_Z_STEPPERS >= 4
  2426. Z4_STEP_INIT();
  2427. Z4_STEP_WRITE(INVERT_Z_STEP_PIN);
  2428. #endif
  2429. AXIS_INIT(Z, Z);
  2430. #endif
  2431. #if HAS_I_STEP
  2432. AXIS_INIT(I, I);
  2433. #endif
  2434. #if HAS_J_STEP
  2435. AXIS_INIT(J, J);
  2436. #endif
  2437. #if HAS_K_STEP
  2438. AXIS_INIT(K, K);
  2439. #endif
  2440. #if HAS_U_STEP
  2441. AXIS_INIT(U, U);
  2442. #endif
  2443. #if HAS_V_STEP
  2444. AXIS_INIT(V, V);
  2445. #endif
  2446. #if HAS_W_STEP
  2447. AXIS_INIT(W, W);
  2448. #endif
  2449. #if E_STEPPERS && HAS_E0_STEP
  2450. E_AXIS_INIT(0);
  2451. #endif
  2452. #if (E_STEPPERS > 1 || ENABLED(E_DUAL_STEPPER_DRIVERS)) && HAS_E1_STEP
  2453. E_AXIS_INIT(1);
  2454. #endif
  2455. #if E_STEPPERS > 2 && HAS_E2_STEP
  2456. E_AXIS_INIT(2);
  2457. #endif
  2458. #if E_STEPPERS > 3 && HAS_E3_STEP
  2459. E_AXIS_INIT(3);
  2460. #endif
  2461. #if E_STEPPERS > 4 && HAS_E4_STEP
  2462. E_AXIS_INIT(4);
  2463. #endif
  2464. #if E_STEPPERS > 5 && HAS_E5_STEP
  2465. E_AXIS_INIT(5);
  2466. #endif
  2467. #if E_STEPPERS > 6 && HAS_E6_STEP
  2468. E_AXIS_INIT(6);
  2469. #endif
  2470. #if E_STEPPERS > 7 && HAS_E7_STEP
  2471. E_AXIS_INIT(7);
  2472. #endif
  2473. #if DISABLED(I2S_STEPPER_STREAM)
  2474. HAL_timer_start(MF_TIMER_STEP, 122); // Init Stepper ISR to 122 Hz for quick starting
  2475. wake_up();
  2476. sei();
  2477. #endif
  2478. // Init direction bits for first moves
  2479. set_directions(0
  2480. NUM_AXIS_GANG(
  2481. | TERN0(INVERT_X_DIR, _BV(X_AXIS)),
  2482. | TERN0(INVERT_Y_DIR, _BV(Y_AXIS)),
  2483. | TERN0(INVERT_Z_DIR, _BV(Z_AXIS)),
  2484. | TERN0(INVERT_I_DIR, _BV(I_AXIS)),
  2485. | TERN0(INVERT_J_DIR, _BV(J_AXIS)),
  2486. | TERN0(INVERT_K_DIR, _BV(K_AXIS)),
  2487. | TERN0(INVERT_U_DIR, _BV(U_AXIS)),
  2488. | TERN0(INVERT_V_DIR, _BV(V_AXIS)),
  2489. | TERN0(INVERT_W_DIR, _BV(W_AXIS))
  2490. )
  2491. );
  2492. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  2493. initialized = true;
  2494. digipot_init();
  2495. #endif
  2496. }
  2497. /**
  2498. * Set the stepper positions directly in steps
  2499. *
  2500. * The input is based on the typical per-axis XYZE steps.
  2501. * For CORE machines XYZ needs to be translated to ABC.
  2502. *
  2503. * This allows get_axis_position_mm to correctly
  2504. * derive the current XYZE position later on.
  2505. */
  2506. void Stepper::_set_position(const abce_long_t &spos) {
  2507. #if ANY(IS_CORE, MARKFORGED_XY, MARKFORGED_YX)
  2508. #if CORE_IS_XY
  2509. // corexy positioning
  2510. // these equations follow the form of the dA and dB equations on https://www.corexy.com/theory.html
  2511. count_position.set(spos.a + spos.b, CORESIGN(spos.a - spos.b), spos.c);
  2512. #elif CORE_IS_XZ
  2513. // corexz planning
  2514. count_position.set(spos.a + spos.c, spos.b, CORESIGN(spos.a - spos.c));
  2515. #elif CORE_IS_YZ
  2516. // coreyz planning
  2517. count_position.set(spos.a, spos.b + spos.c, CORESIGN(spos.b - spos.c));
  2518. #elif ENABLED(MARKFORGED_XY)
  2519. count_position.set(spos.a - spos.b, spos.b, spos.c);
  2520. #elif ENABLED(MARKFORGED_YX)
  2521. count_position.set(spos.a, spos.b - spos.a, spos.c);
  2522. #endif
  2523. SECONDARY_AXIS_CODE(
  2524. count_position.i = spos.i,
  2525. count_position.j = spos.j,
  2526. count_position.k = spos.k,
  2527. count_position.u = spos.u,
  2528. count_position.v = spos.v,
  2529. count_position.w = spos.w
  2530. );
  2531. TERN_(HAS_EXTRUDERS, count_position.e = spos.e);
  2532. #else
  2533. // default non-h-bot planning
  2534. count_position = spos;
  2535. #endif
  2536. }
  2537. /**
  2538. * Get a stepper's position in steps.
  2539. */
  2540. int32_t Stepper::position(const AxisEnum axis) {
  2541. #ifdef __AVR__
  2542. // Protect the access to the position. Only required for AVR, as
  2543. // any 32bit CPU offers atomic access to 32bit variables
  2544. const bool was_enabled = suspend();
  2545. #endif
  2546. const int32_t v = count_position[axis];
  2547. #ifdef __AVR__
  2548. // Reenable Stepper ISR
  2549. if (was_enabled) wake_up();
  2550. #endif
  2551. return v;
  2552. }
  2553. // Set the current position in steps
  2554. void Stepper::set_position(const xyze_long_t &spos) {
  2555. planner.synchronize();
  2556. const bool was_enabled = suspend();
  2557. _set_position(spos);
  2558. if (was_enabled) wake_up();
  2559. }
  2560. void Stepper::set_axis_position(const AxisEnum a, const int32_t &v) {
  2561. planner.synchronize();
  2562. #ifdef __AVR__
  2563. // Protect the access to the position. Only required for AVR, as
  2564. // any 32bit CPU offers atomic access to 32bit variables
  2565. const bool was_enabled = suspend();
  2566. #endif
  2567. count_position[a] = v;
  2568. #ifdef __AVR__
  2569. // Reenable Stepper ISR
  2570. if (was_enabled) wake_up();
  2571. #endif
  2572. }
  2573. // Signal endstops were triggered - This function can be called from
  2574. // an ISR context (Temperature, Stepper or limits ISR), so we must
  2575. // be very careful here. If the interrupt being preempted was the
  2576. // Stepper ISR (this CAN happen with the endstop limits ISR) then
  2577. // when the stepper ISR resumes, we must be very sure that the movement
  2578. // is properly canceled
  2579. void Stepper::endstop_triggered(const AxisEnum axis) {
  2580. const bool was_enabled = suspend();
  2581. endstops_trigsteps[axis] = (
  2582. #if IS_CORE
  2583. (axis == CORE_AXIS_2
  2584. ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  2585. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  2586. ) * double(0.5)
  2587. #elif ENABLED(MARKFORGED_XY)
  2588. axis == CORE_AXIS_1
  2589. ? count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2]
  2590. : count_position[CORE_AXIS_2]
  2591. #elif ENABLED(MARKFORGED_YX)
  2592. axis == CORE_AXIS_1
  2593. ? count_position[CORE_AXIS_1]
  2594. : count_position[CORE_AXIS_2] - count_position[CORE_AXIS_1]
  2595. #else // !IS_CORE
  2596. count_position[axis]
  2597. #endif
  2598. );
  2599. // Discard the rest of the move if there is a current block
  2600. quick_stop();
  2601. if (was_enabled) wake_up();
  2602. }
  2603. int32_t Stepper::triggered_position(const AxisEnum axis) {
  2604. #ifdef __AVR__
  2605. // Protect the access to the position. Only required for AVR, as
  2606. // any 32bit CPU offers atomic access to 32bit variables
  2607. const bool was_enabled = suspend();
  2608. #endif
  2609. const int32_t v = endstops_trigsteps[axis];
  2610. #ifdef __AVR__
  2611. // Reenable Stepper ISR
  2612. if (was_enabled) wake_up();
  2613. #endif
  2614. return v;
  2615. }
  2616. #if ANY(CORE_IS_XY, CORE_IS_XZ, MARKFORGED_XY, MARKFORGED_YX, IS_SCARA, DELTA)
  2617. #define SAYS_A 1
  2618. #endif
  2619. #if ANY(CORE_IS_XY, CORE_IS_YZ, MARKFORGED_XY, MARKFORGED_YX, IS_SCARA, DELTA)
  2620. #define SAYS_B 1
  2621. #endif
  2622. #if ANY(CORE_IS_XZ, CORE_IS_YZ, DELTA)
  2623. #define SAYS_C 1
  2624. #endif
  2625. void Stepper::report_a_position(const xyz_long_t &pos) {
  2626. SERIAL_ECHOLNPGM_P(
  2627. LIST_N(DOUBLE(NUM_AXES),
  2628. TERN(SAYS_A, PSTR(STR_COUNT_A), PSTR(STR_COUNT_X)), pos.x,
  2629. TERN(SAYS_B, PSTR("B:"), SP_Y_LBL), pos.y,
  2630. TERN(SAYS_C, PSTR("C:"), SP_Z_LBL), pos.z,
  2631. SP_I_LBL, pos.i,
  2632. SP_J_LBL, pos.j,
  2633. SP_K_LBL, pos.k,
  2634. SP_U_LBL, pos.u,
  2635. SP_V_LBL, pos.v,
  2636. SP_W_LBL, pos.w
  2637. )
  2638. );
  2639. }
  2640. void Stepper::report_positions() {
  2641. #ifdef __AVR__
  2642. // Protect the access to the position.
  2643. const bool was_enabled = suspend();
  2644. #endif
  2645. const xyz_long_t pos = count_position;
  2646. #ifdef __AVR__
  2647. if (was_enabled) wake_up();
  2648. #endif
  2649. report_a_position(pos);
  2650. }
  2651. #if ENABLED(BABYSTEPPING)
  2652. #define _ENABLE_AXIS(A) enable_axis(_AXIS(A))
  2653. #define _READ_DIR(AXIS) AXIS ##_DIR_READ()
  2654. #define _INVERT_DIR(AXIS) ENABLED(INVERT_## AXIS ##_DIR)
  2655. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  2656. #if MINIMUM_STEPPER_PULSE
  2657. #define STEP_PULSE_CYCLES ((MINIMUM_STEPPER_PULSE) * CYCLES_PER_MICROSECOND)
  2658. #else
  2659. #define STEP_PULSE_CYCLES 0
  2660. #endif
  2661. #if ENABLED(DELTA)
  2662. #define CYCLES_EATEN_BABYSTEP (2 * 15)
  2663. #else
  2664. #define CYCLES_EATEN_BABYSTEP 0
  2665. #endif
  2666. #if CYCLES_EATEN_BABYSTEP < STEP_PULSE_CYCLES
  2667. #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
  2668. #else
  2669. #define EXTRA_CYCLES_BABYSTEP 0
  2670. #endif
  2671. #if EXTRA_CYCLES_BABYSTEP > 20
  2672. #define _SAVE_START() const hal_timer_t pulse_start = HAL_timer_get_count(MF_TIMER_PULSE)
  2673. #define _PULSE_WAIT() while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_count(MF_TIMER_PULSE) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
  2674. #else
  2675. #define _SAVE_START() NOOP
  2676. #if EXTRA_CYCLES_BABYSTEP > 0
  2677. #define _PULSE_WAIT() DELAY_NS(EXTRA_CYCLES_BABYSTEP * NANOSECONDS_PER_CYCLE)
  2678. #elif ENABLED(DELTA)
  2679. #define _PULSE_WAIT() DELAY_US(2);
  2680. #elif STEP_PULSE_CYCLES > 0
  2681. #define _PULSE_WAIT() NOOP
  2682. #else
  2683. #define _PULSE_WAIT() DELAY_US(4);
  2684. #endif
  2685. #endif
  2686. #if ENABLED(BABYSTEPPING_EXTRA_DIR_WAIT)
  2687. #define EXTRA_DIR_WAIT_BEFORE DIR_WAIT_BEFORE
  2688. #define EXTRA_DIR_WAIT_AFTER DIR_WAIT_AFTER
  2689. #else
  2690. #define EXTRA_DIR_WAIT_BEFORE()
  2691. #define EXTRA_DIR_WAIT_AFTER()
  2692. #endif
  2693. #if DISABLED(DELTA)
  2694. #define BABYSTEP_AXIS(AXIS, INV, DIR) do{ \
  2695. const uint8_t old_dir = _READ_DIR(AXIS); \
  2696. _ENABLE_AXIS(AXIS); \
  2697. DIR_WAIT_BEFORE(); \
  2698. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^DIR^INV); \
  2699. DIR_WAIT_AFTER(); \
  2700. _SAVE_START(); \
  2701. _APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), true); \
  2702. _PULSE_WAIT(); \
  2703. _APPLY_STEP(AXIS, _INVERT_STEP_PIN(AXIS), true); \
  2704. EXTRA_DIR_WAIT_BEFORE(); \
  2705. _APPLY_DIR(AXIS, old_dir); \
  2706. EXTRA_DIR_WAIT_AFTER(); \
  2707. }while(0)
  2708. #endif
  2709. #if IS_CORE
  2710. #define BABYSTEP_CORE(A, B, INV, DIR, ALT) do{ \
  2711. const xy_byte_t old_dir = { _READ_DIR(A), _READ_DIR(B) }; \
  2712. _ENABLE_AXIS(A); _ENABLE_AXIS(B); \
  2713. DIR_WAIT_BEFORE(); \
  2714. _APPLY_DIR(A, _INVERT_DIR(A)^DIR^INV); \
  2715. _APPLY_DIR(B, _INVERT_DIR(B)^DIR^INV^ALT); \
  2716. DIR_WAIT_AFTER(); \
  2717. _SAVE_START(); \
  2718. _APPLY_STEP(A, !_INVERT_STEP_PIN(A), true); \
  2719. _APPLY_STEP(B, !_INVERT_STEP_PIN(B), true); \
  2720. _PULSE_WAIT(); \
  2721. _APPLY_STEP(A, _INVERT_STEP_PIN(A), true); \
  2722. _APPLY_STEP(B, _INVERT_STEP_PIN(B), true); \
  2723. EXTRA_DIR_WAIT_BEFORE(); \
  2724. _APPLY_DIR(A, old_dir.a); _APPLY_DIR(B, old_dir.b); \
  2725. EXTRA_DIR_WAIT_AFTER(); \
  2726. }while(0)
  2727. #endif
  2728. // MUST ONLY BE CALLED BY AN ISR,
  2729. // No other ISR should ever interrupt this!
  2730. void Stepper::do_babystep(const AxisEnum axis, const bool direction) {
  2731. IF_DISABLED(INTEGRATED_BABYSTEPPING, cli());
  2732. switch (axis) {
  2733. #if ENABLED(BABYSTEP_XY)
  2734. case X_AXIS:
  2735. #if CORE_IS_XY
  2736. BABYSTEP_CORE(X, Y, 0, direction, 0);
  2737. #elif CORE_IS_XZ
  2738. BABYSTEP_CORE(X, Z, 0, direction, 0);
  2739. #else
  2740. BABYSTEP_AXIS(X, 0, direction);
  2741. #endif
  2742. break;
  2743. case Y_AXIS:
  2744. #if CORE_IS_XY
  2745. BABYSTEP_CORE(X, Y, 1, !direction, (CORESIGN(1)>0));
  2746. #elif CORE_IS_YZ
  2747. BABYSTEP_CORE(Y, Z, 0, direction, (CORESIGN(1)<0));
  2748. #else
  2749. BABYSTEP_AXIS(Y, 0, direction);
  2750. #endif
  2751. break;
  2752. #endif
  2753. case Z_AXIS: {
  2754. #if CORE_IS_XZ
  2755. BABYSTEP_CORE(X, Z, BABYSTEP_INVERT_Z, direction, (CORESIGN(1)<0));
  2756. #elif CORE_IS_YZ
  2757. BABYSTEP_CORE(Y, Z, BABYSTEP_INVERT_Z, direction, (CORESIGN(1)<0));
  2758. #elif DISABLED(DELTA)
  2759. BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction);
  2760. #else // DELTA
  2761. const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  2762. NUM_AXIS_CODE(
  2763. enable_axis(X_AXIS), enable_axis(Y_AXIS), enable_axis(Z_AXIS),
  2764. enable_axis(I_AXIS), enable_axis(J_AXIS), enable_axis(K_AXIS),
  2765. enable_axis(U_AXIS), enable_axis(V_AXIS), enable_axis(W_AXIS)
  2766. );
  2767. DIR_WAIT_BEFORE();
  2768. const xyz_byte_t old_dir = NUM_AXIS_ARRAY(
  2769. X_DIR_READ(), Y_DIR_READ(), Z_DIR_READ(),
  2770. I_DIR_READ(), J_DIR_READ(), K_DIR_READ(),
  2771. U_DIR_READ(), V_DIR_READ(), W_DIR_READ()
  2772. );
  2773. X_DIR_WRITE(ENABLED(INVERT_X_DIR) ^ z_direction);
  2774. #ifdef Y_DIR_WRITE
  2775. Y_DIR_WRITE(ENABLED(INVERT_Y_DIR) ^ z_direction);
  2776. #endif
  2777. #ifdef Z_DIR_WRITE
  2778. Z_DIR_WRITE(ENABLED(INVERT_Z_DIR) ^ z_direction);
  2779. #endif
  2780. #ifdef I_DIR_WRITE
  2781. I_DIR_WRITE(ENABLED(INVERT_I_DIR) ^ z_direction);
  2782. #endif
  2783. #ifdef J_DIR_WRITE
  2784. J_DIR_WRITE(ENABLED(INVERT_J_DIR) ^ z_direction);
  2785. #endif
  2786. #ifdef K_DIR_WRITE
  2787. K_DIR_WRITE(ENABLED(INVERT_K_DIR) ^ z_direction);
  2788. #endif
  2789. #ifdef U_DIR_WRITE
  2790. U_DIR_WRITE(ENABLED(INVERT_U_DIR) ^ z_direction);
  2791. #endif
  2792. #ifdef V_DIR_WRITE
  2793. V_DIR_WRITE(ENABLED(INVERT_V_DIR) ^ z_direction);
  2794. #endif
  2795. #ifdef W_DIR_WRITE
  2796. W_DIR_WRITE(ENABLED(INVERT_W_DIR) ^ z_direction);
  2797. #endif
  2798. DIR_WAIT_AFTER();
  2799. _SAVE_START();
  2800. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  2801. #ifdef Y_STEP_WRITE
  2802. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  2803. #endif
  2804. #ifdef Z_STEP_WRITE
  2805. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  2806. #endif
  2807. #ifdef I_STEP_WRITE
  2808. I_STEP_WRITE(!INVERT_I_STEP_PIN);
  2809. #endif
  2810. #ifdef J_STEP_WRITE
  2811. J_STEP_WRITE(!INVERT_J_STEP_PIN);
  2812. #endif
  2813. #ifdef K_STEP_WRITE
  2814. K_STEP_WRITE(!INVERT_K_STEP_PIN);
  2815. #endif
  2816. #ifdef U_STEP_WRITE
  2817. U_STEP_WRITE(!INVERT_U_STEP_PIN);
  2818. #endif
  2819. #ifdef V_STEP_WRITE
  2820. V_STEP_WRITE(!INVERT_V_STEP_PIN);
  2821. #endif
  2822. #ifdef W_STEP_WRITE
  2823. W_STEP_WRITE(!INVERT_W_STEP_PIN);
  2824. #endif
  2825. _PULSE_WAIT();
  2826. X_STEP_WRITE(INVERT_X_STEP_PIN);
  2827. #ifdef Y_STEP_WRITE
  2828. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  2829. #endif
  2830. #ifdef Z_STEP_WRITE
  2831. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  2832. #endif
  2833. #ifdef I_STEP_WRITE
  2834. I_STEP_WRITE(INVERT_I_STEP_PIN);
  2835. #endif
  2836. #ifdef J_STEP_WRITE
  2837. J_STEP_WRITE(INVERT_J_STEP_PIN);
  2838. #endif
  2839. #ifdef K_STEP_WRITE
  2840. K_STEP_WRITE(INVERT_K_STEP_PIN);
  2841. #endif
  2842. #ifdef U_STEP_WRITE
  2843. U_STEP_WRITE(INVERT_U_STEP_PIN);
  2844. #endif
  2845. #ifdef V_STEP_WRITE
  2846. V_STEP_WRITE(INVERT_V_STEP_PIN);
  2847. #endif
  2848. #ifdef W_STEP_WRITE
  2849. W_STEP_WRITE(INVERT_W_STEP_PIN);
  2850. #endif
  2851. // Restore direction bits
  2852. EXTRA_DIR_WAIT_BEFORE();
  2853. X_DIR_WRITE(old_dir.x);
  2854. #ifdef Y_DIR_WRITE
  2855. Y_DIR_WRITE(old_dir.y);
  2856. #endif
  2857. #ifdef Z_DIR_WRITE
  2858. Z_DIR_WRITE(old_dir.z);
  2859. #endif
  2860. #ifdef I_DIR_WRITE
  2861. I_DIR_WRITE(old_dir.i);
  2862. #endif
  2863. #ifdef J_DIR_WRITE
  2864. J_DIR_WRITE(old_dir.j);
  2865. #endif
  2866. #ifdef K_DIR_WRITE
  2867. K_DIR_WRITE(old_dir.k);
  2868. #endif
  2869. #ifdef U_DIR_WRITE
  2870. U_DIR_WRITE(old_dir.u);
  2871. #endif
  2872. #ifdef V_DIR_WRITE
  2873. V_DIR_WRITE(old_dir.v);
  2874. #endif
  2875. #ifdef W_DIR_WRITE
  2876. W_DIR_WRITE(old_dir.w);
  2877. #endif
  2878. EXTRA_DIR_WAIT_AFTER();
  2879. #endif
  2880. } break;
  2881. #if HAS_I_AXIS
  2882. case I_AXIS: BABYSTEP_AXIS(I, 0, direction); break;
  2883. #endif
  2884. #if HAS_J_AXIS
  2885. case J_AXIS: BABYSTEP_AXIS(J, 0, direction); break;
  2886. #endif
  2887. #if HAS_K_AXIS
  2888. case K_AXIS: BABYSTEP_AXIS(K, 0, direction); break;
  2889. #endif
  2890. #if HAS_U_AXIS
  2891. case U_AXIS: BABYSTEP_AXIS(U, 0, direction); break;
  2892. #endif
  2893. #if HAS_V_AXIS
  2894. case V_AXIS: BABYSTEP_AXIS(V, 0, direction); break;
  2895. #endif
  2896. #if HAS_W_AXIS
  2897. case W_AXIS: BABYSTEP_AXIS(W, 0, direction); break;
  2898. #endif
  2899. default: break;
  2900. }
  2901. IF_DISABLED(INTEGRATED_BABYSTEPPING, sei());
  2902. }
  2903. #endif // BABYSTEPPING
  2904. /**
  2905. * Software-controlled Stepper Motor Current
  2906. */
  2907. #if HAS_MOTOR_CURRENT_SPI
  2908. // From Arduino DigitalPotControl example
  2909. void Stepper::set_digipot_value_spi(const int16_t address, const int16_t value) {
  2910. WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
  2911. SPI.transfer(address); // Send the address and value via SPI
  2912. SPI.transfer(value);
  2913. WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
  2914. //delay(10);
  2915. }
  2916. #endif // HAS_MOTOR_CURRENT_SPI
  2917. #if HAS_MOTOR_CURRENT_PWM
  2918. void Stepper::refresh_motor_power() {
  2919. if (!initialized) return;
  2920. LOOP_L_N(i, COUNT(motor_current_setting)) {
  2921. switch (i) {
  2922. #if ANY_PIN(MOTOR_CURRENT_PWM_XY, MOTOR_CURRENT_PWM_X, MOTOR_CURRENT_PWM_Y, MOTOR_CURRENT_PWM_I, MOTOR_CURRENT_PWM_J, MOTOR_CURRENT_PWM_K, MOTOR_CURRENT_PWM_U, MOTOR_CURRENT_PWM_V, MOTOR_CURRENT_PWM_W)
  2923. case 0:
  2924. #endif
  2925. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  2926. case 1:
  2927. #endif
  2928. #if ANY_PIN(MOTOR_CURRENT_PWM_E, MOTOR_CURRENT_PWM_E0, MOTOR_CURRENT_PWM_E1)
  2929. case 2:
  2930. #endif
  2931. set_digipot_current(i, motor_current_setting[i]);
  2932. default: break;
  2933. }
  2934. }
  2935. }
  2936. #endif // HAS_MOTOR_CURRENT_PWM
  2937. #if !MB(PRINTRBOARD_G2)
  2938. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  2939. void Stepper::set_digipot_current(const uint8_t driver, const int16_t current) {
  2940. if (WITHIN(driver, 0, MOTOR_CURRENT_COUNT - 1))
  2941. motor_current_setting[driver] = current; // update motor_current_setting
  2942. if (!initialized) return;
  2943. #if HAS_MOTOR_CURRENT_SPI
  2944. //SERIAL_ECHOLNPGM("Digipotss current ", current);
  2945. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  2946. set_digipot_value_spi(digipot_ch[driver], current);
  2947. #elif HAS_MOTOR_CURRENT_PWM
  2948. #define _WRITE_CURRENT_PWM(P) hal.set_pwm_duty(pin_t(MOTOR_CURRENT_PWM_## P ##_PIN), 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  2949. switch (driver) {
  2950. case 0:
  2951. #if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
  2952. _WRITE_CURRENT_PWM(X);
  2953. #endif
  2954. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
  2955. _WRITE_CURRENT_PWM(Y);
  2956. #endif
  2957. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  2958. _WRITE_CURRENT_PWM(XY);
  2959. #endif
  2960. #if PIN_EXISTS(MOTOR_CURRENT_PWM_I)
  2961. _WRITE_CURRENT_PWM(I);
  2962. #endif
  2963. #if PIN_EXISTS(MOTOR_CURRENT_PWM_J)
  2964. _WRITE_CURRENT_PWM(J);
  2965. #endif
  2966. #if PIN_EXISTS(MOTOR_CURRENT_PWM_K)
  2967. _WRITE_CURRENT_PWM(K);
  2968. #endif
  2969. #if PIN_EXISTS(MOTOR_CURRENT_PWM_U)
  2970. _WRITE_CURRENT_PWM(U);
  2971. #endif
  2972. #if PIN_EXISTS(MOTOR_CURRENT_PWM_V)
  2973. _WRITE_CURRENT_PWM(V);
  2974. #endif
  2975. #if PIN_EXISTS(MOTOR_CURRENT_PWM_W)
  2976. _WRITE_CURRENT_PWM(W);
  2977. #endif
  2978. break;
  2979. case 1:
  2980. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  2981. _WRITE_CURRENT_PWM(Z);
  2982. #endif
  2983. break;
  2984. case 2:
  2985. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  2986. _WRITE_CURRENT_PWM(E);
  2987. #endif
  2988. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
  2989. _WRITE_CURRENT_PWM(E0);
  2990. #endif
  2991. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
  2992. _WRITE_CURRENT_PWM(E1);
  2993. #endif
  2994. break;
  2995. }
  2996. #endif
  2997. }
  2998. void Stepper::digipot_init() {
  2999. #if HAS_MOTOR_CURRENT_SPI
  3000. SPI.begin();
  3001. SET_OUTPUT(DIGIPOTSS_PIN);
  3002. LOOP_L_N(i, COUNT(motor_current_setting))
  3003. set_digipot_current(i, motor_current_setting[i]);
  3004. #elif HAS_MOTOR_CURRENT_PWM
  3005. #ifdef __SAM3X8E__
  3006. #define _RESET_CURRENT_PWM_FREQ(P) NOOP
  3007. #else
  3008. #define _RESET_CURRENT_PWM_FREQ(P) hal.set_pwm_frequency(pin_t(P), MOTOR_CURRENT_PWM_FREQUENCY)
  3009. #endif
  3010. #define INIT_CURRENT_PWM(P) do{ SET_PWM(MOTOR_CURRENT_PWM_## P ##_PIN); _RESET_CURRENT_PWM_FREQ(MOTOR_CURRENT_PWM_## P ##_PIN); }while(0)
  3011. #if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
  3012. INIT_CURRENT_PWM(X);
  3013. #endif
  3014. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
  3015. INIT_CURRENT_PWM(Y);
  3016. #endif
  3017. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  3018. INIT_CURRENT_PWM(XY);
  3019. #endif
  3020. #if PIN_EXISTS(MOTOR_CURRENT_PWM_I)
  3021. INIT_CURRENT_PWM(I);
  3022. #endif
  3023. #if PIN_EXISTS(MOTOR_CURRENT_PWM_J)
  3024. INIT_CURRENT_PWM(J);
  3025. #endif
  3026. #if PIN_EXISTS(MOTOR_CURRENT_PWM_K)
  3027. INIT_CURRENT_PWM(K);
  3028. #endif
  3029. #if PIN_EXISTS(MOTOR_CURRENT_PWM_U)
  3030. INIT_CURRENT_PWM(U);
  3031. #endif
  3032. #if PIN_EXISTS(MOTOR_CURRENT_PWM_V)
  3033. INIT_CURRENT_PWM(V);
  3034. #endif
  3035. #if PIN_EXISTS(MOTOR_CURRENT_PWM_W)
  3036. INIT_CURRENT_PWM(W);
  3037. #endif
  3038. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  3039. INIT_CURRENT_PWM(Z);
  3040. #endif
  3041. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  3042. INIT_CURRENT_PWM(E);
  3043. #endif
  3044. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
  3045. INIT_CURRENT_PWM(E0);
  3046. #endif
  3047. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
  3048. INIT_CURRENT_PWM(E1);
  3049. #endif
  3050. refresh_motor_power();
  3051. #endif
  3052. }
  3053. #endif
  3054. #else // PRINTRBOARD_G2
  3055. #include HAL_PATH(../HAL, fastio/G2_PWM.h)
  3056. #endif
  3057. #if HAS_MICROSTEPS
  3058. /**
  3059. * Software-controlled Microstepping
  3060. */
  3061. void Stepper::microstep_init() {
  3062. #if HAS_X_MS_PINS
  3063. SET_OUTPUT(X_MS1_PIN); SET_OUTPUT(X_MS2_PIN);
  3064. #if PIN_EXISTS(X_MS3)
  3065. SET_OUTPUT(X_MS3_PIN);
  3066. #endif
  3067. #endif
  3068. #if HAS_X2_MS_PINS
  3069. SET_OUTPUT(X2_MS1_PIN); SET_OUTPUT(X2_MS2_PIN);
  3070. #if PIN_EXISTS(X2_MS3)
  3071. SET_OUTPUT(X2_MS3_PIN);
  3072. #endif
  3073. #endif
  3074. #if HAS_Y_MS_PINS
  3075. SET_OUTPUT(Y_MS1_PIN); SET_OUTPUT(Y_MS2_PIN);
  3076. #if PIN_EXISTS(Y_MS3)
  3077. SET_OUTPUT(Y_MS3_PIN);
  3078. #endif
  3079. #endif
  3080. #if HAS_Y2_MS_PINS
  3081. SET_OUTPUT(Y2_MS1_PIN); SET_OUTPUT(Y2_MS2_PIN);
  3082. #if PIN_EXISTS(Y2_MS3)
  3083. SET_OUTPUT(Y2_MS3_PIN);
  3084. #endif
  3085. #endif
  3086. #if HAS_Z_MS_PINS
  3087. SET_OUTPUT(Z_MS1_PIN); SET_OUTPUT(Z_MS2_PIN);
  3088. #if PIN_EXISTS(Z_MS3)
  3089. SET_OUTPUT(Z_MS3_PIN);
  3090. #endif
  3091. #endif
  3092. #if HAS_Z2_MS_PINS
  3093. SET_OUTPUT(Z2_MS1_PIN); SET_OUTPUT(Z2_MS2_PIN);
  3094. #if PIN_EXISTS(Z2_MS3)
  3095. SET_OUTPUT(Z2_MS3_PIN);
  3096. #endif
  3097. #endif
  3098. #if HAS_Z3_MS_PINS
  3099. SET_OUTPUT(Z3_MS1_PIN); SET_OUTPUT(Z3_MS2_PIN);
  3100. #if PIN_EXISTS(Z3_MS3)
  3101. SET_OUTPUT(Z3_MS3_PIN);
  3102. #endif
  3103. #endif
  3104. #if HAS_Z4_MS_PINS
  3105. SET_OUTPUT(Z4_MS1_PIN); SET_OUTPUT(Z4_MS2_PIN);
  3106. #if PIN_EXISTS(Z4_MS3)
  3107. SET_OUTPUT(Z4_MS3_PIN);
  3108. #endif
  3109. #endif
  3110. #if HAS_I_MS_PINS
  3111. SET_OUTPUT(I_MS1_PIN); SET_OUTPUT(I_MS2_PIN);
  3112. #if PIN_EXISTS(I_MS3)
  3113. SET_OUTPUT(I_MS3_PIN);
  3114. #endif
  3115. #endif
  3116. #if HAS_J_MS_PINS
  3117. SET_OUTPUT(J_MS1_PIN); SET_OUTPUT(J_MS2_PIN);
  3118. #if PIN_EXISTS(J_MS3)
  3119. SET_OUTPUT(J_MS3_PIN);
  3120. #endif
  3121. #endif
  3122. #if HAS_K_MS_PINS
  3123. SET_OUTPUT(K_MS1_PIN); SET_OUTPUT(K_MS2_PIN);
  3124. #if PIN_EXISTS(K_MS3)
  3125. SET_OUTPUT(K_MS3_PIN);
  3126. #endif
  3127. #endif
  3128. #if HAS_U_MS_PINS
  3129. SET_OUTPUT(U_MS1_PIN); SET_OUTPUT(U_MS2_PIN);
  3130. #if PIN_EXISTS(U_MS3)
  3131. SET_OUTPUT(U_MS3_PIN);
  3132. #endif
  3133. #endif
  3134. #if HAS_V_MS_PINS
  3135. SET_OUTPUT(V_MS1_PIN); SET_OUTPUT(V_MS2_PIN);
  3136. #if PIN_EXISTS(V_MS3)
  3137. SET_OUTPUT(V_MS3_PIN);
  3138. #endif
  3139. #endif
  3140. #if HAS_W_MS_PINS
  3141. SET_OUTPUT(W_MS1_PIN); SET_OUTPUT(W_MS2_PIN);
  3142. #if PIN_EXISTS(W_MS3)
  3143. SET_OUTPUT(W_MS3_PIN);
  3144. #endif
  3145. #endif
  3146. #if HAS_E0_MS_PINS
  3147. SET_OUTPUT(E0_MS1_PIN); SET_OUTPUT(E0_MS2_PIN);
  3148. #if PIN_EXISTS(E0_MS3)
  3149. SET_OUTPUT(E0_MS3_PIN);
  3150. #endif
  3151. #endif
  3152. #if HAS_E1_MS_PINS
  3153. SET_OUTPUT(E1_MS1_PIN); SET_OUTPUT(E1_MS2_PIN);
  3154. #if PIN_EXISTS(E1_MS3)
  3155. SET_OUTPUT(E1_MS3_PIN);
  3156. #endif
  3157. #endif
  3158. #if HAS_E2_MS_PINS
  3159. SET_OUTPUT(E2_MS1_PIN); SET_OUTPUT(E2_MS2_PIN);
  3160. #if PIN_EXISTS(E2_MS3)
  3161. SET_OUTPUT(E2_MS3_PIN);
  3162. #endif
  3163. #endif
  3164. #if HAS_E3_MS_PINS
  3165. SET_OUTPUT(E3_MS1_PIN); SET_OUTPUT(E3_MS2_PIN);
  3166. #if PIN_EXISTS(E3_MS3)
  3167. SET_OUTPUT(E3_MS3_PIN);
  3168. #endif
  3169. #endif
  3170. #if HAS_E4_MS_PINS
  3171. SET_OUTPUT(E4_MS1_PIN); SET_OUTPUT(E4_MS2_PIN);
  3172. #if PIN_EXISTS(E4_MS3)
  3173. SET_OUTPUT(E4_MS3_PIN);
  3174. #endif
  3175. #endif
  3176. #if HAS_E5_MS_PINS
  3177. SET_OUTPUT(E5_MS1_PIN); SET_OUTPUT(E5_MS2_PIN);
  3178. #if PIN_EXISTS(E5_MS3)
  3179. SET_OUTPUT(E5_MS3_PIN);
  3180. #endif
  3181. #endif
  3182. #if HAS_E6_MS_PINS
  3183. SET_OUTPUT(E6_MS1_PIN); SET_OUTPUT(E6_MS2_PIN);
  3184. #if PIN_EXISTS(E6_MS3)
  3185. SET_OUTPUT(E6_MS3_PIN);
  3186. #endif
  3187. #endif
  3188. #if HAS_E7_MS_PINS
  3189. SET_OUTPUT(E7_MS1_PIN); SET_OUTPUT(E7_MS2_PIN);
  3190. #if PIN_EXISTS(E7_MS3)
  3191. SET_OUTPUT(E7_MS3_PIN);
  3192. #endif
  3193. #endif
  3194. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  3195. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  3196. microstep_mode(i, microstep_modes[i]);
  3197. }
  3198. void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2, const int8_t ms3) {
  3199. if (ms1 >= 0) switch (driver) {
  3200. #if HAS_X_MS_PINS || HAS_X2_MS_PINS
  3201. case X_AXIS:
  3202. #if HAS_X_MS_PINS
  3203. WRITE(X_MS1_PIN, ms1);
  3204. #endif
  3205. #if HAS_X2_MS_PINS
  3206. WRITE(X2_MS1_PIN, ms1);
  3207. #endif
  3208. break;
  3209. #endif
  3210. #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
  3211. case Y_AXIS:
  3212. #if HAS_Y_MS_PINS
  3213. WRITE(Y_MS1_PIN, ms1);
  3214. #endif
  3215. #if HAS_Y2_MS_PINS
  3216. WRITE(Y2_MS1_PIN, ms1);
  3217. #endif
  3218. break;
  3219. #endif
  3220. #if HAS_SOME_Z_MS_PINS
  3221. case Z_AXIS:
  3222. #if HAS_Z_MS_PINS
  3223. WRITE(Z_MS1_PIN, ms1);
  3224. #endif
  3225. #if HAS_Z2_MS_PINS
  3226. WRITE(Z2_MS1_PIN, ms1);
  3227. #endif
  3228. #if HAS_Z3_MS_PINS
  3229. WRITE(Z3_MS1_PIN, ms1);
  3230. #endif
  3231. #if HAS_Z4_MS_PINS
  3232. WRITE(Z4_MS1_PIN, ms1);
  3233. #endif
  3234. break;
  3235. #endif
  3236. #if HAS_I_MS_PINS
  3237. case I_AXIS: WRITE(I_MS1_PIN, ms1); break
  3238. #endif
  3239. #if HAS_J_MS_PINS
  3240. case J_AXIS: WRITE(J_MS1_PIN, ms1); break
  3241. #endif
  3242. #if HAS_K_MS_PINS
  3243. case K_AXIS: WRITE(K_MS1_PIN, ms1); break
  3244. #endif
  3245. #if HAS_U_MS_PINS
  3246. case U_AXIS: WRITE(U_MS1_PIN, ms1); break
  3247. #endif
  3248. #if HAS_V_MS_PINS
  3249. case V_AXIS: WRITE(V_MS1_PIN, ms1); break
  3250. #endif
  3251. #if HAS_W_MS_PINS
  3252. case W_AXIS: WRITE(W_MS1_PIN, ms1); break
  3253. #endif
  3254. #if HAS_E0_MS_PINS
  3255. case E_AXIS: WRITE(E0_MS1_PIN, ms1); break;
  3256. #endif
  3257. #if HAS_E1_MS_PINS
  3258. case (E_AXIS + 1): WRITE(E1_MS1_PIN, ms1); break;
  3259. #endif
  3260. #if HAS_E2_MS_PINS
  3261. case (E_AXIS + 2): WRITE(E2_MS1_PIN, ms1); break;
  3262. #endif
  3263. #if HAS_E3_MS_PINS
  3264. case (E_AXIS + 3): WRITE(E3_MS1_PIN, ms1); break;
  3265. #endif
  3266. #if HAS_E4_MS_PINS
  3267. case (E_AXIS + 4): WRITE(E4_MS1_PIN, ms1); break;
  3268. #endif
  3269. #if HAS_E5_MS_PINS
  3270. case (E_AXIS + 5): WRITE(E5_MS1_PIN, ms1); break;
  3271. #endif
  3272. #if HAS_E6_MS_PINS
  3273. case (E_AXIS + 6): WRITE(E6_MS1_PIN, ms1); break;
  3274. #endif
  3275. #if HAS_E7_MS_PINS
  3276. case (E_AXIS + 7): WRITE(E7_MS1_PIN, ms1); break;
  3277. #endif
  3278. }
  3279. if (ms2 >= 0) switch (driver) {
  3280. #if HAS_X_MS_PINS || HAS_X2_MS_PINS
  3281. case X_AXIS:
  3282. #if HAS_X_MS_PINS
  3283. WRITE(X_MS2_PIN, ms2);
  3284. #endif
  3285. #if HAS_X2_MS_PINS
  3286. WRITE(X2_MS2_PIN, ms2);
  3287. #endif
  3288. break;
  3289. #endif
  3290. #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
  3291. case Y_AXIS:
  3292. #if HAS_Y_MS_PINS
  3293. WRITE(Y_MS2_PIN, ms2);
  3294. #endif
  3295. #if HAS_Y2_MS_PINS
  3296. WRITE(Y2_MS2_PIN, ms2);
  3297. #endif
  3298. break;
  3299. #endif
  3300. #if HAS_SOME_Z_MS_PINS
  3301. case Z_AXIS:
  3302. #if HAS_Z_MS_PINS
  3303. WRITE(Z_MS2_PIN, ms2);
  3304. #endif
  3305. #if HAS_Z2_MS_PINS
  3306. WRITE(Z2_MS2_PIN, ms2);
  3307. #endif
  3308. #if HAS_Z3_MS_PINS
  3309. WRITE(Z3_MS2_PIN, ms2);
  3310. #endif
  3311. #if HAS_Z4_MS_PINS
  3312. WRITE(Z4_MS2_PIN, ms2);
  3313. #endif
  3314. break;
  3315. #endif
  3316. #if HAS_I_MS_PINS
  3317. case I_AXIS: WRITE(I_MS2_PIN, ms2); break
  3318. #endif
  3319. #if HAS_J_MS_PINS
  3320. case J_AXIS: WRITE(J_MS2_PIN, ms2); break
  3321. #endif
  3322. #if HAS_K_MS_PINS
  3323. case K_AXIS: WRITE(K_MS2_PIN, ms2); break
  3324. #endif
  3325. #if HAS_U_MS_PINS
  3326. case U_AXIS: WRITE(U_MS2_PIN, ms2); break
  3327. #endif
  3328. #if HAS_V_MS_PINS
  3329. case V_AXIS: WRITE(V_MS2_PIN, ms2); break
  3330. #endif
  3331. #if HAS_W_MS_PINS
  3332. case W_AXIS: WRITE(W_MS2_PIN, ms2); break
  3333. #endif
  3334. #if HAS_E0_MS_PINS
  3335. case E_AXIS: WRITE(E0_MS2_PIN, ms2); break;
  3336. #endif
  3337. #if HAS_E1_MS_PINS
  3338. case (E_AXIS + 1): WRITE(E1_MS2_PIN, ms2); break;
  3339. #endif
  3340. #if HAS_E2_MS_PINS
  3341. case (E_AXIS + 2): WRITE(E2_MS2_PIN, ms2); break;
  3342. #endif
  3343. #if HAS_E3_MS_PINS
  3344. case (E_AXIS + 3): WRITE(E3_MS2_PIN, ms2); break;
  3345. #endif
  3346. #if HAS_E4_MS_PINS
  3347. case (E_AXIS + 4): WRITE(E4_MS2_PIN, ms2); break;
  3348. #endif
  3349. #if HAS_E5_MS_PINS
  3350. case (E_AXIS + 5): WRITE(E5_MS2_PIN, ms2); break;
  3351. #endif
  3352. #if HAS_E6_MS_PINS
  3353. case (E_AXIS + 6): WRITE(E6_MS2_PIN, ms2); break;
  3354. #endif
  3355. #if HAS_E7_MS_PINS
  3356. case (E_AXIS + 7): WRITE(E7_MS2_PIN, ms2); break;
  3357. #endif
  3358. }
  3359. if (ms3 >= 0) switch (driver) {
  3360. #if HAS_X_MS_PINS || HAS_X2_MS_PINS
  3361. case X_AXIS:
  3362. #if HAS_X_MS_PINS && PIN_EXISTS(X_MS3)
  3363. WRITE(X_MS3_PIN, ms3);
  3364. #endif
  3365. #if HAS_X2_MS_PINS && PIN_EXISTS(X2_MS3)
  3366. WRITE(X2_MS3_PIN, ms3);
  3367. #endif
  3368. break;
  3369. #endif
  3370. #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
  3371. case Y_AXIS:
  3372. #if HAS_Y_MS_PINS && PIN_EXISTS(Y_MS3)
  3373. WRITE(Y_MS3_PIN, ms3);
  3374. #endif
  3375. #if HAS_Y2_MS_PINS && PIN_EXISTS(Y2_MS3)
  3376. WRITE(Y2_MS3_PIN, ms3);
  3377. #endif
  3378. break;
  3379. #endif
  3380. #if HAS_SOME_Z_MS_PINS
  3381. case Z_AXIS:
  3382. #if HAS_Z_MS_PINS && PIN_EXISTS(Z_MS3)
  3383. WRITE(Z_MS3_PIN, ms3);
  3384. #endif
  3385. #if HAS_Z2_MS_PINS && PIN_EXISTS(Z2_MS3)
  3386. WRITE(Z2_MS3_PIN, ms3);
  3387. #endif
  3388. #if HAS_Z3_MS_PINS && PIN_EXISTS(Z3_MS3)
  3389. WRITE(Z3_MS3_PIN, ms3);
  3390. #endif
  3391. #if HAS_Z4_MS_PINS && PIN_EXISTS(Z4_MS3)
  3392. WRITE(Z4_MS3_PIN, ms3);
  3393. #endif
  3394. break;
  3395. #endif
  3396. #if HAS_I_MS_PINS
  3397. case I_AXIS: WRITE(I_MS3_PIN, ms3); break
  3398. #endif
  3399. #if HAS_J_MS_PINS
  3400. case J_AXIS: WRITE(J_MS3_PIN, ms3); break
  3401. #endif
  3402. #if HAS_K_MS_PINS
  3403. case K_AXIS: WRITE(K_MS3_PIN, ms3); break
  3404. #endif
  3405. #if HAS_U_MS_PINS
  3406. case U_AXIS: WRITE(U_MS3_PIN, ms3); break
  3407. #endif
  3408. #if HAS_V_MS_PINS
  3409. case V_AXIS: WRITE(V_MS3_PIN, ms3); break
  3410. #endif
  3411. #if HAS_W_MS_PINS
  3412. case W_AXIS: WRITE(W_MS3_PIN, ms3); break
  3413. #endif
  3414. #if HAS_E0_MS_PINS && PIN_EXISTS(E0_MS3)
  3415. case E_AXIS: WRITE(E0_MS3_PIN, ms3); break;
  3416. #endif
  3417. #if HAS_E1_MS_PINS && PIN_EXISTS(E1_MS3)
  3418. case (E_AXIS + 1): WRITE(E1_MS3_PIN, ms3); break;
  3419. #endif
  3420. #if HAS_E2_MS_PINS && PIN_EXISTS(E2_MS3)
  3421. case (E_AXIS + 2): WRITE(E2_MS3_PIN, ms3); break;
  3422. #endif
  3423. #if HAS_E3_MS_PINS && PIN_EXISTS(E3_MS3)
  3424. case (E_AXIS + 3): WRITE(E3_MS3_PIN, ms3); break;
  3425. #endif
  3426. #if HAS_E4_MS_PINS && PIN_EXISTS(E4_MS3)
  3427. case (E_AXIS + 4): WRITE(E4_MS3_PIN, ms3); break;
  3428. #endif
  3429. #if HAS_E5_MS_PINS && PIN_EXISTS(E5_MS3)
  3430. case (E_AXIS + 5): WRITE(E5_MS3_PIN, ms3); break;
  3431. #endif
  3432. #if HAS_E6_MS_PINS && PIN_EXISTS(E6_MS3)
  3433. case (E_AXIS + 6): WRITE(E6_MS3_PIN, ms3); break;
  3434. #endif
  3435. #if HAS_E7_MS_PINS && PIN_EXISTS(E7_MS3)
  3436. case (E_AXIS + 7): WRITE(E7_MS3_PIN, ms3); break;
  3437. #endif
  3438. }
  3439. }
  3440. void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
  3441. switch (stepping_mode) {
  3442. #if HAS_MICROSTEP1
  3443. case 1: microstep_ms(driver, MICROSTEP1); break;
  3444. #endif
  3445. #if HAS_MICROSTEP2
  3446. case 2: microstep_ms(driver, MICROSTEP2); break;
  3447. #endif
  3448. #if HAS_MICROSTEP4
  3449. case 4: microstep_ms(driver, MICROSTEP4); break;
  3450. #endif
  3451. #if HAS_MICROSTEP8
  3452. case 8: microstep_ms(driver, MICROSTEP8); break;
  3453. #endif
  3454. #if HAS_MICROSTEP16
  3455. case 16: microstep_ms(driver, MICROSTEP16); break;
  3456. #endif
  3457. #if HAS_MICROSTEP32
  3458. case 32: microstep_ms(driver, MICROSTEP32); break;
  3459. #endif
  3460. #if HAS_MICROSTEP64
  3461. case 64: microstep_ms(driver, MICROSTEP64); break;
  3462. #endif
  3463. #if HAS_MICROSTEP128
  3464. case 128: microstep_ms(driver, MICROSTEP128); break;
  3465. #endif
  3466. default: SERIAL_ERROR_MSG("Microsteps unavailable"); break;
  3467. }
  3468. }
  3469. void Stepper::microstep_readings() {
  3470. #define PIN_CHAR(P) SERIAL_CHAR('0' + READ(P##_PIN))
  3471. #define MS_LINE(A) do{ SERIAL_ECHOPGM(" " STRINGIFY(A) ":"); PIN_CHAR(A##_MS1); PIN_CHAR(A##_MS2); }while(0)
  3472. SERIAL_ECHOPGM("MS1|2|3 Pins");
  3473. #if HAS_X_MS_PINS
  3474. MS_LINE(X);
  3475. #if PIN_EXISTS(X_MS3)
  3476. PIN_CHAR(X_MS3);
  3477. #endif
  3478. #endif
  3479. #if HAS_Y_MS_PINS
  3480. MS_LINE(Y);
  3481. #if PIN_EXISTS(Y_MS3)
  3482. PIN_CHAR(Y_MS3);
  3483. #endif
  3484. #endif
  3485. #if HAS_Z_MS_PINS
  3486. MS_LINE(Z);
  3487. #if PIN_EXISTS(Z_MS3)
  3488. PIN_CHAR(Z_MS3);
  3489. #endif
  3490. #endif
  3491. #if HAS_I_MS_PINS
  3492. MS_LINE(I);
  3493. #if PIN_EXISTS(I_MS3)
  3494. PIN_CHAR(I_MS3);
  3495. #endif
  3496. #endif
  3497. #if HAS_J_MS_PINS
  3498. MS_LINE(J);
  3499. #if PIN_EXISTS(J_MS3)
  3500. PIN_CHAR(J_MS3);
  3501. #endif
  3502. #endif
  3503. #if HAS_K_MS_PINS
  3504. MS_LINE(K);
  3505. #if PIN_EXISTS(K_MS3)
  3506. PIN_CHAR(K_MS3);
  3507. #endif
  3508. #endif
  3509. #if HAS_U_MS_PINS
  3510. MS_LINE(U);
  3511. #if PIN_EXISTS(U_MS3)
  3512. PIN_CHAR(U_MS3);
  3513. #endif
  3514. #endif
  3515. #if HAS_V_MS_PINS
  3516. MS_LINE(V);
  3517. #if PIN_EXISTS(V_MS3)
  3518. PIN_CHAR(V_MS3);
  3519. #endif
  3520. #endif
  3521. #if HAS_W_MS_PINS
  3522. MS_LINE(W);
  3523. #if PIN_EXISTS(W_MS3)
  3524. PIN_CHAR(W_MS3);
  3525. #endif
  3526. #endif
  3527. #if HAS_E0_MS_PINS
  3528. MS_LINE(E0);
  3529. #if PIN_EXISTS(E0_MS3)
  3530. PIN_CHAR(E0_MS3);
  3531. #endif
  3532. #endif
  3533. #if HAS_E1_MS_PINS
  3534. MS_LINE(E1);
  3535. #if PIN_EXISTS(E1_MS3)
  3536. PIN_CHAR(E1_MS3);
  3537. #endif
  3538. #endif
  3539. #if HAS_E2_MS_PINS
  3540. MS_LINE(E2);
  3541. #if PIN_EXISTS(E2_MS3)
  3542. PIN_CHAR(E2_MS3);
  3543. #endif
  3544. #endif
  3545. #if HAS_E3_MS_PINS
  3546. MS_LINE(E3);
  3547. #if PIN_EXISTS(E3_MS3)
  3548. PIN_CHAR(E3_MS3);
  3549. #endif
  3550. #endif
  3551. #if HAS_E4_MS_PINS
  3552. MS_LINE(E4);
  3553. #if PIN_EXISTS(E4_MS3)
  3554. PIN_CHAR(E4_MS3);
  3555. #endif
  3556. #endif
  3557. #if HAS_E5_MS_PINS
  3558. MS_LINE(E5);
  3559. #if PIN_EXISTS(E5_MS3)
  3560. PIN_CHAR(E5_MS3);
  3561. #endif
  3562. #endif
  3563. #if HAS_E6_MS_PINS
  3564. MS_LINE(E6);
  3565. #if PIN_EXISTS(E6_MS3)
  3566. PIN_CHAR(E6_MS3);
  3567. #endif
  3568. #endif
  3569. #if HAS_E7_MS_PINS
  3570. MS_LINE(E7);
  3571. #if PIN_EXISTS(E7_MS3)
  3572. PIN_CHAR(E7_MS3);
  3573. #endif
  3574. #endif
  3575. SERIAL_EOL();
  3576. }
  3577. #endif // HAS_MICROSTEPS