My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

Marlin_main.cpp 305KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. *
  29. * It has preliminary support for Matthew Roberts advance algorithm
  30. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  31. */
  32. #include "Marlin.h"
  33. #if HAS_ABL
  34. #include "vector_3.h"
  35. #endif
  36. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  37. #include "qr_solve.h"
  38. #elif ENABLED(MESH_BED_LEVELING)
  39. #include "mesh_bed_leveling.h"
  40. #endif
  41. #if ENABLED(BEZIER_CURVE_SUPPORT)
  42. #include "planner_bezier.h"
  43. #endif
  44. #include "ultralcd.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "endstops.h"
  48. #include "temperature.h"
  49. #include "cardreader.h"
  50. #include "configuration_store.h"
  51. #include "language.h"
  52. #include "pins_arduino.h"
  53. #include "math.h"
  54. #include "nozzle.h"
  55. #include "duration_t.h"
  56. #include "types.h"
  57. #if ENABLED(USE_WATCHDOG)
  58. #include "watchdog.h"
  59. #endif
  60. #if ENABLED(BLINKM)
  61. #include "blinkm.h"
  62. #include "Wire.h"
  63. #endif
  64. #if HAS_SERVOS
  65. #include "servo.h"
  66. #endif
  67. #if HAS_DIGIPOTSS
  68. #include <SPI.h>
  69. #endif
  70. #if ENABLED(DAC_STEPPER_CURRENT)
  71. #include "stepper_dac.h"
  72. #endif
  73. #if ENABLED(EXPERIMENTAL_I2CBUS)
  74. #include "twibus.h"
  75. #endif
  76. /**
  77. * Look here for descriptions of G-codes:
  78. * - http://linuxcnc.org/handbook/gcode/g-code.html
  79. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  80. *
  81. * Help us document these G-codes online:
  82. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  83. * - http://reprap.org/wiki/G-code
  84. *
  85. * -----------------
  86. * Implemented Codes
  87. * -----------------
  88. *
  89. * "G" Codes
  90. *
  91. * G0 -> G1
  92. * G1 - Coordinated Movement X Y Z E
  93. * G2 - CW ARC
  94. * G3 - CCW ARC
  95. * G4 - Dwell S<seconds> or P<milliseconds>
  96. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  97. * G10 - Retract filament according to settings of M207
  98. * G11 - Retract recover filament according to settings of M208
  99. * G12 - Clean tool
  100. * G20 - Set input units to inches
  101. * G21 - Set input units to millimeters
  102. * G28 - Home one or more axes
  103. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  104. * G30 - Single Z probe, probes bed at current XY location.
  105. * G31 - Dock sled (Z_PROBE_SLED only)
  106. * G32 - Undock sled (Z_PROBE_SLED only)
  107. * G38 - Probe target - similar to G28 except it uses the Z_MIN endstop for all three axes
  108. * G90 - Use Absolute Coordinates
  109. * G91 - Use Relative Coordinates
  110. * G92 - Set current position to coordinates given
  111. *
  112. * "M" Codes
  113. *
  114. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. * M1 - Same as M0
  116. * M17 - Enable/Power all stepper motors
  117. * M18 - Disable all stepper motors; same as M84
  118. * M20 - List SD card. (Requires SDSUPPORT)
  119. * M21 - Init SD card. (Requires SDSUPPORT)
  120. * M22 - Release SD card. (Requires SDSUPPORT)
  121. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  122. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  123. * M25 - Pause SD print. (Requires SDSUPPORT)
  124. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  125. * M27 - Report SD print status. (Requires SDSUPPORT)
  126. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  127. * M29 - Stop SD write. (Requires SDSUPPORT)
  128. * M30 - Delete file from SD: "M30 /path/file.gco"
  129. * M31 - Report time since last M109 or SD card start to serial.
  130. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  131. * Use P to run other files as sub-programs: "M32 P !filename#"
  132. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  133. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  134. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  135. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  136. * M75 - Start the print job timer.
  137. * M76 - Pause the print job timer.
  138. * M77 - Stop the print job timer.
  139. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  140. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  141. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  142. * M82 - Set E codes absolute (default).
  143. * M83 - Set E codes relative while in Absolute (G90) mode.
  144. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  145. * duration after which steppers should turn off. S0 disables the timeout.
  146. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  147. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  148. * M104 - Set extruder target temp.
  149. * M105 - Report current temperatures.
  150. * M106 - Fan on.
  151. * M107 - Fan off.
  152. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  153. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  154. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  155. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  156. * M110 - Set the current line number. (Used by host printing)
  157. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  158. * M112 - Emergency stop.
  159. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  160. * M114 - Report current position.
  161. * M115 - Report capabilities.
  162. * M117 - Display a message on the controller screen. (Requires an LCD)
  163. * M119 - Report endstops status.
  164. * M120 - Enable endstops detection.
  165. * M121 - Disable endstops detection.
  166. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  167. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  168. * M128 - EtoP Open. (Requires BARICUDA)
  169. * M129 - EtoP Closed. (Requires BARICUDA)
  170. * M140 - Set bed target temp. S<temp>
  171. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  172. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  173. * M150 - Set BlinkM Color R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM)
  174. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  175. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  176. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  177. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  178. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  179. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  180. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  181. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  182. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  183. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  184. * M205 - Set advanced settings. Current units apply:
  185. S<print> T<travel> minimum speeds
  186. B<minimum segment time>
  187. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  188. * M206 - Set additional homing offset.
  189. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  190. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  191. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  192. Every normal extrude-only move will be classified as retract depending on the direction.
  193. * M211 - Enable, Disable, and/or Report software endstops: S<0|1>
  194. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  195. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  196. * M221 - Set Flow Percentage: "M221 S<percent>"
  197. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  198. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  199. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  200. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  201. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  202. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  203. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  204. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  205. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  206. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  207. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  208. * M400 - Finish all moves.
  209. * M401 - Lower Z probe. (Requires a probe)
  210. * M402 - Raise Z probe. (Requires a probe)
  211. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  212. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  213. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  214. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  215. * M410 - Quickstop. Abort all planned moves.
  216. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  217. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  218. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  219. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  220. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  221. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  222. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  223. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  224. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  225. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s>" (Requires DELTA)
  226. * M666 - Set delta endstop adjustment. (Requires DELTA)
  227. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  228. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  229. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  230. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  231. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  232. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  233. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  234. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  235. *
  236. * ************ SCARA Specific - This can change to suit future G-code regulations
  237. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  238. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  239. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  240. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  241. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  242. * ************* SCARA End ***************
  243. *
  244. * ************ Custom codes - This can change to suit future G-code regulations
  245. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  246. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  247. * M999 - Restart after being stopped by error
  248. *
  249. * "T" Codes
  250. *
  251. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  252. *
  253. */
  254. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  255. void gcode_M100();
  256. #endif
  257. #if ENABLED(SDSUPPORT)
  258. CardReader card;
  259. #endif
  260. #if ENABLED(EXPERIMENTAL_I2CBUS)
  261. TWIBus i2c;
  262. #endif
  263. #if ENABLED(G38_PROBE_TARGET)
  264. bool G38_move = false,
  265. G38_endstop_hit = false;
  266. #endif
  267. bool Running = true;
  268. uint8_t marlin_debug_flags = DEBUG_NONE;
  269. /**
  270. * Cartesian Current Position
  271. * Used to track the logical position as moves are queued.
  272. * Used by 'line_to_current_position' to do a move after changing it.
  273. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  274. */
  275. float current_position[XYZE] = { 0.0 };
  276. /**
  277. * Cartesian Destination
  278. * A temporary position, usually applied to 'current_position'.
  279. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  280. * 'line_to_destination' sets 'current_position' to 'destination'.
  281. */
  282. static float destination[XYZE] = { 0.0 };
  283. /**
  284. * axis_homed
  285. * Flags that each linear axis was homed.
  286. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  287. *
  288. * axis_known_position
  289. * Flags that the position is known in each linear axis. Set when homed.
  290. * Cleared whenever a stepper powers off, potentially losing its position.
  291. */
  292. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  293. /**
  294. * GCode line number handling. Hosts may opt to include line numbers when
  295. * sending commands to Marlin, and lines will be checked for sequentiality.
  296. * M110 S<int> sets the current line number.
  297. */
  298. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  299. /**
  300. * GCode Command Queue
  301. * A simple ring buffer of BUFSIZE command strings.
  302. *
  303. * Commands are copied into this buffer by the command injectors
  304. * (immediate, serial, sd card) and they are processed sequentially by
  305. * the main loop. The process_next_command function parses the next
  306. * command and hands off execution to individual handler functions.
  307. */
  308. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  309. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  310. cmd_queue_index_w = 0, // Ring buffer write position
  311. commands_in_queue = 0; // Count of commands in the queue
  312. /**
  313. * Current GCode Command
  314. * When a GCode handler is running, these will be set
  315. */
  316. static char *current_command, // The command currently being executed
  317. *current_command_args, // The address where arguments begin
  318. *seen_pointer; // Set by code_seen(), used by the code_value functions
  319. /**
  320. * Next Injected Command pointer. NULL if no commands are being injected.
  321. * Used by Marlin internally to ensure that commands initiated from within
  322. * are enqueued ahead of any pending serial or sd card commands.
  323. */
  324. static const char *injected_commands_P = NULL;
  325. #if ENABLED(INCH_MODE_SUPPORT)
  326. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  327. #endif
  328. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  329. TempUnit input_temp_units = TEMPUNIT_C;
  330. #endif
  331. /**
  332. * Feed rates are often configured with mm/m
  333. * but the planner and stepper like mm/s units.
  334. */
  335. float constexpr homing_feedrate_mm_s[] = {
  336. #if ENABLED(DELTA)
  337. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  338. #else
  339. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  340. #endif
  341. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  342. };
  343. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  344. int feedrate_percentage = 100, saved_feedrate_percentage,
  345. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  346. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  347. volumetric_enabled = false;
  348. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  349. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  350. // The distance that XYZ has been offset by G92. Reset by G28.
  351. float position_shift[XYZ] = { 0 };
  352. // This offset is added to the configured home position.
  353. // Set by M206, M428, or menu item. Saved to EEPROM.
  354. float home_offset[XYZ] = { 0 };
  355. // Software Endstops are based on the configured limits.
  356. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  357. bool soft_endstops_enabled = true;
  358. #endif
  359. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  360. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  361. #if FAN_COUNT > 0
  362. int fanSpeeds[FAN_COUNT] = { 0 };
  363. #endif
  364. // The active extruder (tool). Set with T<extruder> command.
  365. uint8_t active_extruder = 0;
  366. // Relative Mode. Enable with G91, disable with G90.
  367. static bool relative_mode = false;
  368. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  369. volatile bool wait_for_heatup = true;
  370. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  371. #if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
  372. volatile bool wait_for_user = false;
  373. #endif
  374. const char errormagic[] PROGMEM = "Error:";
  375. const char echomagic[] PROGMEM = "echo:";
  376. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  377. // Number of characters read in the current line of serial input
  378. static int serial_count = 0;
  379. // Inactivity shutdown
  380. millis_t previous_cmd_ms = 0;
  381. static millis_t max_inactive_time = 0;
  382. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  383. // Print Job Timer
  384. #if ENABLED(PRINTCOUNTER)
  385. PrintCounter print_job_timer = PrintCounter();
  386. #else
  387. Stopwatch print_job_timer = Stopwatch();
  388. #endif
  389. // Buzzer - I2C on the LCD or a BEEPER_PIN
  390. #if ENABLED(LCD_USE_I2C_BUZZER)
  391. #define BUZZ(d,f) lcd_buzz(d, f)
  392. #elif PIN_EXISTS(BEEPER)
  393. Buzzer buzzer;
  394. #define BUZZ(d,f) buzzer.tone(d, f)
  395. #else
  396. #define BUZZ(d,f) NOOP
  397. #endif
  398. static uint8_t target_extruder;
  399. #if HAS_BED_PROBE
  400. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  401. #endif
  402. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  403. #if HAS_ABL
  404. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  405. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  406. #elif defined(XY_PROBE_SPEED)
  407. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  408. #else
  409. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  410. #endif
  411. #if ENABLED(Z_DUAL_ENDSTOPS)
  412. float z_endstop_adj = 0;
  413. #endif
  414. // Extruder offsets
  415. #if HOTENDS > 1
  416. float hotend_offset[][HOTENDS] = {
  417. HOTEND_OFFSET_X,
  418. HOTEND_OFFSET_Y
  419. #ifdef HOTEND_OFFSET_Z
  420. , HOTEND_OFFSET_Z
  421. #endif
  422. };
  423. #endif
  424. #if HAS_Z_SERVO_ENDSTOP
  425. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  426. #endif
  427. #if ENABLED(BARICUDA)
  428. int baricuda_valve_pressure = 0;
  429. int baricuda_e_to_p_pressure = 0;
  430. #endif
  431. #if ENABLED(FWRETRACT)
  432. bool autoretract_enabled = false;
  433. bool retracted[EXTRUDERS] = { false };
  434. bool retracted_swap[EXTRUDERS] = { false };
  435. float retract_length = RETRACT_LENGTH;
  436. float retract_length_swap = RETRACT_LENGTH_SWAP;
  437. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  438. float retract_zlift = RETRACT_ZLIFT;
  439. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  440. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  441. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  442. #endif // FWRETRACT
  443. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  444. bool powersupply =
  445. #if ENABLED(PS_DEFAULT_OFF)
  446. false
  447. #else
  448. true
  449. #endif
  450. ;
  451. #endif
  452. #if ENABLED(DELTA)
  453. #define SIN_60 0.8660254037844386
  454. #define COS_60 0.5
  455. float delta[ABC],
  456. endstop_adj[ABC] = { 0 };
  457. // these are the default values, can be overriden with M665
  458. float delta_radius = DELTA_RADIUS,
  459. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  460. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  461. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  462. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  463. delta_tower3_x = 0, // back middle tower
  464. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  465. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  466. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  467. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  468. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  469. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  470. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  471. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  472. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  473. delta_clip_start_height = Z_MAX_POS;
  474. float delta_safe_distance_from_top();
  475. #else
  476. static bool home_all_axis = true;
  477. #endif
  478. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  479. int bilinear_grid_spacing[2] = { 0 }, bilinear_start[2] = { 0 };
  480. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  481. #endif
  482. #if IS_SCARA
  483. // Float constants for SCARA calculations
  484. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  485. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  486. L2_2 = sq(float(L2));
  487. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  488. delta[ABC];
  489. #endif
  490. float cartes[XYZ] = { 0 };
  491. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  492. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  493. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  494. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  495. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  496. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  497. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  498. #endif
  499. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  500. static bool filament_ran_out = false;
  501. #endif
  502. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  503. FilamentChangeMenuResponse filament_change_menu_response;
  504. #endif
  505. #if ENABLED(MIXING_EXTRUDER)
  506. float mixing_factor[MIXING_STEPPERS];
  507. #if MIXING_VIRTUAL_TOOLS > 1
  508. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  509. #endif
  510. #endif
  511. static bool send_ok[BUFSIZE];
  512. #if HAS_SERVOS
  513. Servo servo[NUM_SERVOS];
  514. #define MOVE_SERVO(I, P) servo[I].move(P)
  515. #if HAS_Z_SERVO_ENDSTOP
  516. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  517. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  518. #endif
  519. #endif
  520. #ifdef CHDK
  521. millis_t chdkHigh = 0;
  522. boolean chdkActive = false;
  523. #endif
  524. #if ENABLED(PID_EXTRUSION_SCALING)
  525. int lpq_len = 20;
  526. #endif
  527. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  528. static MarlinBusyState busy_state = NOT_BUSY;
  529. static millis_t next_busy_signal_ms = 0;
  530. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  531. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  532. #else
  533. #define host_keepalive() ;
  534. #define KEEPALIVE_STATE(n) ;
  535. #endif // HOST_KEEPALIVE_FEATURE
  536. #define DEFINE_PGM_READ_ANY(type, reader) \
  537. static inline type pgm_read_any(const type *p) \
  538. { return pgm_read_##reader##_near(p); }
  539. DEFINE_PGM_READ_ANY(float, float);
  540. DEFINE_PGM_READ_ANY(signed char, byte);
  541. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  542. static const PROGMEM type array##_P[XYZ] = \
  543. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  544. static inline type array(int axis) \
  545. { return pgm_read_any(&array##_P[axis]); }
  546. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  547. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  548. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  549. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  550. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  551. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  552. /**
  553. * ***************************************************************************
  554. * ******************************** FUNCTIONS ********************************
  555. * ***************************************************************************
  556. */
  557. void stop();
  558. void get_available_commands();
  559. void process_next_command();
  560. void prepare_move_to_destination();
  561. void get_cartesian_from_steppers();
  562. void set_current_from_steppers_for_axis(const AxisEnum axis);
  563. #if ENABLED(ARC_SUPPORT)
  564. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  565. #endif
  566. #if ENABLED(BEZIER_CURVE_SUPPORT)
  567. void plan_cubic_move(const float offset[4]);
  568. #endif
  569. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  570. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  571. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  572. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  573. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  574. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  575. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  576. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  577. static void report_current_position();
  578. #if ENABLED(DEBUG_LEVELING_FEATURE)
  579. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  580. serialprintPGM(prefix);
  581. SERIAL_ECHOPAIR("(", x);
  582. SERIAL_ECHOPAIR(", ", y);
  583. SERIAL_ECHOPAIR(", ", z);
  584. SERIAL_ECHOPGM(")");
  585. if (suffix) serialprintPGM(suffix);
  586. else SERIAL_EOL;
  587. }
  588. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  589. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  590. }
  591. #if HAS_ABL
  592. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  593. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  594. }
  595. #endif
  596. #define DEBUG_POS(SUFFIX,VAR) do { \
  597. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  598. #endif
  599. /**
  600. * sync_plan_position
  601. *
  602. * Set the planner/stepper positions directly from current_position with
  603. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  604. */
  605. inline void sync_plan_position() {
  606. #if ENABLED(DEBUG_LEVELING_FEATURE)
  607. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  608. #endif
  609. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  610. }
  611. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  612. #if IS_KINEMATIC
  613. inline void sync_plan_position_kinematic() {
  614. #if ENABLED(DEBUG_LEVELING_FEATURE)
  615. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  616. #endif
  617. inverse_kinematics(current_position);
  618. planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
  619. }
  620. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  621. #else
  622. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  623. #endif
  624. #if ENABLED(SDSUPPORT)
  625. #include "SdFatUtil.h"
  626. int freeMemory() { return SdFatUtil::FreeRam(); }
  627. #else
  628. extern "C" {
  629. extern unsigned int __bss_end;
  630. extern unsigned int __heap_start;
  631. extern void* __brkval;
  632. int freeMemory() {
  633. int free_memory;
  634. if ((int)__brkval == 0)
  635. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  636. else
  637. free_memory = ((int)&free_memory) - ((int)__brkval);
  638. return free_memory;
  639. }
  640. }
  641. #endif //!SDSUPPORT
  642. #if ENABLED(DIGIPOT_I2C)
  643. extern void digipot_i2c_set_current(int channel, float current);
  644. extern void digipot_i2c_init();
  645. #endif
  646. /**
  647. * Inject the next "immediate" command, when possible.
  648. * Return true if any immediate commands remain to inject.
  649. */
  650. static bool drain_injected_commands_P() {
  651. if (injected_commands_P != NULL) {
  652. size_t i = 0;
  653. char c, cmd[30];
  654. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  655. cmd[sizeof(cmd) - 1] = '\0';
  656. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  657. cmd[i] = '\0';
  658. if (enqueue_and_echo_command(cmd)) { // success?
  659. if (c) // newline char?
  660. injected_commands_P += i + 1; // advance to the next command
  661. else
  662. injected_commands_P = NULL; // nul char? no more commands
  663. }
  664. }
  665. return (injected_commands_P != NULL); // return whether any more remain
  666. }
  667. /**
  668. * Record one or many commands to run from program memory.
  669. * Aborts the current queue, if any.
  670. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  671. */
  672. void enqueue_and_echo_commands_P(const char* pgcode) {
  673. injected_commands_P = pgcode;
  674. drain_injected_commands_P(); // first command executed asap (when possible)
  675. }
  676. void clear_command_queue() {
  677. cmd_queue_index_r = cmd_queue_index_w;
  678. commands_in_queue = 0;
  679. }
  680. /**
  681. * Once a new command is in the ring buffer, call this to commit it
  682. */
  683. inline void _commit_command(bool say_ok) {
  684. send_ok[cmd_queue_index_w] = say_ok;
  685. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  686. commands_in_queue++;
  687. }
  688. /**
  689. * Copy a command directly into the main command buffer, from RAM.
  690. * Returns true if successfully adds the command
  691. */
  692. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  693. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  694. strcpy(command_queue[cmd_queue_index_w], cmd);
  695. _commit_command(say_ok);
  696. return true;
  697. }
  698. void enqueue_and_echo_command_now(const char* cmd) {
  699. while (!enqueue_and_echo_command(cmd)) idle();
  700. }
  701. /**
  702. * Enqueue with Serial Echo
  703. */
  704. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  705. if (_enqueuecommand(cmd, say_ok)) {
  706. SERIAL_ECHO_START;
  707. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  708. SERIAL_CHAR('"');
  709. SERIAL_EOL;
  710. return true;
  711. }
  712. return false;
  713. }
  714. void setup_killpin() {
  715. #if HAS_KILL
  716. SET_INPUT(KILL_PIN);
  717. WRITE(KILL_PIN, HIGH);
  718. #endif
  719. }
  720. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  721. void setup_filrunoutpin() {
  722. SET_INPUT(FIL_RUNOUT_PIN);
  723. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  724. WRITE(FIL_RUNOUT_PIN, HIGH);
  725. #endif
  726. }
  727. #endif
  728. // Set home pin
  729. void setup_homepin(void) {
  730. #if HAS_HOME
  731. SET_INPUT(HOME_PIN);
  732. WRITE(HOME_PIN, HIGH);
  733. #endif
  734. }
  735. void setup_photpin() {
  736. #if HAS_PHOTOGRAPH
  737. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  738. #endif
  739. }
  740. void setup_powerhold() {
  741. #if HAS_SUICIDE
  742. OUT_WRITE(SUICIDE_PIN, HIGH);
  743. #endif
  744. #if HAS_POWER_SWITCH
  745. #if ENABLED(PS_DEFAULT_OFF)
  746. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  747. #else
  748. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  749. #endif
  750. #endif
  751. }
  752. void suicide() {
  753. #if HAS_SUICIDE
  754. OUT_WRITE(SUICIDE_PIN, LOW);
  755. #endif
  756. }
  757. void servo_init() {
  758. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  759. servo[0].attach(SERVO0_PIN);
  760. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  761. #endif
  762. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  763. servo[1].attach(SERVO1_PIN);
  764. servo[1].detach();
  765. #endif
  766. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  767. servo[2].attach(SERVO2_PIN);
  768. servo[2].detach();
  769. #endif
  770. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  771. servo[3].attach(SERVO3_PIN);
  772. servo[3].detach();
  773. #endif
  774. #if HAS_Z_SERVO_ENDSTOP
  775. /**
  776. * Set position of Z Servo Endstop
  777. *
  778. * The servo might be deployed and positioned too low to stow
  779. * when starting up the machine or rebooting the board.
  780. * There's no way to know where the nozzle is positioned until
  781. * homing has been done - no homing with z-probe without init!
  782. *
  783. */
  784. STOW_Z_SERVO();
  785. #endif
  786. }
  787. /**
  788. * Stepper Reset (RigidBoard, et.al.)
  789. */
  790. #if HAS_STEPPER_RESET
  791. void disableStepperDrivers() {
  792. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  793. }
  794. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  795. #endif
  796. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  797. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  798. i2c.receive(bytes);
  799. }
  800. void i2c_on_request() { // just send dummy data for now
  801. i2c.reply("Hello World!\n");
  802. }
  803. #endif
  804. void gcode_line_error(const char* err, bool doFlush = true) {
  805. SERIAL_ERROR_START;
  806. serialprintPGM(err);
  807. SERIAL_ERRORLN(gcode_LastN);
  808. //Serial.println(gcode_N);
  809. if (doFlush) FlushSerialRequestResend();
  810. serial_count = 0;
  811. }
  812. inline void get_serial_commands() {
  813. static char serial_line_buffer[MAX_CMD_SIZE];
  814. static boolean serial_comment_mode = false;
  815. // If the command buffer is empty for too long,
  816. // send "wait" to indicate Marlin is still waiting.
  817. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  818. static millis_t last_command_time = 0;
  819. millis_t ms = millis();
  820. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  821. SERIAL_ECHOLNPGM(MSG_WAIT);
  822. last_command_time = ms;
  823. }
  824. #endif
  825. /**
  826. * Loop while serial characters are incoming and the queue is not full
  827. */
  828. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  829. char serial_char = MYSERIAL.read();
  830. /**
  831. * If the character ends the line
  832. */
  833. if (serial_char == '\n' || serial_char == '\r') {
  834. serial_comment_mode = false; // end of line == end of comment
  835. if (!serial_count) continue; // skip empty lines
  836. serial_line_buffer[serial_count] = 0; // terminate string
  837. serial_count = 0; //reset buffer
  838. char* command = serial_line_buffer;
  839. while (*command == ' ') command++; // skip any leading spaces
  840. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  841. char* apos = strchr(command, '*');
  842. if (npos) {
  843. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  844. if (M110) {
  845. char* n2pos = strchr(command + 4, 'N');
  846. if (n2pos) npos = n2pos;
  847. }
  848. gcode_N = strtol(npos + 1, NULL, 10);
  849. if (gcode_N != gcode_LastN + 1 && !M110) {
  850. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  851. return;
  852. }
  853. if (apos) {
  854. byte checksum = 0, count = 0;
  855. while (command[count] != '*') checksum ^= command[count++];
  856. if (strtol(apos + 1, NULL, 10) != checksum) {
  857. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  858. return;
  859. }
  860. // if no errors, continue parsing
  861. }
  862. else {
  863. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  864. return;
  865. }
  866. gcode_LastN = gcode_N;
  867. // if no errors, continue parsing
  868. }
  869. else if (apos) { // No '*' without 'N'
  870. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  871. return;
  872. }
  873. // Movement commands alert when stopped
  874. if (IsStopped()) {
  875. char* gpos = strchr(command, 'G');
  876. if (gpos) {
  877. int codenum = strtol(gpos + 1, NULL, 10);
  878. switch (codenum) {
  879. case 0:
  880. case 1:
  881. case 2:
  882. case 3:
  883. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  884. LCD_MESSAGEPGM(MSG_STOPPED);
  885. break;
  886. }
  887. }
  888. }
  889. #if DISABLED(EMERGENCY_PARSER)
  890. // If command was e-stop process now
  891. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  892. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  893. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  894. #endif
  895. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  896. last_command_time = ms;
  897. #endif
  898. // Add the command to the queue
  899. _enqueuecommand(serial_line_buffer, true);
  900. }
  901. else if (serial_count >= MAX_CMD_SIZE - 1) {
  902. // Keep fetching, but ignore normal characters beyond the max length
  903. // The command will be injected when EOL is reached
  904. }
  905. else if (serial_char == '\\') { // Handle escapes
  906. if (MYSERIAL.available() > 0) {
  907. // if we have one more character, copy it over
  908. serial_char = MYSERIAL.read();
  909. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  910. }
  911. // otherwise do nothing
  912. }
  913. else { // it's not a newline, carriage return or escape char
  914. if (serial_char == ';') serial_comment_mode = true;
  915. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  916. }
  917. } // queue has space, serial has data
  918. }
  919. #if ENABLED(SDSUPPORT)
  920. inline void get_sdcard_commands() {
  921. static bool stop_buffering = false,
  922. sd_comment_mode = false;
  923. if (!card.sdprinting) return;
  924. /**
  925. * '#' stops reading from SD to the buffer prematurely, so procedural
  926. * macro calls are possible. If it occurs, stop_buffering is triggered
  927. * and the buffer is run dry; this character _can_ occur in serial com
  928. * due to checksums, however, no checksums are used in SD printing.
  929. */
  930. if (commands_in_queue == 0) stop_buffering = false;
  931. uint16_t sd_count = 0;
  932. bool card_eof = card.eof();
  933. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  934. int16_t n = card.get();
  935. char sd_char = (char)n;
  936. card_eof = card.eof();
  937. if (card_eof || n == -1
  938. || sd_char == '\n' || sd_char == '\r'
  939. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  940. ) {
  941. if (card_eof) {
  942. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  943. card.printingHasFinished();
  944. card.checkautostart(true);
  945. }
  946. else if (n == -1) {
  947. SERIAL_ERROR_START;
  948. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  949. }
  950. if (sd_char == '#') stop_buffering = true;
  951. sd_comment_mode = false; //for new command
  952. if (!sd_count) continue; //skip empty lines
  953. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  954. sd_count = 0; //clear buffer
  955. _commit_command(false);
  956. }
  957. else if (sd_count >= MAX_CMD_SIZE - 1) {
  958. /**
  959. * Keep fetching, but ignore normal characters beyond the max length
  960. * The command will be injected when EOL is reached
  961. */
  962. }
  963. else {
  964. if (sd_char == ';') sd_comment_mode = true;
  965. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  966. }
  967. }
  968. }
  969. #endif // SDSUPPORT
  970. /**
  971. * Add to the circular command queue the next command from:
  972. * - The command-injection queue (injected_commands_P)
  973. * - The active serial input (usually USB)
  974. * - The SD card file being actively printed
  975. */
  976. void get_available_commands() {
  977. // if any immediate commands remain, don't get other commands yet
  978. if (drain_injected_commands_P()) return;
  979. get_serial_commands();
  980. #if ENABLED(SDSUPPORT)
  981. get_sdcard_commands();
  982. #endif
  983. }
  984. inline bool code_has_value() {
  985. int i = 1;
  986. char c = seen_pointer[i];
  987. while (c == ' ') c = seen_pointer[++i];
  988. if (c == '-' || c == '+') c = seen_pointer[++i];
  989. if (c == '.') c = seen_pointer[++i];
  990. return NUMERIC(c);
  991. }
  992. inline float code_value_float() {
  993. float ret;
  994. char* e = strchr(seen_pointer, 'E');
  995. if (e) {
  996. *e = 0;
  997. ret = strtod(seen_pointer + 1, NULL);
  998. *e = 'E';
  999. }
  1000. else
  1001. ret = strtod(seen_pointer + 1, NULL);
  1002. return ret;
  1003. }
  1004. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1005. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1006. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1007. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1008. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1009. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1010. #if ENABLED(INCH_MODE_SUPPORT)
  1011. inline void set_input_linear_units(LinearUnit units) {
  1012. switch (units) {
  1013. case LINEARUNIT_INCH:
  1014. linear_unit_factor = 25.4;
  1015. break;
  1016. case LINEARUNIT_MM:
  1017. default:
  1018. linear_unit_factor = 1.0;
  1019. break;
  1020. }
  1021. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1022. }
  1023. inline float axis_unit_factor(int axis) {
  1024. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1025. }
  1026. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1027. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1028. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1029. #else
  1030. inline float code_value_linear_units() { return code_value_float(); }
  1031. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1032. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1033. #endif
  1034. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1035. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1036. float code_value_temp_abs() {
  1037. switch (input_temp_units) {
  1038. case TEMPUNIT_C:
  1039. return code_value_float();
  1040. case TEMPUNIT_F:
  1041. return (code_value_float() - 32) * 0.5555555556;
  1042. case TEMPUNIT_K:
  1043. return code_value_float() - 272.15;
  1044. default:
  1045. return code_value_float();
  1046. }
  1047. }
  1048. float code_value_temp_diff() {
  1049. switch (input_temp_units) {
  1050. case TEMPUNIT_C:
  1051. case TEMPUNIT_K:
  1052. return code_value_float();
  1053. case TEMPUNIT_F:
  1054. return code_value_float() * 0.5555555556;
  1055. default:
  1056. return code_value_float();
  1057. }
  1058. }
  1059. #else
  1060. float code_value_temp_abs() { return code_value_float(); }
  1061. float code_value_temp_diff() { return code_value_float(); }
  1062. #endif
  1063. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1064. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1065. bool code_seen(char code) {
  1066. seen_pointer = strchr(current_command_args, code);
  1067. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1068. }
  1069. /**
  1070. * Set target_extruder from the T parameter or the active_extruder
  1071. *
  1072. * Returns TRUE if the target is invalid
  1073. */
  1074. bool get_target_extruder_from_command(int code) {
  1075. if (code_seen('T')) {
  1076. if (code_value_byte() >= EXTRUDERS) {
  1077. SERIAL_ECHO_START;
  1078. SERIAL_CHAR('M');
  1079. SERIAL_ECHO(code);
  1080. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1081. return true;
  1082. }
  1083. target_extruder = code_value_byte();
  1084. }
  1085. else
  1086. target_extruder = active_extruder;
  1087. return false;
  1088. }
  1089. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1090. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1091. #endif
  1092. #if ENABLED(DUAL_X_CARRIAGE)
  1093. #define DXC_FULL_CONTROL_MODE 0
  1094. #define DXC_AUTO_PARK_MODE 1
  1095. #define DXC_DUPLICATION_MODE 2
  1096. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1097. static float x_home_pos(int extruder) {
  1098. if (extruder == 0)
  1099. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1100. else
  1101. /**
  1102. * In dual carriage mode the extruder offset provides an override of the
  1103. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1104. * This allow soft recalibration of the second extruder offset position
  1105. * without firmware reflash (through the M218 command).
  1106. */
  1107. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1108. }
  1109. static int x_home_dir(int extruder) {
  1110. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1111. }
  1112. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1113. static bool active_extruder_parked = false; // used in mode 1 & 2
  1114. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1115. static millis_t delayed_move_time = 0; // used in mode 1
  1116. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1117. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1118. #endif // DUAL_X_CARRIAGE
  1119. /**
  1120. * Software endstops can be used to monitor the open end of
  1121. * an axis that has a hardware endstop on the other end. Or
  1122. * they can prevent axes from moving past endstops and grinding.
  1123. *
  1124. * To keep doing their job as the coordinate system changes,
  1125. * the software endstop positions must be refreshed to remain
  1126. * at the same positions relative to the machine.
  1127. */
  1128. void update_software_endstops(AxisEnum axis) {
  1129. float offs = LOGICAL_POSITION(0, axis);
  1130. #if ENABLED(DUAL_X_CARRIAGE)
  1131. if (axis == X_AXIS) {
  1132. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1133. if (active_extruder != 0) {
  1134. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1135. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1136. return;
  1137. }
  1138. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1139. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1140. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1141. return;
  1142. }
  1143. }
  1144. else
  1145. #endif
  1146. {
  1147. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1148. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1149. }
  1150. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1151. if (DEBUGGING(LEVELING)) {
  1152. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1153. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1154. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1155. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1156. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1157. }
  1158. #endif
  1159. #if ENABLED(DELTA)
  1160. if (axis == Z_AXIS)
  1161. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1162. #endif
  1163. }
  1164. /**
  1165. * Change the home offset for an axis, update the current
  1166. * position and the software endstops to retain the same
  1167. * relative distance to the new home.
  1168. *
  1169. * Since this changes the current_position, code should
  1170. * call sync_plan_position soon after this.
  1171. */
  1172. static void set_home_offset(AxisEnum axis, float v) {
  1173. current_position[axis] += v - home_offset[axis];
  1174. home_offset[axis] = v;
  1175. update_software_endstops(axis);
  1176. }
  1177. /**
  1178. * Set an axis' current position to its home position (after homing).
  1179. *
  1180. * For Core and Cartesian robots this applies one-to-one when an
  1181. * individual axis has been homed.
  1182. *
  1183. * DELTA should wait until all homing is done before setting the XYZ
  1184. * current_position to home, because homing is a single operation.
  1185. * In the case where the axis positions are already known and previously
  1186. * homed, DELTA could home to X or Y individually by moving either one
  1187. * to the center. However, homing Z always homes XY and Z.
  1188. *
  1189. * SCARA should wait until all XY homing is done before setting the XY
  1190. * current_position to home, because neither X nor Y is at home until
  1191. * both are at home. Z can however be homed individually.
  1192. *
  1193. */
  1194. static void set_axis_is_at_home(AxisEnum axis) {
  1195. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1196. if (DEBUGGING(LEVELING)) {
  1197. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1198. SERIAL_CHAR(')');
  1199. SERIAL_EOL;
  1200. }
  1201. #endif
  1202. axis_known_position[axis] = axis_homed[axis] = true;
  1203. position_shift[axis] = 0;
  1204. update_software_endstops(axis);
  1205. #if ENABLED(DUAL_X_CARRIAGE)
  1206. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1207. if (active_extruder != 0)
  1208. current_position[X_AXIS] = x_home_pos(active_extruder);
  1209. else
  1210. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1211. update_software_endstops(X_AXIS);
  1212. return;
  1213. }
  1214. #endif
  1215. #if ENABLED(MORGAN_SCARA)
  1216. /**
  1217. * Morgan SCARA homes XY at the same time
  1218. */
  1219. if (axis == X_AXIS || axis == Y_AXIS) {
  1220. float homeposition[XYZ];
  1221. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1222. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1223. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1224. /**
  1225. * Get Home position SCARA arm angles using inverse kinematics,
  1226. * and calculate homing offset using forward kinematics
  1227. */
  1228. inverse_kinematics(homeposition);
  1229. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1230. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1231. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1232. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1233. /**
  1234. * SCARA home positions are based on configuration since the actual
  1235. * limits are determined by the inverse kinematic transform.
  1236. */
  1237. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1238. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1239. }
  1240. else
  1241. #endif
  1242. {
  1243. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1244. }
  1245. /**
  1246. * Z Probe Z Homing? Account for the probe's Z offset.
  1247. */
  1248. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1249. if (axis == Z_AXIS) {
  1250. #if HOMING_Z_WITH_PROBE
  1251. current_position[Z_AXIS] -= zprobe_zoffset;
  1252. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1253. if (DEBUGGING(LEVELING)) {
  1254. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1255. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1256. }
  1257. #endif
  1258. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1259. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1260. #endif
  1261. }
  1262. #endif
  1263. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1264. if (DEBUGGING(LEVELING)) {
  1265. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1266. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1267. DEBUG_POS("", current_position);
  1268. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1269. SERIAL_CHAR(')');
  1270. SERIAL_EOL;
  1271. }
  1272. #endif
  1273. }
  1274. /**
  1275. * Some planner shorthand inline functions
  1276. */
  1277. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1278. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1279. int hbd = homing_bump_divisor[axis];
  1280. if (hbd < 1) {
  1281. hbd = 10;
  1282. SERIAL_ECHO_START;
  1283. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1284. }
  1285. return homing_feedrate_mm_s[axis] / hbd;
  1286. }
  1287. //
  1288. // line_to_current_position
  1289. // Move the planner to the current position from wherever it last moved
  1290. // (or from wherever it has been told it is located).
  1291. //
  1292. inline void line_to_current_position() {
  1293. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1294. }
  1295. //
  1296. // line_to_destination
  1297. // Move the planner, not necessarily synced with current_position
  1298. //
  1299. inline void line_to_destination(float fr_mm_s) {
  1300. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1301. }
  1302. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1303. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1304. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1305. #if IS_KINEMATIC
  1306. /**
  1307. * Calculate delta, start a line, and set current_position to destination
  1308. */
  1309. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1310. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1311. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1312. #endif
  1313. if ( current_position[X_AXIS] == destination[X_AXIS]
  1314. && current_position[Y_AXIS] == destination[Y_AXIS]
  1315. && current_position[Z_AXIS] == destination[Z_AXIS]
  1316. && current_position[E_AXIS] == destination[E_AXIS]
  1317. ) return;
  1318. refresh_cmd_timeout();
  1319. inverse_kinematics(destination);
  1320. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1321. set_current_to_destination();
  1322. }
  1323. #endif // IS_KINEMATIC
  1324. /**
  1325. * Plan a move to (X, Y, Z) and set the current_position
  1326. * The final current_position may not be the one that was requested
  1327. */
  1328. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1329. float old_feedrate_mm_s = feedrate_mm_s;
  1330. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1331. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1332. #endif
  1333. #if ENABLED(DELTA)
  1334. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1335. set_destination_to_current(); // sync destination at the start
  1336. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1337. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1338. #endif
  1339. // when in the danger zone
  1340. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1341. if (z > delta_clip_start_height) { // staying in the danger zone
  1342. destination[X_AXIS] = x; // move directly (uninterpolated)
  1343. destination[Y_AXIS] = y;
  1344. destination[Z_AXIS] = z;
  1345. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1346. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1347. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1348. #endif
  1349. return;
  1350. }
  1351. else {
  1352. destination[Z_AXIS] = delta_clip_start_height;
  1353. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1354. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1355. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1356. #endif
  1357. }
  1358. }
  1359. if (z > current_position[Z_AXIS]) { // raising?
  1360. destination[Z_AXIS] = z;
  1361. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1362. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1363. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1364. #endif
  1365. }
  1366. destination[X_AXIS] = x;
  1367. destination[Y_AXIS] = y;
  1368. prepare_move_to_destination(); // set_current_to_destination
  1369. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1370. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1371. #endif
  1372. if (z < current_position[Z_AXIS]) { // lowering?
  1373. destination[Z_AXIS] = z;
  1374. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1375. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1376. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1377. #endif
  1378. }
  1379. #elif IS_SCARA
  1380. set_destination_to_current();
  1381. // If Z needs to raise, do it before moving XY
  1382. if (destination[Z_AXIS] < z) {
  1383. destination[Z_AXIS] = z;
  1384. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1385. }
  1386. destination[X_AXIS] = x;
  1387. destination[Y_AXIS] = y;
  1388. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1389. // If Z needs to lower, do it after moving XY
  1390. if (destination[Z_AXIS] > z) {
  1391. destination[Z_AXIS] = z;
  1392. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1393. }
  1394. #else
  1395. // If Z needs to raise, do it before moving XY
  1396. if (current_position[Z_AXIS] < z) {
  1397. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1398. current_position[Z_AXIS] = z;
  1399. line_to_current_position();
  1400. }
  1401. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1402. current_position[X_AXIS] = x;
  1403. current_position[Y_AXIS] = y;
  1404. line_to_current_position();
  1405. // If Z needs to lower, do it after moving XY
  1406. if (current_position[Z_AXIS] > z) {
  1407. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1408. current_position[Z_AXIS] = z;
  1409. line_to_current_position();
  1410. }
  1411. #endif
  1412. stepper.synchronize();
  1413. feedrate_mm_s = old_feedrate_mm_s;
  1414. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1415. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1416. #endif
  1417. }
  1418. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1419. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1420. }
  1421. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1422. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1423. }
  1424. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1425. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1426. }
  1427. //
  1428. // Prepare to do endstop or probe moves
  1429. // with custom feedrates.
  1430. //
  1431. // - Save current feedrates
  1432. // - Reset the rate multiplier
  1433. // - Reset the command timeout
  1434. // - Enable the endstops (for endstop moves)
  1435. //
  1436. static void setup_for_endstop_or_probe_move() {
  1437. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1438. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1439. #endif
  1440. saved_feedrate_mm_s = feedrate_mm_s;
  1441. saved_feedrate_percentage = feedrate_percentage;
  1442. feedrate_percentage = 100;
  1443. refresh_cmd_timeout();
  1444. }
  1445. static void clean_up_after_endstop_or_probe_move() {
  1446. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1447. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1448. #endif
  1449. feedrate_mm_s = saved_feedrate_mm_s;
  1450. feedrate_percentage = saved_feedrate_percentage;
  1451. refresh_cmd_timeout();
  1452. }
  1453. #if HAS_BED_PROBE
  1454. /**
  1455. * Raise Z to a minimum height to make room for a probe to move
  1456. */
  1457. inline void do_probe_raise(float z_raise) {
  1458. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1459. if (DEBUGGING(LEVELING)) {
  1460. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1461. SERIAL_CHAR(')');
  1462. SERIAL_EOL;
  1463. }
  1464. #endif
  1465. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1466. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1467. if (z_dest > current_position[Z_AXIS])
  1468. do_blocking_move_to_z(z_dest);
  1469. }
  1470. #endif //HAS_BED_PROBE
  1471. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1472. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1473. const bool xx = x && !axis_homed[X_AXIS],
  1474. yy = y && !axis_homed[Y_AXIS],
  1475. zz = z && !axis_homed[Z_AXIS];
  1476. if (xx || yy || zz) {
  1477. SERIAL_ECHO_START;
  1478. SERIAL_ECHOPGM(MSG_HOME " ");
  1479. if (xx) SERIAL_ECHOPGM(MSG_X);
  1480. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1481. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1482. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1483. #if ENABLED(ULTRA_LCD)
  1484. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1485. strcat_P(message, PSTR(MSG_HOME " "));
  1486. if (xx) strcat_P(message, PSTR(MSG_X));
  1487. if (yy) strcat_P(message, PSTR(MSG_Y));
  1488. if (zz) strcat_P(message, PSTR(MSG_Z));
  1489. strcat_P(message, PSTR(" " MSG_FIRST));
  1490. lcd_setstatus(message);
  1491. #endif
  1492. return true;
  1493. }
  1494. return false;
  1495. }
  1496. #endif
  1497. #if ENABLED(Z_PROBE_SLED)
  1498. #ifndef SLED_DOCKING_OFFSET
  1499. #define SLED_DOCKING_OFFSET 0
  1500. #endif
  1501. /**
  1502. * Method to dock/undock a sled designed by Charles Bell.
  1503. *
  1504. * stow[in] If false, move to MAX_X and engage the solenoid
  1505. * If true, move to MAX_X and release the solenoid
  1506. */
  1507. static void dock_sled(bool stow) {
  1508. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1509. if (DEBUGGING(LEVELING)) {
  1510. SERIAL_ECHOPAIR("dock_sled(", stow);
  1511. SERIAL_CHAR(')');
  1512. SERIAL_EOL;
  1513. }
  1514. #endif
  1515. // Dock sled a bit closer to ensure proper capturing
  1516. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1517. #if PIN_EXISTS(SLED)
  1518. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1519. #endif
  1520. }
  1521. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1522. void run_deploy_moves_script() {
  1523. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1524. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1525. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1526. #endif
  1527. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1528. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1529. #endif
  1530. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1531. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1532. #endif
  1533. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1534. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1535. #endif
  1536. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1537. #endif
  1538. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1539. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1540. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1541. #endif
  1542. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1543. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1544. #endif
  1545. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1546. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1547. #endif
  1548. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1549. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1550. #endif
  1551. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1552. #endif
  1553. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1554. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1555. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1556. #endif
  1557. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1558. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1559. #endif
  1560. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1561. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1562. #endif
  1563. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1564. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1565. #endif
  1566. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1567. #endif
  1568. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1569. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1570. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1571. #endif
  1572. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1573. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1574. #endif
  1575. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1576. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1577. #endif
  1578. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1579. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1580. #endif
  1581. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1582. #endif
  1583. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1584. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1585. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1586. #endif
  1587. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1588. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1589. #endif
  1590. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1591. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1592. #endif
  1593. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1594. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1595. #endif
  1596. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1597. #endif
  1598. }
  1599. void run_stow_moves_script() {
  1600. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1601. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1602. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1603. #endif
  1604. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1605. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1606. #endif
  1607. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1608. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1609. #endif
  1610. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1611. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1612. #endif
  1613. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1614. #endif
  1615. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1616. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1617. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1618. #endif
  1619. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1620. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1621. #endif
  1622. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1623. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1624. #endif
  1625. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1626. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1627. #endif
  1628. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1629. #endif
  1630. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1631. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1632. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1633. #endif
  1634. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1635. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1636. #endif
  1637. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1638. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1639. #endif
  1640. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1641. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1642. #endif
  1643. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1644. #endif
  1645. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1646. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1647. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1648. #endif
  1649. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1650. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1651. #endif
  1652. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1653. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1654. #endif
  1655. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1656. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1657. #endif
  1658. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1659. #endif
  1660. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1661. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1662. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1663. #endif
  1664. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1665. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1666. #endif
  1667. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1668. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1669. #endif
  1670. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1671. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1672. #endif
  1673. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1674. #endif
  1675. }
  1676. #endif
  1677. #if HAS_BED_PROBE
  1678. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1679. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1680. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1681. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1682. #else
  1683. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1684. #endif
  1685. #endif
  1686. #define DEPLOY_PROBE() set_probe_deployed(true)
  1687. #define STOW_PROBE() set_probe_deployed(false)
  1688. #if ENABLED(BLTOUCH)
  1689. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1690. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1691. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1692. if (DEBUGGING(LEVELING)) {
  1693. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1694. SERIAL_CHAR(')');
  1695. SERIAL_EOL;
  1696. }
  1697. #endif
  1698. }
  1699. #endif
  1700. // returns false for ok and true for failure
  1701. static bool set_probe_deployed(bool deploy) {
  1702. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1703. if (DEBUGGING(LEVELING)) {
  1704. DEBUG_POS("set_probe_deployed", current_position);
  1705. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1706. }
  1707. #endif
  1708. if (endstops.z_probe_enabled == deploy) return false;
  1709. // Make room for probe
  1710. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1711. // When deploying make sure BLTOUCH is not already triggered
  1712. #if ENABLED(BLTOUCH)
  1713. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1714. #endif
  1715. #if ENABLED(Z_PROBE_SLED)
  1716. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1717. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1718. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1719. #endif
  1720. float oldXpos = current_position[X_AXIS],
  1721. oldYpos = current_position[Y_AXIS];
  1722. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1723. // If endstop is already false, the Z probe is deployed
  1724. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1725. // Would a goto be less ugly?
  1726. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1727. // for a triggered when stowed manual probe.
  1728. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1729. // otherwise an Allen-Key probe can't be stowed.
  1730. #endif
  1731. #if ENABLED(Z_PROBE_SLED)
  1732. dock_sled(!deploy);
  1733. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1734. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1735. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1736. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1737. #endif
  1738. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1739. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1740. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1741. if (IsRunning()) {
  1742. SERIAL_ERROR_START;
  1743. SERIAL_ERRORLNPGM("Z-Probe failed");
  1744. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1745. }
  1746. stop();
  1747. return true;
  1748. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1749. #endif
  1750. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1751. endstops.enable_z_probe(deploy);
  1752. return false;
  1753. }
  1754. static void do_probe_move(float z, float fr_mm_m) {
  1755. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1756. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1757. #endif
  1758. // Deploy BLTouch at the start of any probe
  1759. #if ENABLED(BLTOUCH)
  1760. set_bltouch_deployed(true);
  1761. #endif
  1762. // Move down until probe triggered
  1763. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1764. // Retract BLTouch immediately after a probe
  1765. #if ENABLED(BLTOUCH)
  1766. set_bltouch_deployed(false);
  1767. #endif
  1768. // Clear endstop flags
  1769. endstops.hit_on_purpose();
  1770. // Tell the planner where we actually are
  1771. planner.sync_from_steppers();
  1772. // Get Z where the steppers were interrupted
  1773. set_current_from_steppers_for_axis(Z_AXIS);
  1774. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1775. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1776. #endif
  1777. }
  1778. // Do a single Z probe and return with current_position[Z_AXIS]
  1779. // at the height where the probe triggered.
  1780. static float run_z_probe() {
  1781. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1782. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1783. #endif
  1784. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1785. refresh_cmd_timeout();
  1786. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1787. // Do a first probe at the fast speed
  1788. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1789. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1790. float first_probe_z = current_position[Z_AXIS];
  1791. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1792. #endif
  1793. // move up by the bump distance
  1794. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1795. #else
  1796. // If the nozzle is above the travel height then
  1797. // move down quickly before doing the slow probe
  1798. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1799. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1800. if (z < current_position[Z_AXIS])
  1801. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1802. #endif
  1803. // move down slowly to find bed
  1804. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1805. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1806. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1807. #endif
  1808. // Debug: compare probe heights
  1809. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1810. if (DEBUGGING(LEVELING)) {
  1811. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1812. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1813. }
  1814. #endif
  1815. return current_position[Z_AXIS];
  1816. }
  1817. //
  1818. // - Move to the given XY
  1819. // - Deploy the probe, if not already deployed
  1820. // - Probe the bed, get the Z position
  1821. // - Depending on the 'stow' flag
  1822. // - Stow the probe, or
  1823. // - Raise to the BETWEEN height
  1824. // - Return the probed Z position
  1825. //
  1826. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1827. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1828. if (DEBUGGING(LEVELING)) {
  1829. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1830. SERIAL_ECHOPAIR(", ", y);
  1831. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1832. SERIAL_ECHOLNPGM("stow)");
  1833. DEBUG_POS("", current_position);
  1834. }
  1835. #endif
  1836. float old_feedrate_mm_s = feedrate_mm_s;
  1837. // Ensure a minimum height before moving the probe
  1838. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1839. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1840. // Move the probe to the given XY
  1841. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1842. if (DEPLOY_PROBE()) return NAN;
  1843. float measured_z = run_z_probe();
  1844. if (!stow)
  1845. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1846. else
  1847. if (STOW_PROBE()) return NAN;
  1848. if (verbose_level > 2) {
  1849. SERIAL_PROTOCOLPGM("Bed X: ");
  1850. SERIAL_PROTOCOL_F(x, 3);
  1851. SERIAL_PROTOCOLPGM(" Y: ");
  1852. SERIAL_PROTOCOL_F(y, 3);
  1853. SERIAL_PROTOCOLPGM(" Z: ");
  1854. SERIAL_PROTOCOL_F(measured_z, 3);
  1855. SERIAL_EOL;
  1856. }
  1857. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1858. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1859. #endif
  1860. feedrate_mm_s = old_feedrate_mm_s;
  1861. return measured_z;
  1862. }
  1863. #endif // HAS_BED_PROBE
  1864. #if PLANNER_LEVELING
  1865. /**
  1866. * Turn bed leveling on or off, fixing the current
  1867. * position as-needed.
  1868. *
  1869. * Disable: Current position = physical position
  1870. * Enable: Current position = "unleveled" physical position
  1871. */
  1872. void set_bed_leveling_enabled(bool enable=true) {
  1873. #if ENABLED(MESH_BED_LEVELING)
  1874. if (!enable && mbl.active())
  1875. current_position[Z_AXIS] +=
  1876. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - (MESH_HOME_SEARCH_Z);
  1877. mbl.set_active(enable && mbl.has_mesh()); // was set_has_mesh(). Is this not correct?
  1878. #elif HAS_ABL
  1879. if (enable != planner.abl_enabled) {
  1880. planner.abl_enabled = !planner.abl_enabled;
  1881. if (!planner.abl_enabled)
  1882. set_current_from_steppers_for_axis(
  1883. #if ABL_PLANAR
  1884. ALL_AXES
  1885. #else
  1886. Z_AXIS
  1887. #endif
  1888. );
  1889. else
  1890. planner.unapply_leveling(current_position);
  1891. }
  1892. #endif
  1893. }
  1894. /**
  1895. * Reset calibration results to zero.
  1896. */
  1897. void reset_bed_level() {
  1898. #if ENABLED(MESH_BED_LEVELING)
  1899. if (mbl.has_mesh()) {
  1900. set_bed_leveling_enabled(false);
  1901. mbl.reset();
  1902. mbl.set_has_mesh(false);
  1903. }
  1904. #else
  1905. planner.abl_enabled = false;
  1906. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1907. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1908. #endif
  1909. #if ABL_PLANAR
  1910. planner.bed_level_matrix.set_to_identity();
  1911. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1912. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++)
  1913. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++)
  1914. bed_level_grid[x][y] = 1000.0;
  1915. #endif
  1916. #endif
  1917. }
  1918. #endif // PLANNER_LEVELING
  1919. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1920. /**
  1921. * Extrapolate a single point from its neighbors
  1922. */
  1923. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1924. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1925. if (DEBUGGING(LEVELING)) {
  1926. SERIAL_ECHOPGM("Extrapolate [");
  1927. if (x < 10) SERIAL_CHAR(' ');
  1928. SERIAL_ECHO((int)x);
  1929. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  1930. SERIAL_CHAR(' ');
  1931. if (y < 10) SERIAL_CHAR(' ');
  1932. SERIAL_ECHO((int)y);
  1933. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  1934. SERIAL_CHAR(']');
  1935. }
  1936. #endif
  1937. if (bed_level_grid[x][y] < 999.0) {
  1938. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1939. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  1940. #endif
  1941. return; // Don't overwrite good values.
  1942. }
  1943. SERIAL_EOL;
  1944. // Get X neighbors, Y neighbors, and XY neighbors
  1945. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  1946. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  1947. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  1948. // Treat far unprobed points as zero, near as equal to far
  1949. if (a2 > 999.0) a2 = 0.0; if (a1 > 999.0) a1 = a2;
  1950. if (b2 > 999.0) b2 = 0.0; if (b1 > 999.0) b1 = b2;
  1951. if (c2 > 999.0) c2 = 0.0; if (c1 > 999.0) c1 = c2;
  1952. float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  1953. // Take the average intstead of the median
  1954. bed_level_grid[x][y] = (a + b + c) / 3.0;
  1955. // Median is robust (ignores outliers).
  1956. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1957. // : ((c < b) ? b : (a < c) ? a : c);
  1958. }
  1959. #define EXTRAPOLATE_FROM_EDGE
  1960. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  1961. #if ABL_GRID_POINTS_X < ABL_GRID_POINTS_Y
  1962. #define HALF_IN_X
  1963. #elif ABL_GRID_POINTS_Y < ABL_GRID_POINTS_X
  1964. #define HALF_IN_Y
  1965. #endif
  1966. #endif
  1967. /**
  1968. * Fill in the unprobed points (corners of circular print surface)
  1969. * using linear extrapolation, away from the center.
  1970. */
  1971. static void extrapolate_unprobed_bed_level() {
  1972. #ifdef HALF_IN_X
  1973. const uint8_t ctrx2 = 0, xlen = ABL_GRID_POINTS_X - 1;
  1974. #else
  1975. const uint8_t ctrx1 = (ABL_GRID_POINTS_X - 1) / 2, // left-of-center
  1976. ctrx2 = ABL_GRID_POINTS_X / 2, // right-of-center
  1977. xlen = ctrx1;
  1978. #endif
  1979. #ifdef HALF_IN_Y
  1980. const uint8_t ctry2 = 0, ylen = ABL_GRID_POINTS_Y - 1;
  1981. #else
  1982. const uint8_t ctry1 = (ABL_GRID_POINTS_Y - 1) / 2, // top-of-center
  1983. ctry2 = ABL_GRID_POINTS_Y / 2, // bottom-of-center
  1984. ylen = ctry1;
  1985. #endif
  1986. for (uint8_t xo = 0; xo <= xlen; xo++)
  1987. for (uint8_t yo = 0; yo <= ylen; yo++) {
  1988. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  1989. #ifndef HALF_IN_X
  1990. uint8_t x1 = ctrx1 - xo;
  1991. #endif
  1992. #ifndef HALF_IN_Y
  1993. uint8_t y1 = ctry1 - yo;
  1994. #ifndef HALF_IN_X
  1995. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  1996. #endif
  1997. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  1998. #endif
  1999. #ifndef HALF_IN_X
  2000. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2001. #endif
  2002. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2003. }
  2004. }
  2005. /**
  2006. * Print calibration results for plotting or manual frame adjustment.
  2007. */
  2008. static void print_bed_level() {
  2009. SERIAL_ECHOPGM("Bilinear Leveling Grid:\n ");
  2010. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  2011. SERIAL_PROTOCOLPGM(" ");
  2012. if (x < 10) SERIAL_PROTOCOLCHAR(' ');
  2013. SERIAL_PROTOCOL((int)x);
  2014. }
  2015. SERIAL_EOL;
  2016. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  2017. if (y < 9) SERIAL_PROTOCOLCHAR(' ');
  2018. SERIAL_PROTOCOL((int)y);
  2019. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  2020. SERIAL_PROTOCOLCHAR(' ');
  2021. float offset = bed_level_grid[x][y];
  2022. if (offset < 999.0) {
  2023. if (offset > 0) SERIAL_CHAR('+');
  2024. SERIAL_PROTOCOL_F(offset, 2);
  2025. }
  2026. else
  2027. SERIAL_PROTOCOLPGM(" ====");
  2028. }
  2029. SERIAL_EOL;
  2030. }
  2031. SERIAL_EOL;
  2032. }
  2033. #endif // AUTO_BED_LEVELING_BILINEAR
  2034. /**
  2035. * Home an individual linear axis
  2036. */
  2037. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2038. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2039. if (DEBUGGING(LEVELING)) {
  2040. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2041. SERIAL_ECHOPAIR(", ", distance);
  2042. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2043. SERIAL_CHAR(')');
  2044. SERIAL_EOL;
  2045. }
  2046. #endif
  2047. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2048. bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2049. if (deploy_bltouch) set_bltouch_deployed(true);
  2050. #endif
  2051. // Tell the planner we're at Z=0
  2052. current_position[axis] = 0;
  2053. #if IS_SCARA
  2054. SYNC_PLAN_POSITION_KINEMATIC();
  2055. current_position[axis] = distance;
  2056. inverse_kinematics(current_position);
  2057. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2058. #else
  2059. sync_plan_position();
  2060. current_position[axis] = distance;
  2061. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2062. #endif
  2063. stepper.synchronize();
  2064. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2065. if (deploy_bltouch) set_bltouch_deployed(false);
  2066. #endif
  2067. endstops.hit_on_purpose();
  2068. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2069. if (DEBUGGING(LEVELING)) {
  2070. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2071. SERIAL_CHAR(')');
  2072. SERIAL_EOL;
  2073. }
  2074. #endif
  2075. }
  2076. /**
  2077. * Home an individual "raw axis" to its endstop.
  2078. * This applies to XYZ on Cartesian and Core robots, and
  2079. * to the individual ABC steppers on DELTA and SCARA.
  2080. *
  2081. * At the end of the procedure the axis is marked as
  2082. * homed and the current position of that axis is updated.
  2083. * Kinematic robots should wait till all axes are homed
  2084. * before updating the current position.
  2085. */
  2086. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2087. static void homeaxis(AxisEnum axis) {
  2088. #if IS_SCARA
  2089. // Only Z homing (with probe) is permitted
  2090. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2091. #else
  2092. #define CAN_HOME(A) \
  2093. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2094. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2095. #endif
  2096. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2097. if (DEBUGGING(LEVELING)) {
  2098. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2099. SERIAL_CHAR(')');
  2100. SERIAL_EOL;
  2101. }
  2102. #endif
  2103. int axis_home_dir =
  2104. #if ENABLED(DUAL_X_CARRIAGE)
  2105. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2106. #endif
  2107. home_dir(axis);
  2108. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2109. #if HOMING_Z_WITH_PROBE
  2110. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2111. #endif
  2112. // Set a flag for Z motor locking
  2113. #if ENABLED(Z_DUAL_ENDSTOPS)
  2114. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2115. #endif
  2116. // Fast move towards endstop until triggered
  2117. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2118. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2119. #endif
  2120. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2121. // When homing Z with probe respect probe clearance
  2122. const float bump = axis_home_dir * (
  2123. #if HOMING_Z_WITH_PROBE
  2124. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2125. #endif
  2126. home_bump_mm(axis)
  2127. );
  2128. // If a second homing move is configured...
  2129. if (bump) {
  2130. // Move away from the endstop by the axis HOME_BUMP_MM
  2131. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2132. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2133. #endif
  2134. do_homing_move(axis, -bump);
  2135. // Slow move towards endstop until triggered
  2136. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2137. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2138. #endif
  2139. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2140. }
  2141. #if ENABLED(Z_DUAL_ENDSTOPS)
  2142. if (axis == Z_AXIS) {
  2143. float adj = fabs(z_endstop_adj);
  2144. bool lockZ1;
  2145. if (axis_home_dir > 0) {
  2146. adj = -adj;
  2147. lockZ1 = (z_endstop_adj > 0);
  2148. }
  2149. else
  2150. lockZ1 = (z_endstop_adj < 0);
  2151. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2152. // Move to the adjusted endstop height
  2153. do_homing_move(axis, adj);
  2154. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2155. stepper.set_homing_flag(false);
  2156. } // Z_AXIS
  2157. #endif
  2158. #if IS_SCARA
  2159. set_axis_is_at_home(axis);
  2160. SYNC_PLAN_POSITION_KINEMATIC();
  2161. #elif ENABLED(DELTA)
  2162. // Delta has already moved all three towers up in G28
  2163. // so here it re-homes each tower in turn.
  2164. // Delta homing treats the axes as normal linear axes.
  2165. // retrace by the amount specified in endstop_adj
  2166. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2167. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2168. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2169. #endif
  2170. do_homing_move(axis, endstop_adj[axis]);
  2171. }
  2172. #else
  2173. // For cartesian/core machines,
  2174. // set the axis to its home position
  2175. set_axis_is_at_home(axis);
  2176. sync_plan_position();
  2177. destination[axis] = current_position[axis];
  2178. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2179. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2180. #endif
  2181. #endif
  2182. // Put away the Z probe
  2183. #if HOMING_Z_WITH_PROBE
  2184. if (axis == Z_AXIS && STOW_PROBE()) return;
  2185. #endif
  2186. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2187. if (DEBUGGING(LEVELING)) {
  2188. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2189. SERIAL_CHAR(')');
  2190. SERIAL_EOL;
  2191. }
  2192. #endif
  2193. } // homeaxis()
  2194. #if ENABLED(FWRETRACT)
  2195. void retract(bool retracting, bool swapping = false) {
  2196. if (retracting == retracted[active_extruder]) return;
  2197. float old_feedrate_mm_s = feedrate_mm_s;
  2198. set_destination_to_current();
  2199. if (retracting) {
  2200. feedrate_mm_s = retract_feedrate_mm_s;
  2201. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2202. sync_plan_position_e();
  2203. prepare_move_to_destination();
  2204. if (retract_zlift > 0.01) {
  2205. current_position[Z_AXIS] -= retract_zlift;
  2206. SYNC_PLAN_POSITION_KINEMATIC();
  2207. prepare_move_to_destination();
  2208. }
  2209. }
  2210. else {
  2211. if (retract_zlift > 0.01) {
  2212. current_position[Z_AXIS] += retract_zlift;
  2213. SYNC_PLAN_POSITION_KINEMATIC();
  2214. }
  2215. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2216. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2217. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2218. sync_plan_position_e();
  2219. prepare_move_to_destination();
  2220. }
  2221. feedrate_mm_s = old_feedrate_mm_s;
  2222. retracted[active_extruder] = retracting;
  2223. } // retract()
  2224. #endif // FWRETRACT
  2225. #if ENABLED(MIXING_EXTRUDER)
  2226. void normalize_mix() {
  2227. float mix_total = 0.0;
  2228. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2229. float v = mixing_factor[i];
  2230. if (v < 0) v = mixing_factor[i] = 0;
  2231. mix_total += v;
  2232. }
  2233. // Scale all values if they don't add up to ~1.0
  2234. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2235. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2236. float mix_scale = 1.0 / mix_total;
  2237. for (int i = 0; i < MIXING_STEPPERS; i++)
  2238. mixing_factor[i] *= mix_scale;
  2239. }
  2240. }
  2241. #if ENABLED(DIRECT_MIXING_IN_G1)
  2242. // Get mixing parameters from the GCode
  2243. // Factors that are left out are set to 0
  2244. // The total "must" be 1.0 (but it will be normalized)
  2245. void gcode_get_mix() {
  2246. const char* mixing_codes = "ABCDHI";
  2247. for (int i = 0; i < MIXING_STEPPERS; i++)
  2248. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2249. normalize_mix();
  2250. }
  2251. #endif
  2252. #endif
  2253. /**
  2254. * ***************************************************************************
  2255. * ***************************** G-CODE HANDLING *****************************
  2256. * ***************************************************************************
  2257. */
  2258. /**
  2259. * Set XYZE destination and feedrate from the current GCode command
  2260. *
  2261. * - Set destination from included axis codes
  2262. * - Set to current for missing axis codes
  2263. * - Set the feedrate, if included
  2264. */
  2265. void gcode_get_destination() {
  2266. LOOP_XYZE(i) {
  2267. if (code_seen(axis_codes[i]))
  2268. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2269. else
  2270. destination[i] = current_position[i];
  2271. }
  2272. if (code_seen('F') && code_value_linear_units() > 0.0)
  2273. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2274. #if ENABLED(PRINTCOUNTER)
  2275. if (!DEBUGGING(DRYRUN))
  2276. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2277. #endif
  2278. // Get ABCDHI mixing factors
  2279. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2280. gcode_get_mix();
  2281. #endif
  2282. }
  2283. void unknown_command_error() {
  2284. SERIAL_ECHO_START;
  2285. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2286. SERIAL_CHAR('"');
  2287. SERIAL_EOL;
  2288. }
  2289. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2290. /**
  2291. * Output a "busy" message at regular intervals
  2292. * while the machine is not accepting commands.
  2293. */
  2294. void host_keepalive() {
  2295. millis_t ms = millis();
  2296. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2297. if (PENDING(ms, next_busy_signal_ms)) return;
  2298. switch (busy_state) {
  2299. case IN_HANDLER:
  2300. case IN_PROCESS:
  2301. SERIAL_ECHO_START;
  2302. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2303. break;
  2304. case PAUSED_FOR_USER:
  2305. SERIAL_ECHO_START;
  2306. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2307. break;
  2308. case PAUSED_FOR_INPUT:
  2309. SERIAL_ECHO_START;
  2310. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2311. break;
  2312. default:
  2313. break;
  2314. }
  2315. }
  2316. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2317. }
  2318. #endif //HOST_KEEPALIVE_FEATURE
  2319. bool position_is_reachable(float target[XYZ]
  2320. #if HAS_BED_PROBE
  2321. , bool by_probe=false
  2322. #endif
  2323. ) {
  2324. float dx = RAW_X_POSITION(target[X_AXIS]),
  2325. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2326. #if HAS_BED_PROBE
  2327. if (by_probe) {
  2328. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2329. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2330. }
  2331. #endif
  2332. #if IS_SCARA
  2333. #if MIDDLE_DEAD_ZONE_R > 0
  2334. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2335. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2336. #else
  2337. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2338. #endif
  2339. #elif ENABLED(DELTA)
  2340. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2341. #else
  2342. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2343. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2344. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2345. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2346. #endif
  2347. }
  2348. /**************************************************
  2349. ***************** GCode Handlers *****************
  2350. **************************************************/
  2351. /**
  2352. * G0, G1: Coordinated movement of X Y Z E axes
  2353. */
  2354. inline void gcode_G0_G1(
  2355. #if IS_SCARA
  2356. bool fast_move=false
  2357. #endif
  2358. ) {
  2359. if (IsRunning()) {
  2360. gcode_get_destination(); // For X Y Z E F
  2361. #if ENABLED(FWRETRACT)
  2362. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2363. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2364. // Is this move an attempt to retract or recover?
  2365. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2366. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2367. sync_plan_position_e(); // AND from the planner
  2368. retract(!retracted[active_extruder]);
  2369. return;
  2370. }
  2371. }
  2372. #endif //FWRETRACT
  2373. #if IS_SCARA
  2374. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2375. #else
  2376. prepare_move_to_destination();
  2377. #endif
  2378. }
  2379. }
  2380. /**
  2381. * G2: Clockwise Arc
  2382. * G3: Counterclockwise Arc
  2383. *
  2384. * This command has two forms: IJ-form and R-form.
  2385. *
  2386. * - I specifies an X offset. J specifies a Y offset.
  2387. * At least one of the IJ parameters is required.
  2388. * X and Y can be omitted to do a complete circle.
  2389. * The given XY is not error-checked. The arc ends
  2390. * based on the angle of the destination.
  2391. * Mixing I or J with R will throw an error.
  2392. *
  2393. * - R specifies the radius. X or Y is required.
  2394. * Omitting both X and Y will throw an error.
  2395. * X or Y must differ from the current XY.
  2396. * Mixing R with I or J will throw an error.
  2397. *
  2398. * Examples:
  2399. *
  2400. * G2 I10 ; CW circle centered at X+10
  2401. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2402. */
  2403. #if ENABLED(ARC_SUPPORT)
  2404. inline void gcode_G2_G3(bool clockwise) {
  2405. if (IsRunning()) {
  2406. #if ENABLED(SF_ARC_FIX)
  2407. bool relative_mode_backup = relative_mode;
  2408. relative_mode = true;
  2409. #endif
  2410. gcode_get_destination();
  2411. #if ENABLED(SF_ARC_FIX)
  2412. relative_mode = relative_mode_backup;
  2413. #endif
  2414. float arc_offset[2] = { 0.0, 0.0 };
  2415. if (code_seen('R')) {
  2416. const float r = code_value_axis_units(X_AXIS),
  2417. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2418. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2419. if (r && (x2 != x1 || y2 != y1)) {
  2420. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2421. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2422. d = HYPOT(dx, dy), // Linear distance between the points
  2423. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2424. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2425. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2426. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2427. arc_offset[X_AXIS] = cx - x1;
  2428. arc_offset[Y_AXIS] = cy - y1;
  2429. }
  2430. }
  2431. else {
  2432. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2433. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2434. }
  2435. if (arc_offset[0] || arc_offset[1]) {
  2436. // Send an arc to the planner
  2437. plan_arc(destination, arc_offset, clockwise);
  2438. refresh_cmd_timeout();
  2439. }
  2440. else {
  2441. // Bad arguments
  2442. SERIAL_ERROR_START;
  2443. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2444. }
  2445. }
  2446. }
  2447. #endif
  2448. /**
  2449. * G4: Dwell S<seconds> or P<milliseconds>
  2450. */
  2451. inline void gcode_G4() {
  2452. millis_t dwell_ms = 0;
  2453. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2454. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2455. stepper.synchronize();
  2456. refresh_cmd_timeout();
  2457. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2458. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2459. while (PENDING(millis(), dwell_ms)) idle();
  2460. }
  2461. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2462. /**
  2463. * Parameters interpreted according to:
  2464. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2465. * However I, J omission is not supported at this point; all
  2466. * parameters can be omitted and default to zero.
  2467. */
  2468. /**
  2469. * G5: Cubic B-spline
  2470. */
  2471. inline void gcode_G5() {
  2472. if (IsRunning()) {
  2473. gcode_get_destination();
  2474. float offset[] = {
  2475. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2476. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2477. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2478. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2479. };
  2480. plan_cubic_move(offset);
  2481. }
  2482. }
  2483. #endif // BEZIER_CURVE_SUPPORT
  2484. #if ENABLED(FWRETRACT)
  2485. /**
  2486. * G10 - Retract filament according to settings of M207
  2487. * G11 - Recover filament according to settings of M208
  2488. */
  2489. inline void gcode_G10_G11(bool doRetract=false) {
  2490. #if EXTRUDERS > 1
  2491. if (doRetract) {
  2492. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2493. }
  2494. #endif
  2495. retract(doRetract
  2496. #if EXTRUDERS > 1
  2497. , retracted_swap[active_extruder]
  2498. #endif
  2499. );
  2500. }
  2501. #endif //FWRETRACT
  2502. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2503. /**
  2504. * G12: Clean the nozzle
  2505. */
  2506. inline void gcode_G12() {
  2507. // Don't allow nozzle cleaning without homing first
  2508. if (axis_unhomed_error(true, true, true)) { return; }
  2509. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2510. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2511. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2512. Nozzle::clean(pattern, strokes, objects);
  2513. }
  2514. #endif
  2515. #if ENABLED(INCH_MODE_SUPPORT)
  2516. /**
  2517. * G20: Set input mode to inches
  2518. */
  2519. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2520. /**
  2521. * G21: Set input mode to millimeters
  2522. */
  2523. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2524. #endif
  2525. #if ENABLED(NOZZLE_PARK_FEATURE)
  2526. /**
  2527. * G27: Park the nozzle
  2528. */
  2529. inline void gcode_G27() {
  2530. // Don't allow nozzle parking without homing first
  2531. if (axis_unhomed_error(true, true, true)) { return; }
  2532. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2533. Nozzle::park(z_action);
  2534. }
  2535. #endif // NOZZLE_PARK_FEATURE
  2536. #if ENABLED(QUICK_HOME)
  2537. static void quick_home_xy() {
  2538. // Pretend the current position is 0,0
  2539. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2540. sync_plan_position();
  2541. int x_axis_home_dir =
  2542. #if ENABLED(DUAL_X_CARRIAGE)
  2543. x_home_dir(active_extruder)
  2544. #else
  2545. home_dir(X_AXIS)
  2546. #endif
  2547. ;
  2548. float mlx = max_length(X_AXIS),
  2549. mly = max_length(Y_AXIS),
  2550. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2551. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2552. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2553. endstops.hit_on_purpose(); // clear endstop hit flags
  2554. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2555. }
  2556. #endif // QUICK_HOME
  2557. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2558. void log_machine_info() {
  2559. SERIAL_ECHOPGM("Machine Type: ");
  2560. #if ENABLED(DELTA)
  2561. SERIAL_ECHOLNPGM("Delta");
  2562. #elif IS_SCARA
  2563. SERIAL_ECHOLNPGM("SCARA");
  2564. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2565. SERIAL_ECHOLNPGM("Core");
  2566. #else
  2567. SERIAL_ECHOLNPGM("Cartesian");
  2568. #endif
  2569. SERIAL_ECHOPGM("Probe: ");
  2570. #if ENABLED(FIX_MOUNTED_PROBE)
  2571. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2572. #elif ENABLED(BLTOUCH)
  2573. SERIAL_ECHOLNPGM("BLTOUCH");
  2574. #elif HAS_Z_SERVO_ENDSTOP
  2575. SERIAL_ECHOLNPGM("SERVO PROBE");
  2576. #elif ENABLED(Z_PROBE_SLED)
  2577. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2578. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2579. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2580. #else
  2581. SERIAL_ECHOLNPGM("NONE");
  2582. #endif
  2583. #if HAS_BED_PROBE
  2584. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2585. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2586. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2587. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2588. SERIAL_ECHOPGM(" (Right");
  2589. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2590. SERIAL_ECHOPGM(" (Left");
  2591. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2592. SERIAL_ECHOPGM(" (Middle");
  2593. #else
  2594. SERIAL_ECHOPGM(" (Aligned With");
  2595. #endif
  2596. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2597. SERIAL_ECHOPGM("-Back");
  2598. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2599. SERIAL_ECHOPGM("-Front");
  2600. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2601. SERIAL_ECHOPGM("-Center");
  2602. #endif
  2603. if (zprobe_zoffset < 0)
  2604. SERIAL_ECHOPGM(" & Below");
  2605. else if (zprobe_zoffset > 0)
  2606. SERIAL_ECHOPGM(" & Above");
  2607. else
  2608. SERIAL_ECHOPGM(" & Same Z as");
  2609. SERIAL_ECHOLNPGM(" Nozzle)");
  2610. #endif
  2611. #if HAS_ABL
  2612. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2613. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2614. SERIAL_ECHOPGM("LINEAR");
  2615. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2616. SERIAL_ECHOPGM("BILINEAR");
  2617. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2618. SERIAL_ECHOPGM("3POINT");
  2619. #endif
  2620. if (planner.abl_enabled) {
  2621. SERIAL_ECHOLNPGM(" (enabled)");
  2622. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)
  2623. float diff[XYZ] = {
  2624. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2625. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2626. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2627. };
  2628. SERIAL_ECHOPGM("ABL Adjustment X");
  2629. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2630. SERIAL_ECHO(diff[X_AXIS]);
  2631. SERIAL_ECHOPGM(" Y");
  2632. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2633. SERIAL_ECHO(diff[Y_AXIS]);
  2634. SERIAL_ECHOPGM(" Z");
  2635. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2636. SERIAL_ECHO(diff[Z_AXIS]);
  2637. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2638. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2639. #endif
  2640. }
  2641. SERIAL_EOL;
  2642. #elif ENABLED(MESH_BED_LEVELING)
  2643. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2644. if (mbl.active()) {
  2645. SERIAL_ECHOLNPGM(" (enabled)");
  2646. SERIAL_ECHOPAIR("MBL Adjustment Z", mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)));
  2647. }
  2648. SERIAL_EOL;
  2649. #endif
  2650. }
  2651. #endif // DEBUG_LEVELING_FEATURE
  2652. #if ENABLED(DELTA)
  2653. /**
  2654. * A delta can only safely home all axes at the same time
  2655. * This is like quick_home_xy() but for 3 towers.
  2656. */
  2657. inline void home_delta() {
  2658. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2659. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2660. #endif
  2661. // Init the current position of all carriages to 0,0,0
  2662. memset(current_position, 0, sizeof(current_position));
  2663. sync_plan_position();
  2664. // Move all carriages together linearly until an endstop is hit.
  2665. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2666. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2667. line_to_current_position();
  2668. stepper.synchronize();
  2669. endstops.hit_on_purpose(); // clear endstop hit flags
  2670. // At least one carriage has reached the top.
  2671. // Now re-home each carriage separately.
  2672. HOMEAXIS(A);
  2673. HOMEAXIS(B);
  2674. HOMEAXIS(C);
  2675. // Set all carriages to their home positions
  2676. // Do this here all at once for Delta, because
  2677. // XYZ isn't ABC. Applying this per-tower would
  2678. // give the impression that they are the same.
  2679. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2680. SYNC_PLAN_POSITION_KINEMATIC();
  2681. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2682. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2683. #endif
  2684. }
  2685. #endif // DELTA
  2686. #if ENABLED(Z_SAFE_HOMING)
  2687. inline void home_z_safely() {
  2688. // Disallow Z homing if X or Y are unknown
  2689. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2690. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2691. SERIAL_ECHO_START;
  2692. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2693. return;
  2694. }
  2695. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2696. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2697. #endif
  2698. SYNC_PLAN_POSITION_KINEMATIC();
  2699. /**
  2700. * Move the Z probe (or just the nozzle) to the safe homing point
  2701. */
  2702. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2703. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2704. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2705. if (position_is_reachable(
  2706. destination
  2707. #if HOMING_Z_WITH_PROBE
  2708. , true
  2709. #endif
  2710. )
  2711. ) {
  2712. #if HOMING_Z_WITH_PROBE
  2713. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2714. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2715. #endif
  2716. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2717. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2718. #endif
  2719. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2720. HOMEAXIS(Z);
  2721. }
  2722. else {
  2723. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2724. SERIAL_ECHO_START;
  2725. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2726. }
  2727. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2728. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2729. #endif
  2730. }
  2731. #endif // Z_SAFE_HOMING
  2732. /**
  2733. * G28: Home all axes according to settings
  2734. *
  2735. * Parameters
  2736. *
  2737. * None Home to all axes with no parameters.
  2738. * With QUICK_HOME enabled XY will home together, then Z.
  2739. *
  2740. * Cartesian parameters
  2741. *
  2742. * X Home to the X endstop
  2743. * Y Home to the Y endstop
  2744. * Z Home to the Z endstop
  2745. *
  2746. */
  2747. inline void gcode_G28() {
  2748. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2749. if (DEBUGGING(LEVELING)) {
  2750. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2751. log_machine_info();
  2752. }
  2753. #endif
  2754. // Wait for planner moves to finish!
  2755. stepper.synchronize();
  2756. // For auto bed leveling, clear the level matrix
  2757. #if HAS_ABL
  2758. reset_bed_level();
  2759. #endif
  2760. // Always home with tool 0 active
  2761. #if HOTENDS > 1
  2762. uint8_t old_tool_index = active_extruder;
  2763. tool_change(0, 0, true);
  2764. #endif
  2765. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2766. extruder_duplication_enabled = false;
  2767. #endif
  2768. /**
  2769. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2770. * on again when homing all axis
  2771. */
  2772. #if ENABLED(MESH_BED_LEVELING)
  2773. float pre_home_z = MESH_HOME_SEARCH_Z;
  2774. if (mbl.active()) {
  2775. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2776. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2777. #endif
  2778. // Save known Z position if already homed
  2779. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2780. pre_home_z = current_position[Z_AXIS];
  2781. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2782. }
  2783. mbl.set_active(false);
  2784. current_position[Z_AXIS] = pre_home_z;
  2785. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2786. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2787. #endif
  2788. }
  2789. #endif
  2790. setup_for_endstop_or_probe_move();
  2791. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2792. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2793. #endif
  2794. endstops.enable(true); // Enable endstops for next homing move
  2795. #if ENABLED(DELTA)
  2796. home_delta();
  2797. #else // NOT DELTA
  2798. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2799. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2800. set_destination_to_current();
  2801. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2802. if (home_all_axis || homeZ) {
  2803. HOMEAXIS(Z);
  2804. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2805. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2806. #endif
  2807. }
  2808. #else
  2809. if (home_all_axis || homeX || homeY) {
  2810. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2811. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2812. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2813. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2814. if (DEBUGGING(LEVELING))
  2815. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2816. #endif
  2817. do_blocking_move_to_z(destination[Z_AXIS]);
  2818. }
  2819. }
  2820. #endif
  2821. #if ENABLED(QUICK_HOME)
  2822. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2823. #endif
  2824. #if ENABLED(HOME_Y_BEFORE_X)
  2825. // Home Y
  2826. if (home_all_axis || homeY) {
  2827. HOMEAXIS(Y);
  2828. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2829. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2830. #endif
  2831. }
  2832. #endif
  2833. // Home X
  2834. if (home_all_axis || homeX) {
  2835. #if ENABLED(DUAL_X_CARRIAGE)
  2836. int tmp_extruder = active_extruder;
  2837. active_extruder = !active_extruder;
  2838. HOMEAXIS(X);
  2839. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2840. active_extruder = tmp_extruder;
  2841. HOMEAXIS(X);
  2842. // reset state used by the different modes
  2843. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2844. delayed_move_time = 0;
  2845. active_extruder_parked = true;
  2846. #else
  2847. HOMEAXIS(X);
  2848. #endif
  2849. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2850. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2851. #endif
  2852. }
  2853. #if DISABLED(HOME_Y_BEFORE_X)
  2854. // Home Y
  2855. if (home_all_axis || homeY) {
  2856. HOMEAXIS(Y);
  2857. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2858. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2859. #endif
  2860. }
  2861. #endif
  2862. // Home Z last if homing towards the bed
  2863. #if Z_HOME_DIR < 0
  2864. if (home_all_axis || homeZ) {
  2865. #if ENABLED(Z_SAFE_HOMING)
  2866. home_z_safely();
  2867. #else
  2868. HOMEAXIS(Z);
  2869. #endif
  2870. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2871. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2872. #endif
  2873. } // home_all_axis || homeZ
  2874. #endif // Z_HOME_DIR < 0
  2875. SYNC_PLAN_POSITION_KINEMATIC();
  2876. #endif // !DELTA (gcode_G28)
  2877. endstops.not_homing();
  2878. #if ENABLED(DELTA)
  2879. // move to a height where we can use the full xy-area
  2880. do_blocking_move_to_z(delta_clip_start_height);
  2881. #endif
  2882. // Enable mesh leveling again
  2883. #if ENABLED(MESH_BED_LEVELING)
  2884. if (mbl.has_mesh()) {
  2885. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2886. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2887. #endif
  2888. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2889. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2890. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2891. #endif
  2892. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2893. #if Z_HOME_DIR > 0
  2894. + Z_MAX_POS
  2895. #endif
  2896. ;
  2897. SYNC_PLAN_POSITION_KINEMATIC();
  2898. mbl.set_active(true);
  2899. #if ENABLED(MESH_G28_REST_ORIGIN)
  2900. current_position[Z_AXIS] = 0.0;
  2901. set_destination_to_current();
  2902. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  2903. stepper.synchronize();
  2904. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2905. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2906. #endif
  2907. #else
  2908. planner.unapply_leveling(current_position);
  2909. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2910. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2911. #endif
  2912. #endif
  2913. }
  2914. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2915. current_position[Z_AXIS] = pre_home_z;
  2916. SYNC_PLAN_POSITION_KINEMATIC();
  2917. mbl.set_active(true);
  2918. planner.unapply_leveling(current_position);
  2919. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2920. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2921. #endif
  2922. }
  2923. }
  2924. #endif
  2925. clean_up_after_endstop_or_probe_move();
  2926. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2927. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2928. #endif
  2929. // Restore the active tool after homing
  2930. #if HOTENDS > 1
  2931. tool_change(old_tool_index, 0, true);
  2932. #endif
  2933. report_current_position();
  2934. }
  2935. #if HAS_PROBING_PROCEDURE
  2936. void out_of_range_error(const char* p_edge) {
  2937. SERIAL_PROTOCOLPGM("?Probe ");
  2938. serialprintPGM(p_edge);
  2939. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2940. }
  2941. #endif
  2942. #if ENABLED(MESH_BED_LEVELING)
  2943. inline void _mbl_goto_xy(float x, float y) {
  2944. float old_feedrate_mm_s = feedrate_mm_s;
  2945. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2946. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2947. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2948. + Z_CLEARANCE_BETWEEN_PROBES
  2949. #elif Z_HOMING_HEIGHT > 0
  2950. + Z_HOMING_HEIGHT
  2951. #endif
  2952. ;
  2953. line_to_current_position();
  2954. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2955. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2956. line_to_current_position();
  2957. #if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
  2958. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2959. line_to_current_position();
  2960. #endif
  2961. feedrate_mm_s = old_feedrate_mm_s;
  2962. stepper.synchronize();
  2963. }
  2964. /**
  2965. * G29: Mesh-based Z probe, probes a grid and produces a
  2966. * mesh to compensate for variable bed height
  2967. *
  2968. * Parameters With MESH_BED_LEVELING:
  2969. *
  2970. * S0 Produce a mesh report
  2971. * S1 Start probing mesh points
  2972. * S2 Probe the next mesh point
  2973. * S3 Xn Yn Zn.nn Manually modify a single point
  2974. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2975. * S5 Reset and disable mesh
  2976. *
  2977. * The S0 report the points as below
  2978. *
  2979. * +----> X-axis 1-n
  2980. * |
  2981. * |
  2982. * v Y-axis 1-n
  2983. *
  2984. */
  2985. inline void gcode_G29() {
  2986. static int probe_point = -1;
  2987. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2988. if (state < 0 || state > 5) {
  2989. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2990. return;
  2991. }
  2992. int8_t px, py;
  2993. switch (state) {
  2994. case MeshReport:
  2995. if (mbl.has_mesh()) {
  2996. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2997. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2998. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2999. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3000. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3001. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  3002. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  3003. SERIAL_PROTOCOLPGM(" ");
  3004. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  3005. }
  3006. SERIAL_EOL;
  3007. }
  3008. }
  3009. else
  3010. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3011. break;
  3012. case MeshStart:
  3013. mbl.reset();
  3014. probe_point = 0;
  3015. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3016. break;
  3017. case MeshNext:
  3018. if (probe_point < 0) {
  3019. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3020. return;
  3021. }
  3022. // For each G29 S2...
  3023. if (probe_point == 0) {
  3024. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  3025. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3026. #if Z_HOME_DIR > 0
  3027. + Z_MAX_POS
  3028. #endif
  3029. ;
  3030. SYNC_PLAN_POSITION_KINEMATIC();
  3031. }
  3032. else {
  3033. // For G29 S2 after adjusting Z.
  3034. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  3035. }
  3036. // If there's another point to sample, move there with optional lift.
  3037. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  3038. mbl.zigzag(probe_point, px, py);
  3039. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  3040. probe_point++;
  3041. }
  3042. else {
  3043. // One last "return to the bed" (as originally coded) at completion
  3044. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3045. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  3046. + Z_CLEARANCE_BETWEEN_PROBES
  3047. #elif Z_HOMING_HEIGHT > 0
  3048. + Z_HOMING_HEIGHT
  3049. #endif
  3050. ;
  3051. line_to_current_position();
  3052. stepper.synchronize();
  3053. // After recording the last point, activate the mbl and home
  3054. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3055. probe_point = -1;
  3056. mbl.set_has_mesh(true);
  3057. enqueue_and_echo_commands_P(PSTR("G28"));
  3058. }
  3059. break;
  3060. case MeshSet:
  3061. if (code_seen('X')) {
  3062. px = code_value_int() - 1;
  3063. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  3064. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  3065. return;
  3066. }
  3067. }
  3068. else {
  3069. SERIAL_PROTOCOLLNPGM("X not entered.");
  3070. return;
  3071. }
  3072. if (code_seen('Y')) {
  3073. py = code_value_int() - 1;
  3074. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  3075. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  3076. return;
  3077. }
  3078. }
  3079. else {
  3080. SERIAL_PROTOCOLLNPGM("Y not entered.");
  3081. return;
  3082. }
  3083. if (code_seen('Z')) {
  3084. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3085. }
  3086. else {
  3087. SERIAL_PROTOCOLLNPGM("Z not entered.");
  3088. return;
  3089. }
  3090. break;
  3091. case MeshSetZOffset:
  3092. if (code_seen('Z')) {
  3093. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3094. }
  3095. else {
  3096. SERIAL_PROTOCOLLNPGM("Z not entered.");
  3097. return;
  3098. }
  3099. break;
  3100. case MeshReset:
  3101. if (mbl.active()) {
  3102. current_position[Z_AXIS] +=
  3103. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  3104. mbl.reset();
  3105. SYNC_PLAN_POSITION_KINEMATIC();
  3106. }
  3107. else
  3108. mbl.reset();
  3109. } // switch(state)
  3110. report_current_position();
  3111. }
  3112. #elif HAS_ABL
  3113. /**
  3114. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3115. * Will fail if the printer has not been homed with G28.
  3116. *
  3117. * Enhanced G29 Auto Bed Leveling Probe Routine
  3118. *
  3119. * Parameters With ABL_GRID:
  3120. *
  3121. * P Set the size of the grid that will be probed (P x P points).
  3122. * Not supported by non-linear delta printer bed leveling.
  3123. * Example: "G29 P4"
  3124. *
  3125. * S Set the XY travel speed between probe points (in units/min)
  3126. *
  3127. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3128. * or clean the rotation Matrix. Useful to check the topology
  3129. * after a first run of G29.
  3130. *
  3131. * V Set the verbose level (0-4). Example: "G29 V3"
  3132. *
  3133. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3134. * This is useful for manual bed leveling and finding flaws in the bed (to
  3135. * assist with part placement).
  3136. * Not supported by non-linear delta printer bed leveling.
  3137. *
  3138. * F Set the Front limit of the probing grid
  3139. * B Set the Back limit of the probing grid
  3140. * L Set the Left limit of the probing grid
  3141. * R Set the Right limit of the probing grid
  3142. *
  3143. * Global Parameters:
  3144. *
  3145. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  3146. * Include "E" to engage/disengage the Z probe for each sample.
  3147. * There's no extra effect if you have a fixed Z probe.
  3148. * Usage: "G29 E" or "G29 e"
  3149. *
  3150. */
  3151. inline void gcode_G29() {
  3152. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3153. bool query = code_seen('Q');
  3154. uint8_t old_debug_flags = marlin_debug_flags;
  3155. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3156. if (DEBUGGING(LEVELING)) {
  3157. DEBUG_POS(">>> gcode_G29", current_position);
  3158. log_machine_info();
  3159. }
  3160. marlin_debug_flags = old_debug_flags;
  3161. if (query) return;
  3162. #endif
  3163. // Don't allow auto-leveling without homing first
  3164. if (axis_unhomed_error(true, true, true)) return;
  3165. int verbose_level = code_seen('V') ? code_value_int() : 1;
  3166. if (verbose_level < 0 || verbose_level > 4) {
  3167. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3168. return;
  3169. }
  3170. bool dryrun = code_seen('D'),
  3171. stow_probe_after_each = code_seen('E');
  3172. #if ABL_GRID
  3173. if (verbose_level > 0) {
  3174. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3175. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3176. }
  3177. #if ABL_PLANAR
  3178. bool do_topography_map = verbose_level > 2 || code_seen('T');
  3179. // X and Y specify points in each direction, overriding the default
  3180. // These values may be saved with the completed mesh
  3181. int abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_POINTS_X,
  3182. abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_POINTS_Y;
  3183. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3184. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3185. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3186. return;
  3187. }
  3188. #else
  3189. const int abl_grid_points_x = ABL_GRID_POINTS_X, abl_grid_points_y = ABL_GRID_POINTS_Y;
  3190. #endif
  3191. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3192. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  3193. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  3194. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  3195. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3196. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3197. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3198. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3199. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3200. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3201. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3202. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3203. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3204. if (left_out || right_out || front_out || back_out) {
  3205. if (left_out) {
  3206. out_of_range_error(PSTR("(L)eft"));
  3207. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3208. }
  3209. if (right_out) {
  3210. out_of_range_error(PSTR("(R)ight"));
  3211. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3212. }
  3213. if (front_out) {
  3214. out_of_range_error(PSTR("(F)ront"));
  3215. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3216. }
  3217. if (back_out) {
  3218. out_of_range_error(PSTR("(B)ack"));
  3219. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3220. }
  3221. return;
  3222. }
  3223. #endif // ABL_GRID
  3224. stepper.synchronize();
  3225. // Disable auto bed leveling during G29
  3226. bool abl_should_enable = planner.abl_enabled;
  3227. planner.abl_enabled = false;
  3228. if (!dryrun) {
  3229. // Re-orient the current position without leveling
  3230. // based on where the steppers are positioned.
  3231. set_current_from_steppers_for_axis(ALL_AXES);
  3232. // Sync the planner to where the steppers stopped
  3233. planner.sync_from_steppers();
  3234. }
  3235. setup_for_endstop_or_probe_move();
  3236. // Deploy the probe. Probe will raise if needed.
  3237. if (DEPLOY_PROBE()) {
  3238. planner.abl_enabled = abl_should_enable;
  3239. return;
  3240. }
  3241. float xProbe = 0, yProbe = 0, measured_z = 0;
  3242. #if ABL_GRID
  3243. // probe at the points of a lattice grid
  3244. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3245. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3246. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3247. float zoffset = zprobe_zoffset;
  3248. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3249. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3250. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3251. || left_probe_bed_position != bilinear_start[X_AXIS]
  3252. || front_probe_bed_position != bilinear_start[Y_AXIS]
  3253. ) {
  3254. reset_bed_level();
  3255. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3256. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3257. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3258. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3259. // Can't re-enable (on error) until the new grid is written
  3260. abl_should_enable = false;
  3261. }
  3262. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3263. /**
  3264. * solve the plane equation ax + by + d = z
  3265. * A is the matrix with rows [x y 1] for all the probed points
  3266. * B is the vector of the Z positions
  3267. * the normal vector to the plane is formed by the coefficients of the
  3268. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3269. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3270. */
  3271. int abl2 = abl_grid_points_x * abl_grid_points_y,
  3272. indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3273. probePointCounter = -1;
  3274. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3275. eqnBVector[abl2], // "B" vector of Z points
  3276. mean = 0.0;
  3277. #endif // AUTO_BED_LEVELING_LINEAR
  3278. #if ENABLED(PROBE_Y_FIRST)
  3279. #define PR_OUTER_VAR xCount
  3280. #define PR_OUTER_END abl_grid_points_x
  3281. #define PR_INNER_VAR yCount
  3282. #define PR_INNER_END abl_grid_points_y
  3283. #else
  3284. #define PR_OUTER_VAR yCount
  3285. #define PR_OUTER_END abl_grid_points_y
  3286. #define PR_INNER_VAR xCount
  3287. #define PR_INNER_END abl_grid_points_x
  3288. #endif
  3289. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3290. // Outer loop is Y with PROBE_Y_FIRST disabled
  3291. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3292. int8_t inStart, inStop, inInc;
  3293. if (zig) { // away from origin
  3294. inStart = 0;
  3295. inStop = PR_INNER_END;
  3296. inInc = 1;
  3297. }
  3298. else { // towards origin
  3299. inStart = PR_INNER_END - 1;
  3300. inStop = -1;
  3301. inInc = -1;
  3302. }
  3303. zig = !zig; // zag
  3304. // Inner loop is Y with PROBE_Y_FIRST enabled
  3305. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3306. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3307. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3308. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3309. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3310. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3311. indexIntoAB[xCount][yCount] = ++probePointCounter;
  3312. #endif
  3313. #if IS_KINEMATIC
  3314. // Avoid probing outside the round or hexagonal area
  3315. float pos[XYZ] = { xProbe, yProbe, 0 };
  3316. if (!position_is_reachable(pos, true)) continue;
  3317. #endif
  3318. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3319. if (measured_z == NAN) {
  3320. planner.abl_enabled = abl_should_enable;
  3321. return;
  3322. }
  3323. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3324. mean += measured_z;
  3325. eqnBVector[probePointCounter] = measured_z;
  3326. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3327. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3328. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3329. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3330. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3331. #endif
  3332. idle();
  3333. } //xProbe
  3334. } //yProbe
  3335. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3336. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3337. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3338. #endif
  3339. // Probe at 3 arbitrary points
  3340. vector_3 points[3] = {
  3341. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3342. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3343. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3344. };
  3345. for (uint8_t i = 0; i < 3; ++i) {
  3346. // Retain the last probe position
  3347. xProbe = LOGICAL_X_POSITION(points[i].x);
  3348. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3349. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3350. }
  3351. if (measured_z == NAN) {
  3352. planner.abl_enabled = abl_should_enable;
  3353. return;
  3354. }
  3355. if (!dryrun) {
  3356. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3357. if (planeNormal.z < 0) {
  3358. planeNormal.x *= -1;
  3359. planeNormal.y *= -1;
  3360. planeNormal.z *= -1;
  3361. }
  3362. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3363. // Can't re-enable (on error) until the new grid is written
  3364. abl_should_enable = false;
  3365. }
  3366. #endif // AUTO_BED_LEVELING_3POINT
  3367. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3368. if (STOW_PROBE()) {
  3369. planner.abl_enabled = abl_should_enable;
  3370. return;
  3371. }
  3372. //
  3373. // Unless this is a dry run, auto bed leveling will
  3374. // definitely be enabled after this point
  3375. //
  3376. // Restore state after probing
  3377. clean_up_after_endstop_or_probe_move();
  3378. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3379. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3380. #endif
  3381. // Calculate leveling, print reports, correct the position
  3382. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3383. if (!dryrun) extrapolate_unprobed_bed_level();
  3384. print_bed_level();
  3385. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3386. // For LINEAR leveling calculate matrix, print reports, correct the position
  3387. // solve lsq problem
  3388. float plane_equation_coefficients[3];
  3389. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3390. mean /= abl2;
  3391. if (verbose_level) {
  3392. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3393. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3394. SERIAL_PROTOCOLPGM(" b: ");
  3395. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3396. SERIAL_PROTOCOLPGM(" d: ");
  3397. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3398. SERIAL_EOL;
  3399. if (verbose_level > 2) {
  3400. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3401. SERIAL_PROTOCOL_F(mean, 8);
  3402. SERIAL_EOL;
  3403. }
  3404. }
  3405. // Create the matrix but don't correct the position yet
  3406. if (!dryrun) {
  3407. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3408. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3409. );
  3410. }
  3411. // Show the Topography map if enabled
  3412. if (do_topography_map) {
  3413. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3414. " +--- BACK --+\n"
  3415. " | |\n"
  3416. " L | (+) | R\n"
  3417. " E | | I\n"
  3418. " F | (-) N (+) | G\n"
  3419. " T | | H\n"
  3420. " | (-) | T\n"
  3421. " | |\n"
  3422. " O-- FRONT --+\n"
  3423. " (0,0)");
  3424. float min_diff = 999;
  3425. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3426. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3427. int ind = indexIntoAB[xx][yy];
  3428. float diff = eqnBVector[ind] - mean,
  3429. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3430. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3431. z_tmp = 0;
  3432. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3433. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3434. if (diff >= 0.0)
  3435. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3436. else
  3437. SERIAL_PROTOCOLCHAR(' ');
  3438. SERIAL_PROTOCOL_F(diff, 5);
  3439. } // xx
  3440. SERIAL_EOL;
  3441. } // yy
  3442. SERIAL_EOL;
  3443. if (verbose_level > 3) {
  3444. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3445. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3446. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3447. int ind = indexIntoAB[xx][yy];
  3448. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3449. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3450. z_tmp = 0;
  3451. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3452. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3453. if (diff >= 0.0)
  3454. SERIAL_PROTOCOLPGM(" +");
  3455. // Include + for column alignment
  3456. else
  3457. SERIAL_PROTOCOLCHAR(' ');
  3458. SERIAL_PROTOCOL_F(diff, 5);
  3459. } // xx
  3460. SERIAL_EOL;
  3461. } // yy
  3462. SERIAL_EOL;
  3463. }
  3464. } //do_topography_map
  3465. #endif // AUTO_BED_LEVELING_LINEAR
  3466. #if ABL_PLANAR
  3467. // For LINEAR and 3POINT leveling correct the current position
  3468. if (verbose_level > 0)
  3469. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3470. if (!dryrun) {
  3471. //
  3472. // Correct the current XYZ position based on the tilted plane.
  3473. //
  3474. // 1. Get the distance from the current position to the reference point.
  3475. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3476. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3477. z_real = current_position[Z_AXIS],
  3478. z_zero = 0;
  3479. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3480. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3481. #endif
  3482. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3483. // 2. Apply the inverse matrix to the distance
  3484. // from the reference point to X, Y, and zero.
  3485. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3486. // 3. Get the matrix-based corrected Z.
  3487. // (Even if not used, get it for comparison.)
  3488. float new_z = z_real + z_zero;
  3489. // 4. Use the last measured distance to the bed, if possible
  3490. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3491. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3492. ) {
  3493. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3494. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3495. if (DEBUGGING(LEVELING)) {
  3496. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3497. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3498. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3499. }
  3500. #endif
  3501. new_z = simple_z;
  3502. }
  3503. // 5. The rotated XY and corrected Z are now current_position
  3504. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3505. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3506. current_position[Z_AXIS] = new_z;
  3507. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3508. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3509. #endif
  3510. }
  3511. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3512. if (!dryrun) {
  3513. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3514. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3515. #endif
  3516. // Unapply the offset because it is going to be immediately applied
  3517. // and cause compensation movement in Z
  3518. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3520. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3521. #endif
  3522. }
  3523. #endif // ABL_PLANAR
  3524. #ifdef Z_PROBE_END_SCRIPT
  3525. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3526. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3527. #endif
  3528. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3529. stepper.synchronize();
  3530. #endif
  3531. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3532. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3533. #endif
  3534. report_current_position();
  3535. KEEPALIVE_STATE(IN_HANDLER);
  3536. // Auto Bed Leveling is complete! Enable if possible.
  3537. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3538. if (planner.abl_enabled)
  3539. SYNC_PLAN_POSITION_KINEMATIC();
  3540. }
  3541. #endif // HAS_ABL
  3542. #if HAS_BED_PROBE
  3543. /**
  3544. * G30: Do a single Z probe at the current XY
  3545. */
  3546. inline void gcode_G30() {
  3547. // Disable leveling so the planner won't mess with us
  3548. #if PLANNER_LEVELING
  3549. set_bed_leveling_enabled(false);
  3550. #endif
  3551. setup_for_endstop_or_probe_move();
  3552. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3553. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3554. true, 1);
  3555. SERIAL_PROTOCOLPGM("Bed X: ");
  3556. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3557. SERIAL_PROTOCOLPGM(" Y: ");
  3558. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3559. SERIAL_PROTOCOLPGM(" Z: ");
  3560. SERIAL_PROTOCOL(measured_z + 0.0001);
  3561. SERIAL_EOL;
  3562. clean_up_after_endstop_or_probe_move();
  3563. report_current_position();
  3564. }
  3565. #if ENABLED(Z_PROBE_SLED)
  3566. /**
  3567. * G31: Deploy the Z probe
  3568. */
  3569. inline void gcode_G31() { DEPLOY_PROBE(); }
  3570. /**
  3571. * G32: Stow the Z probe
  3572. */
  3573. inline void gcode_G32() { STOW_PROBE(); }
  3574. #endif // Z_PROBE_SLED
  3575. #endif // HAS_BED_PROBE
  3576. #if ENABLED(G38_PROBE_TARGET)
  3577. static bool G38_run_probe() {
  3578. bool G38_pass_fail = false;
  3579. // Get direction of move and retract
  3580. float retract_mm[XYZ];
  3581. LOOP_XYZ(i) {
  3582. float dist = destination[i] - current_position[i];
  3583. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm(i) * (dist > 0 ? -1 : 1);
  3584. }
  3585. stepper.synchronize(); // wait until the machine is idle
  3586. // Move until destination reached or target hit
  3587. endstops.enable(true);
  3588. G38_move = true;
  3589. G38_endstop_hit = false;
  3590. prepare_move_to_destination();
  3591. stepper.synchronize();
  3592. G38_move = false;
  3593. endstops.hit_on_purpose();
  3594. set_current_from_steppers_for_axis(ALL_AXES);
  3595. SYNC_PLAN_POSITION_KINEMATIC();
  3596. // Only do remaining moves if target was hit
  3597. if (G38_endstop_hit) {
  3598. G38_pass_fail = true;
  3599. // Move away by the retract distance
  3600. set_destination_to_current();
  3601. LOOP_XYZ(i) destination[i] += retract_mm[i];
  3602. endstops.enable(false);
  3603. prepare_move_to_destination();
  3604. stepper.synchronize();
  3605. feedrate_mm_s /= 4;
  3606. // Bump the target more slowly
  3607. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  3608. endstops.enable(true);
  3609. G38_move = true;
  3610. prepare_move_to_destination();
  3611. stepper.synchronize();
  3612. G38_move = false;
  3613. set_current_from_steppers_for_axis(ALL_AXES);
  3614. SYNC_PLAN_POSITION_KINEMATIC();
  3615. }
  3616. endstops.hit_on_purpose();
  3617. endstops.not_homing();
  3618. return G38_pass_fail;
  3619. }
  3620. /**
  3621. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  3622. * G38.3 - probe toward workpiece, stop on contact
  3623. *
  3624. * Like G28 except uses Z min endstop for all axes
  3625. */
  3626. inline void gcode_G38(bool is_38_2) {
  3627. // Get X Y Z E F
  3628. gcode_get_destination();
  3629. setup_for_endstop_or_probe_move();
  3630. // If any axis has enough movement, do the move
  3631. LOOP_XYZ(i)
  3632. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  3633. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  3634. // If G38.2 fails throw an error
  3635. if (!G38_run_probe() && is_38_2) {
  3636. SERIAL_ERROR_START;
  3637. SERIAL_ERRORLNPGM("Failed to reach target");
  3638. }
  3639. break;
  3640. }
  3641. clean_up_after_endstop_or_probe_move();
  3642. }
  3643. #endif // G38_PROBE_TARGET
  3644. /**
  3645. * G92: Set current position to given X Y Z E
  3646. */
  3647. inline void gcode_G92() {
  3648. bool didXYZ = false,
  3649. didE = code_seen('E');
  3650. if (!didE) stepper.synchronize();
  3651. LOOP_XYZE(i) {
  3652. if (code_seen(axis_codes[i])) {
  3653. #if IS_SCARA
  3654. current_position[i] = code_value_axis_units(i);
  3655. if (i != E_AXIS) didXYZ = true;
  3656. #else
  3657. float p = current_position[i],
  3658. v = code_value_axis_units(i);
  3659. current_position[i] = v;
  3660. if (i != E_AXIS) {
  3661. didXYZ = true;
  3662. position_shift[i] += v - p; // Offset the coordinate space
  3663. update_software_endstops((AxisEnum)i);
  3664. }
  3665. #endif
  3666. }
  3667. }
  3668. if (didXYZ)
  3669. SYNC_PLAN_POSITION_KINEMATIC();
  3670. else if (didE)
  3671. sync_plan_position_e();
  3672. report_current_position();
  3673. }
  3674. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  3675. /**
  3676. * M0: Unconditional stop - Wait for user button press on LCD
  3677. * M1: Conditional stop - Wait for user button press on LCD
  3678. */
  3679. inline void gcode_M0_M1() {
  3680. char* args = current_command_args;
  3681. millis_t codenum = 0;
  3682. bool hasP = false, hasS = false;
  3683. if (code_seen('P')) {
  3684. codenum = code_value_millis(); // milliseconds to wait
  3685. hasP = codenum > 0;
  3686. }
  3687. if (code_seen('S')) {
  3688. codenum = code_value_millis_from_seconds(); // seconds to wait
  3689. hasS = codenum > 0;
  3690. }
  3691. #if ENABLED(ULTIPANEL)
  3692. if (!hasP && !hasS && *args != '\0')
  3693. lcd_setstatus(args, true);
  3694. else {
  3695. LCD_MESSAGEPGM(MSG_USERWAIT);
  3696. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3697. dontExpireStatus();
  3698. #endif
  3699. }
  3700. lcd_ignore_click();
  3701. #else
  3702. if (!hasP && !hasS && *args != '\0') {
  3703. SERIAL_ECHO_START;
  3704. SERIAL_ECHOLN(args);
  3705. }
  3706. #endif
  3707. stepper.synchronize();
  3708. refresh_cmd_timeout();
  3709. #if ENABLED(ULTIPANEL)
  3710. if (codenum > 0) {
  3711. codenum += previous_cmd_ms; // wait until this time for a click
  3712. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3713. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3714. lcd_ignore_click(false);
  3715. }
  3716. else if (lcd_detected()) {
  3717. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3718. while (!lcd_clicked()) idle();
  3719. }
  3720. else return;
  3721. if (IS_SD_PRINTING)
  3722. LCD_MESSAGEPGM(MSG_RESUMING);
  3723. else
  3724. LCD_MESSAGEPGM(WELCOME_MSG);
  3725. #else
  3726. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3727. wait_for_user = true;
  3728. if (codenum > 0) {
  3729. codenum += previous_cmd_ms; // wait until this time for an M108
  3730. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3731. }
  3732. else while (wait_for_user) idle();
  3733. wait_for_user = false;
  3734. #endif
  3735. KEEPALIVE_STATE(IN_HANDLER);
  3736. }
  3737. #endif // ULTIPANEL || EMERGENCY_PARSER
  3738. /**
  3739. * M17: Enable power on all stepper motors
  3740. */
  3741. inline void gcode_M17() {
  3742. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3743. enable_all_steppers();
  3744. }
  3745. #if ENABLED(SDSUPPORT)
  3746. /**
  3747. * M20: List SD card to serial output
  3748. */
  3749. inline void gcode_M20() {
  3750. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3751. card.ls();
  3752. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3753. }
  3754. /**
  3755. * M21: Init SD Card
  3756. */
  3757. inline void gcode_M21() { card.initsd(); }
  3758. /**
  3759. * M22: Release SD Card
  3760. */
  3761. inline void gcode_M22() { card.release(); }
  3762. /**
  3763. * M23: Open a file
  3764. */
  3765. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3766. /**
  3767. * M24: Start SD Print
  3768. */
  3769. inline void gcode_M24() {
  3770. card.startFileprint();
  3771. print_job_timer.start();
  3772. }
  3773. /**
  3774. * M25: Pause SD Print
  3775. */
  3776. inline void gcode_M25() { card.pauseSDPrint(); }
  3777. /**
  3778. * M26: Set SD Card file index
  3779. */
  3780. inline void gcode_M26() {
  3781. if (card.cardOK && code_seen('S'))
  3782. card.setIndex(code_value_long());
  3783. }
  3784. /**
  3785. * M27: Get SD Card status
  3786. */
  3787. inline void gcode_M27() { card.getStatus(); }
  3788. /**
  3789. * M28: Start SD Write
  3790. */
  3791. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3792. /**
  3793. * M29: Stop SD Write
  3794. * Processed in write to file routine above
  3795. */
  3796. inline void gcode_M29() {
  3797. // card.saving = false;
  3798. }
  3799. /**
  3800. * M30 <filename>: Delete SD Card file
  3801. */
  3802. inline void gcode_M30() {
  3803. if (card.cardOK) {
  3804. card.closefile();
  3805. card.removeFile(current_command_args);
  3806. }
  3807. }
  3808. #endif // SDSUPPORT
  3809. /**
  3810. * M31: Get the time since the start of SD Print (or last M109)
  3811. */
  3812. inline void gcode_M31() {
  3813. char buffer[21];
  3814. duration_t elapsed = print_job_timer.duration();
  3815. elapsed.toString(buffer);
  3816. lcd_setstatus(buffer);
  3817. SERIAL_ECHO_START;
  3818. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3819. thermalManager.autotempShutdown();
  3820. }
  3821. #if ENABLED(SDSUPPORT)
  3822. /**
  3823. * M32: Select file and start SD Print
  3824. */
  3825. inline void gcode_M32() {
  3826. if (card.sdprinting)
  3827. stepper.synchronize();
  3828. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3829. if (!namestartpos)
  3830. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3831. else
  3832. namestartpos++; //to skip the '!'
  3833. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3834. if (card.cardOK) {
  3835. card.openFile(namestartpos, true, call_procedure);
  3836. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3837. card.setIndex(code_value_long());
  3838. card.startFileprint();
  3839. // Procedure calls count as normal print time.
  3840. if (!call_procedure) print_job_timer.start();
  3841. }
  3842. }
  3843. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3844. /**
  3845. * M33: Get the long full path of a file or folder
  3846. *
  3847. * Parameters:
  3848. * <dospath> Case-insensitive DOS-style path to a file or folder
  3849. *
  3850. * Example:
  3851. * M33 miscel~1/armchair/armcha~1.gco
  3852. *
  3853. * Output:
  3854. * /Miscellaneous/Armchair/Armchair.gcode
  3855. */
  3856. inline void gcode_M33() {
  3857. card.printLongPath(current_command_args);
  3858. }
  3859. #endif
  3860. /**
  3861. * M928: Start SD Write
  3862. */
  3863. inline void gcode_M928() {
  3864. card.openLogFile(current_command_args);
  3865. }
  3866. #endif // SDSUPPORT
  3867. /**
  3868. * Sensitive pin test for M42, M226
  3869. */
  3870. static bool pin_is_protected(uint8_t pin) {
  3871. static const int sensitive_pins[] = SENSITIVE_PINS;
  3872. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3873. if (sensitive_pins[i] == pin) return true;
  3874. return false;
  3875. }
  3876. /**
  3877. * M42: Change pin status via GCode
  3878. *
  3879. * P<pin> Pin number (LED if omitted)
  3880. * S<byte> Pin status from 0 - 255
  3881. */
  3882. inline void gcode_M42() {
  3883. if (!code_seen('S')) return;
  3884. int pin_status = code_value_int();
  3885. if (pin_status < 0 || pin_status > 255) return;
  3886. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3887. if (pin_number < 0) return;
  3888. if (pin_is_protected(pin_number)) {
  3889. SERIAL_ERROR_START;
  3890. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  3891. return;
  3892. }
  3893. pinMode(pin_number, OUTPUT);
  3894. digitalWrite(pin_number, pin_status);
  3895. analogWrite(pin_number, pin_status);
  3896. #if FAN_COUNT > 0
  3897. switch (pin_number) {
  3898. #if HAS_FAN0
  3899. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3900. #endif
  3901. #if HAS_FAN1
  3902. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3903. #endif
  3904. #if HAS_FAN2
  3905. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3906. #endif
  3907. }
  3908. #endif
  3909. }
  3910. #if ENABLED(PINS_DEBUGGING)
  3911. #include "pinsDebug.h"
  3912. /**
  3913. * M43: Pin report and debug
  3914. *
  3915. * P<pin> Will read/watch a single pin
  3916. * W Watch pins for changes until reboot
  3917. */
  3918. inline void gcode_M43() {
  3919. int first_pin = 0, last_pin = DIO_COUNT - 1;
  3920. if (code_seen('P')) {
  3921. first_pin = last_pin = code_value_byte();
  3922. if (first_pin > DIO_COUNT - 1) return;
  3923. }
  3924. if (code_seen('W') && code_value_bool()) { // watch digital pins
  3925. byte pin_state[last_pin - first_pin + 1];
  3926. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  3927. if (pin_is_protected(pin)) continue;
  3928. pinMode(pin, INPUT_PULLUP);
  3929. // if (IS_ANALOG(pin))
  3930. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  3931. // else
  3932. pin_state[pin - first_pin] = digitalRead(pin);
  3933. }
  3934. #if ENABLED(EMERGENCY_PARSER)
  3935. wait_for_user = true;
  3936. #endif
  3937. for(;;) {
  3938. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  3939. if (pin_is_protected(pin)) continue;
  3940. byte val;
  3941. // if (IS_ANALOG(pin))
  3942. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  3943. // else
  3944. val = digitalRead(pin);
  3945. if (val != pin_state[pin - first_pin]) {
  3946. report_pin_state(pin);
  3947. pin_state[pin - first_pin] = val;
  3948. }
  3949. }
  3950. #if ENABLED(EMERGENCY_PARSER)
  3951. if (!wait_for_user) break;
  3952. #endif
  3953. safe_delay(500);
  3954. }
  3955. }
  3956. else // single pins report
  3957. for (int8_t pin = first_pin; pin <= last_pin; pin++)
  3958. report_pin_state(pin);
  3959. }
  3960. #endif // PINS_DEBUGGING
  3961. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3962. /**
  3963. * M48: Z probe repeatability measurement function.
  3964. *
  3965. * Usage:
  3966. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3967. * P = Number of sampled points (4-50, default 10)
  3968. * X = Sample X position
  3969. * Y = Sample Y position
  3970. * V = Verbose level (0-4, default=1)
  3971. * E = Engage Z probe for each reading
  3972. * L = Number of legs of movement before probe
  3973. * S = Schizoid (Or Star if you prefer)
  3974. *
  3975. * This function assumes the bed has been homed. Specifically, that a G28 command
  3976. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3977. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3978. * regenerated.
  3979. */
  3980. inline void gcode_M48() {
  3981. if (axis_unhomed_error(true, true, true)) return;
  3982. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3983. if (verbose_level < 0 || verbose_level > 4) {
  3984. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3985. return;
  3986. }
  3987. if (verbose_level > 0)
  3988. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  3989. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3990. if (n_samples < 4 || n_samples > 50) {
  3991. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3992. return;
  3993. }
  3994. float X_current = current_position[X_AXIS],
  3995. Y_current = current_position[Y_AXIS];
  3996. bool stow_probe_after_each = code_seen('E');
  3997. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3998. #if DISABLED(DELTA)
  3999. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  4000. out_of_range_error(PSTR("X"));
  4001. return;
  4002. }
  4003. #endif
  4004. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4005. #if DISABLED(DELTA)
  4006. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  4007. out_of_range_error(PSTR("Y"));
  4008. return;
  4009. }
  4010. #else
  4011. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4012. if (!position_is_reachable(pos, true)) {
  4013. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4014. return;
  4015. }
  4016. #endif
  4017. bool seen_L = code_seen('L');
  4018. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4019. if (n_legs > 15) {
  4020. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4021. return;
  4022. }
  4023. if (n_legs == 1) n_legs = 2;
  4024. bool schizoid_flag = code_seen('S');
  4025. if (schizoid_flag && !seen_L) n_legs = 7;
  4026. /**
  4027. * Now get everything to the specified probe point So we can safely do a
  4028. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4029. * we don't want to use that as a starting point for each probe.
  4030. */
  4031. if (verbose_level > 2)
  4032. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4033. // Disable bed level correction in M48 because we want the raw data when we probe
  4034. #if HAS_ABL
  4035. reset_bed_level();
  4036. #endif
  4037. setup_for_endstop_or_probe_move();
  4038. // Move to the first point, deploy, and probe
  4039. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4040. randomSeed(millis());
  4041. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4042. for (uint8_t n = 0; n < n_samples; n++) {
  4043. if (n_legs) {
  4044. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4045. float angle = random(0.0, 360.0),
  4046. radius = random(
  4047. #if ENABLED(DELTA)
  4048. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4049. #else
  4050. 5, X_MAX_LENGTH / 8
  4051. #endif
  4052. );
  4053. if (verbose_level > 3) {
  4054. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4055. SERIAL_ECHOPAIR(" angle: ", angle);
  4056. SERIAL_ECHOPGM(" Direction: ");
  4057. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4058. SERIAL_ECHOLNPGM("Clockwise");
  4059. }
  4060. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4061. double delta_angle;
  4062. if (schizoid_flag)
  4063. // The points of a 5 point star are 72 degrees apart. We need to
  4064. // skip a point and go to the next one on the star.
  4065. delta_angle = dir * 2.0 * 72.0;
  4066. else
  4067. // If we do this line, we are just trying to move further
  4068. // around the circle.
  4069. delta_angle = dir * (float) random(25, 45);
  4070. angle += delta_angle;
  4071. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4072. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4073. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4074. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4075. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4076. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4077. #if DISABLED(DELTA)
  4078. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4079. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4080. #else
  4081. // If we have gone out too far, we can do a simple fix and scale the numbers
  4082. // back in closer to the origin.
  4083. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4084. X_current /= 1.25;
  4085. Y_current /= 1.25;
  4086. if (verbose_level > 3) {
  4087. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4088. SERIAL_ECHOLNPAIR(", ", Y_current);
  4089. }
  4090. }
  4091. #endif
  4092. if (verbose_level > 3) {
  4093. SERIAL_PROTOCOLPGM("Going to:");
  4094. SERIAL_ECHOPAIR(" X", X_current);
  4095. SERIAL_ECHOPAIR(" Y", Y_current);
  4096. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4097. }
  4098. do_blocking_move_to_xy(X_current, Y_current);
  4099. } // n_legs loop
  4100. } // n_legs
  4101. // Probe a single point
  4102. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4103. /**
  4104. * Get the current mean for the data points we have so far
  4105. */
  4106. double sum = 0.0;
  4107. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4108. mean = sum / (n + 1);
  4109. NOMORE(min, sample_set[n]);
  4110. NOLESS(max, sample_set[n]);
  4111. /**
  4112. * Now, use that mean to calculate the standard deviation for the
  4113. * data points we have so far
  4114. */
  4115. sum = 0.0;
  4116. for (uint8_t j = 0; j <= n; j++)
  4117. sum += sq(sample_set[j] - mean);
  4118. sigma = sqrt(sum / (n + 1));
  4119. if (verbose_level > 0) {
  4120. if (verbose_level > 1) {
  4121. SERIAL_PROTOCOL(n + 1);
  4122. SERIAL_PROTOCOLPGM(" of ");
  4123. SERIAL_PROTOCOL((int)n_samples);
  4124. SERIAL_PROTOCOLPGM(": z: ");
  4125. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4126. if (verbose_level > 2) {
  4127. SERIAL_PROTOCOLPGM(" mean: ");
  4128. SERIAL_PROTOCOL_F(mean, 4);
  4129. SERIAL_PROTOCOLPGM(" sigma: ");
  4130. SERIAL_PROTOCOL_F(sigma, 6);
  4131. SERIAL_PROTOCOLPGM(" min: ");
  4132. SERIAL_PROTOCOL_F(min, 3);
  4133. SERIAL_PROTOCOLPGM(" max: ");
  4134. SERIAL_PROTOCOL_F(max, 3);
  4135. SERIAL_PROTOCOLPGM(" range: ");
  4136. SERIAL_PROTOCOL_F(max-min, 3);
  4137. }
  4138. }
  4139. SERIAL_EOL;
  4140. }
  4141. } // End of probe loop
  4142. if (STOW_PROBE()) return;
  4143. SERIAL_PROTOCOLPGM("Finished!");
  4144. SERIAL_EOL;
  4145. if (verbose_level > 0) {
  4146. SERIAL_PROTOCOLPGM("Mean: ");
  4147. SERIAL_PROTOCOL_F(mean, 6);
  4148. SERIAL_PROTOCOLPGM(" Min: ");
  4149. SERIAL_PROTOCOL_F(min, 3);
  4150. SERIAL_PROTOCOLPGM(" Max: ");
  4151. SERIAL_PROTOCOL_F(max, 3);
  4152. SERIAL_PROTOCOLPGM(" Range: ");
  4153. SERIAL_PROTOCOL_F(max-min, 3);
  4154. SERIAL_EOL;
  4155. }
  4156. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4157. SERIAL_PROTOCOL_F(sigma, 6);
  4158. SERIAL_EOL;
  4159. SERIAL_EOL;
  4160. clean_up_after_endstop_or_probe_move();
  4161. report_current_position();
  4162. }
  4163. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4164. /**
  4165. * M75: Start print timer
  4166. */
  4167. inline void gcode_M75() { print_job_timer.start(); }
  4168. /**
  4169. * M76: Pause print timer
  4170. */
  4171. inline void gcode_M76() { print_job_timer.pause(); }
  4172. /**
  4173. * M77: Stop print timer
  4174. */
  4175. inline void gcode_M77() { print_job_timer.stop(); }
  4176. #if ENABLED(PRINTCOUNTER)
  4177. /**
  4178. * M78: Show print statistics
  4179. */
  4180. inline void gcode_M78() {
  4181. // "M78 S78" will reset the statistics
  4182. if (code_seen('S') && code_value_int() == 78)
  4183. print_job_timer.initStats();
  4184. else
  4185. print_job_timer.showStats();
  4186. }
  4187. #endif
  4188. /**
  4189. * M104: Set hot end temperature
  4190. */
  4191. inline void gcode_M104() {
  4192. if (get_target_extruder_from_command(104)) return;
  4193. if (DEBUGGING(DRYRUN)) return;
  4194. #if ENABLED(SINGLENOZZLE)
  4195. if (target_extruder != active_extruder) return;
  4196. #endif
  4197. if (code_seen('S')) {
  4198. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4199. #if ENABLED(DUAL_X_CARRIAGE)
  4200. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4201. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4202. #endif
  4203. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4204. /**
  4205. * Stop the timer at the end of print, starting is managed by
  4206. * 'heat and wait' M109.
  4207. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4208. * stand by mode, for instance in a dual extruder setup, without affecting
  4209. * the running print timer.
  4210. */
  4211. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4212. print_job_timer.stop();
  4213. LCD_MESSAGEPGM(WELCOME_MSG);
  4214. }
  4215. #endif
  4216. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4217. }
  4218. }
  4219. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4220. void print_heaterstates() {
  4221. #if HAS_TEMP_HOTEND
  4222. SERIAL_PROTOCOLPGM(" T:");
  4223. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4224. SERIAL_PROTOCOLPGM(" /");
  4225. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4226. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4227. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4228. SERIAL_CHAR(')');
  4229. #endif
  4230. #endif
  4231. #if HAS_TEMP_BED
  4232. SERIAL_PROTOCOLPGM(" B:");
  4233. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4234. SERIAL_PROTOCOLPGM(" /");
  4235. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4236. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4237. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4238. SERIAL_CHAR(')');
  4239. #endif
  4240. #endif
  4241. #if HOTENDS > 1
  4242. HOTEND_LOOP() {
  4243. SERIAL_PROTOCOLPAIR(" T", e);
  4244. SERIAL_PROTOCOLCHAR(':');
  4245. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4246. SERIAL_PROTOCOLPGM(" /");
  4247. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4248. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4249. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4250. SERIAL_CHAR(')');
  4251. #endif
  4252. }
  4253. #endif
  4254. SERIAL_PROTOCOLPGM(" @:");
  4255. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4256. #if HAS_TEMP_BED
  4257. SERIAL_PROTOCOLPGM(" B@:");
  4258. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4259. #endif
  4260. #if HOTENDS > 1
  4261. HOTEND_LOOP() {
  4262. SERIAL_PROTOCOLPAIR(" @", e);
  4263. SERIAL_PROTOCOLCHAR(':');
  4264. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4265. }
  4266. #endif
  4267. }
  4268. #endif
  4269. /**
  4270. * M105: Read hot end and bed temperature
  4271. */
  4272. inline void gcode_M105() {
  4273. if (get_target_extruder_from_command(105)) return;
  4274. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4275. SERIAL_PROTOCOLPGM(MSG_OK);
  4276. print_heaterstates();
  4277. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4278. SERIAL_ERROR_START;
  4279. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4280. #endif
  4281. SERIAL_EOL;
  4282. }
  4283. #if FAN_COUNT > 0
  4284. /**
  4285. * M106: Set Fan Speed
  4286. *
  4287. * S<int> Speed between 0-255
  4288. * P<index> Fan index, if more than one fan
  4289. */
  4290. inline void gcode_M106() {
  4291. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4292. p = code_seen('P') ? code_value_ushort() : 0;
  4293. NOMORE(s, 255);
  4294. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4295. }
  4296. /**
  4297. * M107: Fan Off
  4298. */
  4299. inline void gcode_M107() {
  4300. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4301. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4302. }
  4303. #endif // FAN_COUNT > 0
  4304. #if DISABLED(EMERGENCY_PARSER)
  4305. /**
  4306. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4307. */
  4308. inline void gcode_M108() { wait_for_heatup = false; }
  4309. /**
  4310. * M112: Emergency Stop
  4311. */
  4312. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4313. /**
  4314. * M410: Quickstop - Abort all planned moves
  4315. *
  4316. * This will stop the carriages mid-move, so most likely they
  4317. * will be out of sync with the stepper position after this.
  4318. */
  4319. inline void gcode_M410() { quickstop_stepper(); }
  4320. #endif
  4321. #ifndef MIN_COOLING_SLOPE_DEG
  4322. #define MIN_COOLING_SLOPE_DEG 1.50
  4323. #endif
  4324. #ifndef MIN_COOLING_SLOPE_TIME
  4325. #define MIN_COOLING_SLOPE_TIME 60
  4326. #endif
  4327. /**
  4328. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4329. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4330. */
  4331. inline void gcode_M109() {
  4332. if (get_target_extruder_from_command(109)) return;
  4333. if (DEBUGGING(DRYRUN)) return;
  4334. #if ENABLED(SINGLENOZZLE)
  4335. if (target_extruder != active_extruder) return;
  4336. #endif
  4337. bool no_wait_for_cooling = code_seen('S');
  4338. if (no_wait_for_cooling || code_seen('R')) {
  4339. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4340. #if ENABLED(DUAL_X_CARRIAGE)
  4341. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4342. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4343. #endif
  4344. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4345. /**
  4346. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4347. * stand by mode, for instance in a dual extruder setup, without affecting
  4348. * the running print timer.
  4349. */
  4350. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4351. print_job_timer.stop();
  4352. LCD_MESSAGEPGM(WELCOME_MSG);
  4353. }
  4354. /**
  4355. * We do not check if the timer is already running because this check will
  4356. * be done for us inside the Stopwatch::start() method thus a running timer
  4357. * will not restart.
  4358. */
  4359. else print_job_timer.start();
  4360. #endif
  4361. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4362. }
  4363. #if ENABLED(AUTOTEMP)
  4364. planner.autotemp_M109();
  4365. #endif
  4366. #if TEMP_RESIDENCY_TIME > 0
  4367. millis_t residency_start_ms = 0;
  4368. // Loop until the temperature has stabilized
  4369. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4370. #else
  4371. // Loop until the temperature is very close target
  4372. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4373. #endif //TEMP_RESIDENCY_TIME > 0
  4374. float theTarget = -1.0, old_temp = 9999.0;
  4375. bool wants_to_cool = false;
  4376. wait_for_heatup = true;
  4377. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4378. KEEPALIVE_STATE(NOT_BUSY);
  4379. do {
  4380. // Target temperature might be changed during the loop
  4381. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4382. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4383. theTarget = thermalManager.degTargetHotend(target_extruder);
  4384. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4385. if (no_wait_for_cooling && wants_to_cool) break;
  4386. }
  4387. now = millis();
  4388. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4389. next_temp_ms = now + 1000UL;
  4390. print_heaterstates();
  4391. #if TEMP_RESIDENCY_TIME > 0
  4392. SERIAL_PROTOCOLPGM(" W:");
  4393. if (residency_start_ms) {
  4394. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4395. SERIAL_PROTOCOLLN(rem);
  4396. }
  4397. else {
  4398. SERIAL_PROTOCOLLNPGM("?");
  4399. }
  4400. #else
  4401. SERIAL_EOL;
  4402. #endif
  4403. }
  4404. idle();
  4405. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4406. float temp = thermalManager.degHotend(target_extruder);
  4407. #if TEMP_RESIDENCY_TIME > 0
  4408. float temp_diff = fabs(theTarget - temp);
  4409. if (!residency_start_ms) {
  4410. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4411. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4412. }
  4413. else if (temp_diff > TEMP_HYSTERESIS) {
  4414. // Restart the timer whenever the temperature falls outside the hysteresis.
  4415. residency_start_ms = now;
  4416. }
  4417. #endif //TEMP_RESIDENCY_TIME > 0
  4418. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4419. if (wants_to_cool) {
  4420. // break after MIN_COOLING_SLOPE_TIME seconds
  4421. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4422. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4423. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4424. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4425. old_temp = temp;
  4426. }
  4427. }
  4428. } while (wait_for_heatup && TEMP_CONDITIONS);
  4429. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4430. KEEPALIVE_STATE(IN_HANDLER);
  4431. }
  4432. #if HAS_TEMP_BED
  4433. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4434. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4435. #endif
  4436. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4437. #define MIN_COOLING_SLOPE_TIME_BED 60
  4438. #endif
  4439. /**
  4440. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4441. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4442. */
  4443. inline void gcode_M190() {
  4444. if (DEBUGGING(DRYRUN)) return;
  4445. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4446. bool no_wait_for_cooling = code_seen('S');
  4447. if (no_wait_for_cooling || code_seen('R')) {
  4448. thermalManager.setTargetBed(code_value_temp_abs());
  4449. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4450. if (code_value_temp_abs() > BED_MINTEMP) {
  4451. /**
  4452. * We start the timer when 'heating and waiting' command arrives, LCD
  4453. * functions never wait. Cooling down managed by extruders.
  4454. *
  4455. * We do not check if the timer is already running because this check will
  4456. * be done for us inside the Stopwatch::start() method thus a running timer
  4457. * will not restart.
  4458. */
  4459. print_job_timer.start();
  4460. }
  4461. #endif
  4462. }
  4463. #if TEMP_BED_RESIDENCY_TIME > 0
  4464. millis_t residency_start_ms = 0;
  4465. // Loop until the temperature has stabilized
  4466. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4467. #else
  4468. // Loop until the temperature is very close target
  4469. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4470. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4471. float theTarget = -1.0, old_temp = 9999.0;
  4472. bool wants_to_cool = false;
  4473. wait_for_heatup = true;
  4474. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4475. KEEPALIVE_STATE(NOT_BUSY);
  4476. target_extruder = active_extruder; // for print_heaterstates
  4477. do {
  4478. // Target temperature might be changed during the loop
  4479. if (theTarget != thermalManager.degTargetBed()) {
  4480. wants_to_cool = thermalManager.isCoolingBed();
  4481. theTarget = thermalManager.degTargetBed();
  4482. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4483. if (no_wait_for_cooling && wants_to_cool) break;
  4484. }
  4485. now = millis();
  4486. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4487. next_temp_ms = now + 1000UL;
  4488. print_heaterstates();
  4489. #if TEMP_BED_RESIDENCY_TIME > 0
  4490. SERIAL_PROTOCOLPGM(" W:");
  4491. if (residency_start_ms) {
  4492. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4493. SERIAL_PROTOCOLLN(rem);
  4494. }
  4495. else {
  4496. SERIAL_PROTOCOLLNPGM("?");
  4497. }
  4498. #else
  4499. SERIAL_EOL;
  4500. #endif
  4501. }
  4502. idle();
  4503. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4504. float temp = thermalManager.degBed();
  4505. #if TEMP_BED_RESIDENCY_TIME > 0
  4506. float temp_diff = fabs(theTarget - temp);
  4507. if (!residency_start_ms) {
  4508. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4509. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4510. }
  4511. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4512. // Restart the timer whenever the temperature falls outside the hysteresis.
  4513. residency_start_ms = now;
  4514. }
  4515. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4516. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4517. if (wants_to_cool) {
  4518. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4519. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4520. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4521. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4522. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4523. old_temp = temp;
  4524. }
  4525. }
  4526. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4527. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4528. KEEPALIVE_STATE(IN_HANDLER);
  4529. }
  4530. #endif // HAS_TEMP_BED
  4531. /**
  4532. * M110: Set Current Line Number
  4533. */
  4534. inline void gcode_M110() {
  4535. if (code_seen('N')) gcode_N = code_value_long();
  4536. }
  4537. /**
  4538. * M111: Set the debug level
  4539. */
  4540. inline void gcode_M111() {
  4541. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4542. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4543. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4544. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4545. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4546. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4547. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4548. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4549. #endif
  4550. const static char* const debug_strings[] PROGMEM = {
  4551. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4552. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4553. str_debug_32
  4554. #endif
  4555. };
  4556. SERIAL_ECHO_START;
  4557. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4558. if (marlin_debug_flags) {
  4559. uint8_t comma = 0;
  4560. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4561. if (TEST(marlin_debug_flags, i)) {
  4562. if (comma++) SERIAL_CHAR(',');
  4563. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4564. }
  4565. }
  4566. }
  4567. else {
  4568. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4569. }
  4570. SERIAL_EOL;
  4571. }
  4572. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4573. /**
  4574. * M113: Get or set Host Keepalive interval (0 to disable)
  4575. *
  4576. * S<seconds> Optional. Set the keepalive interval.
  4577. */
  4578. inline void gcode_M113() {
  4579. if (code_seen('S')) {
  4580. host_keepalive_interval = code_value_byte();
  4581. NOMORE(host_keepalive_interval, 60);
  4582. }
  4583. else {
  4584. SERIAL_ECHO_START;
  4585. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4586. }
  4587. }
  4588. #endif
  4589. #if ENABLED(BARICUDA)
  4590. #if HAS_HEATER_1
  4591. /**
  4592. * M126: Heater 1 valve open
  4593. */
  4594. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4595. /**
  4596. * M127: Heater 1 valve close
  4597. */
  4598. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4599. #endif
  4600. #if HAS_HEATER_2
  4601. /**
  4602. * M128: Heater 2 valve open
  4603. */
  4604. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4605. /**
  4606. * M129: Heater 2 valve close
  4607. */
  4608. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4609. #endif
  4610. #endif //BARICUDA
  4611. /**
  4612. * M140: Set bed temperature
  4613. */
  4614. inline void gcode_M140() {
  4615. if (DEBUGGING(DRYRUN)) return;
  4616. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4617. }
  4618. #if ENABLED(ULTIPANEL)
  4619. /**
  4620. * M145: Set the heatup state for a material in the LCD menu
  4621. * S<material> (0=PLA, 1=ABS)
  4622. * H<hotend temp>
  4623. * B<bed temp>
  4624. * F<fan speed>
  4625. */
  4626. inline void gcode_M145() {
  4627. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4628. if (material < 0 || material > 1) {
  4629. SERIAL_ERROR_START;
  4630. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4631. }
  4632. else {
  4633. int v;
  4634. switch (material) {
  4635. case 0:
  4636. if (code_seen('H')) {
  4637. v = code_value_int();
  4638. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4639. }
  4640. if (code_seen('F')) {
  4641. v = code_value_int();
  4642. preheatFanSpeed1 = constrain(v, 0, 255);
  4643. }
  4644. #if TEMP_SENSOR_BED != 0
  4645. if (code_seen('B')) {
  4646. v = code_value_int();
  4647. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4648. }
  4649. #endif
  4650. break;
  4651. case 1:
  4652. if (code_seen('H')) {
  4653. v = code_value_int();
  4654. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4655. }
  4656. if (code_seen('F')) {
  4657. v = code_value_int();
  4658. preheatFanSpeed2 = constrain(v, 0, 255);
  4659. }
  4660. #if TEMP_SENSOR_BED != 0
  4661. if (code_seen('B')) {
  4662. v = code_value_int();
  4663. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4664. }
  4665. #endif
  4666. break;
  4667. }
  4668. }
  4669. }
  4670. #endif // ULTIPANEL
  4671. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4672. /**
  4673. * M149: Set temperature units
  4674. */
  4675. inline void gcode_M149() {
  4676. if (code_seen('C')) {
  4677. set_input_temp_units(TEMPUNIT_C);
  4678. } else if (code_seen('K')) {
  4679. set_input_temp_units(TEMPUNIT_K);
  4680. } else if (code_seen('F')) {
  4681. set_input_temp_units(TEMPUNIT_F);
  4682. }
  4683. }
  4684. #endif
  4685. #if HAS_POWER_SWITCH
  4686. /**
  4687. * M80: Turn on Power Supply
  4688. */
  4689. inline void gcode_M80() {
  4690. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4691. /**
  4692. * If you have a switch on suicide pin, this is useful
  4693. * if you want to start another print with suicide feature after
  4694. * a print without suicide...
  4695. */
  4696. #if HAS_SUICIDE
  4697. OUT_WRITE(SUICIDE_PIN, HIGH);
  4698. #endif
  4699. #if ENABLED(ULTIPANEL)
  4700. powersupply = true;
  4701. LCD_MESSAGEPGM(WELCOME_MSG);
  4702. lcd_update();
  4703. #endif
  4704. }
  4705. #endif // HAS_POWER_SWITCH
  4706. /**
  4707. * M81: Turn off Power, including Power Supply, if there is one.
  4708. *
  4709. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4710. */
  4711. inline void gcode_M81() {
  4712. thermalManager.disable_all_heaters();
  4713. stepper.finish_and_disable();
  4714. #if FAN_COUNT > 0
  4715. #if FAN_COUNT > 1
  4716. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4717. #else
  4718. fanSpeeds[0] = 0;
  4719. #endif
  4720. #endif
  4721. delay(1000); // Wait 1 second before switching off
  4722. #if HAS_SUICIDE
  4723. stepper.synchronize();
  4724. suicide();
  4725. #elif HAS_POWER_SWITCH
  4726. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4727. #endif
  4728. #if ENABLED(ULTIPANEL)
  4729. #if HAS_POWER_SWITCH
  4730. powersupply = false;
  4731. #endif
  4732. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4733. lcd_update();
  4734. #endif
  4735. }
  4736. /**
  4737. * M82: Set E codes absolute (default)
  4738. */
  4739. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4740. /**
  4741. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4742. */
  4743. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4744. /**
  4745. * M18, M84: Disable all stepper motors
  4746. */
  4747. inline void gcode_M18_M84() {
  4748. if (code_seen('S')) {
  4749. stepper_inactive_time = code_value_millis_from_seconds();
  4750. }
  4751. else {
  4752. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4753. if (all_axis) {
  4754. stepper.finish_and_disable();
  4755. }
  4756. else {
  4757. stepper.synchronize();
  4758. if (code_seen('X')) disable_x();
  4759. if (code_seen('Y')) disable_y();
  4760. if (code_seen('Z')) disable_z();
  4761. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4762. if (code_seen('E')) {
  4763. disable_e0();
  4764. disable_e1();
  4765. disable_e2();
  4766. disable_e3();
  4767. }
  4768. #endif
  4769. }
  4770. }
  4771. }
  4772. /**
  4773. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4774. */
  4775. inline void gcode_M85() {
  4776. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4777. }
  4778. /**
  4779. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4780. * (Follows the same syntax as G92)
  4781. */
  4782. inline void gcode_M92() {
  4783. LOOP_XYZE(i) {
  4784. if (code_seen(axis_codes[i])) {
  4785. if (i == E_AXIS) {
  4786. float value = code_value_per_axis_unit(i);
  4787. if (value < 20.0) {
  4788. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4789. planner.max_jerk[E_AXIS] *= factor;
  4790. planner.max_feedrate_mm_s[E_AXIS] *= factor;
  4791. planner.max_acceleration_steps_per_s2[E_AXIS] *= factor;
  4792. }
  4793. planner.axis_steps_per_mm[E_AXIS] = value;
  4794. }
  4795. else {
  4796. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4797. }
  4798. }
  4799. }
  4800. planner.refresh_positioning();
  4801. }
  4802. /**
  4803. * Output the current position to serial
  4804. */
  4805. static void report_current_position() {
  4806. SERIAL_PROTOCOLPGM("X:");
  4807. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4808. SERIAL_PROTOCOLPGM(" Y:");
  4809. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4810. SERIAL_PROTOCOLPGM(" Z:");
  4811. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4812. SERIAL_PROTOCOLPGM(" E:");
  4813. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4814. stepper.report_positions();
  4815. #if IS_SCARA
  4816. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  4817. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  4818. SERIAL_EOL;
  4819. #endif
  4820. }
  4821. /**
  4822. * M114: Output current position to serial port
  4823. */
  4824. inline void gcode_M114() { report_current_position(); }
  4825. /**
  4826. * M115: Capabilities string
  4827. */
  4828. inline void gcode_M115() {
  4829. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4830. }
  4831. /**
  4832. * M117: Set LCD Status Message
  4833. */
  4834. inline void gcode_M117() {
  4835. lcd_setstatus(current_command_args);
  4836. }
  4837. /**
  4838. * M119: Output endstop states to serial output
  4839. */
  4840. inline void gcode_M119() { endstops.M119(); }
  4841. /**
  4842. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4843. */
  4844. inline void gcode_M120() { endstops.enable_globally(true); }
  4845. /**
  4846. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4847. */
  4848. inline void gcode_M121() { endstops.enable_globally(false); }
  4849. #if ENABLED(BLINKM)
  4850. /**
  4851. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4852. */
  4853. inline void gcode_M150() {
  4854. SendColors(
  4855. code_seen('R') ? code_value_byte() : 0,
  4856. code_seen('U') ? code_value_byte() : 0,
  4857. code_seen('B') ? code_value_byte() : 0
  4858. );
  4859. }
  4860. #endif // BLINKM
  4861. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4862. /**
  4863. * M155: Send data to a I2C slave device
  4864. *
  4865. * This is a PoC, the formating and arguments for the GCODE will
  4866. * change to be more compatible, the current proposal is:
  4867. *
  4868. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4869. *
  4870. * M155 B<byte-1 value in base 10>
  4871. * M155 B<byte-2 value in base 10>
  4872. * M155 B<byte-3 value in base 10>
  4873. *
  4874. * M155 S1 ; Send the buffered data and reset the buffer
  4875. * M155 R1 ; Reset the buffer without sending data
  4876. *
  4877. */
  4878. inline void gcode_M155() {
  4879. // Set the target address
  4880. if (code_seen('A')) i2c.address(code_value_byte());
  4881. // Add a new byte to the buffer
  4882. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4883. // Flush the buffer to the bus
  4884. if (code_seen('S')) i2c.send();
  4885. // Reset and rewind the buffer
  4886. else if (code_seen('R')) i2c.reset();
  4887. }
  4888. /**
  4889. * M156: Request X bytes from I2C slave device
  4890. *
  4891. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4892. */
  4893. inline void gcode_M156() {
  4894. if (code_seen('A')) i2c.address(code_value_byte());
  4895. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4896. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4897. i2c.relay(bytes);
  4898. }
  4899. else {
  4900. SERIAL_ERROR_START;
  4901. SERIAL_ERRORLN("Bad i2c request");
  4902. }
  4903. }
  4904. #endif // EXPERIMENTAL_I2CBUS
  4905. /**
  4906. * M200: Set filament diameter and set E axis units to cubic units
  4907. *
  4908. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4909. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4910. */
  4911. inline void gcode_M200() {
  4912. if (get_target_extruder_from_command(200)) return;
  4913. if (code_seen('D')) {
  4914. // setting any extruder filament size disables volumetric on the assumption that
  4915. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4916. // for all extruders
  4917. volumetric_enabled = (code_value_linear_units() != 0.0);
  4918. if (volumetric_enabled) {
  4919. filament_size[target_extruder] = code_value_linear_units();
  4920. // make sure all extruders have some sane value for the filament size
  4921. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4922. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4923. }
  4924. }
  4925. else {
  4926. //reserved for setting filament diameter via UFID or filament measuring device
  4927. return;
  4928. }
  4929. calculate_volumetric_multipliers();
  4930. }
  4931. /**
  4932. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4933. */
  4934. inline void gcode_M201() {
  4935. LOOP_XYZE(i) {
  4936. if (code_seen(axis_codes[i])) {
  4937. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4938. }
  4939. }
  4940. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4941. planner.reset_acceleration_rates();
  4942. }
  4943. #if 0 // Not used for Sprinter/grbl gen6
  4944. inline void gcode_M202() {
  4945. LOOP_XYZE(i) {
  4946. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4947. }
  4948. }
  4949. #endif
  4950. /**
  4951. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4952. */
  4953. inline void gcode_M203() {
  4954. LOOP_XYZE(i)
  4955. if (code_seen(axis_codes[i]))
  4956. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4957. }
  4958. /**
  4959. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4960. *
  4961. * P = Printing moves
  4962. * R = Retract only (no X, Y, Z) moves
  4963. * T = Travel (non printing) moves
  4964. *
  4965. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4966. */
  4967. inline void gcode_M204() {
  4968. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4969. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4970. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4971. }
  4972. if (code_seen('P')) {
  4973. planner.acceleration = code_value_linear_units();
  4974. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4975. }
  4976. if (code_seen('R')) {
  4977. planner.retract_acceleration = code_value_linear_units();
  4978. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4979. }
  4980. if (code_seen('T')) {
  4981. planner.travel_acceleration = code_value_linear_units();
  4982. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4983. }
  4984. }
  4985. /**
  4986. * M205: Set Advanced Settings
  4987. *
  4988. * S = Min Feed Rate (units/s)
  4989. * T = Min Travel Feed Rate (units/s)
  4990. * B = Min Segment Time (µs)
  4991. * X = Max X Jerk (units/sec^2)
  4992. * Y = Max Y Jerk (units/sec^2)
  4993. * Z = Max Z Jerk (units/sec^2)
  4994. * E = Max E Jerk (units/sec^2)
  4995. */
  4996. inline void gcode_M205() {
  4997. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4998. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4999. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  5000. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  5001. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5002. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  5003. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  5004. }
  5005. /**
  5006. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  5007. */
  5008. inline void gcode_M206() {
  5009. LOOP_XYZ(i)
  5010. if (code_seen(axis_codes[i]))
  5011. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  5012. #if ENABLED(MORGAN_SCARA)
  5013. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  5014. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  5015. #endif
  5016. SYNC_PLAN_POSITION_KINEMATIC();
  5017. report_current_position();
  5018. }
  5019. #if ENABLED(DELTA)
  5020. /**
  5021. * M665: Set delta configurations
  5022. *
  5023. * L = diagonal rod
  5024. * R = delta radius
  5025. * S = segments per second
  5026. * A = Alpha (Tower 1) diagonal rod trim
  5027. * B = Beta (Tower 2) diagonal rod trim
  5028. * C = Gamma (Tower 3) diagonal rod trim
  5029. */
  5030. inline void gcode_M665() {
  5031. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5032. if (code_seen('R')) delta_radius = code_value_linear_units();
  5033. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5034. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  5035. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  5036. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  5037. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5038. }
  5039. /**
  5040. * M666: Set delta endstop adjustment
  5041. */
  5042. inline void gcode_M666() {
  5043. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5044. if (DEBUGGING(LEVELING)) {
  5045. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5046. }
  5047. #endif
  5048. LOOP_XYZ(i) {
  5049. if (code_seen(axis_codes[i])) {
  5050. endstop_adj[i] = code_value_axis_units(i);
  5051. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5052. if (DEBUGGING(LEVELING)) {
  5053. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5054. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5055. }
  5056. #endif
  5057. }
  5058. }
  5059. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5060. if (DEBUGGING(LEVELING)) {
  5061. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5062. }
  5063. #endif
  5064. }
  5065. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5066. /**
  5067. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5068. */
  5069. inline void gcode_M666() {
  5070. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5071. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5072. }
  5073. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5074. #if ENABLED(FWRETRACT)
  5075. /**
  5076. * M207: Set firmware retraction values
  5077. *
  5078. * S[+units] retract_length
  5079. * W[+units] retract_length_swap (multi-extruder)
  5080. * F[units/min] retract_feedrate_mm_s
  5081. * Z[units] retract_zlift
  5082. */
  5083. inline void gcode_M207() {
  5084. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5085. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5086. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5087. #if EXTRUDERS > 1
  5088. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5089. #endif
  5090. }
  5091. /**
  5092. * M208: Set firmware un-retraction values
  5093. *
  5094. * S[+units] retract_recover_length (in addition to M207 S*)
  5095. * W[+units] retract_recover_length_swap (multi-extruder)
  5096. * F[units/min] retract_recover_feedrate_mm_s
  5097. */
  5098. inline void gcode_M208() {
  5099. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5100. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5101. #if EXTRUDERS > 1
  5102. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5103. #endif
  5104. }
  5105. /**
  5106. * M209: Enable automatic retract (M209 S1)
  5107. * For slicers that don't support G10/11, reversed extrude-only
  5108. * moves will be classified as retraction.
  5109. */
  5110. inline void gcode_M209() {
  5111. if (code_seen('S')) {
  5112. autoretract_enabled = code_value_bool();
  5113. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5114. }
  5115. }
  5116. #endif // FWRETRACT
  5117. /**
  5118. * M211: Enable, Disable, and/or Report software endstops
  5119. *
  5120. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  5121. */
  5122. inline void gcode_M211() {
  5123. SERIAL_ECHO_START;
  5124. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5125. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5126. #endif
  5127. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5128. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5129. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5130. #else
  5131. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5132. SERIAL_ECHOPGM(MSG_OFF);
  5133. #endif
  5134. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  5135. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  5136. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  5137. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  5138. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  5139. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  5140. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  5141. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  5142. }
  5143. #if HOTENDS > 1
  5144. /**
  5145. * M218 - set hotend offset (in linear units)
  5146. *
  5147. * T<tool>
  5148. * X<xoffset>
  5149. * Y<yoffset>
  5150. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  5151. */
  5152. inline void gcode_M218() {
  5153. if (get_target_extruder_from_command(218)) return;
  5154. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  5155. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  5156. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5157. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  5158. #endif
  5159. SERIAL_ECHO_START;
  5160. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5161. HOTEND_LOOP() {
  5162. SERIAL_CHAR(' ');
  5163. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  5164. SERIAL_CHAR(',');
  5165. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  5166. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5167. SERIAL_CHAR(',');
  5168. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  5169. #endif
  5170. }
  5171. SERIAL_EOL;
  5172. }
  5173. #endif // HOTENDS > 1
  5174. /**
  5175. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  5176. */
  5177. inline void gcode_M220() {
  5178. if (code_seen('S')) feedrate_percentage = code_value_int();
  5179. }
  5180. /**
  5181. * M221: Set extrusion percentage (M221 T0 S95)
  5182. */
  5183. inline void gcode_M221() {
  5184. if (get_target_extruder_from_command(221)) return;
  5185. if (code_seen('S'))
  5186. flow_percentage[target_extruder] = code_value_int();
  5187. }
  5188. /**
  5189. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  5190. */
  5191. inline void gcode_M226() {
  5192. if (code_seen('P')) {
  5193. int pin_number = code_value_int(),
  5194. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  5195. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  5196. int target = LOW;
  5197. stepper.synchronize();
  5198. pinMode(pin_number, INPUT);
  5199. switch (pin_state) {
  5200. case 1:
  5201. target = HIGH;
  5202. break;
  5203. case 0:
  5204. target = LOW;
  5205. break;
  5206. case -1:
  5207. target = !digitalRead(pin_number);
  5208. break;
  5209. }
  5210. while (digitalRead(pin_number) != target) idle();
  5211. } // pin_state -1 0 1 && pin_number > -1
  5212. } // code_seen('P')
  5213. }
  5214. #if HAS_SERVOS
  5215. /**
  5216. * M280: Get or set servo position. P<index> [S<angle>]
  5217. */
  5218. inline void gcode_M280() {
  5219. if (!code_seen('P')) return;
  5220. int servo_index = code_value_int();
  5221. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  5222. if (code_seen('S'))
  5223. MOVE_SERVO(servo_index, code_value_int());
  5224. else {
  5225. SERIAL_ECHO_START;
  5226. SERIAL_ECHOPAIR(" Servo ", servo_index);
  5227. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  5228. }
  5229. }
  5230. else {
  5231. SERIAL_ERROR_START;
  5232. SERIAL_ECHOPAIR("Servo ", servo_index);
  5233. SERIAL_ECHOLNPGM(" out of range");
  5234. }
  5235. }
  5236. #endif // HAS_SERVOS
  5237. #if HAS_BUZZER
  5238. /**
  5239. * M300: Play beep sound S<frequency Hz> P<duration ms>
  5240. */
  5241. inline void gcode_M300() {
  5242. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  5243. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  5244. // Limits the tone duration to 0-5 seconds.
  5245. NOMORE(duration, 5000);
  5246. BUZZ(duration, frequency);
  5247. }
  5248. #endif // HAS_BUZZER
  5249. #if ENABLED(PIDTEMP)
  5250. /**
  5251. * M301: Set PID parameters P I D (and optionally C, L)
  5252. *
  5253. * P[float] Kp term
  5254. * I[float] Ki term (unscaled)
  5255. * D[float] Kd term (unscaled)
  5256. *
  5257. * With PID_EXTRUSION_SCALING:
  5258. *
  5259. * C[float] Kc term
  5260. * L[float] LPQ length
  5261. */
  5262. inline void gcode_M301() {
  5263. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  5264. // default behaviour (omitting E parameter) is to update for extruder 0 only
  5265. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  5266. if (e < HOTENDS) { // catch bad input value
  5267. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  5268. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  5269. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  5270. #if ENABLED(PID_EXTRUSION_SCALING)
  5271. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  5272. if (code_seen('L')) lpq_len = code_value_float();
  5273. NOMORE(lpq_len, LPQ_MAX_LEN);
  5274. #endif
  5275. thermalManager.updatePID();
  5276. SERIAL_ECHO_START;
  5277. #if ENABLED(PID_PARAMS_PER_HOTEND)
  5278. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  5279. #endif // PID_PARAMS_PER_HOTEND
  5280. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  5281. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  5282. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  5283. #if ENABLED(PID_EXTRUSION_SCALING)
  5284. //Kc does not have scaling applied above, or in resetting defaults
  5285. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  5286. #endif
  5287. SERIAL_EOL;
  5288. }
  5289. else {
  5290. SERIAL_ERROR_START;
  5291. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  5292. }
  5293. }
  5294. #endif // PIDTEMP
  5295. #if ENABLED(PIDTEMPBED)
  5296. inline void gcode_M304() {
  5297. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  5298. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  5299. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  5300. thermalManager.updatePID();
  5301. SERIAL_ECHO_START;
  5302. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  5303. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  5304. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  5305. }
  5306. #endif // PIDTEMPBED
  5307. #if defined(CHDK) || HAS_PHOTOGRAPH
  5308. /**
  5309. * M240: Trigger a camera by emulating a Canon RC-1
  5310. * See http://www.doc-diy.net/photo/rc-1_hacked/
  5311. */
  5312. inline void gcode_M240() {
  5313. #ifdef CHDK
  5314. OUT_WRITE(CHDK, HIGH);
  5315. chdkHigh = millis();
  5316. chdkActive = true;
  5317. #elif HAS_PHOTOGRAPH
  5318. const uint8_t NUM_PULSES = 16;
  5319. const float PULSE_LENGTH = 0.01524;
  5320. for (int i = 0; i < NUM_PULSES; i++) {
  5321. WRITE(PHOTOGRAPH_PIN, HIGH);
  5322. _delay_ms(PULSE_LENGTH);
  5323. WRITE(PHOTOGRAPH_PIN, LOW);
  5324. _delay_ms(PULSE_LENGTH);
  5325. }
  5326. delay(7.33);
  5327. for (int i = 0; i < NUM_PULSES; i++) {
  5328. WRITE(PHOTOGRAPH_PIN, HIGH);
  5329. _delay_ms(PULSE_LENGTH);
  5330. WRITE(PHOTOGRAPH_PIN, LOW);
  5331. _delay_ms(PULSE_LENGTH);
  5332. }
  5333. #endif // !CHDK && HAS_PHOTOGRAPH
  5334. }
  5335. #endif // CHDK || PHOTOGRAPH_PIN
  5336. #if HAS_LCD_CONTRAST
  5337. /**
  5338. * M250: Read and optionally set the LCD contrast
  5339. */
  5340. inline void gcode_M250() {
  5341. if (code_seen('C')) set_lcd_contrast(code_value_int());
  5342. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5343. SERIAL_PROTOCOL(lcd_contrast);
  5344. SERIAL_EOL;
  5345. }
  5346. #endif // HAS_LCD_CONTRAST
  5347. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5348. /**
  5349. * M302: Allow cold extrudes, or set the minimum extrude temperature
  5350. *
  5351. * S<temperature> sets the minimum extrude temperature
  5352. * P<bool> enables (1) or disables (0) cold extrusion
  5353. *
  5354. * Examples:
  5355. *
  5356. * M302 ; report current cold extrusion state
  5357. * M302 P0 ; enable cold extrusion checking
  5358. * M302 P1 ; disables cold extrusion checking
  5359. * M302 S0 ; always allow extrusion (disables checking)
  5360. * M302 S170 ; only allow extrusion above 170
  5361. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  5362. */
  5363. inline void gcode_M302() {
  5364. bool seen_S = code_seen('S');
  5365. if (seen_S) {
  5366. thermalManager.extrude_min_temp = code_value_temp_abs();
  5367. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  5368. }
  5369. if (code_seen('P'))
  5370. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  5371. else if (!seen_S) {
  5372. // Report current state
  5373. SERIAL_ECHO_START;
  5374. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  5375. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  5376. SERIAL_ECHOLNPGM("C)");
  5377. }
  5378. }
  5379. #endif // PREVENT_COLD_EXTRUSION
  5380. /**
  5381. * M303: PID relay autotune
  5382. *
  5383. * S<temperature> sets the target temperature. (default 150C)
  5384. * E<extruder> (-1 for the bed) (default 0)
  5385. * C<cycles>
  5386. * U<bool> with a non-zero value will apply the result to current settings
  5387. */
  5388. inline void gcode_M303() {
  5389. #if HAS_PID_HEATING
  5390. int e = code_seen('E') ? code_value_int() : 0;
  5391. int c = code_seen('C') ? code_value_int() : 5;
  5392. bool u = code_seen('U') && code_value_bool();
  5393. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  5394. if (e >= 0 && e < HOTENDS)
  5395. target_extruder = e;
  5396. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  5397. thermalManager.PID_autotune(temp, e, c, u);
  5398. KEEPALIVE_STATE(IN_HANDLER);
  5399. #else
  5400. SERIAL_ERROR_START;
  5401. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5402. #endif
  5403. }
  5404. #if ENABLED(MORGAN_SCARA)
  5405. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  5406. if (IsRunning()) {
  5407. forward_kinematics_SCARA(delta_a, delta_b);
  5408. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  5409. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  5410. destination[Z_AXIS] = current_position[Z_AXIS];
  5411. prepare_move_to_destination();
  5412. return true;
  5413. }
  5414. return false;
  5415. }
  5416. /**
  5417. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5418. */
  5419. inline bool gcode_M360() {
  5420. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5421. return SCARA_move_to_cal(0, 120);
  5422. }
  5423. /**
  5424. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5425. */
  5426. inline bool gcode_M361() {
  5427. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5428. return SCARA_move_to_cal(90, 130);
  5429. }
  5430. /**
  5431. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5432. */
  5433. inline bool gcode_M362() {
  5434. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5435. return SCARA_move_to_cal(60, 180);
  5436. }
  5437. /**
  5438. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5439. */
  5440. inline bool gcode_M363() {
  5441. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5442. return SCARA_move_to_cal(50, 90);
  5443. }
  5444. /**
  5445. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5446. */
  5447. inline bool gcode_M364() {
  5448. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5449. return SCARA_move_to_cal(45, 135);
  5450. }
  5451. #endif // SCARA
  5452. #if ENABLED(EXT_SOLENOID)
  5453. void enable_solenoid(uint8_t num) {
  5454. switch (num) {
  5455. case 0:
  5456. OUT_WRITE(SOL0_PIN, HIGH);
  5457. break;
  5458. #if HAS_SOLENOID_1
  5459. case 1:
  5460. OUT_WRITE(SOL1_PIN, HIGH);
  5461. break;
  5462. #endif
  5463. #if HAS_SOLENOID_2
  5464. case 2:
  5465. OUT_WRITE(SOL2_PIN, HIGH);
  5466. break;
  5467. #endif
  5468. #if HAS_SOLENOID_3
  5469. case 3:
  5470. OUT_WRITE(SOL3_PIN, HIGH);
  5471. break;
  5472. #endif
  5473. default:
  5474. SERIAL_ECHO_START;
  5475. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5476. break;
  5477. }
  5478. }
  5479. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5480. void disable_all_solenoids() {
  5481. OUT_WRITE(SOL0_PIN, LOW);
  5482. OUT_WRITE(SOL1_PIN, LOW);
  5483. OUT_WRITE(SOL2_PIN, LOW);
  5484. OUT_WRITE(SOL3_PIN, LOW);
  5485. }
  5486. /**
  5487. * M380: Enable solenoid on the active extruder
  5488. */
  5489. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5490. /**
  5491. * M381: Disable all solenoids
  5492. */
  5493. inline void gcode_M381() { disable_all_solenoids(); }
  5494. #endif // EXT_SOLENOID
  5495. /**
  5496. * M400: Finish all moves
  5497. */
  5498. inline void gcode_M400() { stepper.synchronize(); }
  5499. #if HAS_BED_PROBE
  5500. /**
  5501. * M401: Engage Z Servo endstop if available
  5502. */
  5503. inline void gcode_M401() { DEPLOY_PROBE(); }
  5504. /**
  5505. * M402: Retract Z Servo endstop if enabled
  5506. */
  5507. inline void gcode_M402() { STOW_PROBE(); }
  5508. #endif // HAS_BED_PROBE
  5509. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5510. /**
  5511. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5512. */
  5513. inline void gcode_M404() {
  5514. if (code_seen('W')) {
  5515. filament_width_nominal = code_value_linear_units();
  5516. }
  5517. else {
  5518. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5519. SERIAL_PROTOCOLLN(filament_width_nominal);
  5520. }
  5521. }
  5522. /**
  5523. * M405: Turn on filament sensor for control
  5524. */
  5525. inline void gcode_M405() {
  5526. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5527. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5528. if (code_seen('D')) meas_delay_cm = code_value_int();
  5529. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5530. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5531. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5532. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5533. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5534. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5535. }
  5536. filament_sensor = true;
  5537. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5538. //SERIAL_PROTOCOL(filament_width_meas);
  5539. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5540. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5541. }
  5542. /**
  5543. * M406: Turn off filament sensor for control
  5544. */
  5545. inline void gcode_M406() { filament_sensor = false; }
  5546. /**
  5547. * M407: Get measured filament diameter on serial output
  5548. */
  5549. inline void gcode_M407() {
  5550. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5551. SERIAL_PROTOCOLLN(filament_width_meas);
  5552. }
  5553. #endif // FILAMENT_WIDTH_SENSOR
  5554. void quickstop_stepper() {
  5555. stepper.quick_stop();
  5556. stepper.synchronize();
  5557. set_current_from_steppers_for_axis(ALL_AXES);
  5558. SYNC_PLAN_POSITION_KINEMATIC();
  5559. }
  5560. #if PLANNER_LEVELING
  5561. /**
  5562. * M420: Enable/Disable Bed Leveling
  5563. */
  5564. inline void gcode_M420() { if (code_seen('S')) set_bed_leveling_enabled(code_value_bool()); }
  5565. #endif
  5566. #if ENABLED(MESH_BED_LEVELING)
  5567. /**
  5568. * M421: Set a single Mesh Bed Leveling Z coordinate
  5569. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5570. */
  5571. inline void gcode_M421() {
  5572. int8_t px = 0, py = 0;
  5573. float z = 0;
  5574. bool hasX, hasY, hasZ, hasI, hasJ;
  5575. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5576. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5577. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5578. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5579. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5580. if (hasX && hasY && hasZ) {
  5581. if (px >= 0 && py >= 0)
  5582. mbl.set_z(px, py, z);
  5583. else {
  5584. SERIAL_ERROR_START;
  5585. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5586. }
  5587. }
  5588. else if (hasI && hasJ && hasZ) {
  5589. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5590. mbl.set_z(px, py, z);
  5591. else {
  5592. SERIAL_ERROR_START;
  5593. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5594. }
  5595. }
  5596. else {
  5597. SERIAL_ERROR_START;
  5598. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5599. }
  5600. }
  5601. #endif
  5602. /**
  5603. * M428: Set home_offset based on the distance between the
  5604. * current_position and the nearest "reference point."
  5605. * If an axis is past center its endstop position
  5606. * is the reference-point. Otherwise it uses 0. This allows
  5607. * the Z offset to be set near the bed when using a max endstop.
  5608. *
  5609. * M428 can't be used more than 2cm away from 0 or an endstop.
  5610. *
  5611. * Use M206 to set these values directly.
  5612. */
  5613. inline void gcode_M428() {
  5614. bool err = false;
  5615. LOOP_XYZ(i) {
  5616. if (axis_homed[i]) {
  5617. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5618. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5619. if (diff > -20 && diff < 20) {
  5620. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5621. }
  5622. else {
  5623. SERIAL_ERROR_START;
  5624. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5625. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5626. BUZZ(200, 40);
  5627. err = true;
  5628. break;
  5629. }
  5630. }
  5631. }
  5632. if (!err) {
  5633. SYNC_PLAN_POSITION_KINEMATIC();
  5634. report_current_position();
  5635. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5636. BUZZ(200, 659);
  5637. BUZZ(200, 698);
  5638. }
  5639. }
  5640. /**
  5641. * M500: Store settings in EEPROM
  5642. */
  5643. inline void gcode_M500() {
  5644. Config_StoreSettings();
  5645. }
  5646. /**
  5647. * M501: Read settings from EEPROM
  5648. */
  5649. inline void gcode_M501() {
  5650. Config_RetrieveSettings();
  5651. }
  5652. /**
  5653. * M502: Revert to default settings
  5654. */
  5655. inline void gcode_M502() {
  5656. Config_ResetDefault();
  5657. }
  5658. /**
  5659. * M503: print settings currently in memory
  5660. */
  5661. inline void gcode_M503() {
  5662. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5663. }
  5664. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5665. /**
  5666. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5667. */
  5668. inline void gcode_M540() {
  5669. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5670. }
  5671. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5672. #if HAS_BED_PROBE
  5673. inline void gcode_M851() {
  5674. SERIAL_ECHO_START;
  5675. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5676. SERIAL_CHAR(' ');
  5677. if (code_seen('Z')) {
  5678. float value = code_value_axis_units(Z_AXIS);
  5679. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5680. zprobe_zoffset = value;
  5681. SERIAL_ECHO(zprobe_zoffset);
  5682. }
  5683. else {
  5684. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5685. SERIAL_CHAR(' ');
  5686. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5687. }
  5688. }
  5689. else {
  5690. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5691. }
  5692. SERIAL_EOL;
  5693. }
  5694. #endif // HAS_BED_PROBE
  5695. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5696. /**
  5697. * M600: Pause for filament change
  5698. *
  5699. * E[distance] - Retract the filament this far (negative value)
  5700. * Z[distance] - Move the Z axis by this distance
  5701. * X[position] - Move to this X position, with Y
  5702. * Y[position] - Move to this Y position, with X
  5703. * L[distance] - Retract distance for removal (manual reload)
  5704. *
  5705. * Default values are used for omitted arguments.
  5706. *
  5707. */
  5708. inline void gcode_M600() {
  5709. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5710. SERIAL_ERROR_START;
  5711. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5712. return;
  5713. }
  5714. // Show initial message and wait for synchronize steppers
  5715. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5716. stepper.synchronize();
  5717. float lastpos[NUM_AXIS];
  5718. // Save current position of all axes
  5719. LOOP_XYZE(i)
  5720. lastpos[i] = destination[i] = current_position[i];
  5721. // Define runplan for move axes
  5722. #if IS_KINEMATIC
  5723. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5724. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5725. #else
  5726. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5727. #endif
  5728. KEEPALIVE_STATE(IN_HANDLER);
  5729. // Initial retract before move to filament change position
  5730. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5731. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5732. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5733. #endif
  5734. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5735. // Lift Z axis
  5736. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5737. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5738. FILAMENT_CHANGE_Z_ADD
  5739. #else
  5740. 0
  5741. #endif
  5742. ;
  5743. if (z_lift > 0) {
  5744. destination[Z_AXIS] += z_lift;
  5745. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5746. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5747. }
  5748. // Move XY axes to filament exchange position
  5749. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5750. #ifdef FILAMENT_CHANGE_X_POS
  5751. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5752. #endif
  5753. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5754. #ifdef FILAMENT_CHANGE_Y_POS
  5755. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5756. #endif
  5757. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5758. stepper.synchronize();
  5759. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5760. // Unload filament
  5761. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5762. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5763. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5764. #endif
  5765. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5766. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5767. stepper.synchronize();
  5768. disable_e0();
  5769. disable_e1();
  5770. disable_e2();
  5771. disable_e3();
  5772. delay(100);
  5773. #if HAS_BUZZER
  5774. millis_t next_buzz = 0;
  5775. #endif
  5776. // Wait for filament insert by user and press button
  5777. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5778. while (!lcd_clicked()) {
  5779. #if HAS_BUZZER
  5780. millis_t ms = millis();
  5781. if (ms >= next_buzz) {
  5782. BUZZ(300, 2000);
  5783. next_buzz = ms + 2500; // Beep every 2.5s while waiting
  5784. }
  5785. #endif
  5786. idle(true);
  5787. }
  5788. delay(100);
  5789. while (lcd_clicked()) idle(true);
  5790. delay(100);
  5791. // Show load message
  5792. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5793. // Load filament
  5794. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5795. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5796. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5797. #endif
  5798. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5799. stepper.synchronize();
  5800. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5801. do {
  5802. // Extrude filament to get into hotend
  5803. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5804. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5805. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5806. stepper.synchronize();
  5807. // Ask user if more filament should be extruded
  5808. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5809. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5810. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5811. KEEPALIVE_STATE(IN_HANDLER);
  5812. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5813. #endif
  5814. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5815. KEEPALIVE_STATE(IN_HANDLER);
  5816. // Set extruder to saved position
  5817. current_position[E_AXIS] = lastpos[E_AXIS];
  5818. destination[E_AXIS] = lastpos[E_AXIS];
  5819. planner.set_e_position_mm(current_position[E_AXIS]);
  5820. #if IS_KINEMATIC
  5821. // Move XYZ to starting position, then E
  5822. inverse_kinematics(lastpos);
  5823. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5824. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5825. #else
  5826. // Move XY to starting position, then Z, then E
  5827. destination[X_AXIS] = lastpos[X_AXIS];
  5828. destination[Y_AXIS] = lastpos[Y_AXIS];
  5829. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5830. destination[Z_AXIS] = lastpos[Z_AXIS];
  5831. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5832. #endif
  5833. stepper.synchronize();
  5834. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5835. filament_ran_out = false;
  5836. #endif
  5837. // Show status screen
  5838. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5839. }
  5840. #endif // FILAMENT_CHANGE_FEATURE
  5841. #if ENABLED(DUAL_X_CARRIAGE)
  5842. /**
  5843. * M605: Set dual x-carriage movement mode
  5844. *
  5845. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5846. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5847. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5848. * units x-offset and an optional differential hotend temperature of
  5849. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5850. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5851. *
  5852. * Note: the X axis should be homed after changing dual x-carriage mode.
  5853. */
  5854. inline void gcode_M605() {
  5855. stepper.synchronize();
  5856. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5857. switch (dual_x_carriage_mode) {
  5858. case DXC_DUPLICATION_MODE:
  5859. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5860. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5861. SERIAL_ECHO_START;
  5862. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5863. SERIAL_CHAR(' ');
  5864. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5865. SERIAL_CHAR(',');
  5866. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5867. SERIAL_CHAR(' ');
  5868. SERIAL_ECHO(duplicate_extruder_x_offset);
  5869. SERIAL_CHAR(',');
  5870. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5871. break;
  5872. case DXC_FULL_CONTROL_MODE:
  5873. case DXC_AUTO_PARK_MODE:
  5874. break;
  5875. default:
  5876. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5877. break;
  5878. }
  5879. active_extruder_parked = false;
  5880. extruder_duplication_enabled = false;
  5881. delayed_move_time = 0;
  5882. }
  5883. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5884. inline void gcode_M605() {
  5885. stepper.synchronize();
  5886. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5887. SERIAL_ECHO_START;
  5888. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5889. }
  5890. #endif // M605
  5891. #if ENABLED(LIN_ADVANCE)
  5892. /**
  5893. * M905: Set advance factor
  5894. */
  5895. inline void gcode_M905() {
  5896. stepper.synchronize();
  5897. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5898. }
  5899. #endif
  5900. /**
  5901. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5902. */
  5903. inline void gcode_M907() {
  5904. #if HAS_DIGIPOTSS
  5905. LOOP_XYZE(i)
  5906. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5907. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5908. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5909. #elif HAS_MOTOR_CURRENT_PWM
  5910. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5911. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5912. #endif
  5913. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5914. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5915. #endif
  5916. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5917. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5918. #endif
  5919. #endif
  5920. #if ENABLED(DIGIPOT_I2C)
  5921. // this one uses actual amps in floating point
  5922. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5923. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5924. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5925. #endif
  5926. #if ENABLED(DAC_STEPPER_CURRENT)
  5927. if (code_seen('S')) {
  5928. float dac_percent = code_value_float();
  5929. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5930. }
  5931. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5932. #endif
  5933. }
  5934. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5935. /**
  5936. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5937. */
  5938. inline void gcode_M908() {
  5939. #if HAS_DIGIPOTSS
  5940. stepper.digitalPotWrite(
  5941. code_seen('P') ? code_value_int() : 0,
  5942. code_seen('S') ? code_value_int() : 0
  5943. );
  5944. #endif
  5945. #ifdef DAC_STEPPER_CURRENT
  5946. dac_current_raw(
  5947. code_seen('P') ? code_value_byte() : -1,
  5948. code_seen('S') ? code_value_ushort() : 0
  5949. );
  5950. #endif
  5951. }
  5952. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5953. inline void gcode_M909() { dac_print_values(); }
  5954. inline void gcode_M910() { dac_commit_eeprom(); }
  5955. #endif
  5956. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5957. #if HAS_MICROSTEPS
  5958. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5959. inline void gcode_M350() {
  5960. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5961. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5962. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5963. stepper.microstep_readings();
  5964. }
  5965. /**
  5966. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5967. * S# determines MS1 or MS2, X# sets the pin high/low.
  5968. */
  5969. inline void gcode_M351() {
  5970. if (code_seen('S')) switch (code_value_byte()) {
  5971. case 1:
  5972. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5973. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5974. break;
  5975. case 2:
  5976. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5977. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5978. break;
  5979. }
  5980. stepper.microstep_readings();
  5981. }
  5982. #endif // HAS_MICROSTEPS
  5983. #if ENABLED(MIXING_EXTRUDER)
  5984. /**
  5985. * M163: Set a single mix factor for a mixing extruder
  5986. * This is called "weight" by some systems.
  5987. *
  5988. * S[index] The channel index to set
  5989. * P[float] The mix value
  5990. *
  5991. */
  5992. inline void gcode_M163() {
  5993. int mix_index = code_seen('S') ? code_value_int() : 0;
  5994. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5995. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5996. }
  5997. #if MIXING_VIRTUAL_TOOLS > 1
  5998. /**
  5999. * M164: Store the current mix factors as a virtual tool.
  6000. *
  6001. * S[index] The virtual tool to store
  6002. *
  6003. */
  6004. inline void gcode_M164() {
  6005. int tool_index = code_seen('S') ? code_value_int() : 0;
  6006. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  6007. normalize_mix();
  6008. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  6009. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  6010. }
  6011. }
  6012. #endif
  6013. #if ENABLED(DIRECT_MIXING_IN_G1)
  6014. /**
  6015. * M165: Set multiple mix factors for a mixing extruder.
  6016. * Factors that are left out will be set to 0.
  6017. * All factors together must add up to 1.0.
  6018. *
  6019. * A[factor] Mix factor for extruder stepper 1
  6020. * B[factor] Mix factor for extruder stepper 2
  6021. * C[factor] Mix factor for extruder stepper 3
  6022. * D[factor] Mix factor for extruder stepper 4
  6023. * H[factor] Mix factor for extruder stepper 5
  6024. * I[factor] Mix factor for extruder stepper 6
  6025. *
  6026. */
  6027. inline void gcode_M165() { gcode_get_mix(); }
  6028. #endif
  6029. #endif // MIXING_EXTRUDER
  6030. /**
  6031. * M999: Restart after being stopped
  6032. *
  6033. * Default behaviour is to flush the serial buffer and request
  6034. * a resend to the host starting on the last N line received.
  6035. *
  6036. * Sending "M999 S1" will resume printing without flushing the
  6037. * existing command buffer.
  6038. *
  6039. */
  6040. inline void gcode_M999() {
  6041. Running = true;
  6042. lcd_reset_alert_level();
  6043. if (code_seen('S') && code_value_bool()) return;
  6044. // gcode_LastN = Stopped_gcode_LastN;
  6045. FlushSerialRequestResend();
  6046. }
  6047. #if ENABLED(SWITCHING_EXTRUDER)
  6048. inline void move_extruder_servo(uint8_t e) {
  6049. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  6050. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  6051. }
  6052. #endif
  6053. inline void invalid_extruder_error(const uint8_t &e) {
  6054. SERIAL_ECHO_START;
  6055. SERIAL_CHAR('T');
  6056. SERIAL_PROTOCOL_F(e, DEC);
  6057. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  6058. }
  6059. /**
  6060. * Perform a tool-change, which may result in moving the
  6061. * previous tool out of the way and the new tool into place.
  6062. */
  6063. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  6064. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  6065. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  6066. invalid_extruder_error(tmp_extruder);
  6067. return;
  6068. }
  6069. // T0-Tnnn: Switch virtual tool by changing the mix
  6070. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  6071. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  6072. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6073. #if HOTENDS > 1
  6074. if (tmp_extruder >= EXTRUDERS) {
  6075. invalid_extruder_error(tmp_extruder);
  6076. return;
  6077. }
  6078. float old_feedrate_mm_s = feedrate_mm_s;
  6079. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  6080. if (tmp_extruder != active_extruder) {
  6081. if (!no_move && axis_unhomed_error(true, true, true)) {
  6082. SERIAL_ECHOLNPGM("No move on toolchange");
  6083. no_move = true;
  6084. }
  6085. // Save current position to destination, for use later
  6086. set_destination_to_current();
  6087. #if ENABLED(DUAL_X_CARRIAGE)
  6088. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6089. if (DEBUGGING(LEVELING)) {
  6090. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  6091. switch (dual_x_carriage_mode) {
  6092. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  6093. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  6094. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  6095. }
  6096. }
  6097. #endif
  6098. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  6099. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  6100. ) {
  6101. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6102. if (DEBUGGING(LEVELING)) {
  6103. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  6104. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  6105. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  6106. }
  6107. #endif
  6108. // Park old head: 1) raise 2) move to park position 3) lower
  6109. for (uint8_t i = 0; i < 3; i++)
  6110. planner.buffer_line(
  6111. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  6112. current_position[Y_AXIS],
  6113. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  6114. current_position[E_AXIS],
  6115. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  6116. active_extruder
  6117. );
  6118. stepper.synchronize();
  6119. }
  6120. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  6121. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  6122. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  6123. active_extruder = tmp_extruder;
  6124. // This function resets the max/min values - the current position may be overwritten below.
  6125. set_axis_is_at_home(X_AXIS);
  6126. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6127. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  6128. #endif
  6129. switch (dual_x_carriage_mode) {
  6130. case DXC_FULL_CONTROL_MODE:
  6131. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6132. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6133. break;
  6134. case DXC_DUPLICATION_MODE:
  6135. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  6136. if (active_extruder_parked)
  6137. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6138. else
  6139. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  6140. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6141. extruder_duplication_enabled = false;
  6142. break;
  6143. default:
  6144. // record raised toolhead position for use by unpark
  6145. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  6146. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  6147. active_extruder_parked = true;
  6148. delayed_move_time = 0;
  6149. break;
  6150. }
  6151. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6152. if (DEBUGGING(LEVELING)) {
  6153. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  6154. DEBUG_POS("New extruder (parked)", current_position);
  6155. }
  6156. #endif
  6157. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  6158. #else // !DUAL_X_CARRIAGE
  6159. #if ENABLED(SWITCHING_EXTRUDER)
  6160. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  6161. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  6162. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  6163. // Always raise by some amount
  6164. planner.buffer_line(
  6165. current_position[X_AXIS],
  6166. current_position[Y_AXIS],
  6167. current_position[Z_AXIS] + z_raise,
  6168. current_position[E_AXIS],
  6169. planner.max_feedrate_mm_s[Z_AXIS],
  6170. active_extruder
  6171. );
  6172. stepper.synchronize();
  6173. move_extruder_servo(active_extruder);
  6174. delay(500);
  6175. // Move back down, if needed
  6176. if (z_raise != z_diff) {
  6177. planner.buffer_line(
  6178. current_position[X_AXIS],
  6179. current_position[Y_AXIS],
  6180. current_position[Z_AXIS] + z_diff,
  6181. current_position[E_AXIS],
  6182. planner.max_feedrate_mm_s[Z_AXIS],
  6183. active_extruder
  6184. );
  6185. stepper.synchronize();
  6186. }
  6187. #endif
  6188. /**
  6189. * Set current_position to the position of the new nozzle.
  6190. * Offsets are based on linear distance, so we need to get
  6191. * the resulting position in coordinate space.
  6192. *
  6193. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  6194. * - With mesh leveling, update Z for the new position
  6195. * - Otherwise, just use the raw linear distance
  6196. *
  6197. * Software endstops are altered here too. Consider a case where:
  6198. * E0 at X=0 ... E1 at X=10
  6199. * When we switch to E1 now X=10, but E1 can't move left.
  6200. * To express this we apply the change in XY to the software endstops.
  6201. * E1 can move farther right than E0, so the right limit is extended.
  6202. *
  6203. * Note that we don't adjust the Z software endstops. Why not?
  6204. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  6205. * because the bed is 1mm lower at the new position. As long as
  6206. * the first nozzle is out of the way, the carriage should be
  6207. * allowed to move 1mm lower. This technically "breaks" the
  6208. * Z software endstop. But this is technically correct (and
  6209. * there is no viable alternative).
  6210. */
  6211. #if ABL_PLANAR
  6212. // Offset extruder, make sure to apply the bed level rotation matrix
  6213. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  6214. hotend_offset[Y_AXIS][tmp_extruder],
  6215. 0),
  6216. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  6217. hotend_offset[Y_AXIS][active_extruder],
  6218. 0),
  6219. offset_vec = tmp_offset_vec - act_offset_vec;
  6220. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6221. if (DEBUGGING(LEVELING)) {
  6222. tmp_offset_vec.debug("tmp_offset_vec");
  6223. act_offset_vec.debug("act_offset_vec");
  6224. offset_vec.debug("offset_vec (BEFORE)");
  6225. }
  6226. #endif
  6227. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  6228. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6229. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  6230. #endif
  6231. // Adjustments to the current position
  6232. float xydiff[2] = { offset_vec.x, offset_vec.y };
  6233. current_position[Z_AXIS] += offset_vec.z;
  6234. #else // !ABL_PLANAR
  6235. float xydiff[2] = {
  6236. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  6237. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  6238. };
  6239. #if ENABLED(MESH_BED_LEVELING)
  6240. if (mbl.active()) {
  6241. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6242. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  6243. #endif
  6244. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  6245. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  6246. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  6247. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6248. if (DEBUGGING(LEVELING))
  6249. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  6250. #endif
  6251. }
  6252. #endif // MESH_BED_LEVELING
  6253. #endif // !HAS_ABL
  6254. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6255. if (DEBUGGING(LEVELING)) {
  6256. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  6257. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  6258. SERIAL_ECHOLNPGM(" }");
  6259. }
  6260. #endif
  6261. // The newly-selected extruder XY is actually at...
  6262. current_position[X_AXIS] += xydiff[X_AXIS];
  6263. current_position[Y_AXIS] += xydiff[Y_AXIS];
  6264. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  6265. position_shift[i] += xydiff[i];
  6266. update_software_endstops((AxisEnum)i);
  6267. }
  6268. // Set the new active extruder
  6269. active_extruder = tmp_extruder;
  6270. #endif // !DUAL_X_CARRIAGE
  6271. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6272. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  6273. #endif
  6274. // Tell the planner the new "current position"
  6275. SYNC_PLAN_POSITION_KINEMATIC();
  6276. // Move to the "old position" (move the extruder into place)
  6277. if (!no_move && IsRunning()) {
  6278. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6279. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  6280. #endif
  6281. prepare_move_to_destination();
  6282. }
  6283. } // (tmp_extruder != active_extruder)
  6284. stepper.synchronize();
  6285. #if ENABLED(EXT_SOLENOID)
  6286. disable_all_solenoids();
  6287. enable_solenoid_on_active_extruder();
  6288. #endif // EXT_SOLENOID
  6289. feedrate_mm_s = old_feedrate_mm_s;
  6290. #else // HOTENDS <= 1
  6291. // Set the new active extruder
  6292. active_extruder = tmp_extruder;
  6293. UNUSED(fr_mm_s);
  6294. UNUSED(no_move);
  6295. #endif // HOTENDS <= 1
  6296. SERIAL_ECHO_START;
  6297. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  6298. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6299. }
  6300. /**
  6301. * T0-T3: Switch tool, usually switching extruders
  6302. *
  6303. * F[units/min] Set the movement feedrate
  6304. * S1 Don't move the tool in XY after change
  6305. */
  6306. inline void gcode_T(uint8_t tmp_extruder) {
  6307. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6308. if (DEBUGGING(LEVELING)) {
  6309. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  6310. SERIAL_CHAR(')');
  6311. SERIAL_EOL;
  6312. DEBUG_POS("BEFORE", current_position);
  6313. }
  6314. #endif
  6315. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  6316. tool_change(tmp_extruder);
  6317. #elif HOTENDS > 1
  6318. tool_change(
  6319. tmp_extruder,
  6320. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  6321. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  6322. );
  6323. #endif
  6324. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6325. if (DEBUGGING(LEVELING)) {
  6326. DEBUG_POS("AFTER", current_position);
  6327. SERIAL_ECHOLNPGM("<<< gcode_T");
  6328. }
  6329. #endif
  6330. }
  6331. /**
  6332. * Process a single command and dispatch it to its handler
  6333. * This is called from the main loop()
  6334. */
  6335. void process_next_command() {
  6336. current_command = command_queue[cmd_queue_index_r];
  6337. if (DEBUGGING(ECHO)) {
  6338. SERIAL_ECHO_START;
  6339. SERIAL_ECHOLN(current_command);
  6340. }
  6341. // Sanitize the current command:
  6342. // - Skip leading spaces
  6343. // - Bypass N[-0-9][0-9]*[ ]*
  6344. // - Overwrite * with nul to mark the end
  6345. while (*current_command == ' ') ++current_command;
  6346. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  6347. current_command += 2; // skip N[-0-9]
  6348. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  6349. while (*current_command == ' ') ++current_command; // skip [ ]*
  6350. }
  6351. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  6352. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  6353. char *cmd_ptr = current_command;
  6354. // Get the command code, which must be G, M, or T
  6355. char command_code = *cmd_ptr++;
  6356. // Skip spaces to get the numeric part
  6357. while (*cmd_ptr == ' ') cmd_ptr++;
  6358. // Allow for decimal point in command
  6359. #if ENABLED(G38_PROBE_TARGET)
  6360. uint8_t subcode = 0;
  6361. #endif
  6362. uint16_t codenum = 0; // define ahead of goto
  6363. // Bail early if there's no code
  6364. bool code_is_good = NUMERIC(*cmd_ptr);
  6365. if (!code_is_good) goto ExitUnknownCommand;
  6366. // Get and skip the code number
  6367. do {
  6368. codenum = (codenum * 10) + (*cmd_ptr - '0');
  6369. cmd_ptr++;
  6370. } while (NUMERIC(*cmd_ptr));
  6371. // Allow for decimal point in command
  6372. #if ENABLED(G38_PROBE_TARGET)
  6373. if (*cmd_ptr == '.') {
  6374. cmd_ptr++;
  6375. while (NUMERIC(*cmd_ptr))
  6376. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  6377. }
  6378. #endif
  6379. // Skip all spaces to get to the first argument, or nul
  6380. while (*cmd_ptr == ' ') cmd_ptr++;
  6381. // The command's arguments (if any) start here, for sure!
  6382. current_command_args = cmd_ptr;
  6383. KEEPALIVE_STATE(IN_HANDLER);
  6384. // Handle a known G, M, or T
  6385. switch (command_code) {
  6386. case 'G': switch (codenum) {
  6387. // G0, G1
  6388. case 0:
  6389. case 1:
  6390. #if IS_SCARA
  6391. gcode_G0_G1(codenum == 0);
  6392. #else
  6393. gcode_G0_G1();
  6394. #endif
  6395. break;
  6396. // G2, G3
  6397. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  6398. case 2: // G2 - CW ARC
  6399. case 3: // G3 - CCW ARC
  6400. gcode_G2_G3(codenum == 2);
  6401. break;
  6402. #endif
  6403. // G4 Dwell
  6404. case 4:
  6405. gcode_G4();
  6406. break;
  6407. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6408. // G5
  6409. case 5: // G5 - Cubic B_spline
  6410. gcode_G5();
  6411. break;
  6412. #endif // BEZIER_CURVE_SUPPORT
  6413. #if ENABLED(FWRETRACT)
  6414. case 10: // G10: retract
  6415. case 11: // G11: retract_recover
  6416. gcode_G10_G11(codenum == 10);
  6417. break;
  6418. #endif // FWRETRACT
  6419. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6420. case 12:
  6421. gcode_G12(); // G12: Nozzle Clean
  6422. break;
  6423. #endif // NOZZLE_CLEAN_FEATURE
  6424. #if ENABLED(INCH_MODE_SUPPORT)
  6425. case 20: //G20: Inch Mode
  6426. gcode_G20();
  6427. break;
  6428. case 21: //G21: MM Mode
  6429. gcode_G21();
  6430. break;
  6431. #endif // INCH_MODE_SUPPORT
  6432. #if ENABLED(NOZZLE_PARK_FEATURE)
  6433. case 27: // G27: Nozzle Park
  6434. gcode_G27();
  6435. break;
  6436. #endif // NOZZLE_PARK_FEATURE
  6437. case 28: // G28: Home all axes, one at a time
  6438. gcode_G28();
  6439. break;
  6440. #if PLANNER_LEVELING
  6441. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6442. gcode_G29();
  6443. break;
  6444. #endif // PLANNER_LEVELING
  6445. #if HAS_BED_PROBE
  6446. case 30: // G30 Single Z probe
  6447. gcode_G30();
  6448. break;
  6449. #if ENABLED(Z_PROBE_SLED)
  6450. case 31: // G31: dock the sled
  6451. gcode_G31();
  6452. break;
  6453. case 32: // G32: undock the sled
  6454. gcode_G32();
  6455. break;
  6456. #endif // Z_PROBE_SLED
  6457. #endif // HAS_BED_PROBE
  6458. #if ENABLED(G38_PROBE_TARGET)
  6459. case 38: // G38.2 & G38.3
  6460. if (subcode == 2 || subcode == 3)
  6461. gcode_G38(subcode == 2);
  6462. break;
  6463. #endif
  6464. case 90: // G90
  6465. relative_mode = false;
  6466. break;
  6467. case 91: // G91
  6468. relative_mode = true;
  6469. break;
  6470. case 92: // G92
  6471. gcode_G92();
  6472. break;
  6473. }
  6474. break;
  6475. case 'M': switch (codenum) {
  6476. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  6477. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  6478. case 1: // M1: Conditional stop - Wait for user button press on LCD
  6479. gcode_M0_M1();
  6480. break;
  6481. #endif // ULTIPANEL
  6482. case 17: // M17: Enable all stepper motors
  6483. gcode_M17();
  6484. break;
  6485. #if ENABLED(SDSUPPORT)
  6486. case 20: // M20: list SD card
  6487. gcode_M20(); break;
  6488. case 21: // M21: init SD card
  6489. gcode_M21(); break;
  6490. case 22: // M22: release SD card
  6491. gcode_M22(); break;
  6492. case 23: // M23: Select file
  6493. gcode_M23(); break;
  6494. case 24: // M24: Start SD print
  6495. gcode_M24(); break;
  6496. case 25: // M25: Pause SD print
  6497. gcode_M25(); break;
  6498. case 26: // M26: Set SD index
  6499. gcode_M26(); break;
  6500. case 27: // M27: Get SD status
  6501. gcode_M27(); break;
  6502. case 28: // M28: Start SD write
  6503. gcode_M28(); break;
  6504. case 29: // M29: Stop SD write
  6505. gcode_M29(); break;
  6506. case 30: // M30 <filename> Delete File
  6507. gcode_M30(); break;
  6508. case 32: // M32: Select file and start SD print
  6509. gcode_M32(); break;
  6510. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6511. case 33: // M33: Get the long full path to a file or folder
  6512. gcode_M33(); break;
  6513. #endif
  6514. case 928: // M928: Start SD write
  6515. gcode_M928(); break;
  6516. #endif //SDSUPPORT
  6517. case 31: // M31: Report time since the start of SD print or last M109
  6518. gcode_M31(); break;
  6519. case 42: // M42: Change pin state
  6520. gcode_M42(); break;
  6521. #if ENABLED(PINS_DEBUGGING)
  6522. case 43: // M43: Read pin state
  6523. gcode_M43(); break;
  6524. #endif
  6525. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6526. case 48: // M48: Z probe repeatability test
  6527. gcode_M48();
  6528. break;
  6529. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6530. case 75: // M75: Start print timer
  6531. gcode_M75(); break;
  6532. case 76: // M76: Pause print timer
  6533. gcode_M76(); break;
  6534. case 77: // M77: Stop print timer
  6535. gcode_M77(); break;
  6536. #if ENABLED(PRINTCOUNTER)
  6537. case 78: // M78: Show print statistics
  6538. gcode_M78(); break;
  6539. #endif
  6540. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6541. case 100: // M100: Free Memory Report
  6542. gcode_M100();
  6543. break;
  6544. #endif
  6545. case 104: // M104: Set hot end temperature
  6546. gcode_M104();
  6547. break;
  6548. case 110: // M110: Set Current Line Number
  6549. gcode_M110();
  6550. break;
  6551. case 111: // M111: Set debug level
  6552. gcode_M111();
  6553. break;
  6554. #if DISABLED(EMERGENCY_PARSER)
  6555. case 108: // M108: Cancel Waiting
  6556. gcode_M108();
  6557. break;
  6558. case 112: // M112: Emergency Stop
  6559. gcode_M112();
  6560. break;
  6561. case 410: // M410 quickstop - Abort all the planned moves.
  6562. gcode_M410();
  6563. break;
  6564. #endif
  6565. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6566. case 113: // M113: Set Host Keepalive interval
  6567. gcode_M113();
  6568. break;
  6569. #endif
  6570. case 140: // M140: Set bed temperature
  6571. gcode_M140();
  6572. break;
  6573. case 105: // M105: Report current temperature
  6574. gcode_M105();
  6575. KEEPALIVE_STATE(NOT_BUSY);
  6576. return; // "ok" already printed
  6577. case 109: // M109: Wait for hotend temperature to reach target
  6578. gcode_M109();
  6579. break;
  6580. #if HAS_TEMP_BED
  6581. case 190: // M190: Wait for bed temperature to reach target
  6582. gcode_M190();
  6583. break;
  6584. #endif // HAS_TEMP_BED
  6585. #if FAN_COUNT > 0
  6586. case 106: // M106: Fan On
  6587. gcode_M106();
  6588. break;
  6589. case 107: // M107: Fan Off
  6590. gcode_M107();
  6591. break;
  6592. #endif // FAN_COUNT > 0
  6593. #if ENABLED(BARICUDA)
  6594. // PWM for HEATER_1_PIN
  6595. #if HAS_HEATER_1
  6596. case 126: // M126: valve open
  6597. gcode_M126();
  6598. break;
  6599. case 127: // M127: valve closed
  6600. gcode_M127();
  6601. break;
  6602. #endif // HAS_HEATER_1
  6603. // PWM for HEATER_2_PIN
  6604. #if HAS_HEATER_2
  6605. case 128: // M128: valve open
  6606. gcode_M128();
  6607. break;
  6608. case 129: // M129: valve closed
  6609. gcode_M129();
  6610. break;
  6611. #endif // HAS_HEATER_2
  6612. #endif // BARICUDA
  6613. #if HAS_POWER_SWITCH
  6614. case 80: // M80: Turn on Power Supply
  6615. gcode_M80();
  6616. break;
  6617. #endif // HAS_POWER_SWITCH
  6618. case 81: // M81: Turn off Power, including Power Supply, if possible
  6619. gcode_M81();
  6620. break;
  6621. case 82: // M83: Set E axis normal mode (same as other axes)
  6622. gcode_M82();
  6623. break;
  6624. case 83: // M83: Set E axis relative mode
  6625. gcode_M83();
  6626. break;
  6627. case 18: // M18 => M84
  6628. case 84: // M84: Disable all steppers or set timeout
  6629. gcode_M18_M84();
  6630. break;
  6631. case 85: // M85: Set inactivity stepper shutdown timeout
  6632. gcode_M85();
  6633. break;
  6634. case 92: // M92: Set the steps-per-unit for one or more axes
  6635. gcode_M92();
  6636. break;
  6637. case 115: // M115: Report capabilities
  6638. gcode_M115();
  6639. break;
  6640. case 117: // M117: Set LCD message text, if possible
  6641. gcode_M117();
  6642. break;
  6643. case 114: // M114: Report current position
  6644. gcode_M114();
  6645. break;
  6646. case 120: // M120: Enable endstops
  6647. gcode_M120();
  6648. break;
  6649. case 121: // M121: Disable endstops
  6650. gcode_M121();
  6651. break;
  6652. case 119: // M119: Report endstop states
  6653. gcode_M119();
  6654. break;
  6655. #if ENABLED(ULTIPANEL)
  6656. case 145: // M145: Set material heatup parameters
  6657. gcode_M145();
  6658. break;
  6659. #endif
  6660. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6661. case 149: // M149: Set temperature units
  6662. gcode_M149();
  6663. break;
  6664. #endif
  6665. #if ENABLED(BLINKM)
  6666. case 150: // M150: Set the BlinkM LCD color
  6667. gcode_M150();
  6668. break;
  6669. #endif // BLINKM
  6670. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6671. case 155: // M155: Send data to an i2c slave
  6672. gcode_M155();
  6673. break;
  6674. case 156: // M156: Request data from an i2c slave
  6675. gcode_M156();
  6676. break;
  6677. #endif //EXPERIMENTAL_I2CBUS
  6678. #if ENABLED(MIXING_EXTRUDER)
  6679. case 163: // M163: Set a component weight for mixing extruder
  6680. gcode_M163();
  6681. break;
  6682. #if MIXING_VIRTUAL_TOOLS > 1
  6683. case 164: // M164: Save current mix as a virtual extruder
  6684. gcode_M164();
  6685. break;
  6686. #endif
  6687. #if ENABLED(DIRECT_MIXING_IN_G1)
  6688. case 165: // M165: Set multiple mix weights
  6689. gcode_M165();
  6690. break;
  6691. #endif
  6692. #endif
  6693. case 200: // M200: Set filament diameter, E to cubic units
  6694. gcode_M200();
  6695. break;
  6696. case 201: // M201: Set max acceleration for print moves (units/s^2)
  6697. gcode_M201();
  6698. break;
  6699. #if 0 // Not used for Sprinter/grbl gen6
  6700. case 202: // M202
  6701. gcode_M202();
  6702. break;
  6703. #endif
  6704. case 203: // M203: Set max feedrate (units/sec)
  6705. gcode_M203();
  6706. break;
  6707. case 204: // M204: Set acceleration
  6708. gcode_M204();
  6709. break;
  6710. case 205: //M205: Set advanced settings
  6711. gcode_M205();
  6712. break;
  6713. case 206: // M206: Set home offsets
  6714. gcode_M206();
  6715. break;
  6716. #if ENABLED(DELTA)
  6717. case 665: // M665: Set delta configurations
  6718. gcode_M665();
  6719. break;
  6720. #endif
  6721. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6722. case 666: // M666: Set delta or dual endstop adjustment
  6723. gcode_M666();
  6724. break;
  6725. #endif
  6726. #if ENABLED(FWRETRACT)
  6727. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  6728. gcode_M207();
  6729. break;
  6730. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  6731. gcode_M208();
  6732. break;
  6733. case 209: // M209: Turn Automatic Retract Detection on/off
  6734. gcode_M209();
  6735. break;
  6736. #endif // FWRETRACT
  6737. case 211: // M211: Enable, Disable, and/or Report software endstops
  6738. gcode_M211();
  6739. break;
  6740. #if HOTENDS > 1
  6741. case 218: // M218: Set a tool offset
  6742. gcode_M218();
  6743. break;
  6744. #endif
  6745. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6746. gcode_M220();
  6747. break;
  6748. case 221: // M221: Set Flow Percentage
  6749. gcode_M221();
  6750. break;
  6751. case 226: // M226: Wait until a pin reaches a state
  6752. gcode_M226();
  6753. break;
  6754. #if HAS_SERVOS
  6755. case 280: // M280: Set servo position absolute
  6756. gcode_M280();
  6757. break;
  6758. #endif // HAS_SERVOS
  6759. #if HAS_BUZZER
  6760. case 300: // M300: Play beep tone
  6761. gcode_M300();
  6762. break;
  6763. #endif // HAS_BUZZER
  6764. #if ENABLED(PIDTEMP)
  6765. case 301: // M301: Set hotend PID parameters
  6766. gcode_M301();
  6767. break;
  6768. #endif // PIDTEMP
  6769. #if ENABLED(PIDTEMPBED)
  6770. case 304: // M304: Set bed PID parameters
  6771. gcode_M304();
  6772. break;
  6773. #endif // PIDTEMPBED
  6774. #if defined(CHDK) || HAS_PHOTOGRAPH
  6775. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6776. gcode_M240();
  6777. break;
  6778. #endif // CHDK || PHOTOGRAPH_PIN
  6779. #if HAS_LCD_CONTRAST
  6780. case 250: // M250: Set LCD contrast
  6781. gcode_M250();
  6782. break;
  6783. #endif // HAS_LCD_CONTRAST
  6784. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6785. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  6786. gcode_M302();
  6787. break;
  6788. #endif // PREVENT_COLD_EXTRUSION
  6789. case 303: // M303: PID autotune
  6790. gcode_M303();
  6791. break;
  6792. #if ENABLED(MORGAN_SCARA)
  6793. case 360: // M360: SCARA Theta pos1
  6794. if (gcode_M360()) return;
  6795. break;
  6796. case 361: // M361: SCARA Theta pos2
  6797. if (gcode_M361()) return;
  6798. break;
  6799. case 362: // M362: SCARA Psi pos1
  6800. if (gcode_M362()) return;
  6801. break;
  6802. case 363: // M363: SCARA Psi pos2
  6803. if (gcode_M363()) return;
  6804. break;
  6805. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  6806. if (gcode_M364()) return;
  6807. break;
  6808. #endif // SCARA
  6809. case 400: // M400: Finish all moves
  6810. gcode_M400();
  6811. break;
  6812. #if HAS_BED_PROBE
  6813. case 401: // M401: Deploy probe
  6814. gcode_M401();
  6815. break;
  6816. case 402: // M402: Stow probe
  6817. gcode_M402();
  6818. break;
  6819. #endif // HAS_BED_PROBE
  6820. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6821. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6822. gcode_M404();
  6823. break;
  6824. case 405: // M405: Turn on filament sensor for control
  6825. gcode_M405();
  6826. break;
  6827. case 406: // M406: Turn off filament sensor for control
  6828. gcode_M406();
  6829. break;
  6830. case 407: // M407: Display measured filament diameter
  6831. gcode_M407();
  6832. break;
  6833. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6834. #if ENABLED(MESH_BED_LEVELING)
  6835. case 420: // M420: Enable/Disable Mesh Bed Leveling
  6836. gcode_M420();
  6837. break;
  6838. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  6839. gcode_M421();
  6840. break;
  6841. #endif
  6842. case 428: // M428: Apply current_position to home_offset
  6843. gcode_M428();
  6844. break;
  6845. case 500: // M500: Store settings in EEPROM
  6846. gcode_M500();
  6847. break;
  6848. case 501: // M501: Read settings from EEPROM
  6849. gcode_M501();
  6850. break;
  6851. case 502: // M502: Revert to default settings
  6852. gcode_M502();
  6853. break;
  6854. case 503: // M503: print settings currently in memory
  6855. gcode_M503();
  6856. break;
  6857. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6858. case 540:
  6859. gcode_M540();
  6860. break;
  6861. #endif
  6862. #if HAS_BED_PROBE
  6863. case 851: // M851: Set Z Probe Z Offset
  6864. gcode_M851();
  6865. break;
  6866. #endif // HAS_BED_PROBE
  6867. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6868. case 600: // M600: Pause for filament change
  6869. gcode_M600();
  6870. break;
  6871. #endif // FILAMENT_CHANGE_FEATURE
  6872. #if ENABLED(DUAL_X_CARRIAGE)
  6873. case 605: // M605: Set Dual X Carriage movement mode
  6874. gcode_M605();
  6875. break;
  6876. #endif // DUAL_X_CARRIAGE
  6877. #if ENABLED(LIN_ADVANCE)
  6878. case 905: // M905: Set advance K factor.
  6879. gcode_M905();
  6880. break;
  6881. #endif
  6882. case 907: // M907: Set digital trimpot motor current using axis codes.
  6883. gcode_M907();
  6884. break;
  6885. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6886. case 908: // M908: Control digital trimpot directly.
  6887. gcode_M908();
  6888. break;
  6889. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6890. case 909: // M909: Print digipot/DAC current value
  6891. gcode_M909();
  6892. break;
  6893. case 910: // M910: Commit digipot/DAC value to external EEPROM
  6894. gcode_M910();
  6895. break;
  6896. #endif
  6897. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6898. #if HAS_MICROSTEPS
  6899. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6900. gcode_M350();
  6901. break;
  6902. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6903. gcode_M351();
  6904. break;
  6905. #endif // HAS_MICROSTEPS
  6906. case 999: // M999: Restart after being Stopped
  6907. gcode_M999();
  6908. break;
  6909. }
  6910. break;
  6911. case 'T':
  6912. gcode_T(codenum);
  6913. break;
  6914. default: code_is_good = false;
  6915. }
  6916. KEEPALIVE_STATE(NOT_BUSY);
  6917. ExitUnknownCommand:
  6918. // Still unknown command? Throw an error
  6919. if (!code_is_good) unknown_command_error();
  6920. ok_to_send();
  6921. }
  6922. /**
  6923. * Send a "Resend: nnn" message to the host to
  6924. * indicate that a command needs to be re-sent.
  6925. */
  6926. void FlushSerialRequestResend() {
  6927. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6928. MYSERIAL.flush();
  6929. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6930. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6931. ok_to_send();
  6932. }
  6933. /**
  6934. * Send an "ok" message to the host, indicating
  6935. * that a command was successfully processed.
  6936. *
  6937. * If ADVANCED_OK is enabled also include:
  6938. * N<int> Line number of the command, if any
  6939. * P<int> Planner space remaining
  6940. * B<int> Block queue space remaining
  6941. */
  6942. void ok_to_send() {
  6943. refresh_cmd_timeout();
  6944. if (!send_ok[cmd_queue_index_r]) return;
  6945. SERIAL_PROTOCOLPGM(MSG_OK);
  6946. #if ENABLED(ADVANCED_OK)
  6947. char* p = command_queue[cmd_queue_index_r];
  6948. if (*p == 'N') {
  6949. SERIAL_PROTOCOL(' ');
  6950. SERIAL_ECHO(*p++);
  6951. while (NUMERIC_SIGNED(*p))
  6952. SERIAL_ECHO(*p++);
  6953. }
  6954. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6955. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6956. #endif
  6957. SERIAL_EOL;
  6958. }
  6959. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6960. /**
  6961. * Constrain the given coordinates to the software endstops.
  6962. */
  6963. void clamp_to_software_endstops(float target[XYZ]) {
  6964. #if ENABLED(min_software_endstops)
  6965. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6966. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6967. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6968. #endif
  6969. #if ENABLED(max_software_endstops)
  6970. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6971. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6972. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6973. #endif
  6974. }
  6975. #endif
  6976. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6977. // Get the Z adjustment for non-linear bed leveling
  6978. float bilinear_z_offset(float cartesian[XYZ]) {
  6979. // XY relative to the probed area
  6980. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  6981. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  6982. // Convert to grid box units
  6983. float ratio_x = x / bilinear_grid_spacing[X_AXIS],
  6984. ratio_y = y / bilinear_grid_spacing[Y_AXIS];
  6985. // Whole unit is the grid box index
  6986. const int gridx = constrain(floor(ratio_x), 0, ABL_GRID_POINTS_X - 2),
  6987. gridy = constrain(floor(ratio_y), 0, ABL_GRID_POINTS_Y - 2),
  6988. nextx = gridx + (x < PROBE_BED_WIDTH ? 1 : 0),
  6989. nexty = gridy + (y < PROBE_BED_HEIGHT ? 1 : 0);
  6990. // Subtract whole to get the ratio within the grid box
  6991. ratio_x = constrain(ratio_x - gridx, 0.0, 1.0);
  6992. ratio_y = constrain(ratio_y - gridy, 0.0, 1.0);
  6993. // Z at the box corners
  6994. const float z1 = bed_level_grid[gridx][gridy], // left-front
  6995. z2 = bed_level_grid[gridx][nexty], // left-back
  6996. z3 = bed_level_grid[nextx][gridy], // right-front
  6997. z4 = bed_level_grid[nextx][nexty], // right-back
  6998. // Bilinear interpolate
  6999. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  7000. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  7001. offset = L + ratio_x * (R - L);
  7002. /*
  7003. static float last_offset = 0;
  7004. if (fabs(last_offset - offset) > 0.2) {
  7005. SERIAL_ECHOPGM("Sudden Shift at ");
  7006. SERIAL_ECHOPAIR("x=", x);
  7007. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  7008. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  7009. SERIAL_ECHOPAIR(" y=", y);
  7010. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  7011. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  7012. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  7013. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  7014. SERIAL_ECHOPAIR(" z1=", z1);
  7015. SERIAL_ECHOPAIR(" z2=", z2);
  7016. SERIAL_ECHOPAIR(" z3=", z3);
  7017. SERIAL_ECHOLNPAIR(" z4=", z4);
  7018. SERIAL_ECHOPAIR(" L=", L);
  7019. SERIAL_ECHOPAIR(" R=", R);
  7020. SERIAL_ECHOLNPAIR(" offset=", offset);
  7021. }
  7022. last_offset = offset;
  7023. //*/
  7024. return offset;
  7025. }
  7026. #endif // AUTO_BED_LEVELING_BILINEAR
  7027. #if ENABLED(DELTA)
  7028. /**
  7029. * Recalculate factors used for delta kinematics whenever
  7030. * settings have been changed (e.g., by M665).
  7031. */
  7032. void recalc_delta_settings(float radius, float diagonal_rod) {
  7033. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  7034. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  7035. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  7036. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  7037. delta_tower3_x = 0.0; // back middle tower
  7038. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  7039. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  7040. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  7041. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  7042. }
  7043. #if ENABLED(DELTA_FAST_SQRT)
  7044. /**
  7045. * Fast inverse sqrt from Quake III Arena
  7046. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  7047. */
  7048. float Q_rsqrt(float number) {
  7049. long i;
  7050. float x2, y;
  7051. const float threehalfs = 1.5f;
  7052. x2 = number * 0.5f;
  7053. y = number;
  7054. i = * ( long * ) &y; // evil floating point bit level hacking
  7055. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  7056. y = * ( float * ) &i;
  7057. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  7058. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  7059. return y;
  7060. }
  7061. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  7062. #else
  7063. #define _SQRT(n) sqrt(n)
  7064. #endif
  7065. /**
  7066. * Delta Inverse Kinematics
  7067. *
  7068. * Calculate the tower positions for a given logical
  7069. * position, storing the result in the delta[] array.
  7070. *
  7071. * This is an expensive calculation, requiring 3 square
  7072. * roots per segmented linear move, and strains the limits
  7073. * of a Mega2560 with a Graphical Display.
  7074. *
  7075. * Suggested optimizations include:
  7076. *
  7077. * - Disable the home_offset (M206) and/or position_shift (G92)
  7078. * features to remove up to 12 float additions.
  7079. *
  7080. * - Use a fast-inverse-sqrt function and add the reciprocal.
  7081. * (see above)
  7082. */
  7083. // Macro to obtain the Z position of an individual tower
  7084. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  7085. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  7086. delta_tower##T##_x - raw[X_AXIS], \
  7087. delta_tower##T##_y - raw[Y_AXIS] \
  7088. ) \
  7089. )
  7090. #define DELTA_RAW_IK() do { \
  7091. delta[A_AXIS] = DELTA_Z(1); \
  7092. delta[B_AXIS] = DELTA_Z(2); \
  7093. delta[C_AXIS] = DELTA_Z(3); \
  7094. } while(0)
  7095. #define DELTA_LOGICAL_IK() do { \
  7096. const float raw[XYZ] = { \
  7097. RAW_X_POSITION(logical[X_AXIS]), \
  7098. RAW_Y_POSITION(logical[Y_AXIS]), \
  7099. RAW_Z_POSITION(logical[Z_AXIS]) \
  7100. }; \
  7101. DELTA_RAW_IK(); \
  7102. } while(0)
  7103. #define DELTA_DEBUG() do { \
  7104. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  7105. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  7106. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  7107. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  7108. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  7109. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  7110. } while(0)
  7111. void inverse_kinematics(const float logical[XYZ]) {
  7112. DELTA_LOGICAL_IK();
  7113. // DELTA_DEBUG();
  7114. }
  7115. /**
  7116. * Calculate the highest Z position where the
  7117. * effector has the full range of XY motion.
  7118. */
  7119. float delta_safe_distance_from_top() {
  7120. float cartesian[XYZ] = {
  7121. LOGICAL_X_POSITION(0),
  7122. LOGICAL_Y_POSITION(0),
  7123. LOGICAL_Z_POSITION(0)
  7124. };
  7125. inverse_kinematics(cartesian);
  7126. float distance = delta[A_AXIS];
  7127. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  7128. inverse_kinematics(cartesian);
  7129. return abs(distance - delta[A_AXIS]);
  7130. }
  7131. /**
  7132. * Delta Forward Kinematics
  7133. *
  7134. * See the Wikipedia article "Trilateration"
  7135. * https://en.wikipedia.org/wiki/Trilateration
  7136. *
  7137. * Establish a new coordinate system in the plane of the
  7138. * three carriage points. This system has its origin at
  7139. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  7140. * plane with a Z component of zero.
  7141. * We will define unit vectors in this coordinate system
  7142. * in our original coordinate system. Then when we calculate
  7143. * the Xnew, Ynew and Znew values, we can translate back into
  7144. * the original system by moving along those unit vectors
  7145. * by the corresponding values.
  7146. *
  7147. * Variable names matched to Marlin, c-version, and avoid the
  7148. * use of any vector library.
  7149. *
  7150. * by Andreas Hardtung 2016-06-07
  7151. * based on a Java function from "Delta Robot Kinematics V3"
  7152. * by Steve Graves
  7153. *
  7154. * The result is stored in the cartes[] array.
  7155. */
  7156. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  7157. // Create a vector in old coordinates along x axis of new coordinate
  7158. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  7159. // Get the Magnitude of vector.
  7160. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  7161. // Create unit vector by dividing by magnitude.
  7162. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  7163. // Get the vector from the origin of the new system to the third point.
  7164. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  7165. // Use the dot product to find the component of this vector on the X axis.
  7166. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  7167. // Create a vector along the x axis that represents the x component of p13.
  7168. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  7169. // Subtract the X component from the original vector leaving only Y. We use the
  7170. // variable that will be the unit vector after we scale it.
  7171. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  7172. // The magnitude of Y component
  7173. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  7174. // Convert to a unit vector
  7175. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  7176. // The cross product of the unit x and y is the unit z
  7177. // float[] ez = vectorCrossProd(ex, ey);
  7178. float ez[3] = {
  7179. ex[1] * ey[2] - ex[2] * ey[1],
  7180. ex[2] * ey[0] - ex[0] * ey[2],
  7181. ex[0] * ey[1] - ex[1] * ey[0]
  7182. };
  7183. // We now have the d, i and j values defined in Wikipedia.
  7184. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  7185. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  7186. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  7187. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  7188. // Start from the origin of the old coordinates and add vectors in the
  7189. // old coords that represent the Xnew, Ynew and Znew to find the point
  7190. // in the old system.
  7191. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  7192. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  7193. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  7194. };
  7195. void forward_kinematics_DELTA(float point[ABC]) {
  7196. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  7197. }
  7198. #endif // DELTA
  7199. /**
  7200. * Get the stepper positions in the cartes[] array.
  7201. * Forward kinematics are applied for DELTA and SCARA.
  7202. *
  7203. * The result is in the current coordinate space with
  7204. * leveling applied. The coordinates need to be run through
  7205. * unapply_leveling to obtain the "ideal" coordinates
  7206. * suitable for current_position, etc.
  7207. */
  7208. void get_cartesian_from_steppers() {
  7209. #if ENABLED(DELTA)
  7210. forward_kinematics_DELTA(
  7211. stepper.get_axis_position_mm(A_AXIS),
  7212. stepper.get_axis_position_mm(B_AXIS),
  7213. stepper.get_axis_position_mm(C_AXIS)
  7214. );
  7215. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7216. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7217. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  7218. #elif IS_SCARA
  7219. forward_kinematics_SCARA(
  7220. stepper.get_axis_position_degrees(A_AXIS),
  7221. stepper.get_axis_position_degrees(B_AXIS)
  7222. );
  7223. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7224. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7225. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7226. #else
  7227. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  7228. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  7229. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7230. #endif
  7231. }
  7232. /**
  7233. * Set the current_position for an axis based on
  7234. * the stepper positions, removing any leveling that
  7235. * may have been applied.
  7236. */
  7237. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  7238. get_cartesian_from_steppers();
  7239. #if PLANNER_LEVELING
  7240. planner.unapply_leveling(cartes);
  7241. #endif
  7242. if (axis == ALL_AXES)
  7243. memcpy(current_position, cartes, sizeof(cartes));
  7244. else
  7245. current_position[axis] = cartes[axis];
  7246. }
  7247. #if ENABLED(MESH_BED_LEVELING)
  7248. /**
  7249. * Prepare a mesh-leveled linear move in a Cartesian setup,
  7250. * splitting the move where it crosses mesh borders.
  7251. */
  7252. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  7253. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  7254. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  7255. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  7256. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  7257. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  7258. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  7259. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  7260. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  7261. if (cx1 == cx2 && cy1 == cy2) {
  7262. // Start and end on same mesh square
  7263. line_to_destination(fr_mm_s);
  7264. set_current_to_destination();
  7265. return;
  7266. }
  7267. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  7268. float normalized_dist, end[NUM_AXIS];
  7269. // Split at the left/front border of the right/top square
  7270. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  7271. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  7272. memcpy(end, destination, sizeof(end));
  7273. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  7274. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  7275. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  7276. CBI(x_splits, gcx);
  7277. }
  7278. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  7279. memcpy(end, destination, sizeof(end));
  7280. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  7281. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  7282. destination[X_AXIS] = MBL_SEGMENT_END(X);
  7283. CBI(y_splits, gcy);
  7284. }
  7285. else {
  7286. // Already split on a border
  7287. line_to_destination(fr_mm_s);
  7288. set_current_to_destination();
  7289. return;
  7290. }
  7291. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  7292. destination[E_AXIS] = MBL_SEGMENT_END(E);
  7293. // Do the split and look for more borders
  7294. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7295. // Restore destination from stack
  7296. memcpy(destination, end, sizeof(end));
  7297. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7298. }
  7299. #endif // MESH_BED_LEVELING
  7300. #if IS_KINEMATIC
  7301. /**
  7302. * Prepare a linear move in a DELTA or SCARA setup.
  7303. *
  7304. * This calls planner.buffer_line several times, adding
  7305. * small incremental moves for DELTA or SCARA.
  7306. */
  7307. inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
  7308. // Get the top feedrate of the move in the XY plane
  7309. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  7310. // If the move is only in Z/E don't split up the move
  7311. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  7312. inverse_kinematics(ltarget);
  7313. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
  7314. return true;
  7315. }
  7316. // Get the cartesian distances moved in XYZE
  7317. float difference[NUM_AXIS];
  7318. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  7319. // Get the linear distance in XYZ
  7320. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  7321. // If the move is very short, check the E move distance
  7322. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  7323. // No E move either? Game over.
  7324. if (UNEAR_ZERO(cartesian_mm)) return false;
  7325. // Minimum number of seconds to move the given distance
  7326. float seconds = cartesian_mm / _feedrate_mm_s;
  7327. // The number of segments-per-second times the duration
  7328. // gives the number of segments
  7329. uint16_t segments = delta_segments_per_second * seconds;
  7330. // For SCARA minimum segment size is 0.5mm
  7331. #if IS_SCARA
  7332. NOMORE(segments, cartesian_mm * 2);
  7333. #endif
  7334. // At least one segment is required
  7335. NOLESS(segments, 1);
  7336. // The approximate length of each segment
  7337. float segment_distance[XYZE] = {
  7338. difference[X_AXIS] / segments,
  7339. difference[Y_AXIS] / segments,
  7340. difference[Z_AXIS] / segments,
  7341. difference[E_AXIS] / segments
  7342. };
  7343. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  7344. // SERIAL_ECHOPAIR(" seconds=", seconds);
  7345. // SERIAL_ECHOLNPAIR(" segments=", segments);
  7346. // Drop one segment so the last move is to the exact target.
  7347. // If there's only 1 segment, loops will be skipped entirely.
  7348. --segments;
  7349. // Using "raw" coordinates saves 6 float subtractions
  7350. // per segment, saving valuable CPU cycles
  7351. #if ENABLED(USE_RAW_KINEMATICS)
  7352. // Get the raw current position as starting point
  7353. float raw[XYZE] = {
  7354. RAW_CURRENT_POSITION(X_AXIS),
  7355. RAW_CURRENT_POSITION(Y_AXIS),
  7356. RAW_CURRENT_POSITION(Z_AXIS),
  7357. current_position[E_AXIS]
  7358. };
  7359. #define DELTA_VAR raw
  7360. // Delta can inline its kinematics
  7361. #if ENABLED(DELTA)
  7362. #define DELTA_IK() DELTA_RAW_IK()
  7363. #else
  7364. #define DELTA_IK() inverse_kinematics(raw)
  7365. #endif
  7366. #else
  7367. // Get the logical current position as starting point
  7368. float logical[XYZE];
  7369. memcpy(logical, current_position, sizeof(logical));
  7370. #define DELTA_VAR logical
  7371. // Delta can inline its kinematics
  7372. #if ENABLED(DELTA)
  7373. #define DELTA_IK() DELTA_LOGICAL_IK()
  7374. #else
  7375. #define DELTA_IK() inverse_kinematics(logical)
  7376. #endif
  7377. #endif
  7378. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  7379. // Only interpolate XYZ. Advance E normally.
  7380. #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
  7381. // Get the starting delta if interpolation is possible
  7382. if (segments >= 2) DELTA_IK();
  7383. // Loop using decrement
  7384. for (uint16_t s = segments + 1; --s;) {
  7385. // Are there at least 2 moves left?
  7386. if (s >= 2) {
  7387. // Save the previous delta for interpolation
  7388. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  7389. // Get the delta 2 segments ahead (rather than the next)
  7390. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  7391. // Advance E normally
  7392. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7393. // Get the exact delta for the move after this
  7394. DELTA_IK();
  7395. // Move to the interpolated delta position first
  7396. planner.buffer_line(
  7397. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  7398. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  7399. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  7400. DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
  7401. );
  7402. // Advance E once more for the next move
  7403. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7404. // Do an extra decrement of the loop
  7405. --s;
  7406. }
  7407. else {
  7408. // Get the last segment delta. (Used when segments is odd)
  7409. DELTA_NEXT(segment_distance[i]);
  7410. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7411. DELTA_IK();
  7412. }
  7413. // Move to the non-interpolated position
  7414. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7415. }
  7416. #else
  7417. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
  7418. // For non-interpolated delta calculate every segment
  7419. for (uint16_t s = segments + 1; --s;) {
  7420. DELTA_NEXT(segment_distance[i]);
  7421. DELTA_IK();
  7422. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7423. }
  7424. #endif
  7425. // Since segment_distance is only approximate,
  7426. // the final move must be to the exact destination.
  7427. inverse_kinematics(ltarget);
  7428. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
  7429. return true;
  7430. }
  7431. #else
  7432. /**
  7433. * Prepare a linear move in a Cartesian setup.
  7434. * If Mesh Bed Leveling is enabled, perform a mesh move.
  7435. */
  7436. inline bool prepare_move_to_destination_cartesian() {
  7437. // Do not use feedrate_percentage for E or Z only moves
  7438. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  7439. line_to_destination();
  7440. }
  7441. else {
  7442. #if ENABLED(MESH_BED_LEVELING)
  7443. if (mbl.active()) {
  7444. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7445. return false;
  7446. }
  7447. else
  7448. #endif
  7449. line_to_destination(MMS_SCALED(feedrate_mm_s));
  7450. }
  7451. return true;
  7452. }
  7453. #endif // !IS_KINEMATIC
  7454. #if ENABLED(DUAL_X_CARRIAGE)
  7455. /**
  7456. * Prepare a linear move in a dual X axis setup
  7457. */
  7458. inline bool prepare_move_to_destination_dualx() {
  7459. if (active_extruder_parked) {
  7460. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  7461. // move duplicate extruder into correct duplication position.
  7462. planner.set_position_mm(
  7463. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  7464. current_position[Y_AXIS],
  7465. current_position[Z_AXIS],
  7466. current_position[E_AXIS]
  7467. );
  7468. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  7469. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  7470. SYNC_PLAN_POSITION_KINEMATIC();
  7471. stepper.synchronize();
  7472. extruder_duplication_enabled = true;
  7473. active_extruder_parked = false;
  7474. }
  7475. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  7476. if (current_position[E_AXIS] == destination[E_AXIS]) {
  7477. // This is a travel move (with no extrusion)
  7478. // Skip it, but keep track of the current position
  7479. // (so it can be used as the start of the next non-travel move)
  7480. if (delayed_move_time != 0xFFFFFFFFUL) {
  7481. set_current_to_destination();
  7482. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  7483. delayed_move_time = millis();
  7484. return false;
  7485. }
  7486. }
  7487. delayed_move_time = 0;
  7488. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  7489. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7490. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  7491. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7492. active_extruder_parked = false;
  7493. }
  7494. }
  7495. return true;
  7496. }
  7497. #endif // DUAL_X_CARRIAGE
  7498. /**
  7499. * Prepare a single move and get ready for the next one
  7500. *
  7501. * This may result in several calls to planner.buffer_line to
  7502. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  7503. */
  7504. void prepare_move_to_destination() {
  7505. clamp_to_software_endstops(destination);
  7506. refresh_cmd_timeout();
  7507. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7508. if (!DEBUGGING(DRYRUN)) {
  7509. if (destination[E_AXIS] != current_position[E_AXIS]) {
  7510. if (thermalManager.tooColdToExtrude(active_extruder)) {
  7511. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7512. SERIAL_ECHO_START;
  7513. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  7514. }
  7515. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  7516. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  7517. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7518. SERIAL_ECHO_START;
  7519. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  7520. }
  7521. #endif
  7522. }
  7523. }
  7524. #endif
  7525. #if IS_KINEMATIC
  7526. if (!prepare_kinematic_move_to(destination)) return;
  7527. #else
  7528. #if ENABLED(DUAL_X_CARRIAGE)
  7529. if (!prepare_move_to_destination_dualx()) return;
  7530. #endif
  7531. if (!prepare_move_to_destination_cartesian()) return;
  7532. #endif
  7533. set_current_to_destination();
  7534. }
  7535. #if ENABLED(ARC_SUPPORT)
  7536. /**
  7537. * Plan an arc in 2 dimensions
  7538. *
  7539. * The arc is approximated by generating many small linear segments.
  7540. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  7541. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  7542. * larger segments will tend to be more efficient. Your slicer should have
  7543. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  7544. */
  7545. void plan_arc(
  7546. float logical[NUM_AXIS], // Destination position
  7547. float* offset, // Center of rotation relative to current_position
  7548. uint8_t clockwise // Clockwise?
  7549. ) {
  7550. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  7551. center_X = current_position[X_AXIS] + offset[X_AXIS],
  7552. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  7553. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  7554. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  7555. r_X = -offset[X_AXIS], // Radius vector from center to current location
  7556. r_Y = -offset[Y_AXIS],
  7557. rt_X = logical[X_AXIS] - center_X,
  7558. rt_Y = logical[Y_AXIS] - center_Y;
  7559. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  7560. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  7561. if (angular_travel < 0) angular_travel += RADIANS(360);
  7562. if (clockwise) angular_travel -= RADIANS(360);
  7563. // Make a circle if the angular rotation is 0
  7564. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  7565. angular_travel += RADIANS(360);
  7566. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  7567. if (mm_of_travel < 0.001) return;
  7568. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  7569. if (segments == 0) segments = 1;
  7570. /**
  7571. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  7572. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  7573. * r_T = [cos(phi) -sin(phi);
  7574. * sin(phi) cos(phi)] * r ;
  7575. *
  7576. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  7577. * defined from the circle center to the initial position. Each line segment is formed by successive
  7578. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  7579. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  7580. * all double numbers are single precision on the Arduino. (True double precision will not have
  7581. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  7582. * tool precision in some cases. Therefore, arc path correction is implemented.
  7583. *
  7584. * Small angle approximation may be used to reduce computation overhead further. This approximation
  7585. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  7586. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  7587. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  7588. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  7589. * issue for CNC machines with the single precision Arduino calculations.
  7590. *
  7591. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  7592. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  7593. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  7594. * This is important when there are successive arc motions.
  7595. */
  7596. // Vector rotation matrix values
  7597. float arc_target[XYZE],
  7598. theta_per_segment = angular_travel / segments,
  7599. linear_per_segment = linear_travel / segments,
  7600. extruder_per_segment = extruder_travel / segments,
  7601. sin_T = theta_per_segment,
  7602. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  7603. // Initialize the linear axis
  7604. arc_target[Z_AXIS] = current_position[Z_AXIS];
  7605. // Initialize the extruder axis
  7606. arc_target[E_AXIS] = current_position[E_AXIS];
  7607. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  7608. millis_t next_idle_ms = millis() + 200UL;
  7609. int8_t count = 0;
  7610. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  7611. thermalManager.manage_heater();
  7612. if (ELAPSED(millis(), next_idle_ms)) {
  7613. next_idle_ms = millis() + 200UL;
  7614. idle();
  7615. }
  7616. if (++count < N_ARC_CORRECTION) {
  7617. // Apply vector rotation matrix to previous r_X / 1
  7618. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  7619. r_X = r_X * cos_T - r_Y * sin_T;
  7620. r_Y = r_new_Y;
  7621. }
  7622. else {
  7623. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7624. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7625. // To reduce stuttering, the sin and cos could be computed at different times.
  7626. // For now, compute both at the same time.
  7627. float cos_Ti = cos(i * theta_per_segment),
  7628. sin_Ti = sin(i * theta_per_segment);
  7629. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7630. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7631. count = 0;
  7632. }
  7633. // Update arc_target location
  7634. arc_target[X_AXIS] = center_X + r_X;
  7635. arc_target[Y_AXIS] = center_Y + r_Y;
  7636. arc_target[Z_AXIS] += linear_per_segment;
  7637. arc_target[E_AXIS] += extruder_per_segment;
  7638. clamp_to_software_endstops(arc_target);
  7639. #if IS_KINEMATIC
  7640. inverse_kinematics(arc_target);
  7641. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7642. #else
  7643. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7644. #endif
  7645. }
  7646. // Ensure last segment arrives at target location.
  7647. #if IS_KINEMATIC
  7648. inverse_kinematics(logical);
  7649. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7650. #else
  7651. planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7652. #endif
  7653. // As far as the parser is concerned, the position is now == target. In reality the
  7654. // motion control system might still be processing the action and the real tool position
  7655. // in any intermediate location.
  7656. set_current_to_destination();
  7657. }
  7658. #endif
  7659. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7660. void plan_cubic_move(const float offset[4]) {
  7661. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7662. // As far as the parser is concerned, the position is now == destination. In reality the
  7663. // motion control system might still be processing the action and the real tool position
  7664. // in any intermediate location.
  7665. set_current_to_destination();
  7666. }
  7667. #endif // BEZIER_CURVE_SUPPORT
  7668. #if HAS_CONTROLLERFAN
  7669. void controllerFan() {
  7670. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7671. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7672. millis_t ms = millis();
  7673. if (ELAPSED(ms, nextMotorCheck)) {
  7674. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7675. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7676. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7677. #if E_STEPPERS > 1
  7678. || E1_ENABLE_READ == E_ENABLE_ON
  7679. #if HAS_X2_ENABLE
  7680. || X2_ENABLE_READ == X_ENABLE_ON
  7681. #endif
  7682. #if E_STEPPERS > 2
  7683. || E2_ENABLE_READ == E_ENABLE_ON
  7684. #if E_STEPPERS > 3
  7685. || E3_ENABLE_READ == E_ENABLE_ON
  7686. #endif
  7687. #endif
  7688. #endif
  7689. ) {
  7690. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7691. }
  7692. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7693. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7694. // allows digital or PWM fan output to be used (see M42 handling)
  7695. digitalWrite(CONTROLLERFAN_PIN, speed);
  7696. analogWrite(CONTROLLERFAN_PIN, speed);
  7697. }
  7698. }
  7699. #endif // HAS_CONTROLLERFAN
  7700. #if ENABLED(MORGAN_SCARA)
  7701. /**
  7702. * Morgan SCARA Forward Kinematics. Results in cartes[].
  7703. * Maths and first version by QHARLEY.
  7704. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7705. */
  7706. void forward_kinematics_SCARA(const float &a, const float &b) {
  7707. float a_sin = sin(RADIANS(a)) * L1,
  7708. a_cos = cos(RADIANS(a)) * L1,
  7709. b_sin = sin(RADIANS(b)) * L2,
  7710. b_cos = cos(RADIANS(b)) * L2;
  7711. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7712. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7713. /*
  7714. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  7715. SERIAL_ECHOPAIR(" b=", b);
  7716. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7717. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7718. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7719. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7720. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7721. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7722. //*/
  7723. }
  7724. /**
  7725. * Morgan SCARA Inverse Kinematics. Results in delta[].
  7726. *
  7727. * See http://forums.reprap.org/read.php?185,283327
  7728. *
  7729. * Maths and first version by QHARLEY.
  7730. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7731. */
  7732. void inverse_kinematics(const float logical[XYZ]) {
  7733. static float C2, S2, SK1, SK2, THETA, PSI;
  7734. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  7735. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7736. if (L1 == L2)
  7737. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  7738. else
  7739. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  7740. S2 = sqrt(sq(C2) - 1);
  7741. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  7742. SK1 = L1 + L2 * C2;
  7743. // Rotated Arm2 gives the distance from Arm1 to Arm2
  7744. SK2 = L2 * S2;
  7745. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  7746. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  7747. // Angle of Arm2
  7748. PSI = atan2(S2, C2);
  7749. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7750. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7751. delta[C_AXIS] = logical[Z_AXIS];
  7752. /*
  7753. DEBUG_POS("SCARA IK", logical);
  7754. DEBUG_POS("SCARA IK", delta);
  7755. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7756. SERIAL_ECHOPAIR(",", sy);
  7757. SERIAL_ECHOPAIR(" C2=", C2);
  7758. SERIAL_ECHOPAIR(" S2=", S2);
  7759. SERIAL_ECHOPAIR(" Theta=", THETA);
  7760. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7761. //*/
  7762. }
  7763. #endif // MORGAN_SCARA
  7764. #if ENABLED(TEMP_STAT_LEDS)
  7765. static bool red_led = false;
  7766. static millis_t next_status_led_update_ms = 0;
  7767. void handle_status_leds(void) {
  7768. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7769. next_status_led_update_ms += 500; // Update every 0.5s
  7770. float max_temp = 0.0;
  7771. #if HAS_TEMP_BED
  7772. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7773. #endif
  7774. HOTEND_LOOP() {
  7775. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7776. }
  7777. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7778. if (new_led != red_led) {
  7779. red_led = new_led;
  7780. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  7781. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  7782. }
  7783. }
  7784. }
  7785. #endif
  7786. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7787. void handle_filament_runout() {
  7788. if (!filament_ran_out) {
  7789. filament_ran_out = true;
  7790. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7791. stepper.synchronize();
  7792. }
  7793. }
  7794. #endif // FILAMENT_RUNOUT_SENSOR
  7795. #if ENABLED(FAST_PWM_FAN)
  7796. void setPwmFrequency(uint8_t pin, int val) {
  7797. val &= 0x07;
  7798. switch (digitalPinToTimer(pin)) {
  7799. #if defined(TCCR0A)
  7800. case TIMER0A:
  7801. case TIMER0B:
  7802. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7803. // TCCR0B |= val;
  7804. break;
  7805. #endif
  7806. #if defined(TCCR1A)
  7807. case TIMER1A:
  7808. case TIMER1B:
  7809. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7810. // TCCR1B |= val;
  7811. break;
  7812. #endif
  7813. #if defined(TCCR2)
  7814. case TIMER2:
  7815. case TIMER2:
  7816. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7817. TCCR2 |= val;
  7818. break;
  7819. #endif
  7820. #if defined(TCCR2A)
  7821. case TIMER2A:
  7822. case TIMER2B:
  7823. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7824. TCCR2B |= val;
  7825. break;
  7826. #endif
  7827. #if defined(TCCR3A)
  7828. case TIMER3A:
  7829. case TIMER3B:
  7830. case TIMER3C:
  7831. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7832. TCCR3B |= val;
  7833. break;
  7834. #endif
  7835. #if defined(TCCR4A)
  7836. case TIMER4A:
  7837. case TIMER4B:
  7838. case TIMER4C:
  7839. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7840. TCCR4B |= val;
  7841. break;
  7842. #endif
  7843. #if defined(TCCR5A)
  7844. case TIMER5A:
  7845. case TIMER5B:
  7846. case TIMER5C:
  7847. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7848. TCCR5B |= val;
  7849. break;
  7850. #endif
  7851. }
  7852. }
  7853. #endif // FAST_PWM_FAN
  7854. float calculate_volumetric_multiplier(float diameter) {
  7855. if (!volumetric_enabled || diameter == 0) return 1.0;
  7856. return 1.0 / (M_PI * diameter * 0.5 * diameter * 0.5);
  7857. }
  7858. void calculate_volumetric_multipliers() {
  7859. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7860. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7861. }
  7862. void enable_all_steppers() {
  7863. enable_x();
  7864. enable_y();
  7865. enable_z();
  7866. enable_e0();
  7867. enable_e1();
  7868. enable_e2();
  7869. enable_e3();
  7870. }
  7871. void disable_all_steppers() {
  7872. disable_x();
  7873. disable_y();
  7874. disable_z();
  7875. disable_e0();
  7876. disable_e1();
  7877. disable_e2();
  7878. disable_e3();
  7879. }
  7880. /**
  7881. * Manage several activities:
  7882. * - Check for Filament Runout
  7883. * - Keep the command buffer full
  7884. * - Check for maximum inactive time between commands
  7885. * - Check for maximum inactive time between stepper commands
  7886. * - Check if pin CHDK needs to go LOW
  7887. * - Check for KILL button held down
  7888. * - Check for HOME button held down
  7889. * - Check if cooling fan needs to be switched on
  7890. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7891. */
  7892. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7893. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7894. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7895. handle_filament_runout();
  7896. #endif
  7897. if (commands_in_queue < BUFSIZE) get_available_commands();
  7898. millis_t ms = millis();
  7899. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7900. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7901. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7902. #if ENABLED(DISABLE_INACTIVE_X)
  7903. disable_x();
  7904. #endif
  7905. #if ENABLED(DISABLE_INACTIVE_Y)
  7906. disable_y();
  7907. #endif
  7908. #if ENABLED(DISABLE_INACTIVE_Z)
  7909. disable_z();
  7910. #endif
  7911. #if ENABLED(DISABLE_INACTIVE_E)
  7912. disable_e0();
  7913. disable_e1();
  7914. disable_e2();
  7915. disable_e3();
  7916. #endif
  7917. }
  7918. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7919. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7920. chdkActive = false;
  7921. WRITE(CHDK, LOW);
  7922. }
  7923. #endif
  7924. #if HAS_KILL
  7925. // Check if the kill button was pressed and wait just in case it was an accidental
  7926. // key kill key press
  7927. // -------------------------------------------------------------------------------
  7928. static int killCount = 0; // make the inactivity button a bit less responsive
  7929. const int KILL_DELAY = 750;
  7930. if (!READ(KILL_PIN))
  7931. killCount++;
  7932. else if (killCount > 0)
  7933. killCount--;
  7934. // Exceeded threshold and we can confirm that it was not accidental
  7935. // KILL the machine
  7936. // ----------------------------------------------------------------
  7937. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7938. #endif
  7939. #if HAS_HOME
  7940. // Check to see if we have to home, use poor man's debouncer
  7941. // ---------------------------------------------------------
  7942. static int homeDebounceCount = 0; // poor man's debouncing count
  7943. const int HOME_DEBOUNCE_DELAY = 2500;
  7944. if (!READ(HOME_PIN)) {
  7945. if (!homeDebounceCount) {
  7946. enqueue_and_echo_commands_P(PSTR("G28"));
  7947. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7948. }
  7949. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7950. homeDebounceCount++;
  7951. else
  7952. homeDebounceCount = 0;
  7953. }
  7954. #endif
  7955. #if HAS_CONTROLLERFAN
  7956. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7957. #endif
  7958. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7959. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7960. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7961. bool oldstatus;
  7962. #if ENABLED(SWITCHING_EXTRUDER)
  7963. oldstatus = E0_ENABLE_READ;
  7964. enable_e0();
  7965. #else // !SWITCHING_EXTRUDER
  7966. switch (active_extruder) {
  7967. case 0:
  7968. oldstatus = E0_ENABLE_READ;
  7969. enable_e0();
  7970. break;
  7971. #if E_STEPPERS > 1
  7972. case 1:
  7973. oldstatus = E1_ENABLE_READ;
  7974. enable_e1();
  7975. break;
  7976. #if E_STEPPERS > 2
  7977. case 2:
  7978. oldstatus = E2_ENABLE_READ;
  7979. enable_e2();
  7980. break;
  7981. #if E_STEPPERS > 3
  7982. case 3:
  7983. oldstatus = E3_ENABLE_READ;
  7984. enable_e3();
  7985. break;
  7986. #endif
  7987. #endif
  7988. #endif
  7989. }
  7990. #endif // !SWITCHING_EXTRUDER
  7991. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7992. planner.buffer_line(
  7993. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  7994. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  7995. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  7996. );
  7997. stepper.synchronize();
  7998. planner.set_e_position_mm(current_position[E_AXIS]);
  7999. #if ENABLED(SWITCHING_EXTRUDER)
  8000. E0_ENABLE_WRITE(oldstatus);
  8001. #else
  8002. switch (active_extruder) {
  8003. case 0:
  8004. E0_ENABLE_WRITE(oldstatus);
  8005. break;
  8006. #if E_STEPPERS > 1
  8007. case 1:
  8008. E1_ENABLE_WRITE(oldstatus);
  8009. break;
  8010. #if E_STEPPERS > 2
  8011. case 2:
  8012. E2_ENABLE_WRITE(oldstatus);
  8013. break;
  8014. #if E_STEPPERS > 3
  8015. case 3:
  8016. E3_ENABLE_WRITE(oldstatus);
  8017. break;
  8018. #endif
  8019. #endif
  8020. #endif
  8021. }
  8022. #endif // !SWITCHING_EXTRUDER
  8023. }
  8024. #endif // EXTRUDER_RUNOUT_PREVENT
  8025. #if ENABLED(DUAL_X_CARRIAGE)
  8026. // handle delayed move timeout
  8027. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  8028. // travel moves have been received so enact them
  8029. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  8030. set_destination_to_current();
  8031. prepare_move_to_destination();
  8032. }
  8033. #endif
  8034. #if ENABLED(TEMP_STAT_LEDS)
  8035. handle_status_leds();
  8036. #endif
  8037. planner.check_axes_activity();
  8038. }
  8039. /**
  8040. * Standard idle routine keeps the machine alive
  8041. */
  8042. void idle(
  8043. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8044. bool no_stepper_sleep/*=false*/
  8045. #endif
  8046. ) {
  8047. lcd_update();
  8048. host_keepalive();
  8049. manage_inactivity(
  8050. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8051. no_stepper_sleep
  8052. #endif
  8053. );
  8054. thermalManager.manage_heater();
  8055. #if ENABLED(PRINTCOUNTER)
  8056. print_job_timer.tick();
  8057. #endif
  8058. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  8059. buzzer.tick();
  8060. #endif
  8061. }
  8062. /**
  8063. * Kill all activity and lock the machine.
  8064. * After this the machine will need to be reset.
  8065. */
  8066. void kill(const char* lcd_msg) {
  8067. SERIAL_ERROR_START;
  8068. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  8069. #if ENABLED(ULTRA_LCD)
  8070. kill_screen(lcd_msg);
  8071. #else
  8072. UNUSED(lcd_msg);
  8073. #endif
  8074. delay(500); // Wait a short time
  8075. cli(); // Stop interrupts
  8076. thermalManager.disable_all_heaters();
  8077. disable_all_steppers();
  8078. #if HAS_POWER_SWITCH
  8079. pinMode(PS_ON_PIN, INPUT);
  8080. #endif
  8081. suicide();
  8082. while (1) {
  8083. #if ENABLED(USE_WATCHDOG)
  8084. watchdog_reset();
  8085. #endif
  8086. } // Wait for reset
  8087. }
  8088. /**
  8089. * Turn off heaters and stop the print in progress
  8090. * After a stop the machine may be resumed with M999
  8091. */
  8092. void stop() {
  8093. thermalManager.disable_all_heaters();
  8094. if (IsRunning()) {
  8095. Running = false;
  8096. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8097. SERIAL_ERROR_START;
  8098. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  8099. LCD_MESSAGEPGM(MSG_STOPPED);
  8100. }
  8101. }
  8102. /**
  8103. * Marlin entry-point: Set up before the program loop
  8104. * - Set up the kill pin, filament runout, power hold
  8105. * - Start the serial port
  8106. * - Print startup messages and diagnostics
  8107. * - Get EEPROM or default settings
  8108. * - Initialize managers for:
  8109. * • temperature
  8110. * • planner
  8111. * • watchdog
  8112. * • stepper
  8113. * • photo pin
  8114. * • servos
  8115. * • LCD controller
  8116. * • Digipot I2C
  8117. * • Z probe sled
  8118. * • status LEDs
  8119. */
  8120. void setup() {
  8121. #ifdef DISABLE_JTAG
  8122. // Disable JTAG on AT90USB chips to free up pins for IO
  8123. MCUCR = 0x80;
  8124. MCUCR = 0x80;
  8125. #endif
  8126. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8127. setup_filrunoutpin();
  8128. #endif
  8129. setup_killpin();
  8130. setup_powerhold();
  8131. #if HAS_STEPPER_RESET
  8132. disableStepperDrivers();
  8133. #endif
  8134. MYSERIAL.begin(BAUDRATE);
  8135. SERIAL_PROTOCOLLNPGM("start");
  8136. SERIAL_ECHO_START;
  8137. // Check startup - does nothing if bootloader sets MCUSR to 0
  8138. byte mcu = MCUSR;
  8139. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  8140. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  8141. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  8142. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  8143. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  8144. MCUSR = 0;
  8145. SERIAL_ECHOPGM(MSG_MARLIN);
  8146. SERIAL_CHAR(' ');
  8147. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  8148. SERIAL_EOL;
  8149. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  8150. SERIAL_ECHO_START;
  8151. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  8152. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  8153. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  8154. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  8155. #endif
  8156. SERIAL_ECHO_START;
  8157. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  8158. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  8159. // Send "ok" after commands by default
  8160. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  8161. // Load data from EEPROM if available (or use defaults)
  8162. // This also updates variables in the planner, elsewhere
  8163. Config_RetrieveSettings();
  8164. // Initialize current position based on home_offset
  8165. memcpy(current_position, home_offset, sizeof(home_offset));
  8166. // Vital to init stepper/planner equivalent for current_position
  8167. SYNC_PLAN_POSITION_KINEMATIC();
  8168. thermalManager.init(); // Initialize temperature loop
  8169. #if ENABLED(USE_WATCHDOG)
  8170. watchdog_init();
  8171. #endif
  8172. stepper.init(); // Initialize stepper, this enables interrupts!
  8173. setup_photpin();
  8174. servo_init();
  8175. #if HAS_BED_PROBE
  8176. endstops.enable_z_probe(false);
  8177. #endif
  8178. #if HAS_CONTROLLERFAN
  8179. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  8180. #endif
  8181. #if HAS_STEPPER_RESET
  8182. enableStepperDrivers();
  8183. #endif
  8184. #if ENABLED(DIGIPOT_I2C)
  8185. digipot_i2c_init();
  8186. #endif
  8187. #if ENABLED(DAC_STEPPER_CURRENT)
  8188. dac_init();
  8189. #endif
  8190. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  8191. OUT_WRITE(SLED_PIN, LOW); // turn it off
  8192. #endif // Z_PROBE_SLED
  8193. setup_homepin();
  8194. #if PIN_EXISTS(STAT_LED_RED)
  8195. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  8196. #endif
  8197. #if PIN_EXISTS(STAT_LED_BLUE)
  8198. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  8199. #endif
  8200. lcd_init();
  8201. #if ENABLED(SHOW_BOOTSCREEN)
  8202. #if ENABLED(DOGLCD)
  8203. safe_delay(BOOTSCREEN_TIMEOUT);
  8204. #elif ENABLED(ULTRA_LCD)
  8205. bootscreen();
  8206. lcd_init();
  8207. #endif
  8208. #endif
  8209. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8210. // Initialize mixing to 100% color 1
  8211. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8212. mixing_factor[i] = (i == 0) ? 1 : 0;
  8213. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  8214. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8215. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  8216. #endif
  8217. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  8218. i2c.onReceive(i2c_on_receive);
  8219. i2c.onRequest(i2c_on_request);
  8220. #endif
  8221. }
  8222. /**
  8223. * The main Marlin program loop
  8224. *
  8225. * - Save or log commands to SD
  8226. * - Process available commands (if not saving)
  8227. * - Call heater manager
  8228. * - Call inactivity manager
  8229. * - Call endstop manager
  8230. * - Call LCD update
  8231. */
  8232. void loop() {
  8233. if (commands_in_queue < BUFSIZE) get_available_commands();
  8234. #if ENABLED(SDSUPPORT)
  8235. card.checkautostart(false);
  8236. #endif
  8237. if (commands_in_queue) {
  8238. #if ENABLED(SDSUPPORT)
  8239. if (card.saving) {
  8240. char* command = command_queue[cmd_queue_index_r];
  8241. if (strstr_P(command, PSTR("M29"))) {
  8242. // M29 closes the file
  8243. card.closefile();
  8244. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  8245. ok_to_send();
  8246. }
  8247. else {
  8248. // Write the string from the read buffer to SD
  8249. card.write_command(command);
  8250. if (card.logging)
  8251. process_next_command(); // The card is saving because it's logging
  8252. else
  8253. ok_to_send();
  8254. }
  8255. }
  8256. else
  8257. process_next_command();
  8258. #else
  8259. process_next_command();
  8260. #endif // SDSUPPORT
  8261. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  8262. if (commands_in_queue) {
  8263. --commands_in_queue;
  8264. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  8265. }
  8266. }
  8267. endstops.report_state();
  8268. idle();
  8269. }