My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 132KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <https://www.gnu.org/licenses/>.
  41. */
  42. /**
  43. * Timer calculations informed by the 'RepRap cartesian firmware' by Zack Smith
  44. * and Philipp Tiefenbacher.
  45. */
  46. /**
  47. * __________________________
  48. * /| |\ _________________ ^
  49. * / | | \ /| |\ |
  50. * / | | \ / | | \ s
  51. * / | | | | | \ p
  52. * / | | | | | \ e
  53. * +-----+------------------------+---+--+---------------+----+ e
  54. * | BLOCK 1 | BLOCK 2 | d
  55. *
  56. * time ----->
  57. *
  58. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  59. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  60. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  61. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  62. */
  63. /**
  64. * Marlin uses the Bresenham algorithm. For a detailed explanation of theory and
  65. * method see https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
  66. */
  67. /**
  68. * Jerk controlled movements planner added Apr 2018 by Eduardo José Tagle.
  69. * Equations based on Synthethos TinyG2 sources, but the fixed-point
  70. * implementation is new, as we are running the ISR with a variable period.
  71. * Also implemented the Bézier velocity curve evaluation in ARM assembler,
  72. * to avoid impacting ISR speed.
  73. */
  74. #include "stepper.h"
  75. Stepper stepper; // Singleton
  76. #define BABYSTEPPING_EXTRA_DIR_WAIT
  77. #ifdef __AVR__
  78. #include "speed_lookuptable.h"
  79. #endif
  80. #include "endstops.h"
  81. #include "planner.h"
  82. #include "motion.h"
  83. #include "../lcd/marlinui.h"
  84. #include "../gcode/queue.h"
  85. #include "../sd/cardreader.h"
  86. #include "../MarlinCore.h"
  87. #include "../HAL/shared/Delay.h"
  88. #if ENABLED(INTEGRATED_BABYSTEPPING)
  89. #include "../feature/babystep.h"
  90. #endif
  91. #if MB(ALLIGATOR)
  92. #include "../feature/dac/dac_dac084s085.h"
  93. #endif
  94. #if HAS_MOTOR_CURRENT_SPI
  95. #include <SPI.h>
  96. #endif
  97. #if ENABLED(MIXING_EXTRUDER)
  98. #include "../feature/mixing.h"
  99. #endif
  100. #if HAS_FILAMENT_RUNOUT_DISTANCE
  101. #include "../feature/runout.h"
  102. #endif
  103. #if HAS_L64XX
  104. #include "../libs/L64XX/L64XX_Marlin.h"
  105. uint8_t L6470_buf[MAX_L64XX + 1]; // chip command sequence - element 0 not used
  106. bool L64XX_OK_to_power_up = false; // flag to keep L64xx steppers powered down after a reset or power up
  107. #endif
  108. #if ENABLED(AUTO_POWER_CONTROL)
  109. #include "../feature/power.h"
  110. #endif
  111. #if ENABLED(POWER_LOSS_RECOVERY)
  112. #include "../feature/powerloss.h"
  113. #endif
  114. #if HAS_CUTTER
  115. #include "../feature/spindle_laser.h"
  116. #endif
  117. #if ENABLED(EXTENSIBLE_UI)
  118. #include "../lcd/extui/ui_api.h"
  119. #endif
  120. // public:
  121. #if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
  122. bool Stepper::separate_multi_axis = false;
  123. #endif
  124. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  125. bool Stepper::initialized; // = false
  126. uint32_t Stepper::motor_current_setting[MOTOR_CURRENT_COUNT]; // Initialized by settings.load()
  127. #if HAS_MOTOR_CURRENT_SPI
  128. constexpr uint32_t Stepper::digipot_count[];
  129. #endif
  130. #endif
  131. axis_flags_t Stepper::axis_enabled; // {0}
  132. // private:
  133. block_t* Stepper::current_block; // (= nullptr) A pointer to the block currently being traced
  134. axis_bits_t Stepper::last_direction_bits, // = 0
  135. Stepper::axis_did_move; // = 0
  136. bool Stepper::abort_current_block;
  137. #if DISABLED(MIXING_EXTRUDER) && HAS_MULTI_EXTRUDER
  138. uint8_t Stepper::last_moved_extruder = 0xFF;
  139. #endif
  140. #if ENABLED(X_DUAL_ENDSTOPS)
  141. bool Stepper::locked_X_motor = false, Stepper::locked_X2_motor = false;
  142. #endif
  143. #if ENABLED(Y_DUAL_ENDSTOPS)
  144. bool Stepper::locked_Y_motor = false, Stepper::locked_Y2_motor = false;
  145. #endif
  146. #if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
  147. bool Stepper::locked_Z_motor = false, Stepper::locked_Z2_motor = false
  148. #if NUM_Z_STEPPER_DRIVERS >= 3
  149. , Stepper::locked_Z3_motor = false
  150. #if NUM_Z_STEPPER_DRIVERS >= 4
  151. , Stepper::locked_Z4_motor = false
  152. #endif
  153. #endif
  154. ;
  155. #endif
  156. uint32_t Stepper::acceleration_time, Stepper::deceleration_time;
  157. uint8_t Stepper::steps_per_isr;
  158. #if HAS_FREEZE_PIN
  159. bool Stepper::frozen; // = false
  160. #endif
  161. IF_DISABLED(ADAPTIVE_STEP_SMOOTHING, constexpr) uint8_t Stepper::oversampling_factor;
  162. xyze_long_t Stepper::delta_error{0};
  163. xyze_ulong_t Stepper::advance_dividend{0};
  164. uint32_t Stepper::advance_divisor = 0,
  165. Stepper::step_events_completed = 0, // The number of step events executed in the current block
  166. Stepper::accelerate_until, // The count at which to stop accelerating
  167. Stepper::decelerate_after, // The count at which to start decelerating
  168. Stepper::step_event_count; // The total event count for the current block
  169. #if EITHER(HAS_MULTI_EXTRUDER, MIXING_EXTRUDER)
  170. uint8_t Stepper::stepper_extruder;
  171. #else
  172. constexpr uint8_t Stepper::stepper_extruder;
  173. #endif
  174. #if ENABLED(S_CURVE_ACCELERATION)
  175. int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler
  176. int32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B"); // B coefficient in Bézier speed curve with alias for assembler
  177. int32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C"); // C coefficient in Bézier speed curve with alias for assembler
  178. uint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F"); // F coefficient in Bézier speed curve with alias for assembler
  179. uint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler
  180. #ifdef __AVR__
  181. bool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negative
  182. #endif
  183. bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not
  184. #endif
  185. #if ENABLED(LIN_ADVANCE)
  186. uint32_t Stepper::nextAdvanceISR = LA_ADV_NEVER,
  187. Stepper::LA_isr_rate = LA_ADV_NEVER;
  188. uint16_t Stepper::LA_current_adv_steps = 0,
  189. Stepper::LA_final_adv_steps,
  190. Stepper::LA_max_adv_steps;
  191. int8_t Stepper::LA_steps = 0;
  192. bool Stepper::LA_use_advance_lead;
  193. #endif // LIN_ADVANCE
  194. #if ENABLED(INTEGRATED_BABYSTEPPING)
  195. uint32_t Stepper::nextBabystepISR = BABYSTEP_NEVER;
  196. #endif
  197. #if ENABLED(DIRECT_STEPPING)
  198. page_step_state_t Stepper::page_step_state;
  199. #endif
  200. int32_t Stepper::ticks_nominal = -1;
  201. #if DISABLED(S_CURVE_ACCELERATION)
  202. uint32_t Stepper::acc_step_rate; // needed for deceleration start point
  203. #endif
  204. xyz_long_t Stepper::endstops_trigsteps;
  205. xyze_long_t Stepper::count_position{0};
  206. xyze_int8_t Stepper::count_direction{0};
  207. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
  208. Stepper::stepper_laser_t Stepper::laser_trap = {
  209. .enabled = false,
  210. .cur_power = 0,
  211. .cruise_set = false,
  212. #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
  213. .last_step_count = 0,
  214. .acc_step_count = 0
  215. #else
  216. .till_update = 0
  217. #endif
  218. };
  219. #endif
  220. #define MINDIR(A) (count_direction[_AXIS(A)] < 0)
  221. #define MAXDIR(A) (count_direction[_AXIS(A)] > 0)
  222. #define STEPTEST(A,M,I) TERN0(HAS_ ##A## ##I## _ ##M, !(TEST(endstops.state(), A## ##I## _ ##M) && M## DIR(A)) && !locked_ ##A## ##I## _motor)
  223. #define DUAL_ENDSTOP_APPLY_STEP(A,V) \
  224. if (separate_multi_axis) { \
  225. if (ENABLED(A##_HOME_TO_MIN)) { \
  226. if (STEPTEST(A,MIN, )) A## _STEP_WRITE(V); \
  227. if (STEPTEST(A,MIN,2)) A##2_STEP_WRITE(V); \
  228. } \
  229. else if (ENABLED(A##_HOME_TO_MAX)) { \
  230. if (STEPTEST(A,MAX, )) A## _STEP_WRITE(V); \
  231. if (STEPTEST(A,MAX,2)) A##2_STEP_WRITE(V); \
  232. } \
  233. } \
  234. else { \
  235. A##_STEP_WRITE(V); \
  236. A##2_STEP_WRITE(V); \
  237. }
  238. #define DUAL_SEPARATE_APPLY_STEP(A,V) \
  239. if (separate_multi_axis) { \
  240. if (!locked_##A## _motor) A## _STEP_WRITE(V); \
  241. if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
  242. } \
  243. else { \
  244. A##_STEP_WRITE(V); \
  245. A##2_STEP_WRITE(V); \
  246. }
  247. #define TRIPLE_ENDSTOP_APPLY_STEP(A,V) \
  248. if (separate_multi_axis) { \
  249. if (ENABLED(A##_HOME_TO_MIN)) { \
  250. if (STEPTEST(A,MIN, )) A## _STEP_WRITE(V); \
  251. if (STEPTEST(A,MIN,2)) A##2_STEP_WRITE(V); \
  252. if (STEPTEST(A,MIN,3)) A##3_STEP_WRITE(V); \
  253. } \
  254. else if (ENABLED(A##_HOME_TO_MAX)) { \
  255. if (STEPTEST(A,MAX, )) A## _STEP_WRITE(V); \
  256. if (STEPTEST(A,MAX,2)) A##2_STEP_WRITE(V); \
  257. if (STEPTEST(A,MAX,3)) A##3_STEP_WRITE(V); \
  258. } \
  259. } \
  260. else { \
  261. A##_STEP_WRITE(V); \
  262. A##2_STEP_WRITE(V); \
  263. A##3_STEP_WRITE(V); \
  264. }
  265. #define TRIPLE_SEPARATE_APPLY_STEP(A,V) \
  266. if (separate_multi_axis) { \
  267. if (!locked_##A## _motor) A## _STEP_WRITE(V); \
  268. if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
  269. if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \
  270. } \
  271. else { \
  272. A## _STEP_WRITE(V); \
  273. A##2_STEP_WRITE(V); \
  274. A##3_STEP_WRITE(V); \
  275. }
  276. #define QUAD_ENDSTOP_APPLY_STEP(A,V) \
  277. if (separate_multi_axis) { \
  278. if (ENABLED(A##_HOME_TO_MIN)) { \
  279. if (STEPTEST(A,MIN, )) A## _STEP_WRITE(V); \
  280. if (STEPTEST(A,MIN,2)) A##2_STEP_WRITE(V); \
  281. if (STEPTEST(A,MIN,3)) A##3_STEP_WRITE(V); \
  282. if (STEPTEST(A,MIN,4)) A##4_STEP_WRITE(V); \
  283. } \
  284. else if (ENABLED(A##_HOME_TO_MAX)) { \
  285. if (STEPTEST(A,MAX, )) A## _STEP_WRITE(V); \
  286. if (STEPTEST(A,MAX,2)) A##2_STEP_WRITE(V); \
  287. if (STEPTEST(A,MAX,3)) A##3_STEP_WRITE(V); \
  288. if (STEPTEST(A,MAX,4)) A##4_STEP_WRITE(V); \
  289. } \
  290. } \
  291. else { \
  292. A## _STEP_WRITE(V); \
  293. A##2_STEP_WRITE(V); \
  294. A##3_STEP_WRITE(V); \
  295. A##4_STEP_WRITE(V); \
  296. }
  297. #define QUAD_SEPARATE_APPLY_STEP(A,V) \
  298. if (separate_multi_axis) { \
  299. if (!locked_##A## _motor) A## _STEP_WRITE(V); \
  300. if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
  301. if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \
  302. if (!locked_##A##4_motor) A##4_STEP_WRITE(V); \
  303. } \
  304. else { \
  305. A## _STEP_WRITE(V); \
  306. A##2_STEP_WRITE(V); \
  307. A##3_STEP_WRITE(V); \
  308. A##4_STEP_WRITE(V); \
  309. }
  310. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  311. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) ^ ENABLED(INVERT_X2_VS_X_DIR)); }while(0)
  312. #if ENABLED(X_DUAL_ENDSTOPS)
  313. #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
  314. #else
  315. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  316. #endif
  317. #elif ENABLED(DUAL_X_CARRIAGE)
  318. #define X_APPLY_DIR(v,ALWAYS) do{ \
  319. if (extruder_duplication_enabled || ALWAYS) { X_DIR_WRITE(v); X2_DIR_WRITE((v) ^ idex_mirrored_mode); } \
  320. else if (last_moved_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  321. }while(0)
  322. #define X_APPLY_STEP(v,ALWAYS) do{ \
  323. if (extruder_duplication_enabled || ALWAYS) { X_STEP_WRITE(v); X2_STEP_WRITE(v); } \
  324. else if (last_moved_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  325. }while(0)
  326. #else
  327. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  328. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  329. #endif
  330. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  331. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) ^ ENABLED(INVERT_Y2_VS_Y_DIR)); }while(0)
  332. #if ENABLED(Y_DUAL_ENDSTOPS)
  333. #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
  334. #else
  335. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  336. #endif
  337. #elif HAS_Y_AXIS
  338. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  339. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  340. #endif
  341. #if NUM_Z_STEPPER_DRIVERS == 4
  342. #define Z_APPLY_DIR(v,Q) do{ \
  343. Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); \
  344. Z3_DIR_WRITE((v) ^ ENABLED(INVERT_Z3_VS_Z_DIR)); Z4_DIR_WRITE((v) ^ ENABLED(INVERT_Z4_VS_Z_DIR)); \
  345. }while(0)
  346. #if ENABLED(Z_MULTI_ENDSTOPS)
  347. #define Z_APPLY_STEP(v,Q) QUAD_ENDSTOP_APPLY_STEP(Z,v)
  348. #elif ENABLED(Z_STEPPER_AUTO_ALIGN)
  349. #define Z_APPLY_STEP(v,Q) QUAD_SEPARATE_APPLY_STEP(Z,v)
  350. #else
  351. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); Z3_STEP_WRITE(v); Z4_STEP_WRITE(v); }while(0)
  352. #endif
  353. #elif NUM_Z_STEPPER_DRIVERS == 3
  354. #define Z_APPLY_DIR(v,Q) do{ \
  355. Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); Z3_DIR_WRITE((v) ^ ENABLED(INVERT_Z3_VS_Z_DIR)); \
  356. }while(0)
  357. #if ENABLED(Z_MULTI_ENDSTOPS)
  358. #define Z_APPLY_STEP(v,Q) TRIPLE_ENDSTOP_APPLY_STEP(Z,v)
  359. #elif ENABLED(Z_STEPPER_AUTO_ALIGN)
  360. #define Z_APPLY_STEP(v,Q) TRIPLE_SEPARATE_APPLY_STEP(Z,v)
  361. #else
  362. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); Z3_STEP_WRITE(v); }while(0)
  363. #endif
  364. #elif NUM_Z_STEPPER_DRIVERS == 2
  365. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); }while(0)
  366. #if ENABLED(Z_MULTI_ENDSTOPS)
  367. #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
  368. #elif ENABLED(Z_STEPPER_AUTO_ALIGN)
  369. #define Z_APPLY_STEP(v,Q) DUAL_SEPARATE_APPLY_STEP(Z,v)
  370. #else
  371. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  372. #endif
  373. #elif HAS_Z_AXIS
  374. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  375. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  376. #endif
  377. #if HAS_I_AXIS
  378. #define I_APPLY_DIR(v,Q) I_DIR_WRITE(v)
  379. #define I_APPLY_STEP(v,Q) I_STEP_WRITE(v)
  380. #endif
  381. #if HAS_J_AXIS
  382. #define J_APPLY_DIR(v,Q) J_DIR_WRITE(v)
  383. #define J_APPLY_STEP(v,Q) J_STEP_WRITE(v)
  384. #endif
  385. #if HAS_K_AXIS
  386. #define K_APPLY_DIR(v,Q) K_DIR_WRITE(v)
  387. #define K_APPLY_STEP(v,Q) K_STEP_WRITE(v)
  388. #endif
  389. #if DISABLED(MIXING_EXTRUDER)
  390. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(stepper_extruder, v)
  391. #endif
  392. #define CYCLES_TO_NS(CYC) (1000UL * (CYC) / ((F_CPU) / 1000000))
  393. #define NS_PER_PULSE_TIMER_TICK (1000000000UL / (STEPPER_TIMER_RATE))
  394. // Round up when converting from ns to timer ticks
  395. #define NS_TO_PULSE_TIMER_TICKS(NS) (((NS) + (NS_PER_PULSE_TIMER_TICK) / 2) / (NS_PER_PULSE_TIMER_TICK))
  396. #define TIMER_SETUP_NS (CYCLES_TO_NS(TIMER_READ_ADD_AND_STORE_CYCLES))
  397. #define PULSE_HIGH_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_HIGH_NS - _MIN(_MIN_PULSE_HIGH_NS, TIMER_SETUP_NS)))
  398. #define PULSE_LOW_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_LOW_NS - _MIN(_MIN_PULSE_LOW_NS, TIMER_SETUP_NS)))
  399. #define USING_TIMED_PULSE() hal_timer_t start_pulse_count = 0
  400. #define START_TIMED_PULSE(DIR) (start_pulse_count = HAL_timer_get_count(MF_TIMER_PULSE))
  401. #define AWAIT_TIMED_PULSE(DIR) while (PULSE_##DIR##_TICK_COUNT > HAL_timer_get_count(MF_TIMER_PULSE) - start_pulse_count) { }
  402. #define START_HIGH_PULSE() START_TIMED_PULSE(HIGH)
  403. #define AWAIT_HIGH_PULSE() AWAIT_TIMED_PULSE(HIGH)
  404. #define START_LOW_PULSE() START_TIMED_PULSE(LOW)
  405. #define AWAIT_LOW_PULSE() AWAIT_TIMED_PULSE(LOW)
  406. #if MINIMUM_STEPPER_PRE_DIR_DELAY > 0
  407. #define DIR_WAIT_BEFORE() DELAY_NS(MINIMUM_STEPPER_PRE_DIR_DELAY)
  408. #else
  409. #define DIR_WAIT_BEFORE()
  410. #endif
  411. #if MINIMUM_STEPPER_POST_DIR_DELAY > 0
  412. #define DIR_WAIT_AFTER() DELAY_NS(MINIMUM_STEPPER_POST_DIR_DELAY)
  413. #else
  414. #define DIR_WAIT_AFTER()
  415. #endif
  416. void Stepper::enable_axis(const AxisEnum axis) {
  417. #define _CASE_ENABLE(N) case N##_AXIS: ENABLE_AXIS_##N(); break;
  418. switch (axis) {
  419. LINEAR_AXIS_CODE(
  420. _CASE_ENABLE(X), _CASE_ENABLE(Y), _CASE_ENABLE(Z),
  421. _CASE_ENABLE(I), _CASE_ENABLE(J), _CASE_ENABLE(K)
  422. );
  423. default: break;
  424. }
  425. mark_axis_enabled(axis);
  426. }
  427. bool Stepper::disable_axis(const AxisEnum axis) {
  428. mark_axis_disabled(axis);
  429. // If all the axes that share the enabled bit are disabled
  430. const bool can_disable = can_axis_disable(axis);
  431. if (can_disable) {
  432. #define _CASE_DISABLE(N) case N##_AXIS: DISABLE_AXIS_##N(); break;
  433. switch (axis) {
  434. LINEAR_AXIS_CODE(
  435. _CASE_DISABLE(X), _CASE_DISABLE(Y), _CASE_DISABLE(Z),
  436. _CASE_DISABLE(I), _CASE_DISABLE(J), _CASE_DISABLE(K)
  437. );
  438. default: break;
  439. }
  440. }
  441. return can_disable;
  442. }
  443. #if HAS_EXTRUDERS
  444. void Stepper::enable_extruder(E_TERN_(const uint8_t eindex)) {
  445. IF_DISABLED(HAS_MULTI_EXTRUDER, constexpr uint8_t eindex = 0);
  446. #define _CASE_ENA_E(N) case N: ENABLE_AXIS_E##N(); mark_axis_enabled(E_AXIS E_OPTARG(eindex)); break;
  447. switch (eindex) {
  448. REPEAT(E_STEPPERS, _CASE_ENA_E)
  449. }
  450. }
  451. bool Stepper::disable_extruder(E_TERN_(const uint8_t eindex/*=0*/)) {
  452. IF_DISABLED(HAS_MULTI_EXTRUDER, constexpr uint8_t eindex = 0);
  453. mark_axis_disabled(E_AXIS E_OPTARG(eindex));
  454. const bool can_disable = can_axis_disable(E_AXIS E_OPTARG(eindex));
  455. if (can_disable) {
  456. #define _CASE_DIS_E(N) case N: DISABLE_AXIS_E##N(); break;
  457. switch (eindex) { REPEAT(E_STEPPERS, _CASE_DIS_E) }
  458. }
  459. return can_disable;
  460. }
  461. void Stepper::enable_e_steppers() {
  462. #define _ENA_E(N) ENABLE_EXTRUDER(N);
  463. REPEAT(EXTRUDERS, _ENA_E)
  464. }
  465. void Stepper::disable_e_steppers() {
  466. #define _DIS_E(N) DISABLE_EXTRUDER(N);
  467. REPEAT(EXTRUDERS, _DIS_E)
  468. }
  469. #endif
  470. void Stepper::enable_all_steppers() {
  471. TERN_(AUTO_POWER_CONTROL, powerManager.power_on());
  472. LINEAR_AXIS_CODE(
  473. enable_axis(X_AXIS), enable_axis(Y_AXIS), enable_axis(Z_AXIS),
  474. enable_axis(I_AXIS), enable_axis(J_AXIS), enable_axis(K_AXIS)
  475. );
  476. enable_e_steppers();
  477. TERN_(EXTENSIBLE_UI, ExtUI::onSteppersEnabled());
  478. }
  479. void Stepper::disable_all_steppers() {
  480. LINEAR_AXIS_CODE(
  481. disable_axis(X_AXIS), disable_axis(Y_AXIS), disable_axis(Z_AXIS),
  482. disable_axis(I_AXIS), disable_axis(J_AXIS), disable_axis(K_AXIS)
  483. );
  484. disable_e_steppers();
  485. TERN_(EXTENSIBLE_UI, ExtUI::onSteppersDisabled());
  486. }
  487. /**
  488. * Set the stepper direction of each axis
  489. *
  490. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  491. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  492. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  493. */
  494. void Stepper::set_directions() {
  495. DIR_WAIT_BEFORE();
  496. #define SET_STEP_DIR(A) \
  497. if (motor_direction(_AXIS(A))) { \
  498. A##_APPLY_DIR(INVERT_##A##_DIR, false); \
  499. count_direction[_AXIS(A)] = -1; \
  500. } \
  501. else { \
  502. A##_APPLY_DIR(!INVERT_##A##_DIR, false); \
  503. count_direction[_AXIS(A)] = 1; \
  504. }
  505. TERN_(HAS_X_DIR, SET_STEP_DIR(X)); // A
  506. TERN_(HAS_Y_DIR, SET_STEP_DIR(Y)); // B
  507. TERN_(HAS_Z_DIR, SET_STEP_DIR(Z)); // C
  508. TERN_(HAS_I_DIR, SET_STEP_DIR(I));
  509. TERN_(HAS_J_DIR, SET_STEP_DIR(J));
  510. TERN_(HAS_K_DIR, SET_STEP_DIR(K));
  511. #if DISABLED(LIN_ADVANCE)
  512. #if ENABLED(MIXING_EXTRUDER)
  513. // Because this is valid for the whole block we don't know
  514. // what e-steppers will step. Likely all. Set all.
  515. if (motor_direction(E_AXIS)) {
  516. MIXER_STEPPER_LOOP(j) REV_E_DIR(j);
  517. count_direction.e = -1;
  518. }
  519. else {
  520. MIXER_STEPPER_LOOP(j) NORM_E_DIR(j);
  521. count_direction.e = 1;
  522. }
  523. #elif HAS_EXTRUDERS
  524. if (motor_direction(E_AXIS)) {
  525. REV_E_DIR(stepper_extruder);
  526. count_direction.e = -1;
  527. }
  528. else {
  529. NORM_E_DIR(stepper_extruder);
  530. count_direction.e = 1;
  531. }
  532. #endif
  533. #endif // !LIN_ADVANCE
  534. #if HAS_L64XX
  535. if (L64XX_OK_to_power_up) { // OK to send the direction commands (which powers up the L64XX steppers)
  536. if (L64xxManager.spi_active) {
  537. L64xxManager.spi_abort = true; // Interrupted SPI transfer needs to shut down gracefully
  538. for (uint8_t j = 1; j <= L64XX::chain[0]; j++)
  539. L6470_buf[j] = dSPIN_NOP; // Fill buffer with NOOPs
  540. L64xxManager.transfer(L6470_buf, L64XX::chain[0]); // Send enough NOOPs to complete any command
  541. L64xxManager.transfer(L6470_buf, L64XX::chain[0]);
  542. L64xxManager.transfer(L6470_buf, L64XX::chain[0]);
  543. }
  544. // L64xxManager.dir_commands[] is an array that holds direction command for each stepper
  545. // Scan command array, copy matches into L64xxManager.transfer
  546. for (uint8_t j = 1; j <= L64XX::chain[0]; j++)
  547. L6470_buf[j] = L64xxManager.dir_commands[L64XX::chain[j]];
  548. L64xxManager.transfer(L6470_buf, L64XX::chain[0]); // send the command stream to the drivers
  549. }
  550. #endif
  551. DIR_WAIT_AFTER();
  552. }
  553. #if ENABLED(S_CURVE_ACCELERATION)
  554. /**
  555. * This uses a quintic (fifth-degree) Bézier polynomial for the velocity curve, giving
  556. * a "linear pop" velocity curve; with pop being the sixth derivative of position:
  557. * velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th
  558. *
  559. * The Bézier curve takes the form:
  560. *
  561. * V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t)
  562. *
  563. * Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t)
  564. * through B_5(t) are the Bernstein basis as follows:
  565. *
  566. * B_0(t) = (1-t)^5 = -t^5 + 5t^4 - 10t^3 + 10t^2 - 5t + 1
  567. * B_1(t) = 5(1-t)^4 * t = 5t^5 - 20t^4 + 30t^3 - 20t^2 + 5t
  568. * B_2(t) = 10(1-t)^3 * t^2 = -10t^5 + 30t^4 - 30t^3 + 10t^2
  569. * B_3(t) = 10(1-t)^2 * t^3 = 10t^5 - 20t^4 + 10t^3
  570. * B_4(t) = 5(1-t) * t^4 = -5t^5 + 5t^4
  571. * B_5(t) = t^5 = t^5
  572. * ^ ^ ^ ^ ^ ^
  573. * | | | | | |
  574. * A B C D E F
  575. *
  576. * Unfortunately, we cannot use forward-differencing to calculate each position through
  577. * the curve, as Marlin uses variable timer periods. So, we require a formula of the form:
  578. *
  579. * V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F
  580. *
  581. * Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5
  582. * through t of the Bézier form of V(t), we can determine that:
  583. *
  584. * A = -P_0 + 5*P_1 - 10*P_2 + 10*P_3 - 5*P_4 + P_5
  585. * B = 5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 + 5*P_4
  586. * C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3
  587. * D = 10*P_0 - 20*P_1 + 10*P_2
  588. * E = - 5*P_0 + 5*P_1
  589. * F = P_0
  590. *
  591. * Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0,
  592. * We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity),
  593. * which, after simplification, resolves to:
  594. *
  595. * A = - 6*P_i + 6*P_t = 6*(P_t - P_i)
  596. * B = 15*P_i - 15*P_t = 15*(P_i - P_t)
  597. * C = -10*P_i + 10*P_t = 10*(P_t - P_i)
  598. * D = 0
  599. * E = 0
  600. * F = P_i
  601. *
  602. * As the t is evaluated in non uniform steps here, there is no other way rather than evaluating
  603. * the Bézier curve at each point:
  604. *
  605. * V_f(t) = A*t^5 + B*t^4 + C*t^3 + F [0 <= t <= 1]
  606. *
  607. * Floating point arithmetic execution time cost is prohibitive, so we will transform the math to
  608. * use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps
  609. * per second (driver pulses should at least be 2µS hi/2µS lo), and allocating 2 bits to avoid
  610. * overflows on the evaluation of the Bézier curve, means we can use
  611. *
  612. * t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned
  613. * A: signed Q24.7 , |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign
  614. * B: signed Q24.7 , |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign
  615. * C: signed Q24.7 , |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign
  616. * F: signed Q24.7 , |range = +/- 250000 * 128 = 32000000 = 0x01E84800 | 25 bits + sign
  617. *
  618. * The trapezoid generator state contains the following information, that we will use to create and evaluate
  619. * the Bézier curve:
  620. *
  621. * blk->step_event_count [TS] = The total count of steps for this movement. (=distance)
  622. * blk->initial_rate [VI] = The initial steps per second (=velocity)
  623. * blk->final_rate [VF] = The ending steps per second (=velocity)
  624. * and the count of events completed (step_events_completed) [CS] (=distance until now)
  625. *
  626. * Note the abbreviations we use in the following formulae are between []s
  627. *
  628. * For Any 32bit CPU:
  629. *
  630. * At the start of each trapezoid, calculate the coefficients A,B,C,F and Advance [AV], as follows:
  631. *
  632. * A = 6*128*(VF - VI) = 768*(VF - VI)
  633. * B = 15*128*(VI - VF) = 1920*(VI - VF)
  634. * C = 10*128*(VF - VI) = 1280*(VF - VI)
  635. * F = 128*VI = 128*VI
  636. * AV = (1<<32)/TS ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR)
  637. *
  638. * And for each point, evaluate the curve with the following sequence:
  639. *
  640. * void lsrs(uint32_t& d, uint32_t s, int cnt) {
  641. * d = s >> cnt;
  642. * }
  643. * void lsls(uint32_t& d, uint32_t s, int cnt) {
  644. * d = s << cnt;
  645. * }
  646. * void lsrs(int32_t& d, uint32_t s, int cnt) {
  647. * d = uint32_t(s) >> cnt;
  648. * }
  649. * void lsls(int32_t& d, uint32_t s, int cnt) {
  650. * d = uint32_t(s) << cnt;
  651. * }
  652. * void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) {
  653. * uint64_t res = uint64_t(op1) * op2;
  654. * rlo = uint32_t(res & 0xFFFFFFFF);
  655. * rhi = uint32_t((res >> 32) & 0xFFFFFFFF);
  656. * }
  657. * void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) {
  658. * int64_t mul = int64_t(op1) * op2;
  659. * int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U)));
  660. * mul += s;
  661. * rlo = int32_t(mul & 0xFFFFFFFF);
  662. * rhi = int32_t((mul >> 32) & 0xFFFFFFFF);
  663. * }
  664. * int32_t _eval_bezier_curve_arm(uint32_t curr_step) {
  665. * uint32_t flo = 0;
  666. * uint32_t fhi = bezier_AV * curr_step;
  667. * uint32_t t = fhi;
  668. * int32_t alo = bezier_F;
  669. * int32_t ahi = 0;
  670. * int32_t A = bezier_A;
  671. * int32_t B = bezier_B;
  672. * int32_t C = bezier_C;
  673. *
  674. * lsrs(ahi, alo, 1); // a = F << 31
  675. * lsls(alo, alo, 31); //
  676. * umull(flo, fhi, fhi, t); // f *= t
  677. * umull(flo, fhi, fhi, t); // f>>=32; f*=t
  678. * lsrs(flo, fhi, 1); //
  679. * smlal(alo, ahi, flo, C); // a+=(f>>33)*C
  680. * umull(flo, fhi, fhi, t); // f>>=32; f*=t
  681. * lsrs(flo, fhi, 1); //
  682. * smlal(alo, ahi, flo, B); // a+=(f>>33)*B
  683. * umull(flo, fhi, fhi, t); // f>>=32; f*=t
  684. * lsrs(flo, fhi, 1); // f>>=33;
  685. * smlal(alo, ahi, flo, A); // a+=(f>>33)*A;
  686. * lsrs(alo, ahi, 6); // a>>=38
  687. *
  688. * return alo;
  689. * }
  690. *
  691. * This is rewritten in ARM assembly for optimal performance (43 cycles to execute).
  692. *
  693. * For AVR, the precision of coefficients is scaled so the Bézier curve can be evaluated in real-time:
  694. * Let's reduce precision as much as possible. After some experimentation we found that:
  695. *
  696. * Assume t and AV with 24 bits is enough
  697. * A = 6*(VF - VI)
  698. * B = 15*(VI - VF)
  699. * C = 10*(VF - VI)
  700. * F = VI
  701. * AV = (1<<24)/TS (this is computed at the planner, to offload expensive calculations from the ISR)
  702. *
  703. * Instead of storing sign for each coefficient, we will store its absolute value,
  704. * and flag the sign of the A coefficient, so we can save to store the sign bit.
  705. * It always holds that sign(A) = - sign(B) = sign(C)
  706. *
  707. * So, the resulting range of the coefficients are:
  708. *
  709. * t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned
  710. * A: signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits
  711. * B: signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits
  712. * C: signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits
  713. * F: signed Q24 , range = 250000 = 250000 = 0x0ED090 | 20 bits
  714. *
  715. * And for each curve, estimate its coefficients with:
  716. *
  717. * void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) {
  718. * // Calculate the Bézier coefficients
  719. * if (v1 < v0) {
  720. * A_negative = true;
  721. * bezier_A = 6 * (v0 - v1);
  722. * bezier_B = 15 * (v0 - v1);
  723. * bezier_C = 10 * (v0 - v1);
  724. * }
  725. * else {
  726. * A_negative = false;
  727. * bezier_A = 6 * (v1 - v0);
  728. * bezier_B = 15 * (v1 - v0);
  729. * bezier_C = 10 * (v1 - v0);
  730. * }
  731. * bezier_F = v0;
  732. * }
  733. *
  734. * And for each point, evaluate the curve with the following sequence:
  735. *
  736. * // unsigned multiplication of 24 bits x 24bits, return upper 16 bits
  737. * void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) {
  738. * r = (uint64_t(op1) * op2) >> 8;
  739. * }
  740. * // unsigned multiplication of 16 bits x 16bits, return upper 16 bits
  741. * void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) {
  742. * r = (uint32_t(op1) * op2) >> 16;
  743. * }
  744. * // unsigned multiplication of 16 bits x 24bits, return upper 24 bits
  745. * void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) {
  746. * r = uint24_t((uint64_t(op1) * op2) >> 16);
  747. * }
  748. *
  749. * int32_t _eval_bezier_curve(uint32_t curr_step) {
  750. * // To save computing, the first step is always the initial speed
  751. * if (!curr_step)
  752. * return bezier_F;
  753. *
  754. * uint16_t t;
  755. * umul24x24to16hi(t, bezier_AV, curr_step); // t: Range 0 - 1^16 = 16 bits
  756. * uint16_t f = t;
  757. * umul16x16to16hi(f, f, t); // Range 16 bits (unsigned)
  758. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^3 (unsigned)
  759. * uint24_t acc = bezier_F; // Range 20 bits (unsigned)
  760. * if (A_negative) {
  761. * uint24_t v;
  762. * umul16x24to24hi(v, f, bezier_C); // Range 21bits
  763. * acc -= v;
  764. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
  765. * umul16x24to24hi(v, f, bezier_B); // Range 22bits
  766. * acc += v;
  767. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
  768. * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
  769. * acc -= v;
  770. * }
  771. * else {
  772. * uint24_t v;
  773. * umul16x24to24hi(v, f, bezier_C); // Range 21bits
  774. * acc += v;
  775. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
  776. * umul16x24to24hi(v, f, bezier_B); // Range 22bits
  777. * acc -= v;
  778. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
  779. * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
  780. * acc += v;
  781. * }
  782. * return acc;
  783. * }
  784. * These functions are translated to assembler for optimal performance.
  785. * Coefficient calculation takes 70 cycles. Bezier point evaluation takes 150 cycles.
  786. */
  787. #ifdef __AVR__
  788. // For AVR we use assembly to maximize speed
  789. void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
  790. // Store advance
  791. bezier_AV = av;
  792. // Calculate the rest of the coefficients
  793. uint8_t r2 = v0 & 0xFF;
  794. uint8_t r3 = (v0 >> 8) & 0xFF;
  795. uint8_t r12 = (v0 >> 16) & 0xFF;
  796. uint8_t r5 = v1 & 0xFF;
  797. uint8_t r6 = (v1 >> 8) & 0xFF;
  798. uint8_t r7 = (v1 >> 16) & 0xFF;
  799. uint8_t r4,r8,r9,r10,r11;
  800. __asm__ __volatile__(
  801. /* Calculate the Bézier coefficients */
  802. /* %10:%1:%0 = v0*/
  803. /* %5:%4:%3 = v1*/
  804. /* %7:%6:%10 = temporary*/
  805. /* %9 = val (must be high register!)*/
  806. /* %10 (must be high register!)*/
  807. /* Store initial velocity*/
  808. A("sts bezier_F, %0")
  809. A("sts bezier_F+1, %1")
  810. A("sts bezier_F+2, %10") /* bezier_F = %10:%1:%0 = v0 */
  811. /* Get delta speed */
  812. A("ldi %2,-1") /* %2 = 0xFF, means A_negative = true */
  813. A("clr %8") /* %8 = 0 */
  814. A("sub %0,%3")
  815. A("sbc %1,%4")
  816. A("sbc %10,%5") /* v0 -= v1, C=1 if result is negative */
  817. A("brcc 1f") /* branch if result is positive (C=0), that means v0 >= v1 */
  818. /* Result was negative, get the absolute value*/
  819. A("com %10")
  820. A("com %1")
  821. A("neg %0")
  822. A("sbc %1,%2")
  823. A("sbc %10,%2") /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */
  824. A("clr %2") /* %2 = 0, means A_negative = false */
  825. /* Store negative flag*/
  826. L("1")
  827. A("sts A_negative, %2") /* Store negative flag */
  828. /* Compute coefficients A,B and C [20 cycles worst case]*/
  829. A("ldi %9,6") /* %9 = 6 */
  830. A("mul %0,%9") /* r1:r0 = 6*LO(v0-v1) */
  831. A("sts bezier_A, r0")
  832. A("mov %6,r1")
  833. A("clr %7") /* %7:%6:r0 = 6*LO(v0-v1) */
  834. A("mul %1,%9") /* r1:r0 = 6*MI(v0-v1) */
  835. A("add %6,r0")
  836. A("adc %7,r1") /* %7:%6:?? += 6*MI(v0-v1) << 8 */
  837. A("mul %10,%9") /* r1:r0 = 6*HI(v0-v1) */
  838. A("add %7,r0") /* %7:%6:?? += 6*HI(v0-v1) << 16 */
  839. A("sts bezier_A+1, %6")
  840. A("sts bezier_A+2, %7") /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */
  841. A("ldi %9,15") /* %9 = 15 */
  842. A("mul %0,%9") /* r1:r0 = 5*LO(v0-v1) */
  843. A("sts bezier_B, r0")
  844. A("mov %6,r1")
  845. A("clr %7") /* %7:%6:?? = 5*LO(v0-v1) */
  846. A("mul %1,%9") /* r1:r0 = 5*MI(v0-v1) */
  847. A("add %6,r0")
  848. A("adc %7,r1") /* %7:%6:?? += 5*MI(v0-v1) << 8 */
  849. A("mul %10,%9") /* r1:r0 = 5*HI(v0-v1) */
  850. A("add %7,r0") /* %7:%6:?? += 5*HI(v0-v1) << 16 */
  851. A("sts bezier_B+1, %6")
  852. A("sts bezier_B+2, %7") /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */
  853. A("ldi %9,10") /* %9 = 10 */
  854. A("mul %0,%9") /* r1:r0 = 10*LO(v0-v1) */
  855. A("sts bezier_C, r0")
  856. A("mov %6,r1")
  857. A("clr %7") /* %7:%6:?? = 10*LO(v0-v1) */
  858. A("mul %1,%9") /* r1:r0 = 10*MI(v0-v1) */
  859. A("add %6,r0")
  860. A("adc %7,r1") /* %7:%6:?? += 10*MI(v0-v1) << 8 */
  861. A("mul %10,%9") /* r1:r0 = 10*HI(v0-v1) */
  862. A("add %7,r0") /* %7:%6:?? += 10*HI(v0-v1) << 16 */
  863. A("sts bezier_C+1, %6")
  864. " sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */
  865. : "+r" (r2),
  866. "+d" (r3),
  867. "=r" (r4),
  868. "+r" (r5),
  869. "+r" (r6),
  870. "+r" (r7),
  871. "=r" (r8),
  872. "=r" (r9),
  873. "=r" (r10),
  874. "=d" (r11),
  875. "+r" (r12)
  876. :
  877. : "r0", "r1", "cc", "memory"
  878. );
  879. }
  880. FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
  881. // If dealing with the first step, save expensive computing and return the initial speed
  882. if (!curr_step)
  883. return bezier_F;
  884. uint8_t r0 = 0; /* Zero register */
  885. uint8_t r2 = (curr_step) & 0xFF;
  886. uint8_t r3 = (curr_step >> 8) & 0xFF;
  887. uint8_t r4 = (curr_step >> 16) & 0xFF;
  888. uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */
  889. __asm__ __volatile(
  890. /* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/
  891. A("lds %9,bezier_AV") /* %9 = LO(AV)*/
  892. A("mul %9,%2") /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/
  893. A("mov %7,r1") /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/
  894. A("clr %8") /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/
  895. A("lds %10,bezier_AV+1") /* %10 = MI(AV)*/
  896. A("mul %10,%2") /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/
  897. A("add %7,r0")
  898. A("adc %8,r1") /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/
  899. A("lds r1,bezier_AV+2") /* r11 = HI(AV)*/
  900. A("mul r1,%2") /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/
  901. A("add %8,r0") /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/
  902. A("mul %9,%3") /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/
  903. A("add %7,r0")
  904. A("adc %8,r1") /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/
  905. A("mul %10,%3") /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/
  906. A("add %8,r0") /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/
  907. A("mul %9,%4") /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/
  908. A("add %8,r0") /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/
  909. /* %8:%7 = t*/
  910. /* uint16_t f = t;*/
  911. A("mov %5,%7") /* %6:%5 = f*/
  912. A("mov %6,%8")
  913. /* %6:%5 = f*/
  914. /* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */
  915. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  916. A("mov %9,r1") /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/
  917. A("clr %10") /* %10 = 0*/
  918. A("clr %11") /* %11 = 0*/
  919. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  920. A("add %9,r0") /* %9 += LO(LO(f) * HI(t))*/
  921. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  922. A("adc %11,%0") /* %11 += carry*/
  923. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  924. A("add %9,r0") /* %9 += LO(HI(f) * LO(t))*/
  925. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t)) */
  926. A("adc %11,%0") /* %11 += carry*/
  927. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  928. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  929. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  930. A("mov %5,%10") /* %6:%5 = */
  931. A("mov %6,%11") /* f = %10:%11*/
  932. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
  933. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  934. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  935. A("clr %10") /* %10 = 0*/
  936. A("clr %11") /* %11 = 0*/
  937. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  938. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  939. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  940. A("adc %11,%0") /* %11 += carry*/
  941. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  942. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  943. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  944. A("adc %11,%0") /* %11 += carry*/
  945. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  946. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  947. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  948. A("mov %5,%10") /* %6:%5 =*/
  949. A("mov %6,%11") /* f = %10:%11*/
  950. /* [15 +17*2] = [49]*/
  951. /* %4:%3:%2 will be acc from now on*/
  952. /* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/
  953. A("clr %9") /* "decimal place we get for free"*/
  954. A("lds %2,bezier_F")
  955. A("lds %3,bezier_F+1")
  956. A("lds %4,bezier_F+2") /* %4:%3:%2 = acc*/
  957. /* if (A_negative) {*/
  958. A("lds r0,A_negative")
  959. A("or r0,%0") /* Is flag signalling negative? */
  960. A("brne 3f") /* If yes, Skip next instruction if A was negative*/
  961. A("rjmp 1f") /* Otherwise, jump */
  962. /* uint24_t v; */
  963. /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */
  964. /* acc -= v; */
  965. L("3")
  966. A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
  967. A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
  968. A("sub %9,r1")
  969. A("sbc %2,%0")
  970. A("sbc %3,%0")
  971. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/
  972. A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
  973. A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  974. A("sub %9,r0")
  975. A("sbc %2,r1")
  976. A("sbc %3,%0")
  977. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/
  978. A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
  979. A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  980. A("sub %2,r0")
  981. A("sbc %3,r1")
  982. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/
  983. A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
  984. A("sub %9,r0")
  985. A("sbc %2,r1")
  986. A("sbc %3,%0")
  987. A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/
  988. A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
  989. A("sub %2,r0")
  990. A("sbc %3,r1")
  991. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/
  992. A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
  993. A("sub %3,r0")
  994. A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/
  995. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
  996. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  997. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  998. A("clr %10") /* %10 = 0*/
  999. A("clr %11") /* %11 = 0*/
  1000. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  1001. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  1002. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  1003. A("adc %11,%0") /* %11 += carry*/
  1004. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  1005. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  1006. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  1007. A("adc %11,%0") /* %11 += carry*/
  1008. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  1009. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  1010. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  1011. A("mov %5,%10") /* %6:%5 =*/
  1012. A("mov %6,%11") /* f = %10:%11*/
  1013. /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
  1014. /* acc += v; */
  1015. A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
  1016. A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
  1017. A("add %9,r1")
  1018. A("adc %2,%0")
  1019. A("adc %3,%0")
  1020. A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/
  1021. A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
  1022. A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1023. A("add %9,r0")
  1024. A("adc %2,r1")
  1025. A("adc %3,%0")
  1026. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/
  1027. A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
  1028. A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1029. A("add %2,r0")
  1030. A("adc %3,r1")
  1031. A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/
  1032. A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
  1033. A("add %9,r0")
  1034. A("adc %2,r1")
  1035. A("adc %3,%0")
  1036. A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/
  1037. A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
  1038. A("add %2,r0")
  1039. A("adc %3,r1")
  1040. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/
  1041. A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
  1042. A("add %3,r0")
  1043. A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/
  1044. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
  1045. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  1046. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  1047. A("clr %10") /* %10 = 0*/
  1048. A("clr %11") /* %11 = 0*/
  1049. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  1050. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  1051. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  1052. A("adc %11,%0") /* %11 += carry*/
  1053. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  1054. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  1055. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  1056. A("adc %11,%0") /* %11 += carry*/
  1057. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  1058. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  1059. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  1060. A("mov %5,%10") /* %6:%5 =*/
  1061. A("mov %6,%11") /* f = %10:%11*/
  1062. /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
  1063. /* acc -= v; */
  1064. A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
  1065. A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
  1066. A("sub %9,r1")
  1067. A("sbc %2,%0")
  1068. A("sbc %3,%0")
  1069. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/
  1070. A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
  1071. A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1072. A("sub %9,r0")
  1073. A("sbc %2,r1")
  1074. A("sbc %3,%0")
  1075. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/
  1076. A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
  1077. A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1078. A("sub %2,r0")
  1079. A("sbc %3,r1")
  1080. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/
  1081. A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
  1082. A("sub %9,r0")
  1083. A("sbc %2,r1")
  1084. A("sbc %3,%0")
  1085. A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/
  1086. A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
  1087. A("sub %2,r0")
  1088. A("sbc %3,r1")
  1089. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/
  1090. A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
  1091. A("sub %3,r0")
  1092. A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/
  1093. A("jmp 2f") /* Done!*/
  1094. L("1")
  1095. /* uint24_t v; */
  1096. /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/
  1097. /* acc += v; */
  1098. A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
  1099. A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
  1100. A("add %9,r1")
  1101. A("adc %2,%0")
  1102. A("adc %3,%0")
  1103. A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/
  1104. A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
  1105. A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  1106. A("add %9,r0")
  1107. A("adc %2,r1")
  1108. A("adc %3,%0")
  1109. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/
  1110. A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
  1111. A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  1112. A("add %2,r0")
  1113. A("adc %3,r1")
  1114. A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/
  1115. A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
  1116. A("add %9,r0")
  1117. A("adc %2,r1")
  1118. A("adc %3,%0")
  1119. A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/
  1120. A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
  1121. A("add %2,r0")
  1122. A("adc %3,r1")
  1123. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/
  1124. A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
  1125. A("add %3,r0")
  1126. A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/
  1127. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
  1128. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  1129. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  1130. A("clr %10") /* %10 = 0*/
  1131. A("clr %11") /* %11 = 0*/
  1132. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  1133. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  1134. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  1135. A("adc %11,%0") /* %11 += carry*/
  1136. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  1137. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  1138. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  1139. A("adc %11,%0") /* %11 += carry*/
  1140. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  1141. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  1142. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  1143. A("mov %5,%10") /* %6:%5 =*/
  1144. A("mov %6,%11") /* f = %10:%11*/
  1145. /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
  1146. /* acc -= v;*/
  1147. A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
  1148. A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
  1149. A("sub %9,r1")
  1150. A("sbc %2,%0")
  1151. A("sbc %3,%0")
  1152. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/
  1153. A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
  1154. A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1155. A("sub %9,r0")
  1156. A("sbc %2,r1")
  1157. A("sbc %3,%0")
  1158. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/
  1159. A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
  1160. A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1161. A("sub %2,r0")
  1162. A("sbc %3,r1")
  1163. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/
  1164. A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
  1165. A("sub %9,r0")
  1166. A("sbc %2,r1")
  1167. A("sbc %3,%0")
  1168. A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/
  1169. A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
  1170. A("sub %2,r0")
  1171. A("sbc %3,r1")
  1172. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/
  1173. A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
  1174. A("sub %3,r0")
  1175. A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/
  1176. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
  1177. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  1178. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  1179. A("clr %10") /* %10 = 0*/
  1180. A("clr %11") /* %11 = 0*/
  1181. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  1182. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  1183. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  1184. A("adc %11,%0") /* %11 += carry*/
  1185. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  1186. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  1187. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  1188. A("adc %11,%0") /* %11 += carry*/
  1189. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  1190. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  1191. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  1192. A("mov %5,%10") /* %6:%5 =*/
  1193. A("mov %6,%11") /* f = %10:%11*/
  1194. /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
  1195. /* acc += v; */
  1196. A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
  1197. A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
  1198. A("add %9,r1")
  1199. A("adc %2,%0")
  1200. A("adc %3,%0")
  1201. A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/
  1202. A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
  1203. A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1204. A("add %9,r0")
  1205. A("adc %2,r1")
  1206. A("adc %3,%0")
  1207. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/
  1208. A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
  1209. A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1210. A("add %2,r0")
  1211. A("adc %3,r1")
  1212. A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/
  1213. A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
  1214. A("add %9,r0")
  1215. A("adc %2,r1")
  1216. A("adc %3,%0")
  1217. A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/
  1218. A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
  1219. A("add %2,r0")
  1220. A("adc %3,r1")
  1221. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/
  1222. A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
  1223. A("add %3,r0")
  1224. A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/
  1225. L("2")
  1226. " clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */
  1227. : "+r"(r0),
  1228. "+r"(r1),
  1229. "+r"(r2),
  1230. "+r"(r3),
  1231. "+r"(r4),
  1232. "+r"(r5),
  1233. "+r"(r6),
  1234. "+r"(r7),
  1235. "+r"(r8),
  1236. "+r"(r9),
  1237. "+r"(r10),
  1238. "+r"(r11)
  1239. :
  1240. :"cc","r0","r1"
  1241. );
  1242. return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16);
  1243. }
  1244. #else
  1245. // For all the other 32bit CPUs
  1246. FORCE_INLINE void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
  1247. // Calculate the Bézier coefficients
  1248. bezier_A = 768 * (v1 - v0);
  1249. bezier_B = 1920 * (v0 - v1);
  1250. bezier_C = 1280 * (v1 - v0);
  1251. bezier_F = 128 * v0;
  1252. bezier_AV = av;
  1253. }
  1254. FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
  1255. #if (defined(__arm__) || defined(__thumb__)) && !defined(STM32G0B1xx) // TODO: Test define STM32G0xx versus STM32G0B1xx
  1256. // For ARM Cortex M3/M4 CPUs, we have the optimized assembler version, that takes 43 cycles to execute
  1257. uint32_t flo = 0;
  1258. uint32_t fhi = bezier_AV * curr_step;
  1259. uint32_t t = fhi;
  1260. int32_t alo = bezier_F;
  1261. int32_t ahi = 0;
  1262. int32_t A = bezier_A;
  1263. int32_t B = bezier_B;
  1264. int32_t C = bezier_C;
  1265. __asm__ __volatile__(
  1266. ".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
  1267. A("lsrs %[ahi],%[alo],#1") // a = F << 31 1 cycles
  1268. A("lsls %[alo],%[alo],#31") // 1 cycles
  1269. A("umull %[flo],%[fhi],%[fhi],%[t]") // f *= t 5 cycles [fhi:flo=64bits]
  1270. A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
  1271. A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
  1272. A("smlal %[alo],%[ahi],%[flo],%[C]") // a+=(f>>33)*C; 5 cycles
  1273. A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
  1274. A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
  1275. A("smlal %[alo],%[ahi],%[flo],%[B]") // a+=(f>>33)*B; 5 cycles
  1276. A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
  1277. A("lsrs %[flo],%[fhi],#1") // f>>=33; 1 cycles [31bits]
  1278. A("smlal %[alo],%[ahi],%[flo],%[A]") // a+=(f>>33)*A; 5 cycles
  1279. A("lsrs %[alo],%[ahi],#6") // a>>=38 1 cycles
  1280. : [alo]"+r"( alo ) ,
  1281. [flo]"+r"( flo ) ,
  1282. [fhi]"+r"( fhi ) ,
  1283. [ahi]"+r"( ahi ) ,
  1284. [A]"+r"( A ) , // <== Note: Even if A, B, C, and t registers are INPUT ONLY
  1285. [B]"+r"( B ) , // GCC does bad optimizations on the code if we list them as
  1286. [C]"+r"( C ) , // such, breaking this function. So, to avoid that problem,
  1287. [t]"+r"( t ) // we list all registers as input-outputs.
  1288. :
  1289. : "cc"
  1290. );
  1291. return alo;
  1292. #else
  1293. // For non ARM targets, we provide a fallback implementation. Really doubt it
  1294. // will be useful, unless the processor is fast and 32bit
  1295. uint32_t t = bezier_AV * curr_step; // t: Range 0 - 1^32 = 32 bits
  1296. uint64_t f = t;
  1297. f *= t; // Range 32*2 = 64 bits (unsigned)
  1298. f >>= 32; // Range 32 bits (unsigned)
  1299. f *= t; // Range 32*2 = 64 bits (unsigned)
  1300. f >>= 32; // Range 32 bits : f = t^3 (unsigned)
  1301. int64_t acc = (int64_t) bezier_F << 31; // Range 63 bits (signed)
  1302. acc += ((uint32_t) f >> 1) * (int64_t) bezier_C; // Range 29bits + 31 = 60bits (plus sign)
  1303. f *= t; // Range 32*2 = 64 bits
  1304. f >>= 32; // Range 32 bits : f = t^3 (unsigned)
  1305. acc += ((uint32_t) f >> 1) * (int64_t) bezier_B; // Range 29bits + 31 = 60bits (plus sign)
  1306. f *= t; // Range 32*2 = 64 bits
  1307. f >>= 32; // Range 32 bits : f = t^3 (unsigned)
  1308. acc += ((uint32_t) f >> 1) * (int64_t) bezier_A; // Range 28bits + 31 = 59bits (plus sign)
  1309. acc >>= (31 + 7); // Range 24bits (plus sign)
  1310. return (int32_t) acc;
  1311. #endif
  1312. }
  1313. #endif
  1314. #endif // S_CURVE_ACCELERATION
  1315. /**
  1316. * Stepper Driver Interrupt
  1317. *
  1318. * Directly pulses the stepper motors at high frequency.
  1319. */
  1320. HAL_STEP_TIMER_ISR() {
  1321. HAL_timer_isr_prologue(MF_TIMER_STEP);
  1322. Stepper::isr();
  1323. HAL_timer_isr_epilogue(MF_TIMER_STEP);
  1324. }
  1325. #ifdef CPU_32_BIT
  1326. #define STEP_MULTIPLY(A,B) MultiU32X24toH32(A, B)
  1327. #else
  1328. #define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B)
  1329. #endif
  1330. void Stepper::isr() {
  1331. static uint32_t nextMainISR = 0; // Interval until the next main Stepper Pulse phase (0 = Now)
  1332. #ifndef __AVR__
  1333. // Disable interrupts, to avoid ISR preemption while we reprogram the period
  1334. // (AVR enters the ISR with global interrupts disabled, so no need to do it here)
  1335. hal.isr_off();
  1336. #endif
  1337. // Program timer compare for the maximum period, so it does NOT
  1338. // flag an interrupt while this ISR is running - So changes from small
  1339. // periods to big periods are respected and the timer does not reset to 0
  1340. HAL_timer_set_compare(MF_TIMER_STEP, hal_timer_t(HAL_TIMER_TYPE_MAX));
  1341. // Count of ticks for the next ISR
  1342. hal_timer_t next_isr_ticks = 0;
  1343. // Limit the amount of iterations
  1344. uint8_t max_loops = 10;
  1345. // We need this variable here to be able to use it in the following loop
  1346. hal_timer_t min_ticks;
  1347. do {
  1348. // Enable ISRs to reduce USART processing latency
  1349. hal.isr_on();
  1350. if (!nextMainISR) pulse_phase_isr(); // 0 = Do coordinated axes Stepper pulses
  1351. #if ENABLED(LIN_ADVANCE)
  1352. if (!nextAdvanceISR) nextAdvanceISR = advance_isr(); // 0 = Do Linear Advance E Stepper pulses
  1353. #endif
  1354. #if ENABLED(INTEGRATED_BABYSTEPPING)
  1355. const bool is_babystep = (nextBabystepISR == 0); // 0 = Do Babystepping (XY)Z pulses
  1356. if (is_babystep) nextBabystepISR = babystepping_isr();
  1357. #endif
  1358. // ^== Time critical. NOTHING besides pulse generation should be above here!!!
  1359. if (!nextMainISR) nextMainISR = block_phase_isr(); // Manage acc/deceleration, get next block
  1360. #if ENABLED(INTEGRATED_BABYSTEPPING)
  1361. if (is_babystep) // Avoid ANY stepping too soon after baby-stepping
  1362. NOLESS(nextMainISR, (BABYSTEP_TICKS) / 8); // FULL STOP for 125µs after a baby-step
  1363. if (nextBabystepISR != BABYSTEP_NEVER) // Avoid baby-stepping too close to axis Stepping
  1364. NOLESS(nextBabystepISR, nextMainISR / 2); // TODO: Only look at axes enabled for baby-stepping
  1365. #endif
  1366. // Get the interval to the next ISR call
  1367. const uint32_t interval = _MIN(
  1368. uint32_t(HAL_TIMER_TYPE_MAX), // Come back in a very long time
  1369. nextMainISR // Time until the next Pulse / Block phase
  1370. OPTARG(LIN_ADVANCE, nextAdvanceISR) // Come back early for Linear Advance?
  1371. OPTARG(INTEGRATED_BABYSTEPPING, nextBabystepISR) // Come back early for Babystepping?
  1372. );
  1373. //
  1374. // Compute remaining time for each ISR phase
  1375. // NEVER : The phase is idle
  1376. // Zero : The phase will occur on the next ISR call
  1377. // Non-zero : The phase will occur on a future ISR call
  1378. //
  1379. nextMainISR -= interval;
  1380. #if ENABLED(LIN_ADVANCE)
  1381. if (nextAdvanceISR != LA_ADV_NEVER) nextAdvanceISR -= interval;
  1382. #endif
  1383. #if ENABLED(INTEGRATED_BABYSTEPPING)
  1384. if (nextBabystepISR != BABYSTEP_NEVER) nextBabystepISR -= interval;
  1385. #endif
  1386. /**
  1387. * This needs to avoid a race-condition caused by interleaving
  1388. * of interrupts required by both the LA and Stepper algorithms.
  1389. *
  1390. * Assume the following tick times for stepper pulses:
  1391. * Stepper ISR (S): 1 1000 2000 3000 4000
  1392. * Linear Adv. (E): 10 1010 2010 3010 4010
  1393. *
  1394. * The current algorithm tries to interleave them, giving:
  1395. * 1:S 10:E 1000:S 1010:E 2000:S 2010:E 3000:S 3010:E 4000:S 4010:E
  1396. *
  1397. * Ideal timing would yield these delta periods:
  1398. * 1:S 9:E 990:S 10:E 990:S 10:E 990:S 10:E 990:S 10:E
  1399. *
  1400. * But, since each event must fire an ISR with a minimum duration, the
  1401. * minimum delta might be 900, so deltas under 900 get rounded up:
  1402. * 900:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E
  1403. *
  1404. * It works, but divides the speed of all motors by half, leading to a sudden
  1405. * reduction to 1/2 speed! Such jumps in speed lead to lost steps (not even
  1406. * accounting for double/quad stepping, which makes it even worse).
  1407. */
  1408. // Compute the tick count for the next ISR
  1409. next_isr_ticks += interval;
  1410. /**
  1411. * The following section must be done with global interrupts disabled.
  1412. * We want nothing to interrupt it, as that could mess the calculations
  1413. * we do for the next value to program in the period register of the
  1414. * stepper timer and lead to skipped ISRs (if the value we happen to program
  1415. * is less than the current count due to something preempting between the
  1416. * read and the write of the new period value).
  1417. */
  1418. hal.isr_off();
  1419. /**
  1420. * Get the current tick value + margin
  1421. * Assuming at least 6µs between calls to this ISR...
  1422. * On AVR the ISR epilogue+prologue is estimated at 100 instructions - Give 8µs as margin
  1423. * On ARM the ISR epilogue+prologue is estimated at 20 instructions - Give 1µs as margin
  1424. */
  1425. min_ticks = HAL_timer_get_count(MF_TIMER_STEP) + hal_timer_t(
  1426. #ifdef __AVR__
  1427. 8
  1428. #else
  1429. 1
  1430. #endif
  1431. * (STEPPER_TIMER_TICKS_PER_US)
  1432. );
  1433. /**
  1434. * NB: If for some reason the stepper monopolizes the MPU, eventually the
  1435. * timer will wrap around (and so will 'next_isr_ticks'). So, limit the
  1436. * loop to 10 iterations. Beyond that, there's no way to ensure correct pulse
  1437. * timing, since the MCU isn't fast enough.
  1438. */
  1439. if (!--max_loops) next_isr_ticks = min_ticks;
  1440. // Advance pulses if not enough time to wait for the next ISR
  1441. } while (next_isr_ticks < min_ticks);
  1442. // Now 'next_isr_ticks' contains the period to the next Stepper ISR - And we are
  1443. // sure that the time has not arrived yet - Warrantied by the scheduler
  1444. // Set the next ISR to fire at the proper time
  1445. HAL_timer_set_compare(MF_TIMER_STEP, hal_timer_t(next_isr_ticks));
  1446. // Don't forget to finally reenable interrupts
  1447. hal.isr_on();
  1448. }
  1449. #if MINIMUM_STEPPER_PULSE || MAXIMUM_STEPPER_RATE
  1450. #define ISR_PULSE_CONTROL 1
  1451. #endif
  1452. #if ISR_PULSE_CONTROL && DISABLED(I2S_STEPPER_STREAM)
  1453. #define ISR_MULTI_STEPS 1
  1454. #endif
  1455. /**
  1456. * This phase of the ISR should ONLY create the pulses for the steppers.
  1457. * This prevents jitter caused by the interval between the start of the
  1458. * interrupt and the start of the pulses. DON'T add any logic ahead of the
  1459. * call to this method that might cause variation in the timing. The aim
  1460. * is to keep pulse timing as regular as possible.
  1461. */
  1462. void Stepper::pulse_phase_isr() {
  1463. // If we must abort the current block, do so!
  1464. if (abort_current_block) {
  1465. abort_current_block = false;
  1466. if (current_block) discard_current_block();
  1467. }
  1468. // If there is no current block, do nothing
  1469. if (!current_block) return;
  1470. // Skipping step processing causes motion to freeze
  1471. if (TERN0(HAS_FREEZE_PIN, frozen)) return;
  1472. // Count of pending loops and events for this iteration
  1473. const uint32_t pending_events = step_event_count - step_events_completed;
  1474. uint8_t events_to_do = _MIN(pending_events, steps_per_isr);
  1475. // Just update the value we will get at the end of the loop
  1476. step_events_completed += events_to_do;
  1477. // Take multiple steps per interrupt (For high speed moves)
  1478. #if ISR_MULTI_STEPS
  1479. bool firstStep = true;
  1480. USING_TIMED_PULSE();
  1481. #endif
  1482. xyze_bool_t step_needed{0};
  1483. do {
  1484. #define _APPLY_STEP(AXIS, INV, ALWAYS) AXIS ##_APPLY_STEP(INV, ALWAYS)
  1485. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  1486. // Determine if a pulse is needed using Bresenham
  1487. #define PULSE_PREP(AXIS) do{ \
  1488. delta_error[_AXIS(AXIS)] += advance_dividend[_AXIS(AXIS)]; \
  1489. step_needed[_AXIS(AXIS)] = (delta_error[_AXIS(AXIS)] >= 0); \
  1490. if (step_needed[_AXIS(AXIS)]) { \
  1491. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  1492. delta_error[_AXIS(AXIS)] -= advance_divisor; \
  1493. } \
  1494. }while(0)
  1495. // Start an active pulse if needed
  1496. #define PULSE_START(AXIS) do{ \
  1497. if (step_needed[_AXIS(AXIS)]) { \
  1498. _APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), 0); \
  1499. } \
  1500. }while(0)
  1501. // Stop an active pulse if needed
  1502. #define PULSE_STOP(AXIS) do { \
  1503. if (step_needed[_AXIS(AXIS)]) { \
  1504. _APPLY_STEP(AXIS, _INVERT_STEP_PIN(AXIS), 0); \
  1505. } \
  1506. }while(0)
  1507. // Direct Stepping page?
  1508. const bool is_page = IS_PAGE(current_block);
  1509. #if ENABLED(DIRECT_STEPPING)
  1510. // Direct stepping is currently not ready for HAS_I_AXIS
  1511. if (is_page) {
  1512. #if STEPPER_PAGE_FORMAT == SP_4x4D_128
  1513. #define PAGE_SEGMENT_UPDATE(AXIS, VALUE) do{ \
  1514. if ((VALUE) < 7) SBI(dm, _AXIS(AXIS)); \
  1515. else if ((VALUE) > 7) CBI(dm, _AXIS(AXIS)); \
  1516. page_step_state.sd[_AXIS(AXIS)] = VALUE; \
  1517. page_step_state.bd[_AXIS(AXIS)] += VALUE; \
  1518. }while(0)
  1519. #define PAGE_PULSE_PREP(AXIS) do{ \
  1520. step_needed[_AXIS(AXIS)] = \
  1521. pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x7]); \
  1522. }while(0)
  1523. switch (page_step_state.segment_steps) {
  1524. case DirectStepping::Config::SEGMENT_STEPS:
  1525. page_step_state.segment_idx += 2;
  1526. page_step_state.segment_steps = 0;
  1527. // fallthru
  1528. case 0: {
  1529. const uint8_t low = page_step_state.page[page_step_state.segment_idx],
  1530. high = page_step_state.page[page_step_state.segment_idx + 1];
  1531. axis_bits_t dm = last_direction_bits;
  1532. PAGE_SEGMENT_UPDATE(X, low >> 4);
  1533. PAGE_SEGMENT_UPDATE(Y, low & 0xF);
  1534. PAGE_SEGMENT_UPDATE(Z, high >> 4);
  1535. PAGE_SEGMENT_UPDATE(E, high & 0xF);
  1536. if (dm != last_direction_bits)
  1537. set_directions(dm);
  1538. } break;
  1539. default: break;
  1540. }
  1541. PAGE_PULSE_PREP(X);
  1542. PAGE_PULSE_PREP(Y);
  1543. PAGE_PULSE_PREP(Z);
  1544. TERN_(HAS_EXTRUDERS, PAGE_PULSE_PREP(E));
  1545. page_step_state.segment_steps++;
  1546. #elif STEPPER_PAGE_FORMAT == SP_4x2_256
  1547. #define PAGE_SEGMENT_UPDATE(AXIS, VALUE) \
  1548. page_step_state.sd[_AXIS(AXIS)] = VALUE; \
  1549. page_step_state.bd[_AXIS(AXIS)] += VALUE;
  1550. #define PAGE_PULSE_PREP(AXIS) do{ \
  1551. step_needed[_AXIS(AXIS)] = \
  1552. pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x3]); \
  1553. }while(0)
  1554. switch (page_step_state.segment_steps) {
  1555. case DirectStepping::Config::SEGMENT_STEPS:
  1556. page_step_state.segment_idx++;
  1557. page_step_state.segment_steps = 0;
  1558. // fallthru
  1559. case 0: {
  1560. const uint8_t b = page_step_state.page[page_step_state.segment_idx];
  1561. PAGE_SEGMENT_UPDATE(X, (b >> 6) & 0x3);
  1562. PAGE_SEGMENT_UPDATE(Y, (b >> 4) & 0x3);
  1563. PAGE_SEGMENT_UPDATE(Z, (b >> 2) & 0x3);
  1564. PAGE_SEGMENT_UPDATE(E, (b >> 0) & 0x3);
  1565. } break;
  1566. default: break;
  1567. }
  1568. PAGE_PULSE_PREP(X);
  1569. PAGE_PULSE_PREP(Y);
  1570. PAGE_PULSE_PREP(Z);
  1571. TERN_(HAS_EXTRUDERS, PAGE_PULSE_PREP(E));
  1572. page_step_state.segment_steps++;
  1573. #elif STEPPER_PAGE_FORMAT == SP_4x1_512
  1574. #define PAGE_PULSE_PREP(AXIS, BITS) do{ \
  1575. step_needed[_AXIS(AXIS)] = (steps >> BITS) & 0x1; \
  1576. if (step_needed[_AXIS(AXIS)]) \
  1577. page_step_state.bd[_AXIS(AXIS)]++; \
  1578. }while(0)
  1579. uint8_t steps = page_step_state.page[page_step_state.segment_idx >> 1];
  1580. if (page_step_state.segment_idx & 0x1) steps >>= 4;
  1581. PAGE_PULSE_PREP(X, 3);
  1582. PAGE_PULSE_PREP(Y, 2);
  1583. PAGE_PULSE_PREP(Z, 1);
  1584. PAGE_PULSE_PREP(E, 0);
  1585. page_step_state.segment_idx++;
  1586. #else
  1587. #error "Unknown direct stepping page format!"
  1588. #endif
  1589. }
  1590. #endif // DIRECT_STEPPING
  1591. if (!is_page) {
  1592. // Determine if pulses are needed
  1593. #if HAS_X_STEP
  1594. PULSE_PREP(X);
  1595. #endif
  1596. #if HAS_Y_STEP
  1597. PULSE_PREP(Y);
  1598. #endif
  1599. #if HAS_Z_STEP
  1600. PULSE_PREP(Z);
  1601. #endif
  1602. #if HAS_I_STEP
  1603. PULSE_PREP(I);
  1604. #endif
  1605. #if HAS_J_STEP
  1606. PULSE_PREP(J);
  1607. #endif
  1608. #if HAS_K_STEP
  1609. PULSE_PREP(K);
  1610. #endif
  1611. #if EITHER(LIN_ADVANCE, MIXING_EXTRUDER)
  1612. delta_error.e += advance_dividend.e;
  1613. if (delta_error.e >= 0) {
  1614. #if ENABLED(LIN_ADVANCE)
  1615. delta_error.e -= advance_divisor;
  1616. // Don't step E here - But remember the number of steps to perform
  1617. motor_direction(E_AXIS) ? --LA_steps : ++LA_steps;
  1618. #else
  1619. count_position.e += count_direction.e;
  1620. step_needed.e = true;
  1621. #endif
  1622. }
  1623. #elif HAS_E0_STEP
  1624. PULSE_PREP(E);
  1625. #endif
  1626. }
  1627. #if ISR_MULTI_STEPS
  1628. if (firstStep)
  1629. firstStep = false;
  1630. else
  1631. AWAIT_LOW_PULSE();
  1632. #endif
  1633. // Pulse start
  1634. #if HAS_X_STEP
  1635. PULSE_START(X);
  1636. #endif
  1637. #if HAS_Y_STEP
  1638. PULSE_START(Y);
  1639. #endif
  1640. #if HAS_Z_STEP
  1641. PULSE_START(Z);
  1642. #endif
  1643. #if HAS_I_STEP
  1644. PULSE_START(I);
  1645. #endif
  1646. #if HAS_J_STEP
  1647. PULSE_START(J);
  1648. #endif
  1649. #if HAS_K_STEP
  1650. PULSE_START(K);
  1651. #endif
  1652. #if DISABLED(LIN_ADVANCE)
  1653. #if ENABLED(MIXING_EXTRUDER)
  1654. if (step_needed.e) E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN);
  1655. #elif HAS_E0_STEP
  1656. PULSE_START(E);
  1657. #endif
  1658. #endif
  1659. #if ENABLED(I2S_STEPPER_STREAM)
  1660. i2s_push_sample();
  1661. #endif
  1662. // TODO: need to deal with MINIMUM_STEPPER_PULSE over i2s
  1663. #if ISR_MULTI_STEPS
  1664. START_HIGH_PULSE();
  1665. AWAIT_HIGH_PULSE();
  1666. #endif
  1667. // Pulse stop
  1668. #if HAS_X_STEP
  1669. PULSE_STOP(X);
  1670. #endif
  1671. #if HAS_Y_STEP
  1672. PULSE_STOP(Y);
  1673. #endif
  1674. #if HAS_Z_STEP
  1675. PULSE_STOP(Z);
  1676. #endif
  1677. #if HAS_I_STEP
  1678. PULSE_STOP(I);
  1679. #endif
  1680. #if HAS_J_STEP
  1681. PULSE_STOP(J);
  1682. #endif
  1683. #if HAS_K_STEP
  1684. PULSE_STOP(K);
  1685. #endif
  1686. #if DISABLED(LIN_ADVANCE)
  1687. #if ENABLED(MIXING_EXTRUDER)
  1688. if (delta_error.e >= 0) {
  1689. delta_error.e -= advance_divisor;
  1690. E_STEP_WRITE(mixer.get_stepper(), INVERT_E_STEP_PIN);
  1691. }
  1692. #elif HAS_E0_STEP
  1693. PULSE_STOP(E);
  1694. #endif
  1695. #endif
  1696. #if ISR_MULTI_STEPS
  1697. if (events_to_do) START_LOW_PULSE();
  1698. #endif
  1699. } while (--events_to_do);
  1700. }
  1701. // This is the last half of the stepper interrupt: This one processes and
  1702. // properly schedules blocks from the planner. This is executed after creating
  1703. // the step pulses, so it is not time critical, as pulses are already done.
  1704. uint32_t Stepper::block_phase_isr() {
  1705. // If no queued movements, just wait 1ms for the next block
  1706. uint32_t interval = (STEPPER_TIMER_RATE) / 1000UL;
  1707. // If there is a current block
  1708. if (current_block) {
  1709. // If current block is finished, reset pointer and finalize state
  1710. if (step_events_completed >= step_event_count) {
  1711. #if ENABLED(DIRECT_STEPPING)
  1712. // Direct stepping is currently not ready for HAS_I_AXIS
  1713. #if STEPPER_PAGE_FORMAT == SP_4x4D_128
  1714. #define PAGE_SEGMENT_UPDATE_POS(AXIS) \
  1715. count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] - 128 * 7;
  1716. #elif STEPPER_PAGE_FORMAT == SP_4x1_512 || STEPPER_PAGE_FORMAT == SP_4x2_256
  1717. #define PAGE_SEGMENT_UPDATE_POS(AXIS) \
  1718. count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] * count_direction[_AXIS(AXIS)];
  1719. #endif
  1720. if (IS_PAGE(current_block)) {
  1721. PAGE_SEGMENT_UPDATE_POS(X);
  1722. PAGE_SEGMENT_UPDATE_POS(Y);
  1723. PAGE_SEGMENT_UPDATE_POS(Z);
  1724. PAGE_SEGMENT_UPDATE_POS(E);
  1725. }
  1726. #endif
  1727. TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.block_completed(current_block));
  1728. discard_current_block();
  1729. }
  1730. else {
  1731. // Step events not completed yet...
  1732. // Are we in acceleration phase ?
  1733. if (step_events_completed <= accelerate_until) { // Calculate new timer value
  1734. #if ENABLED(S_CURVE_ACCELERATION)
  1735. // Get the next speed to use (Jerk limited!)
  1736. uint32_t acc_step_rate = acceleration_time < current_block->acceleration_time
  1737. ? _eval_bezier_curve(acceleration_time)
  1738. : current_block->cruise_rate;
  1739. #else
  1740. acc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate;
  1741. NOMORE(acc_step_rate, current_block->nominal_rate);
  1742. #endif
  1743. // acc_step_rate is in steps/second
  1744. // step_rate to timer interval and steps per stepper isr
  1745. interval = calc_timer_interval(acc_step_rate, &steps_per_isr);
  1746. acceleration_time += interval;
  1747. #if ENABLED(LIN_ADVANCE)
  1748. if (LA_use_advance_lead) {
  1749. // Fire ISR if final adv_rate is reached
  1750. if (LA_steps && LA_isr_rate != current_block->advance_speed) nextAdvanceISR = 0;
  1751. }
  1752. else if (LA_steps) nextAdvanceISR = 0;
  1753. #endif
  1754. // Update laser - Accelerating
  1755. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
  1756. if (laser_trap.enabled) {
  1757. #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
  1758. if (current_block->laser.entry_per) {
  1759. laser_trap.acc_step_count -= step_events_completed - laser_trap.last_step_count;
  1760. laser_trap.last_step_count = step_events_completed;
  1761. // Should be faster than a divide, since this should trip just once
  1762. if (laser_trap.acc_step_count < 0) {
  1763. while (laser_trap.acc_step_count < 0) {
  1764. laser_trap.acc_step_count += current_block->laser.entry_per;
  1765. if (laser_trap.cur_power < current_block->laser.power) laser_trap.cur_power++;
  1766. }
  1767. cutter.ocr_set_power(laser_trap.cur_power);
  1768. }
  1769. }
  1770. #else
  1771. if (laser_trap.till_update)
  1772. laser_trap.till_update--;
  1773. else {
  1774. laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
  1775. laser_trap.cur_power = (current_block->laser.power * acc_step_rate) / current_block->nominal_rate;
  1776. cutter.ocr_set_power(laser_trap.cur_power); // Cycle efficiency is irrelevant it the last line was many cycles
  1777. }
  1778. #endif
  1779. }
  1780. #endif
  1781. }
  1782. // Are we in Deceleration phase ?
  1783. else if (step_events_completed > decelerate_after) {
  1784. uint32_t step_rate;
  1785. #if ENABLED(S_CURVE_ACCELERATION)
  1786. // If this is the 1st time we process the 2nd half of the trapezoid...
  1787. if (!bezier_2nd_half) {
  1788. // Initialize the Bézier speed curve
  1789. _calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);
  1790. bezier_2nd_half = true;
  1791. // The first point starts at cruise rate. Just save evaluation of the Bézier curve
  1792. step_rate = current_block->cruise_rate;
  1793. }
  1794. else {
  1795. // Calculate the next speed to use
  1796. step_rate = deceleration_time < current_block->deceleration_time
  1797. ? _eval_bezier_curve(deceleration_time)
  1798. : current_block->final_rate;
  1799. }
  1800. #else
  1801. // Using the old trapezoidal control
  1802. step_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate);
  1803. if (step_rate < acc_step_rate) { // Still decelerating?
  1804. step_rate = acc_step_rate - step_rate;
  1805. NOLESS(step_rate, current_block->final_rate);
  1806. }
  1807. else
  1808. step_rate = current_block->final_rate;
  1809. #endif
  1810. // step_rate is in steps/second
  1811. // step_rate to timer interval and steps per stepper isr
  1812. interval = calc_timer_interval(step_rate, &steps_per_isr);
  1813. deceleration_time += interval;
  1814. #if ENABLED(LIN_ADVANCE)
  1815. if (LA_use_advance_lead) {
  1816. // Wake up eISR on first deceleration loop and fire ISR if final adv_rate is reached
  1817. if (step_events_completed <= decelerate_after + steps_per_isr || (LA_steps && LA_isr_rate != current_block->advance_speed)) {
  1818. initiateLA();
  1819. LA_isr_rate = current_block->advance_speed;
  1820. }
  1821. }
  1822. else if (LA_steps) nextAdvanceISR = 0;
  1823. #endif // LIN_ADVANCE
  1824. // Update laser - Decelerating
  1825. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
  1826. if (laser_trap.enabled) {
  1827. #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
  1828. if (current_block->laser.exit_per) {
  1829. laser_trap.acc_step_count -= step_events_completed - laser_trap.last_step_count;
  1830. laser_trap.last_step_count = step_events_completed;
  1831. // Should be faster than a divide, since this should trip just once
  1832. if (laser_trap.acc_step_count < 0) {
  1833. while (laser_trap.acc_step_count < 0) {
  1834. laser_trap.acc_step_count += current_block->laser.exit_per;
  1835. if (laser_trap.cur_power > current_block->laser.power_exit) laser_trap.cur_power--;
  1836. }
  1837. cutter.ocr_set_power(laser_trap.cur_power);
  1838. }
  1839. }
  1840. #else
  1841. if (laser_trap.till_update)
  1842. laser_trap.till_update--;
  1843. else {
  1844. laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
  1845. laser_trap.cur_power = (current_block->laser.power * step_rate) / current_block->nominal_rate;
  1846. cutter.ocr_set_power(laser_trap.cur_power); // Cycle efficiency isn't relevant when the last line was many cycles
  1847. }
  1848. #endif
  1849. }
  1850. #endif
  1851. }
  1852. // Must be in cruise phase otherwise
  1853. else {
  1854. #if ENABLED(LIN_ADVANCE)
  1855. // If there are any esteps, fire the next advance_isr "now"
  1856. if (LA_steps && LA_isr_rate != current_block->advance_speed) initiateLA();
  1857. #endif
  1858. // Calculate the ticks_nominal for this nominal speed, if not done yet
  1859. if (ticks_nominal < 0) {
  1860. // step_rate to timer interval and loops for the nominal speed
  1861. ticks_nominal = calc_timer_interval(current_block->nominal_rate, &steps_per_isr);
  1862. }
  1863. // The timer interval is just the nominal value for the nominal speed
  1864. interval = ticks_nominal;
  1865. // Update laser - Cruising
  1866. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
  1867. if (laser_trap.enabled) {
  1868. if (!laser_trap.cruise_set) {
  1869. laser_trap.cur_power = current_block->laser.power;
  1870. cutter.ocr_set_power(laser_trap.cur_power);
  1871. laser_trap.cruise_set = true;
  1872. }
  1873. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
  1874. laser_trap.till_update = LASER_POWER_INLINE_TRAPEZOID_CONT_PER;
  1875. #else
  1876. laser_trap.last_step_count = step_events_completed;
  1877. #endif
  1878. }
  1879. #endif
  1880. }
  1881. }
  1882. }
  1883. // If there is no current block at this point, attempt to pop one from the buffer
  1884. // and prepare its movement
  1885. if (!current_block) {
  1886. // Anything in the buffer?
  1887. if ((current_block = planner.get_current_block())) {
  1888. // Sync block? Sync the stepper counts or fan speeds and return
  1889. while (current_block->flag & BLOCK_MASK_SYNC) {
  1890. #if ENABLED(LASER_SYNCHRONOUS_M106_M107)
  1891. const bool is_sync_fans = TEST(current_block->flag, BLOCK_BIT_SYNC_FANS);
  1892. if (is_sync_fans) planner.sync_fan_speeds(current_block->fan_speed);
  1893. #else
  1894. constexpr bool is_sync_fans = false;
  1895. #endif
  1896. if (!is_sync_fans) _set_position(current_block->position);
  1897. discard_current_block();
  1898. // Try to get a new block
  1899. if (!(current_block = planner.get_current_block()))
  1900. return interval; // No more queued movements!
  1901. }
  1902. // For non-inline cutter, grossly apply power
  1903. #if ENABLED(LASER_FEATURE) && DISABLED(LASER_POWER_INLINE)
  1904. cutter.apply_power(current_block->cutter_power);
  1905. #endif
  1906. #if ENABLED(POWER_LOSS_RECOVERY)
  1907. recovery.info.sdpos = current_block->sdpos;
  1908. recovery.info.current_position = current_block->start_position;
  1909. #endif
  1910. #if ENABLED(DIRECT_STEPPING)
  1911. if (IS_PAGE(current_block)) {
  1912. page_step_state.segment_steps = 0;
  1913. page_step_state.segment_idx = 0;
  1914. page_step_state.page = page_manager.get_page(current_block->page_idx);
  1915. page_step_state.bd.reset();
  1916. if (DirectStepping::Config::DIRECTIONAL)
  1917. current_block->direction_bits = last_direction_bits;
  1918. if (!page_step_state.page) {
  1919. discard_current_block();
  1920. return interval;
  1921. }
  1922. }
  1923. #endif
  1924. // Flag all moving axes for proper endstop handling
  1925. #if IS_CORE
  1926. // Define conditions for checking endstops
  1927. #define S_(N) current_block->steps[CORE_AXIS_##N]
  1928. #define D_(N) TEST(current_block->direction_bits, CORE_AXIS_##N)
  1929. #endif
  1930. #if CORE_IS_XY || CORE_IS_XZ
  1931. /**
  1932. * Head direction in -X axis for CoreXY and CoreXZ bots.
  1933. *
  1934. * If steps differ, both axes are moving.
  1935. * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z, handled below)
  1936. * If DeltaA == DeltaB, the movement is only in the 1st axis (X)
  1937. */
  1938. #if EITHER(COREXY, COREXZ)
  1939. #define X_CMP(A,B) ((A)==(B))
  1940. #else
  1941. #define X_CMP(A,B) ((A)!=(B))
  1942. #endif
  1943. #define X_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && X_CMP(D_(1),D_(2))) )
  1944. #elif ENABLED(MARKFORGED_XY)
  1945. #define X_MOVE_TEST (current_block->steps.a != current_block->steps.b)
  1946. #else
  1947. #define X_MOVE_TEST !!current_block->steps.a
  1948. #endif
  1949. #if CORE_IS_XY || CORE_IS_YZ
  1950. /**
  1951. * Head direction in -Y axis for CoreXY / CoreYZ bots.
  1952. *
  1953. * If steps differ, both axes are moving
  1954. * If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y)
  1955. * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z)
  1956. */
  1957. #if EITHER(COREYX, COREYZ)
  1958. #define Y_CMP(A,B) ((A)==(B))
  1959. #else
  1960. #define Y_CMP(A,B) ((A)!=(B))
  1961. #endif
  1962. #define Y_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Y_CMP(D_(1),D_(2))) )
  1963. #elif ENABLED(MARKFORGED_YX)
  1964. #define Y_MOVE_TEST (current_block->steps.a != current_block->steps.b)
  1965. #else
  1966. #define Y_MOVE_TEST !!current_block->steps.b
  1967. #endif
  1968. #if CORE_IS_XZ || CORE_IS_YZ
  1969. /**
  1970. * Head direction in -Z axis for CoreXZ or CoreYZ bots.
  1971. *
  1972. * If steps differ, both axes are moving
  1973. * If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y, already handled above)
  1974. * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Z)
  1975. */
  1976. #if EITHER(COREZX, COREZY)
  1977. #define Z_CMP(A,B) ((A)==(B))
  1978. #else
  1979. #define Z_CMP(A,B) ((A)!=(B))
  1980. #endif
  1981. #define Z_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Z_CMP(D_(1),D_(2))) )
  1982. #else
  1983. #define Z_MOVE_TEST !!current_block->steps.c
  1984. #endif
  1985. axis_bits_t axis_bits = 0;
  1986. LINEAR_AXIS_CODE(
  1987. if (X_MOVE_TEST) SBI(axis_bits, A_AXIS),
  1988. if (Y_MOVE_TEST) SBI(axis_bits, B_AXIS),
  1989. if (Z_MOVE_TEST) SBI(axis_bits, C_AXIS),
  1990. if (current_block->steps.i) SBI(axis_bits, I_AXIS),
  1991. if (current_block->steps.j) SBI(axis_bits, J_AXIS),
  1992. if (current_block->steps.k) SBI(axis_bits, K_AXIS)
  1993. );
  1994. //if (current_block->steps.e) SBI(axis_bits, E_AXIS);
  1995. //if (current_block->steps.a) SBI(axis_bits, X_HEAD);
  1996. //if (current_block->steps.b) SBI(axis_bits, Y_HEAD);
  1997. //if (current_block->steps.c) SBI(axis_bits, Z_HEAD);
  1998. axis_did_move = axis_bits;
  1999. // No acceleration / deceleration time elapsed so far
  2000. acceleration_time = deceleration_time = 0;
  2001. #if ENABLED(ADAPTIVE_STEP_SMOOTHING)
  2002. uint8_t oversampling = 0; // Assume no axis smoothing (via oversampling)
  2003. // Decide if axis smoothing is possible
  2004. uint32_t max_rate = current_block->nominal_rate; // Get the step event rate
  2005. while (max_rate < MIN_STEP_ISR_FREQUENCY) { // As long as more ISRs are possible...
  2006. max_rate <<= 1; // Try to double the rate
  2007. if (max_rate < MIN_STEP_ISR_FREQUENCY) // Don't exceed the estimated ISR limit
  2008. ++oversampling; // Increase the oversampling (used for left-shift)
  2009. }
  2010. oversampling_factor = oversampling; // For all timer interval calculations
  2011. #else
  2012. constexpr uint8_t oversampling = 0;
  2013. #endif
  2014. // Based on the oversampling factor, do the calculations
  2015. step_event_count = current_block->step_event_count << oversampling;
  2016. // Initialize Bresenham delta errors to 1/2
  2017. delta_error = -int32_t(step_event_count);
  2018. // Calculate Bresenham dividends and divisors
  2019. advance_dividend = current_block->steps << 1;
  2020. advance_divisor = step_event_count << 1;
  2021. // No step events completed so far
  2022. step_events_completed = 0;
  2023. // Compute the acceleration and deceleration points
  2024. accelerate_until = current_block->accelerate_until << oversampling;
  2025. decelerate_after = current_block->decelerate_after << oversampling;
  2026. TERN_(MIXING_EXTRUDER, mixer.stepper_setup(current_block->b_color));
  2027. E_TERN_(stepper_extruder = current_block->extruder);
  2028. // Initialize the trapezoid generator from the current block.
  2029. #if ENABLED(LIN_ADVANCE)
  2030. #if DISABLED(MIXING_EXTRUDER) && E_STEPPERS > 1
  2031. // If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
  2032. if (stepper_extruder != last_moved_extruder) LA_current_adv_steps = 0;
  2033. #endif
  2034. if ((LA_use_advance_lead = current_block->use_advance_lead)) {
  2035. LA_final_adv_steps = current_block->final_adv_steps;
  2036. LA_max_adv_steps = current_block->max_adv_steps;
  2037. initiateLA(); // Start the ISR
  2038. LA_isr_rate = current_block->advance_speed;
  2039. }
  2040. else LA_isr_rate = LA_ADV_NEVER;
  2041. #endif
  2042. if ( ENABLED(HAS_L64XX) // Always set direction for L64xx (Also enables the chips)
  2043. || ENABLED(DUAL_X_CARRIAGE) // TODO: Find out why this fixes "jittery" small circles
  2044. || current_block->direction_bits != last_direction_bits
  2045. || TERN(MIXING_EXTRUDER, false, stepper_extruder != last_moved_extruder)
  2046. ) {
  2047. E_TERN_(last_moved_extruder = stepper_extruder);
  2048. TERN_(HAS_L64XX, L64XX_OK_to_power_up = true);
  2049. set_directions(current_block->direction_bits);
  2050. }
  2051. #if ENABLED(LASER_POWER_INLINE)
  2052. const power_status_t stat = current_block->laser.status;
  2053. #if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
  2054. laser_trap.enabled = stat.isPlanned && stat.isEnabled;
  2055. laser_trap.cur_power = current_block->laser.power_entry; // RESET STATE
  2056. laser_trap.cruise_set = false;
  2057. #if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
  2058. laser_trap.last_step_count = 0;
  2059. laser_trap.acc_step_count = current_block->laser.entry_per / 2;
  2060. #else
  2061. laser_trap.till_update = 0;
  2062. #endif
  2063. // Always have PWM in this case
  2064. if (stat.isPlanned) { // Planner controls the laser
  2065. cutter.ocr_set_power(
  2066. stat.isEnabled ? laser_trap.cur_power : 0 // ON with power or OFF
  2067. );
  2068. }
  2069. #else
  2070. if (stat.isPlanned) { // Planner controls the laser
  2071. #if ENABLED(SPINDLE_LASER_USE_PWM)
  2072. cutter.ocr_set_power(
  2073. stat.isEnabled ? current_block->laser.power : 0 // ON with power or OFF
  2074. );
  2075. #else
  2076. cutter.set_enabled(stat.isEnabled);
  2077. #endif
  2078. }
  2079. #endif
  2080. #endif // LASER_POWER_INLINE
  2081. // If the endstop is already pressed, endstop interrupts won't invoke
  2082. // endstop_triggered and the move will grind. So check here for a
  2083. // triggered endstop, which marks the block for discard on the next ISR.
  2084. endstops.update();
  2085. #if ENABLED(Z_LATE_ENABLE)
  2086. // If delayed Z enable, enable it now. This option will severely interfere with
  2087. // timing between pulses when chaining motion between blocks, and it could lead
  2088. // to lost steps in both X and Y axis, so avoid using it unless strictly necessary!!
  2089. if (current_block->steps.z) enable_axis(Z_AXIS);
  2090. #endif
  2091. // Mark the time_nominal as not calculated yet
  2092. ticks_nominal = -1;
  2093. #if ENABLED(S_CURVE_ACCELERATION)
  2094. // Initialize the Bézier speed curve
  2095. _calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);
  2096. // We haven't started the 2nd half of the trapezoid
  2097. bezier_2nd_half = false;
  2098. #else
  2099. // Set as deceleration point the initial rate of the block
  2100. acc_step_rate = current_block->initial_rate;
  2101. #endif
  2102. // Calculate the initial timer interval
  2103. interval = calc_timer_interval(current_block->initial_rate, &steps_per_isr);
  2104. }
  2105. #if ENABLED(LASER_POWER_INLINE_CONTINUOUS)
  2106. else { // No new block found; so apply inline laser parameters
  2107. // This should mean ending file with 'M5 I' will stop the laser; thus the inline flag isn't needed
  2108. const power_status_t stat = planner.laser_inline.status;
  2109. if (stat.isPlanned) { // Planner controls the laser
  2110. #if ENABLED(SPINDLE_LASER_USE_PWM)
  2111. cutter.ocr_set_power(
  2112. stat.isEnabled ? planner.laser_inline.power : 0 // ON with power or OFF
  2113. );
  2114. #else
  2115. cutter.set_enabled(stat.isEnabled);
  2116. #endif
  2117. }
  2118. }
  2119. #endif
  2120. }
  2121. // Return the interval to wait
  2122. return interval;
  2123. }
  2124. #if ENABLED(LIN_ADVANCE)
  2125. // Timer interrupt for E. LA_steps is set in the main routine
  2126. uint32_t Stepper::advance_isr() {
  2127. uint32_t interval;
  2128. if (LA_use_advance_lead) {
  2129. if (step_events_completed > decelerate_after && LA_current_adv_steps > LA_final_adv_steps) {
  2130. LA_steps--;
  2131. LA_current_adv_steps--;
  2132. interval = LA_isr_rate;
  2133. }
  2134. else if (step_events_completed < decelerate_after && LA_current_adv_steps < LA_max_adv_steps) {
  2135. LA_steps++;
  2136. LA_current_adv_steps++;
  2137. interval = LA_isr_rate;
  2138. }
  2139. else
  2140. interval = LA_isr_rate = LA_ADV_NEVER;
  2141. }
  2142. else
  2143. interval = LA_ADV_NEVER;
  2144. if (!LA_steps) return interval; // Leave pins alone if there are no steps!
  2145. DIR_WAIT_BEFORE();
  2146. #if ENABLED(MIXING_EXTRUDER)
  2147. // We don't know which steppers will be stepped because LA loop follows,
  2148. // with potentially multiple steps. Set all.
  2149. if (LA_steps > 0) {
  2150. MIXER_STEPPER_LOOP(j) NORM_E_DIR(j);
  2151. count_direction.e = 1;
  2152. }
  2153. else if (LA_steps < 0) {
  2154. MIXER_STEPPER_LOOP(j) REV_E_DIR(j);
  2155. count_direction.e = -1;
  2156. }
  2157. #else
  2158. if (LA_steps > 0) {
  2159. NORM_E_DIR(stepper_extruder);
  2160. count_direction.e = 1;
  2161. }
  2162. else if (LA_steps < 0) {
  2163. REV_E_DIR(stepper_extruder);
  2164. count_direction.e = -1;
  2165. }
  2166. #endif
  2167. DIR_WAIT_AFTER();
  2168. //const hal_timer_t added_step_ticks = hal_timer_t(ADDED_STEP_TICKS);
  2169. // Step E stepper if we have steps
  2170. #if ISR_MULTI_STEPS
  2171. bool firstStep = true;
  2172. USING_TIMED_PULSE();
  2173. #endif
  2174. while (LA_steps) {
  2175. #if ISR_MULTI_STEPS
  2176. if (firstStep)
  2177. firstStep = false;
  2178. else
  2179. AWAIT_LOW_PULSE();
  2180. #endif
  2181. count_position.e += count_direction.e;
  2182. // Set the STEP pulse ON
  2183. #if ENABLED(MIXING_EXTRUDER)
  2184. E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN);
  2185. #else
  2186. E_STEP_WRITE(stepper_extruder, !INVERT_E_STEP_PIN);
  2187. #endif
  2188. // Enforce a minimum duration for STEP pulse ON
  2189. #if ISR_PULSE_CONTROL
  2190. START_HIGH_PULSE();
  2191. #endif
  2192. LA_steps < 0 ? ++LA_steps : --LA_steps;
  2193. #if ISR_PULSE_CONTROL
  2194. AWAIT_HIGH_PULSE();
  2195. #endif
  2196. // Set the STEP pulse OFF
  2197. #if ENABLED(MIXING_EXTRUDER)
  2198. E_STEP_WRITE(mixer.get_stepper(), INVERT_E_STEP_PIN);
  2199. #else
  2200. E_STEP_WRITE(stepper_extruder, INVERT_E_STEP_PIN);
  2201. #endif
  2202. // For minimum pulse time wait before looping
  2203. // Just wait for the requested pulse duration
  2204. #if ISR_PULSE_CONTROL
  2205. if (LA_steps) START_LOW_PULSE();
  2206. #endif
  2207. } // LA_steps
  2208. return interval;
  2209. }
  2210. #endif // LIN_ADVANCE
  2211. #if ENABLED(INTEGRATED_BABYSTEPPING)
  2212. // Timer interrupt for baby-stepping
  2213. uint32_t Stepper::babystepping_isr() {
  2214. babystep.task();
  2215. return babystep.has_steps() ? BABYSTEP_TICKS : BABYSTEP_NEVER;
  2216. }
  2217. #endif
  2218. // Check if the given block is busy or not - Must not be called from ISR contexts
  2219. // The current_block could change in the middle of the read by an Stepper ISR, so
  2220. // we must explicitly prevent that!
  2221. bool Stepper::is_block_busy(const block_t * const block) {
  2222. #ifdef __AVR__
  2223. // A SW memory barrier, to ensure GCC does not overoptimize loops
  2224. #define sw_barrier() asm volatile("": : :"memory");
  2225. // Keep reading until 2 consecutive reads return the same value,
  2226. // meaning there was no update in-between caused by an interrupt.
  2227. // This works because stepper ISRs happen at a slower rate than
  2228. // successive reads of a variable, so 2 consecutive reads with
  2229. // the same value means no interrupt updated it.
  2230. block_t *vold, *vnew = current_block;
  2231. sw_barrier();
  2232. do {
  2233. vold = vnew;
  2234. vnew = current_block;
  2235. sw_barrier();
  2236. } while (vold != vnew);
  2237. #else
  2238. block_t *vnew = current_block;
  2239. #endif
  2240. // Return if the block is busy or not
  2241. return block == vnew;
  2242. }
  2243. void Stepper::init() {
  2244. #if MB(ALLIGATOR)
  2245. const float motor_current[] = MOTOR_CURRENT;
  2246. unsigned int digipot_motor = 0;
  2247. LOOP_L_N(i, 3 + EXTRUDERS) {
  2248. digipot_motor = 255 * (motor_current[i] / 2.5);
  2249. dac084s085::setValue(i, digipot_motor);
  2250. }
  2251. #endif
  2252. // Init Microstepping Pins
  2253. TERN_(HAS_MICROSTEPS, microstep_init());
  2254. // Init Dir Pins
  2255. TERN_(HAS_X_DIR, X_DIR_INIT());
  2256. TERN_(HAS_X2_DIR, X2_DIR_INIT());
  2257. #if HAS_Y_DIR
  2258. Y_DIR_INIT();
  2259. #if BOTH(Y_DUAL_STEPPER_DRIVERS, HAS_Y2_DIR)
  2260. Y2_DIR_INIT();
  2261. #endif
  2262. #endif
  2263. #if HAS_Z_DIR
  2264. Z_DIR_INIT();
  2265. #if NUM_Z_STEPPER_DRIVERS >= 2 && HAS_Z2_DIR
  2266. Z2_DIR_INIT();
  2267. #endif
  2268. #if NUM_Z_STEPPER_DRIVERS >= 3 && HAS_Z3_DIR
  2269. Z3_DIR_INIT();
  2270. #endif
  2271. #if NUM_Z_STEPPER_DRIVERS >= 4 && HAS_Z4_DIR
  2272. Z4_DIR_INIT();
  2273. #endif
  2274. #endif
  2275. #if HAS_I_DIR
  2276. I_DIR_INIT();
  2277. #endif
  2278. #if HAS_J_DIR
  2279. J_DIR_INIT();
  2280. #endif
  2281. #if HAS_K_DIR
  2282. K_DIR_INIT();
  2283. #endif
  2284. #if HAS_E0_DIR
  2285. E0_DIR_INIT();
  2286. #endif
  2287. #if HAS_E1_DIR
  2288. E1_DIR_INIT();
  2289. #endif
  2290. #if HAS_E2_DIR
  2291. E2_DIR_INIT();
  2292. #endif
  2293. #if HAS_E3_DIR
  2294. E3_DIR_INIT();
  2295. #endif
  2296. #if HAS_E4_DIR
  2297. E4_DIR_INIT();
  2298. #endif
  2299. #if HAS_E5_DIR
  2300. E5_DIR_INIT();
  2301. #endif
  2302. #if HAS_E6_DIR
  2303. E6_DIR_INIT();
  2304. #endif
  2305. #if HAS_E7_DIR
  2306. E7_DIR_INIT();
  2307. #endif
  2308. // Init Enable Pins - steppers default to disabled.
  2309. #if HAS_X_ENABLE
  2310. X_ENABLE_INIT();
  2311. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  2312. #if BOTH(HAS_X2_STEPPER, HAS_X2_ENABLE)
  2313. X2_ENABLE_INIT();
  2314. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  2315. #endif
  2316. #endif
  2317. #if HAS_Y_ENABLE
  2318. Y_ENABLE_INIT();
  2319. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  2320. #if BOTH(Y_DUAL_STEPPER_DRIVERS, HAS_Y2_ENABLE)
  2321. Y2_ENABLE_INIT();
  2322. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  2323. #endif
  2324. #endif
  2325. #if HAS_Z_ENABLE
  2326. Z_ENABLE_INIT();
  2327. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  2328. #if NUM_Z_STEPPER_DRIVERS >= 2 && HAS_Z2_ENABLE
  2329. Z2_ENABLE_INIT();
  2330. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  2331. #endif
  2332. #if NUM_Z_STEPPER_DRIVERS >= 3 && HAS_Z3_ENABLE
  2333. Z3_ENABLE_INIT();
  2334. if (!Z_ENABLE_ON) Z3_ENABLE_WRITE(HIGH);
  2335. #endif
  2336. #if NUM_Z_STEPPER_DRIVERS >= 4 && HAS_Z4_ENABLE
  2337. Z4_ENABLE_INIT();
  2338. if (!Z_ENABLE_ON) Z4_ENABLE_WRITE(HIGH);
  2339. #endif
  2340. #endif
  2341. #if HAS_I_ENABLE
  2342. I_ENABLE_INIT();
  2343. if (!I_ENABLE_ON) I_ENABLE_WRITE(HIGH);
  2344. #endif
  2345. #if HAS_J_ENABLE
  2346. J_ENABLE_INIT();
  2347. if (!J_ENABLE_ON) J_ENABLE_WRITE(HIGH);
  2348. #endif
  2349. #if HAS_K_ENABLE
  2350. K_ENABLE_INIT();
  2351. if (!K_ENABLE_ON) K_ENABLE_WRITE(HIGH);
  2352. #endif
  2353. #if HAS_E0_ENABLE
  2354. E0_ENABLE_INIT();
  2355. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  2356. #endif
  2357. #if HAS_E1_ENABLE
  2358. E1_ENABLE_INIT();
  2359. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  2360. #endif
  2361. #if HAS_E2_ENABLE
  2362. E2_ENABLE_INIT();
  2363. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  2364. #endif
  2365. #if HAS_E3_ENABLE
  2366. E3_ENABLE_INIT();
  2367. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  2368. #endif
  2369. #if HAS_E4_ENABLE
  2370. E4_ENABLE_INIT();
  2371. if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
  2372. #endif
  2373. #if HAS_E5_ENABLE
  2374. E5_ENABLE_INIT();
  2375. if (!E_ENABLE_ON) E5_ENABLE_WRITE(HIGH);
  2376. #endif
  2377. #if HAS_E6_ENABLE
  2378. E6_ENABLE_INIT();
  2379. if (!E_ENABLE_ON) E6_ENABLE_WRITE(HIGH);
  2380. #endif
  2381. #if HAS_E7_ENABLE
  2382. E7_ENABLE_INIT();
  2383. if (!E_ENABLE_ON) E7_ENABLE_WRITE(HIGH);
  2384. #endif
  2385. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT()
  2386. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  2387. #define _DISABLE_AXIS(AXIS) DISABLE_AXIS_## AXIS()
  2388. #define AXIS_INIT(AXIS, PIN) \
  2389. _STEP_INIT(AXIS); \
  2390. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  2391. _DISABLE_AXIS(AXIS)
  2392. #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
  2393. // Init Step Pins
  2394. #if HAS_X_STEP
  2395. #if EITHER(X_DUAL_STEPPER_DRIVERS, DUAL_X_CARRIAGE)
  2396. X2_STEP_INIT();
  2397. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  2398. #endif
  2399. AXIS_INIT(X, X);
  2400. #endif
  2401. #if HAS_Y_STEP
  2402. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  2403. Y2_STEP_INIT();
  2404. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  2405. #endif
  2406. AXIS_INIT(Y, Y);
  2407. #endif
  2408. #if HAS_Z_STEP
  2409. #if NUM_Z_STEPPER_DRIVERS >= 2
  2410. Z2_STEP_INIT();
  2411. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  2412. #endif
  2413. #if NUM_Z_STEPPER_DRIVERS >= 3
  2414. Z3_STEP_INIT();
  2415. Z3_STEP_WRITE(INVERT_Z_STEP_PIN);
  2416. #endif
  2417. #if NUM_Z_STEPPER_DRIVERS >= 4
  2418. Z4_STEP_INIT();
  2419. Z4_STEP_WRITE(INVERT_Z_STEP_PIN);
  2420. #endif
  2421. AXIS_INIT(Z, Z);
  2422. #endif
  2423. #if HAS_I_STEP
  2424. AXIS_INIT(I, I);
  2425. #endif
  2426. #if HAS_J_STEP
  2427. AXIS_INIT(J, J);
  2428. #endif
  2429. #if HAS_K_STEP
  2430. AXIS_INIT(K, K);
  2431. #endif
  2432. #if E_STEPPERS && HAS_E0_STEP
  2433. E_AXIS_INIT(0);
  2434. #endif
  2435. #if (E_STEPPERS > 1 || ENABLED(E_DUAL_STEPPER_DRIVERS)) && HAS_E1_STEP
  2436. E_AXIS_INIT(1);
  2437. #endif
  2438. #if E_STEPPERS > 2 && HAS_E2_STEP
  2439. E_AXIS_INIT(2);
  2440. #endif
  2441. #if E_STEPPERS > 3 && HAS_E3_STEP
  2442. E_AXIS_INIT(3);
  2443. #endif
  2444. #if E_STEPPERS > 4 && HAS_E4_STEP
  2445. E_AXIS_INIT(4);
  2446. #endif
  2447. #if E_STEPPERS > 5 && HAS_E5_STEP
  2448. E_AXIS_INIT(5);
  2449. #endif
  2450. #if E_STEPPERS > 6 && HAS_E6_STEP
  2451. E_AXIS_INIT(6);
  2452. #endif
  2453. #if E_STEPPERS > 7 && HAS_E7_STEP
  2454. E_AXIS_INIT(7);
  2455. #endif
  2456. #if DISABLED(I2S_STEPPER_STREAM)
  2457. HAL_timer_start(MF_TIMER_STEP, 122); // Init Stepper ISR to 122 Hz for quick starting
  2458. wake_up();
  2459. sei();
  2460. #endif
  2461. // Init direction bits for first moves
  2462. set_directions(0
  2463. LINEAR_AXIS_GANG(
  2464. | TERN0(INVERT_X_DIR, _BV(X_AXIS)),
  2465. | TERN0(INVERT_Y_DIR, _BV(Y_AXIS)),
  2466. | TERN0(INVERT_Z_DIR, _BV(Z_AXIS)),
  2467. | TERN0(INVERT_I_DIR, _BV(I_AXIS)),
  2468. | TERN0(INVERT_J_DIR, _BV(J_AXIS)),
  2469. | TERN0(INVERT_K_DIR, _BV(K_AXIS))
  2470. )
  2471. );
  2472. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  2473. initialized = true;
  2474. digipot_init();
  2475. #endif
  2476. }
  2477. /**
  2478. * Set the stepper positions directly in steps
  2479. *
  2480. * The input is based on the typical per-axis XYZE steps.
  2481. * For CORE machines XYZ needs to be translated to ABC.
  2482. *
  2483. * This allows get_axis_position_mm to correctly
  2484. * derive the current XYZE position later on.
  2485. */
  2486. void Stepper::_set_position(const abce_long_t &spos) {
  2487. #if ANY(IS_CORE, MARKFORGED_XY, MARKFORGED_YX)
  2488. #if CORE_IS_XY
  2489. // corexy positioning
  2490. // these equations follow the form of the dA and dB equations on https://www.corexy.com/theory.html
  2491. count_position.set(spos.a + spos.b, CORESIGN(spos.a - spos.b), spos.c);
  2492. #elif CORE_IS_XZ
  2493. // corexz planning
  2494. count_position.set(spos.a + spos.c, spos.b, CORESIGN(spos.a - spos.c));
  2495. #elif CORE_IS_YZ
  2496. // coreyz planning
  2497. count_position.set(spos.a, spos.b + spos.c, CORESIGN(spos.b - spos.c));
  2498. #elif ENABLED(MARKFORGED_XY)
  2499. count_position.set(spos.a - spos.b, spos.b, spos.c);
  2500. #elif ENABLED(MARKFORGED_YX)
  2501. count_position.set(spos.a, spos.b - spos.a, spos.c);
  2502. #endif
  2503. TERN_(HAS_EXTRUDERS, count_position.e = spos.e);
  2504. #else
  2505. // default non-h-bot planning
  2506. count_position = spos;
  2507. #endif
  2508. }
  2509. /**
  2510. * Get a stepper's position in steps.
  2511. */
  2512. int32_t Stepper::position(const AxisEnum axis) {
  2513. #ifdef __AVR__
  2514. // Protect the access to the position. Only required for AVR, as
  2515. // any 32bit CPU offers atomic access to 32bit variables
  2516. const bool was_enabled = suspend();
  2517. #endif
  2518. const int32_t v = count_position[axis];
  2519. #ifdef __AVR__
  2520. // Reenable Stepper ISR
  2521. if (was_enabled) wake_up();
  2522. #endif
  2523. return v;
  2524. }
  2525. // Set the current position in steps
  2526. void Stepper::set_position(const xyze_long_t &spos) {
  2527. planner.synchronize();
  2528. const bool was_enabled = suspend();
  2529. _set_position(spos);
  2530. if (was_enabled) wake_up();
  2531. }
  2532. void Stepper::set_axis_position(const AxisEnum a, const int32_t &v) {
  2533. planner.synchronize();
  2534. #ifdef __AVR__
  2535. // Protect the access to the position. Only required for AVR, as
  2536. // any 32bit CPU offers atomic access to 32bit variables
  2537. const bool was_enabled = suspend();
  2538. #endif
  2539. count_position[a] = v;
  2540. #ifdef __AVR__
  2541. // Reenable Stepper ISR
  2542. if (was_enabled) wake_up();
  2543. #endif
  2544. }
  2545. // Signal endstops were triggered - This function can be called from
  2546. // an ISR context (Temperature, Stepper or limits ISR), so we must
  2547. // be very careful here. If the interrupt being preempted was the
  2548. // Stepper ISR (this CAN happen with the endstop limits ISR) then
  2549. // when the stepper ISR resumes, we must be very sure that the movement
  2550. // is properly canceled
  2551. void Stepper::endstop_triggered(const AxisEnum axis) {
  2552. const bool was_enabled = suspend();
  2553. endstops_trigsteps[axis] = (
  2554. #if IS_CORE
  2555. (axis == CORE_AXIS_2
  2556. ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  2557. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  2558. ) * double(0.5)
  2559. #elif ENABLED(MARKFORGED_XY)
  2560. axis == CORE_AXIS_1
  2561. ? count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2]
  2562. : count_position[CORE_AXIS_2]
  2563. #elif ENABLED(MARKFORGED_YX)
  2564. axis == CORE_AXIS_1
  2565. ? count_position[CORE_AXIS_1]
  2566. : count_position[CORE_AXIS_2] - count_position[CORE_AXIS_1]
  2567. #else // !IS_CORE
  2568. count_position[axis]
  2569. #endif
  2570. );
  2571. // Discard the rest of the move if there is a current block
  2572. quick_stop();
  2573. if (was_enabled) wake_up();
  2574. }
  2575. int32_t Stepper::triggered_position(const AxisEnum axis) {
  2576. #ifdef __AVR__
  2577. // Protect the access to the position. Only required for AVR, as
  2578. // any 32bit CPU offers atomic access to 32bit variables
  2579. const bool was_enabled = suspend();
  2580. #endif
  2581. const int32_t v = endstops_trigsteps[axis];
  2582. #ifdef __AVR__
  2583. // Reenable Stepper ISR
  2584. if (was_enabled) wake_up();
  2585. #endif
  2586. return v;
  2587. }
  2588. #if ANY(CORE_IS_XY, CORE_IS_XZ, MARKFORGED_XY, MARKFORGED_YX, IS_SCARA, DELTA)
  2589. #define SAYS_A 1
  2590. #endif
  2591. #if ANY(CORE_IS_XY, CORE_IS_YZ, MARKFORGED_XY, MARKFORGED_YX, IS_SCARA, DELTA)
  2592. #define SAYS_B 1
  2593. #endif
  2594. #if ANY(CORE_IS_XZ, CORE_IS_YZ, DELTA)
  2595. #define SAYS_C 1
  2596. #endif
  2597. void Stepper::report_a_position(const xyz_long_t &pos) {
  2598. SERIAL_ECHOLNPGM_P(
  2599. LIST_N(DOUBLE(LINEAR_AXES),
  2600. TERN(SAYS_A, PSTR(STR_COUNT_A), PSTR(STR_COUNT_X)), pos.x,
  2601. TERN(SAYS_B, PSTR("B:"), SP_Y_LBL), pos.y,
  2602. TERN(SAYS_C, PSTR("C:"), SP_Z_LBL), pos.z,
  2603. SP_I_LBL, pos.i,
  2604. SP_J_LBL, pos.j,
  2605. SP_K_LBL, pos.k
  2606. )
  2607. );
  2608. }
  2609. void Stepper::report_positions() {
  2610. #ifdef __AVR__
  2611. // Protect the access to the position.
  2612. const bool was_enabled = suspend();
  2613. #endif
  2614. const xyz_long_t pos = count_position;
  2615. #ifdef __AVR__
  2616. if (was_enabled) wake_up();
  2617. #endif
  2618. report_a_position(pos);
  2619. }
  2620. #if ENABLED(BABYSTEPPING)
  2621. #define _ENABLE_AXIS(A) enable_axis(_AXIS(A))
  2622. #define _READ_DIR(AXIS) AXIS ##_DIR_READ()
  2623. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  2624. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  2625. #if MINIMUM_STEPPER_PULSE
  2626. #define STEP_PULSE_CYCLES ((MINIMUM_STEPPER_PULSE) * CYCLES_PER_MICROSECOND)
  2627. #else
  2628. #define STEP_PULSE_CYCLES 0
  2629. #endif
  2630. #if ENABLED(DELTA)
  2631. #define CYCLES_EATEN_BABYSTEP (2 * 15)
  2632. #else
  2633. #define CYCLES_EATEN_BABYSTEP 0
  2634. #endif
  2635. #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
  2636. #if EXTRA_CYCLES_BABYSTEP > 20
  2637. #define _SAVE_START() const hal_timer_t pulse_start = HAL_timer_get_count(MF_TIMER_PULSE)
  2638. #define _PULSE_WAIT() while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_count(MF_TIMER_PULSE) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
  2639. #else
  2640. #define _SAVE_START() NOOP
  2641. #if EXTRA_CYCLES_BABYSTEP > 0
  2642. #define _PULSE_WAIT() DELAY_NS(EXTRA_CYCLES_BABYSTEP * NANOSECONDS_PER_CYCLE)
  2643. #elif ENABLED(DELTA)
  2644. #define _PULSE_WAIT() DELAY_US(2);
  2645. #elif STEP_PULSE_CYCLES > 0
  2646. #define _PULSE_WAIT() NOOP
  2647. #else
  2648. #define _PULSE_WAIT() DELAY_US(4);
  2649. #endif
  2650. #endif
  2651. #if ENABLED(BABYSTEPPING_EXTRA_DIR_WAIT)
  2652. #define EXTRA_DIR_WAIT_BEFORE DIR_WAIT_BEFORE
  2653. #define EXTRA_DIR_WAIT_AFTER DIR_WAIT_AFTER
  2654. #else
  2655. #define EXTRA_DIR_WAIT_BEFORE()
  2656. #define EXTRA_DIR_WAIT_AFTER()
  2657. #endif
  2658. #if DISABLED(DELTA)
  2659. #define BABYSTEP_AXIS(AXIS, INV, DIR) do{ \
  2660. const uint8_t old_dir = _READ_DIR(AXIS); \
  2661. _ENABLE_AXIS(AXIS); \
  2662. DIR_WAIT_BEFORE(); \
  2663. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^DIR^INV); \
  2664. DIR_WAIT_AFTER(); \
  2665. _SAVE_START(); \
  2666. _APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), true); \
  2667. _PULSE_WAIT(); \
  2668. _APPLY_STEP(AXIS, _INVERT_STEP_PIN(AXIS), true); \
  2669. EXTRA_DIR_WAIT_BEFORE(); \
  2670. _APPLY_DIR(AXIS, old_dir); \
  2671. EXTRA_DIR_WAIT_AFTER(); \
  2672. }while(0)
  2673. #endif
  2674. #if IS_CORE
  2675. #define BABYSTEP_CORE(A, B, INV, DIR, ALT) do{ \
  2676. const xy_byte_t old_dir = { _READ_DIR(A), _READ_DIR(B) }; \
  2677. _ENABLE_AXIS(A); _ENABLE_AXIS(B); \
  2678. DIR_WAIT_BEFORE(); \
  2679. _APPLY_DIR(A, _INVERT_DIR(A)^DIR^INV); \
  2680. _APPLY_DIR(B, _INVERT_DIR(B)^DIR^INV^ALT); \
  2681. DIR_WAIT_AFTER(); \
  2682. _SAVE_START(); \
  2683. _APPLY_STEP(A, !_INVERT_STEP_PIN(A), true); \
  2684. _APPLY_STEP(B, !_INVERT_STEP_PIN(B), true); \
  2685. _PULSE_WAIT(); \
  2686. _APPLY_STEP(A, _INVERT_STEP_PIN(A), true); \
  2687. _APPLY_STEP(B, _INVERT_STEP_PIN(B), true); \
  2688. EXTRA_DIR_WAIT_BEFORE(); \
  2689. _APPLY_DIR(A, old_dir.a); _APPLY_DIR(B, old_dir.b); \
  2690. EXTRA_DIR_WAIT_AFTER(); \
  2691. }while(0)
  2692. #endif
  2693. // MUST ONLY BE CALLED BY AN ISR,
  2694. // No other ISR should ever interrupt this!
  2695. void Stepper::do_babystep(const AxisEnum axis, const bool direction) {
  2696. IF_DISABLED(INTEGRATED_BABYSTEPPING, cli());
  2697. switch (axis) {
  2698. #if ENABLED(BABYSTEP_XY)
  2699. case X_AXIS:
  2700. #if CORE_IS_XY
  2701. BABYSTEP_CORE(X, Y, 0, direction, 0);
  2702. #elif CORE_IS_XZ
  2703. BABYSTEP_CORE(X, Z, 0, direction, 0);
  2704. #else
  2705. BABYSTEP_AXIS(X, 0, direction);
  2706. #endif
  2707. break;
  2708. case Y_AXIS:
  2709. #if CORE_IS_XY
  2710. BABYSTEP_CORE(X, Y, 1, !direction, (CORESIGN(1)>0));
  2711. #elif CORE_IS_YZ
  2712. BABYSTEP_CORE(Y, Z, 0, direction, (CORESIGN(1)<0));
  2713. #else
  2714. BABYSTEP_AXIS(Y, 0, direction);
  2715. #endif
  2716. break;
  2717. #endif
  2718. case Z_AXIS: {
  2719. #if CORE_IS_XZ
  2720. BABYSTEP_CORE(X, Z, BABYSTEP_INVERT_Z, direction, (CORESIGN(1)<0));
  2721. #elif CORE_IS_YZ
  2722. BABYSTEP_CORE(Y, Z, BABYSTEP_INVERT_Z, direction, (CORESIGN(1)<0));
  2723. #elif DISABLED(DELTA)
  2724. BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction);
  2725. #else // DELTA
  2726. const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  2727. LINEAR_AXIS_CODE(
  2728. enable_axis(X_AXIS), enable_axis(Y_AXIS), enable_axis(Z_AXIS),
  2729. enable_axis(I_AXIS), enable_axis(J_AXIS), enable_axis(K_AXIS)
  2730. );
  2731. DIR_WAIT_BEFORE();
  2732. const xyz_byte_t old_dir = LINEAR_AXIS_ARRAY(
  2733. X_DIR_READ(), Y_DIR_READ(), Z_DIR_READ(),
  2734. I_DIR_READ(), J_DIR_READ(), K_DIR_READ()
  2735. );
  2736. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  2737. #ifdef Y_DIR_WRITE
  2738. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  2739. #endif
  2740. #ifdef Z_DIR_WRITE
  2741. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  2742. #endif
  2743. #ifdef I_DIR_WRITE
  2744. I_DIR_WRITE(INVERT_I_DIR ^ z_direction);
  2745. #endif
  2746. #ifdef J_DIR_WRITE
  2747. J_DIR_WRITE(INVERT_J_DIR ^ z_direction);
  2748. #endif
  2749. #ifdef K_DIR_WRITE
  2750. K_DIR_WRITE(INVERT_K_DIR ^ z_direction);
  2751. #endif
  2752. DIR_WAIT_AFTER();
  2753. _SAVE_START();
  2754. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  2755. #ifdef Y_STEP_WRITE
  2756. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  2757. #endif
  2758. #ifdef Z_STEP_WRITE
  2759. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  2760. #endif
  2761. #ifdef I_STEP_WRITE
  2762. I_STEP_WRITE(!INVERT_I_STEP_PIN);
  2763. #endif
  2764. #ifdef J_STEP_WRITE
  2765. J_STEP_WRITE(!INVERT_J_STEP_PIN);
  2766. #endif
  2767. #ifdef K_STEP_WRITE
  2768. K_STEP_WRITE(!INVERT_K_STEP_PIN);
  2769. #endif
  2770. _PULSE_WAIT();
  2771. X_STEP_WRITE(INVERT_X_STEP_PIN);
  2772. #ifdef Y_STEP_WRITE
  2773. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  2774. #endif
  2775. #ifdef Z_STEP_WRITE
  2776. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  2777. #endif
  2778. #ifdef I_STEP_WRITE
  2779. I_STEP_WRITE(INVERT_I_STEP_PIN);
  2780. #endif
  2781. #ifdef J_STEP_WRITE
  2782. J_STEP_WRITE(INVERT_J_STEP_PIN);
  2783. #endif
  2784. #ifdef K_STEP_WRITE
  2785. K_STEP_WRITE(INVERT_K_STEP_PIN);
  2786. #endif
  2787. // Restore direction bits
  2788. EXTRA_DIR_WAIT_BEFORE();
  2789. X_DIR_WRITE(old_dir.x);
  2790. #ifdef Y_DIR_WRITE
  2791. Y_DIR_WRITE(old_dir.y);
  2792. #endif
  2793. #ifdef Z_DIR_WRITE
  2794. Z_DIR_WRITE(old_dir.z);
  2795. #endif
  2796. #ifdef I_DIR_WRITE
  2797. I_DIR_WRITE(old_dir.i);
  2798. #endif
  2799. #ifdef J_DIR_WRITE
  2800. J_DIR_WRITE(old_dir.j);
  2801. #endif
  2802. #ifdef K_DIR_WRITE
  2803. K_DIR_WRITE(old_dir.k);
  2804. #endif
  2805. EXTRA_DIR_WAIT_AFTER();
  2806. #endif
  2807. } break;
  2808. #if HAS_I_AXIS
  2809. case I_AXIS: BABYSTEP_AXIS(I, 0, direction); break;
  2810. #endif
  2811. #if HAS_J_AXIS
  2812. case J_AXIS: BABYSTEP_AXIS(J, 0, direction); break;
  2813. #endif
  2814. #if HAS_K_AXIS
  2815. case K_AXIS: BABYSTEP_AXIS(K, 0, direction); break;
  2816. #endif
  2817. default: break;
  2818. }
  2819. IF_DISABLED(INTEGRATED_BABYSTEPPING, sei());
  2820. }
  2821. #endif // BABYSTEPPING
  2822. /**
  2823. * Software-controlled Stepper Motor Current
  2824. */
  2825. #if HAS_MOTOR_CURRENT_SPI
  2826. // From Arduino DigitalPotControl example
  2827. void Stepper::set_digipot_value_spi(const int16_t address, const int16_t value) {
  2828. WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
  2829. SPI.transfer(address); // Send the address and value via SPI
  2830. SPI.transfer(value);
  2831. WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
  2832. //delay(10);
  2833. }
  2834. #endif // HAS_MOTOR_CURRENT_SPI
  2835. #if HAS_MOTOR_CURRENT_PWM
  2836. void Stepper::refresh_motor_power() {
  2837. if (!initialized) return;
  2838. LOOP_L_N(i, COUNT(motor_current_setting)) {
  2839. switch (i) {
  2840. #if ANY_PIN(MOTOR_CURRENT_PWM_XY, MOTOR_CURRENT_PWM_X, MOTOR_CURRENT_PWM_Y)
  2841. case 0:
  2842. #endif
  2843. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  2844. case 1:
  2845. #endif
  2846. #if ANY_PIN(MOTOR_CURRENT_PWM_E, MOTOR_CURRENT_PWM_E0, MOTOR_CURRENT_PWM_E1)
  2847. case 2:
  2848. #endif
  2849. set_digipot_current(i, motor_current_setting[i]);
  2850. default: break;
  2851. }
  2852. }
  2853. }
  2854. #endif // HAS_MOTOR_CURRENT_PWM
  2855. #if !MB(PRINTRBOARD_G2)
  2856. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  2857. void Stepper::set_digipot_current(const uint8_t driver, const int16_t current) {
  2858. if (WITHIN(driver, 0, MOTOR_CURRENT_COUNT - 1))
  2859. motor_current_setting[driver] = current; // update motor_current_setting
  2860. if (!initialized) return;
  2861. #if HAS_MOTOR_CURRENT_SPI
  2862. //SERIAL_ECHOLNPGM("Digipotss current ", current);
  2863. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  2864. set_digipot_value_spi(digipot_ch[driver], current);
  2865. #elif HAS_MOTOR_CURRENT_PWM
  2866. #define _WRITE_CURRENT_PWM(P) hal.set_pwm_duty(pin_t(MOTOR_CURRENT_PWM_## P ##_PIN), 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  2867. switch (driver) {
  2868. case 0:
  2869. #if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
  2870. _WRITE_CURRENT_PWM(X);
  2871. #endif
  2872. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
  2873. _WRITE_CURRENT_PWM(Y);
  2874. #endif
  2875. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  2876. _WRITE_CURRENT_PWM(XY);
  2877. #endif
  2878. break;
  2879. case 1:
  2880. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  2881. _WRITE_CURRENT_PWM(Z);
  2882. #endif
  2883. break;
  2884. case 2:
  2885. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  2886. _WRITE_CURRENT_PWM(E);
  2887. #endif
  2888. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
  2889. _WRITE_CURRENT_PWM(E0);
  2890. #endif
  2891. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
  2892. _WRITE_CURRENT_PWM(E1);
  2893. #endif
  2894. break;
  2895. }
  2896. #endif
  2897. }
  2898. void Stepper::digipot_init() {
  2899. #if HAS_MOTOR_CURRENT_SPI
  2900. SPI.begin();
  2901. SET_OUTPUT(DIGIPOTSS_PIN);
  2902. LOOP_L_N(i, COUNT(motor_current_setting))
  2903. set_digipot_current(i, motor_current_setting[i]);
  2904. #elif HAS_MOTOR_CURRENT_PWM
  2905. #ifdef __SAM3X8E__
  2906. #define _RESET_CURRENT_PWM_FREQ(P) NOOP
  2907. #else
  2908. #define _RESET_CURRENT_PWM_FREQ(P) hal.set_pwm_frequency(pin_t(P), MOTOR_CURRENT_PWM_FREQUENCY)
  2909. #endif
  2910. #define INIT_CURRENT_PWM(P) do{ SET_PWM(MOTOR_CURRENT_PWM_## P ##_PIN); _RESET_CURRENT_PWM_FREQ(MOTOR_CURRENT_PWM_## P ##_PIN); }while(0)
  2911. #if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
  2912. INIT_CURRENT_PWM(X);
  2913. #endif
  2914. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
  2915. INIT_CURRENT_PWM(Y);
  2916. #endif
  2917. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  2918. INIT_CURRENT_PWM(XY);
  2919. #endif
  2920. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  2921. INIT_CURRENT_PWM(Z);
  2922. #endif
  2923. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  2924. INIT_CURRENT_PWM(E);
  2925. #endif
  2926. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
  2927. INIT_CURRENT_PWM(E0);
  2928. #endif
  2929. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
  2930. INIT_CURRENT_PWM(E1);
  2931. #endif
  2932. refresh_motor_power();
  2933. #endif
  2934. }
  2935. #endif
  2936. #else // PRINTRBOARD_G2
  2937. #include HAL_PATH(../HAL, fastio/G2_PWM.h)
  2938. #endif
  2939. #if HAS_MICROSTEPS
  2940. /**
  2941. * Software-controlled Microstepping
  2942. */
  2943. void Stepper::microstep_init() {
  2944. #if HAS_X_MS_PINS
  2945. SET_OUTPUT(X_MS1_PIN); SET_OUTPUT(X_MS2_PIN);
  2946. #if PIN_EXISTS(X_MS3)
  2947. SET_OUTPUT(X_MS3_PIN);
  2948. #endif
  2949. #endif
  2950. #if HAS_X2_MS_PINS
  2951. SET_OUTPUT(X2_MS1_PIN); SET_OUTPUT(X2_MS2_PIN);
  2952. #if PIN_EXISTS(X2_MS3)
  2953. SET_OUTPUT(X2_MS3_PIN);
  2954. #endif
  2955. #endif
  2956. #if HAS_Y_MS_PINS
  2957. SET_OUTPUT(Y_MS1_PIN); SET_OUTPUT(Y_MS2_PIN);
  2958. #if PIN_EXISTS(Y_MS3)
  2959. SET_OUTPUT(Y_MS3_PIN);
  2960. #endif
  2961. #endif
  2962. #if HAS_Y2_MS_PINS
  2963. SET_OUTPUT(Y2_MS1_PIN); SET_OUTPUT(Y2_MS2_PIN);
  2964. #if PIN_EXISTS(Y2_MS3)
  2965. SET_OUTPUT(Y2_MS3_PIN);
  2966. #endif
  2967. #endif
  2968. #if HAS_Z_MS_PINS
  2969. SET_OUTPUT(Z_MS1_PIN); SET_OUTPUT(Z_MS2_PIN);
  2970. #if PIN_EXISTS(Z_MS3)
  2971. SET_OUTPUT(Z_MS3_PIN);
  2972. #endif
  2973. #endif
  2974. #if HAS_Z2_MS_PINS
  2975. SET_OUTPUT(Z2_MS1_PIN); SET_OUTPUT(Z2_MS2_PIN);
  2976. #if PIN_EXISTS(Z2_MS3)
  2977. SET_OUTPUT(Z2_MS3_PIN);
  2978. #endif
  2979. #endif
  2980. #if HAS_Z3_MS_PINS
  2981. SET_OUTPUT(Z3_MS1_PIN); SET_OUTPUT(Z3_MS2_PIN);
  2982. #if PIN_EXISTS(Z3_MS3)
  2983. SET_OUTPUT(Z3_MS3_PIN);
  2984. #endif
  2985. #endif
  2986. #if HAS_Z4_MS_PINS
  2987. SET_OUTPUT(Z4_MS1_PIN); SET_OUTPUT(Z4_MS2_PIN);
  2988. #if PIN_EXISTS(Z4_MS3)
  2989. SET_OUTPUT(Z4_MS3_PIN);
  2990. #endif
  2991. #endif
  2992. #if HAS_I_MS_PINS
  2993. SET_OUTPUT(I_MS1_PIN); SET_OUTPUT(I_MS2_PIN);
  2994. #if PIN_EXISTS(I_MS3)
  2995. SET_OUTPUT(I_MS3_PIN);
  2996. #endif
  2997. #endif
  2998. #if HAS_J_MS_PINS
  2999. SET_OUTPUT(J_MS1_PIN); SET_OUTPUT(J_MS2_PIN);
  3000. #if PIN_EXISTS(J_MS3)
  3001. SET_OUTPUT(J_MS3_PIN);
  3002. #endif
  3003. #endif
  3004. #if HAS_K_MS_PINS
  3005. SET_OUTPUT(K_MS1_PIN); SET_OUTPUT(K_MS2_PIN);
  3006. #if PIN_EXISTS(K_MS3)
  3007. SET_OUTPUT(K_MS3_PIN);
  3008. #endif
  3009. #endif
  3010. #if HAS_E0_MS_PINS
  3011. SET_OUTPUT(E0_MS1_PIN); SET_OUTPUT(E0_MS2_PIN);
  3012. #if PIN_EXISTS(E0_MS3)
  3013. SET_OUTPUT(E0_MS3_PIN);
  3014. #endif
  3015. #endif
  3016. #if HAS_E1_MS_PINS
  3017. SET_OUTPUT(E1_MS1_PIN); SET_OUTPUT(E1_MS2_PIN);
  3018. #if PIN_EXISTS(E1_MS3)
  3019. SET_OUTPUT(E1_MS3_PIN);
  3020. #endif
  3021. #endif
  3022. #if HAS_E2_MS_PINS
  3023. SET_OUTPUT(E2_MS1_PIN); SET_OUTPUT(E2_MS2_PIN);
  3024. #if PIN_EXISTS(E2_MS3)
  3025. SET_OUTPUT(E2_MS3_PIN);
  3026. #endif
  3027. #endif
  3028. #if HAS_E3_MS_PINS
  3029. SET_OUTPUT(E3_MS1_PIN); SET_OUTPUT(E3_MS2_PIN);
  3030. #if PIN_EXISTS(E3_MS3)
  3031. SET_OUTPUT(E3_MS3_PIN);
  3032. #endif
  3033. #endif
  3034. #if HAS_E4_MS_PINS
  3035. SET_OUTPUT(E4_MS1_PIN); SET_OUTPUT(E4_MS2_PIN);
  3036. #if PIN_EXISTS(E4_MS3)
  3037. SET_OUTPUT(E4_MS3_PIN);
  3038. #endif
  3039. #endif
  3040. #if HAS_E5_MS_PINS
  3041. SET_OUTPUT(E5_MS1_PIN); SET_OUTPUT(E5_MS2_PIN);
  3042. #if PIN_EXISTS(E5_MS3)
  3043. SET_OUTPUT(E5_MS3_PIN);
  3044. #endif
  3045. #endif
  3046. #if HAS_E6_MS_PINS
  3047. SET_OUTPUT(E6_MS1_PIN); SET_OUTPUT(E6_MS2_PIN);
  3048. #if PIN_EXISTS(E6_MS3)
  3049. SET_OUTPUT(E6_MS3_PIN);
  3050. #endif
  3051. #endif
  3052. #if HAS_E7_MS_PINS
  3053. SET_OUTPUT(E7_MS1_PIN); SET_OUTPUT(E7_MS2_PIN);
  3054. #if PIN_EXISTS(E7_MS3)
  3055. SET_OUTPUT(E7_MS3_PIN);
  3056. #endif
  3057. #endif
  3058. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  3059. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  3060. microstep_mode(i, microstep_modes[i]);
  3061. }
  3062. void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2, const int8_t ms3) {
  3063. if (ms1 >= 0) switch (driver) {
  3064. #if HAS_X_MS_PINS || HAS_X2_MS_PINS
  3065. case 0:
  3066. #if HAS_X_MS_PINS
  3067. WRITE(X_MS1_PIN, ms1);
  3068. #endif
  3069. #if HAS_X2_MS_PINS
  3070. WRITE(X2_MS1_PIN, ms1);
  3071. #endif
  3072. break;
  3073. #endif
  3074. #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
  3075. case 1:
  3076. #if HAS_Y_MS_PINS
  3077. WRITE(Y_MS1_PIN, ms1);
  3078. #endif
  3079. #if HAS_Y2_MS_PINS
  3080. WRITE(Y2_MS1_PIN, ms1);
  3081. #endif
  3082. break;
  3083. #endif
  3084. #if HAS_SOME_Z_MS_PINS
  3085. case 2:
  3086. #if HAS_Z_MS_PINS
  3087. WRITE(Z_MS1_PIN, ms1);
  3088. #endif
  3089. #if HAS_Z2_MS_PINS
  3090. WRITE(Z2_MS1_PIN, ms1);
  3091. #endif
  3092. #if HAS_Z3_MS_PINS
  3093. WRITE(Z3_MS1_PIN, ms1);
  3094. #endif
  3095. #if HAS_Z4_MS_PINS
  3096. WRITE(Z4_MS1_PIN, ms1);
  3097. #endif
  3098. break;
  3099. #endif
  3100. #if HAS_E0_MS_PINS
  3101. case 3: WRITE(E0_MS1_PIN, ms1); break;
  3102. #endif
  3103. #if HAS_E1_MS_PINS
  3104. case 4: WRITE(E1_MS1_PIN, ms1); break;
  3105. #endif
  3106. #if HAS_E2_MS_PINS
  3107. case 5: WRITE(E2_MS1_PIN, ms1); break;
  3108. #endif
  3109. #if HAS_E3_MS_PINS
  3110. case 6: WRITE(E3_MS1_PIN, ms1); break;
  3111. #endif
  3112. #if HAS_E4_MS_PINS
  3113. case 7: WRITE(E4_MS1_PIN, ms1); break;
  3114. #endif
  3115. #if HAS_E5_MS_PINS
  3116. case 8: WRITE(E5_MS1_PIN, ms1); break;
  3117. #endif
  3118. #if HAS_E6_MS_PINS
  3119. case 9: WRITE(E6_MS1_PIN, ms1); break;
  3120. #endif
  3121. #if HAS_E7_MS_PINS
  3122. case 10: WRITE(E7_MS1_PIN, ms1); break;
  3123. #endif
  3124. #if HAS_I_MS_PINS
  3125. case 11: WRITE(I_MS1_PIN, ms1); break
  3126. #endif
  3127. #if HAS_J_MS_PINS
  3128. case 12: WRITE(J_MS1_PIN, ms1); break
  3129. #endif
  3130. #if HAS_K_MS_PINS
  3131. case 13: WRITE(K_MS1_PIN, ms1); break
  3132. #endif
  3133. }
  3134. if (ms2 >= 0) switch (driver) {
  3135. #if HAS_X_MS_PINS || HAS_X2_MS_PINS
  3136. case 0:
  3137. #if HAS_X_MS_PINS
  3138. WRITE(X_MS2_PIN, ms2);
  3139. #endif
  3140. #if HAS_X2_MS_PINS
  3141. WRITE(X2_MS2_PIN, ms2);
  3142. #endif
  3143. break;
  3144. #endif
  3145. #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
  3146. case 1:
  3147. #if HAS_Y_MS_PINS
  3148. WRITE(Y_MS2_PIN, ms2);
  3149. #endif
  3150. #if HAS_Y2_MS_PINS
  3151. WRITE(Y2_MS2_PIN, ms2);
  3152. #endif
  3153. break;
  3154. #endif
  3155. #if HAS_SOME_Z_MS_PINS
  3156. case 2:
  3157. #if HAS_Z_MS_PINS
  3158. WRITE(Z_MS2_PIN, ms2);
  3159. #endif
  3160. #if HAS_Z2_MS_PINS
  3161. WRITE(Z2_MS2_PIN, ms2);
  3162. #endif
  3163. #if HAS_Z3_MS_PINS
  3164. WRITE(Z3_MS2_PIN, ms2);
  3165. #endif
  3166. #if HAS_Z4_MS_PINS
  3167. WRITE(Z4_MS2_PIN, ms2);
  3168. #endif
  3169. break;
  3170. #endif
  3171. #if HAS_E0_MS_PINS
  3172. case 3: WRITE(E0_MS2_PIN, ms2); break;
  3173. #endif
  3174. #if HAS_E1_MS_PINS
  3175. case 4: WRITE(E1_MS2_PIN, ms2); break;
  3176. #endif
  3177. #if HAS_E2_MS_PINS
  3178. case 5: WRITE(E2_MS2_PIN, ms2); break;
  3179. #endif
  3180. #if HAS_E3_MS_PINS
  3181. case 6: WRITE(E3_MS2_PIN, ms2); break;
  3182. #endif
  3183. #if HAS_E4_MS_PINS
  3184. case 7: WRITE(E4_MS2_PIN, ms2); break;
  3185. #endif
  3186. #if HAS_E5_MS_PINS
  3187. case 8: WRITE(E5_MS2_PIN, ms2); break;
  3188. #endif
  3189. #if HAS_E6_MS_PINS
  3190. case 9: WRITE(E6_MS2_PIN, ms2); break;
  3191. #endif
  3192. #if HAS_E7_MS_PINS
  3193. case 10: WRITE(E7_MS2_PIN, ms2); break;
  3194. #endif
  3195. #if HAS_I_MS_PINS
  3196. case 11: WRITE(I_MS2_PIN, ms2); break
  3197. #endif
  3198. #if HAS_J_MS_PINS
  3199. case 12: WRITE(J_MS2_PIN, ms2); break
  3200. #endif
  3201. #if HAS_K_MS_PINS
  3202. case 13: WRITE(K_MS2_PIN, ms2); break
  3203. #endif
  3204. }
  3205. if (ms3 >= 0) switch (driver) {
  3206. #if HAS_X_MS_PINS || HAS_X2_MS_PINS
  3207. case 0:
  3208. #if HAS_X_MS_PINS && PIN_EXISTS(X_MS3)
  3209. WRITE(X_MS3_PIN, ms3);
  3210. #endif
  3211. #if HAS_X2_MS_PINS && PIN_EXISTS(X2_MS3)
  3212. WRITE(X2_MS3_PIN, ms3);
  3213. #endif
  3214. break;
  3215. #endif
  3216. #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
  3217. case 1:
  3218. #if HAS_Y_MS_PINS && PIN_EXISTS(Y_MS3)
  3219. WRITE(Y_MS3_PIN, ms3);
  3220. #endif
  3221. #if HAS_Y2_MS_PINS && PIN_EXISTS(Y2_MS3)
  3222. WRITE(Y2_MS3_PIN, ms3);
  3223. #endif
  3224. break;
  3225. #endif
  3226. #if HAS_SOME_Z_MS_PINS
  3227. case 2:
  3228. #if HAS_Z_MS_PINS && PIN_EXISTS(Z_MS3)
  3229. WRITE(Z_MS3_PIN, ms3);
  3230. #endif
  3231. #if HAS_Z2_MS_PINS && PIN_EXISTS(Z2_MS3)
  3232. WRITE(Z2_MS3_PIN, ms3);
  3233. #endif
  3234. #if HAS_Z3_MS_PINS && PIN_EXISTS(Z3_MS3)
  3235. WRITE(Z3_MS3_PIN, ms3);
  3236. #endif
  3237. #if HAS_Z4_MS_PINS && PIN_EXISTS(Z4_MS3)
  3238. WRITE(Z4_MS3_PIN, ms3);
  3239. #endif
  3240. break;
  3241. #endif
  3242. #if HAS_E0_MS_PINS && PIN_EXISTS(E0_MS3)
  3243. case 3: WRITE(E0_MS3_PIN, ms3); break;
  3244. #endif
  3245. #if HAS_E1_MS_PINS && PIN_EXISTS(E1_MS3)
  3246. case 4: WRITE(E1_MS3_PIN, ms3); break;
  3247. #endif
  3248. #if HAS_E2_MS_PINS && PIN_EXISTS(E2_MS3)
  3249. case 5: WRITE(E2_MS3_PIN, ms3); break;
  3250. #endif
  3251. #if HAS_E3_MS_PINS && PIN_EXISTS(E3_MS3)
  3252. case 6: WRITE(E3_MS3_PIN, ms3); break;
  3253. #endif
  3254. #if HAS_E4_MS_PINS && PIN_EXISTS(E4_MS3)
  3255. case 7: WRITE(E4_MS3_PIN, ms3); break;
  3256. #endif
  3257. #if HAS_E5_MS_PINS && PIN_EXISTS(E5_MS3)
  3258. case 8: WRITE(E5_MS3_PIN, ms3); break;
  3259. #endif
  3260. #if HAS_E6_MS_PINS && PIN_EXISTS(E6_MS3)
  3261. case 9: WRITE(E6_MS3_PIN, ms3); break;
  3262. #endif
  3263. #if HAS_E7_MS_PINS && PIN_EXISTS(E7_MS3)
  3264. case 10: WRITE(E7_MS3_PIN, ms3); break;
  3265. #endif
  3266. }
  3267. }
  3268. void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
  3269. switch (stepping_mode) {
  3270. #if HAS_MICROSTEP1
  3271. case 1: microstep_ms(driver, MICROSTEP1); break;
  3272. #endif
  3273. #if HAS_MICROSTEP2
  3274. case 2: microstep_ms(driver, MICROSTEP2); break;
  3275. #endif
  3276. #if HAS_MICROSTEP4
  3277. case 4: microstep_ms(driver, MICROSTEP4); break;
  3278. #endif
  3279. #if HAS_MICROSTEP8
  3280. case 8: microstep_ms(driver, MICROSTEP8); break;
  3281. #endif
  3282. #if HAS_MICROSTEP16
  3283. case 16: microstep_ms(driver, MICROSTEP16); break;
  3284. #endif
  3285. #if HAS_MICROSTEP32
  3286. case 32: microstep_ms(driver, MICROSTEP32); break;
  3287. #endif
  3288. #if HAS_MICROSTEP64
  3289. case 64: microstep_ms(driver, MICROSTEP64); break;
  3290. #endif
  3291. #if HAS_MICROSTEP128
  3292. case 128: microstep_ms(driver, MICROSTEP128); break;
  3293. #endif
  3294. default: SERIAL_ERROR_MSG("Microsteps unavailable"); break;
  3295. }
  3296. }
  3297. void Stepper::microstep_readings() {
  3298. #define PIN_CHAR(P) SERIAL_CHAR('0' + READ(P##_PIN))
  3299. #define MS_LINE(A) do{ SERIAL_ECHOPGM(" " STRINGIFY(A) ":"); PIN_CHAR(A##_MS1); PIN_CHAR(A##_MS2); }while(0)
  3300. SERIAL_ECHOPGM("MS1|2|3 Pins");
  3301. #if HAS_X_MS_PINS
  3302. MS_LINE(X);
  3303. #if PIN_EXISTS(X_MS3)
  3304. PIN_CHAR(X_MS3);
  3305. #endif
  3306. #endif
  3307. #if HAS_Y_MS_PINS
  3308. MS_LINE(Y);
  3309. #if PIN_EXISTS(Y_MS3)
  3310. PIN_CHAR(Y_MS3);
  3311. #endif
  3312. #endif
  3313. #if HAS_Z_MS_PINS
  3314. MS_LINE(Z);
  3315. #if PIN_EXISTS(Z_MS3)
  3316. PIN_CHAR(Z_MS3);
  3317. #endif
  3318. #endif
  3319. #if HAS_I_MS_PINS
  3320. MS_LINE(I);
  3321. #if PIN_EXISTS(I_MS3)
  3322. PIN_CHAR(I_MS3);
  3323. #endif
  3324. #endif
  3325. #if HAS_J_MS_PINS
  3326. MS_LINE(J);
  3327. #if PIN_EXISTS(J_MS3)
  3328. PIN_CHAR(J_MS3);
  3329. #endif
  3330. #endif
  3331. #if HAS_K_MS_PINS
  3332. MS_LINE(K);
  3333. #if PIN_EXISTS(K_MS3)
  3334. PIN_CHAR(K_MS3);
  3335. #endif
  3336. #endif
  3337. #if HAS_E0_MS_PINS
  3338. MS_LINE(E0);
  3339. #if PIN_EXISTS(E0_MS3)
  3340. PIN_CHAR(E0_MS3);
  3341. #endif
  3342. #endif
  3343. #if HAS_E1_MS_PINS
  3344. MS_LINE(E1);
  3345. #if PIN_EXISTS(E1_MS3)
  3346. PIN_CHAR(E1_MS3);
  3347. #endif
  3348. #endif
  3349. #if HAS_E2_MS_PINS
  3350. MS_LINE(E2);
  3351. #if PIN_EXISTS(E2_MS3)
  3352. PIN_CHAR(E2_MS3);
  3353. #endif
  3354. #endif
  3355. #if HAS_E3_MS_PINS
  3356. MS_LINE(E3);
  3357. #if PIN_EXISTS(E3_MS3)
  3358. PIN_CHAR(E3_MS3);
  3359. #endif
  3360. #endif
  3361. #if HAS_E4_MS_PINS
  3362. MS_LINE(E4);
  3363. #if PIN_EXISTS(E4_MS3)
  3364. PIN_CHAR(E4_MS3);
  3365. #endif
  3366. #endif
  3367. #if HAS_E5_MS_PINS
  3368. MS_LINE(E5);
  3369. #if PIN_EXISTS(E5_MS3)
  3370. PIN_CHAR(E5_MS3);
  3371. #endif
  3372. #endif
  3373. #if HAS_E6_MS_PINS
  3374. MS_LINE(E6);
  3375. #if PIN_EXISTS(E6_MS3)
  3376. PIN_CHAR(E6_MS3);
  3377. #endif
  3378. #endif
  3379. #if HAS_E7_MS_PINS
  3380. MS_LINE(E7);
  3381. #if PIN_EXISTS(E7_MS3)
  3382. PIN_CHAR(E7_MS3);
  3383. #endif
  3384. #endif
  3385. SERIAL_EOL();
  3386. }
  3387. #endif // HAS_MICROSTEPS