My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

temperature.h 4.5KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163
  1. /*
  2. temperature.h - temperature controller
  3. Part of Marlin
  4. Copyright (c) 2011 Erik van der Zalm
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #ifndef temperature_h
  17. #define temperature_h
  18. #include "Marlin.h"
  19. #include "fastio.h"
  20. #include "planner.h"
  21. #ifdef PID_ADD_EXTRUSION_RATE
  22. #include "stepper.h"
  23. #endif
  24. // public functions
  25. void tp_init(); //initialise the heating
  26. void manage_heater(); //it is critical that this is called periodically.
  27. //low leven conversion routines
  28. // do not use this routines and variables outsie of temperature.cpp
  29. int temp2analog(int celsius, uint8_t e);
  30. int temp2analogBed(int celsius);
  31. float analog2temp(int raw, uint8_t e);
  32. float analog2tempBed(int raw);
  33. extern int target_raw[EXTRUDERS];
  34. extern int heatingtarget_raw[EXTRUDERS];
  35. extern int current_raw[EXTRUDERS];
  36. extern int target_raw_bed;
  37. extern int current_raw_bed;
  38. #ifdef BED_LIMIT_SWITCHING
  39. extern int target_bed_low_temp ;
  40. extern int target_bed_high_temp ;
  41. #endif
  42. extern float Kp,Ki,Kd,Kc;
  43. #ifdef PIDTEMP
  44. extern float pid_setpoint[EXTRUDERS];
  45. #endif
  46. // #ifdef WATCHPERIOD
  47. extern int watch_raw[EXTRUDERS] ;
  48. // extern unsigned long watchmillis;
  49. // #endif
  50. //high level conversion routines, for use outside of temperature.cpp
  51. //inline so that there is no performance decrease.
  52. //deg=degreeCelsius
  53. FORCE_INLINE float degHotend(uint8_t extruder) {
  54. return analog2temp(current_raw[extruder], extruder);
  55. };
  56. FORCE_INLINE float degBed() {
  57. return analog2tempBed(current_raw_bed);
  58. };
  59. FORCE_INLINE float degTargetHotend(uint8_t extruder) {
  60. return analog2temp(target_raw[extruder], extruder);
  61. };
  62. FORCE_INLINE float degTargetBed() {
  63. return analog2tempBed(target_raw_bed);
  64. };
  65. FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) {
  66. target_raw[extruder] = temp2analog(celsius, extruder);
  67. #ifdef PIDTEMP
  68. pid_setpoint[extruder] = celsius;
  69. #endif //PIDTEMP
  70. };
  71. FORCE_INLINE void setTargetBed(const float &celsius) {
  72. target_raw_bed = temp2analogBed(celsius);
  73. #ifdef BED_LIMIT_SWITCHING
  74. if(celsius>BED_HYSTERESIS)
  75. {
  76. target_bed_low_temp= temp2analogBed(celsius-BED_HYSTERESIS);
  77. target_bed_high_temp= temp2analogBed(celsius+BED_HYSTERESIS);
  78. }
  79. else
  80. {
  81. target_bed_low_temp=0;
  82. target_bed_high_temp=0;
  83. }
  84. #endif
  85. };
  86. FORCE_INLINE bool isHeatingHotend(uint8_t extruder){
  87. return target_raw[extruder] > current_raw[extruder];
  88. };
  89. FORCE_INLINE bool isHeatingBed() {
  90. return target_raw_bed > current_raw_bed;
  91. };
  92. FORCE_INLINE bool isCoolingHotend(uint8_t extruder) {
  93. return target_raw[extruder] < current_raw[extruder];
  94. };
  95. FORCE_INLINE bool isCoolingBed() {
  96. return target_raw_bed < current_raw_bed;
  97. };
  98. #define degHotend0() degHotend(0)
  99. #define degTargetHotend0() degTargetHotend(0)
  100. #define setTargetHotend0(_celsius) setTargetHotend((_celsius), 0)
  101. #define isHeatingHotend0() isHeatingHotend(0)
  102. #define isCoolingHotend0() isCoolingHotend(0)
  103. #if EXTRUDERS > 1
  104. #define degHotend1() degHotend(1)
  105. #define degTargetHotend1() degTargetHotend(1)
  106. #define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
  107. #define isHeatingHotend1() isHeatingHotend(1)
  108. #define isCoolingHotend1() isCoolingHotend(1)
  109. #endif
  110. #if EXTRUDERS > 2
  111. #define degHotend2() degHotend(2)
  112. #define degTargetHotend2() degTargetHotend(2)
  113. #define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
  114. #define isHeatingHotend2() isHeatingHotend(2)
  115. #define isCoolingHotend2() isCoolingHotend(2)
  116. #endif
  117. #if EXTRUDERS > 3
  118. #error Invalid number of extruders
  119. #endif
  120. int getHeaterPower(int heater);
  121. void disable_heater();
  122. void setWatch();
  123. void updatePID();
  124. FORCE_INLINE void autotempShutdown(){
  125. #ifdef AUTOTEMP
  126. if(autotemp_enabled)
  127. {
  128. autotemp_enabled=false;
  129. if(degTargetHotend(ACTIVE_EXTRUDER)>autotemp_min)
  130. setTargetHotend(0,ACTIVE_EXTRUDER);
  131. }
  132. #endif
  133. }
  134. #endif