My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

settings.cpp 115KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * settings.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. */
  36. // Change EEPROM version if the structure changes
  37. #define EEPROM_VERSION "V83"
  38. #define EEPROM_OFFSET 100
  39. // Check the integrity of data offsets.
  40. // Can be disabled for production build.
  41. //#define DEBUG_EEPROM_READWRITE
  42. #include "settings.h"
  43. #include "endstops.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "../lcd/marlinui.h"
  48. #include "../libs/vector_3.h" // for matrix_3x3
  49. #include "../gcode/gcode.h"
  50. #include "../MarlinCore.h"
  51. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  52. #include "../HAL/shared/eeprom_api.h"
  53. #endif
  54. #include "probe.h"
  55. #if HAS_LEVELING
  56. #include "../feature/bedlevel/bedlevel.h"
  57. #endif
  58. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  59. #include "../feature/z_stepper_align.h"
  60. #endif
  61. #if ENABLED(EXTENSIBLE_UI)
  62. #include "../lcd/extui/ui_api.h"
  63. #endif
  64. #if HAS_SERVOS
  65. #include "servo.h"
  66. #endif
  67. #if HAS_SERVOS && HAS_SERVO_ANGLES
  68. #define EEPROM_NUM_SERVOS NUM_SERVOS
  69. #else
  70. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  71. #endif
  72. #include "../feature/fwretract.h"
  73. #if ENABLED(POWER_LOSS_RECOVERY)
  74. #include "../feature/powerloss.h"
  75. #endif
  76. #if HAS_POWER_MONITOR
  77. #include "../feature/power_monitor.h"
  78. #endif
  79. #include "../feature/pause.h"
  80. #if ENABLED(BACKLASH_COMPENSATION)
  81. #include "../feature/backlash.h"
  82. #endif
  83. #if HAS_FILAMENT_SENSOR
  84. #include "../feature/runout.h"
  85. #ifndef FIL_RUNOUT_ENABLED_DEFAULT
  86. #define FIL_RUNOUT_ENABLED_DEFAULT true
  87. #endif
  88. #endif
  89. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  90. extern float other_extruder_advance_K[EXTRUDERS];
  91. #endif
  92. #if HAS_MULTI_EXTRUDER
  93. #include "tool_change.h"
  94. void M217_report(const bool eeprom);
  95. #endif
  96. #if ENABLED(BLTOUCH)
  97. #include "../feature/bltouch.h"
  98. #endif
  99. #if HAS_TRINAMIC_CONFIG
  100. #include "stepper/indirection.h"
  101. #include "../feature/tmc_util.h"
  102. #endif
  103. #if ENABLED(PROBE_TEMP_COMPENSATION)
  104. #include "../feature/probe_temp_comp.h"
  105. #endif
  106. #include "../feature/controllerfan.h"
  107. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  108. void M710_report(const bool forReplay);
  109. #endif
  110. #if ENABLED(CASE_LIGHT_ENABLE)
  111. #include "../feature/caselight.h"
  112. #endif
  113. #if ENABLED(PASSWORD_FEATURE)
  114. #include "../feature/password/password.h"
  115. #endif
  116. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  117. #include "../lcd/tft_io/touch_calibration.h"
  118. #endif
  119. #if HAS_ETHERNET
  120. #include "../feature/ethernet.h"
  121. #endif
  122. #if ENABLED(SOUND_MENU_ITEM)
  123. #include "../libs/buzzer.h"
  124. #endif
  125. #if ENABLED(DGUS_LCD_UI_MKS)
  126. #include "../lcd/extui/lib/dgus/DGUSScreenHandler.h"
  127. #include "../lcd/extui/lib/dgus/DGUSDisplayDef.h"
  128. #endif
  129. #pragma pack(push, 1) // No padding between variables
  130. #if HAS_ETHERNET
  131. void ETH0_report();
  132. void MAC_report();
  133. void M552_report();
  134. void M553_report();
  135. void M554_report();
  136. #endif
  137. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stepper_current_t;
  138. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_hybrid_threshold_t;
  139. typedef struct { int16_t X, Y, Z, X2, Y2, Z2, Z3, Z4; } tmc_sgt_t;
  140. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stealth_enabled_t;
  141. // Limit an index to an array size
  142. #define ALIM(I,ARR) _MIN(I, (signed)COUNT(ARR) - 1)
  143. // Defaults for reset / fill in on load
  144. static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  145. static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
  146. static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  147. /**
  148. * Current EEPROM Layout
  149. *
  150. * Keep this data structure up to date so
  151. * EEPROM size is known at compile time!
  152. */
  153. typedef struct SettingsDataStruct {
  154. char version[4]; // Vnn\0
  155. uint16_t crc; // Data Checksum
  156. //
  157. // DISTINCT_E_FACTORS
  158. //
  159. uint8_t esteppers; // XYZE_N - XYZ
  160. planner_settings_t planner_settings;
  161. xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
  162. float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  163. xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
  164. #if HAS_HOTEND_OFFSET
  165. xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
  166. #endif
  167. //
  168. // FILAMENT_RUNOUT_SENSOR
  169. //
  170. bool runout_sensor_enabled; // M412 S
  171. float runout_distance_mm; // M412 D
  172. //
  173. // ENABLE_LEVELING_FADE_HEIGHT
  174. //
  175. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  176. //
  177. // MESH_BED_LEVELING
  178. //
  179. float mbl_z_offset; // mbl.z_offset
  180. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  181. float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // mbl.z_values
  182. [TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)];
  183. //
  184. // HAS_BED_PROBE
  185. //
  186. xyz_pos_t probe_offset;
  187. //
  188. // ABL_PLANAR
  189. //
  190. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  191. //
  192. // AUTO_BED_LEVELING_BILINEAR
  193. //
  194. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  195. xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
  196. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  197. bed_mesh_t z_values; // G29
  198. #else
  199. float z_values[3][3];
  200. #endif
  201. //
  202. // AUTO_BED_LEVELING_UBL
  203. //
  204. bool planner_leveling_active; // M420 S planner.leveling_active
  205. int8_t ubl_storage_slot; // ubl.storage_slot
  206. //
  207. // SERVO_ANGLES
  208. //
  209. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  210. //
  211. // Temperature first layer compensation values
  212. //
  213. #if ENABLED(PROBE_TEMP_COMPENSATION)
  214. int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V
  215. z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V
  216. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  217. , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V
  218. #endif
  219. ;
  220. #endif
  221. //
  222. // BLTOUCH
  223. //
  224. bool bltouch_last_written_mode;
  225. //
  226. // DELTA / [XYZ]_DUAL_ENDSTOPS
  227. //
  228. #if ENABLED(DELTA)
  229. float delta_height; // M666 H
  230. abc_float_t delta_endstop_adj; // M666 X Y Z
  231. float delta_radius, // M665 R
  232. delta_diagonal_rod, // M665 L
  233. segments_per_second; // M665 S
  234. abc_float_t delta_tower_angle_trim, // M665 X Y Z
  235. delta_diagonal_rod_trim; // M665 A B C
  236. #elif HAS_EXTRA_ENDSTOPS
  237. float x2_endstop_adj, // M666 X
  238. y2_endstop_adj, // M666 Y
  239. z2_endstop_adj, // M666 (S2) Z
  240. z3_endstop_adj, // M666 (S3) Z
  241. z4_endstop_adj; // M666 (S4) Z
  242. #endif
  243. //
  244. // Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS
  245. //
  246. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  247. xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y
  248. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  249. xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y
  250. #endif
  251. #endif
  252. //
  253. // Material Presets
  254. //
  255. #if PREHEAT_COUNT
  256. preheat_t ui_material_preset[PREHEAT_COUNT]; // M145 S0 H B F
  257. #endif
  258. //
  259. // PIDTEMP
  260. //
  261. PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
  262. int16_t lpq_len; // M301 L
  263. //
  264. // PIDTEMPBED
  265. //
  266. PID_t bedPID; // M304 PID / M303 E-1 U
  267. //
  268. // PIDTEMPCHAMBER
  269. //
  270. PID_t chamberPID; // M309 PID / M303 E-2 U
  271. //
  272. // User-defined Thermistors
  273. //
  274. #if HAS_USER_THERMISTORS
  275. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  276. #endif
  277. //
  278. // Power monitor
  279. //
  280. uint8_t power_monitor_flags; // M430 I V W
  281. //
  282. // HAS_LCD_CONTRAST
  283. //
  284. int16_t lcd_contrast; // M250 C
  285. //
  286. // Controller fan settings
  287. //
  288. controllerFan_settings_t controllerFan_settings; // M710
  289. //
  290. // POWER_LOSS_RECOVERY
  291. //
  292. bool recovery_enabled; // M413 S
  293. //
  294. // FWRETRACT
  295. //
  296. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  297. bool autoretract_enabled; // M209 S
  298. //
  299. // !NO_VOLUMETRIC
  300. //
  301. bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled
  302. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  303. float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[]
  304. //
  305. // HAS_TRINAMIC_CONFIG
  306. //
  307. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  308. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  309. tmc_sgt_t tmc_sgt; // M914 X Y Z X2 Y2 Z2 Z3 Z4
  310. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  311. //
  312. // LIN_ADVANCE
  313. //
  314. float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K
  315. //
  316. // HAS_MOTOR_CURRENT_PWM
  317. //
  318. #ifndef MOTOR_CURRENT_COUNT
  319. #define MOTOR_CURRENT_COUNT 3
  320. #endif
  321. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // M907 X Z E
  322. //
  323. // CNC_COORDINATE_SYSTEMS
  324. //
  325. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
  326. //
  327. // SKEW_CORRECTION
  328. //
  329. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  330. //
  331. // ADVANCED_PAUSE_FEATURE
  332. //
  333. #if EXTRUDERS
  334. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  335. #endif
  336. //
  337. // Tool-change settings
  338. //
  339. #if HAS_MULTI_EXTRUDER
  340. toolchange_settings_t toolchange_settings; // M217 S P R
  341. #endif
  342. //
  343. // BACKLASH_COMPENSATION
  344. //
  345. xyz_float_t backlash_distance_mm; // M425 X Y Z
  346. uint8_t backlash_correction; // M425 F
  347. float backlash_smoothing_mm; // M425 S
  348. //
  349. // EXTENSIBLE_UI
  350. //
  351. #if ENABLED(EXTENSIBLE_UI)
  352. // This is a significant hardware change; don't reserve space when not present
  353. uint8_t extui_data[ExtUI::eeprom_data_size];
  354. #endif
  355. //
  356. // CASELIGHT_USES_BRIGHTNESS
  357. //
  358. #if CASELIGHT_USES_BRIGHTNESS
  359. uint8_t caselight_brightness; // M355 P
  360. #endif
  361. //
  362. // PASSWORD_FEATURE
  363. //
  364. #if ENABLED(PASSWORD_FEATURE)
  365. bool password_is_set;
  366. uint32_t password_value;
  367. #endif
  368. //
  369. // TOUCH_SCREEN_CALIBRATION
  370. //
  371. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  372. touch_calibration_t touch_calibration_data;
  373. #endif
  374. // Ethernet settings
  375. #if HAS_ETHERNET
  376. bool ethernet_hardware_enabled; // M552 S
  377. uint32_t ethernet_ip, // M552 P
  378. ethernet_dns,
  379. ethernet_gateway, // M553 P
  380. ethernet_subnet; // M554 P
  381. #endif
  382. //
  383. // Buzzer enable/disable
  384. //
  385. #if ENABLED(SOUND_MENU_ITEM)
  386. bool buzzer_enabled;
  387. #endif
  388. //
  389. // MKS UI controller
  390. //
  391. #if ENABLED(DGUS_LCD_UI_MKS)
  392. uint8_t mks_language_index; // Display Language
  393. xy_int_t mks_corner_offsets[5]; // Bed Tramming
  394. xyz_int_t mks_park_pos; // Custom Parking (without NOZZLE_PARK)
  395. celsius_t mks_min_extrusion_temp; // Min E Temp (shadow M302 value)
  396. #endif
  397. #if HAS_MULTI_LANGUAGE
  398. uint8_t ui_language; // M414 S
  399. #endif
  400. } SettingsData;
  401. //static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!");
  402. MarlinSettings settings;
  403. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  404. /**
  405. * Post-process after Retrieve or Reset
  406. */
  407. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  408. float new_z_fade_height;
  409. #endif
  410. void MarlinSettings::postprocess() {
  411. xyze_pos_t oldpos = current_position;
  412. // steps per s2 needs to be updated to agree with units per s2
  413. planner.reset_acceleration_rates();
  414. // Make sure delta kinematics are updated before refreshing the
  415. // planner position so the stepper counts will be set correctly.
  416. TERN_(DELTA, recalc_delta_settings());
  417. TERN_(PIDTEMP, thermalManager.updatePID());
  418. #if DISABLED(NO_VOLUMETRICS)
  419. planner.calculate_volumetric_multipliers();
  420. #elif EXTRUDERS
  421. for (uint8_t i = COUNT(planner.e_factor); i--;)
  422. planner.refresh_e_factor(i);
  423. #endif
  424. // Software endstops depend on home_offset
  425. LOOP_XYZ(i) {
  426. update_workspace_offset((AxisEnum)i);
  427. update_software_endstops((AxisEnum)i);
  428. }
  429. TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report
  430. TERN_(AUTO_BED_LEVELING_BILINEAR, refresh_bed_level());
  431. TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power());
  432. TERN_(FWRETRACT, fwretract.refresh_autoretract());
  433. TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk());
  434. TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.update_brightness());
  435. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  436. // and init stepper.count[], planner.position[] with current_position
  437. planner.refresh_positioning();
  438. // Various factors can change the current position
  439. if (oldpos != current_position)
  440. report_current_position();
  441. }
  442. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  443. #include "printcounter.h"
  444. static_assert(
  445. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  446. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  447. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  448. );
  449. #endif
  450. #if ENABLED(SD_FIRMWARE_UPDATE)
  451. #if ENABLED(EEPROM_SETTINGS)
  452. static_assert(
  453. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  454. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  455. );
  456. #endif
  457. bool MarlinSettings::sd_update_status() {
  458. uint8_t val;
  459. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  460. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  461. }
  462. bool MarlinSettings::set_sd_update_status(const bool enable) {
  463. if (enable != sd_update_status())
  464. persistentStore.write_data(
  465. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  466. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  467. );
  468. return true;
  469. }
  470. #endif // SD_FIRMWARE_UPDATE
  471. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  472. static_assert(EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
  473. "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data.");
  474. #endif
  475. #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
  476. #include "../core/debug_out.h"
  477. #if ENABLED(EEPROM_SETTINGS)
  478. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  479. #if ENABLED(DEBUG_EEPROM_READWRITE)
  480. #define _FIELD_TEST(FIELD) \
  481. EEPROM_ASSERT( \
  482. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  483. "Field " STRINGIFY(FIELD) " mismatch." \
  484. )
  485. #else
  486. #define _FIELD_TEST(FIELD) NOOP
  487. #endif
  488. const char version[4] = EEPROM_VERSION;
  489. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  490. int MarlinSettings::eeprom_index;
  491. uint16_t MarlinSettings::working_crc;
  492. bool MarlinSettings::size_error(const uint16_t size) {
  493. if (size != datasize()) {
  494. DEBUG_ERROR_MSG("EEPROM datasize error.");
  495. return true;
  496. }
  497. return false;
  498. }
  499. /**
  500. * M500 - Store Configuration
  501. */
  502. bool MarlinSettings::save() {
  503. float dummyf = 0;
  504. char ver[4] = "ERR";
  505. if (!EEPROM_START(EEPROM_OFFSET)) return false;
  506. eeprom_error = false;
  507. // Write or Skip version. (Flash doesn't allow rewrite without erase.)
  508. TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver);
  509. EEPROM_SKIP(working_crc); // Skip the checksum slot
  510. working_crc = 0; // clear before first "real data"
  511. _FIELD_TEST(esteppers);
  512. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  513. EEPROM_WRITE(esteppers);
  514. //
  515. // Planner Motion
  516. //
  517. {
  518. EEPROM_WRITE(planner.settings);
  519. #if HAS_CLASSIC_JERK
  520. EEPROM_WRITE(planner.max_jerk);
  521. #if HAS_LINEAR_E_JERK
  522. dummyf = float(DEFAULT_EJERK);
  523. EEPROM_WRITE(dummyf);
  524. #endif
  525. #else
  526. const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) };
  527. EEPROM_WRITE(planner_max_jerk);
  528. #endif
  529. TERN_(CLASSIC_JERK, dummyf = 0.02f);
  530. EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  531. }
  532. //
  533. // Home Offset
  534. //
  535. {
  536. _FIELD_TEST(home_offset);
  537. #if HAS_SCARA_OFFSET
  538. EEPROM_WRITE(scara_home_offset);
  539. #else
  540. #if !HAS_HOME_OFFSET
  541. const xyz_pos_t home_offset{0};
  542. #endif
  543. EEPROM_WRITE(home_offset);
  544. #endif
  545. }
  546. //
  547. // Hotend Offsets, if any
  548. //
  549. {
  550. #if HAS_HOTEND_OFFSET
  551. // Skip hotend 0 which must be 0
  552. LOOP_S_L_N(e, 1, HOTENDS)
  553. EEPROM_WRITE(hotend_offset[e]);
  554. #endif
  555. }
  556. //
  557. // Filament Runout Sensor
  558. //
  559. {
  560. #if HAS_FILAMENT_SENSOR
  561. const bool &runout_sensor_enabled = runout.enabled;
  562. #else
  563. constexpr int8_t runout_sensor_enabled = -1;
  564. #endif
  565. _FIELD_TEST(runout_sensor_enabled);
  566. EEPROM_WRITE(runout_sensor_enabled);
  567. #if HAS_FILAMENT_RUNOUT_DISTANCE
  568. const float &runout_distance_mm = runout.runout_distance();
  569. #else
  570. constexpr float runout_distance_mm = 0;
  571. #endif
  572. EEPROM_WRITE(runout_distance_mm);
  573. }
  574. //
  575. // Global Leveling
  576. //
  577. {
  578. const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, (DEFAULT_LEVELING_FADE_HEIGHT));
  579. EEPROM_WRITE(zfh);
  580. }
  581. //
  582. // Mesh Bed Leveling
  583. //
  584. {
  585. #if ENABLED(MESH_BED_LEVELING)
  586. static_assert(
  587. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  588. "MBL Z array is the wrong size."
  589. );
  590. #else
  591. dummyf = 0;
  592. #endif
  593. const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3),
  594. mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3);
  595. EEPROM_WRITE(TERN(MESH_BED_LEVELING, mbl.z_offset, dummyf));
  596. EEPROM_WRITE(mesh_num_x);
  597. EEPROM_WRITE(mesh_num_y);
  598. #if ENABLED(MESH_BED_LEVELING)
  599. EEPROM_WRITE(mbl.z_values);
  600. #else
  601. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
  602. #endif
  603. }
  604. //
  605. // Probe XYZ Offsets
  606. //
  607. {
  608. _FIELD_TEST(probe_offset);
  609. #if HAS_BED_PROBE
  610. const xyz_pos_t &zpo = probe.offset;
  611. #else
  612. constexpr xyz_pos_t zpo{0};
  613. #endif
  614. EEPROM_WRITE(zpo);
  615. }
  616. //
  617. // Planar Bed Leveling matrix
  618. //
  619. {
  620. #if ABL_PLANAR
  621. EEPROM_WRITE(planner.bed_level_matrix);
  622. #else
  623. dummyf = 0;
  624. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
  625. #endif
  626. }
  627. //
  628. // Bilinear Auto Bed Leveling
  629. //
  630. {
  631. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  632. static_assert(
  633. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  634. "Bilinear Z array is the wrong size."
  635. );
  636. #else
  637. const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
  638. #endif
  639. const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3),
  640. grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3);
  641. EEPROM_WRITE(grid_max_x);
  642. EEPROM_WRITE(grid_max_y);
  643. EEPROM_WRITE(bilinear_grid_spacing);
  644. EEPROM_WRITE(bilinear_start);
  645. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  646. EEPROM_WRITE(z_values); // 9-256 floats
  647. #else
  648. dummyf = 0;
  649. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
  650. #endif
  651. }
  652. //
  653. // Unified Bed Leveling
  654. //
  655. {
  656. _FIELD_TEST(planner_leveling_active);
  657. const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false);
  658. const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, ubl.storage_slot, -1);
  659. EEPROM_WRITE(ubl_active);
  660. EEPROM_WRITE(storage_slot);
  661. }
  662. //
  663. // Servo Angles
  664. //
  665. {
  666. _FIELD_TEST(servo_angles);
  667. #if !HAS_SERVO_ANGLES
  668. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  669. #endif
  670. EEPROM_WRITE(servo_angles);
  671. }
  672. //
  673. // Thermal first layer compensation values
  674. //
  675. #if ENABLED(PROBE_TEMP_COMPENSATION)
  676. EEPROM_WRITE(temp_comp.z_offsets_probe);
  677. EEPROM_WRITE(temp_comp.z_offsets_bed);
  678. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  679. EEPROM_WRITE(temp_comp.z_offsets_ext);
  680. #endif
  681. #else
  682. // No placeholder data for this feature
  683. #endif
  684. //
  685. // BLTOUCH
  686. //
  687. {
  688. _FIELD_TEST(bltouch_last_written_mode);
  689. const bool bltouch_last_written_mode = TERN(BLTOUCH, bltouch.last_written_mode, false);
  690. EEPROM_WRITE(bltouch_last_written_mode);
  691. }
  692. //
  693. // DELTA Geometry or Dual Endstops offsets
  694. //
  695. {
  696. #if ENABLED(DELTA)
  697. _FIELD_TEST(delta_height);
  698. EEPROM_WRITE(delta_height); // 1 float
  699. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  700. EEPROM_WRITE(delta_radius); // 1 float
  701. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  702. EEPROM_WRITE(segments_per_second); // 1 float
  703. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  704. EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
  705. #elif HAS_EXTRA_ENDSTOPS
  706. _FIELD_TEST(x2_endstop_adj);
  707. // Write dual endstops in X, Y, Z order. Unused = 0.0
  708. dummyf = 0;
  709. EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  710. EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  711. EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  712. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  713. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  714. #else
  715. EEPROM_WRITE(dummyf);
  716. #endif
  717. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  718. EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
  719. #else
  720. EEPROM_WRITE(dummyf);
  721. #endif
  722. #endif
  723. }
  724. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  725. EEPROM_WRITE(z_stepper_align.xy);
  726. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  727. EEPROM_WRITE(z_stepper_align.stepper_xy);
  728. #endif
  729. #endif
  730. //
  731. // LCD Preheat settings
  732. //
  733. #if PREHEAT_COUNT
  734. _FIELD_TEST(ui_material_preset);
  735. EEPROM_WRITE(ui.material_preset);
  736. #endif
  737. //
  738. // PIDTEMP
  739. //
  740. {
  741. _FIELD_TEST(hotendPID);
  742. HOTEND_LOOP() {
  743. PIDCF_t pidcf = {
  744. #if DISABLED(PIDTEMP)
  745. NAN, NAN, NAN,
  746. NAN, NAN
  747. #else
  748. PID_PARAM(Kp, e),
  749. unscalePID_i(PID_PARAM(Ki, e)),
  750. unscalePID_d(PID_PARAM(Kd, e)),
  751. PID_PARAM(Kc, e),
  752. PID_PARAM(Kf, e)
  753. #endif
  754. };
  755. EEPROM_WRITE(pidcf);
  756. }
  757. _FIELD_TEST(lpq_len);
  758. #if DISABLED(PID_EXTRUSION_SCALING)
  759. const int16_t lpq_len = 20;
  760. #endif
  761. EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len));
  762. }
  763. //
  764. // PIDTEMPBED
  765. //
  766. {
  767. _FIELD_TEST(bedPID);
  768. const PID_t bed_pid = {
  769. #if DISABLED(PIDTEMPBED)
  770. NAN, NAN, NAN
  771. #else
  772. // Store the unscaled PID values
  773. thermalManager.temp_bed.pid.Kp,
  774. unscalePID_i(thermalManager.temp_bed.pid.Ki),
  775. unscalePID_d(thermalManager.temp_bed.pid.Kd)
  776. #endif
  777. };
  778. EEPROM_WRITE(bed_pid);
  779. }
  780. //
  781. // PIDTEMPCHAMBER
  782. //
  783. {
  784. _FIELD_TEST(chamberPID);
  785. const PID_t chamber_pid = {
  786. #if DISABLED(PIDTEMPCHAMBER)
  787. NAN, NAN, NAN
  788. #else
  789. // Store the unscaled PID values
  790. thermalManager.temp_chamber.pid.Kp,
  791. unscalePID_i(thermalManager.temp_chamber.pid.Ki),
  792. unscalePID_d(thermalManager.temp_chamber.pid.Kd)
  793. #endif
  794. };
  795. EEPROM_WRITE(chamber_pid);
  796. }
  797. //
  798. // User-defined Thermistors
  799. //
  800. #if HAS_USER_THERMISTORS
  801. {
  802. _FIELD_TEST(user_thermistor);
  803. EEPROM_WRITE(thermalManager.user_thermistor);
  804. }
  805. #endif
  806. //
  807. // Power monitor
  808. //
  809. {
  810. #if HAS_POWER_MONITOR
  811. const uint8_t &power_monitor_flags = power_monitor.flags;
  812. #else
  813. constexpr uint8_t power_monitor_flags = 0x00;
  814. #endif
  815. _FIELD_TEST(power_monitor_flags);
  816. EEPROM_WRITE(power_monitor_flags);
  817. }
  818. //
  819. // LCD Contrast
  820. //
  821. {
  822. _FIELD_TEST(lcd_contrast);
  823. const int16_t lcd_contrast =
  824. #if HAS_LCD_CONTRAST
  825. ui.contrast
  826. #else
  827. 127
  828. #endif
  829. ;
  830. EEPROM_WRITE(lcd_contrast);
  831. }
  832. //
  833. // Controller Fan
  834. //
  835. {
  836. _FIELD_TEST(controllerFan_settings);
  837. #if ENABLED(USE_CONTROLLER_FAN)
  838. const controllerFan_settings_t &cfs = controllerFan.settings;
  839. #else
  840. controllerFan_settings_t cfs = controllerFan_defaults;
  841. #endif
  842. EEPROM_WRITE(cfs);
  843. }
  844. //
  845. // Power-Loss Recovery
  846. //
  847. {
  848. _FIELD_TEST(recovery_enabled);
  849. const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT));
  850. EEPROM_WRITE(recovery_enabled);
  851. }
  852. //
  853. // Firmware Retraction
  854. //
  855. {
  856. _FIELD_TEST(fwretract_settings);
  857. #if DISABLED(FWRETRACT)
  858. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  859. #endif
  860. EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults));
  861. #if DISABLED(FWRETRACT_AUTORETRACT)
  862. const bool autoretract_enabled = false;
  863. #endif
  864. EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled));
  865. }
  866. //
  867. // Volumetric & Filament Size
  868. //
  869. {
  870. _FIELD_TEST(parser_volumetric_enabled);
  871. #if DISABLED(NO_VOLUMETRICS)
  872. EEPROM_WRITE(parser.volumetric_enabled);
  873. EEPROM_WRITE(planner.filament_size);
  874. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  875. EEPROM_WRITE(planner.volumetric_extruder_limit);
  876. #else
  877. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  878. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  879. #endif
  880. #else
  881. const bool volumetric_enabled = false;
  882. EEPROM_WRITE(volumetric_enabled);
  883. dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
  884. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  885. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  886. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  887. #endif
  888. }
  889. //
  890. // TMC Configuration
  891. //
  892. {
  893. _FIELD_TEST(tmc_stepper_current);
  894. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  895. #if HAS_TRINAMIC_CONFIG
  896. #if AXIS_IS_TMC(X)
  897. tmc_stepper_current.X = stepperX.getMilliamps();
  898. #endif
  899. #if AXIS_IS_TMC(Y)
  900. tmc_stepper_current.Y = stepperY.getMilliamps();
  901. #endif
  902. #if AXIS_IS_TMC(Z)
  903. tmc_stepper_current.Z = stepperZ.getMilliamps();
  904. #endif
  905. #if AXIS_IS_TMC(X2)
  906. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  907. #endif
  908. #if AXIS_IS_TMC(Y2)
  909. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  910. #endif
  911. #if AXIS_IS_TMC(Z2)
  912. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  913. #endif
  914. #if AXIS_IS_TMC(Z3)
  915. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  916. #endif
  917. #if AXIS_IS_TMC(Z4)
  918. tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
  919. #endif
  920. #if AXIS_IS_TMC(E0)
  921. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  922. #endif
  923. #if AXIS_IS_TMC(E1)
  924. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  925. #endif
  926. #if AXIS_IS_TMC(E2)
  927. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  928. #endif
  929. #if AXIS_IS_TMC(E3)
  930. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  931. #endif
  932. #if AXIS_IS_TMC(E4)
  933. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  934. #endif
  935. #if AXIS_IS_TMC(E5)
  936. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  937. #endif
  938. #if AXIS_IS_TMC(E6)
  939. tmc_stepper_current.E6 = stepperE6.getMilliamps();
  940. #endif
  941. #if AXIS_IS_TMC(E7)
  942. tmc_stepper_current.E7 = stepperE7.getMilliamps();
  943. #endif
  944. #endif
  945. EEPROM_WRITE(tmc_stepper_current);
  946. }
  947. //
  948. // TMC Hybrid Threshold, and placeholder values
  949. //
  950. {
  951. _FIELD_TEST(tmc_hybrid_threshold);
  952. #if ENABLED(HYBRID_THRESHOLD)
  953. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  954. #if AXIS_HAS_STEALTHCHOP(X)
  955. tmc_hybrid_threshold.X = stepperX.get_pwm_thrs();
  956. #endif
  957. #if AXIS_HAS_STEALTHCHOP(Y)
  958. tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs();
  959. #endif
  960. #if AXIS_HAS_STEALTHCHOP(Z)
  961. tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs();
  962. #endif
  963. #if AXIS_HAS_STEALTHCHOP(X2)
  964. tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs();
  965. #endif
  966. #if AXIS_HAS_STEALTHCHOP(Y2)
  967. tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs();
  968. #endif
  969. #if AXIS_HAS_STEALTHCHOP(Z2)
  970. tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs();
  971. #endif
  972. #if AXIS_HAS_STEALTHCHOP(Z3)
  973. tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs();
  974. #endif
  975. #if AXIS_HAS_STEALTHCHOP(Z4)
  976. tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs();
  977. #endif
  978. #if AXIS_HAS_STEALTHCHOP(E0)
  979. tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs();
  980. #endif
  981. #if AXIS_HAS_STEALTHCHOP(E1)
  982. tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs();
  983. #endif
  984. #if AXIS_HAS_STEALTHCHOP(E2)
  985. tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs();
  986. #endif
  987. #if AXIS_HAS_STEALTHCHOP(E3)
  988. tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs();
  989. #endif
  990. #if AXIS_HAS_STEALTHCHOP(E4)
  991. tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs();
  992. #endif
  993. #if AXIS_HAS_STEALTHCHOP(E5)
  994. tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs();
  995. #endif
  996. #if AXIS_HAS_STEALTHCHOP(E6)
  997. tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs();
  998. #endif
  999. #if AXIS_HAS_STEALTHCHOP(E7)
  1000. tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs();
  1001. #endif
  1002. #else
  1003. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  1004. .X = 100, .Y = 100, .Z = 3,
  1005. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3,
  1006. .E0 = 30, .E1 = 30, .E2 = 30,
  1007. .E3 = 30, .E4 = 30, .E5 = 30
  1008. };
  1009. #endif
  1010. EEPROM_WRITE(tmc_hybrid_threshold);
  1011. }
  1012. //
  1013. // TMC StallGuard threshold
  1014. //
  1015. {
  1016. tmc_sgt_t tmc_sgt{0};
  1017. #if USE_SENSORLESS
  1018. TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold());
  1019. TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold());
  1020. TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold());
  1021. TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold());
  1022. TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold());
  1023. TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold());
  1024. TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold());
  1025. TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold());
  1026. #endif
  1027. EEPROM_WRITE(tmc_sgt);
  1028. }
  1029. //
  1030. // TMC stepping mode
  1031. //
  1032. {
  1033. _FIELD_TEST(tmc_stealth_enabled);
  1034. tmc_stealth_enabled_t tmc_stealth_enabled = { false };
  1035. #if AXIS_HAS_STEALTHCHOP(X)
  1036. tmc_stealth_enabled.X = stepperX.get_stored_stealthChop();
  1037. #endif
  1038. #if AXIS_HAS_STEALTHCHOP(Y)
  1039. tmc_stealth_enabled.Y = stepperY.get_stored_stealthChop();
  1040. #endif
  1041. #if AXIS_HAS_STEALTHCHOP(Z)
  1042. tmc_stealth_enabled.Z = stepperZ.get_stored_stealthChop();
  1043. #endif
  1044. #if AXIS_HAS_STEALTHCHOP(X2)
  1045. tmc_stealth_enabled.X2 = stepperX2.get_stored_stealthChop();
  1046. #endif
  1047. #if AXIS_HAS_STEALTHCHOP(Y2)
  1048. tmc_stealth_enabled.Y2 = stepperY2.get_stored_stealthChop();
  1049. #endif
  1050. #if AXIS_HAS_STEALTHCHOP(Z2)
  1051. tmc_stealth_enabled.Z2 = stepperZ2.get_stored_stealthChop();
  1052. #endif
  1053. #if AXIS_HAS_STEALTHCHOP(Z3)
  1054. tmc_stealth_enabled.Z3 = stepperZ3.get_stored_stealthChop();
  1055. #endif
  1056. #if AXIS_HAS_STEALTHCHOP(Z4)
  1057. tmc_stealth_enabled.Z4 = stepperZ4.get_stored_stealthChop();
  1058. #endif
  1059. #if AXIS_HAS_STEALTHCHOP(E0)
  1060. tmc_stealth_enabled.E0 = stepperE0.get_stored_stealthChop();
  1061. #endif
  1062. #if AXIS_HAS_STEALTHCHOP(E1)
  1063. tmc_stealth_enabled.E1 = stepperE1.get_stored_stealthChop();
  1064. #endif
  1065. #if AXIS_HAS_STEALTHCHOP(E2)
  1066. tmc_stealth_enabled.E2 = stepperE2.get_stored_stealthChop();
  1067. #endif
  1068. #if AXIS_HAS_STEALTHCHOP(E3)
  1069. tmc_stealth_enabled.E3 = stepperE3.get_stored_stealthChop();
  1070. #endif
  1071. #if AXIS_HAS_STEALTHCHOP(E4)
  1072. tmc_stealth_enabled.E4 = stepperE4.get_stored_stealthChop();
  1073. #endif
  1074. #if AXIS_HAS_STEALTHCHOP(E5)
  1075. tmc_stealth_enabled.E5 = stepperE5.get_stored_stealthChop();
  1076. #endif
  1077. #if AXIS_HAS_STEALTHCHOP(E6)
  1078. tmc_stealth_enabled.E6 = stepperE6.get_stored_stealthChop();
  1079. #endif
  1080. #if AXIS_HAS_STEALTHCHOP(E7)
  1081. tmc_stealth_enabled.E7 = stepperE7.get_stored_stealthChop();
  1082. #endif
  1083. EEPROM_WRITE(tmc_stealth_enabled);
  1084. }
  1085. //
  1086. // Linear Advance
  1087. //
  1088. {
  1089. _FIELD_TEST(planner_extruder_advance_K);
  1090. #if ENABLED(LIN_ADVANCE)
  1091. EEPROM_WRITE(planner.extruder_advance_K);
  1092. #else
  1093. dummyf = 0;
  1094. for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
  1095. #endif
  1096. }
  1097. //
  1098. // Motor Current PWM
  1099. //
  1100. {
  1101. _FIELD_TEST(motor_current_setting);
  1102. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1103. EEPROM_WRITE(stepper.motor_current_setting);
  1104. #else
  1105. const uint32_t no_current[MOTOR_CURRENT_COUNT] = { 0 };
  1106. EEPROM_WRITE(no_current);
  1107. #endif
  1108. }
  1109. //
  1110. // CNC Coordinate Systems
  1111. //
  1112. _FIELD_TEST(coordinate_system);
  1113. #if DISABLED(CNC_COORDINATE_SYSTEMS)
  1114. const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
  1115. #endif
  1116. EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system));
  1117. //
  1118. // Skew correction factors
  1119. //
  1120. _FIELD_TEST(planner_skew_factor);
  1121. EEPROM_WRITE(planner.skew_factor);
  1122. //
  1123. // Advanced Pause filament load & unload lengths
  1124. //
  1125. #if EXTRUDERS
  1126. {
  1127. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1128. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1129. #endif
  1130. _FIELD_TEST(fc_settings);
  1131. EEPROM_WRITE(fc_settings);
  1132. }
  1133. #endif
  1134. //
  1135. // Multiple Extruders
  1136. //
  1137. #if HAS_MULTI_EXTRUDER
  1138. _FIELD_TEST(toolchange_settings);
  1139. EEPROM_WRITE(toolchange_settings);
  1140. #endif
  1141. //
  1142. // Backlash Compensation
  1143. //
  1144. {
  1145. #if ENABLED(BACKLASH_GCODE)
  1146. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1147. const uint8_t &backlash_correction = backlash.correction;
  1148. #else
  1149. const xyz_float_t backlash_distance_mm{0};
  1150. const uint8_t backlash_correction = 0;
  1151. #endif
  1152. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1153. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1154. #else
  1155. const float backlash_smoothing_mm = 3;
  1156. #endif
  1157. _FIELD_TEST(backlash_distance_mm);
  1158. EEPROM_WRITE(backlash_distance_mm);
  1159. EEPROM_WRITE(backlash_correction);
  1160. EEPROM_WRITE(backlash_smoothing_mm);
  1161. }
  1162. //
  1163. // Extensible UI User Data
  1164. //
  1165. #if ENABLED(EXTENSIBLE_UI)
  1166. {
  1167. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1168. ExtUI::onStoreSettings(extui_data);
  1169. _FIELD_TEST(extui_data);
  1170. EEPROM_WRITE(extui_data);
  1171. }
  1172. #endif
  1173. //
  1174. // Case Light Brightness
  1175. //
  1176. #if CASELIGHT_USES_BRIGHTNESS
  1177. EEPROM_WRITE(caselight.brightness);
  1178. #endif
  1179. //
  1180. // Password feature
  1181. //
  1182. #if ENABLED(PASSWORD_FEATURE)
  1183. EEPROM_WRITE(password.is_set);
  1184. EEPROM_WRITE(password.value);
  1185. #endif
  1186. //
  1187. // TOUCH_SCREEN_CALIBRATION
  1188. //
  1189. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  1190. EEPROM_WRITE(touch_calibration.calibration);
  1191. #endif
  1192. //
  1193. // Ethernet network info
  1194. //
  1195. #if HAS_ETHERNET
  1196. {
  1197. _FIELD_TEST(ethernet_hardware_enabled);
  1198. const bool ethernet_hardware_enabled = ethernet.hardware_enabled;
  1199. const uint32_t ethernet_ip = ethernet.ip,
  1200. ethernet_dns = ethernet.myDns,
  1201. ethernet_gateway = ethernet.gateway,
  1202. ethernet_subnet = ethernet.subnet;
  1203. EEPROM_WRITE(ethernet_hardware_enabled);
  1204. EEPROM_WRITE(ethernet_ip);
  1205. EEPROM_WRITE(ethernet_dns);
  1206. EEPROM_WRITE(ethernet_gateway);
  1207. EEPROM_WRITE(ethernet_subnet);
  1208. }
  1209. #endif
  1210. //
  1211. // Buzzer enable/disable
  1212. //
  1213. #if ENABLED(SOUND_MENU_ITEM)
  1214. EEPROM_WRITE(ui.buzzer_enabled);
  1215. #endif
  1216. //
  1217. // MKS UI controller
  1218. //
  1219. #if ENABLED(DGUS_LCD_UI_MKS)
  1220. EEPROM_WRITE(mks_language_index);
  1221. EEPROM_WRITE(mks_corner_offsets);
  1222. EEPROM_WRITE(mks_park_pos);
  1223. EEPROM_WRITE(mks_min_extrusion_temp);
  1224. #endif
  1225. //
  1226. // Selected LCD language
  1227. //
  1228. #if HAS_MULTI_LANGUAGE
  1229. EEPROM_WRITE(ui.language);
  1230. #endif
  1231. //
  1232. // Report final CRC and Data Size
  1233. //
  1234. if (!eeprom_error) {
  1235. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1236. final_crc = working_crc;
  1237. // Write the EEPROM header
  1238. eeprom_index = EEPROM_OFFSET;
  1239. EEPROM_WRITE(version);
  1240. EEPROM_WRITE(final_crc);
  1241. // Report storage size
  1242. DEBUG_ECHO_START();
  1243. DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1244. eeprom_error |= size_error(eeprom_size);
  1245. }
  1246. EEPROM_FINISH();
  1247. //
  1248. // UBL Mesh
  1249. //
  1250. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1251. if (ubl.storage_slot >= 0)
  1252. store_mesh(ubl.storage_slot);
  1253. #endif
  1254. if (!eeprom_error) LCD_MESSAGEPGM(MSG_SETTINGS_STORED);
  1255. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreWritten(!eeprom_error));
  1256. return !eeprom_error;
  1257. }
  1258. /**
  1259. * M501 - Retrieve Configuration
  1260. */
  1261. bool MarlinSettings::_load() {
  1262. if (!EEPROM_START(EEPROM_OFFSET)) return false;
  1263. char stored_ver[4];
  1264. EEPROM_READ_ALWAYS(stored_ver);
  1265. uint16_t stored_crc;
  1266. EEPROM_READ_ALWAYS(stored_crc);
  1267. // Version has to match or defaults are used
  1268. if (strncmp(version, stored_ver, 3) != 0) {
  1269. if (stored_ver[3] != '\0') {
  1270. stored_ver[0] = '?';
  1271. stored_ver[1] = '\0';
  1272. }
  1273. DEBUG_ECHO_START();
  1274. DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1275. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_version());
  1276. eeprom_error = true;
  1277. }
  1278. else {
  1279. float dummyf = 0;
  1280. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1281. _FIELD_TEST(esteppers);
  1282. // Number of esteppers may change
  1283. uint8_t esteppers;
  1284. EEPROM_READ_ALWAYS(esteppers);
  1285. //
  1286. // Planner Motion
  1287. //
  1288. {
  1289. // Get only the number of E stepper parameters previously stored
  1290. // Any steppers added later are set to their defaults
  1291. uint32_t tmp1[XYZ + esteppers];
  1292. float tmp2[XYZ + esteppers];
  1293. feedRate_t tmp3[XYZ + esteppers];
  1294. EEPROM_READ((uint8_t *)tmp1, sizeof(tmp1)); // max_acceleration_mm_per_s2
  1295. EEPROM_READ(planner.settings.min_segment_time_us);
  1296. EEPROM_READ((uint8_t *)tmp2, sizeof(tmp2)); // axis_steps_per_mm
  1297. EEPROM_READ((uint8_t *)tmp3, sizeof(tmp3)); // max_feedrate_mm_s
  1298. if (!validating) LOOP_XYZE_N(i) {
  1299. const bool in = (i < esteppers + XYZ);
  1300. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  1301. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  1302. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  1303. }
  1304. EEPROM_READ(planner.settings.acceleration);
  1305. EEPROM_READ(planner.settings.retract_acceleration);
  1306. EEPROM_READ(planner.settings.travel_acceleration);
  1307. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1308. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1309. #if HAS_CLASSIC_JERK
  1310. EEPROM_READ(planner.max_jerk);
  1311. #if HAS_LINEAR_E_JERK
  1312. EEPROM_READ(dummyf);
  1313. #endif
  1314. #else
  1315. for (uint8_t q = 4; q--;) EEPROM_READ(dummyf);
  1316. #endif
  1317. EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  1318. }
  1319. //
  1320. // Home Offset (M206 / M665)
  1321. //
  1322. {
  1323. _FIELD_TEST(home_offset);
  1324. #if HAS_SCARA_OFFSET
  1325. EEPROM_READ(scara_home_offset);
  1326. #else
  1327. #if !HAS_HOME_OFFSET
  1328. xyz_pos_t home_offset;
  1329. #endif
  1330. EEPROM_READ(home_offset);
  1331. #endif
  1332. }
  1333. //
  1334. // Hotend Offsets, if any
  1335. //
  1336. {
  1337. #if HAS_HOTEND_OFFSET
  1338. // Skip hotend 0 which must be 0
  1339. LOOP_S_L_N(e, 1, HOTENDS)
  1340. EEPROM_READ(hotend_offset[e]);
  1341. #endif
  1342. }
  1343. //
  1344. // Filament Runout Sensor
  1345. //
  1346. {
  1347. int8_t runout_sensor_enabled;
  1348. _FIELD_TEST(runout_sensor_enabled);
  1349. EEPROM_READ(runout_sensor_enabled);
  1350. #if HAS_FILAMENT_SENSOR
  1351. runout.enabled = runout_sensor_enabled < 0 ? FIL_RUNOUT_ENABLED_DEFAULT : runout_sensor_enabled;
  1352. #endif
  1353. TERN_(HAS_FILAMENT_SENSOR, if (runout.enabled) runout.reset());
  1354. float runout_distance_mm;
  1355. EEPROM_READ(runout_distance_mm);
  1356. #if HAS_FILAMENT_RUNOUT_DISTANCE
  1357. if (!validating) runout.set_runout_distance(runout_distance_mm);
  1358. #endif
  1359. }
  1360. //
  1361. // Global Leveling
  1362. //
  1363. EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf));
  1364. //
  1365. // Mesh (Manual) Bed Leveling
  1366. //
  1367. {
  1368. uint8_t mesh_num_x, mesh_num_y;
  1369. EEPROM_READ(dummyf);
  1370. EEPROM_READ_ALWAYS(mesh_num_x);
  1371. EEPROM_READ_ALWAYS(mesh_num_y);
  1372. #if ENABLED(MESH_BED_LEVELING)
  1373. if (!validating) mbl.z_offset = dummyf;
  1374. if (mesh_num_x == (GRID_MAX_POINTS_X) && mesh_num_y == (GRID_MAX_POINTS_Y)) {
  1375. // EEPROM data fits the current mesh
  1376. EEPROM_READ(mbl.z_values);
  1377. }
  1378. else {
  1379. // EEPROM data is stale
  1380. if (!validating) mbl.reset();
  1381. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1382. }
  1383. #else
  1384. // MBL is disabled - skip the stored data
  1385. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1386. #endif // MESH_BED_LEVELING
  1387. }
  1388. //
  1389. // Probe Z Offset
  1390. //
  1391. {
  1392. _FIELD_TEST(probe_offset);
  1393. #if HAS_BED_PROBE
  1394. const xyz_pos_t &zpo = probe.offset;
  1395. #else
  1396. xyz_pos_t zpo;
  1397. #endif
  1398. EEPROM_READ(zpo);
  1399. }
  1400. //
  1401. // Planar Bed Leveling matrix
  1402. //
  1403. {
  1404. #if ABL_PLANAR
  1405. EEPROM_READ(planner.bed_level_matrix);
  1406. #else
  1407. for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
  1408. #endif
  1409. }
  1410. //
  1411. // Bilinear Auto Bed Leveling
  1412. //
  1413. {
  1414. uint8_t grid_max_x, grid_max_y;
  1415. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1416. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1417. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1418. if (grid_max_x == (GRID_MAX_POINTS_X) && grid_max_y == (GRID_MAX_POINTS_Y)) {
  1419. if (!validating) set_bed_leveling_enabled(false);
  1420. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1421. EEPROM_READ(bilinear_start); // 2 ints
  1422. EEPROM_READ(z_values); // 9 to 256 floats
  1423. }
  1424. else // EEPROM data is stale
  1425. #endif // AUTO_BED_LEVELING_BILINEAR
  1426. {
  1427. // Skip past disabled (or stale) Bilinear Grid data
  1428. xy_pos_t bgs, bs;
  1429. EEPROM_READ(bgs);
  1430. EEPROM_READ(bs);
  1431. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
  1432. }
  1433. }
  1434. //
  1435. // Unified Bed Leveling active state
  1436. //
  1437. {
  1438. _FIELD_TEST(planner_leveling_active);
  1439. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1440. const bool &planner_leveling_active = planner.leveling_active;
  1441. const int8_t &ubl_storage_slot = ubl.storage_slot;
  1442. #else
  1443. bool planner_leveling_active;
  1444. int8_t ubl_storage_slot;
  1445. #endif
  1446. EEPROM_READ(planner_leveling_active);
  1447. EEPROM_READ(ubl_storage_slot);
  1448. }
  1449. //
  1450. // SERVO_ANGLES
  1451. //
  1452. {
  1453. _FIELD_TEST(servo_angles);
  1454. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1455. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1456. #else
  1457. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1458. #endif
  1459. EEPROM_READ(servo_angles_arr);
  1460. }
  1461. //
  1462. // Thermal first layer compensation values
  1463. //
  1464. #if ENABLED(PROBE_TEMP_COMPENSATION)
  1465. EEPROM_READ(temp_comp.z_offsets_probe);
  1466. EEPROM_READ(temp_comp.z_offsets_bed);
  1467. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  1468. EEPROM_READ(temp_comp.z_offsets_ext);
  1469. #endif
  1470. temp_comp.reset_index();
  1471. #else
  1472. // No placeholder data for this feature
  1473. #endif
  1474. //
  1475. // BLTOUCH
  1476. //
  1477. {
  1478. _FIELD_TEST(bltouch_last_written_mode);
  1479. #if ENABLED(BLTOUCH)
  1480. const bool &bltouch_last_written_mode = bltouch.last_written_mode;
  1481. #else
  1482. bool bltouch_last_written_mode;
  1483. #endif
  1484. EEPROM_READ(bltouch_last_written_mode);
  1485. }
  1486. //
  1487. // DELTA Geometry or Dual Endstops offsets
  1488. //
  1489. {
  1490. #if ENABLED(DELTA)
  1491. _FIELD_TEST(delta_height);
  1492. EEPROM_READ(delta_height); // 1 float
  1493. EEPROM_READ(delta_endstop_adj); // 3 floats
  1494. EEPROM_READ(delta_radius); // 1 float
  1495. EEPROM_READ(delta_diagonal_rod); // 1 float
  1496. EEPROM_READ(segments_per_second); // 1 float
  1497. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1498. EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
  1499. #elif HAS_EXTRA_ENDSTOPS
  1500. _FIELD_TEST(x2_endstop_adj);
  1501. EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  1502. EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  1503. EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  1504. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  1505. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1506. #else
  1507. EEPROM_READ(dummyf);
  1508. #endif
  1509. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  1510. EEPROM_READ(endstops.z4_endstop_adj); // 1 float
  1511. #else
  1512. EEPROM_READ(dummyf);
  1513. #endif
  1514. #endif
  1515. }
  1516. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  1517. EEPROM_READ(z_stepper_align.xy);
  1518. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  1519. EEPROM_READ(z_stepper_align.stepper_xy);
  1520. #endif
  1521. #endif
  1522. //
  1523. // LCD Preheat settings
  1524. //
  1525. #if PREHEAT_COUNT
  1526. _FIELD_TEST(ui_material_preset);
  1527. EEPROM_READ(ui.material_preset);
  1528. #endif
  1529. //
  1530. // Hotend PID
  1531. //
  1532. {
  1533. HOTEND_LOOP() {
  1534. PIDCF_t pidcf;
  1535. EEPROM_READ(pidcf);
  1536. #if ENABLED(PIDTEMP)
  1537. if (!validating && !isnan(pidcf.Kp)) {
  1538. // Scale PID values since EEPROM values are unscaled
  1539. PID_PARAM(Kp, e) = pidcf.Kp;
  1540. PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
  1541. PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
  1542. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc);
  1543. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf);
  1544. }
  1545. #endif
  1546. }
  1547. }
  1548. //
  1549. // PID Extrusion Scaling
  1550. //
  1551. {
  1552. _FIELD_TEST(lpq_len);
  1553. #if ENABLED(PID_EXTRUSION_SCALING)
  1554. const int16_t &lpq_len = thermalManager.lpq_len;
  1555. #else
  1556. int16_t lpq_len;
  1557. #endif
  1558. EEPROM_READ(lpq_len);
  1559. }
  1560. //
  1561. // Heated Bed PID
  1562. //
  1563. {
  1564. PID_t pid;
  1565. EEPROM_READ(pid);
  1566. #if ENABLED(PIDTEMPBED)
  1567. if (!validating && !isnan(pid.Kp)) {
  1568. // Scale PID values since EEPROM values are unscaled
  1569. thermalManager.temp_bed.pid.Kp = pid.Kp;
  1570. thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
  1571. thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
  1572. }
  1573. #endif
  1574. }
  1575. //
  1576. // Heated Chamber PID
  1577. //
  1578. {
  1579. PID_t pid;
  1580. EEPROM_READ(pid);
  1581. #if ENABLED(PIDTEMPCHAMBER)
  1582. if (!validating && !isnan(pid.Kp)) {
  1583. // Scale PID values since EEPROM values are unscaled
  1584. thermalManager.temp_chamber.pid.Kp = pid.Kp;
  1585. thermalManager.temp_chamber.pid.Ki = scalePID_i(pid.Ki);
  1586. thermalManager.temp_chamber.pid.Kd = scalePID_d(pid.Kd);
  1587. }
  1588. #endif
  1589. }
  1590. //
  1591. // User-defined Thermistors
  1592. //
  1593. #if HAS_USER_THERMISTORS
  1594. {
  1595. _FIELD_TEST(user_thermistor);
  1596. EEPROM_READ(thermalManager.user_thermistor);
  1597. }
  1598. #endif
  1599. //
  1600. // Power monitor
  1601. //
  1602. {
  1603. #if HAS_POWER_MONITOR
  1604. uint8_t &power_monitor_flags = power_monitor.flags;
  1605. #else
  1606. uint8_t power_monitor_flags;
  1607. #endif
  1608. _FIELD_TEST(power_monitor_flags);
  1609. EEPROM_READ(power_monitor_flags);
  1610. }
  1611. //
  1612. // LCD Contrast
  1613. //
  1614. {
  1615. _FIELD_TEST(lcd_contrast);
  1616. int16_t lcd_contrast;
  1617. EEPROM_READ(lcd_contrast);
  1618. if (!validating) {
  1619. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(lcd_contrast));
  1620. }
  1621. }
  1622. //
  1623. // Controller Fan
  1624. //
  1625. {
  1626. _FIELD_TEST(controllerFan_settings);
  1627. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  1628. const controllerFan_settings_t &cfs = controllerFan.settings;
  1629. #else
  1630. controllerFan_settings_t cfs = { 0 };
  1631. #endif
  1632. EEPROM_READ(cfs);
  1633. }
  1634. //
  1635. // Power-Loss Recovery
  1636. //
  1637. {
  1638. _FIELD_TEST(recovery_enabled);
  1639. #if ENABLED(POWER_LOSS_RECOVERY)
  1640. const bool &recovery_enabled = recovery.enabled;
  1641. #else
  1642. bool recovery_enabled;
  1643. #endif
  1644. EEPROM_READ(recovery_enabled);
  1645. }
  1646. //
  1647. // Firmware Retraction
  1648. //
  1649. {
  1650. _FIELD_TEST(fwretract_settings);
  1651. #if ENABLED(FWRETRACT)
  1652. EEPROM_READ(fwretract.settings);
  1653. #else
  1654. fwretract_settings_t fwretract_settings;
  1655. EEPROM_READ(fwretract_settings);
  1656. #endif
  1657. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1658. EEPROM_READ(fwretract.autoretract_enabled);
  1659. #else
  1660. bool autoretract_enabled;
  1661. EEPROM_READ(autoretract_enabled);
  1662. #endif
  1663. }
  1664. //
  1665. // Volumetric & Filament Size
  1666. //
  1667. {
  1668. struct {
  1669. bool volumetric_enabled;
  1670. float filament_size[EXTRUDERS];
  1671. float volumetric_extruder_limit[EXTRUDERS];
  1672. } storage;
  1673. _FIELD_TEST(parser_volumetric_enabled);
  1674. EEPROM_READ(storage);
  1675. #if DISABLED(NO_VOLUMETRICS)
  1676. if (!validating) {
  1677. parser.volumetric_enabled = storage.volumetric_enabled;
  1678. COPY(planner.filament_size, storage.filament_size);
  1679. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1680. COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit);
  1681. #endif
  1682. }
  1683. #endif
  1684. }
  1685. //
  1686. // TMC Stepper Settings
  1687. //
  1688. if (!validating) reset_stepper_drivers();
  1689. // TMC Stepper Current
  1690. {
  1691. _FIELD_TEST(tmc_stepper_current);
  1692. tmc_stepper_current_t currents;
  1693. EEPROM_READ(currents);
  1694. #if HAS_TRINAMIC_CONFIG
  1695. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1696. if (!validating) {
  1697. #if AXIS_IS_TMC(X)
  1698. SET_CURR(X);
  1699. #endif
  1700. #if AXIS_IS_TMC(Y)
  1701. SET_CURR(Y);
  1702. #endif
  1703. #if AXIS_IS_TMC(Z)
  1704. SET_CURR(Z);
  1705. #endif
  1706. #if AXIS_IS_TMC(X2)
  1707. SET_CURR(X2);
  1708. #endif
  1709. #if AXIS_IS_TMC(Y2)
  1710. SET_CURR(Y2);
  1711. #endif
  1712. #if AXIS_IS_TMC(Z2)
  1713. SET_CURR(Z2);
  1714. #endif
  1715. #if AXIS_IS_TMC(Z3)
  1716. SET_CURR(Z3);
  1717. #endif
  1718. #if AXIS_IS_TMC(Z4)
  1719. SET_CURR(Z4);
  1720. #endif
  1721. #if AXIS_IS_TMC(E0)
  1722. SET_CURR(E0);
  1723. #endif
  1724. #if AXIS_IS_TMC(E1)
  1725. SET_CURR(E1);
  1726. #endif
  1727. #if AXIS_IS_TMC(E2)
  1728. SET_CURR(E2);
  1729. #endif
  1730. #if AXIS_IS_TMC(E3)
  1731. SET_CURR(E3);
  1732. #endif
  1733. #if AXIS_IS_TMC(E4)
  1734. SET_CURR(E4);
  1735. #endif
  1736. #if AXIS_IS_TMC(E5)
  1737. SET_CURR(E5);
  1738. #endif
  1739. #if AXIS_IS_TMC(E6)
  1740. SET_CURR(E6);
  1741. #endif
  1742. #if AXIS_IS_TMC(E7)
  1743. SET_CURR(E7);
  1744. #endif
  1745. }
  1746. #endif
  1747. }
  1748. // TMC Hybrid Threshold
  1749. {
  1750. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1751. _FIELD_TEST(tmc_hybrid_threshold);
  1752. EEPROM_READ(tmc_hybrid_threshold);
  1753. #if ENABLED(HYBRID_THRESHOLD)
  1754. if (!validating) {
  1755. #if AXIS_HAS_STEALTHCHOP(X)
  1756. stepperX.set_pwm_thrs(tmc_hybrid_threshold.X);
  1757. #endif
  1758. #if AXIS_HAS_STEALTHCHOP(Y)
  1759. stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y);
  1760. #endif
  1761. #if AXIS_HAS_STEALTHCHOP(Z)
  1762. stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z);
  1763. #endif
  1764. #if AXIS_HAS_STEALTHCHOP(X2)
  1765. stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2);
  1766. #endif
  1767. #if AXIS_HAS_STEALTHCHOP(Y2)
  1768. stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2);
  1769. #endif
  1770. #if AXIS_HAS_STEALTHCHOP(Z2)
  1771. stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2);
  1772. #endif
  1773. #if AXIS_HAS_STEALTHCHOP(Z3)
  1774. stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3);
  1775. #endif
  1776. #if AXIS_HAS_STEALTHCHOP(Z4)
  1777. stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4);
  1778. #endif
  1779. #if AXIS_HAS_STEALTHCHOP(E0)
  1780. stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0);
  1781. #endif
  1782. #if AXIS_HAS_STEALTHCHOP(E1)
  1783. stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1);
  1784. #endif
  1785. #if AXIS_HAS_STEALTHCHOP(E2)
  1786. stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2);
  1787. #endif
  1788. #if AXIS_HAS_STEALTHCHOP(E3)
  1789. stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3);
  1790. #endif
  1791. #if AXIS_HAS_STEALTHCHOP(E4)
  1792. stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4);
  1793. #endif
  1794. #if AXIS_HAS_STEALTHCHOP(E5)
  1795. stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5);
  1796. #endif
  1797. #if AXIS_HAS_STEALTHCHOP(E6)
  1798. stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6);
  1799. #endif
  1800. #if AXIS_HAS_STEALTHCHOP(E7)
  1801. stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7);
  1802. #endif
  1803. }
  1804. #endif
  1805. }
  1806. //
  1807. // TMC StallGuard threshold.
  1808. //
  1809. {
  1810. tmc_sgt_t tmc_sgt;
  1811. _FIELD_TEST(tmc_sgt);
  1812. EEPROM_READ(tmc_sgt);
  1813. #if USE_SENSORLESS
  1814. if (!validating) {
  1815. TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X));
  1816. TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2));
  1817. TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y));
  1818. TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2));
  1819. TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z));
  1820. TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2));
  1821. TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3));
  1822. TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4));
  1823. }
  1824. #endif
  1825. }
  1826. // TMC stepping mode
  1827. {
  1828. _FIELD_TEST(tmc_stealth_enabled);
  1829. tmc_stealth_enabled_t tmc_stealth_enabled;
  1830. EEPROM_READ(tmc_stealth_enabled);
  1831. #if HAS_TRINAMIC_CONFIG
  1832. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1833. if (!validating) {
  1834. #if AXIS_HAS_STEALTHCHOP(X)
  1835. SET_STEPPING_MODE(X);
  1836. #endif
  1837. #if AXIS_HAS_STEALTHCHOP(Y)
  1838. SET_STEPPING_MODE(Y);
  1839. #endif
  1840. #if AXIS_HAS_STEALTHCHOP(Z)
  1841. SET_STEPPING_MODE(Z);
  1842. #endif
  1843. #if AXIS_HAS_STEALTHCHOP(X2)
  1844. SET_STEPPING_MODE(X2);
  1845. #endif
  1846. #if AXIS_HAS_STEALTHCHOP(Y2)
  1847. SET_STEPPING_MODE(Y2);
  1848. #endif
  1849. #if AXIS_HAS_STEALTHCHOP(Z2)
  1850. SET_STEPPING_MODE(Z2);
  1851. #endif
  1852. #if AXIS_HAS_STEALTHCHOP(Z3)
  1853. SET_STEPPING_MODE(Z3);
  1854. #endif
  1855. #if AXIS_HAS_STEALTHCHOP(Z4)
  1856. SET_STEPPING_MODE(Z4);
  1857. #endif
  1858. #if AXIS_HAS_STEALTHCHOP(E0)
  1859. SET_STEPPING_MODE(E0);
  1860. #endif
  1861. #if AXIS_HAS_STEALTHCHOP(E1)
  1862. SET_STEPPING_MODE(E1);
  1863. #endif
  1864. #if AXIS_HAS_STEALTHCHOP(E2)
  1865. SET_STEPPING_MODE(E2);
  1866. #endif
  1867. #if AXIS_HAS_STEALTHCHOP(E3)
  1868. SET_STEPPING_MODE(E3);
  1869. #endif
  1870. #if AXIS_HAS_STEALTHCHOP(E4)
  1871. SET_STEPPING_MODE(E4);
  1872. #endif
  1873. #if AXIS_HAS_STEALTHCHOP(E5)
  1874. SET_STEPPING_MODE(E5);
  1875. #endif
  1876. #if AXIS_HAS_STEALTHCHOP(E6)
  1877. SET_STEPPING_MODE(E6);
  1878. #endif
  1879. #if AXIS_HAS_STEALTHCHOP(E7)
  1880. SET_STEPPING_MODE(E7);
  1881. #endif
  1882. }
  1883. #endif
  1884. }
  1885. //
  1886. // Linear Advance
  1887. //
  1888. {
  1889. float extruder_advance_K[_MAX(EXTRUDERS, 1)];
  1890. _FIELD_TEST(planner_extruder_advance_K);
  1891. EEPROM_READ(extruder_advance_K);
  1892. #if ENABLED(LIN_ADVANCE)
  1893. if (!validating)
  1894. COPY(planner.extruder_advance_K, extruder_advance_K);
  1895. #endif
  1896. }
  1897. //
  1898. // Motor Current PWM
  1899. //
  1900. {
  1901. _FIELD_TEST(motor_current_setting);
  1902. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]
  1903. #if HAS_MOTOR_CURRENT_SPI
  1904. = DIGIPOT_MOTOR_CURRENT
  1905. #endif
  1906. ;
  1907. DEBUG_ECHOLNPGM("DIGIPOTS Loading");
  1908. EEPROM_READ(motor_current_setting);
  1909. DEBUG_ECHOLNPGM("DIGIPOTS Loaded");
  1910. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1911. if (!validating)
  1912. COPY(stepper.motor_current_setting, motor_current_setting);
  1913. #endif
  1914. }
  1915. //
  1916. // CNC Coordinate System
  1917. //
  1918. {
  1919. _FIELD_TEST(coordinate_system);
  1920. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1921. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1922. EEPROM_READ(gcode.coordinate_system);
  1923. #else
  1924. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
  1925. EEPROM_READ(coordinate_system);
  1926. #endif
  1927. }
  1928. //
  1929. // Skew correction factors
  1930. //
  1931. {
  1932. skew_factor_t skew_factor;
  1933. _FIELD_TEST(planner_skew_factor);
  1934. EEPROM_READ(skew_factor);
  1935. #if ENABLED(SKEW_CORRECTION_GCODE)
  1936. if (!validating) {
  1937. planner.skew_factor.xy = skew_factor.xy;
  1938. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1939. planner.skew_factor.xz = skew_factor.xz;
  1940. planner.skew_factor.yz = skew_factor.yz;
  1941. #endif
  1942. }
  1943. #endif
  1944. }
  1945. //
  1946. // Advanced Pause filament load & unload lengths
  1947. //
  1948. #if EXTRUDERS
  1949. {
  1950. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1951. fil_change_settings_t fc_settings[EXTRUDERS];
  1952. #endif
  1953. _FIELD_TEST(fc_settings);
  1954. EEPROM_READ(fc_settings);
  1955. }
  1956. #endif
  1957. //
  1958. // Tool-change settings
  1959. //
  1960. #if HAS_MULTI_EXTRUDER
  1961. _FIELD_TEST(toolchange_settings);
  1962. EEPROM_READ(toolchange_settings);
  1963. #endif
  1964. //
  1965. // Backlash Compensation
  1966. //
  1967. {
  1968. #if ENABLED(BACKLASH_GCODE)
  1969. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1970. const uint8_t &backlash_correction = backlash.correction;
  1971. #else
  1972. float backlash_distance_mm[XYZ];
  1973. uint8_t backlash_correction;
  1974. #endif
  1975. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1976. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1977. #else
  1978. float backlash_smoothing_mm;
  1979. #endif
  1980. _FIELD_TEST(backlash_distance_mm);
  1981. EEPROM_READ(backlash_distance_mm);
  1982. EEPROM_READ(backlash_correction);
  1983. EEPROM_READ(backlash_smoothing_mm);
  1984. }
  1985. //
  1986. // Extensible UI User Data
  1987. //
  1988. #if ENABLED(EXTENSIBLE_UI)
  1989. // This is a significant hardware change; don't reserve EEPROM space when not present
  1990. {
  1991. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1992. _FIELD_TEST(extui_data);
  1993. EEPROM_READ(extui_data);
  1994. if (!validating) ExtUI::onLoadSettings(extui_data);
  1995. }
  1996. #endif
  1997. //
  1998. // Case Light Brightness
  1999. //
  2000. #if CASELIGHT_USES_BRIGHTNESS
  2001. _FIELD_TEST(caselight_brightness);
  2002. EEPROM_READ(caselight.brightness);
  2003. #endif
  2004. //
  2005. // Password feature
  2006. //
  2007. #if ENABLED(PASSWORD_FEATURE)
  2008. _FIELD_TEST(password_is_set);
  2009. EEPROM_READ(password.is_set);
  2010. EEPROM_READ(password.value);
  2011. #endif
  2012. //
  2013. // TOUCH_SCREEN_CALIBRATION
  2014. //
  2015. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  2016. _FIELD_TEST(touch_calibration_data);
  2017. EEPROM_READ(touch_calibration.calibration);
  2018. #endif
  2019. //
  2020. // Ethernet network info
  2021. //
  2022. #if HAS_ETHERNET
  2023. _FIELD_TEST(ethernet_hardware_enabled);
  2024. uint32_t ethernet_ip, ethernet_dns, ethernet_gateway, ethernet_subnet;
  2025. EEPROM_READ(ethernet.hardware_enabled);
  2026. EEPROM_READ(ethernet_ip); ethernet.ip = ethernet_ip;
  2027. EEPROM_READ(ethernet_dns); ethernet.myDns = ethernet_dns;
  2028. EEPROM_READ(ethernet_gateway); ethernet.gateway = ethernet_gateway;
  2029. EEPROM_READ(ethernet_subnet); ethernet.subnet = ethernet_subnet;
  2030. #endif
  2031. //
  2032. // Buzzer enable/disable
  2033. //
  2034. #if ENABLED(SOUND_MENU_ITEM)
  2035. _FIELD_TEST(buzzer_enabled);
  2036. EEPROM_READ(ui.buzzer_enabled);
  2037. #endif
  2038. //
  2039. // MKS UI controller
  2040. //
  2041. #if ENABLED(DGUS_LCD_UI_MKS)
  2042. _FIELD_TEST(mks_language_index);
  2043. EEPROM_READ(mks_language_index);
  2044. EEPROM_READ(mks_corner_offsets);
  2045. EEPROM_READ(mks_park_pos);
  2046. EEPROM_READ(mks_min_extrusion_temp);
  2047. #endif
  2048. //
  2049. // Selected LCD language
  2050. //
  2051. #if HAS_MULTI_LANGUAGE
  2052. {
  2053. uint8_t ui_language;
  2054. EEPROM_READ(ui_language);
  2055. if (ui_language >= NUM_LANGUAGES) ui_language = 0;
  2056. ui.set_language(ui_language);
  2057. }
  2058. #endif
  2059. //
  2060. // Validate Final Size and CRC
  2061. //
  2062. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  2063. if (eeprom_error) {
  2064. DEBUG_ECHO_START();
  2065. DEBUG_ECHOLNPAIR("Index: ", eeprom_index - (EEPROM_OFFSET), " Size: ", datasize());
  2066. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_index());
  2067. }
  2068. else if (working_crc != stored_crc) {
  2069. eeprom_error = true;
  2070. DEBUG_ERROR_START();
  2071. DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  2072. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_crc());
  2073. }
  2074. else if (!validating) {
  2075. DEBUG_ECHO_START();
  2076. DEBUG_ECHO(version);
  2077. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  2078. }
  2079. if (!validating && !eeprom_error) postprocess();
  2080. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2081. if (!validating) {
  2082. ubl.report_state();
  2083. if (!ubl.sanity_check()) {
  2084. SERIAL_EOL();
  2085. #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  2086. ubl.echo_name();
  2087. DEBUG_ECHOLNPGM(" initialized.\n");
  2088. #endif
  2089. }
  2090. else {
  2091. eeprom_error = true;
  2092. #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  2093. DEBUG_ECHOPGM("?Can't enable ");
  2094. ubl.echo_name();
  2095. DEBUG_ECHOLNPGM(".");
  2096. #endif
  2097. ubl.reset();
  2098. }
  2099. if (ubl.storage_slot >= 0) {
  2100. load_mesh(ubl.storage_slot);
  2101. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  2102. }
  2103. else {
  2104. ubl.reset();
  2105. DEBUG_ECHOLNPGM("UBL reset");
  2106. }
  2107. }
  2108. #endif
  2109. }
  2110. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  2111. // Report the EEPROM settings
  2112. if (!validating && TERN1(EEPROM_BOOT_SILENT, IsRunning())) report();
  2113. #endif
  2114. EEPROM_FINISH();
  2115. return !eeprom_error;
  2116. }
  2117. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2118. extern bool restoreEEPROM();
  2119. #endif
  2120. bool MarlinSettings::validate() {
  2121. validating = true;
  2122. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2123. bool success = _load();
  2124. if (!success && restoreEEPROM()) {
  2125. SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
  2126. success = _load();
  2127. }
  2128. #else
  2129. const bool success = _load();
  2130. #endif
  2131. validating = false;
  2132. return success;
  2133. }
  2134. bool MarlinSettings::load() {
  2135. if (validate()) {
  2136. const bool success = _load();
  2137. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreRead(success));
  2138. return success;
  2139. }
  2140. reset();
  2141. #if ENABLED(EEPROM_AUTO_INIT)
  2142. (void)save();
  2143. SERIAL_ECHO_MSG("EEPROM Initialized");
  2144. #endif
  2145. return false;
  2146. }
  2147. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2148. inline void ubl_invalid_slot(const int s) {
  2149. #if BOTH(EEPROM_CHITCHAT, DEBUG_OUT)
  2150. DEBUG_ECHOLNPGM("?Invalid slot.");
  2151. DEBUG_ECHO(s);
  2152. DEBUG_ECHOLNPGM(" mesh slots available.");
  2153. #else
  2154. UNUSED(s);
  2155. #endif
  2156. }
  2157. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  2158. // is a placeholder for the size of the MAT; the MAT will always
  2159. // live at the very end of the eeprom
  2160. uint16_t MarlinSettings::meshes_start_index() {
  2161. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  2162. // or down a little bit without disrupting the mesh data
  2163. }
  2164. #define MESH_STORE_SIZE sizeof(TERN(OPTIMIZED_MESH_STORAGE, mesh_store_t, ubl.z_values))
  2165. uint16_t MarlinSettings::calc_num_meshes() {
  2166. return (meshes_end - meshes_start_index()) / MESH_STORE_SIZE;
  2167. }
  2168. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  2169. return meshes_end - (slot + 1) * MESH_STORE_SIZE;
  2170. }
  2171. void MarlinSettings::store_mesh(const int8_t slot) {
  2172. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2173. const int16_t a = calc_num_meshes();
  2174. if (!WITHIN(slot, 0, a - 1)) {
  2175. ubl_invalid_slot(a);
  2176. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  2177. DEBUG_EOL();
  2178. return;
  2179. }
  2180. int pos = mesh_slot_offset(slot);
  2181. uint16_t crc = 0;
  2182. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2183. int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2184. ubl.set_store_from_mesh(ubl.z_values, z_mesh_store);
  2185. uint8_t * const src = (uint8_t*)&z_mesh_store;
  2186. #else
  2187. uint8_t * const src = (uint8_t*)&ubl.z_values;
  2188. #endif
  2189. // Write crc to MAT along with other data, or just tack on to the beginning or end
  2190. persistentStore.access_start();
  2191. const bool status = persistentStore.write_data(pos, src, MESH_STORE_SIZE, &crc);
  2192. persistentStore.access_finish();
  2193. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  2194. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  2195. #else
  2196. // Other mesh types
  2197. #endif
  2198. }
  2199. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  2200. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2201. const int16_t a = settings.calc_num_meshes();
  2202. if (!WITHIN(slot, 0, a - 1)) {
  2203. ubl_invalid_slot(a);
  2204. return;
  2205. }
  2206. int pos = mesh_slot_offset(slot);
  2207. uint16_t crc = 0;
  2208. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2209. int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2210. uint8_t * const dest = (uint8_t*)&z_mesh_store;
  2211. #else
  2212. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  2213. #endif
  2214. persistentStore.access_start();
  2215. const uint16_t status = persistentStore.read_data(pos, dest, MESH_STORE_SIZE, &crc);
  2216. persistentStore.access_finish();
  2217. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2218. if (into) {
  2219. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2220. ubl.set_mesh_from_store(z_mesh_store, z_values);
  2221. memcpy(into, z_values, sizeof(z_values));
  2222. }
  2223. else
  2224. ubl.set_mesh_from_store(z_mesh_store, ubl.z_values);
  2225. #endif
  2226. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  2227. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  2228. EEPROM_FINISH();
  2229. #else
  2230. // Other mesh types
  2231. #endif
  2232. }
  2233. //void MarlinSettings::delete_mesh() { return; }
  2234. //void MarlinSettings::defrag_meshes() { return; }
  2235. #endif // AUTO_BED_LEVELING_UBL
  2236. #else // !EEPROM_SETTINGS
  2237. bool MarlinSettings::save() {
  2238. DEBUG_ERROR_MSG("EEPROM disabled");
  2239. return false;
  2240. }
  2241. #endif // !EEPROM_SETTINGS
  2242. /**
  2243. * M502 - Reset Configuration
  2244. */
  2245. void MarlinSettings::reset() {
  2246. LOOP_XYZE_N(i) {
  2247. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  2248. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  2249. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  2250. }
  2251. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  2252. planner.settings.acceleration = DEFAULT_ACCELERATION;
  2253. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  2254. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  2255. planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
  2256. planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
  2257. #if HAS_CLASSIC_JERK
  2258. #ifndef DEFAULT_XJERK
  2259. #define DEFAULT_XJERK 0
  2260. #endif
  2261. #ifndef DEFAULT_YJERK
  2262. #define DEFAULT_YJERK 0
  2263. #endif
  2264. #ifndef DEFAULT_ZJERK
  2265. #define DEFAULT_ZJERK 0
  2266. #endif
  2267. planner.max_jerk.set(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK);
  2268. TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK;);
  2269. #endif
  2270. #if HAS_JUNCTION_DEVIATION
  2271. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  2272. #endif
  2273. #if HAS_SCARA_OFFSET
  2274. scara_home_offset.reset();
  2275. #elif HAS_HOME_OFFSET
  2276. home_offset.reset();
  2277. #endif
  2278. TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
  2279. //
  2280. // Filament Runout Sensor
  2281. //
  2282. #if HAS_FILAMENT_SENSOR
  2283. runout.enabled = FIL_RUNOUT_ENABLED_DEFAULT;
  2284. runout.reset();
  2285. TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM));
  2286. #endif
  2287. //
  2288. // Tool-change Settings
  2289. //
  2290. #if HAS_MULTI_EXTRUDER
  2291. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  2292. toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH;
  2293. toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH;
  2294. toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED;
  2295. toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED;
  2296. toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME;
  2297. toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED;
  2298. toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED;
  2299. toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME;
  2300. #endif
  2301. #if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
  2302. enable_first_prime = false;
  2303. #endif
  2304. #if ENABLED(TOOLCHANGE_PARK)
  2305. constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
  2306. toolchange_settings.enable_park = true;
  2307. toolchange_settings.change_point = tpxy;
  2308. #endif
  2309. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  2310. #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
  2311. migration = migration_defaults;
  2312. #endif
  2313. #endif
  2314. #if ENABLED(BACKLASH_GCODE)
  2315. backlash.correction = (BACKLASH_CORRECTION) * 255;
  2316. constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
  2317. backlash.distance_mm = tmp;
  2318. #ifdef BACKLASH_SMOOTHING_MM
  2319. backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
  2320. #endif
  2321. #endif
  2322. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2323. //
  2324. // Case Light Brightness
  2325. //
  2326. TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS);
  2327. //
  2328. // TOUCH_SCREEN_CALIBRATION
  2329. //
  2330. TERN_(TOUCH_SCREEN_CALIBRATION, touch_calibration.calibration_reset());
  2331. //
  2332. // Buzzer enable/disable
  2333. //
  2334. TERN_(SOUND_MENU_ITEM, ui.buzzer_enabled = true);
  2335. //
  2336. // Magnetic Parking Extruder
  2337. //
  2338. TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init());
  2339. //
  2340. // Global Leveling
  2341. //
  2342. TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = (DEFAULT_LEVELING_FADE_HEIGHT));
  2343. TERN_(HAS_LEVELING, reset_bed_level());
  2344. #if HAS_BED_PROBE
  2345. constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
  2346. static_assert(COUNT(dpo) == 3, "NOZZLE_TO_PROBE_OFFSET must contain offsets for X, Y, and Z.");
  2347. #if HAS_PROBE_XY_OFFSET
  2348. LOOP_XYZ(a) probe.offset[a] = dpo[a];
  2349. #else
  2350. probe.offset.set(0, 0, dpo[Z_AXIS]);
  2351. #endif
  2352. #endif
  2353. //
  2354. // Z Stepper Auto-alignment points
  2355. //
  2356. TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default());
  2357. //
  2358. // Servo Angles
  2359. //
  2360. TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists
  2361. //
  2362. // BLTOUCH
  2363. //
  2364. //#if ENABLED(BLTOUCH)
  2365. // bltouch.last_written_mode;
  2366. //#endif
  2367. //
  2368. // Endstop Adjustments
  2369. //
  2370. #if ENABLED(DELTA)
  2371. const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM, ddr = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  2372. delta_height = DELTA_HEIGHT;
  2373. delta_endstop_adj = adj;
  2374. delta_radius = DELTA_RADIUS;
  2375. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2376. segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  2377. delta_tower_angle_trim = dta;
  2378. delta_diagonal_rod_trim = ddr;
  2379. #endif
  2380. #if ENABLED(X_DUAL_ENDSTOPS)
  2381. #ifndef X2_ENDSTOP_ADJUSTMENT
  2382. #define X2_ENDSTOP_ADJUSTMENT 0
  2383. #endif
  2384. endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
  2385. #endif
  2386. #if ENABLED(Y_DUAL_ENDSTOPS)
  2387. #ifndef Y2_ENDSTOP_ADJUSTMENT
  2388. #define Y2_ENDSTOP_ADJUSTMENT 0
  2389. #endif
  2390. endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
  2391. #endif
  2392. #if ENABLED(Z_MULTI_ENDSTOPS)
  2393. #ifndef Z2_ENDSTOP_ADJUSTMENT
  2394. #define Z2_ENDSTOP_ADJUSTMENT 0
  2395. #endif
  2396. endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
  2397. #if NUM_Z_STEPPER_DRIVERS >= 3
  2398. #ifndef Z3_ENDSTOP_ADJUSTMENT
  2399. #define Z3_ENDSTOP_ADJUSTMENT 0
  2400. #endif
  2401. endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
  2402. #endif
  2403. #if NUM_Z_STEPPER_DRIVERS >= 4
  2404. #ifndef Z4_ENDSTOP_ADJUSTMENT
  2405. #define Z4_ENDSTOP_ADJUSTMENT 0
  2406. #endif
  2407. endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
  2408. #endif
  2409. #endif
  2410. //
  2411. // Preheat parameters
  2412. //
  2413. #if PREHEAT_COUNT
  2414. #if HAS_HOTEND
  2415. constexpr uint16_t hpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND, PREHEAT_3_TEMP_HOTEND, PREHEAT_4_TEMP_HOTEND, PREHEAT_5_TEMP_HOTEND);
  2416. #endif
  2417. #if HAS_HEATED_BED
  2418. constexpr uint16_t bpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED, PREHEAT_3_TEMP_BED, PREHEAT_4_TEMP_BED, PREHEAT_5_TEMP_BED);
  2419. #endif
  2420. #if HAS_FAN
  2421. constexpr uint8_t fpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED, PREHEAT_3_FAN_SPEED, PREHEAT_4_FAN_SPEED, PREHEAT_5_FAN_SPEED);
  2422. #endif
  2423. LOOP_L_N(i, PREHEAT_COUNT) {
  2424. #if HAS_HOTEND
  2425. ui.material_preset[i].hotend_temp = hpre[i];
  2426. #endif
  2427. #if HAS_HEATED_BED
  2428. ui.material_preset[i].bed_temp = bpre[i];
  2429. #endif
  2430. #if HAS_FAN
  2431. ui.material_preset[i].fan_speed = fpre[i];
  2432. #endif
  2433. }
  2434. #endif
  2435. //
  2436. // Hotend PID
  2437. //
  2438. #if ENABLED(PIDTEMP)
  2439. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2440. constexpr float defKp[] =
  2441. #ifdef DEFAULT_Kp_LIST
  2442. DEFAULT_Kp_LIST
  2443. #else
  2444. ARRAY_BY_HOTENDS1(DEFAULT_Kp)
  2445. #endif
  2446. , defKi[] =
  2447. #ifdef DEFAULT_Ki_LIST
  2448. DEFAULT_Ki_LIST
  2449. #else
  2450. ARRAY_BY_HOTENDS1(DEFAULT_Ki)
  2451. #endif
  2452. , defKd[] =
  2453. #ifdef DEFAULT_Kd_LIST
  2454. DEFAULT_Kd_LIST
  2455. #else
  2456. ARRAY_BY_HOTENDS1(DEFAULT_Kd)
  2457. #endif
  2458. ;
  2459. static_assert(WITHIN(COUNT(defKp), 1, HOTENDS), "DEFAULT_Kp_LIST must have between 1 and HOTENDS items.");
  2460. static_assert(WITHIN(COUNT(defKi), 1, HOTENDS), "DEFAULT_Ki_LIST must have between 1 and HOTENDS items.");
  2461. static_assert(WITHIN(COUNT(defKd), 1, HOTENDS), "DEFAULT_Kd_LIST must have between 1 and HOTENDS items.");
  2462. #if ENABLED(PID_EXTRUSION_SCALING)
  2463. constexpr float defKc[] =
  2464. #ifdef DEFAULT_Kc_LIST
  2465. DEFAULT_Kc_LIST
  2466. #else
  2467. ARRAY_BY_HOTENDS1(DEFAULT_Kc)
  2468. #endif
  2469. ;
  2470. static_assert(WITHIN(COUNT(defKc), 1, HOTENDS), "DEFAULT_Kc_LIST must have between 1 and HOTENDS items.");
  2471. #endif
  2472. #if ENABLED(PID_FAN_SCALING)
  2473. constexpr float defKf[] =
  2474. #ifdef DEFAULT_Kf_LIST
  2475. DEFAULT_Kf_LIST
  2476. #else
  2477. ARRAY_BY_HOTENDS1(DEFAULT_Kf)
  2478. #endif
  2479. ;
  2480. static_assert(WITHIN(COUNT(defKf), 1, HOTENDS), "DEFAULT_Kf_LIST must have between 1 and HOTENDS items.");
  2481. #endif
  2482. #define PID_DEFAULT(N,E) def##N[E]
  2483. #else
  2484. #define PID_DEFAULT(N,E) DEFAULT_##N
  2485. #endif
  2486. HOTEND_LOOP() {
  2487. PID_PARAM(Kp, e) = float(PID_DEFAULT(Kp, ALIM(e, defKp)));
  2488. PID_PARAM(Ki, e) = scalePID_i(PID_DEFAULT(Ki, ALIM(e, defKi)));
  2489. PID_PARAM(Kd, e) = scalePID_d(PID_DEFAULT(Kd, ALIM(e, defKd)));
  2490. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = float(PID_DEFAULT(Kc, ALIM(e, defKc))));
  2491. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = float(PID_DEFAULT(Kf, ALIM(e, defKf))));
  2492. }
  2493. #endif
  2494. //
  2495. // PID Extrusion Scaling
  2496. //
  2497. TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size
  2498. //
  2499. // Heated Bed PID
  2500. //
  2501. #if ENABLED(PIDTEMPBED)
  2502. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2503. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2504. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2505. #endif
  2506. //
  2507. // Heated Chamber PID
  2508. //
  2509. #if ENABLED(PIDTEMPCHAMBER)
  2510. thermalManager.temp_chamber.pid.Kp = DEFAULT_chamberKp;
  2511. thermalManager.temp_chamber.pid.Ki = scalePID_i(DEFAULT_chamberKi);
  2512. thermalManager.temp_chamber.pid.Kd = scalePID_d(DEFAULT_chamberKd);
  2513. #endif
  2514. //
  2515. // User-Defined Thermistors
  2516. //
  2517. TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors());
  2518. //
  2519. // Power Monitor
  2520. //
  2521. TERN_(POWER_MONITOR, power_monitor.reset());
  2522. //
  2523. // LCD Contrast
  2524. //
  2525. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(DEFAULT_LCD_CONTRAST));
  2526. //
  2527. // Controller Fan
  2528. //
  2529. TERN_(USE_CONTROLLER_FAN, controllerFan.reset());
  2530. //
  2531. // Power-Loss Recovery
  2532. //
  2533. TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT)));
  2534. //
  2535. // Firmware Retraction
  2536. //
  2537. TERN_(FWRETRACT, fwretract.reset());
  2538. //
  2539. // Volumetric & Filament Size
  2540. //
  2541. #if DISABLED(NO_VOLUMETRICS)
  2542. parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
  2543. LOOP_L_N(q, COUNT(planner.filament_size))
  2544. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2545. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2546. LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit))
  2547. planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  2548. #endif
  2549. #endif
  2550. endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
  2551. reset_stepper_drivers();
  2552. //
  2553. // Linear Advance
  2554. //
  2555. #if ENABLED(LIN_ADVANCE)
  2556. LOOP_L_N(i, EXTRUDERS) {
  2557. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  2558. TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[i] = LIN_ADVANCE_K);
  2559. }
  2560. #endif
  2561. //
  2562. // Motor Current PWM
  2563. //
  2564. #if HAS_MOTOR_CURRENT_PWM
  2565. constexpr uint32_t tmp_motor_current_setting[MOTOR_CURRENT_COUNT] = PWM_MOTOR_CURRENT;
  2566. LOOP_L_N(q, MOTOR_CURRENT_COUNT)
  2567. stepper.set_digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2568. #endif
  2569. //
  2570. // DIGIPOTS
  2571. //
  2572. #if HAS_MOTOR_CURRENT_SPI
  2573. static constexpr uint32_t tmp_motor_current_setting[] = DIGIPOT_MOTOR_CURRENT;
  2574. DEBUG_ECHOLNPGM("Writing Digipot");
  2575. LOOP_L_N(q, COUNT(tmp_motor_current_setting))
  2576. stepper.set_digipot_current(q, tmp_motor_current_setting[q]);
  2577. DEBUG_ECHOLNPGM("Digipot Written");
  2578. #endif
  2579. //
  2580. // CNC Coordinate System
  2581. //
  2582. TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space
  2583. //
  2584. // Skew Correction
  2585. //
  2586. #if ENABLED(SKEW_CORRECTION_GCODE)
  2587. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2588. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2589. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2590. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2591. #endif
  2592. #endif
  2593. //
  2594. // Advanced Pause filament load & unload lengths
  2595. //
  2596. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2597. LOOP_L_N(e, EXTRUDERS) {
  2598. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2599. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2600. }
  2601. #endif
  2602. #if ENABLED(PASSWORD_FEATURE)
  2603. #ifdef PASSWORD_DEFAULT_VALUE
  2604. password.is_set = true;
  2605. password.value = PASSWORD_DEFAULT_VALUE;
  2606. #else
  2607. password.is_set = false;
  2608. #endif
  2609. #endif
  2610. //
  2611. // MKS UI controller
  2612. //
  2613. TERN_(DGUS_LCD_UI_MKS, MKS_reset_settings());
  2614. postprocess();
  2615. DEBUG_ECHO_START();
  2616. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  2617. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2618. }
  2619. #if DISABLED(DISABLE_M503)
  2620. static void config_heading(const bool repl, PGM_P const pstr, const bool eol=true) {
  2621. if (!repl) {
  2622. SERIAL_ECHO_START();
  2623. SERIAL_ECHOPGM("; ");
  2624. SERIAL_ECHOPGM_P(pstr);
  2625. if (eol) SERIAL_EOL();
  2626. }
  2627. }
  2628. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  2629. #define CONFIG_ECHO_MSG(V...) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR(V); }while(0)
  2630. #define CONFIG_ECHO_HEADING(STR) config_heading(forReplay, PSTR(STR))
  2631. #if HAS_TRINAMIC_CONFIG
  2632. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  2633. #if HAS_STEALTHCHOP
  2634. void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) {
  2635. CONFIG_ECHO_START();
  2636. SERIAL_ECHOPGM(" M569 S1");
  2637. if (etc) {
  2638. SERIAL_CHAR(' ');
  2639. SERIAL_ECHOPGM_P(etc);
  2640. }
  2641. if (newLine) SERIAL_EOL();
  2642. }
  2643. #endif
  2644. #if ENABLED(HYBRID_THRESHOLD)
  2645. inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); }
  2646. #endif
  2647. #if USE_SENSORLESS
  2648. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2649. #endif
  2650. #endif
  2651. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2652. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2653. #endif
  2654. inline void say_units(const bool colon) {
  2655. SERIAL_ECHOPGM_P(
  2656. #if ENABLED(INCH_MODE_SUPPORT)
  2657. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2658. #endif
  2659. PSTR(" (mm)")
  2660. );
  2661. if (colon) SERIAL_ECHOLNPGM(":");
  2662. }
  2663. void report_M92(const bool echo=true, const int8_t e=-1);
  2664. /**
  2665. * M503 - Report current settings in RAM
  2666. *
  2667. * Unless specifically disabled, M503 is available even without EEPROM
  2668. */
  2669. void MarlinSettings::report(const bool forReplay) {
  2670. /**
  2671. * Announce current units, in case inches are being displayed
  2672. */
  2673. CONFIG_ECHO_START();
  2674. #if ENABLED(INCH_MODE_SUPPORT)
  2675. SERIAL_ECHOPGM(" G2");
  2676. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2677. SERIAL_ECHOPGM(" ;");
  2678. say_units(false);
  2679. #else
  2680. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2681. say_units(false);
  2682. #endif
  2683. SERIAL_EOL();
  2684. #if HAS_LCD_MENU
  2685. // Temperature units - for Ultipanel temperature options
  2686. CONFIG_ECHO_START();
  2687. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2688. SERIAL_ECHOPGM(" M149 ");
  2689. SERIAL_CHAR(parser.temp_units_code());
  2690. SERIAL_ECHOPGM(" ; Units in ");
  2691. SERIAL_ECHOPGM_P(parser.temp_units_name());
  2692. #else
  2693. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2694. #endif
  2695. #endif
  2696. SERIAL_EOL();
  2697. #if EXTRUDERS && DISABLED(NO_VOLUMETRICS)
  2698. /**
  2699. * Volumetric extrusion M200
  2700. */
  2701. if (!forReplay) {
  2702. config_heading(forReplay, PSTR("Filament settings:"), false);
  2703. if (parser.volumetric_enabled)
  2704. SERIAL_EOL();
  2705. else
  2706. SERIAL_ECHOLNPGM(" Disabled");
  2707. }
  2708. #if EXTRUDERS == 1
  2709. CONFIG_ECHO_MSG(" M200 S", parser.volumetric_enabled
  2710. , " D", LINEAR_UNIT(planner.filament_size[0])
  2711. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2712. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[0])
  2713. #endif
  2714. );
  2715. #else
  2716. LOOP_L_N(i, EXTRUDERS) {
  2717. CONFIG_ECHO_MSG(" M200 T", i
  2718. , " D", LINEAR_UNIT(planner.filament_size[i])
  2719. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2720. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[i])
  2721. #endif
  2722. );
  2723. }
  2724. CONFIG_ECHO_MSG(" M200 S", parser.volumetric_enabled);
  2725. #endif
  2726. #endif // EXTRUDERS && !NO_VOLUMETRICS
  2727. CONFIG_ECHO_HEADING("Steps per unit:");
  2728. report_M92(!forReplay);
  2729. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2730. CONFIG_ECHO_START();
  2731. SERIAL_ECHOLNPAIR_P(
  2732. PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
  2733. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
  2734. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
  2735. #if DISABLED(DISTINCT_E_FACTORS)
  2736. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2737. #endif
  2738. );
  2739. #if ENABLED(DISTINCT_E_FACTORS)
  2740. LOOP_L_N(i, E_STEPPERS) {
  2741. CONFIG_ECHO_START();
  2742. SERIAL_ECHOLNPAIR_P(
  2743. PSTR(" M203 T"), i
  2744. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2745. );
  2746. }
  2747. #endif
  2748. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2749. CONFIG_ECHO_START();
  2750. SERIAL_ECHOLNPAIR_P(
  2751. PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
  2752. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
  2753. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
  2754. #if DISABLED(DISTINCT_E_FACTORS)
  2755. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2756. #endif
  2757. );
  2758. #if ENABLED(DISTINCT_E_FACTORS)
  2759. LOOP_L_N(i, E_STEPPERS) {
  2760. CONFIG_ECHO_START();
  2761. SERIAL_ECHOLNPAIR_P(
  2762. PSTR(" M201 T"), i
  2763. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2764. );
  2765. }
  2766. #endif
  2767. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2768. CONFIG_ECHO_START();
  2769. SERIAL_ECHOLNPAIR_P(
  2770. PSTR(" M204 P"), LINEAR_UNIT(planner.settings.acceleration)
  2771. , PSTR(" R"), LINEAR_UNIT(planner.settings.retract_acceleration)
  2772. , SP_T_STR, LINEAR_UNIT(planner.settings.travel_acceleration)
  2773. );
  2774. CONFIG_ECHO_HEADING(
  2775. "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>"
  2776. #if HAS_JUNCTION_DEVIATION
  2777. " J<junc_dev>"
  2778. #endif
  2779. #if HAS_CLASSIC_JERK
  2780. " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>"
  2781. TERN_(HAS_CLASSIC_E_JERK, " E<max_e_jerk>")
  2782. #endif
  2783. );
  2784. CONFIG_ECHO_START();
  2785. SERIAL_ECHOLNPAIR_P(
  2786. PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us)
  2787. , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2788. , SP_T_STR, LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2789. #if HAS_JUNCTION_DEVIATION
  2790. , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
  2791. #endif
  2792. #if HAS_CLASSIC_JERK
  2793. , SP_X_STR, LINEAR_UNIT(planner.max_jerk.x)
  2794. , SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y)
  2795. , SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z)
  2796. #if HAS_CLASSIC_E_JERK
  2797. , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)
  2798. #endif
  2799. #endif
  2800. );
  2801. #if HAS_M206_COMMAND
  2802. CONFIG_ECHO_HEADING("Home offset:");
  2803. CONFIG_ECHO_START();
  2804. SERIAL_ECHOLNPAIR_P(
  2805. #if IS_CARTESIAN
  2806. PSTR(" M206 X"), LINEAR_UNIT(home_offset.x)
  2807. , SP_Y_STR, LINEAR_UNIT(home_offset.y)
  2808. , SP_Z_STR
  2809. #else
  2810. PSTR(" M206 Z")
  2811. #endif
  2812. , LINEAR_UNIT(home_offset.z)
  2813. );
  2814. #endif
  2815. #if HAS_HOTEND_OFFSET
  2816. CONFIG_ECHO_HEADING("Hotend offsets:");
  2817. CONFIG_ECHO_START();
  2818. LOOP_S_L_N(e, 1, HOTENDS) {
  2819. SERIAL_ECHOPAIR_P(
  2820. PSTR(" M218 T"), e,
  2821. SP_X_STR, LINEAR_UNIT(hotend_offset[e].x),
  2822. SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y)
  2823. );
  2824. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3);
  2825. }
  2826. #endif
  2827. /**
  2828. * Bed Leveling
  2829. */
  2830. #if HAS_LEVELING
  2831. #if ENABLED(MESH_BED_LEVELING)
  2832. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2833. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2834. config_heading(forReplay, NUL_STR, false);
  2835. if (!forReplay) {
  2836. ubl.echo_name();
  2837. SERIAL_CHAR(':');
  2838. SERIAL_EOL();
  2839. }
  2840. #elif HAS_ABL_OR_UBL
  2841. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2842. #endif
  2843. CONFIG_ECHO_START();
  2844. SERIAL_ECHOLNPAIR_P(
  2845. PSTR(" M420 S"), planner.leveling_active
  2846. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2847. , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height)
  2848. #endif
  2849. );
  2850. #if ENABLED(MESH_BED_LEVELING)
  2851. if (leveling_is_valid()) {
  2852. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2853. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2854. CONFIG_ECHO_START();
  2855. SERIAL_ECHOPAIR(" G29 S3 I", px, " J", py);
  2856. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2857. }
  2858. }
  2859. CONFIG_ECHO_START();
  2860. SERIAL_ECHOLNPAIR_F(" G29 S4 Z", LINEAR_UNIT(mbl.z_offset), 5);
  2861. }
  2862. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2863. if (!forReplay) {
  2864. SERIAL_EOL();
  2865. ubl.report_state();
  2866. SERIAL_EOL();
  2867. config_heading(false, PSTR("Active Mesh Slot: "), false);
  2868. SERIAL_ECHOLN(ubl.storage_slot);
  2869. config_heading(false, PSTR("EEPROM can hold "), false);
  2870. SERIAL_ECHO(calc_num_meshes());
  2871. SERIAL_ECHOLNPGM(" meshes.\n");
  2872. }
  2873. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2874. // solution needs to be found.
  2875. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2876. if (leveling_is_valid()) {
  2877. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2878. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2879. CONFIG_ECHO_START();
  2880. SERIAL_ECHOPAIR(" G29 W I", px, " J", py);
  2881. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5);
  2882. }
  2883. }
  2884. }
  2885. #endif
  2886. #endif // HAS_LEVELING
  2887. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2888. CONFIG_ECHO_HEADING("Servo Angles:");
  2889. LOOP_L_N(i, NUM_SERVOS) {
  2890. switch (i) {
  2891. #if ENABLED(SWITCHING_EXTRUDER)
  2892. case SWITCHING_EXTRUDER_SERVO_NR:
  2893. #if EXTRUDERS > 3
  2894. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2895. #endif
  2896. #elif ENABLED(SWITCHING_NOZZLE)
  2897. case SWITCHING_NOZZLE_SERVO_NR:
  2898. #elif ENABLED(BLTOUCH) || (HAS_Z_SERVO_PROBE && defined(Z_SERVO_ANGLES))
  2899. case Z_PROBE_SERVO_NR:
  2900. #endif
  2901. CONFIG_ECHO_MSG(" M281 P", i, " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2902. default: break;
  2903. }
  2904. }
  2905. #endif // EDITABLE_SERVO_ANGLES
  2906. #if HAS_SCARA_OFFSET
  2907. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2908. CONFIG_ECHO_START();
  2909. SERIAL_ECHOLNPAIR_P(
  2910. PSTR(" M665 S"), segments_per_second
  2911. , SP_P_STR, scara_home_offset.a
  2912. , SP_T_STR, scara_home_offset.b
  2913. , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z)
  2914. );
  2915. #elif ENABLED(DELTA)
  2916. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2917. CONFIG_ECHO_START();
  2918. SERIAL_ECHOLNPAIR_P(
  2919. PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a)
  2920. , SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b)
  2921. , SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c)
  2922. );
  2923. CONFIG_ECHO_HEADING("Delta settings: L<diagonal rod> R<radius> H<height> S<segments per sec> XYZ<tower angle trim> ABC<rod trim>");
  2924. CONFIG_ECHO_START();
  2925. SERIAL_ECHOLNPAIR_P(
  2926. PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod)
  2927. , PSTR(" R"), LINEAR_UNIT(delta_radius)
  2928. , PSTR(" H"), LINEAR_UNIT(delta_height)
  2929. , PSTR(" S"), segments_per_second
  2930. , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a)
  2931. , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b)
  2932. , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c)
  2933. , PSTR(" A"), LINEAR_UNIT(delta_diagonal_rod_trim.a)
  2934. , PSTR(" B"), LINEAR_UNIT(delta_diagonal_rod_trim.b)
  2935. , PSTR(" C"), LINEAR_UNIT(delta_diagonal_rod_trim.c)
  2936. );
  2937. #elif HAS_EXTRA_ENDSTOPS
  2938. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2939. CONFIG_ECHO_START();
  2940. SERIAL_ECHOPGM(" M666");
  2941. #if ENABLED(X_DUAL_ENDSTOPS)
  2942. SERIAL_ECHOLNPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj));
  2943. #endif
  2944. #if ENABLED(Y_DUAL_ENDSTOPS)
  2945. SERIAL_ECHOLNPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj));
  2946. #endif
  2947. #if ENABLED(Z_MULTI_ENDSTOPS)
  2948. #if NUM_Z_STEPPER_DRIVERS >= 3
  2949. SERIAL_ECHOPAIR(" S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2950. CONFIG_ECHO_START();
  2951. SERIAL_ECHOPAIR(" M666 S3 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2952. #if NUM_Z_STEPPER_DRIVERS >= 4
  2953. CONFIG_ECHO_START();
  2954. SERIAL_ECHOPAIR(" M666 S4 Z", LINEAR_UNIT(endstops.z4_endstop_adj));
  2955. #endif
  2956. #else
  2957. SERIAL_ECHOLNPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj));
  2958. #endif
  2959. #endif
  2960. #endif // [XYZ]_DUAL_ENDSTOPS
  2961. #if PREHEAT_COUNT
  2962. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2963. LOOP_L_N(i, PREHEAT_COUNT) {
  2964. CONFIG_ECHO_START();
  2965. SERIAL_ECHOLNPAIR_P(
  2966. PSTR(" M145 S"), i
  2967. #if HAS_HOTEND
  2968. , PSTR(" H"), parser.to_temp_units(ui.material_preset[i].hotend_temp)
  2969. #endif
  2970. #if HAS_HEATED_BED
  2971. , SP_B_STR, parser.to_temp_units(ui.material_preset[i].bed_temp)
  2972. #endif
  2973. #if HAS_FAN
  2974. , PSTR(" F"), ui.material_preset[i].fan_speed
  2975. #endif
  2976. );
  2977. }
  2978. #endif
  2979. #if HAS_PID_HEATING
  2980. CONFIG_ECHO_HEADING("PID settings:");
  2981. #if ENABLED(PIDTEMP)
  2982. HOTEND_LOOP() {
  2983. CONFIG_ECHO_START();
  2984. SERIAL_ECHOPAIR_P(
  2985. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2986. PSTR(" M301 E"), e,
  2987. SP_P_STR
  2988. #else
  2989. PSTR(" M301 P")
  2990. #endif
  2991. , PID_PARAM(Kp, e)
  2992. , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e))
  2993. , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e))
  2994. );
  2995. #if ENABLED(PID_EXTRUSION_SCALING)
  2996. SERIAL_ECHOPAIR_P(SP_C_STR, PID_PARAM(Kc, e));
  2997. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2998. #endif
  2999. #if ENABLED(PID_FAN_SCALING)
  3000. SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e));
  3001. #endif
  3002. SERIAL_EOL();
  3003. }
  3004. #endif // PIDTEMP
  3005. #if ENABLED(PIDTEMPBED)
  3006. CONFIG_ECHO_MSG(
  3007. " M304 P", thermalManager.temp_bed.pid.Kp
  3008. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  3009. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  3010. );
  3011. #endif
  3012. #if ENABLED(PIDTEMPCHAMBER)
  3013. CONFIG_ECHO_START();
  3014. SERIAL_ECHOLNPAIR(
  3015. " M309 P", thermalManager.temp_chamber.pid.Kp
  3016. , " I", unscalePID_i(thermalManager.temp_chamber.pid.Ki)
  3017. , " D", unscalePID_d(thermalManager.temp_chamber.pid.Kd)
  3018. );
  3019. #endif
  3020. #endif // PIDTEMP || PIDTEMPBED || PIDTEMPCHAMBER
  3021. #if HAS_USER_THERMISTORS
  3022. CONFIG_ECHO_HEADING("User thermistors:");
  3023. LOOP_L_N(i, USER_THERMISTORS)
  3024. thermalManager.log_user_thermistor(i, true);
  3025. #endif
  3026. #if HAS_LCD_CONTRAST
  3027. CONFIG_ECHO_HEADING("LCD Contrast:");
  3028. CONFIG_ECHO_MSG(" M250 C", ui.contrast);
  3029. #endif
  3030. TERN_(CONTROLLER_FAN_EDITABLE, M710_report(forReplay));
  3031. #if ENABLED(POWER_LOSS_RECOVERY)
  3032. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  3033. CONFIG_ECHO_MSG(" M413 S", recovery.enabled);
  3034. #endif
  3035. #if ENABLED(FWRETRACT)
  3036. fwretract.M207_report(forReplay);
  3037. fwretract.M208_report(forReplay);
  3038. TERN_(FWRETRACT_AUTORETRACT, fwretract.M209_report(forReplay));
  3039. #endif
  3040. /**
  3041. * Probe Offset
  3042. */
  3043. #if HAS_BED_PROBE
  3044. config_heading(forReplay, PSTR("Z-Probe Offset"), false);
  3045. if (!forReplay) say_units(true);
  3046. CONFIG_ECHO_START();
  3047. SERIAL_ECHOLNPAIR_P(
  3048. #if HAS_PROBE_XY_OFFSET
  3049. PSTR(" M851 X"), LINEAR_UNIT(probe.offset_xy.x),
  3050. SP_Y_STR, LINEAR_UNIT(probe.offset_xy.y),
  3051. SP_Z_STR
  3052. #else
  3053. PSTR(" M851 X0 Y0 Z")
  3054. #endif
  3055. , LINEAR_UNIT(probe.offset.z)
  3056. );
  3057. #endif
  3058. /**
  3059. * Bed Skew Correction
  3060. */
  3061. #if ENABLED(SKEW_CORRECTION_GCODE)
  3062. CONFIG_ECHO_HEADING("Skew Factor: ");
  3063. CONFIG_ECHO_START();
  3064. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  3065. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  3066. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  3067. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  3068. #else
  3069. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  3070. #endif
  3071. #endif
  3072. #if HAS_TRINAMIC_CONFIG
  3073. /**
  3074. * TMC stepper driver current
  3075. */
  3076. CONFIG_ECHO_HEADING("Stepper driver current:");
  3077. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  3078. say_M906(forReplay);
  3079. #if AXIS_IS_TMC(X)
  3080. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps());
  3081. #endif
  3082. #if AXIS_IS_TMC(Y)
  3083. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps());
  3084. #endif
  3085. #if AXIS_IS_TMC(Z)
  3086. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps());
  3087. #endif
  3088. SERIAL_EOL();
  3089. #endif
  3090. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  3091. say_M906(forReplay);
  3092. SERIAL_ECHOPGM(" I1");
  3093. #if AXIS_IS_TMC(X2)
  3094. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps());
  3095. #endif
  3096. #if AXIS_IS_TMC(Y2)
  3097. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps());
  3098. #endif
  3099. #if AXIS_IS_TMC(Z2)
  3100. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps());
  3101. #endif
  3102. SERIAL_EOL();
  3103. #endif
  3104. #if AXIS_IS_TMC(Z3)
  3105. say_M906(forReplay);
  3106. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  3107. #endif
  3108. #if AXIS_IS_TMC(Z4)
  3109. say_M906(forReplay);
  3110. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.getMilliamps());
  3111. #endif
  3112. #if AXIS_IS_TMC(E0)
  3113. say_M906(forReplay);
  3114. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  3115. #endif
  3116. #if AXIS_IS_TMC(E1)
  3117. say_M906(forReplay);
  3118. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  3119. #endif
  3120. #if AXIS_IS_TMC(E2)
  3121. say_M906(forReplay);
  3122. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  3123. #endif
  3124. #if AXIS_IS_TMC(E3)
  3125. say_M906(forReplay);
  3126. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  3127. #endif
  3128. #if AXIS_IS_TMC(E4)
  3129. say_M906(forReplay);
  3130. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  3131. #endif
  3132. #if AXIS_IS_TMC(E5)
  3133. say_M906(forReplay);
  3134. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  3135. #endif
  3136. #if AXIS_IS_TMC(E6)
  3137. say_M906(forReplay);
  3138. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.getMilliamps());
  3139. #endif
  3140. #if AXIS_IS_TMC(E7)
  3141. say_M906(forReplay);
  3142. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.getMilliamps());
  3143. #endif
  3144. SERIAL_EOL();
  3145. /**
  3146. * TMC Hybrid Threshold
  3147. */
  3148. #if ENABLED(HYBRID_THRESHOLD)
  3149. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  3150. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  3151. say_M913(forReplay);
  3152. #if AXIS_HAS_STEALTHCHOP(X)
  3153. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs());
  3154. #endif
  3155. #if AXIS_HAS_STEALTHCHOP(Y)
  3156. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs());
  3157. #endif
  3158. #if AXIS_HAS_STEALTHCHOP(Z)
  3159. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs());
  3160. #endif
  3161. SERIAL_EOL();
  3162. #endif
  3163. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  3164. say_M913(forReplay);
  3165. SERIAL_ECHOPGM(" I1");
  3166. #if AXIS_HAS_STEALTHCHOP(X2)
  3167. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs());
  3168. #endif
  3169. #if AXIS_HAS_STEALTHCHOP(Y2)
  3170. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs());
  3171. #endif
  3172. #if AXIS_HAS_STEALTHCHOP(Z2)
  3173. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs());
  3174. #endif
  3175. SERIAL_EOL();
  3176. #endif
  3177. #if AXIS_HAS_STEALTHCHOP(Z3)
  3178. say_M913(forReplay);
  3179. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs());
  3180. #endif
  3181. #if AXIS_HAS_STEALTHCHOP(Z4)
  3182. say_M913(forReplay);
  3183. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.get_pwm_thrs());
  3184. #endif
  3185. #if AXIS_HAS_STEALTHCHOP(E0)
  3186. say_M913(forReplay);
  3187. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs());
  3188. #endif
  3189. #if AXIS_HAS_STEALTHCHOP(E1)
  3190. say_M913(forReplay);
  3191. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs());
  3192. #endif
  3193. #if AXIS_HAS_STEALTHCHOP(E2)
  3194. say_M913(forReplay);
  3195. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs());
  3196. #endif
  3197. #if AXIS_HAS_STEALTHCHOP(E3)
  3198. say_M913(forReplay);
  3199. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs());
  3200. #endif
  3201. #if AXIS_HAS_STEALTHCHOP(E4)
  3202. say_M913(forReplay);
  3203. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs());
  3204. #endif
  3205. #if AXIS_HAS_STEALTHCHOP(E5)
  3206. say_M913(forReplay);
  3207. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs());
  3208. #endif
  3209. #if AXIS_HAS_STEALTHCHOP(E6)
  3210. say_M913(forReplay);
  3211. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.get_pwm_thrs());
  3212. #endif
  3213. #if AXIS_HAS_STEALTHCHOP(E7)
  3214. say_M913(forReplay);
  3215. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.get_pwm_thrs());
  3216. #endif
  3217. SERIAL_EOL();
  3218. #endif // HYBRID_THRESHOLD
  3219. /**
  3220. * TMC Sensorless homing thresholds
  3221. */
  3222. #if USE_SENSORLESS
  3223. CONFIG_ECHO_HEADING("StallGuard threshold:");
  3224. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  3225. CONFIG_ECHO_START();
  3226. say_M914();
  3227. #if X_SENSORLESS
  3228. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold());
  3229. #endif
  3230. #if Y_SENSORLESS
  3231. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold());
  3232. #endif
  3233. #if Z_SENSORLESS
  3234. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold());
  3235. #endif
  3236. SERIAL_EOL();
  3237. #endif
  3238. #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
  3239. CONFIG_ECHO_START();
  3240. say_M914();
  3241. SERIAL_ECHOPGM(" I1");
  3242. #if X2_SENSORLESS
  3243. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold());
  3244. #endif
  3245. #if Y2_SENSORLESS
  3246. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold());
  3247. #endif
  3248. #if Z2_SENSORLESS
  3249. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold());
  3250. #endif
  3251. SERIAL_EOL();
  3252. #endif
  3253. #if Z3_SENSORLESS
  3254. CONFIG_ECHO_START();
  3255. say_M914();
  3256. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold());
  3257. #endif
  3258. #if Z4_SENSORLESS
  3259. CONFIG_ECHO_START();
  3260. say_M914();
  3261. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.homing_threshold());
  3262. #endif
  3263. #endif // USE_SENSORLESS
  3264. /**
  3265. * TMC stepping mode
  3266. */
  3267. #if HAS_STEALTHCHOP
  3268. CONFIG_ECHO_HEADING("Driver stepping mode:");
  3269. #if AXIS_HAS_STEALTHCHOP(X)
  3270. const bool chop_x = stepperX.get_stored_stealthChop();
  3271. #else
  3272. constexpr bool chop_x = false;
  3273. #endif
  3274. #if AXIS_HAS_STEALTHCHOP(Y)
  3275. const bool chop_y = stepperY.get_stored_stealthChop();
  3276. #else
  3277. constexpr bool chop_y = false;
  3278. #endif
  3279. #if AXIS_HAS_STEALTHCHOP(Z)
  3280. const bool chop_z = stepperZ.get_stored_stealthChop();
  3281. #else
  3282. constexpr bool chop_z = false;
  3283. #endif
  3284. if (chop_x || chop_y || chop_z) {
  3285. say_M569(forReplay);
  3286. if (chop_x) SERIAL_ECHOPGM_P(SP_X_STR);
  3287. if (chop_y) SERIAL_ECHOPGM_P(SP_Y_STR);
  3288. if (chop_z) SERIAL_ECHOPGM_P(SP_Z_STR);
  3289. SERIAL_EOL();
  3290. }
  3291. #if AXIS_HAS_STEALTHCHOP(X2)
  3292. const bool chop_x2 = stepperX2.get_stored_stealthChop();
  3293. #else
  3294. constexpr bool chop_x2 = false;
  3295. #endif
  3296. #if AXIS_HAS_STEALTHCHOP(Y2)
  3297. const bool chop_y2 = stepperY2.get_stored_stealthChop();
  3298. #else
  3299. constexpr bool chop_y2 = false;
  3300. #endif
  3301. #if AXIS_HAS_STEALTHCHOP(Z2)
  3302. const bool chop_z2 = stepperZ2.get_stored_stealthChop();
  3303. #else
  3304. constexpr bool chop_z2 = false;
  3305. #endif
  3306. if (chop_x2 || chop_y2 || chop_z2) {
  3307. say_M569(forReplay, PSTR("I1"));
  3308. if (chop_x2) SERIAL_ECHOPGM_P(SP_X_STR);
  3309. if (chop_y2) SERIAL_ECHOPGM_P(SP_Y_STR);
  3310. if (chop_z2) SERIAL_ECHOPGM_P(SP_Z_STR);
  3311. SERIAL_EOL();
  3312. }
  3313. #if AXIS_HAS_STEALTHCHOP(Z3)
  3314. if (stepperZ3.get_stored_stealthChop()) { say_M569(forReplay, PSTR("I2 Z"), true); }
  3315. #endif
  3316. #if AXIS_HAS_STEALTHCHOP(Z4)
  3317. if (stepperZ4.get_stored_stealthChop()) { say_M569(forReplay, PSTR("I3 Z"), true); }
  3318. #endif
  3319. #if AXIS_HAS_STEALTHCHOP(E0)
  3320. if (stepperE0.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T0 E"), true); }
  3321. #endif
  3322. #if AXIS_HAS_STEALTHCHOP(E1)
  3323. if (stepperE1.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T1 E"), true); }
  3324. #endif
  3325. #if AXIS_HAS_STEALTHCHOP(E2)
  3326. if (stepperE2.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T2 E"), true); }
  3327. #endif
  3328. #if AXIS_HAS_STEALTHCHOP(E3)
  3329. if (stepperE3.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T3 E"), true); }
  3330. #endif
  3331. #if AXIS_HAS_STEALTHCHOP(E4)
  3332. if (stepperE4.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T4 E"), true); }
  3333. #endif
  3334. #if AXIS_HAS_STEALTHCHOP(E5)
  3335. if (stepperE5.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T5 E"), true); }
  3336. #endif
  3337. #if AXIS_HAS_STEALTHCHOP(E6)
  3338. if (stepperE6.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T6 E"), true); }
  3339. #endif
  3340. #if AXIS_HAS_STEALTHCHOP(E7)
  3341. if (stepperE7.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T7 E"), true); }
  3342. #endif
  3343. #endif // HAS_STEALTHCHOP
  3344. #endif // HAS_TRINAMIC_CONFIG
  3345. /**
  3346. * Linear Advance
  3347. */
  3348. #if ENABLED(LIN_ADVANCE)
  3349. CONFIG_ECHO_HEADING("Linear Advance:");
  3350. #if EXTRUDERS < 2
  3351. CONFIG_ECHO_MSG(" M900 K", planner.extruder_advance_K[0]);
  3352. #else
  3353. LOOP_L_N(i, EXTRUDERS)
  3354. CONFIG_ECHO_MSG(" M900 T", i, " K", planner.extruder_advance_K[i]);
  3355. #endif
  3356. #endif
  3357. #if EITHER(HAS_MOTOR_CURRENT_SPI, HAS_MOTOR_CURRENT_PWM)
  3358. CONFIG_ECHO_HEADING("Stepper motor currents:");
  3359. CONFIG_ECHO_START();
  3360. #if HAS_MOTOR_CURRENT_PWM
  3361. SERIAL_ECHOLNPAIR_P( // PWM-based has 3 values:
  3362. PSTR(" M907 X"), stepper.motor_current_setting[0] // X and Y
  3363. , SP_Z_STR, stepper.motor_current_setting[1] // Z
  3364. , SP_E_STR, stepper.motor_current_setting[2] // E
  3365. );
  3366. #elif HAS_MOTOR_CURRENT_SPI
  3367. SERIAL_ECHOPGM(" M907"); // SPI-based has 5 values:
  3368. LOOP_XYZE(q) { // X Y Z E (map to X Y Z E0 by default)
  3369. SERIAL_CHAR(' ', axis_codes[q]);
  3370. SERIAL_ECHO(stepper.motor_current_setting[q]);
  3371. }
  3372. SERIAL_CHAR(' ', 'B'); // B (maps to E1 by default)
  3373. SERIAL_ECHOLN(stepper.motor_current_setting[4]);
  3374. #endif
  3375. #elif ENABLED(HAS_MOTOR_CURRENT_I2C) // i2c-based has any number of values
  3376. // Values sent over i2c are not stored.
  3377. // Indexes map directly to drivers, not axes.
  3378. #elif ENABLED(HAS_MOTOR_CURRENT_DAC) // DAC-based has 4 values, for X Y Z E
  3379. // Values sent over i2c are not stored. Uses indirect mapping.
  3380. #endif
  3381. /**
  3382. * Advanced Pause filament load & unload lengths
  3383. */
  3384. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  3385. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  3386. #if EXTRUDERS == 1
  3387. say_M603(forReplay);
  3388. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  3389. #else
  3390. #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0);
  3391. REPEAT(EXTRUDERS, _ECHO_603)
  3392. #endif
  3393. #endif
  3394. #if HAS_MULTI_EXTRUDER
  3395. CONFIG_ECHO_HEADING("Tool-changing:");
  3396. CONFIG_ECHO_START();
  3397. M217_report(true);
  3398. #endif
  3399. #if ENABLED(BACKLASH_GCODE)
  3400. CONFIG_ECHO_HEADING("Backlash compensation:");
  3401. CONFIG_ECHO_START();
  3402. SERIAL_ECHOLNPAIR_P(
  3403. PSTR(" M425 F"), backlash.get_correction()
  3404. , SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x)
  3405. , SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y)
  3406. , SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z)
  3407. #ifdef BACKLASH_SMOOTHING_MM
  3408. , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm)
  3409. #endif
  3410. );
  3411. #endif
  3412. #if HAS_FILAMENT_SENSOR
  3413. CONFIG_ECHO_HEADING("Filament runout sensor:");
  3414. CONFIG_ECHO_MSG(
  3415. " M412 S", runout.enabled
  3416. #if HAS_FILAMENT_RUNOUT_DISTANCE
  3417. , " D", LINEAR_UNIT(runout.runout_distance())
  3418. #endif
  3419. );
  3420. #endif
  3421. #if HAS_ETHERNET
  3422. CONFIG_ECHO_HEADING("Ethernet:");
  3423. if (!forReplay) { CONFIG_ECHO_START(); ETH0_report(); }
  3424. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); MAC_report();
  3425. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M552_report();
  3426. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M553_report();
  3427. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M554_report();
  3428. #endif
  3429. #if HAS_MULTI_LANGUAGE
  3430. CONFIG_ECHO_HEADING("UI Language:");
  3431. SERIAL_ECHO_MSG(" M414 S", ui.language);
  3432. #endif
  3433. }
  3434. #endif // !DISABLE_M503
  3435. #pragma pack(pop)