123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- /**
- * Incremental Least Squares Best Fit By Roxy and Ed Williams
- *
- * This algorithm is high speed and has a very small code footprint.
- * Its results are identical to both the Iterative Least-Squares published
- * earlier by Roxy and the QR_SOLVE solution. If used in place of QR_SOLVE
- * it saves roughly 10K of program memory. And even better... the data
- * fed into the algorithm does not need to all be present at the same time.
- * A point can be probed and its values fed into the algorithm and then discarded.
- *
- */
-
- #include "MarlinConfig.h"
-
- #if ENABLED(AUTO_BED_LEVELING_UBL) // Currently only used by UBL, but is applicable to Grid Based (Linear) Bed Leveling
-
- #include "Marlin.h"
- #include "macros.h"
- #include <math.h>
-
- struct linear_fit_data {
- float xbar, ybar, zbar,
- x2bar, y2bar, z2bar,
- xybar, xzbar, yzbar,
- max_absx, max_absy,
- A, B, D, N;
- };
-
- void inline incremental_LSF_reset(struct linear_fit_data *lsf) {
- memset(lsf, 0, sizeof(linear_fit_data));
- }
-
- void inline incremental_WLSF(struct linear_fit_data *lsf, const float &x, const float &y, const float &z, const float &w) {
- // weight each accumulator by factor w, including the "number" of samples
- // (analagous to calling inc_LSF twice with same values to weight it by 2X)
- lsf->xbar += w * x;
- lsf->ybar += w * y;
- lsf->zbar += w * z;
- lsf->x2bar += w * x * x; // don't use sq(x) -- let compiler re-use w*x four times
- lsf->y2bar += w * y * y;
- lsf->z2bar += w * z * z;
- lsf->xybar += w * x * y;
- lsf->xzbar += w * x * z;
- lsf->yzbar += w * y * z;
- lsf->N += w;
- lsf->max_absx = max(fabs(w * x), lsf->max_absx);
- lsf->max_absy = max(fabs(w * y), lsf->max_absy);
- }
-
- void inline incremental_LSF(struct linear_fit_data *lsf, const float &x, const float &y, const float &z) {
- lsf->xbar += x;
- lsf->ybar += y;
- lsf->zbar += z;
- lsf->x2bar += sq(x);
- lsf->y2bar += sq(y);
- lsf->z2bar += sq(z);
- lsf->xybar += x * y;
- lsf->xzbar += x * z;
- lsf->yzbar += y * z;
- lsf->max_absx = max(fabs(x), lsf->max_absx);
- lsf->max_absy = max(fabs(y), lsf->max_absy);
- lsf->N += 1.0;
- }
-
- int finish_incremental_LSF(struct linear_fit_data *);
-
- #endif
|