My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 59KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "planner.h"
  26. #include "stepper.h"
  27. #include "temperature.h"
  28. #include "motion_control.h"
  29. #include "cardreader.h"
  30. #include "watchdog.h"
  31. #include "ConfigurationStore.h"
  32. #include "language.h"
  33. #include "pins_arduino.h"
  34. #if DIGIPOTSS_PIN > -1
  35. #include <SPI.h>
  36. #endif
  37. #define VERSION_STRING "1.0.0"
  38. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  39. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  40. //Implemented Codes
  41. //-------------------
  42. // G0 -> G1
  43. // G1 - Coordinated Movement X Y Z E
  44. // G2 - CW ARC
  45. // G3 - CCW ARC
  46. // G4 - Dwell S<seconds> or P<milliseconds>
  47. // G10 - retract filament according to settings of M207
  48. // G11 - retract recover filament according to settings of M208
  49. // G28 - Home all Axis
  50. // G90 - Use Absolute Coordinates
  51. // G91 - Use Relative Coordinates
  52. // G92 - Set current position to cordinates given
  53. //RepRap M Codes
  54. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  55. // M1 - Same as M0
  56. // M104 - Set extruder target temp
  57. // M105 - Read current temp
  58. // M106 - Fan on
  59. // M107 - Fan off
  60. // M109 - Wait for extruder current temp to reach target temp.
  61. // M114 - Display current position
  62. //Custom M Codes
  63. // M17 - Enable/Power all stepper motors
  64. // M18 - Disable all stepper motors; same as M84
  65. // M20 - List SD card
  66. // M21 - Init SD card
  67. // M22 - Release SD card
  68. // M23 - Select SD file (M23 filename.g)
  69. // M24 - Start/resume SD print
  70. // M25 - Pause SD print
  71. // M26 - Set SD position in bytes (M26 S12345)
  72. // M27 - Report SD print status
  73. // M28 - Start SD write (M28 filename.g)
  74. // M29 - Stop SD write
  75. // M30 - Delete file from SD (M30 filename.g)
  76. // M31 - Output time since last M109 or SD card start to serial
  77. // M42 - Change pin status via gcode
  78. // M80 - Turn on Power Supply
  79. // M81 - Turn off Power Supply
  80. // M82 - Set E codes absolute (default)
  81. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  82. // M84 - Disable steppers until next move,
  83. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  84. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  85. // M92 - Set axis_steps_per_unit - same syntax as G92
  86. // M114 - Output current position to serial port
  87. // M115 - Capabilities string
  88. // M117 - display message
  89. // M119 - Output Endstop status to serial port
  90. // M140 - Set bed target temp
  91. // M190 - Wait for bed current temp to reach target temp.
  92. // M200 - Set filament diameter
  93. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  94. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  95. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  96. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  97. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  98. // M206 - set additional homeing offset
  99. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  100. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  101. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  102. // M220 S<factor in percent>- set speed factor override percentage
  103. // M221 S<factor in percent>- set extrude factor override percentage
  104. // M240 - Trigger a camera to take a photograph
  105. // M301 - Set PID parameters P I and D
  106. // M302 - Allow cold extrudes
  107. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  108. // M304 - Set bed PID parameters P I and D
  109. // M400 - Finish all moves
  110. // M500 - stores paramters in EEPROM
  111. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  112. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  113. // M503 - print the current settings (from memory not from eeprom)
  114. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  115. // M907 - Set digital trimpot motor current using axis codes.
  116. // M908 - Control digital trimpot directly.
  117. // M350 - Set microstepping mode.
  118. // M351 - Toggle MS1 MS2 pins directly.
  119. // M999 - Restart after being stopped by error
  120. //Stepper Movement Variables
  121. //===========================================================================
  122. //=============================imported variables============================
  123. //===========================================================================
  124. //===========================================================================
  125. //=============================public variables=============================
  126. //===========================================================================
  127. #ifdef SDSUPPORT
  128. CardReader card;
  129. #endif
  130. float homing_feedrate[] = HOMING_FEEDRATE;
  131. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  132. int feedmultiply=100; //100->1 200->2
  133. int saved_feedmultiply;
  134. int extrudemultiply=100; //100->1 200->2
  135. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  136. float add_homeing[3]={0,0,0};
  137. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  138. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  139. uint8_t active_extruder = 0;
  140. int fanSpeed=0;
  141. #ifdef FWRETRACT
  142. bool autoretract_enabled=true;
  143. bool retracted=false;
  144. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  145. float retract_recover_length=0, retract_recover_feedrate=8*60;
  146. #endif
  147. //===========================================================================
  148. //=============================private variables=============================
  149. //===========================================================================
  150. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  151. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  152. static float offset[3] = {0.0, 0.0, 0.0};
  153. static bool home_all_axis = true;
  154. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  155. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  156. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  157. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  158. static bool fromsd[BUFSIZE];
  159. static int bufindr = 0;
  160. static int bufindw = 0;
  161. static int buflen = 0;
  162. //static int i = 0;
  163. static char serial_char;
  164. static int serial_count = 0;
  165. static boolean comment_mode = false;
  166. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  167. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  168. //static float tt = 0;
  169. //static float bt = 0;
  170. //Inactivity shutdown variables
  171. static unsigned long previous_millis_cmd = 0;
  172. static unsigned long max_inactive_time = 0;
  173. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  174. unsigned long starttime=0;
  175. unsigned long stoptime=0;
  176. static uint8_t tmp_extruder;
  177. bool Stopped=false;
  178. //===========================================================================
  179. //=============================ROUTINES=============================
  180. //===========================================================================
  181. void get_arc_coordinates();
  182. bool setTargetedHotend(int code);
  183. void serial_echopair_P(const char *s_P, float v)
  184. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  185. void serial_echopair_P(const char *s_P, double v)
  186. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  187. void serial_echopair_P(const char *s_P, unsigned long v)
  188. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  189. extern "C"{
  190. extern unsigned int __bss_end;
  191. extern unsigned int __heap_start;
  192. extern void *__brkval;
  193. int freeMemory() {
  194. int free_memory;
  195. if((int)__brkval == 0)
  196. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  197. else
  198. free_memory = ((int)&free_memory) - ((int)__brkval);
  199. return free_memory;
  200. }
  201. }
  202. //adds an command to the main command buffer
  203. //thats really done in a non-safe way.
  204. //needs overworking someday
  205. void enquecommand(const char *cmd)
  206. {
  207. if(buflen < BUFSIZE)
  208. {
  209. //this is dangerous if a mixing of serial and this happsens
  210. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  211. SERIAL_ECHO_START;
  212. SERIAL_ECHOPGM("enqueing \"");
  213. SERIAL_ECHO(cmdbuffer[bufindw]);
  214. SERIAL_ECHOLNPGM("\"");
  215. bufindw= (bufindw + 1)%BUFSIZE;
  216. buflen += 1;
  217. }
  218. }
  219. void enquecommand_P(const char *cmd)
  220. {
  221. if(buflen < BUFSIZE)
  222. {
  223. //this is dangerous if a mixing of serial and this happsens
  224. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  225. SERIAL_ECHO_START;
  226. SERIAL_ECHOPGM("enqueing \"");
  227. SERIAL_ECHO(cmdbuffer[bufindw]);
  228. SERIAL_ECHOLNPGM("\"");
  229. bufindw= (bufindw + 1)%BUFSIZE;
  230. buflen += 1;
  231. }
  232. }
  233. void setup_killpin()
  234. {
  235. #if( KILL_PIN>-1 )
  236. pinMode(KILL_PIN,INPUT);
  237. WRITE(KILL_PIN,HIGH);
  238. #endif
  239. }
  240. void setup_photpin()
  241. {
  242. #ifdef PHOTOGRAPH_PIN
  243. #if (PHOTOGRAPH_PIN > -1)
  244. SET_OUTPUT(PHOTOGRAPH_PIN);
  245. WRITE(PHOTOGRAPH_PIN, LOW);
  246. #endif
  247. #endif
  248. }
  249. void setup_powerhold()
  250. {
  251. #ifdef SUICIDE_PIN
  252. #if (SUICIDE_PIN> -1)
  253. SET_OUTPUT(SUICIDE_PIN);
  254. WRITE(SUICIDE_PIN, HIGH);
  255. #endif
  256. #endif
  257. #if (PS_ON_PIN > -1)
  258. SET_OUTPUT(PS_ON_PIN);
  259. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  260. #endif
  261. }
  262. void suicide()
  263. {
  264. #ifdef SUICIDE_PIN
  265. #if (SUICIDE_PIN> -1)
  266. SET_OUTPUT(SUICIDE_PIN);
  267. WRITE(SUICIDE_PIN, LOW);
  268. #endif
  269. #endif
  270. }
  271. void setup()
  272. {
  273. setup_killpin();
  274. setup_powerhold();
  275. MYSERIAL.begin(BAUDRATE);
  276. SERIAL_PROTOCOLLNPGM("start");
  277. SERIAL_ECHO_START;
  278. // Check startup - does nothing if bootloader sets MCUSR to 0
  279. byte mcu = MCUSR;
  280. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  281. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  282. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  283. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  284. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  285. MCUSR=0;
  286. SERIAL_ECHOPGM(MSG_MARLIN);
  287. SERIAL_ECHOLNPGM(VERSION_STRING);
  288. #ifdef STRING_VERSION_CONFIG_H
  289. #ifdef STRING_CONFIG_H_AUTHOR
  290. SERIAL_ECHO_START;
  291. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  292. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  293. SERIAL_ECHOPGM(MSG_AUTHOR);
  294. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  295. SERIAL_ECHOPGM("Compiled: ");
  296. SERIAL_ECHOLNPGM(__DATE__);
  297. #endif
  298. #endif
  299. SERIAL_ECHO_START;
  300. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  301. SERIAL_ECHO(freeMemory());
  302. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  303. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  304. for(int8_t i = 0; i < BUFSIZE; i++)
  305. {
  306. fromsd[i] = false;
  307. }
  308. Config_RetrieveSettings(); // loads data from EEPROM if available
  309. for(int8_t i=0; i < NUM_AXIS; i++)
  310. {
  311. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  312. }
  313. tp_init(); // Initialize temperature loop
  314. plan_init(); // Initialize planner;
  315. watchdog_init();
  316. st_init(); // Initialize stepper, this enables interrupts!
  317. setup_photpin();
  318. lcd_init();
  319. }
  320. void loop()
  321. {
  322. if(buflen < (BUFSIZE-1))
  323. get_command();
  324. #ifdef SDSUPPORT
  325. card.checkautostart(false);
  326. #endif
  327. if(buflen)
  328. {
  329. #ifdef SDSUPPORT
  330. if(card.saving)
  331. {
  332. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  333. {
  334. card.write_command(cmdbuffer[bufindr]);
  335. SERIAL_PROTOCOLLNPGM(MSG_OK);
  336. }
  337. else
  338. {
  339. card.closefile();
  340. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  341. }
  342. }
  343. else
  344. {
  345. process_commands();
  346. }
  347. #else
  348. process_commands();
  349. #endif //SDSUPPORT
  350. buflen = (buflen-1);
  351. bufindr = (bufindr + 1)%BUFSIZE;
  352. }
  353. //check heater every n milliseconds
  354. manage_heater();
  355. manage_inactivity();
  356. checkHitEndstops();
  357. lcd_update();
  358. }
  359. void get_command()
  360. {
  361. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  362. serial_char = MYSERIAL.read();
  363. if(serial_char == '\n' ||
  364. serial_char == '\r' ||
  365. (serial_char == ':' && comment_mode == false) ||
  366. serial_count >= (MAX_CMD_SIZE - 1) )
  367. {
  368. if(!serial_count) { //if empty line
  369. comment_mode = false; //for new command
  370. return;
  371. }
  372. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  373. if(!comment_mode){
  374. comment_mode = false; //for new command
  375. fromsd[bufindw] = false;
  376. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  377. {
  378. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  379. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  380. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  381. SERIAL_ERROR_START;
  382. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  383. SERIAL_ERRORLN(gcode_LastN);
  384. //Serial.println(gcode_N);
  385. FlushSerialRequestResend();
  386. serial_count = 0;
  387. return;
  388. }
  389. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  390. {
  391. byte checksum = 0;
  392. byte count = 0;
  393. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  394. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  395. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  396. SERIAL_ERROR_START;
  397. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  398. SERIAL_ERRORLN(gcode_LastN);
  399. FlushSerialRequestResend();
  400. serial_count = 0;
  401. return;
  402. }
  403. //if no errors, continue parsing
  404. }
  405. else
  406. {
  407. SERIAL_ERROR_START;
  408. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  409. SERIAL_ERRORLN(gcode_LastN);
  410. FlushSerialRequestResend();
  411. serial_count = 0;
  412. return;
  413. }
  414. gcode_LastN = gcode_N;
  415. //if no errors, continue parsing
  416. }
  417. else // if we don't receive 'N' but still see '*'
  418. {
  419. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  420. {
  421. SERIAL_ERROR_START;
  422. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  423. SERIAL_ERRORLN(gcode_LastN);
  424. serial_count = 0;
  425. return;
  426. }
  427. }
  428. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  429. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  430. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  431. case 0:
  432. case 1:
  433. case 2:
  434. case 3:
  435. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  436. #ifdef SDSUPPORT
  437. if(card.saving)
  438. break;
  439. #endif //SDSUPPORT
  440. SERIAL_PROTOCOLLNPGM(MSG_OK);
  441. }
  442. else {
  443. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  444. LCD_MESSAGEPGM(MSG_STOPPED);
  445. }
  446. break;
  447. default:
  448. break;
  449. }
  450. }
  451. bufindw = (bufindw + 1)%BUFSIZE;
  452. buflen += 1;
  453. }
  454. serial_count = 0; //clear buffer
  455. }
  456. else
  457. {
  458. if(serial_char == ';') comment_mode = true;
  459. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  460. }
  461. }
  462. #ifdef SDSUPPORT
  463. if(!card.sdprinting || serial_count!=0){
  464. return;
  465. }
  466. while( !card.eof() && buflen < BUFSIZE) {
  467. int16_t n=card.get();
  468. serial_char = (char)n;
  469. if(serial_char == '\n' ||
  470. serial_char == '\r' ||
  471. (serial_char == ':' && comment_mode == false) ||
  472. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  473. {
  474. if(card.eof()){
  475. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  476. stoptime=millis();
  477. char time[30];
  478. unsigned long t=(stoptime-starttime)/1000;
  479. int hours, minutes;
  480. minutes=(t/60)%60;
  481. hours=t/60/60;
  482. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  483. SERIAL_ECHO_START;
  484. SERIAL_ECHOLN(time);
  485. lcd_setstatus(time);
  486. card.printingHasFinished();
  487. card.checkautostart(true);
  488. }
  489. if(!serial_count)
  490. {
  491. comment_mode = false; //for new command
  492. return; //if empty line
  493. }
  494. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  495. // if(!comment_mode){
  496. fromsd[bufindw] = true;
  497. buflen += 1;
  498. bufindw = (bufindw + 1)%BUFSIZE;
  499. // }
  500. comment_mode = false; //for new command
  501. serial_count = 0; //clear buffer
  502. }
  503. else
  504. {
  505. if(serial_char == ';') comment_mode = true;
  506. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  507. }
  508. }
  509. #endif //SDSUPPORT
  510. }
  511. float code_value()
  512. {
  513. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  514. }
  515. long code_value_long()
  516. {
  517. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  518. }
  519. bool code_seen(char code)
  520. {
  521. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  522. return (strchr_pointer != NULL); //Return True if a character was found
  523. }
  524. #define DEFINE_PGM_READ_ANY(type, reader) \
  525. static inline type pgm_read_any(const type *p) \
  526. { return pgm_read_##reader##_near(p); }
  527. DEFINE_PGM_READ_ANY(float, float);
  528. DEFINE_PGM_READ_ANY(signed char, byte);
  529. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  530. static const PROGMEM type array##_P[3] = \
  531. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  532. static inline type array(int axis) \
  533. { return pgm_read_any(&array##_P[axis]); }
  534. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  535. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  536. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  537. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  538. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  539. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  540. static void axis_is_at_home(int axis) {
  541. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  542. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  543. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  544. }
  545. static void homeaxis(int axis) {
  546. #define HOMEAXIS_DO(LETTER) \
  547. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  548. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  549. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  550. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  551. 0) {
  552. current_position[axis] = 0;
  553. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  554. destination[axis] = 1.5 * max_length(axis) * home_dir(axis);
  555. feedrate = homing_feedrate[axis];
  556. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  557. st_synchronize();
  558. current_position[axis] = 0;
  559. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  560. destination[axis] = -home_retract_mm(axis) * home_dir(axis);
  561. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  562. st_synchronize();
  563. destination[axis] = 2*home_retract_mm(axis) * home_dir(axis);
  564. feedrate = homing_feedrate[axis]/2 ;
  565. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  566. st_synchronize();
  567. axis_is_at_home(axis);
  568. destination[axis] = current_position[axis];
  569. feedrate = 0.0;
  570. endstops_hit_on_purpose();
  571. }
  572. }
  573. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  574. void process_commands()
  575. {
  576. unsigned long codenum; //throw away variable
  577. char *starpos = NULL;
  578. if(code_seen('G'))
  579. {
  580. switch((int)code_value())
  581. {
  582. case 0: // G0 -> G1
  583. case 1: // G1
  584. if(Stopped == false) {
  585. get_coordinates(); // For X Y Z E F
  586. prepare_move();
  587. //ClearToSend();
  588. return;
  589. }
  590. //break;
  591. case 2: // G2 - CW ARC
  592. if(Stopped == false) {
  593. get_arc_coordinates();
  594. prepare_arc_move(true);
  595. return;
  596. }
  597. case 3: // G3 - CCW ARC
  598. if(Stopped == false) {
  599. get_arc_coordinates();
  600. prepare_arc_move(false);
  601. return;
  602. }
  603. case 4: // G4 dwell
  604. LCD_MESSAGEPGM(MSG_DWELL);
  605. codenum = 0;
  606. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  607. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  608. st_synchronize();
  609. codenum += millis(); // keep track of when we started waiting
  610. previous_millis_cmd = millis();
  611. while(millis() < codenum ){
  612. manage_heater();
  613. manage_inactivity();
  614. lcd_update();
  615. }
  616. break;
  617. #ifdef FWRETRACT
  618. case 10: // G10 retract
  619. if(!retracted)
  620. {
  621. destination[X_AXIS]=current_position[X_AXIS];
  622. destination[Y_AXIS]=current_position[Y_AXIS];
  623. destination[Z_AXIS]=current_position[Z_AXIS];
  624. current_position[Z_AXIS]+=-retract_zlift;
  625. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  626. feedrate=retract_feedrate;
  627. retracted=true;
  628. prepare_move();
  629. }
  630. break;
  631. case 11: // G10 retract_recover
  632. if(!retracted)
  633. {
  634. destination[X_AXIS]=current_position[X_AXIS];
  635. destination[Y_AXIS]=current_position[Y_AXIS];
  636. destination[Z_AXIS]=current_position[Z_AXIS];
  637. current_position[Z_AXIS]+=retract_zlift;
  638. current_position[E_AXIS]+=-retract_recover_length;
  639. feedrate=retract_recover_feedrate;
  640. retracted=false;
  641. prepare_move();
  642. }
  643. break;
  644. #endif //FWRETRACT
  645. case 28: //G28 Home all Axis one at a time
  646. saved_feedrate = feedrate;
  647. saved_feedmultiply = feedmultiply;
  648. feedmultiply = 100;
  649. previous_millis_cmd = millis();
  650. enable_endstops(true);
  651. for(int8_t i=0; i < NUM_AXIS; i++) {
  652. destination[i] = current_position[i];
  653. }
  654. feedrate = 0.0;
  655. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  656. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  657. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  658. HOMEAXIS(Z);
  659. }
  660. #endif
  661. #ifdef QUICK_HOME
  662. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  663. {
  664. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  665. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  666. destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
  667. feedrate = homing_feedrate[X_AXIS];
  668. if(homing_feedrate[Y_AXIS]<feedrate)
  669. feedrate =homing_feedrate[Y_AXIS];
  670. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  671. st_synchronize();
  672. axis_is_at_home(X_AXIS);
  673. axis_is_at_home(Y_AXIS);
  674. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  675. destination[X_AXIS] = current_position[X_AXIS];
  676. destination[Y_AXIS] = current_position[Y_AXIS];
  677. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  678. feedrate = 0.0;
  679. st_synchronize();
  680. endstops_hit_on_purpose();
  681. }
  682. #endif
  683. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  684. {
  685. HOMEAXIS(X);
  686. }
  687. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  688. HOMEAXIS(Y);
  689. }
  690. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  691. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  692. HOMEAXIS(Z);
  693. }
  694. #endif
  695. if(code_seen(axis_codes[X_AXIS]))
  696. {
  697. if(code_value_long() != 0) {
  698. current_position[X_AXIS]=code_value()+add_homeing[0];
  699. }
  700. }
  701. if(code_seen(axis_codes[Y_AXIS])) {
  702. if(code_value_long() != 0) {
  703. current_position[Y_AXIS]=code_value()+add_homeing[1];
  704. }
  705. }
  706. if(code_seen(axis_codes[Z_AXIS])) {
  707. if(code_value_long() != 0) {
  708. current_position[Z_AXIS]=code_value()+add_homeing[2];
  709. }
  710. }
  711. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  712. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  713. enable_endstops(false);
  714. #endif
  715. feedrate = saved_feedrate;
  716. feedmultiply = saved_feedmultiply;
  717. previous_millis_cmd = millis();
  718. endstops_hit_on_purpose();
  719. break;
  720. case 90: // G90
  721. relative_mode = false;
  722. break;
  723. case 91: // G91
  724. relative_mode = true;
  725. break;
  726. case 92: // G92
  727. if(!code_seen(axis_codes[E_AXIS]))
  728. st_synchronize();
  729. for(int8_t i=0; i < NUM_AXIS; i++) {
  730. if(code_seen(axis_codes[i])) {
  731. if(i == E_AXIS) {
  732. current_position[i] = code_value();
  733. plan_set_e_position(current_position[E_AXIS]);
  734. }
  735. else {
  736. current_position[i] = code_value()+add_homeing[i];
  737. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  738. }
  739. }
  740. }
  741. break;
  742. }
  743. }
  744. else if(code_seen('M'))
  745. {
  746. switch( (int)code_value() )
  747. {
  748. #ifdef ULTIPANEL
  749. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  750. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  751. {
  752. LCD_MESSAGEPGM(MSG_USERWAIT);
  753. codenum = 0;
  754. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  755. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  756. st_synchronize();
  757. previous_millis_cmd = millis();
  758. if (codenum > 0){
  759. codenum += millis(); // keep track of when we started waiting
  760. while(millis() < codenum && !LCD_CLICKED){
  761. manage_heater();
  762. manage_inactivity();
  763. lcd_update();
  764. }
  765. }else{
  766. while(!LCD_CLICKED){
  767. manage_heater();
  768. manage_inactivity();
  769. lcd_update();
  770. }
  771. }
  772. LCD_MESSAGEPGM(MSG_RESUMING);
  773. }
  774. break;
  775. #endif
  776. case 17:
  777. LCD_MESSAGEPGM(MSG_NO_MOVE);
  778. enable_x();
  779. enable_y();
  780. enable_z();
  781. enable_e0();
  782. enable_e1();
  783. enable_e2();
  784. break;
  785. #ifdef SDSUPPORT
  786. case 20: // M20 - list SD card
  787. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  788. card.ls();
  789. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  790. break;
  791. case 21: // M21 - init SD card
  792. card.initsd();
  793. break;
  794. case 22: //M22 - release SD card
  795. card.release();
  796. break;
  797. case 23: //M23 - Select file
  798. starpos = (strchr(strchr_pointer + 4,'*'));
  799. if(starpos!=NULL)
  800. *(starpos-1)='\0';
  801. card.openFile(strchr_pointer + 4,true);
  802. break;
  803. case 24: //M24 - Start SD print
  804. card.startFileprint();
  805. starttime=millis();
  806. break;
  807. case 25: //M25 - Pause SD print
  808. card.pauseSDPrint();
  809. break;
  810. case 26: //M26 - Set SD index
  811. if(card.cardOK && code_seen('S')) {
  812. card.setIndex(code_value_long());
  813. }
  814. break;
  815. case 27: //M27 - Get SD status
  816. card.getStatus();
  817. break;
  818. case 28: //M28 - Start SD write
  819. starpos = (strchr(strchr_pointer + 4,'*'));
  820. if(starpos != NULL){
  821. char* npos = strchr(cmdbuffer[bufindr], 'N');
  822. strchr_pointer = strchr(npos,' ') + 1;
  823. *(starpos-1) = '\0';
  824. }
  825. card.openFile(strchr_pointer+4,false);
  826. break;
  827. case 29: //M29 - Stop SD write
  828. //processed in write to file routine above
  829. //card,saving = false;
  830. break;
  831. case 30: //M30 <filename> Delete File
  832. if (card.cardOK){
  833. card.closefile();
  834. starpos = (strchr(strchr_pointer + 4,'*'));
  835. if(starpos != NULL){
  836. char* npos = strchr(cmdbuffer[bufindr], 'N');
  837. strchr_pointer = strchr(npos,' ') + 1;
  838. *(starpos-1) = '\0';
  839. }
  840. card.removeFile(strchr_pointer + 4);
  841. }
  842. break;
  843. #endif //SDSUPPORT
  844. case 31: //M31 take time since the start of the SD print or an M109 command
  845. {
  846. stoptime=millis();
  847. char time[30];
  848. unsigned long t=(stoptime-starttime)/1000;
  849. int sec,min;
  850. min=t/60;
  851. sec=t%60;
  852. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  853. SERIAL_ECHO_START;
  854. SERIAL_ECHOLN(time);
  855. lcd_setstatus(time);
  856. autotempShutdown();
  857. }
  858. break;
  859. case 42: //M42 -Change pin status via gcode
  860. if (code_seen('S'))
  861. {
  862. int pin_status = code_value();
  863. int pin_number = LED_PIN;
  864. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  865. pin_number = code_value();
  866. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  867. {
  868. if (sensitive_pins[i] == pin_number)
  869. {
  870. pin_number = -1;
  871. break;
  872. }
  873. }
  874. if (pin_number > -1)
  875. {
  876. pinMode(pin_number, OUTPUT);
  877. digitalWrite(pin_number, pin_status);
  878. analogWrite(pin_number, pin_status);
  879. }
  880. }
  881. break;
  882. case 104: // M104
  883. if(setTargetedHotend(104)){
  884. break;
  885. }
  886. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  887. setWatch();
  888. break;
  889. case 140: // M140 set bed temp
  890. if (code_seen('S')) setTargetBed(code_value());
  891. break;
  892. case 105 : // M105
  893. if(setTargetedHotend(105)){
  894. break;
  895. }
  896. #if (TEMP_0_PIN > -1)
  897. SERIAL_PROTOCOLPGM("ok T:");
  898. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  899. SERIAL_PROTOCOLPGM(" /");
  900. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  901. #if TEMP_BED_PIN > -1
  902. SERIAL_PROTOCOLPGM(" B:");
  903. SERIAL_PROTOCOL_F(degBed(),1);
  904. SERIAL_PROTOCOLPGM(" /");
  905. SERIAL_PROTOCOL_F(degTargetBed(),1);
  906. #endif //TEMP_BED_PIN
  907. #else
  908. SERIAL_ERROR_START;
  909. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  910. #endif
  911. SERIAL_PROTOCOLPGM(" @:");
  912. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  913. SERIAL_PROTOCOLPGM(" B@:");
  914. SERIAL_PROTOCOL(getHeaterPower(-1));
  915. SERIAL_PROTOCOLLN("");
  916. return;
  917. break;
  918. case 109:
  919. {// M109 - Wait for extruder heater to reach target.
  920. if(setTargetedHotend(109)){
  921. break;
  922. }
  923. LCD_MESSAGEPGM(MSG_HEATING);
  924. #ifdef AUTOTEMP
  925. autotemp_enabled=false;
  926. #endif
  927. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  928. #ifdef AUTOTEMP
  929. if (code_seen('S')) autotemp_min=code_value();
  930. if (code_seen('B')) autotemp_max=code_value();
  931. if (code_seen('F'))
  932. {
  933. autotemp_factor=code_value();
  934. autotemp_enabled=true;
  935. }
  936. #endif
  937. setWatch();
  938. codenum = millis();
  939. /* See if we are heating up or cooling down */
  940. bool target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  941. #ifdef TEMP_RESIDENCY_TIME
  942. long residencyStart;
  943. residencyStart = -1;
  944. /* continue to loop until we have reached the target temp
  945. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  946. while((residencyStart == -1) ||
  947. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  948. #else
  949. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  950. #endif //TEMP_RESIDENCY_TIME
  951. if( (millis() - codenum) > 1000UL )
  952. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  953. SERIAL_PROTOCOLPGM("T:");
  954. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  955. SERIAL_PROTOCOLPGM(" E:");
  956. SERIAL_PROTOCOL((int)tmp_extruder);
  957. #ifdef TEMP_RESIDENCY_TIME
  958. SERIAL_PROTOCOLPGM(" W:");
  959. if(residencyStart > -1)
  960. {
  961. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  962. SERIAL_PROTOCOLLN( codenum );
  963. }
  964. else
  965. {
  966. SERIAL_PROTOCOLLN( "?" );
  967. }
  968. #else
  969. SERIAL_PROTOCOLLN("");
  970. #endif
  971. codenum = millis();
  972. }
  973. manage_heater();
  974. manage_inactivity();
  975. lcd_update();
  976. #ifdef TEMP_RESIDENCY_TIME
  977. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  978. or when current temp falls outside the hysteresis after target temp was reached */
  979. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  980. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  981. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  982. {
  983. residencyStart = millis();
  984. }
  985. #endif //TEMP_RESIDENCY_TIME
  986. }
  987. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  988. starttime=millis();
  989. previous_millis_cmd = millis();
  990. }
  991. break;
  992. case 190: // M190 - Wait for bed heater to reach target.
  993. #if TEMP_BED_PIN > -1
  994. LCD_MESSAGEPGM(MSG_BED_HEATING);
  995. if (code_seen('S')) setTargetBed(code_value());
  996. codenum = millis();
  997. while(isHeatingBed())
  998. {
  999. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1000. {
  1001. float tt=degHotend(active_extruder);
  1002. SERIAL_PROTOCOLPGM("T:");
  1003. SERIAL_PROTOCOL(tt);
  1004. SERIAL_PROTOCOLPGM(" E:");
  1005. SERIAL_PROTOCOL((int)active_extruder);
  1006. SERIAL_PROTOCOLPGM(" B:");
  1007. SERIAL_PROTOCOL_F(degBed(),1);
  1008. SERIAL_PROTOCOLLN("");
  1009. codenum = millis();
  1010. }
  1011. manage_heater();
  1012. manage_inactivity();
  1013. lcd_update();
  1014. }
  1015. LCD_MESSAGEPGM(MSG_BED_DONE);
  1016. previous_millis_cmd = millis();
  1017. #endif
  1018. break;
  1019. #if FAN_PIN > -1
  1020. case 106: //M106 Fan On
  1021. if (code_seen('S')){
  1022. fanSpeed=constrain(code_value(),0,255);
  1023. }
  1024. else {
  1025. fanSpeed=255;
  1026. }
  1027. break;
  1028. case 107: //M107 Fan Off
  1029. fanSpeed = 0;
  1030. break;
  1031. #endif //FAN_PIN
  1032. #if (PS_ON_PIN > -1)
  1033. case 80: // M80 - ATX Power On
  1034. SET_OUTPUT(PS_ON_PIN); //GND
  1035. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1036. break;
  1037. #endif
  1038. case 81: // M81 - ATX Power Off
  1039. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1040. st_synchronize();
  1041. suicide();
  1042. #elif (PS_ON_PIN > -1)
  1043. SET_OUTPUT(PS_ON_PIN);
  1044. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1045. #endif
  1046. break;
  1047. case 82:
  1048. axis_relative_modes[3] = false;
  1049. break;
  1050. case 83:
  1051. axis_relative_modes[3] = true;
  1052. break;
  1053. case 18: //compatibility
  1054. case 84: // M84
  1055. if(code_seen('S')){
  1056. stepper_inactive_time = code_value() * 1000;
  1057. }
  1058. else
  1059. {
  1060. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1061. if(all_axis)
  1062. {
  1063. st_synchronize();
  1064. disable_e0();
  1065. disable_e1();
  1066. disable_e2();
  1067. finishAndDisableSteppers();
  1068. }
  1069. else
  1070. {
  1071. st_synchronize();
  1072. if(code_seen('X')) disable_x();
  1073. if(code_seen('Y')) disable_y();
  1074. if(code_seen('Z')) disable_z();
  1075. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1076. if(code_seen('E')) {
  1077. disable_e0();
  1078. disable_e1();
  1079. disable_e2();
  1080. }
  1081. #endif
  1082. }
  1083. }
  1084. break;
  1085. case 85: // M85
  1086. code_seen('S');
  1087. max_inactive_time = code_value() * 1000;
  1088. break;
  1089. case 92: // M92
  1090. for(int8_t i=0; i < NUM_AXIS; i++)
  1091. {
  1092. if(code_seen(axis_codes[i]))
  1093. {
  1094. if(i == 3) { // E
  1095. float value = code_value();
  1096. if(value < 20.0) {
  1097. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1098. max_e_jerk *= factor;
  1099. max_feedrate[i] *= factor;
  1100. axis_steps_per_sqr_second[i] *= factor;
  1101. }
  1102. axis_steps_per_unit[i] = value;
  1103. }
  1104. else {
  1105. axis_steps_per_unit[i] = code_value();
  1106. }
  1107. }
  1108. }
  1109. break;
  1110. case 115: // M115
  1111. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1112. break;
  1113. case 117: // M117 display message
  1114. starpos = (strchr(strchr_pointer + 5,'*'));
  1115. if(starpos!=NULL)
  1116. *(starpos-1)='\0';
  1117. lcd_setstatus(strchr_pointer + 5);
  1118. break;
  1119. case 114: // M114
  1120. SERIAL_PROTOCOLPGM("X:");
  1121. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1122. SERIAL_PROTOCOLPGM("Y:");
  1123. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1124. SERIAL_PROTOCOLPGM("Z:");
  1125. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1126. SERIAL_PROTOCOLPGM("E:");
  1127. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1128. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1129. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1130. SERIAL_PROTOCOLPGM("Y:");
  1131. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1132. SERIAL_PROTOCOLPGM("Z:");
  1133. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1134. SERIAL_PROTOCOLLN("");
  1135. break;
  1136. case 120: // M120
  1137. enable_endstops(false) ;
  1138. break;
  1139. case 121: // M121
  1140. enable_endstops(true) ;
  1141. break;
  1142. case 119: // M119
  1143. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1144. #if (X_MIN_PIN > -1)
  1145. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1146. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1147. #endif
  1148. #if (X_MAX_PIN > -1)
  1149. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1150. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1151. #endif
  1152. #if (Y_MIN_PIN > -1)
  1153. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1154. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1155. #endif
  1156. #if (Y_MAX_PIN > -1)
  1157. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1158. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1159. #endif
  1160. #if (Z_MIN_PIN > -1)
  1161. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1162. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1163. #endif
  1164. #if (Z_MAX_PIN > -1)
  1165. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1166. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1167. #endif
  1168. break;
  1169. //TODO: update for all axis, use for loop
  1170. case 201: // M201
  1171. for(int8_t i=0; i < NUM_AXIS; i++)
  1172. {
  1173. if(code_seen(axis_codes[i]))
  1174. {
  1175. max_acceleration_units_per_sq_second[i] = code_value();
  1176. axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1177. }
  1178. }
  1179. break;
  1180. #if 0 // Not used for Sprinter/grbl gen6
  1181. case 202: // M202
  1182. for(int8_t i=0; i < NUM_AXIS; i++) {
  1183. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1184. }
  1185. break;
  1186. #endif
  1187. case 203: // M203 max feedrate mm/sec
  1188. for(int8_t i=0; i < NUM_AXIS; i++) {
  1189. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1190. }
  1191. break;
  1192. case 204: // M204 acclereration S normal moves T filmanent only moves
  1193. {
  1194. if(code_seen('S')) acceleration = code_value() ;
  1195. if(code_seen('T')) retract_acceleration = code_value() ;
  1196. }
  1197. break;
  1198. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1199. {
  1200. if(code_seen('S')) minimumfeedrate = code_value();
  1201. if(code_seen('T')) mintravelfeedrate = code_value();
  1202. if(code_seen('B')) minsegmenttime = code_value() ;
  1203. if(code_seen('X')) max_xy_jerk = code_value() ;
  1204. if(code_seen('Z')) max_z_jerk = code_value() ;
  1205. if(code_seen('E')) max_e_jerk = code_value() ;
  1206. }
  1207. break;
  1208. case 206: // M206 additional homeing offset
  1209. for(int8_t i=0; i < 3; i++)
  1210. {
  1211. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1212. }
  1213. break;
  1214. #ifdef FWRETRACT
  1215. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1216. {
  1217. if(code_seen('S'))
  1218. {
  1219. retract_length = code_value() ;
  1220. }
  1221. if(code_seen('F'))
  1222. {
  1223. retract_feedrate = code_value() ;
  1224. }
  1225. if(code_seen('Z'))
  1226. {
  1227. retract_zlift = code_value() ;
  1228. }
  1229. }break;
  1230. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1231. {
  1232. if(code_seen('S'))
  1233. {
  1234. retract_recover_length = code_value() ;
  1235. }
  1236. if(code_seen('F'))
  1237. {
  1238. retract_recover_feedrate = code_value() ;
  1239. }
  1240. }break;
  1241. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1242. {
  1243. if(code_seen('S'))
  1244. {
  1245. int t= code_value() ;
  1246. switch(t)
  1247. {
  1248. case 0: autoretract_enabled=false;retracted=false;break;
  1249. case 1: autoretract_enabled=true;retracted=false;break;
  1250. default:
  1251. SERIAL_ECHO_START;
  1252. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1253. SERIAL_ECHO(cmdbuffer[bufindr]);
  1254. SERIAL_ECHOLNPGM("\"");
  1255. }
  1256. }
  1257. }break;
  1258. #endif
  1259. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1260. {
  1261. if(code_seen('S'))
  1262. {
  1263. feedmultiply = code_value() ;
  1264. }
  1265. }
  1266. break;
  1267. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1268. {
  1269. if(code_seen('S'))
  1270. {
  1271. extrudemultiply = code_value() ;
  1272. }
  1273. }
  1274. break;
  1275. #ifdef PIDTEMP
  1276. case 301: // M301
  1277. {
  1278. if(code_seen('P')) Kp = code_value();
  1279. if(code_seen('I')) Ki = code_value()*PID_dT;
  1280. if(code_seen('D')) Kd = code_value()/PID_dT;
  1281. #ifdef PID_ADD_EXTRUSION_RATE
  1282. if(code_seen('C')) Kc = code_value();
  1283. #endif
  1284. updatePID();
  1285. SERIAL_PROTOCOL(MSG_OK);
  1286. SERIAL_PROTOCOL(" p:");
  1287. SERIAL_PROTOCOL(Kp);
  1288. SERIAL_PROTOCOL(" i:");
  1289. SERIAL_PROTOCOL(Ki/PID_dT);
  1290. SERIAL_PROTOCOL(" d:");
  1291. SERIAL_PROTOCOL(Kd*PID_dT);
  1292. #ifdef PID_ADD_EXTRUSION_RATE
  1293. SERIAL_PROTOCOL(" c:");
  1294. SERIAL_PROTOCOL(Kc*PID_dT);
  1295. #endif
  1296. SERIAL_PROTOCOLLN("");
  1297. }
  1298. break;
  1299. #endif //PIDTEMP
  1300. #ifdef PIDTEMPBED
  1301. case 304: // M304
  1302. {
  1303. if(code_seen('P')) bedKp = code_value();
  1304. if(code_seen('I')) bedKi = code_value()*PID_dT;
  1305. if(code_seen('D')) bedKd = code_value()/PID_dT;
  1306. updatePID();
  1307. SERIAL_PROTOCOL(MSG_OK);
  1308. SERIAL_PROTOCOL(" p:");
  1309. SERIAL_PROTOCOL(bedKp);
  1310. SERIAL_PROTOCOL(" i:");
  1311. SERIAL_PROTOCOL(bedKi/PID_dT);
  1312. SERIAL_PROTOCOL(" d:");
  1313. SERIAL_PROTOCOL(bedKd*PID_dT);
  1314. SERIAL_PROTOCOLLN("");
  1315. }
  1316. break;
  1317. #endif //PIDTEMP
  1318. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  1319. {
  1320. #ifdef PHOTOGRAPH_PIN
  1321. #if (PHOTOGRAPH_PIN > -1)
  1322. const uint8_t NUM_PULSES=16;
  1323. const float PULSE_LENGTH=0.01524;
  1324. for(int i=0; i < NUM_PULSES; i++) {
  1325. WRITE(PHOTOGRAPH_PIN, HIGH);
  1326. _delay_ms(PULSE_LENGTH);
  1327. WRITE(PHOTOGRAPH_PIN, LOW);
  1328. _delay_ms(PULSE_LENGTH);
  1329. }
  1330. delay(7.33);
  1331. for(int i=0; i < NUM_PULSES; i++) {
  1332. WRITE(PHOTOGRAPH_PIN, HIGH);
  1333. _delay_ms(PULSE_LENGTH);
  1334. WRITE(PHOTOGRAPH_PIN, LOW);
  1335. _delay_ms(PULSE_LENGTH);
  1336. }
  1337. #endif
  1338. #endif
  1339. }
  1340. break;
  1341. case 302: // allow cold extrudes
  1342. {
  1343. allow_cold_extrudes(true);
  1344. }
  1345. break;
  1346. case 303: // M303 PID autotune
  1347. {
  1348. float temp = 150.0;
  1349. int e=0;
  1350. int c=5;
  1351. if (code_seen('E')) e=code_value();
  1352. if (e<0)
  1353. temp=70;
  1354. if (code_seen('S')) temp=code_value();
  1355. if (code_seen('C')) c=code_value();
  1356. PID_autotune(temp, e, c);
  1357. }
  1358. break;
  1359. case 400: // M400 finish all moves
  1360. {
  1361. st_synchronize();
  1362. }
  1363. break;
  1364. case 500: // M500 Store settings in EEPROM
  1365. {
  1366. Config_StoreSettings();
  1367. }
  1368. break;
  1369. case 501: // M501 Read settings from EEPROM
  1370. {
  1371. Config_RetrieveSettings();
  1372. }
  1373. break;
  1374. case 502: // M502 Revert to default settings
  1375. {
  1376. Config_ResetDefault();
  1377. }
  1378. break;
  1379. case 503: // M503 print settings currently in memory
  1380. {
  1381. Config_PrintSettings();
  1382. }
  1383. break;
  1384. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  1385. case 540:
  1386. {
  1387. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  1388. }
  1389. break;
  1390. #endif
  1391. case 907: // M907 Set digital trimpot motor current using axis codes.
  1392. {
  1393. #if DIGIPOTSS_PIN > -1
  1394. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  1395. if(code_seen('B')) digipot_current(4,code_value());
  1396. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  1397. #endif
  1398. }
  1399. case 908: // M908 Control digital trimpot directly.
  1400. {
  1401. #if DIGIPOTSS_PIN > -1
  1402. uint8_t channel,current;
  1403. if(code_seen('P')) channel=code_value();
  1404. if(code_seen('S')) current=code_value();
  1405. digitalPotWrite(channel, current);
  1406. #endif
  1407. }
  1408. break;
  1409. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  1410. {
  1411. #if X_MS1_PIN > -1
  1412. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  1413. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  1414. if(code_seen('B')) microstep_mode(4,code_value());
  1415. microstep_readings();
  1416. #endif
  1417. }
  1418. break;
  1419. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  1420. {
  1421. #if X_MS1_PIN > -1
  1422. if(code_seen('S')) switch((int)code_value())
  1423. {
  1424. case 1:
  1425. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  1426. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  1427. break;
  1428. case 2:
  1429. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  1430. if(code_seen('B')) microstep_ms(4,-1,code_value());
  1431. break;
  1432. }
  1433. microstep_readings();
  1434. #endif
  1435. }
  1436. break;
  1437. case 999: // M999: Restart after being stopped
  1438. Stopped = false;
  1439. lcd_reset_alert_level();
  1440. gcode_LastN = Stopped_gcode_LastN;
  1441. FlushSerialRequestResend();
  1442. break;
  1443. }
  1444. }
  1445. else if(code_seen('T'))
  1446. {
  1447. tmp_extruder = code_value();
  1448. if(tmp_extruder >= EXTRUDERS) {
  1449. SERIAL_ECHO_START;
  1450. SERIAL_ECHO("T");
  1451. SERIAL_ECHO(tmp_extruder);
  1452. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  1453. }
  1454. else {
  1455. active_extruder = tmp_extruder;
  1456. SERIAL_ECHO_START;
  1457. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  1458. SERIAL_PROTOCOLLN((int)active_extruder);
  1459. }
  1460. }
  1461. else
  1462. {
  1463. SERIAL_ECHO_START;
  1464. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1465. SERIAL_ECHO(cmdbuffer[bufindr]);
  1466. SERIAL_ECHOLNPGM("\"");
  1467. }
  1468. ClearToSend();
  1469. }
  1470. void FlushSerialRequestResend()
  1471. {
  1472. //char cmdbuffer[bufindr][100]="Resend:";
  1473. MYSERIAL.flush();
  1474. SERIAL_PROTOCOLPGM(MSG_RESEND);
  1475. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  1476. ClearToSend();
  1477. }
  1478. void ClearToSend()
  1479. {
  1480. previous_millis_cmd = millis();
  1481. #ifdef SDSUPPORT
  1482. if(fromsd[bufindr])
  1483. return;
  1484. #endif //SDSUPPORT
  1485. SERIAL_PROTOCOLLNPGM(MSG_OK);
  1486. }
  1487. void get_coordinates()
  1488. {
  1489. bool seen[4]={false,false,false,false};
  1490. for(int8_t i=0; i < NUM_AXIS; i++) {
  1491. if(code_seen(axis_codes[i]))
  1492. {
  1493. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  1494. seen[i]=true;
  1495. }
  1496. else destination[i] = current_position[i]; //Are these else lines really needed?
  1497. }
  1498. if(code_seen('F')) {
  1499. next_feedrate = code_value();
  1500. if(next_feedrate > 0.0) feedrate = next_feedrate;
  1501. }
  1502. #ifdef FWRETRACT
  1503. if(autoretract_enabled)
  1504. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  1505. {
  1506. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1507. if(echange<-MIN_RETRACT) //retract
  1508. {
  1509. if(!retracted)
  1510. {
  1511. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  1512. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  1513. float correctede=-echange-retract_length;
  1514. //to generate the additional steps, not the destination is changed, but inversely the current position
  1515. current_position[E_AXIS]+=-correctede;
  1516. feedrate=retract_feedrate;
  1517. retracted=true;
  1518. }
  1519. }
  1520. else
  1521. if(echange>MIN_RETRACT) //retract_recover
  1522. {
  1523. if(retracted)
  1524. {
  1525. //current_position[Z_AXIS]+=-retract_zlift;
  1526. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  1527. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  1528. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  1529. feedrate=retract_recover_feedrate;
  1530. retracted=false;
  1531. }
  1532. }
  1533. }
  1534. #endif //FWRETRACT
  1535. }
  1536. void get_arc_coordinates()
  1537. {
  1538. #ifdef SF_ARC_FIX
  1539. bool relative_mode_backup = relative_mode;
  1540. relative_mode = true;
  1541. #endif
  1542. get_coordinates();
  1543. #ifdef SF_ARC_FIX
  1544. relative_mode=relative_mode_backup;
  1545. #endif
  1546. if(code_seen('I')) {
  1547. offset[0] = code_value();
  1548. }
  1549. else {
  1550. offset[0] = 0.0;
  1551. }
  1552. if(code_seen('J')) {
  1553. offset[1] = code_value();
  1554. }
  1555. else {
  1556. offset[1] = 0.0;
  1557. }
  1558. }
  1559. void clamp_to_software_endstops(float target[3])
  1560. {
  1561. if (min_software_endstops) {
  1562. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  1563. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  1564. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  1565. }
  1566. if (max_software_endstops) {
  1567. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  1568. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  1569. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  1570. }
  1571. }
  1572. void prepare_move()
  1573. {
  1574. clamp_to_software_endstops(destination);
  1575. previous_millis_cmd = millis();
  1576. // Do not use feedmultiply for E or Z only moves
  1577. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  1578. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1579. }
  1580. else {
  1581. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  1582. }
  1583. for(int8_t i=0; i < NUM_AXIS; i++) {
  1584. current_position[i] = destination[i];
  1585. }
  1586. }
  1587. void prepare_arc_move(char isclockwise) {
  1588. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  1589. // Trace the arc
  1590. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  1591. // As far as the parser is concerned, the position is now == target. In reality the
  1592. // motion control system might still be processing the action and the real tool position
  1593. // in any intermediate location.
  1594. for(int8_t i=0; i < NUM_AXIS; i++) {
  1595. current_position[i] = destination[i];
  1596. }
  1597. previous_millis_cmd = millis();
  1598. }
  1599. #ifdef CONTROLLERFAN_PIN
  1600. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  1601. unsigned long lastMotorCheck = 0;
  1602. void controllerFan()
  1603. {
  1604. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  1605. {
  1606. lastMotorCheck = millis();
  1607. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN)
  1608. #if EXTRUDERS > 2
  1609. || !READ(E2_ENABLE_PIN)
  1610. #endif
  1611. #if EXTRUDER > 1
  1612. || !READ(E2_ENABLE_PIN)
  1613. #endif
  1614. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  1615. {
  1616. lastMotor = millis(); //... set time to NOW so the fan will turn on
  1617. }
  1618. if ((millis() - lastMotor) >= (CONTROLLERFAN_SEC*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  1619. {
  1620. WRITE(CONTROLLERFAN_PIN, LOW); //... turn the fan off
  1621. }
  1622. else
  1623. {
  1624. WRITE(CONTROLLERFAN_PIN, HIGH); //... turn the fan on
  1625. }
  1626. }
  1627. }
  1628. #endif
  1629. void manage_inactivity()
  1630. {
  1631. if( (millis() - previous_millis_cmd) > max_inactive_time )
  1632. if(max_inactive_time)
  1633. kill();
  1634. if(stepper_inactive_time) {
  1635. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  1636. {
  1637. if(blocks_queued() == false) {
  1638. disable_x();
  1639. disable_y();
  1640. disable_z();
  1641. disable_e0();
  1642. disable_e1();
  1643. disable_e2();
  1644. }
  1645. }
  1646. }
  1647. #if( KILL_PIN>-1 )
  1648. if( 0 == READ(KILL_PIN) )
  1649. kill();
  1650. #endif
  1651. #ifdef CONTROLLERFAN_PIN
  1652. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  1653. #endif
  1654. #ifdef EXTRUDER_RUNOUT_PREVENT
  1655. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  1656. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  1657. {
  1658. bool oldstatus=READ(E0_ENABLE_PIN);
  1659. enable_e0();
  1660. float oldepos=current_position[E_AXIS];
  1661. float oldedes=destination[E_AXIS];
  1662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  1663. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  1664. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  1665. current_position[E_AXIS]=oldepos;
  1666. destination[E_AXIS]=oldedes;
  1667. plan_set_e_position(oldepos);
  1668. previous_millis_cmd=millis();
  1669. st_synchronize();
  1670. WRITE(E0_ENABLE_PIN,oldstatus);
  1671. }
  1672. #endif
  1673. check_axes_activity();
  1674. }
  1675. void kill()
  1676. {
  1677. cli(); // Stop interrupts
  1678. disable_heater();
  1679. disable_x();
  1680. disable_y();
  1681. disable_z();
  1682. disable_e0();
  1683. disable_e1();
  1684. disable_e2();
  1685. if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  1686. SERIAL_ERROR_START;
  1687. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  1688. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  1689. suicide();
  1690. while(1) { /* Intentionally left empty */ } // Wait for reset
  1691. }
  1692. void Stop()
  1693. {
  1694. disable_heater();
  1695. if(Stopped == false) {
  1696. Stopped = true;
  1697. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  1698. SERIAL_ERROR_START;
  1699. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  1700. LCD_MESSAGEPGM(MSG_STOPPED);
  1701. }
  1702. }
  1703. bool IsStopped() { return Stopped; };
  1704. #ifdef FAST_PWM_FAN
  1705. void setPwmFrequency(uint8_t pin, int val)
  1706. {
  1707. val &= 0x07;
  1708. switch(digitalPinToTimer(pin))
  1709. {
  1710. #if defined(TCCR0A)
  1711. case TIMER0A:
  1712. case TIMER0B:
  1713. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  1714. // TCCR0B |= val;
  1715. break;
  1716. #endif
  1717. #if defined(TCCR1A)
  1718. case TIMER1A:
  1719. case TIMER1B:
  1720. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  1721. // TCCR1B |= val;
  1722. break;
  1723. #endif
  1724. #if defined(TCCR2)
  1725. case TIMER2:
  1726. case TIMER2:
  1727. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  1728. TCCR2 |= val;
  1729. break;
  1730. #endif
  1731. #if defined(TCCR2A)
  1732. case TIMER2A:
  1733. case TIMER2B:
  1734. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  1735. TCCR2B |= val;
  1736. break;
  1737. #endif
  1738. #if defined(TCCR3A)
  1739. case TIMER3A:
  1740. case TIMER3B:
  1741. case TIMER3C:
  1742. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  1743. TCCR3B |= val;
  1744. break;
  1745. #endif
  1746. #if defined(TCCR4A)
  1747. case TIMER4A:
  1748. case TIMER4B:
  1749. case TIMER4C:
  1750. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  1751. TCCR4B |= val;
  1752. break;
  1753. #endif
  1754. #if defined(TCCR5A)
  1755. case TIMER5A:
  1756. case TIMER5B:
  1757. case TIMER5C:
  1758. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  1759. TCCR5B |= val;
  1760. break;
  1761. #endif
  1762. }
  1763. }
  1764. #endif //FAST_PWM_FAN
  1765. bool setTargetedHotend(int code){
  1766. tmp_extruder = active_extruder;
  1767. if(code_seen('T')) {
  1768. tmp_extruder = code_value();
  1769. if(tmp_extruder >= EXTRUDERS) {
  1770. SERIAL_ECHO_START;
  1771. switch(code){
  1772. case 104:
  1773. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  1774. break;
  1775. case 105:
  1776. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  1777. break;
  1778. case 109:
  1779. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  1780. break;
  1781. }
  1782. SERIAL_ECHOLN(tmp_extruder);
  1783. return true;
  1784. }
  1785. }
  1786. return false;
  1787. }