My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

Marlin_main.cpp 263KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #if ENABLED(USE_WATCHDOG)
  57. #include "watchdog.h"
  58. #endif
  59. #if ENABLED(BLINKM)
  60. #include "blinkm.h"
  61. #include "Wire.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_DIGIPOTSS
  67. #include <SPI.h>
  68. #endif
  69. #if ENABLED(DAC_STEPPER_CURRENT)
  70. #include "stepper_dac.h"
  71. #endif
  72. #if ENABLED(EXPERIMENTAL_I2CBUS)
  73. #include "twibus.h"
  74. #endif
  75. /**
  76. * Look here for descriptions of G-codes:
  77. * - http://linuxcnc.org/handbook/gcode/g-code.html
  78. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  79. *
  80. * Help us document these G-codes online:
  81. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  82. * - http://reprap.org/wiki/G-code
  83. *
  84. * -----------------
  85. * Implemented Codes
  86. * -----------------
  87. *
  88. * "G" Codes
  89. *
  90. * G0 -> G1
  91. * G1 - Coordinated Movement X Y Z E
  92. * G2 - CW ARC
  93. * G3 - CCW ARC
  94. * G4 - Dwell S<seconds> or P<milliseconds>
  95. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  96. * G10 - retract filament according to settings of M207
  97. * G11 - retract recover filament according to settings of M208
  98. * G20 - Set input units to inches
  99. * G21 - Set input units to millimeters
  100. * G28 - Home one or more axes
  101. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  102. * G30 - Single Z probe, probes bed at current XY location.
  103. * G31 - Dock sled (Z_PROBE_SLED only)
  104. * G32 - Undock sled (Z_PROBE_SLED only)
  105. * G90 - Use Absolute Coordinates
  106. * G91 - Use Relative Coordinates
  107. * G92 - Set current position to coordinates given
  108. *
  109. * "M" Codes
  110. *
  111. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  112. * M1 - Same as M0
  113. * M17 - Enable/Power all stepper motors
  114. * M18 - Disable all stepper motors; same as M84
  115. * M20 - List SD card
  116. * M21 - Init SD card
  117. * M22 - Release SD card
  118. * M23 - Select SD file (M23 filename.g)
  119. * M24 - Start/resume SD print
  120. * M25 - Pause SD print
  121. * M26 - Set SD position in bytes (M26 S12345)
  122. * M27 - Report SD print status
  123. * M28 - Start SD write (M28 filename.g)
  124. * M29 - Stop SD write
  125. * M30 - Delete file from SD (M30 filename.g)
  126. * M31 - Output time since last M109 or SD card start to serial
  127. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  128. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  129. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  130. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  131. * M33 - Get the longname version of a path
  132. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  133. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  134. * M75 - Start the print job timer
  135. * M76 - Pause the print job timer
  136. * M77 - Stop the print job timer
  137. * M78 - Show statistical information about the print jobs
  138. * M80 - Turn on Power Supply
  139. * M81 - Turn off Power Supply
  140. * M82 - Set E codes absolute (default)
  141. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  142. * M84 - Disable steppers until next move,
  143. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  144. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  145. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  146. * M104 - Set extruder target temp
  147. * M105 - Read current temp
  148. * M106 - Fan on
  149. * M107 - Fan off
  150. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  151. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  152. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  153. * M110 - Set the current line number
  154. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  155. * M112 - Emergency stop
  156. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  157. * M114 - Output current position to serial port
  158. * M115 - Capabilities string
  159. * M117 - Display a message on the controller screen
  160. * M119 - Output Endstop status to serial port
  161. * M120 - Enable endstop detection
  162. * M121 - Disable endstop detection
  163. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  164. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  165. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  166. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  167. * M140 - Set bed target temp
  168. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  169. * M149 - Set temperature units
  170. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  171. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  172. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  173. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  174. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  175. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  176. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  177. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  178. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  179. * M206 - Set additional homing offset
  180. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  181. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  182. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  183. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  184. * M220 - Set speed factor override percentage: S<factor in percent>
  185. * M221 - Set extrude factor override percentage: S<factor in percent>
  186. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  187. * M240 - Trigger a camera to take a photograph
  188. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  189. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  190. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  191. * M301 - Set PID parameters P I and D
  192. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  193. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  194. * M304 - Set bed PID parameters P I and D
  195. * M380 - Activate solenoid on active extruder
  196. * M381 - Disable all solenoids
  197. * M400 - Finish all moves
  198. * M401 - Lower Z probe if present
  199. * M402 - Raise Z probe if present
  200. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  201. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  202. * M406 - Turn off Filament Sensor extrusion control
  203. * M407 - Display measured filament diameter
  204. * M410 - Quickstop. Abort all the planned moves
  205. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  206. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  207. * M428 - Set the home_offset logically based on the current_position
  208. * M500 - Store parameters in EEPROM
  209. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  210. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  211. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  212. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  213. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  214. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  215. * M666 - Set delta endstop adjustment
  216. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  217. * M907 - Set digital trimpot motor current using axis codes.
  218. * M908 - Control digital trimpot directly.
  219. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  220. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  221. * M350 - Set microstepping mode.
  222. * M351 - Toggle MS1 MS2 pins directly.
  223. *
  224. * ************ SCARA Specific - This can change to suit future G-code regulations
  225. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  226. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  227. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  228. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  229. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  230. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  231. * ************* SCARA End ***************
  232. *
  233. * ************ Custom codes - This can change to suit future G-code regulations
  234. * M100 - Watch Free Memory (For Debugging Only)
  235. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  236. * M928 - Start SD logging (M928 filename.g) - ended by M29
  237. * M999 - Restart after being stopped by error
  238. *
  239. * "T" Codes
  240. *
  241. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  242. *
  243. */
  244. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  245. void gcode_M100();
  246. #endif
  247. #if ENABLED(SDSUPPORT)
  248. CardReader card;
  249. #endif
  250. #if ENABLED(EXPERIMENTAL_I2CBUS)
  251. TWIBus i2c;
  252. #endif
  253. bool Running = true;
  254. uint8_t marlin_debug_flags = DEBUG_NONE;
  255. static float feedrate = 1500.0, saved_feedrate;
  256. float current_position[NUM_AXIS] = { 0.0 };
  257. static float destination[NUM_AXIS] = { 0.0 };
  258. bool axis_known_position[3] = { false };
  259. bool axis_homed[3] = { false };
  260. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  261. static char* current_command, *current_command_args;
  262. static int cmd_queue_index_r = 0;
  263. static int cmd_queue_index_w = 0;
  264. static int commands_in_queue = 0;
  265. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  266. #if ENABLED(INCH_MODE_SUPPORT)
  267. float linear_unit_factor = 1.0;
  268. float volumetric_unit_factor = 1.0;
  269. #endif
  270. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  271. TempUnit input_temp_units = TEMPUNIT_C;
  272. #endif
  273. const float homing_feedrate[] = HOMING_FEEDRATE;
  274. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  275. int feedrate_multiplier = 100; //100->1 200->2
  276. int saved_feedrate_multiplier;
  277. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  278. bool volumetric_enabled = false;
  279. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  280. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  281. // The distance that XYZ has been offset by G92. Reset by G28.
  282. float position_shift[3] = { 0 };
  283. // This offset is added to the configured home position.
  284. // Set by M206, M428, or menu item. Saved to EEPROM.
  285. float home_offset[3] = { 0 };
  286. // Software Endstops. Default to configured limits.
  287. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  288. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  289. #if FAN_COUNT > 0
  290. int fanSpeeds[FAN_COUNT] = { 0 };
  291. #endif
  292. // The active extruder (tool). Set with T<extruder> command.
  293. uint8_t active_extruder = 0;
  294. // Relative Mode. Enable with G91, disable with G90.
  295. static bool relative_mode = false;
  296. bool cancel_heatup = false;
  297. const char errormagic[] PROGMEM = "Error:";
  298. const char echomagic[] PROGMEM = "echo:";
  299. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  300. static int serial_count = 0;
  301. // GCode parameter pointer used by code_seen(), code_value(), etc.
  302. static char* seen_pointer;
  303. // Next Immediate GCode Command pointer. NULL if none.
  304. const char* queued_commands_P = NULL;
  305. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  306. // Inactivity shutdown
  307. millis_t previous_cmd_ms = 0;
  308. static millis_t max_inactive_time = 0;
  309. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  310. // Print Job Timer
  311. #if ENABLED(PRINTCOUNTER)
  312. PrintCounter print_job_timer = PrintCounter();
  313. #else
  314. Stopwatch print_job_timer = Stopwatch();
  315. #endif
  316. // Buzzer
  317. #if HAS_BUZZER
  318. #if ENABLED(SPEAKER)
  319. Speaker buzzer;
  320. #else
  321. Buzzer buzzer;
  322. #endif
  323. #endif
  324. static uint8_t target_extruder;
  325. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  326. int xy_travel_speed = XY_TRAVEL_SPEED;
  327. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  328. bool bed_leveling_in_progress = false;
  329. #endif
  330. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  331. float z_endstop_adj = 0;
  332. #endif
  333. // Extruder offsets
  334. #if HOTENDS > 1
  335. #ifndef HOTEND_OFFSET_X
  336. #define HOTEND_OFFSET_X { 0 } // X offsets for each extruder
  337. #endif
  338. #ifndef HOTEND_OFFSET_Y
  339. #define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder
  340. #endif
  341. float hotend_offset[][HOTENDS] = {
  342. HOTEND_OFFSET_X,
  343. HOTEND_OFFSET_Y
  344. #if ENABLED(DUAL_X_CARRIAGE)
  345. , { 0 } // Z offsets for each extruder
  346. #endif
  347. };
  348. #endif
  349. #if ENABLED(HAS_SERVO_ENDSTOPS)
  350. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  351. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  352. #endif
  353. #if ENABLED(BARICUDA)
  354. int baricuda_valve_pressure = 0;
  355. int baricuda_e_to_p_pressure = 0;
  356. #endif
  357. #if ENABLED(FWRETRACT)
  358. bool autoretract_enabled = false;
  359. bool retracted[EXTRUDERS] = { false };
  360. bool retracted_swap[EXTRUDERS] = { false };
  361. float retract_length = RETRACT_LENGTH;
  362. float retract_length_swap = RETRACT_LENGTH_SWAP;
  363. float retract_feedrate = RETRACT_FEEDRATE;
  364. float retract_zlift = RETRACT_ZLIFT;
  365. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  366. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  367. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  368. #endif // FWRETRACT
  369. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  370. bool powersupply =
  371. #if ENABLED(PS_DEFAULT_OFF)
  372. false
  373. #else
  374. true
  375. #endif
  376. ;
  377. #endif
  378. #if ENABLED(DELTA)
  379. #define TOWER_1 X_AXIS
  380. #define TOWER_2 Y_AXIS
  381. #define TOWER_3 Z_AXIS
  382. float delta[3] = { 0 };
  383. #define SIN_60 0.8660254037844386
  384. #define COS_60 0.5
  385. float endstop_adj[3] = { 0 };
  386. // these are the default values, can be overriden with M665
  387. float delta_radius = DELTA_RADIUS;
  388. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  389. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  390. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  391. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  392. float delta_tower3_x = 0; // back middle tower
  393. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  394. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  395. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  396. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  397. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  398. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  399. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  400. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  401. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  402. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  403. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  404. int delta_grid_spacing[2] = { 0, 0 };
  405. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  406. #endif
  407. #else
  408. static bool home_all_axis = true;
  409. #endif
  410. #if ENABLED(SCARA)
  411. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  412. static float delta[3] = { 0 };
  413. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  414. #endif
  415. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  416. //Variables for Filament Sensor input
  417. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  418. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  419. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  420. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  421. int filwidth_delay_index1 = 0; //index into ring buffer
  422. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  423. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  424. #endif
  425. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  426. static bool filament_ran_out = false;
  427. #endif
  428. static bool send_ok[BUFSIZE];
  429. #if HAS_SERVOS
  430. Servo servo[NUM_SERVOS];
  431. #endif
  432. #ifdef CHDK
  433. millis_t chdkHigh = 0;
  434. boolean chdkActive = false;
  435. #endif
  436. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  437. int lpq_len = 20;
  438. #endif
  439. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  440. // States for managing Marlin and host communication
  441. // Marlin sends messages if blocked or busy
  442. enum MarlinBusyState {
  443. NOT_BUSY, // Not in a handler
  444. IN_HANDLER, // Processing a GCode
  445. IN_PROCESS, // Known to be blocking command input (as in G29)
  446. PAUSED_FOR_USER, // Blocking pending any input
  447. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  448. };
  449. static MarlinBusyState busy_state = NOT_BUSY;
  450. static millis_t next_busy_signal_ms = 0;
  451. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  452. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  453. #else
  454. #define host_keepalive() ;
  455. #define KEEPALIVE_STATE(n) ;
  456. #endif // HOST_KEEPALIVE_FEATURE
  457. /**
  458. * ***************************************************************************
  459. * ******************************** FUNCTIONS ********************************
  460. * ***************************************************************************
  461. */
  462. void stop();
  463. void get_available_commands();
  464. void process_next_command();
  465. #if ENABLED(ARC_SUPPORT)
  466. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  467. #endif
  468. #if ENABLED(BEZIER_CURVE_SUPPORT)
  469. void plan_cubic_move(const float offset[4]);
  470. #endif
  471. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  472. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  473. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  474. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  475. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  476. static void report_current_position();
  477. #if ENABLED(DEBUG_LEVELING_FEATURE)
  478. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  479. SERIAL_ECHO(prefix);
  480. SERIAL_ECHOPAIR(": (", x);
  481. SERIAL_ECHOPAIR(", ", y);
  482. SERIAL_ECHOPAIR(", ", z);
  483. SERIAL_ECHOLNPGM(")");
  484. }
  485. void print_xyz(const char* prefix, const float xyz[]) {
  486. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  487. }
  488. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  489. void print_xyz(const char* prefix, const vector_3 &xyz) {
  490. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  491. }
  492. #endif
  493. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  494. #endif
  495. #if ENABLED(DELTA) || ENABLED(SCARA)
  496. inline void sync_plan_position_delta() {
  497. #if ENABLED(DEBUG_LEVELING_FEATURE)
  498. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  499. #endif
  500. calculate_delta(current_position);
  501. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  502. }
  503. #endif
  504. #if ENABLED(SDSUPPORT)
  505. #include "SdFatUtil.h"
  506. int freeMemory() { return SdFatUtil::FreeRam(); }
  507. #else
  508. extern "C" {
  509. extern unsigned int __bss_end;
  510. extern unsigned int __heap_start;
  511. extern void* __brkval;
  512. int freeMemory() {
  513. int free_memory;
  514. if ((int)__brkval == 0)
  515. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  516. else
  517. free_memory = ((int)&free_memory) - ((int)__brkval);
  518. return free_memory;
  519. }
  520. }
  521. #endif //!SDSUPPORT
  522. #if ENABLED(DIGIPOT_I2C)
  523. extern void digipot_i2c_set_current(int channel, float current);
  524. extern void digipot_i2c_init();
  525. #endif
  526. /**
  527. * Inject the next "immediate" command, when possible.
  528. * Return true if any immediate commands remain to inject.
  529. */
  530. static bool drain_queued_commands_P() {
  531. if (queued_commands_P != NULL) {
  532. size_t i = 0;
  533. char c, cmd[30];
  534. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  535. cmd[sizeof(cmd) - 1] = '\0';
  536. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  537. cmd[i] = '\0';
  538. if (enqueue_and_echo_command(cmd)) { // success?
  539. if (c) // newline char?
  540. queued_commands_P += i + 1; // advance to the next command
  541. else
  542. queued_commands_P = NULL; // nul char? no more commands
  543. }
  544. }
  545. return (queued_commands_P != NULL); // return whether any more remain
  546. }
  547. /**
  548. * Record one or many commands to run from program memory.
  549. * Aborts the current queue, if any.
  550. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  551. */
  552. void enqueue_and_echo_commands_P(const char* pgcode) {
  553. queued_commands_P = pgcode;
  554. drain_queued_commands_P(); // first command executed asap (when possible)
  555. }
  556. void clear_command_queue() {
  557. cmd_queue_index_r = cmd_queue_index_w;
  558. commands_in_queue = 0;
  559. }
  560. /**
  561. * Once a new command is in the ring buffer, call this to commit it
  562. */
  563. inline void _commit_command(bool say_ok) {
  564. send_ok[cmd_queue_index_w] = say_ok;
  565. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  566. commands_in_queue++;
  567. }
  568. /**
  569. * Copy a command directly into the main command buffer, from RAM.
  570. * Returns true if successfully adds the command
  571. */
  572. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  573. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  574. strcpy(command_queue[cmd_queue_index_w], cmd);
  575. _commit_command(say_ok);
  576. return true;
  577. }
  578. void enqueue_and_echo_command_now(const char* cmd) {
  579. while (!enqueue_and_echo_command(cmd)) idle();
  580. }
  581. /**
  582. * Enqueue with Serial Echo
  583. */
  584. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  585. if (_enqueuecommand(cmd, say_ok)) {
  586. SERIAL_ECHO_START;
  587. SERIAL_ECHOPGM(MSG_Enqueueing);
  588. SERIAL_ECHO(cmd);
  589. SERIAL_ECHOLNPGM("\"");
  590. return true;
  591. }
  592. return false;
  593. }
  594. void setup_killpin() {
  595. #if HAS_KILL
  596. SET_INPUT(KILL_PIN);
  597. WRITE(KILL_PIN, HIGH);
  598. #endif
  599. }
  600. void setup_filrunoutpin() {
  601. #if HAS_FILRUNOUT
  602. pinMode(FILRUNOUT_PIN, INPUT);
  603. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  604. WRITE(FILRUNOUT_PIN, HIGH);
  605. #endif
  606. #endif
  607. }
  608. // Set home pin
  609. void setup_homepin(void) {
  610. #if HAS_HOME
  611. SET_INPUT(HOME_PIN);
  612. WRITE(HOME_PIN, HIGH);
  613. #endif
  614. }
  615. void setup_photpin() {
  616. #if HAS_PHOTOGRAPH
  617. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  618. #endif
  619. }
  620. void setup_powerhold() {
  621. #if HAS_SUICIDE
  622. OUT_WRITE(SUICIDE_PIN, HIGH);
  623. #endif
  624. #if HAS_POWER_SWITCH
  625. #if ENABLED(PS_DEFAULT_OFF)
  626. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  627. #else
  628. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  629. #endif
  630. #endif
  631. }
  632. void suicide() {
  633. #if HAS_SUICIDE
  634. OUT_WRITE(SUICIDE_PIN, LOW);
  635. #endif
  636. }
  637. void servo_init() {
  638. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  639. servo[0].attach(SERVO0_PIN);
  640. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  641. #endif
  642. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  643. servo[1].attach(SERVO1_PIN);
  644. servo[1].detach();
  645. #endif
  646. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  647. servo[2].attach(SERVO2_PIN);
  648. servo[2].detach();
  649. #endif
  650. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  651. servo[3].attach(SERVO3_PIN);
  652. servo[3].detach();
  653. #endif
  654. #if ENABLED(HAS_SERVO_ENDSTOPS)
  655. endstops.enable_z_probe(false);
  656. /**
  657. * Set position of all defined Servo Endstops
  658. *
  659. * ** UNSAFE! - NEEDS UPDATE! **
  660. *
  661. * The servo might be deployed and positioned too low to stow
  662. * when starting up the machine or rebooting the board.
  663. * There's no way to know where the nozzle is positioned until
  664. * homing has been done - no homing with z-probe without init!
  665. *
  666. */
  667. for (int i = 0; i < 3; i++)
  668. if (servo_endstop_id[i] >= 0)
  669. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  670. #endif // HAS_SERVO_ENDSTOPS
  671. }
  672. /**
  673. * Stepper Reset (RigidBoard, et.al.)
  674. */
  675. #if HAS_STEPPER_RESET
  676. void disableStepperDrivers() {
  677. pinMode(STEPPER_RESET_PIN, OUTPUT);
  678. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  679. }
  680. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  681. #endif
  682. /**
  683. * Marlin entry-point: Set up before the program loop
  684. * - Set up the kill pin, filament runout, power hold
  685. * - Start the serial port
  686. * - Print startup messages and diagnostics
  687. * - Get EEPROM or default settings
  688. * - Initialize managers for:
  689. * • temperature
  690. * • planner
  691. * • watchdog
  692. * • stepper
  693. * • photo pin
  694. * • servos
  695. * • LCD controller
  696. * • Digipot I2C
  697. * • Z probe sled
  698. * • status LEDs
  699. */
  700. void setup() {
  701. #ifdef DISABLE_JTAG
  702. // Disable JTAG on AT90USB chips to free up pins for IO
  703. MCUCR = 0x80;
  704. MCUCR = 0x80;
  705. #endif
  706. setup_killpin();
  707. setup_filrunoutpin();
  708. setup_powerhold();
  709. #if HAS_STEPPER_RESET
  710. disableStepperDrivers();
  711. #endif
  712. MYSERIAL.begin(BAUDRATE);
  713. SERIAL_PROTOCOLLNPGM("start");
  714. SERIAL_ECHO_START;
  715. // Check startup - does nothing if bootloader sets MCUSR to 0
  716. byte mcu = MCUSR;
  717. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  718. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  719. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  720. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  721. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  722. MCUSR = 0;
  723. SERIAL_ECHOPGM(MSG_MARLIN);
  724. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  725. #ifdef STRING_DISTRIBUTION_DATE
  726. #ifdef STRING_CONFIG_H_AUTHOR
  727. SERIAL_ECHO_START;
  728. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  729. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  730. SERIAL_ECHOPGM(MSG_AUTHOR);
  731. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  732. SERIAL_ECHOPGM("Compiled: ");
  733. SERIAL_ECHOLNPGM(__DATE__);
  734. #endif // STRING_CONFIG_H_AUTHOR
  735. #endif // STRING_DISTRIBUTION_DATE
  736. SERIAL_ECHO_START;
  737. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  738. SERIAL_ECHO(freeMemory());
  739. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  740. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  741. // Send "ok" after commands by default
  742. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  743. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  744. Config_RetrieveSettings();
  745. lcd_init();
  746. thermalManager.init(); // Initialize temperature loop
  747. #if ENABLED(DELTA) || ENABLED(SCARA)
  748. // Vital to init kinematic equivalent for X0 Y0 Z0
  749. sync_plan_position_delta();
  750. #endif
  751. #if ENABLED(USE_WATCHDOG)
  752. watchdog_init();
  753. #endif
  754. stepper.init(); // Initialize stepper, this enables interrupts!
  755. setup_photpin();
  756. servo_init();
  757. #if HAS_CONTROLLERFAN
  758. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  759. #endif
  760. #if HAS_STEPPER_RESET
  761. enableStepperDrivers();
  762. #endif
  763. #if ENABLED(DIGIPOT_I2C)
  764. digipot_i2c_init();
  765. #endif
  766. #if ENABLED(DAC_STEPPER_CURRENT)
  767. dac_init();
  768. #endif
  769. #if ENABLED(Z_PROBE_SLED)
  770. pinMode(SLED_PIN, OUTPUT);
  771. digitalWrite(SLED_PIN, LOW); // turn it off
  772. #endif // Z_PROBE_SLED
  773. setup_homepin();
  774. #ifdef STAT_LED_RED
  775. pinMode(STAT_LED_RED, OUTPUT);
  776. digitalWrite(STAT_LED_RED, LOW); // turn it off
  777. #endif
  778. #ifdef STAT_LED_BLUE
  779. pinMode(STAT_LED_BLUE, OUTPUT);
  780. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  781. #endif
  782. }
  783. /**
  784. * The main Marlin program loop
  785. *
  786. * - Save or log commands to SD
  787. * - Process available commands (if not saving)
  788. * - Call heater manager
  789. * - Call inactivity manager
  790. * - Call endstop manager
  791. * - Call LCD update
  792. */
  793. void loop() {
  794. if (commands_in_queue < BUFSIZE) get_available_commands();
  795. #if ENABLED(SDSUPPORT)
  796. card.checkautostart(false);
  797. #endif
  798. if (commands_in_queue) {
  799. #if ENABLED(SDSUPPORT)
  800. if (card.saving) {
  801. char* command = command_queue[cmd_queue_index_r];
  802. if (strstr_P(command, PSTR("M29"))) {
  803. // M29 closes the file
  804. card.closefile();
  805. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  806. ok_to_send();
  807. }
  808. else {
  809. // Write the string from the read buffer to SD
  810. card.write_command(command);
  811. if (card.logging)
  812. process_next_command(); // The card is saving because it's logging
  813. else
  814. ok_to_send();
  815. }
  816. }
  817. else
  818. process_next_command();
  819. #else
  820. process_next_command();
  821. #endif // SDSUPPORT
  822. commands_in_queue--;
  823. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  824. }
  825. endstops.report_state();
  826. idle();
  827. }
  828. void gcode_line_error(const char* err, bool doFlush = true) {
  829. SERIAL_ERROR_START;
  830. serialprintPGM(err);
  831. SERIAL_ERRORLN(gcode_LastN);
  832. //Serial.println(gcode_N);
  833. if (doFlush) FlushSerialRequestResend();
  834. serial_count = 0;
  835. }
  836. inline void get_serial_commands() {
  837. static char serial_line_buffer[MAX_CMD_SIZE];
  838. static boolean serial_comment_mode = false;
  839. // If the command buffer is empty for too long,
  840. // send "wait" to indicate Marlin is still waiting.
  841. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  842. static millis_t last_command_time = 0;
  843. millis_t ms = millis();
  844. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  845. SERIAL_ECHOLNPGM(MSG_WAIT);
  846. last_command_time = ms;
  847. }
  848. #endif
  849. /**
  850. * Loop while serial characters are incoming and the queue is not full
  851. */
  852. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  853. char serial_char = MYSERIAL.read();
  854. /**
  855. * If the character ends the line
  856. */
  857. if (serial_char == '\n' || serial_char == '\r') {
  858. serial_comment_mode = false; // end of line == end of comment
  859. if (!serial_count) continue; // skip empty lines
  860. serial_line_buffer[serial_count] = 0; // terminate string
  861. serial_count = 0; //reset buffer
  862. char* command = serial_line_buffer;
  863. while (*command == ' ') command++; // skip any leading spaces
  864. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  865. char* apos = strchr(command, '*');
  866. if (npos) {
  867. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  868. if (M110) {
  869. char* n2pos = strchr(command + 4, 'N');
  870. if (n2pos) npos = n2pos;
  871. }
  872. gcode_N = strtol(npos + 1, NULL, 10);
  873. if (gcode_N != gcode_LastN + 1 && !M110) {
  874. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  875. return;
  876. }
  877. if (apos) {
  878. byte checksum = 0, count = 0;
  879. while (command[count] != '*') checksum ^= command[count++];
  880. if (strtol(apos + 1, NULL, 10) != checksum) {
  881. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  882. return;
  883. }
  884. // if no errors, continue parsing
  885. }
  886. else {
  887. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  888. return;
  889. }
  890. gcode_LastN = gcode_N;
  891. // if no errors, continue parsing
  892. }
  893. else if (apos) { // No '*' without 'N'
  894. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  895. return;
  896. }
  897. // Movement commands alert when stopped
  898. if (IsStopped()) {
  899. char* gpos = strchr(command, 'G');
  900. if (gpos) {
  901. int codenum = strtol(gpos + 1, NULL, 10);
  902. switch (codenum) {
  903. case 0:
  904. case 1:
  905. case 2:
  906. case 3:
  907. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  908. LCD_MESSAGEPGM(MSG_STOPPED);
  909. break;
  910. }
  911. }
  912. }
  913. // If command was e-stop process now
  914. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  915. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  916. last_command_time = ms;
  917. #endif
  918. // Add the command to the queue
  919. _enqueuecommand(serial_line_buffer, true);
  920. }
  921. else if (serial_count >= MAX_CMD_SIZE - 1) {
  922. // Keep fetching, but ignore normal characters beyond the max length
  923. // The command will be injected when EOL is reached
  924. }
  925. else if (serial_char == '\\') { // Handle escapes
  926. if (MYSERIAL.available() > 0) {
  927. // if we have one more character, copy it over
  928. serial_char = MYSERIAL.read();
  929. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  930. }
  931. // otherwise do nothing
  932. }
  933. else { // it's not a newline, carriage return or escape char
  934. if (serial_char == ';') serial_comment_mode = true;
  935. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  936. }
  937. } // queue has space, serial has data
  938. }
  939. #if ENABLED(SDSUPPORT)
  940. inline void get_sdcard_commands() {
  941. static bool stop_buffering = false,
  942. sd_comment_mode = false;
  943. if (!card.sdprinting) return;
  944. /**
  945. * '#' stops reading from SD to the buffer prematurely, so procedural
  946. * macro calls are possible. If it occurs, stop_buffering is triggered
  947. * and the buffer is run dry; this character _can_ occur in serial com
  948. * due to checksums, however, no checksums are used in SD printing.
  949. */
  950. if (commands_in_queue == 0) stop_buffering = false;
  951. uint16_t sd_count = 0;
  952. bool card_eof = card.eof();
  953. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  954. int16_t n = card.get();
  955. char sd_char = (char)n;
  956. card_eof = card.eof();
  957. if (card_eof || n == -1
  958. || sd_char == '\n' || sd_char == '\r'
  959. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  960. ) {
  961. if (card_eof) {
  962. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  963. print_job_timer.stop();
  964. char time[30];
  965. millis_t t = print_job_timer.duration();
  966. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  967. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  968. SERIAL_ECHO_START;
  969. SERIAL_ECHOLN(time);
  970. lcd_setstatus(time, true);
  971. card.printingHasFinished();
  972. card.checkautostart(true);
  973. }
  974. if (sd_char == '#') stop_buffering = true;
  975. sd_comment_mode = false; //for new command
  976. if (!sd_count) continue; //skip empty lines
  977. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  978. sd_count = 0; //clear buffer
  979. _commit_command(false);
  980. }
  981. else if (sd_count >= MAX_CMD_SIZE - 1) {
  982. /**
  983. * Keep fetching, but ignore normal characters beyond the max length
  984. * The command will be injected when EOL is reached
  985. */
  986. }
  987. else {
  988. if (sd_char == ';') sd_comment_mode = true;
  989. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  990. }
  991. }
  992. }
  993. #endif // SDSUPPORT
  994. /**
  995. * Add to the circular command queue the next command from:
  996. * - The command-injection queue (queued_commands_P)
  997. * - The active serial input (usually USB)
  998. * - The SD card file being actively printed
  999. */
  1000. void get_available_commands() {
  1001. // if any immediate commands remain, don't get other commands yet
  1002. if (drain_queued_commands_P()) return;
  1003. get_serial_commands();
  1004. #if ENABLED(SDSUPPORT)
  1005. get_sdcard_commands();
  1006. #endif
  1007. }
  1008. inline bool code_has_value() {
  1009. int i = 1;
  1010. char c = seen_pointer[i];
  1011. while (c == ' ') c = seen_pointer[++i];
  1012. if (c == '-' || c == '+') c = seen_pointer[++i];
  1013. if (c == '.') c = seen_pointer[++i];
  1014. return NUMERIC(c);
  1015. }
  1016. inline float code_value_float() {
  1017. float ret;
  1018. char* e = strchr(seen_pointer, 'E');
  1019. if (e) {
  1020. *e = 0;
  1021. ret = strtod(seen_pointer + 1, NULL);
  1022. *e = 'E';
  1023. }
  1024. else
  1025. ret = strtod(seen_pointer + 1, NULL);
  1026. return ret;
  1027. }
  1028. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1029. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1030. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1031. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1032. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1033. inline bool code_value_bool() { return code_value_byte() > 0; }
  1034. #if ENABLED(INCH_MODE_SUPPORT)
  1035. inline void set_input_linear_units(LinearUnit units) {
  1036. switch (units) {
  1037. case LINEARUNIT_INCH:
  1038. linear_unit_factor = 25.4;
  1039. break;
  1040. case LINEARUNIT_MM:
  1041. default:
  1042. linear_unit_factor = 1.0;
  1043. break;
  1044. }
  1045. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1046. }
  1047. inline float axis_unit_factor(int axis) {
  1048. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1049. }
  1050. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1051. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1052. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1053. #else
  1054. inline float code_value_linear_units() { return code_value_float(); }
  1055. inline float code_value_per_axis_unit(int axis) { return code_value_float(); }
  1056. inline float code_value_axis_units(int axis) { return code_value_float(); }
  1057. #endif
  1058. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1059. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1060. float code_value_temp_abs() {
  1061. switch (input_temp_units) {
  1062. case TEMPUNIT_C:
  1063. return code_value_float();
  1064. case TEMPUNIT_F:
  1065. return (code_value_float() - 32) / 1.8;
  1066. case TEMPUNIT_K:
  1067. return code_value_float() - 272.15;
  1068. default:
  1069. return code_value_float();
  1070. }
  1071. }
  1072. float code_value_temp_diff() {
  1073. switch (input_temp_units) {
  1074. case TEMPUNIT_C:
  1075. case TEMPUNIT_K:
  1076. return code_value_float();
  1077. case TEMPUNIT_F:
  1078. return code_value_float() / 1.8;
  1079. default:
  1080. return code_value_float();
  1081. }
  1082. }
  1083. #else
  1084. float code_value_temp_abs() { return code_value_float(); }
  1085. float code_value_temp_diff() { return code_value_float(); }
  1086. #endif
  1087. inline millis_t code_value_millis() { return code_value_ulong(); }
  1088. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1089. bool code_seen(char code) {
  1090. seen_pointer = strchr(current_command_args, code);
  1091. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1092. }
  1093. /**
  1094. * Set target_extruder from the T parameter or the active_extruder
  1095. *
  1096. * Returns TRUE if the target is invalid
  1097. */
  1098. bool get_target_extruder_from_command(int code) {
  1099. if (code_seen('T')) {
  1100. uint8_t t = code_value_byte();
  1101. if (t >= EXTRUDERS) {
  1102. SERIAL_ECHO_START;
  1103. SERIAL_CHAR('M');
  1104. SERIAL_ECHO(code);
  1105. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
  1106. SERIAL_EOL;
  1107. return true;
  1108. }
  1109. target_extruder = t;
  1110. }
  1111. else
  1112. target_extruder = active_extruder;
  1113. return false;
  1114. }
  1115. #define DEFINE_PGM_READ_ANY(type, reader) \
  1116. static inline type pgm_read_any(const type *p) \
  1117. { return pgm_read_##reader##_near(p); }
  1118. DEFINE_PGM_READ_ANY(float, float);
  1119. DEFINE_PGM_READ_ANY(signed char, byte);
  1120. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1121. static const PROGMEM type array##_P[3] = \
  1122. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1123. static inline type array(int axis) \
  1124. { return pgm_read_any(&array##_P[axis]); }
  1125. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1126. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1127. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1128. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1129. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1130. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1131. #if ENABLED(DUAL_X_CARRIAGE)
  1132. #define DXC_FULL_CONTROL_MODE 0
  1133. #define DXC_AUTO_PARK_MODE 1
  1134. #define DXC_DUPLICATION_MODE 2
  1135. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1136. static float x_home_pos(int extruder) {
  1137. if (extruder == 0)
  1138. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1139. else
  1140. /**
  1141. * In dual carriage mode the extruder offset provides an override of the
  1142. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1143. * This allow soft recalibration of the second extruder offset position
  1144. * without firmware reflash (through the M218 command).
  1145. */
  1146. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1147. }
  1148. static int x_home_dir(int extruder) {
  1149. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1150. }
  1151. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1152. static bool active_extruder_parked = false; // used in mode 1 & 2
  1153. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1154. static millis_t delayed_move_time = 0; // used in mode 1
  1155. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1156. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1157. bool extruder_duplication_enabled = false; // used in mode 2
  1158. #endif //DUAL_X_CARRIAGE
  1159. /**
  1160. * Software endstops can be used to monitor the open end of
  1161. * an axis that has a hardware endstop on the other end. Or
  1162. * they can prevent axes from moving past endstops and grinding.
  1163. *
  1164. * To keep doing their job as the coordinate system changes,
  1165. * the software endstop positions must be refreshed to remain
  1166. * at the same positions relative to the machine.
  1167. */
  1168. static void update_software_endstops(AxisEnum axis) {
  1169. float offs = home_offset[axis] + position_shift[axis];
  1170. #if ENABLED(DUAL_X_CARRIAGE)
  1171. if (axis == X_AXIS) {
  1172. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1173. if (active_extruder != 0) {
  1174. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1175. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1176. return;
  1177. }
  1178. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1179. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1180. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1181. return;
  1182. }
  1183. }
  1184. else
  1185. #endif
  1186. {
  1187. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1188. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1189. }
  1190. }
  1191. /**
  1192. * Change the home offset for an axis, update the current
  1193. * position and the software endstops to retain the same
  1194. * relative distance to the new home.
  1195. *
  1196. * Since this changes the current_position, code should
  1197. * call sync_plan_position soon after this.
  1198. */
  1199. static void set_home_offset(AxisEnum axis, float v) {
  1200. current_position[axis] += v - home_offset[axis];
  1201. home_offset[axis] = v;
  1202. update_software_endstops(axis);
  1203. }
  1204. static void set_axis_is_at_home(AxisEnum axis) {
  1205. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1206. if (DEBUGGING(LEVELING)) {
  1207. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1208. SERIAL_ECHOLNPGM(") >>>");
  1209. }
  1210. #endif
  1211. position_shift[axis] = 0;
  1212. #if ENABLED(DUAL_X_CARRIAGE)
  1213. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1214. if (active_extruder != 0)
  1215. current_position[X_AXIS] = x_home_pos(active_extruder);
  1216. else
  1217. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1218. update_software_endstops(X_AXIS);
  1219. return;
  1220. }
  1221. #endif
  1222. #if ENABLED(SCARA)
  1223. if (axis == X_AXIS || axis == Y_AXIS) {
  1224. float homeposition[3];
  1225. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1226. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1227. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1228. /**
  1229. * Works out real Homeposition angles using inverse kinematics,
  1230. * and calculates homing offset using forward kinematics
  1231. */
  1232. calculate_delta(homeposition);
  1233. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1234. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1235. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1236. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1237. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1238. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1239. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1240. calculate_SCARA_forward_Transform(delta);
  1241. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1242. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1243. current_position[axis] = delta[axis];
  1244. /**
  1245. * SCARA home positions are based on configuration since the actual
  1246. * limits are determined by the inverse kinematic transform.
  1247. */
  1248. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1249. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1250. }
  1251. else
  1252. #endif
  1253. {
  1254. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1255. update_software_endstops(axis);
  1256. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1257. if (axis == Z_AXIS) {
  1258. current_position[Z_AXIS] -= zprobe_zoffset;
  1259. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1260. if (DEBUGGING(LEVELING)) {
  1261. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1262. SERIAL_EOL;
  1263. }
  1264. #endif
  1265. }
  1266. #endif
  1267. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1268. if (DEBUGGING(LEVELING)) {
  1269. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1270. DEBUG_POS("", current_position);
  1271. }
  1272. #endif
  1273. }
  1274. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1275. if (DEBUGGING(LEVELING)) {
  1276. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1277. SERIAL_ECHOLNPGM(")");
  1278. }
  1279. #endif
  1280. }
  1281. /**
  1282. * Some planner shorthand inline functions
  1283. */
  1284. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1285. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1286. int hbd = homing_bump_divisor[axis];
  1287. if (hbd < 1) {
  1288. hbd = 10;
  1289. SERIAL_ECHO_START;
  1290. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1291. }
  1292. feedrate = homing_feedrate[axis] / hbd;
  1293. }
  1294. //
  1295. // line_to_current_position
  1296. // Move the planner to the current position from wherever it last moved
  1297. // (or from wherever it has been told it is located).
  1298. //
  1299. inline void line_to_current_position() {
  1300. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1301. }
  1302. inline void line_to_z(float zPosition) {
  1303. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1304. }
  1305. //
  1306. // line_to_destination
  1307. // Move the planner, not necessarily synced with current_position
  1308. //
  1309. inline void line_to_destination(float mm_m) {
  1310. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1311. }
  1312. inline void line_to_destination() {
  1313. line_to_destination(feedrate);
  1314. }
  1315. /**
  1316. * sync_plan_position
  1317. * Set planner / stepper positions to the cartesian current_position.
  1318. * The stepper code translates these coordinates into step units.
  1319. * Allows translation between steps and units (mm) for cartesian & core robots
  1320. */
  1321. inline void sync_plan_position() {
  1322. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1323. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1324. #endif
  1325. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1326. }
  1327. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1328. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1329. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1330. static void setup_for_endstop_move() {
  1331. saved_feedrate = feedrate;
  1332. saved_feedrate_multiplier = feedrate_multiplier;
  1333. feedrate_multiplier = 100;
  1334. refresh_cmd_timeout();
  1335. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1336. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > endstops.enable()");
  1337. #endif
  1338. endstops.enable();
  1339. }
  1340. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1341. #if ENABLED(DELTA)
  1342. /**
  1343. * Calculate delta, start a line, and set current_position to destination
  1344. */
  1345. void prepare_move_raw() {
  1346. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1347. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1348. #endif
  1349. refresh_cmd_timeout();
  1350. calculate_delta(destination);
  1351. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1352. set_current_to_destination();
  1353. }
  1354. #endif
  1355. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1356. #if DISABLED(DELTA)
  1357. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1358. //planner.bed_level_matrix.debug("bed level before");
  1359. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1360. planner.bed_level_matrix.set_to_identity();
  1361. if (DEBUGGING(LEVELING)) {
  1362. vector_3 uncorrected_position = planner.adjusted_position();
  1363. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1364. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1365. }
  1366. #endif
  1367. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1368. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1369. vector_3 corrected_position = planner.adjusted_position();
  1370. current_position[X_AXIS] = corrected_position.x;
  1371. current_position[Y_AXIS] = corrected_position.y;
  1372. current_position[Z_AXIS] = corrected_position.z;
  1373. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1374. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1375. #endif
  1376. sync_plan_position();
  1377. }
  1378. #endif // !DELTA
  1379. #else // !AUTO_BED_LEVELING_GRID
  1380. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1381. planner.bed_level_matrix.set_to_identity();
  1382. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1383. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1384. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1385. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1386. if (planeNormal.z < 0) {
  1387. planeNormal.x = -planeNormal.x;
  1388. planeNormal.y = -planeNormal.y;
  1389. planeNormal.z = -planeNormal.z;
  1390. }
  1391. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1392. vector_3 corrected_position = planner.adjusted_position();
  1393. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1394. if (DEBUGGING(LEVELING)) {
  1395. vector_3 uncorrected_position = corrected_position;
  1396. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1397. }
  1398. #endif
  1399. current_position[X_AXIS] = corrected_position.x;
  1400. current_position[Y_AXIS] = corrected_position.y;
  1401. current_position[Z_AXIS] = corrected_position.z;
  1402. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1403. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1404. #endif
  1405. sync_plan_position();
  1406. }
  1407. #endif // !AUTO_BED_LEVELING_GRID
  1408. static void run_z_probe() {
  1409. /**
  1410. * To prevent stepper_inactive_time from running out and
  1411. * EXTRUDER_RUNOUT_PREVENT from extruding
  1412. */
  1413. refresh_cmd_timeout();
  1414. #if ENABLED(DELTA)
  1415. float start_z = current_position[Z_AXIS];
  1416. long start_steps = stepper.position(Z_AXIS);
  1417. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1418. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1419. #endif
  1420. // move down slowly until you find the bed
  1421. feedrate = homing_feedrate[Z_AXIS] / 4;
  1422. destination[Z_AXIS] = -10;
  1423. prepare_move_raw(); // this will also set_current_to_destination
  1424. stepper.synchronize();
  1425. endstops.hit_on_purpose(); // clear endstop hit flags
  1426. /**
  1427. * We have to let the planner know where we are right now as it
  1428. * is not where we said to go.
  1429. */
  1430. long stop_steps = stepper.position(Z_AXIS);
  1431. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1432. current_position[Z_AXIS] = mm;
  1433. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1434. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1435. #endif
  1436. sync_plan_position_delta();
  1437. #else // !DELTA
  1438. planner.bed_level_matrix.set_to_identity();
  1439. feedrate = homing_feedrate[Z_AXIS];
  1440. // Move down until the Z probe (or endstop?) is triggered
  1441. float zPosition = -(Z_MAX_LENGTH + 10);
  1442. line_to_z(zPosition);
  1443. stepper.synchronize();
  1444. // Tell the planner where we ended up - Get this from the stepper handler
  1445. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1446. planner.set_position_mm(
  1447. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1448. current_position[E_AXIS]
  1449. );
  1450. // move up the retract distance
  1451. zPosition += home_bump_mm(Z_AXIS);
  1452. line_to_z(zPosition);
  1453. stepper.synchronize();
  1454. endstops.hit_on_purpose(); // clear endstop hit flags
  1455. // move back down slowly to find bed
  1456. set_homing_bump_feedrate(Z_AXIS);
  1457. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1458. line_to_z(zPosition);
  1459. stepper.synchronize();
  1460. endstops.hit_on_purpose(); // clear endstop hit flags
  1461. // Get the current stepper position after bumping an endstop
  1462. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1463. sync_plan_position();
  1464. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1465. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1466. #endif
  1467. #endif // !DELTA
  1468. }
  1469. /**
  1470. * Plan a move to (X, Y, Z) and set the current_position
  1471. * The final current_position may not be the one that was requested
  1472. */
  1473. static void do_blocking_move_to(float x, float y, float z) {
  1474. float oldFeedRate = feedrate;
  1475. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1476. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1477. #endif
  1478. #if ENABLED(DELTA)
  1479. feedrate = XY_TRAVEL_SPEED;
  1480. destination[X_AXIS] = x;
  1481. destination[Y_AXIS] = y;
  1482. destination[Z_AXIS] = z;
  1483. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1484. prepare_move_raw(); // this will also set_current_to_destination
  1485. else
  1486. prepare_move(); // this will also set_current_to_destination
  1487. stepper.synchronize();
  1488. #else
  1489. feedrate = homing_feedrate[Z_AXIS];
  1490. current_position[Z_AXIS] = z;
  1491. line_to_current_position();
  1492. stepper.synchronize();
  1493. feedrate = xy_travel_speed;
  1494. current_position[X_AXIS] = x;
  1495. current_position[Y_AXIS] = y;
  1496. line_to_current_position();
  1497. stepper.synchronize();
  1498. #endif
  1499. feedrate = oldFeedRate;
  1500. }
  1501. inline void do_blocking_move_to_xy(float x, float y) {
  1502. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1503. }
  1504. inline void do_blocking_move_to_x(float x) {
  1505. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1506. }
  1507. inline void do_blocking_move_to_z(float z) {
  1508. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1509. }
  1510. inline void raise_z_after_probing() {
  1511. #if Z_RAISE_AFTER_PROBING > 0
  1512. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1513. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("raise_z_after_probing()");
  1514. #endif
  1515. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1516. #endif
  1517. }
  1518. static void clean_up_after_endstop_move() {
  1519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1520. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops.not_homing()");
  1521. #endif
  1522. endstops.not_homing();
  1523. feedrate = saved_feedrate;
  1524. feedrate_multiplier = saved_feedrate_multiplier;
  1525. refresh_cmd_timeout();
  1526. }
  1527. #if HAS_BED_PROBE
  1528. static void deploy_z_probe() {
  1529. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1530. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1531. #endif
  1532. if (endstops.z_probe_enabled) return;
  1533. #if ENABLED(HAS_SERVO_ENDSTOPS)
  1534. // Engage Z Servo endstop if enabled
  1535. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1536. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1537. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1538. // If endstop is already false, the Z probe is deployed
  1539. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1540. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1541. if (z_probe_endstop)
  1542. #else
  1543. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1544. if (z_min_endstop)
  1545. #endif
  1546. {
  1547. // Move to the start position to initiate deployment
  1548. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1549. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1550. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1551. prepare_move_raw(); // this will also set_current_to_destination
  1552. // Move to engage deployment
  1553. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1554. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1555. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1556. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1557. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1558. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1559. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1560. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1561. prepare_move_raw();
  1562. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1563. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1564. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1565. // Move to trigger deployment
  1566. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1567. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1568. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1569. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1570. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1571. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1572. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1573. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1574. prepare_move_raw();
  1575. #endif
  1576. }
  1577. // Partially Home X,Y for safety
  1578. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1579. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1580. prepare_move_raw(); // this will also set_current_to_destination
  1581. stepper.synchronize();
  1582. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1583. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1584. if (z_probe_endstop)
  1585. #else
  1586. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1587. if (z_min_endstop)
  1588. #endif
  1589. {
  1590. if (IsRunning()) {
  1591. SERIAL_ERROR_START;
  1592. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1593. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1594. }
  1595. stop();
  1596. }
  1597. #endif // Z_PROBE_ALLEN_KEY
  1598. #if ENABLED(FIX_MOUNTED_PROBE)
  1599. // Noting to be done. Just set endstops.z_probe_enabled
  1600. #endif
  1601. endstops.enable_z_probe();
  1602. }
  1603. static void stow_z_probe(bool doRaise = true) {
  1604. #if !(ENABLED(HAS_SERVO_ENDSTOPS) && (Z_RAISE_AFTER_PROBING > 0))
  1605. UNUSED(doRaise);
  1606. #endif
  1607. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1608. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1609. #endif
  1610. if (!endstops.z_probe_enabled) return;
  1611. #if ENABLED(HAS_SERVO_ENDSTOPS)
  1612. // Retract Z Servo endstop if enabled
  1613. if (servo_endstop_id[Z_AXIS] >= 0) {
  1614. #if Z_RAISE_AFTER_PROBING > 0
  1615. if (doRaise) {
  1616. raise_z_after_probing(); // this also updates current_position
  1617. stepper.synchronize();
  1618. }
  1619. #endif
  1620. // Change the Z servo angle
  1621. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1622. }
  1623. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1624. // Move up for safety
  1625. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1626. #if Z_RAISE_AFTER_PROBING > 0
  1627. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1628. prepare_move_raw(); // this will also set_current_to_destination
  1629. #endif
  1630. // Move to the start position to initiate retraction
  1631. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1632. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1633. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1634. prepare_move_raw();
  1635. // Move the nozzle down to push the Z probe into retracted position
  1636. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1637. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1638. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1639. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1640. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1641. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1642. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1643. prepare_move_raw();
  1644. // Move up for safety
  1645. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1646. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1647. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1648. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1649. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1650. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1651. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1652. prepare_move_raw();
  1653. // Home XY for safety
  1654. feedrate = homing_feedrate[X_AXIS] / 2;
  1655. destination[X_AXIS] = 0;
  1656. destination[Y_AXIS] = 0;
  1657. prepare_move_raw(); // this will also set_current_to_destination
  1658. stepper.synchronize();
  1659. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1660. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1661. if (!z_probe_endstop)
  1662. #else
  1663. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1664. if (!z_min_endstop)
  1665. #endif
  1666. {
  1667. if (IsRunning()) {
  1668. SERIAL_ERROR_START;
  1669. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1670. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1671. }
  1672. stop();
  1673. }
  1674. #endif // Z_PROBE_ALLEN_KEY
  1675. #if ENABLED(FIX_MOUNTED_PROBE)
  1676. // Nothing to do here. Just clear endstops.z_probe_enabled
  1677. #endif
  1678. endstops.enable_z_probe(false);
  1679. }
  1680. #endif // HAS_BED_PROBE
  1681. enum ProbeAction {
  1682. ProbeStay = 0,
  1683. ProbeDeploy = _BV(0),
  1684. ProbeStow = _BV(1),
  1685. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1686. };
  1687. // Probe bed height at position (x,y), returns the measured z value
  1688. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1689. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1690. if (DEBUGGING(LEVELING)) {
  1691. SERIAL_ECHOLNPGM("probe_pt >>>");
  1692. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1693. SERIAL_EOL;
  1694. DEBUG_POS("", current_position);
  1695. }
  1696. #endif
  1697. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1698. if (DEBUGGING(LEVELING)) {
  1699. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1700. SERIAL_EOL;
  1701. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1702. SERIAL_EOL;
  1703. }
  1704. #endif
  1705. // Move Z up to the z_before height, then move the Z probe to the given XY
  1706. do_blocking_move_to_z(z_before); // this also updates current_position
  1707. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1708. if (DEBUGGING(LEVELING)) {
  1709. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1710. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1711. SERIAL_EOL;
  1712. }
  1713. #endif
  1714. // this also updates current_position
  1715. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1716. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1717. if (probe_action & ProbeDeploy) {
  1718. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1719. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1720. #endif
  1721. deploy_z_probe();
  1722. }
  1723. #endif
  1724. run_z_probe();
  1725. float measured_z = current_position[Z_AXIS];
  1726. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1727. if (probe_action & ProbeStow) {
  1728. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1729. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1730. #endif
  1731. stow_z_probe();
  1732. }
  1733. #endif
  1734. if (verbose_level > 2) {
  1735. SERIAL_PROTOCOLPGM("Bed X: ");
  1736. SERIAL_PROTOCOL_F(x, 3);
  1737. SERIAL_PROTOCOLPGM(" Y: ");
  1738. SERIAL_PROTOCOL_F(y, 3);
  1739. SERIAL_PROTOCOLPGM(" Z: ");
  1740. SERIAL_PROTOCOL_F(measured_z, 3);
  1741. SERIAL_EOL;
  1742. }
  1743. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1744. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1745. #endif
  1746. return measured_z;
  1747. }
  1748. #if ENABLED(DELTA)
  1749. /**
  1750. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1751. */
  1752. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1753. if (bed_level[x][y] != 0.0) {
  1754. return; // Don't overwrite good values.
  1755. }
  1756. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1757. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1758. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1759. float median = c; // Median is robust (ignores outliers).
  1760. if (a < b) {
  1761. if (b < c) median = b;
  1762. if (c < a) median = a;
  1763. }
  1764. else { // b <= a
  1765. if (c < b) median = b;
  1766. if (a < c) median = a;
  1767. }
  1768. bed_level[x][y] = median;
  1769. }
  1770. /**
  1771. * Fill in the unprobed points (corners of circular print surface)
  1772. * using linear extrapolation, away from the center.
  1773. */
  1774. static void extrapolate_unprobed_bed_level() {
  1775. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1776. for (int y = 0; y <= half; y++) {
  1777. for (int x = 0; x <= half; x++) {
  1778. if (x + y < 3) continue;
  1779. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1780. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1781. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1782. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1783. }
  1784. }
  1785. }
  1786. /**
  1787. * Print calibration results for plotting or manual frame adjustment.
  1788. */
  1789. static void print_bed_level() {
  1790. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1791. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1792. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1793. SERIAL_PROTOCOLCHAR(' ');
  1794. }
  1795. SERIAL_EOL;
  1796. }
  1797. }
  1798. /**
  1799. * Reset calibration results to zero.
  1800. */
  1801. void reset_bed_level() {
  1802. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1803. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1804. #endif
  1805. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1806. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1807. bed_level[x][y] = 0.0;
  1808. }
  1809. }
  1810. }
  1811. #endif // DELTA
  1812. #if ENABLED(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_SLED)
  1813. void raise_z_for_servo() {
  1814. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1815. /**
  1816. * The zprobe_zoffset is negative any switch below the nozzle, so
  1817. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1818. */
  1819. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1820. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1821. }
  1822. #endif
  1823. #endif // AUTO_BED_LEVELING_FEATURE
  1824. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1825. static void axis_unhomed_error(bool xyz=false) {
  1826. if (xyz) {
  1827. LCD_MESSAGEPGM(MSG_XYZ_UNHOMED);
  1828. SERIAL_ECHO_START;
  1829. SERIAL_ECHOLNPGM(MSG_XYZ_UNHOMED);
  1830. }
  1831. else {
  1832. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1833. SERIAL_ECHO_START;
  1834. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1835. }
  1836. }
  1837. #endif
  1838. #if ENABLED(Z_PROBE_SLED)
  1839. #ifndef SLED_DOCKING_OFFSET
  1840. #define SLED_DOCKING_OFFSET 0
  1841. #endif
  1842. /**
  1843. * Method to dock/undock a sled designed by Charles Bell.
  1844. *
  1845. * dock[in] If true, move to MAX_X and engage the electromagnet
  1846. * offset[in] The additional distance to move to adjust docking location
  1847. */
  1848. static void dock_sled(bool dock, int offset = 0) {
  1849. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1850. if (DEBUGGING(LEVELING)) {
  1851. SERIAL_ECHOPAIR("dock_sled(", dock);
  1852. SERIAL_ECHOLNPGM(")");
  1853. }
  1854. #endif
  1855. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  1856. axis_unhomed_error(true);
  1857. return;
  1858. }
  1859. if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
  1860. float oldXpos = current_position[X_AXIS]; // save x position
  1861. if (dock) {
  1862. raise_z_after_probing(); // raise Z
  1863. // Dock sled a bit closer to ensure proper capturing
  1864. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1865. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1866. }
  1867. else {
  1868. float z_loc = current_position[Z_AXIS];
  1869. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1870. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1871. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1872. }
  1873. do_blocking_move_to_x(oldXpos); // return to position before docking
  1874. endstops.enable_z_probe(!dock); // logically disable docked probe
  1875. }
  1876. #endif // Z_PROBE_SLED
  1877. /**
  1878. * Home an individual axis
  1879. */
  1880. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1881. static void homeaxis(AxisEnum axis) {
  1882. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1883. if (DEBUGGING(LEVELING)) {
  1884. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1885. SERIAL_ECHOLNPGM(")");
  1886. }
  1887. #endif
  1888. #define HOMEAXIS_DO(LETTER) \
  1889. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1890. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1891. int axis_home_dir =
  1892. #if ENABLED(DUAL_X_CARRIAGE)
  1893. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1894. #endif
  1895. home_dir(axis);
  1896. // Set the axis position as setup for the move
  1897. current_position[axis] = 0;
  1898. sync_plan_position();
  1899. #if ENABLED(Z_PROBE_SLED)
  1900. #define _Z_SERVO_TEST (axis != Z_AXIS) // already deployed Z
  1901. #define _Z_SERVO_SUBTEST false // Z will never be invoked
  1902. #define _Z_DEPLOY (dock_sled(false))
  1903. #define _Z_STOW (dock_sled(true))
  1904. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1905. #define _Z_SERVO_TEST (axis != Z_AXIS) // already deployed Z
  1906. #define _Z_SERVO_SUBTEST false // Z will never be invoked
  1907. #define _Z_DEPLOY (deploy_z_probe())
  1908. #define _Z_STOW (stow_z_probe())
  1909. #elif ENABLED(HAS_SERVO_ENDSTOPS)
  1910. #define _Z_SERVO_TEST true // Z not deployed yet
  1911. #define _Z_SERVO_SUBTEST (axis == Z_AXIS) // Z is a probe
  1912. #endif
  1913. // If there's a Z probe that needs deployment...
  1914. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1915. // ...and homing Z towards the bed? Deploy it.
  1916. if (axis == Z_AXIS && axis_home_dir < 0) {
  1917. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1918. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_DEPLOY));
  1919. #endif
  1920. _Z_DEPLOY;
  1921. }
  1922. #endif
  1923. #if ENABLED(HAS_SERVO_ENDSTOPS)
  1924. // Engage an X, Y (or Z) Servo endstop if enabled
  1925. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1926. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1927. if (_Z_SERVO_SUBTEST) endstops.z_probe_enabled = true;
  1928. }
  1929. #endif
  1930. // Set a flag for Z motor locking
  1931. #if ENABLED(Z_DUAL_ENDSTOPS)
  1932. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1933. #endif
  1934. // Move towards the endstop until an endstop is triggered
  1935. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1936. feedrate = homing_feedrate[axis];
  1937. line_to_destination();
  1938. stepper.synchronize();
  1939. // Set the axis position as setup for the move
  1940. current_position[axis] = 0;
  1941. sync_plan_position();
  1942. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1943. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1944. #endif
  1945. endstops.enable(false); // Disable endstops while moving away
  1946. // Move away from the endstop by the axis HOME_BUMP_MM
  1947. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1948. line_to_destination();
  1949. stepper.synchronize();
  1950. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1951. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1952. #endif
  1953. endstops.enable(true); // Enable endstops for next homing move
  1954. // Slow down the feedrate for the next move
  1955. set_homing_bump_feedrate(axis);
  1956. // Move slowly towards the endstop until triggered
  1957. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1958. line_to_destination();
  1959. stepper.synchronize();
  1960. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1961. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1962. #endif
  1963. #if ENABLED(Z_DUAL_ENDSTOPS)
  1964. if (axis == Z_AXIS) {
  1965. float adj = fabs(z_endstop_adj);
  1966. bool lockZ1;
  1967. if (axis_home_dir > 0) {
  1968. adj = -adj;
  1969. lockZ1 = (z_endstop_adj > 0);
  1970. }
  1971. else
  1972. lockZ1 = (z_endstop_adj < 0);
  1973. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1974. sync_plan_position();
  1975. // Move to the adjusted endstop height
  1976. feedrate = homing_feedrate[axis];
  1977. destination[Z_AXIS] = adj;
  1978. line_to_destination();
  1979. stepper.synchronize();
  1980. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1981. stepper.set_homing_flag(false);
  1982. } // Z_AXIS
  1983. #endif
  1984. #if ENABLED(DELTA)
  1985. // retrace by the amount specified in endstop_adj
  1986. if (endstop_adj[axis] * axis_home_dir < 0) {
  1987. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1988. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1989. #endif
  1990. endstops.enable(false); // Disable endstops while moving away
  1991. sync_plan_position();
  1992. destination[axis] = endstop_adj[axis];
  1993. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1994. if (DEBUGGING(LEVELING)) {
  1995. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1996. DEBUG_POS("", destination);
  1997. }
  1998. #endif
  1999. line_to_destination();
  2000. stepper.synchronize();
  2001. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2002. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2003. #endif
  2004. endstops.enable(true); // Enable endstops for next homing move
  2005. }
  2006. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2007. else {
  2008. if (DEBUGGING(LEVELING)) {
  2009. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  2010. SERIAL_EOL;
  2011. }
  2012. }
  2013. #endif
  2014. #endif
  2015. // Set the axis position to its home position (plus home offsets)
  2016. set_axis_is_at_home(axis);
  2017. sync_plan_position();
  2018. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2019. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2020. #endif
  2021. destination[axis] = current_position[axis];
  2022. feedrate = 0.0;
  2023. endstops.hit_on_purpose(); // clear endstop hit flags
  2024. axis_known_position[axis] = true;
  2025. axis_homed[axis] = true;
  2026. // Put away the Z probe with a function
  2027. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  2028. if (axis == Z_AXIS && axis_home_dir < 0) {
  2029. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2030. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  2031. #endif
  2032. _Z_STOW;
  2033. }
  2034. #endif
  2035. // Retract X, Y (or Z) Servo endstop if enabled
  2036. #if ENABLED(HAS_SERVO_ENDSTOPS)
  2037. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  2038. // Raise the servo probe before stow outside ABL context.
  2039. // This is a workaround to allow use of a Servo Probe without
  2040. // ABL until more global probe handling is implemented.
  2041. #if Z_RAISE_AFTER_PROBING > 0
  2042. if (axis == Z_AXIS) {
  2043. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2044. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  2045. #endif
  2046. current_position[Z_AXIS] = Z_RAISE_AFTER_PROBING;
  2047. feedrate = homing_feedrate[Z_AXIS];
  2048. line_to_current_position();
  2049. stepper.synchronize();
  2050. }
  2051. #endif
  2052. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2053. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  2054. #endif
  2055. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  2056. if (_Z_SERVO_SUBTEST) endstops.enable_z_probe(false);
  2057. }
  2058. #endif // HAS_SERVO_ENDSTOPS
  2059. }
  2060. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2061. if (DEBUGGING(LEVELING)) {
  2062. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2063. SERIAL_ECHOLNPGM(")");
  2064. }
  2065. #endif
  2066. }
  2067. #if ENABLED(FWRETRACT)
  2068. void retract(bool retracting, bool swapping = false) {
  2069. if (retracting == retracted[active_extruder]) return;
  2070. float oldFeedrate = feedrate;
  2071. set_destination_to_current();
  2072. if (retracting) {
  2073. feedrate = retract_feedrate * 60;
  2074. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2075. sync_plan_position_e();
  2076. prepare_move();
  2077. if (retract_zlift > 0.01) {
  2078. current_position[Z_AXIS] -= retract_zlift;
  2079. #if ENABLED(DELTA)
  2080. sync_plan_position_delta();
  2081. #else
  2082. sync_plan_position();
  2083. #endif
  2084. prepare_move();
  2085. }
  2086. }
  2087. else {
  2088. if (retract_zlift > 0.01) {
  2089. current_position[Z_AXIS] += retract_zlift;
  2090. #if ENABLED(DELTA)
  2091. sync_plan_position_delta();
  2092. #else
  2093. sync_plan_position();
  2094. #endif
  2095. }
  2096. feedrate = retract_recover_feedrate * 60;
  2097. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2098. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2099. sync_plan_position_e();
  2100. prepare_move();
  2101. }
  2102. feedrate = oldFeedrate;
  2103. retracted[active_extruder] = retracting;
  2104. } // retract()
  2105. #endif // FWRETRACT
  2106. /**
  2107. * ***************************************************************************
  2108. * ***************************** G-CODE HANDLING *****************************
  2109. * ***************************************************************************
  2110. */
  2111. /**
  2112. * Set XYZE destination and feedrate from the current GCode command
  2113. *
  2114. * - Set destination from included axis codes
  2115. * - Set to current for missing axis codes
  2116. * - Set the feedrate, if included
  2117. */
  2118. void gcode_get_destination() {
  2119. for (int i = 0; i < NUM_AXIS; i++) {
  2120. if (code_seen(axis_codes[i]))
  2121. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2122. else
  2123. destination[i] = current_position[i];
  2124. }
  2125. if (code_seen('F')) {
  2126. float next_feedrate = code_value_linear_units();
  2127. if (next_feedrate > 0.0) feedrate = next_feedrate;
  2128. }
  2129. }
  2130. void unknown_command_error() {
  2131. SERIAL_ECHO_START;
  2132. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2133. SERIAL_ECHO(current_command);
  2134. SERIAL_ECHOPGM("\"\n");
  2135. }
  2136. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2137. /**
  2138. * Output a "busy" message at regular intervals
  2139. * while the machine is not accepting commands.
  2140. */
  2141. void host_keepalive() {
  2142. millis_t ms = millis();
  2143. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2144. if (PENDING(ms, next_busy_signal_ms)) return;
  2145. switch (busy_state) {
  2146. case IN_HANDLER:
  2147. case IN_PROCESS:
  2148. SERIAL_ECHO_START;
  2149. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2150. break;
  2151. case PAUSED_FOR_USER:
  2152. SERIAL_ECHO_START;
  2153. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2154. break;
  2155. case PAUSED_FOR_INPUT:
  2156. SERIAL_ECHO_START;
  2157. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2158. break;
  2159. default:
  2160. break;
  2161. }
  2162. }
  2163. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2164. }
  2165. #endif //HOST_KEEPALIVE_FEATURE
  2166. /**
  2167. * G0, G1: Coordinated movement of X Y Z E axes
  2168. */
  2169. inline void gcode_G0_G1() {
  2170. if (IsRunning()) {
  2171. gcode_get_destination(); // For X Y Z E F
  2172. #if ENABLED(FWRETRACT)
  2173. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2174. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2175. // Is this move an attempt to retract or recover?
  2176. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2177. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2178. sync_plan_position_e(); // AND from the planner
  2179. retract(!retracted[active_extruder]);
  2180. return;
  2181. }
  2182. }
  2183. #endif //FWRETRACT
  2184. prepare_move();
  2185. }
  2186. }
  2187. /**
  2188. * G2: Clockwise Arc
  2189. * G3: Counterclockwise Arc
  2190. */
  2191. #if ENABLED(ARC_SUPPORT)
  2192. inline void gcode_G2_G3(bool clockwise) {
  2193. if (IsRunning()) {
  2194. #if ENABLED(SF_ARC_FIX)
  2195. bool relative_mode_backup = relative_mode;
  2196. relative_mode = true;
  2197. #endif
  2198. gcode_get_destination();
  2199. #if ENABLED(SF_ARC_FIX)
  2200. relative_mode = relative_mode_backup;
  2201. #endif
  2202. // Center of arc as offset from current_position
  2203. float arc_offset[2] = {
  2204. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2205. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2206. };
  2207. // Send an arc to the planner
  2208. plan_arc(destination, arc_offset, clockwise);
  2209. refresh_cmd_timeout();
  2210. }
  2211. }
  2212. #endif
  2213. /**
  2214. * G4: Dwell S<seconds> or P<milliseconds>
  2215. */
  2216. inline void gcode_G4() {
  2217. millis_t codenum = 0;
  2218. if (code_seen('P')) codenum = code_value_millis(); // milliseconds to wait
  2219. if (code_seen('S')) codenum = code_value_millis_from_seconds(); // seconds to wait
  2220. stepper.synchronize();
  2221. refresh_cmd_timeout();
  2222. codenum += previous_cmd_ms; // keep track of when we started waiting
  2223. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2224. while (PENDING(millis(), codenum)) idle();
  2225. }
  2226. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2227. /**
  2228. * Parameters interpreted according to:
  2229. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2230. * However I, J omission is not supported at this point; all
  2231. * parameters can be omitted and default to zero.
  2232. */
  2233. /**
  2234. * G5: Cubic B-spline
  2235. */
  2236. inline void gcode_G5() {
  2237. if (IsRunning()) {
  2238. gcode_get_destination();
  2239. float offset[] = {
  2240. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2241. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2242. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2243. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2244. };
  2245. plan_cubic_move(offset);
  2246. }
  2247. }
  2248. #endif // BEZIER_CURVE_SUPPORT
  2249. #if ENABLED(FWRETRACT)
  2250. /**
  2251. * G10 - Retract filament according to settings of M207
  2252. * G11 - Recover filament according to settings of M208
  2253. */
  2254. inline void gcode_G10_G11(bool doRetract=false) {
  2255. #if EXTRUDERS > 1
  2256. if (doRetract) {
  2257. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2258. }
  2259. #endif
  2260. retract(doRetract
  2261. #if EXTRUDERS > 1
  2262. , retracted_swap[active_extruder]
  2263. #endif
  2264. );
  2265. }
  2266. #endif //FWRETRACT
  2267. #if ENABLED(INCH_MODE_SUPPORT)
  2268. /**
  2269. * G20: Set input mode to inches
  2270. */
  2271. inline void gcode_G20() {
  2272. set_input_linear_units(LINEARUNIT_INCH);
  2273. }
  2274. /**
  2275. * G21: Set input mode to millimeters
  2276. */
  2277. inline void gcode_G21() {
  2278. set_input_linear_units(LINEARUNIT_MM);
  2279. }
  2280. #endif
  2281. /**
  2282. * G28: Home all axes according to settings
  2283. *
  2284. * Parameters
  2285. *
  2286. * None Home to all axes with no parameters.
  2287. * With QUICK_HOME enabled XY will home together, then Z.
  2288. *
  2289. * Cartesian parameters
  2290. *
  2291. * X Home to the X endstop
  2292. * Y Home to the Y endstop
  2293. * Z Home to the Z endstop
  2294. *
  2295. */
  2296. inline void gcode_G28() {
  2297. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2298. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2299. #endif
  2300. // Wait for planner moves to finish!
  2301. stepper.synchronize();
  2302. // For auto bed leveling, clear the level matrix
  2303. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2304. planner.bed_level_matrix.set_to_identity();
  2305. #if ENABLED(DELTA)
  2306. reset_bed_level();
  2307. #endif
  2308. #endif
  2309. /**
  2310. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2311. * on again when homing all axis
  2312. */
  2313. #if ENABLED(MESH_BED_LEVELING)
  2314. float pre_home_z = MESH_HOME_SEARCH_Z;
  2315. if (mbl.active()) {
  2316. // Save known Z position if already homed
  2317. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2318. pre_home_z = current_position[Z_AXIS];
  2319. pre_home_z += mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2320. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2321. }
  2322. mbl.set_active(false);
  2323. }
  2324. #endif
  2325. setup_for_endstop_move();
  2326. /**
  2327. * Directly after a reset this is all 0. Later we get a hint if we have
  2328. * to raise z or not.
  2329. */
  2330. set_destination_to_current();
  2331. feedrate = 0.0;
  2332. #if ENABLED(DELTA)
  2333. /**
  2334. * A delta can only safely home all axis at the same time
  2335. * all axis have to home at the same time
  2336. */
  2337. // Pretend the current position is 0,0,0
  2338. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2339. sync_plan_position();
  2340. // Move all carriages up together until the first endstop is hit.
  2341. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2342. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2343. line_to_destination();
  2344. stepper.synchronize();
  2345. endstops.hit_on_purpose(); // clear endstop hit flags
  2346. // Destination reached
  2347. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2348. // take care of back off and rehome now we are all at the top
  2349. HOMEAXIS(X);
  2350. HOMEAXIS(Y);
  2351. HOMEAXIS(Z);
  2352. sync_plan_position_delta();
  2353. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2354. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2355. #endif
  2356. #else // NOT DELTA
  2357. bool homeX = code_seen(axis_codes[X_AXIS]),
  2358. homeY = code_seen(axis_codes[Y_AXIS]),
  2359. homeZ = code_seen(axis_codes[Z_AXIS]);
  2360. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2361. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2362. if (home_all_axis || homeZ) {
  2363. HOMEAXIS(Z);
  2364. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2365. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2366. #endif
  2367. }
  2368. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2369. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2370. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2371. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2372. feedrate = planner.max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2373. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2374. if (DEBUGGING(LEVELING)) {
  2375. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2376. SERIAL_EOL;
  2377. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2378. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2379. }
  2380. #endif
  2381. line_to_destination();
  2382. stepper.synchronize();
  2383. /**
  2384. * Update the current Z position even if it currently not real from
  2385. * Z-home otherwise each call to line_to_destination() will want to
  2386. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2387. */
  2388. current_position[Z_AXIS] = destination[Z_AXIS];
  2389. }
  2390. #endif
  2391. #if ENABLED(QUICK_HOME)
  2392. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2393. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2394. #if ENABLED(DUAL_X_CARRIAGE)
  2395. int x_axis_home_dir = x_home_dir(active_extruder);
  2396. extruder_duplication_enabled = false;
  2397. #else
  2398. int x_axis_home_dir = home_dir(X_AXIS);
  2399. #endif
  2400. sync_plan_position();
  2401. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2402. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2403. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2404. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2405. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2406. line_to_destination();
  2407. stepper.synchronize();
  2408. set_axis_is_at_home(X_AXIS);
  2409. set_axis_is_at_home(Y_AXIS);
  2410. sync_plan_position();
  2411. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2412. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2413. #endif
  2414. destination[X_AXIS] = current_position[X_AXIS];
  2415. destination[Y_AXIS] = current_position[Y_AXIS];
  2416. line_to_destination();
  2417. feedrate = 0.0;
  2418. stepper.synchronize();
  2419. endstops.hit_on_purpose(); // clear endstop hit flags
  2420. current_position[X_AXIS] = destination[X_AXIS];
  2421. current_position[Y_AXIS] = destination[Y_AXIS];
  2422. #if DISABLED(SCARA)
  2423. current_position[Z_AXIS] = destination[Z_AXIS];
  2424. #endif
  2425. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2426. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2427. #endif
  2428. }
  2429. #endif // QUICK_HOME
  2430. #if ENABLED(HOME_Y_BEFORE_X)
  2431. // Home Y
  2432. if (home_all_axis || homeY) HOMEAXIS(Y);
  2433. #endif
  2434. // Home X
  2435. if (home_all_axis || homeX) {
  2436. #if ENABLED(DUAL_X_CARRIAGE)
  2437. int tmp_extruder = active_extruder;
  2438. extruder_duplication_enabled = false;
  2439. active_extruder = !active_extruder;
  2440. HOMEAXIS(X);
  2441. inactive_extruder_x_pos = current_position[X_AXIS];
  2442. active_extruder = tmp_extruder;
  2443. HOMEAXIS(X);
  2444. // reset state used by the different modes
  2445. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2446. delayed_move_time = 0;
  2447. active_extruder_parked = true;
  2448. #else
  2449. HOMEAXIS(X);
  2450. #endif
  2451. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2452. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2453. #endif
  2454. }
  2455. #if DISABLED(HOME_Y_BEFORE_X)
  2456. // Home Y
  2457. if (home_all_axis || homeY) {
  2458. HOMEAXIS(Y);
  2459. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2460. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2461. #endif
  2462. }
  2463. #endif
  2464. // Home Z last if homing towards the bed
  2465. #if Z_HOME_DIR < 0
  2466. if (home_all_axis || homeZ) {
  2467. #if ENABLED(Z_SAFE_HOMING)
  2468. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2469. if (DEBUGGING(LEVELING)) {
  2470. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2471. }
  2472. #endif
  2473. if (home_all_axis) {
  2474. /**
  2475. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2476. * No need to move Z any more as this height should already be safe
  2477. * enough to reach Z_SAFE_HOMING XY positions.
  2478. * Just make sure the planner is in sync.
  2479. */
  2480. sync_plan_position();
  2481. /**
  2482. * Set the Z probe (or just the nozzle) destination to the safe
  2483. * homing point
  2484. */
  2485. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2486. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2487. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2488. feedrate = XY_TRAVEL_SPEED;
  2489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2490. if (DEBUGGING(LEVELING)) {
  2491. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2492. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2493. }
  2494. #endif
  2495. // Move in the XY plane
  2496. line_to_destination();
  2497. stepper.synchronize();
  2498. /**
  2499. * Update the current positions for XY, Z is still at least at
  2500. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2501. */
  2502. current_position[X_AXIS] = destination[X_AXIS];
  2503. current_position[Y_AXIS] = destination[Y_AXIS];
  2504. // Home the Z axis
  2505. HOMEAXIS(Z);
  2506. }
  2507. else if (homeZ) { // Don't need to Home Z twice
  2508. // Let's see if X and Y are homed
  2509. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2510. /**
  2511. * Make sure the Z probe is within the physical limits
  2512. * NOTE: This doesn't necessarily ensure the Z probe is also
  2513. * within the bed!
  2514. */
  2515. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2516. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2517. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2518. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2519. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2520. // Home the Z axis
  2521. HOMEAXIS(Z);
  2522. }
  2523. else {
  2524. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2525. SERIAL_ECHO_START;
  2526. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2527. }
  2528. }
  2529. else {
  2530. axis_unhomed_error();
  2531. }
  2532. } // !home_all_axes && homeZ
  2533. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2534. if (DEBUGGING(LEVELING)) {
  2535. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2536. }
  2537. #endif
  2538. #else // !Z_SAFE_HOMING
  2539. HOMEAXIS(Z);
  2540. #endif // !Z_SAFE_HOMING
  2541. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2542. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2543. #endif
  2544. } // home_all_axis || homeZ
  2545. #endif // Z_HOME_DIR < 0
  2546. sync_plan_position();
  2547. #endif // else DELTA
  2548. #if ENABLED(SCARA)
  2549. sync_plan_position_delta();
  2550. #endif
  2551. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2552. endstops.enable(false);
  2553. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2554. if (DEBUGGING(LEVELING)) {
  2555. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING endstops.enable(false)");
  2556. }
  2557. #endif
  2558. #endif
  2559. // Enable mesh leveling again
  2560. #if ENABLED(MESH_BED_LEVELING)
  2561. if (mbl.has_mesh()) {
  2562. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2563. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2564. sync_plan_position();
  2565. mbl.set_active(true);
  2566. #if ENABLED(MESH_G28_REST_ORIGIN)
  2567. current_position[Z_AXIS] = 0.0;
  2568. set_destination_to_current();
  2569. feedrate = homing_feedrate[Z_AXIS];
  2570. line_to_destination();
  2571. stepper.synchronize();
  2572. #else
  2573. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2574. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2575. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2576. #endif
  2577. }
  2578. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2579. current_position[Z_AXIS] = pre_home_z;
  2580. sync_plan_position();
  2581. mbl.set_active(true);
  2582. current_position[Z_AXIS] = pre_home_z -
  2583. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2584. current_position[Y_AXIS] - home_offset[Y_AXIS]);
  2585. }
  2586. }
  2587. #endif
  2588. feedrate = saved_feedrate;
  2589. feedrate_multiplier = saved_feedrate_multiplier;
  2590. refresh_cmd_timeout();
  2591. endstops.hit_on_purpose(); // clear endstop hit flags
  2592. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2593. if (DEBUGGING(LEVELING)) {
  2594. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2595. }
  2596. #endif
  2597. report_current_position();
  2598. }
  2599. #if ENABLED(MESH_BED_LEVELING)
  2600. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
  2601. inline void _mbl_goto_xy(float x, float y) {
  2602. saved_feedrate = feedrate;
  2603. feedrate = homing_feedrate[X_AXIS];
  2604. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2605. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2606. + MIN_Z_HEIGHT_FOR_HOMING
  2607. #endif
  2608. ;
  2609. line_to_current_position();
  2610. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2611. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2612. line_to_current_position();
  2613. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2614. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2615. line_to_current_position();
  2616. #endif
  2617. feedrate = saved_feedrate;
  2618. stepper.synchronize();
  2619. }
  2620. /**
  2621. * G29: Mesh-based Z probe, probes a grid and produces a
  2622. * mesh to compensate for variable bed height
  2623. *
  2624. * Parameters With MESH_BED_LEVELING:
  2625. *
  2626. * S0 Produce a mesh report
  2627. * S1 Start probing mesh points
  2628. * S2 Probe the next mesh point
  2629. * S3 Xn Yn Zn.nn Manually modify a single point
  2630. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2631. * S5 Reset and disable mesh
  2632. *
  2633. * The S0 report the points as below
  2634. *
  2635. * +----> X-axis 1-n
  2636. * |
  2637. * |
  2638. * v Y-axis 1-n
  2639. *
  2640. */
  2641. inline void gcode_G29() {
  2642. static int probe_point = -1;
  2643. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2644. if (state < 0 || state > 5) {
  2645. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2646. return;
  2647. }
  2648. int8_t px, py;
  2649. float z;
  2650. switch (state) {
  2651. case MeshReport:
  2652. if (mbl.has_mesh()) {
  2653. SERIAL_PROTOCOLPGM("State: ");
  2654. if (mbl.active())
  2655. SERIAL_PROTOCOLPGM("On");
  2656. else
  2657. SERIAL_PROTOCOLPGM("Off");
  2658. SERIAL_PROTOCOLPGM("\nNum X,Y: ");
  2659. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2660. SERIAL_PROTOCOLCHAR(',');
  2661. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2662. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2663. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2664. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2665. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2666. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2667. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2668. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2669. SERIAL_PROTOCOLPGM(" ");
  2670. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2671. }
  2672. SERIAL_EOL;
  2673. }
  2674. }
  2675. else
  2676. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2677. break;
  2678. case MeshStart:
  2679. mbl.reset();
  2680. probe_point = 0;
  2681. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2682. break;
  2683. case MeshNext:
  2684. if (probe_point < 0) {
  2685. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2686. return;
  2687. }
  2688. // For each G29 S2...
  2689. if (probe_point == 0) {
  2690. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2691. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2692. sync_plan_position();
  2693. }
  2694. else {
  2695. // For G29 S2 after adjusting Z.
  2696. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2697. }
  2698. // If there's another point to sample, move there with optional lift.
  2699. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2700. mbl.zigzag(probe_point, px, py);
  2701. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2702. probe_point++;
  2703. }
  2704. else {
  2705. // One last "return to the bed" (as originally coded) at completion
  2706. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2707. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2708. + MIN_Z_HEIGHT_FOR_HOMING
  2709. #endif
  2710. ;
  2711. line_to_current_position();
  2712. stepper.synchronize();
  2713. // After recording the last point, activate the mbl and home
  2714. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2715. probe_point = -1;
  2716. mbl.set_has_mesh(true);
  2717. enqueue_and_echo_commands_P(PSTR("G28"));
  2718. }
  2719. break;
  2720. case MeshSet:
  2721. if (code_seen('X')) {
  2722. px = code_value_int() - 1;
  2723. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2724. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2725. return;
  2726. }
  2727. }
  2728. else {
  2729. SERIAL_PROTOCOLPGM("X not entered.\n");
  2730. return;
  2731. }
  2732. if (code_seen('Y')) {
  2733. py = code_value_int() - 1;
  2734. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2735. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2736. return;
  2737. }
  2738. }
  2739. else {
  2740. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2741. return;
  2742. }
  2743. if (code_seen('Z')) {
  2744. z = code_value_axis_units(Z_AXIS);
  2745. }
  2746. else {
  2747. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2748. return;
  2749. }
  2750. mbl.z_values[py][px] = z;
  2751. break;
  2752. case MeshSetZOffset:
  2753. if (code_seen('Z')) {
  2754. z = code_value_axis_units(Z_AXIS);
  2755. }
  2756. else {
  2757. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2758. return;
  2759. }
  2760. mbl.z_offset = z;
  2761. break;
  2762. case MeshReset:
  2763. if (mbl.active()) {
  2764. current_position[Z_AXIS] +=
  2765. mbl.get_z(current_position[X_AXIS] - home_offset[X_AXIS],
  2766. current_position[Y_AXIS] - home_offset[Y_AXIS]) - MESH_HOME_SEARCH_Z;
  2767. mbl.reset();
  2768. sync_plan_position();
  2769. }
  2770. else
  2771. mbl.reset();
  2772. } // switch(state)
  2773. report_current_position();
  2774. }
  2775. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2776. void out_of_range_error(const char* p_edge) {
  2777. SERIAL_PROTOCOLPGM("?Probe ");
  2778. serialprintPGM(p_edge);
  2779. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2780. }
  2781. /**
  2782. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2783. * Will fail if the printer has not been homed with G28.
  2784. *
  2785. * Enhanced G29 Auto Bed Leveling Probe Routine
  2786. *
  2787. * Parameters With AUTO_BED_LEVELING_GRID:
  2788. *
  2789. * P Set the size of the grid that will be probed (P x P points).
  2790. * Not supported by non-linear delta printer bed leveling.
  2791. * Example: "G29 P4"
  2792. *
  2793. * S Set the XY travel speed between probe points (in mm/min)
  2794. *
  2795. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2796. * or clean the rotation Matrix. Useful to check the topology
  2797. * after a first run of G29.
  2798. *
  2799. * V Set the verbose level (0-4). Example: "G29 V3"
  2800. *
  2801. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2802. * This is useful for manual bed leveling and finding flaws in the bed (to
  2803. * assist with part placement).
  2804. * Not supported by non-linear delta printer bed leveling.
  2805. *
  2806. * F Set the Front limit of the probing grid
  2807. * B Set the Back limit of the probing grid
  2808. * L Set the Left limit of the probing grid
  2809. * R Set the Right limit of the probing grid
  2810. *
  2811. * Global Parameters:
  2812. *
  2813. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2814. * Include "E" to engage/disengage the Z probe for each sample.
  2815. * There's no extra effect if you have a fixed Z probe.
  2816. * Usage: "G29 E" or "G29 e"
  2817. *
  2818. */
  2819. inline void gcode_G29() {
  2820. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2821. if (DEBUGGING(LEVELING)) {
  2822. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2823. DEBUG_POS("", current_position);
  2824. }
  2825. #endif
  2826. // Don't allow auto-leveling without homing first
  2827. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  2828. axis_unhomed_error(true);
  2829. return;
  2830. }
  2831. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2832. if (verbose_level < 0 || verbose_level > 4) {
  2833. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2834. return;
  2835. }
  2836. bool dryrun = code_seen('D'),
  2837. deploy_probe_for_each_reading = code_seen('E');
  2838. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2839. #if DISABLED(DELTA)
  2840. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2841. #endif
  2842. if (verbose_level > 0) {
  2843. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2844. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2845. }
  2846. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2847. #if DISABLED(DELTA)
  2848. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2849. if (auto_bed_leveling_grid_points < 2) {
  2850. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2851. return;
  2852. }
  2853. #endif
  2854. xy_travel_speed = code_seen('S') ? (int)code_value_linear_units() : XY_TRAVEL_SPEED;
  2855. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2856. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2857. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2858. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2859. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2860. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2861. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2862. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2863. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2864. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2865. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2866. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2867. if (left_out || right_out || front_out || back_out) {
  2868. if (left_out) {
  2869. out_of_range_error(PSTR("(L)eft"));
  2870. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2871. }
  2872. if (right_out) {
  2873. out_of_range_error(PSTR("(R)ight"));
  2874. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2875. }
  2876. if (front_out) {
  2877. out_of_range_error(PSTR("(F)ront"));
  2878. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2879. }
  2880. if (back_out) {
  2881. out_of_range_error(PSTR("(B)ack"));
  2882. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2883. }
  2884. return;
  2885. }
  2886. #endif // AUTO_BED_LEVELING_GRID
  2887. if (!dryrun) {
  2888. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2889. if (DEBUGGING(LEVELING)) {
  2890. vector_3 corrected_position = planner.adjusted_position();
  2891. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2892. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2893. }
  2894. #endif
  2895. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2896. planner.bed_level_matrix.set_to_identity();
  2897. #if ENABLED(DELTA)
  2898. reset_bed_level();
  2899. #else //!DELTA
  2900. //vector_3 corrected_position = planner.adjusted_position();
  2901. //corrected_position.debug("position before G29");
  2902. vector_3 uncorrected_position = planner.adjusted_position();
  2903. //uncorrected_position.debug("position during G29");
  2904. current_position[X_AXIS] = uncorrected_position.x;
  2905. current_position[Y_AXIS] = uncorrected_position.y;
  2906. current_position[Z_AXIS] = uncorrected_position.z;
  2907. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2908. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2909. #endif
  2910. sync_plan_position();
  2911. #endif // !DELTA
  2912. }
  2913. #if ENABLED(Z_PROBE_SLED)
  2914. dock_sled(false); // engage (un-dock) the Z probe
  2915. #elif ENABLED(FIX_MOUNTED_PROBE) || ENABLED(MECHANICAL_PROBE) || ENABLED(Z_PROBE_ALLEN_KEY) || (ENABLED(DELTA) && SERVO_LEVELING)
  2916. deploy_z_probe();
  2917. #endif
  2918. stepper.synchronize();
  2919. setup_for_endstop_move();
  2920. feedrate = homing_feedrate[Z_AXIS];
  2921. bed_leveling_in_progress = true;
  2922. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2923. // probe at the points of a lattice grid
  2924. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2925. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2926. #if ENABLED(DELTA)
  2927. delta_grid_spacing[0] = xGridSpacing;
  2928. delta_grid_spacing[1] = yGridSpacing;
  2929. float zoffset = zprobe_zoffset;
  2930. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value_axis_units(Z_AXIS);
  2931. #else // !DELTA
  2932. /**
  2933. * solve the plane equation ax + by + d = z
  2934. * A is the matrix with rows [x y 1] for all the probed points
  2935. * B is the vector of the Z positions
  2936. * the normal vector to the plane is formed by the coefficients of the
  2937. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2938. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2939. */
  2940. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2941. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2942. eqnBVector[abl2], // "B" vector of Z points
  2943. mean = 0.0;
  2944. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2945. #endif // !DELTA
  2946. int probePointCounter = 0;
  2947. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2948. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2949. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2950. int xStart, xStop, xInc;
  2951. if (zig) {
  2952. xStart = 0;
  2953. xStop = auto_bed_leveling_grid_points;
  2954. xInc = 1;
  2955. }
  2956. else {
  2957. xStart = auto_bed_leveling_grid_points - 1;
  2958. xStop = -1;
  2959. xInc = -1;
  2960. }
  2961. zig = !zig;
  2962. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2963. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2964. // raise extruder
  2965. float measured_z,
  2966. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2967. if (probePointCounter) {
  2968. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2969. if (DEBUGGING(LEVELING)) {
  2970. SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2971. SERIAL_EOL;
  2972. }
  2973. #endif
  2974. }
  2975. else {
  2976. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2977. if (DEBUGGING(LEVELING)) {
  2978. SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]);
  2979. SERIAL_EOL;
  2980. }
  2981. #endif
  2982. }
  2983. #if ENABLED(DELTA)
  2984. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2985. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2986. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2987. #endif //DELTA
  2988. ProbeAction act;
  2989. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2990. act = ProbeDeployAndStow;
  2991. else if (yCount == 0 && xCount == xStart)
  2992. act = ProbeDeploy;
  2993. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2994. act = ProbeStow;
  2995. else
  2996. act = ProbeStay;
  2997. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2998. #if DISABLED(DELTA)
  2999. mean += measured_z;
  3000. eqnBVector[probePointCounter] = measured_z;
  3001. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3002. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3003. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3004. indexIntoAB[xCount][yCount] = probePointCounter;
  3005. #else
  3006. bed_level[xCount][yCount] = measured_z + zoffset;
  3007. #endif
  3008. probePointCounter++;
  3009. idle();
  3010. } //xProbe
  3011. } //yProbe
  3012. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3013. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3014. #endif
  3015. clean_up_after_endstop_move();
  3016. #if ENABLED(DELTA)
  3017. if (!dryrun) extrapolate_unprobed_bed_level();
  3018. print_bed_level();
  3019. #else // !DELTA
  3020. // solve lsq problem
  3021. double plane_equation_coefficients[3];
  3022. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3023. mean /= abl2;
  3024. if (verbose_level) {
  3025. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3026. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3027. SERIAL_PROTOCOLPGM(" b: ");
  3028. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3029. SERIAL_PROTOCOLPGM(" d: ");
  3030. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3031. SERIAL_EOL;
  3032. if (verbose_level > 2) {
  3033. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3034. SERIAL_PROTOCOL_F(mean, 8);
  3035. SERIAL_EOL;
  3036. }
  3037. }
  3038. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3039. // Show the Topography map if enabled
  3040. if (do_topography_map) {
  3041. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  3042. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  3043. SERIAL_PROTOCOLPGM(" | |\n");
  3044. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  3045. SERIAL_PROTOCOLPGM(" E | | I\n");
  3046. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  3047. SERIAL_PROTOCOLPGM(" T | | H\n");
  3048. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  3049. SERIAL_PROTOCOLPGM(" | |\n");
  3050. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  3051. SERIAL_PROTOCOLPGM(" (0,0)\n");
  3052. float min_diff = 999;
  3053. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3054. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3055. int ind = indexIntoAB[xx][yy];
  3056. float diff = eqnBVector[ind] - mean;
  3057. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3058. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3059. z_tmp = 0;
  3060. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3061. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3062. if (diff >= 0.0)
  3063. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3064. else
  3065. SERIAL_PROTOCOLCHAR(' ');
  3066. SERIAL_PROTOCOL_F(diff, 5);
  3067. } // xx
  3068. SERIAL_EOL;
  3069. } // yy
  3070. SERIAL_EOL;
  3071. if (verbose_level > 3) {
  3072. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  3073. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3074. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3075. int ind = indexIntoAB[xx][yy];
  3076. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3077. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3078. z_tmp = 0;
  3079. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3080. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3081. if (diff >= 0.0)
  3082. SERIAL_PROTOCOLPGM(" +");
  3083. // Include + for column alignment
  3084. else
  3085. SERIAL_PROTOCOLCHAR(' ');
  3086. SERIAL_PROTOCOL_F(diff, 5);
  3087. } // xx
  3088. SERIAL_EOL;
  3089. } // yy
  3090. SERIAL_EOL;
  3091. }
  3092. } //do_topography_map
  3093. #endif //!DELTA
  3094. #else // !AUTO_BED_LEVELING_GRID
  3095. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3096. if (DEBUGGING(LEVELING)) {
  3097. SERIAL_ECHOLNPGM("> 3-point Leveling");
  3098. }
  3099. #endif
  3100. // Actions for each probe
  3101. ProbeAction p1, p2, p3;
  3102. if (deploy_probe_for_each_reading)
  3103. p1 = p2 = p3 = ProbeDeployAndStow;
  3104. else
  3105. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  3106. // Probe at 3 arbitrary points
  3107. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  3108. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  3109. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  3110. p1, verbose_level),
  3111. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  3112. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  3113. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  3114. p2, verbose_level),
  3115. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  3116. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  3117. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  3118. p3, verbose_level);
  3119. clean_up_after_endstop_move();
  3120. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3121. #endif // !AUTO_BED_LEVELING_GRID
  3122. #if ENABLED(DELTA)
  3123. // Allen Key Probe for Delta
  3124. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  3125. stow_z_probe();
  3126. #else
  3127. raise_z_after_probing(); // for non Allen Key probes, such as simple mechanical probe
  3128. #endif
  3129. #else // !DELTA
  3130. if (verbose_level > 0)
  3131. planner.bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  3132. if (!dryrun) {
  3133. /**
  3134. * Correct the Z height difference from Z probe position and nozzle tip position.
  3135. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3136. * from the nozzle. When the bed is uneven, this height must be corrected.
  3137. */
  3138. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3139. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3140. z_tmp = current_position[Z_AXIS],
  3141. real_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3142. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3143. if (DEBUGGING(LEVELING)) {
  3144. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  3145. SERIAL_EOL;
  3146. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  3147. SERIAL_EOL;
  3148. }
  3149. #endif
  3150. // Apply the correction sending the Z probe offset
  3151. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3152. /*
  3153. * Get the current Z position and send it to the planner.
  3154. *
  3155. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  3156. * (most recent planner.set_position_mm/sync_plan_position)
  3157. *
  3158. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  3159. * (set by default, M851, EEPROM, or Menu)
  3160. *
  3161. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  3162. * after the last probe
  3163. *
  3164. * >> Should home_offset[Z_AXIS] be included?
  3165. *
  3166. *
  3167. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  3168. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  3169. * not actually "homing" Z... then perhaps it should not be included
  3170. * here. The purpose of home_offset[] is to adjust for inaccurate
  3171. * endstops, not for reasonably accurate probes. If it were added
  3172. * here, it could be seen as a compensating factor for the Z probe.
  3173. */
  3174. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3175. if (DEBUGGING(LEVELING)) {
  3176. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3177. SERIAL_EOL;
  3178. }
  3179. #endif
  3180. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  3181. #if ENABLED(HAS_SERVO_ENDSTOPS) || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  3182. + Z_RAISE_AFTER_PROBING
  3183. #endif
  3184. ;
  3185. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  3186. sync_plan_position();
  3187. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3188. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3189. #endif
  3190. }
  3191. // Sled assembly for Cartesian bots
  3192. #if ENABLED(Z_PROBE_SLED)
  3193. dock_sled(true); // dock the sled
  3194. #else
  3195. // Raise Z axis for non-delta and non servo based probes
  3196. #if DISABLED(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  3197. raise_z_after_probing();
  3198. #endif
  3199. #endif
  3200. #endif // !DELTA
  3201. #if ENABLED(MECHANICAL_PROBE)
  3202. stow_z_probe();
  3203. #endif
  3204. #ifdef Z_PROBE_END_SCRIPT
  3205. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3206. if (DEBUGGING(LEVELING)) {
  3207. SERIAL_ECHO("Z Probe End Script: ");
  3208. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3209. }
  3210. #endif
  3211. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3212. #if HAS_BED_PROBE
  3213. endstops.enable_z_probe(false);
  3214. #endif
  3215. stepper.synchronize();
  3216. #endif
  3217. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3218. if (DEBUGGING(LEVELING)) {
  3219. SERIAL_ECHOLNPGM("<<< gcode_G29");
  3220. }
  3221. #endif
  3222. bed_leveling_in_progress = false;
  3223. report_current_position();
  3224. KEEPALIVE_STATE(IN_HANDLER);
  3225. }
  3226. #if DISABLED(Z_PROBE_SLED) // could be avoided
  3227. /**
  3228. * G30: Do a single Z probe at the current XY
  3229. */
  3230. inline void gcode_G30() {
  3231. #if ENABLED(HAS_SERVO_ENDSTOPS)
  3232. raise_z_for_servo();
  3233. #endif
  3234. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3235. stepper.synchronize();
  3236. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3237. setup_for_endstop_move(); // Too late. Must be done before deploying.
  3238. feedrate = homing_feedrate[Z_AXIS];
  3239. run_z_probe();
  3240. SERIAL_PROTOCOLPGM("Bed X: ");
  3241. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3242. SERIAL_PROTOCOLPGM(" Y: ");
  3243. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3244. SERIAL_PROTOCOLPGM(" Z: ");
  3245. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  3246. SERIAL_EOL;
  3247. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  3248. #if ENABLED(HAS_SERVO_ENDSTOPS)
  3249. raise_z_for_servo();
  3250. #endif
  3251. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3252. report_current_position();
  3253. }
  3254. #endif //!Z_PROBE_SLED
  3255. #endif //AUTO_BED_LEVELING_FEATURE
  3256. /**
  3257. * G92: Set current position to given X Y Z E
  3258. */
  3259. inline void gcode_G92() {
  3260. bool didE = code_seen(axis_codes[E_AXIS]);
  3261. if (!didE) stepper.synchronize();
  3262. bool didXYZ = false;
  3263. for (int i = 0; i < NUM_AXIS; i++) {
  3264. if (code_seen(axis_codes[i])) {
  3265. float p = current_position[i],
  3266. v = code_value_axis_units(i);
  3267. current_position[i] = v;
  3268. if (i != E_AXIS) {
  3269. position_shift[i] += v - p; // Offset the coordinate space
  3270. update_software_endstops((AxisEnum)i);
  3271. didXYZ = true;
  3272. }
  3273. }
  3274. }
  3275. if (didXYZ) {
  3276. #if ENABLED(DELTA) || ENABLED(SCARA)
  3277. sync_plan_position_delta();
  3278. #else
  3279. sync_plan_position();
  3280. #endif
  3281. }
  3282. else if (didE) {
  3283. sync_plan_position_e();
  3284. }
  3285. }
  3286. #if ENABLED(ULTIPANEL)
  3287. /**
  3288. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3289. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3290. */
  3291. inline void gcode_M0_M1() {
  3292. char* args = current_command_args;
  3293. uint8_t test_value = 12;
  3294. SERIAL_ECHOPAIR("TEST", test_value);
  3295. millis_t codenum = 0;
  3296. bool hasP = false, hasS = false;
  3297. if (code_seen('P')) {
  3298. codenum = code_value_millis(); // milliseconds to wait
  3299. hasP = codenum > 0;
  3300. }
  3301. if (code_seen('S')) {
  3302. codenum = code_value_millis_from_seconds(); // seconds to wait
  3303. hasS = codenum > 0;
  3304. }
  3305. if (!hasP && !hasS && *args != '\0')
  3306. lcd_setstatus(args, true);
  3307. else {
  3308. LCD_MESSAGEPGM(MSG_USERWAIT);
  3309. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3310. dontExpireStatus();
  3311. #endif
  3312. }
  3313. lcd_ignore_click();
  3314. stepper.synchronize();
  3315. refresh_cmd_timeout();
  3316. if (codenum > 0) {
  3317. codenum += previous_cmd_ms; // wait until this time for a click
  3318. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3319. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3320. KEEPALIVE_STATE(IN_HANDLER);
  3321. lcd_ignore_click(false);
  3322. }
  3323. else {
  3324. if (!lcd_detected()) return;
  3325. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3326. while (!lcd_clicked()) idle();
  3327. KEEPALIVE_STATE(IN_HANDLER);
  3328. }
  3329. if (IS_SD_PRINTING)
  3330. LCD_MESSAGEPGM(MSG_RESUMING);
  3331. else
  3332. LCD_MESSAGEPGM(WELCOME_MSG);
  3333. }
  3334. #endif // ULTIPANEL
  3335. /**
  3336. * M17: Enable power on all stepper motors
  3337. */
  3338. inline void gcode_M17() {
  3339. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3340. enable_all_steppers();
  3341. }
  3342. #if ENABLED(SDSUPPORT)
  3343. /**
  3344. * M20: List SD card to serial output
  3345. */
  3346. inline void gcode_M20() {
  3347. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3348. card.ls();
  3349. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3350. }
  3351. /**
  3352. * M21: Init SD Card
  3353. */
  3354. inline void gcode_M21() {
  3355. card.initsd();
  3356. }
  3357. /**
  3358. * M22: Release SD Card
  3359. */
  3360. inline void gcode_M22() {
  3361. card.release();
  3362. }
  3363. /**
  3364. * M23: Open a file
  3365. */
  3366. inline void gcode_M23() {
  3367. card.openFile(current_command_args, true);
  3368. }
  3369. /**
  3370. * M24: Start SD Print
  3371. */
  3372. inline void gcode_M24() {
  3373. card.startFileprint();
  3374. print_job_timer.start();
  3375. }
  3376. /**
  3377. * M25: Pause SD Print
  3378. */
  3379. inline void gcode_M25() {
  3380. card.pauseSDPrint();
  3381. }
  3382. /**
  3383. * M26: Set SD Card file index
  3384. */
  3385. inline void gcode_M26() {
  3386. if (card.cardOK && code_seen('S'))
  3387. card.setIndex(code_value_long());
  3388. }
  3389. /**
  3390. * M27: Get SD Card status
  3391. */
  3392. inline void gcode_M27() {
  3393. card.getStatus();
  3394. }
  3395. /**
  3396. * M28: Start SD Write
  3397. */
  3398. inline void gcode_M28() {
  3399. card.openFile(current_command_args, false);
  3400. }
  3401. /**
  3402. * M29: Stop SD Write
  3403. * Processed in write to file routine above
  3404. */
  3405. inline void gcode_M29() {
  3406. // card.saving = false;
  3407. }
  3408. /**
  3409. * M30 <filename>: Delete SD Card file
  3410. */
  3411. inline void gcode_M30() {
  3412. if (card.cardOK) {
  3413. card.closefile();
  3414. card.removeFile(current_command_args);
  3415. }
  3416. }
  3417. #endif //SDSUPPORT
  3418. /**
  3419. * M31: Get the time since the start of SD Print (or last M109)
  3420. */
  3421. inline void gcode_M31() {
  3422. millis_t t = print_job_timer.duration();
  3423. int min = t / 60, sec = t % 60;
  3424. char time[30];
  3425. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3426. SERIAL_ECHO_START;
  3427. SERIAL_ECHOLN(time);
  3428. lcd_setstatus(time);
  3429. thermalManager.autotempShutdown();
  3430. }
  3431. #if ENABLED(SDSUPPORT)
  3432. /**
  3433. * M32: Select file and start SD Print
  3434. */
  3435. inline void gcode_M32() {
  3436. if (card.sdprinting)
  3437. stepper.synchronize();
  3438. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3439. if (!namestartpos)
  3440. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3441. else
  3442. namestartpos++; //to skip the '!'
  3443. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3444. if (card.cardOK) {
  3445. card.openFile(namestartpos, true, call_procedure);
  3446. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3447. card.setIndex(code_value_long());
  3448. card.startFileprint();
  3449. // Procedure calls count as normal print time.
  3450. if (!call_procedure) print_job_timer.start();
  3451. }
  3452. }
  3453. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3454. /**
  3455. * M33: Get the long full path of a file or folder
  3456. *
  3457. * Parameters:
  3458. * <dospath> Case-insensitive DOS-style path to a file or folder
  3459. *
  3460. * Example:
  3461. * M33 miscel~1/armchair/armcha~1.gco
  3462. *
  3463. * Output:
  3464. * /Miscellaneous/Armchair/Armchair.gcode
  3465. */
  3466. inline void gcode_M33() {
  3467. card.printLongPath(current_command_args);
  3468. }
  3469. #endif
  3470. /**
  3471. * M928: Start SD Write
  3472. */
  3473. inline void gcode_M928() {
  3474. card.openLogFile(current_command_args);
  3475. }
  3476. #endif // SDSUPPORT
  3477. /**
  3478. * M42: Change pin status via GCode
  3479. *
  3480. * P<pin> Pin number (LED if omitted)
  3481. * S<byte> Pin status from 0 - 255
  3482. */
  3483. inline void gcode_M42() {
  3484. if (code_seen('S')) {
  3485. int pin_status = code_value_int();
  3486. if (pin_status < 0 || pin_status > 255) return;
  3487. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3488. if (pin_number < 0) return;
  3489. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3490. if (pin_number == sensitive_pins[i]) return;
  3491. pinMode(pin_number, OUTPUT);
  3492. digitalWrite(pin_number, pin_status);
  3493. analogWrite(pin_number, pin_status);
  3494. #if FAN_COUNT > 0
  3495. switch (pin_number) {
  3496. #if HAS_FAN0
  3497. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3498. #endif
  3499. #if HAS_FAN1
  3500. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3501. #endif
  3502. #if HAS_FAN2
  3503. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3504. #endif
  3505. }
  3506. #endif
  3507. } // code_seen('S')
  3508. }
  3509. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3510. /**
  3511. * This is redundant since the SanityCheck.h already checks for a valid
  3512. * Z_MIN_PROBE_PIN, but here for clarity.
  3513. */
  3514. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3515. #if !HAS_Z_MIN_PROBE_PIN
  3516. #error "You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation."
  3517. #endif
  3518. #elif !HAS_Z_MIN
  3519. #error "You must define Z_MIN_PIN to enable Z probe repeatability calculation."
  3520. #endif
  3521. /**
  3522. * M48: Z probe repeatability measurement function.
  3523. *
  3524. * Usage:
  3525. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3526. * P = Number of sampled points (4-50, default 10)
  3527. * X = Sample X position
  3528. * Y = Sample Y position
  3529. * V = Verbose level (0-4, default=1)
  3530. * E = Engage Z probe for each reading
  3531. * L = Number of legs of movement before probe
  3532. * S = Schizoid (Or Star if you prefer)
  3533. *
  3534. * This function assumes the bed has been homed. Specifically, that a G28 command
  3535. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3536. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3537. * regenerated.
  3538. */
  3539. inline void gcode_M48() {
  3540. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3541. axis_unhomed_error(true);
  3542. return;
  3543. }
  3544. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3545. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3546. if (code_seen('V')) {
  3547. verbose_level = code_value_byte();
  3548. if (verbose_level < 0 || verbose_level > 4) {
  3549. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3550. return;
  3551. }
  3552. }
  3553. if (verbose_level > 0)
  3554. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3555. if (code_seen('P')) {
  3556. n_samples = code_value_byte();
  3557. if (n_samples < 4 || n_samples > 50) {
  3558. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3559. return;
  3560. }
  3561. }
  3562. float X_current = current_position[X_AXIS],
  3563. Y_current = current_position[Y_AXIS],
  3564. Z_current = current_position[Z_AXIS],
  3565. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3566. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3567. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3568. bool deploy_probe_for_each_reading = code_seen('E');
  3569. if (code_seen('X')) {
  3570. X_probe_location = code_value_axis_units(X_AXIS);
  3571. #if DISABLED(DELTA)
  3572. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3573. out_of_range_error(PSTR("X"));
  3574. return;
  3575. }
  3576. #endif
  3577. }
  3578. if (code_seen('Y')) {
  3579. Y_probe_location = code_value_axis_units(Y_AXIS);
  3580. #if DISABLED(DELTA)
  3581. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3582. out_of_range_error(PSTR("Y"));
  3583. return;
  3584. }
  3585. #endif
  3586. }
  3587. #if ENABLED(DELTA)
  3588. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3589. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3590. return;
  3591. }
  3592. #endif
  3593. bool seen_L = code_seen('L');
  3594. if (seen_L) {
  3595. n_legs = code_value_byte();
  3596. if (n_legs < 0 || n_legs > 15) {
  3597. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3598. return;
  3599. }
  3600. if (n_legs == 1) n_legs = 2;
  3601. }
  3602. if (code_seen('S')) {
  3603. schizoid_flag++;
  3604. if (!seen_L) n_legs = 7;
  3605. }
  3606. /**
  3607. * Now get everything to the specified probe point So we can safely do a
  3608. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3609. * we don't want to use that as a starting point for each probe.
  3610. */
  3611. if (verbose_level > 2)
  3612. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3613. #if ENABLED(DELTA)
  3614. // we don't do bed level correction in M48 because we want the raw data when we probe
  3615. reset_bed_level();
  3616. #else
  3617. // we don't do bed level correction in M48 because we want the raw data when we probe
  3618. planner.bed_level_matrix.set_to_identity();
  3619. #endif
  3620. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3621. do_blocking_move_to_z(Z_start_location);
  3622. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3623. /**
  3624. * OK, do the initial probe to get us close to the bed.
  3625. * Then retrace the right amount and use that in subsequent probes
  3626. */
  3627. setup_for_endstop_move();
  3628. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3629. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3630. verbose_level);
  3631. raise_z_after_probing();
  3632. for (uint8_t n = 0; n < n_samples; n++) {
  3633. randomSeed(millis());
  3634. delay(500);
  3635. if (n_legs) {
  3636. float radius, angle = random(0.0, 360.0);
  3637. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3638. radius = random(
  3639. #if ENABLED(DELTA)
  3640. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3641. #else
  3642. 5, X_MAX_LENGTH / 8
  3643. #endif
  3644. );
  3645. if (verbose_level > 3) {
  3646. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3647. SERIAL_ECHOPAIR(" angle: ", angle);
  3648. delay(100);
  3649. if (dir > 0)
  3650. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3651. else
  3652. SERIAL_ECHO(" Direction: Clockwise \n");
  3653. delay(100);
  3654. }
  3655. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3656. double delta_angle;
  3657. if (schizoid_flag)
  3658. // The points of a 5 point star are 72 degrees apart. We need to
  3659. // skip a point and go to the next one on the star.
  3660. delta_angle = dir * 2.0 * 72.0;
  3661. else
  3662. // If we do this line, we are just trying to move further
  3663. // around the circle.
  3664. delta_angle = dir * (float) random(25, 45);
  3665. angle += delta_angle;
  3666. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3667. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3668. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3669. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3670. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3671. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3672. #if DISABLED(DELTA)
  3673. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3674. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3675. #else
  3676. // If we have gone out too far, we can do a simple fix and scale the numbers
  3677. // back in closer to the origin.
  3678. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3679. X_current /= 1.25;
  3680. Y_current /= 1.25;
  3681. if (verbose_level > 3) {
  3682. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3683. SERIAL_ECHOPAIR(", ", Y_current);
  3684. SERIAL_EOL;
  3685. delay(50);
  3686. }
  3687. }
  3688. #endif
  3689. if (verbose_level > 3) {
  3690. SERIAL_PROTOCOL("Going to:");
  3691. SERIAL_ECHOPAIR("x: ", X_current);
  3692. SERIAL_ECHOPAIR("y: ", Y_current);
  3693. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3694. SERIAL_EOL;
  3695. delay(55);
  3696. }
  3697. do_blocking_move_to_xy(X_current, Y_current);
  3698. } // n_legs loop
  3699. } // n_legs
  3700. /**
  3701. * We don't really have to do this move, but if we don't we can see a
  3702. * funny shift in the Z Height because the user might not have the
  3703. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3704. * height. This gets us back to the probe location at the same height that
  3705. * we have been running around the circle at.
  3706. */
  3707. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3708. if (deploy_probe_for_each_reading)
  3709. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3710. else {
  3711. if (n == n_samples - 1)
  3712. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3713. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3714. }
  3715. /**
  3716. * Get the current mean for the data points we have so far
  3717. */
  3718. sum = 0.0;
  3719. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3720. mean = sum / (n + 1);
  3721. /**
  3722. * Now, use that mean to calculate the standard deviation for the
  3723. * data points we have so far
  3724. */
  3725. sum = 0.0;
  3726. for (uint8_t j = 0; j <= n; j++) {
  3727. float ss = sample_set[j] - mean;
  3728. sum += ss * ss;
  3729. }
  3730. sigma = sqrt(sum / (n + 1));
  3731. if (verbose_level > 1) {
  3732. SERIAL_PROTOCOL(n + 1);
  3733. SERIAL_PROTOCOLPGM(" of ");
  3734. SERIAL_PROTOCOL((int)n_samples);
  3735. SERIAL_PROTOCOLPGM(" z: ");
  3736. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3737. delay(50);
  3738. if (verbose_level > 2) {
  3739. SERIAL_PROTOCOLPGM(" mean: ");
  3740. SERIAL_PROTOCOL_F(mean, 6);
  3741. SERIAL_PROTOCOLPGM(" sigma: ");
  3742. SERIAL_PROTOCOL_F(sigma, 6);
  3743. }
  3744. }
  3745. if (verbose_level > 0) SERIAL_EOL;
  3746. delay(50);
  3747. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3748. } // End of probe loop code
  3749. // raise_z_after_probing();
  3750. if (verbose_level > 0) {
  3751. SERIAL_PROTOCOLPGM("Mean: ");
  3752. SERIAL_PROTOCOL_F(mean, 6);
  3753. SERIAL_EOL;
  3754. delay(25);
  3755. }
  3756. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3757. SERIAL_PROTOCOL_F(sigma, 6);
  3758. SERIAL_EOL; SERIAL_EOL;
  3759. delay(25);
  3760. clean_up_after_endstop_move();
  3761. report_current_position();
  3762. }
  3763. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3764. /**
  3765. * M75: Start print timer
  3766. */
  3767. inline void gcode_M75() { print_job_timer.start(); }
  3768. /**
  3769. * M76: Pause print timer
  3770. */
  3771. inline void gcode_M76() { print_job_timer.pause(); }
  3772. /**
  3773. * M77: Stop print timer
  3774. */
  3775. inline void gcode_M77() { print_job_timer.stop(); }
  3776. #if ENABLED(PRINTCOUNTER)
  3777. /*+
  3778. * M78: Show print statistics
  3779. */
  3780. inline void gcode_M78() {
  3781. // "M78 S78" will reset the statistics
  3782. if (code_seen('S') && code_value_int() == 78)
  3783. print_job_timer.initStats();
  3784. else print_job_timer.showStats();
  3785. }
  3786. #endif
  3787. /**
  3788. * M104: Set hot end temperature
  3789. */
  3790. inline void gcode_M104() {
  3791. if (get_target_extruder_from_command(104)) return;
  3792. if (DEBUGGING(DRYRUN)) return;
  3793. #if ENABLED(SINGLENOZZLE)
  3794. if (target_extruder != active_extruder) return;
  3795. #endif
  3796. if (code_seen('S')) {
  3797. float temp = code_value_temp_abs();
  3798. thermalManager.setTargetHotend(temp, target_extruder);
  3799. #if ENABLED(DUAL_X_CARRIAGE)
  3800. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3801. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3802. #endif
  3803. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3804. /**
  3805. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3806. * stand by mode, for instance in a dual extruder setup, without affecting
  3807. * the running print timer.
  3808. */
  3809. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3810. print_job_timer.stop();
  3811. LCD_MESSAGEPGM(WELCOME_MSG);
  3812. }
  3813. /**
  3814. * We do not check if the timer is already running because this check will
  3815. * be done for us inside the Stopwatch::start() method thus a running timer
  3816. * will not restart.
  3817. */
  3818. else print_job_timer.start();
  3819. #endif
  3820. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3821. }
  3822. }
  3823. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3824. void print_heaterstates() {
  3825. #if HAS_TEMP_HOTEND
  3826. SERIAL_PROTOCOLPGM(" T:");
  3827. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3828. SERIAL_PROTOCOLPGM(" /");
  3829. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3830. #endif
  3831. #if HAS_TEMP_BED
  3832. SERIAL_PROTOCOLPGM(" B:");
  3833. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3834. SERIAL_PROTOCOLPGM(" /");
  3835. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3836. #endif
  3837. #if HOTENDS > 1
  3838. for (int8_t e = 0; e < HOTENDS; ++e) {
  3839. SERIAL_PROTOCOLPGM(" T");
  3840. SERIAL_PROTOCOL(e);
  3841. SERIAL_PROTOCOLCHAR(':');
  3842. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3843. SERIAL_PROTOCOLPGM(" /");
  3844. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3845. }
  3846. #endif
  3847. #if HAS_TEMP_BED
  3848. SERIAL_PROTOCOLPGM(" B@:");
  3849. #ifdef BED_WATTS
  3850. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3851. SERIAL_PROTOCOLCHAR('W');
  3852. #else
  3853. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3854. #endif
  3855. #endif
  3856. SERIAL_PROTOCOLPGM(" @:");
  3857. #ifdef EXTRUDER_WATTS
  3858. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3859. SERIAL_PROTOCOLCHAR('W');
  3860. #else
  3861. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3862. #endif
  3863. #if HOTENDS > 1
  3864. for (int8_t e = 0; e < HOTENDS; ++e) {
  3865. SERIAL_PROTOCOLPGM(" @");
  3866. SERIAL_PROTOCOL(e);
  3867. SERIAL_PROTOCOLCHAR(':');
  3868. #ifdef EXTRUDER_WATTS
  3869. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3870. SERIAL_PROTOCOLCHAR('W');
  3871. #else
  3872. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3873. #endif
  3874. }
  3875. #endif
  3876. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3877. #if HAS_TEMP_BED
  3878. SERIAL_PROTOCOLPGM(" ADC B:");
  3879. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3880. SERIAL_PROTOCOLPGM("C->");
  3881. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3882. #endif
  3883. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend) {
  3884. SERIAL_PROTOCOLPGM(" T");
  3885. SERIAL_PROTOCOL(cur_hotend);
  3886. SERIAL_PROTOCOLCHAR(':');
  3887. SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_hotend), 1);
  3888. SERIAL_PROTOCOLPGM("C->");
  3889. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_hotend) / OVERSAMPLENR, 0);
  3890. }
  3891. #endif
  3892. }
  3893. #endif
  3894. /**
  3895. * M105: Read hot end and bed temperature
  3896. */
  3897. inline void gcode_M105() {
  3898. if (get_target_extruder_from_command(105)) return;
  3899. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3900. SERIAL_PROTOCOLPGM(MSG_OK);
  3901. print_heaterstates();
  3902. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3903. SERIAL_ERROR_START;
  3904. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3905. #endif
  3906. SERIAL_EOL;
  3907. }
  3908. #if FAN_COUNT > 0
  3909. /**
  3910. * M106: Set Fan Speed
  3911. *
  3912. * S<int> Speed between 0-255
  3913. * P<index> Fan index, if more than one fan
  3914. */
  3915. inline void gcode_M106() {
  3916. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3917. p = code_seen('P') ? code_value_ushort() : 0;
  3918. NOMORE(s, 255);
  3919. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3920. }
  3921. /**
  3922. * M107: Fan Off
  3923. */
  3924. inline void gcode_M107() {
  3925. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3926. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3927. }
  3928. #endif // FAN_COUNT > 0
  3929. /**
  3930. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3931. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3932. */
  3933. inline void gcode_M109() {
  3934. if (get_target_extruder_from_command(109)) return;
  3935. if (DEBUGGING(DRYRUN)) return;
  3936. #if ENABLED(SINGLENOZZLE)
  3937. if (target_extruder != active_extruder) return;
  3938. #endif
  3939. bool no_wait_for_cooling = code_seen('S');
  3940. if (no_wait_for_cooling || code_seen('R')) {
  3941. float temp = code_value_temp_abs();
  3942. thermalManager.setTargetHotend(temp, target_extruder);
  3943. #if ENABLED(DUAL_X_CARRIAGE)
  3944. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3945. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3946. #endif
  3947. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3948. /**
  3949. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3950. * stand by mode, for instance in a dual extruder setup, without affecting
  3951. * the running print timer.
  3952. */
  3953. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3954. print_job_timer.stop();
  3955. LCD_MESSAGEPGM(WELCOME_MSG);
  3956. }
  3957. /**
  3958. * We do not check if the timer is already running because this check will
  3959. * be done for us inside the Stopwatch::start() method thus a running timer
  3960. * will not restart.
  3961. */
  3962. else print_job_timer.start();
  3963. #endif
  3964. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3965. }
  3966. #if ENABLED(AUTOTEMP)
  3967. planner.autotemp_M109();
  3968. #endif
  3969. #if TEMP_RESIDENCY_TIME > 0
  3970. millis_t residency_start_ms = 0;
  3971. // Loop until the temperature has stabilized
  3972. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3973. #else
  3974. // Loop until the temperature is very close target
  3975. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3976. #endif //TEMP_RESIDENCY_TIME > 0
  3977. float theTarget = -1;
  3978. bool wants_to_cool;
  3979. cancel_heatup = false;
  3980. millis_t now, next_temp_ms = 0;
  3981. KEEPALIVE_STATE(NOT_BUSY);
  3982. do {
  3983. now = millis();
  3984. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3985. next_temp_ms = now + 1000UL;
  3986. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3987. print_heaterstates();
  3988. #endif
  3989. #if TEMP_RESIDENCY_TIME > 0
  3990. SERIAL_PROTOCOLPGM(" W:");
  3991. if (residency_start_ms) {
  3992. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3993. SERIAL_PROTOCOLLN(rem);
  3994. }
  3995. else {
  3996. SERIAL_PROTOCOLLNPGM("?");
  3997. }
  3998. #else
  3999. SERIAL_EOL;
  4000. #endif
  4001. }
  4002. // Target temperature might be changed during the loop
  4003. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4004. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4005. theTarget = thermalManager.degTargetHotend(target_extruder);
  4006. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4007. if (no_wait_for_cooling && wants_to_cool) break;
  4008. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4009. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  4010. if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break;
  4011. }
  4012. idle();
  4013. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4014. #if TEMP_RESIDENCY_TIME > 0
  4015. float temp_diff = fabs(theTarget - thermalManager.degHotend(target_extruder));
  4016. if (!residency_start_ms) {
  4017. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4018. if (temp_diff < TEMP_WINDOW) residency_start_ms = millis();
  4019. }
  4020. else if (temp_diff > TEMP_HYSTERESIS) {
  4021. // Restart the timer whenever the temperature falls outside the hysteresis.
  4022. residency_start_ms = millis();
  4023. }
  4024. #endif //TEMP_RESIDENCY_TIME > 0
  4025. } while (!cancel_heatup && TEMP_CONDITIONS);
  4026. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4027. KEEPALIVE_STATE(IN_HANDLER);
  4028. }
  4029. #if HAS_TEMP_BED
  4030. /**
  4031. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4032. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4033. */
  4034. inline void gcode_M190() {
  4035. if (DEBUGGING(DRYRUN)) return;
  4036. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4037. bool no_wait_for_cooling = code_seen('S');
  4038. if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value_temp_abs());
  4039. #if TEMP_BED_RESIDENCY_TIME > 0
  4040. millis_t residency_start_ms = 0;
  4041. // Loop until the temperature has stabilized
  4042. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4043. #else
  4044. // Loop until the temperature is very close target
  4045. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4046. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4047. float theTarget = -1;
  4048. bool wants_to_cool;
  4049. cancel_heatup = false;
  4050. millis_t now, next_temp_ms = 0;
  4051. KEEPALIVE_STATE(NOT_BUSY);
  4052. do {
  4053. now = millis();
  4054. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4055. next_temp_ms = now + 1000UL;
  4056. print_heaterstates();
  4057. #if TEMP_BED_RESIDENCY_TIME > 0
  4058. SERIAL_PROTOCOLPGM(" W:");
  4059. if (residency_start_ms) {
  4060. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4061. SERIAL_PROTOCOLLN(rem);
  4062. }
  4063. else {
  4064. SERIAL_PROTOCOLLNPGM("?");
  4065. }
  4066. #else
  4067. SERIAL_EOL;
  4068. #endif
  4069. }
  4070. // Target temperature might be changed during the loop
  4071. if (theTarget != thermalManager.degTargetBed()) {
  4072. wants_to_cool = thermalManager.isCoolingBed();
  4073. theTarget = thermalManager.degTargetBed();
  4074. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4075. if (no_wait_for_cooling && wants_to_cool) break;
  4076. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4077. // Simply don't wait to cool a bed under 30C
  4078. if (wants_to_cool && theTarget < 30) break;
  4079. }
  4080. idle();
  4081. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4082. #if TEMP_BED_RESIDENCY_TIME > 0
  4083. float temp_diff = fabs(theTarget - thermalManager.degBed());
  4084. if (!residency_start_ms) {
  4085. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4086. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = millis();
  4087. }
  4088. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4089. // Restart the timer whenever the temperature falls outside the hysteresis.
  4090. residency_start_ms = millis();
  4091. }
  4092. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4093. } while (!cancel_heatup && TEMP_BED_CONDITIONS);
  4094. LCD_MESSAGEPGM(MSG_BED_DONE);
  4095. KEEPALIVE_STATE(IN_HANDLER);
  4096. }
  4097. #endif // HAS_TEMP_BED
  4098. /**
  4099. * M110: Set Current Line Number
  4100. */
  4101. inline void gcode_M110() {
  4102. if (code_seen('N')) gcode_N = code_value_long();
  4103. }
  4104. /**
  4105. * M111: Set the debug level
  4106. */
  4107. inline void gcode_M111() {
  4108. marlin_debug_flags = code_seen('S') ? code_value_byte() : DEBUG_NONE;
  4109. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4110. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4111. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4112. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4113. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4114. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4115. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4116. #endif
  4117. const static char* const debug_strings[] PROGMEM = {
  4118. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4119. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4120. str_debug_32
  4121. #endif
  4122. };
  4123. SERIAL_ECHO_START;
  4124. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4125. if (marlin_debug_flags) {
  4126. uint8_t comma = 0;
  4127. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4128. if (TEST(marlin_debug_flags, i)) {
  4129. if (comma++) SERIAL_CHAR(',');
  4130. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4131. }
  4132. }
  4133. }
  4134. else {
  4135. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4136. }
  4137. SERIAL_EOL;
  4138. }
  4139. /**
  4140. * M112: Emergency Stop
  4141. */
  4142. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4143. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4144. /**
  4145. * M113: Get or set Host Keepalive interval (0 to disable)
  4146. *
  4147. * S<seconds> Optional. Set the keepalive interval.
  4148. */
  4149. inline void gcode_M113() {
  4150. if (code_seen('S')) {
  4151. host_keepalive_interval = code_value_byte();
  4152. NOMORE(host_keepalive_interval, 60);
  4153. }
  4154. else {
  4155. SERIAL_ECHO_START;
  4156. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4157. SERIAL_EOL;
  4158. }
  4159. }
  4160. #endif
  4161. #if ENABLED(BARICUDA)
  4162. #if HAS_HEATER_1
  4163. /**
  4164. * M126: Heater 1 valve open
  4165. */
  4166. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4167. /**
  4168. * M127: Heater 1 valve close
  4169. */
  4170. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4171. #endif
  4172. #if HAS_HEATER_2
  4173. /**
  4174. * M128: Heater 2 valve open
  4175. */
  4176. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4177. /**
  4178. * M129: Heater 2 valve close
  4179. */
  4180. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4181. #endif
  4182. #endif //BARICUDA
  4183. /**
  4184. * M140: Set bed temperature
  4185. */
  4186. inline void gcode_M140() {
  4187. if (DEBUGGING(DRYRUN)) return;
  4188. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4189. }
  4190. #if ENABLED(ULTIPANEL)
  4191. /**
  4192. * M145: Set the heatup state for a material in the LCD menu
  4193. * S<material> (0=PLA, 1=ABS)
  4194. * H<hotend temp>
  4195. * B<bed temp>
  4196. * F<fan speed>
  4197. */
  4198. inline void gcode_M145() {
  4199. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4200. if (material < 0 || material > 1) {
  4201. SERIAL_ERROR_START;
  4202. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4203. }
  4204. else {
  4205. int v;
  4206. switch (material) {
  4207. case 0:
  4208. if (code_seen('H')) {
  4209. v = code_value_int();
  4210. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4211. }
  4212. if (code_seen('F')) {
  4213. v = code_value_int();
  4214. plaPreheatFanSpeed = constrain(v, 0, 255);
  4215. }
  4216. #if TEMP_SENSOR_BED != 0
  4217. if (code_seen('B')) {
  4218. v = code_value_int();
  4219. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4220. }
  4221. #endif
  4222. break;
  4223. case 1:
  4224. if (code_seen('H')) {
  4225. v = code_value_int();
  4226. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4227. }
  4228. if (code_seen('F')) {
  4229. v = code_value_int();
  4230. absPreheatFanSpeed = constrain(v, 0, 255);
  4231. }
  4232. #if TEMP_SENSOR_BED != 0
  4233. if (code_seen('B')) {
  4234. v = code_value_int();
  4235. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4236. }
  4237. #endif
  4238. break;
  4239. }
  4240. }
  4241. }
  4242. #endif
  4243. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4244. /**
  4245. * M149: Set temperature units
  4246. */
  4247. inline void gcode_M149() {
  4248. if (code_seen('C')) {
  4249. set_input_temp_units(TEMPUNIT_C);
  4250. } else if (code_seen('K')) {
  4251. set_input_temp_units(TEMPUNIT_K);
  4252. } else if (code_seen('F')) {
  4253. set_input_temp_units(TEMPUNIT_F);
  4254. }
  4255. }
  4256. #endif
  4257. #if HAS_POWER_SWITCH
  4258. /**
  4259. * M80: Turn on Power Supply
  4260. */
  4261. inline void gcode_M80() {
  4262. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4263. /**
  4264. * If you have a switch on suicide pin, this is useful
  4265. * if you want to start another print with suicide feature after
  4266. * a print without suicide...
  4267. */
  4268. #if HAS_SUICIDE
  4269. OUT_WRITE(SUICIDE_PIN, HIGH);
  4270. #endif
  4271. #if ENABLED(ULTIPANEL)
  4272. powersupply = true;
  4273. LCD_MESSAGEPGM(WELCOME_MSG);
  4274. lcd_update();
  4275. #endif
  4276. }
  4277. #endif // HAS_POWER_SWITCH
  4278. /**
  4279. * M81: Turn off Power, including Power Supply, if there is one.
  4280. *
  4281. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4282. */
  4283. inline void gcode_M81() {
  4284. thermalManager.disable_all_heaters();
  4285. stepper.finish_and_disable();
  4286. #if FAN_COUNT > 0
  4287. #if FAN_COUNT > 1
  4288. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4289. #else
  4290. fanSpeeds[0] = 0;
  4291. #endif
  4292. #endif
  4293. delay(1000); // Wait 1 second before switching off
  4294. #if HAS_SUICIDE
  4295. stepper.synchronize();
  4296. suicide();
  4297. #elif HAS_POWER_SWITCH
  4298. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4299. #endif
  4300. #if ENABLED(ULTIPANEL)
  4301. #if HAS_POWER_SWITCH
  4302. powersupply = false;
  4303. #endif
  4304. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4305. lcd_update();
  4306. #endif
  4307. }
  4308. /**
  4309. * M82: Set E codes absolute (default)
  4310. */
  4311. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4312. /**
  4313. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4314. */
  4315. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4316. /**
  4317. * M18, M84: Disable all stepper motors
  4318. */
  4319. inline void gcode_M18_M84() {
  4320. if (code_seen('S')) {
  4321. stepper_inactive_time = code_value_millis_from_seconds();
  4322. }
  4323. else {
  4324. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4325. if (all_axis) {
  4326. stepper.finish_and_disable();
  4327. }
  4328. else {
  4329. stepper.synchronize();
  4330. if (code_seen('X')) disable_x();
  4331. if (code_seen('Y')) disable_y();
  4332. if (code_seen('Z')) disable_z();
  4333. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4334. if (code_seen('E')) {
  4335. disable_e0();
  4336. disable_e1();
  4337. disable_e2();
  4338. disable_e3();
  4339. }
  4340. #endif
  4341. }
  4342. }
  4343. }
  4344. /**
  4345. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4346. */
  4347. inline void gcode_M85() {
  4348. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4349. }
  4350. /**
  4351. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4352. * (Follows the same syntax as G92)
  4353. */
  4354. inline void gcode_M92() {
  4355. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4356. if (code_seen(axis_codes[i])) {
  4357. if (i == E_AXIS) {
  4358. float value = code_value_per_axis_unit(i);
  4359. if (value < 20.0) {
  4360. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4361. planner.max_e_jerk *= factor;
  4362. planner.max_feedrate[i] *= factor;
  4363. planner.max_acceleration_steps_per_s2[i] *= factor;
  4364. }
  4365. planner.axis_steps_per_mm[i] = value;
  4366. }
  4367. else {
  4368. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4369. }
  4370. }
  4371. }
  4372. }
  4373. /**
  4374. * Output the current position to serial
  4375. */
  4376. static void report_current_position() {
  4377. SERIAL_PROTOCOLPGM("X:");
  4378. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4379. SERIAL_PROTOCOLPGM(" Y:");
  4380. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4381. SERIAL_PROTOCOLPGM(" Z:");
  4382. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4383. SERIAL_PROTOCOLPGM(" E:");
  4384. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4385. stepper.report_positions();
  4386. #if ENABLED(SCARA)
  4387. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4388. SERIAL_PROTOCOL(delta[X_AXIS]);
  4389. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4390. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4391. SERIAL_EOL;
  4392. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4393. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4394. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4395. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4396. SERIAL_EOL;
  4397. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4398. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4399. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4400. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4401. SERIAL_EOL; SERIAL_EOL;
  4402. #endif
  4403. }
  4404. /**
  4405. * M114: Output current position to serial port
  4406. */
  4407. inline void gcode_M114() { report_current_position(); }
  4408. /**
  4409. * M115: Capabilities string
  4410. */
  4411. inline void gcode_M115() {
  4412. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4413. }
  4414. /**
  4415. * M117: Set LCD Status Message
  4416. */
  4417. inline void gcode_M117() {
  4418. lcd_setstatus(current_command_args);
  4419. }
  4420. /**
  4421. * M119: Output endstop states to serial output
  4422. */
  4423. inline void gcode_M119() { endstops.M119(); }
  4424. /**
  4425. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4426. */
  4427. inline void gcode_M120() { endstops.enable_globally(true); }
  4428. /**
  4429. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4430. */
  4431. inline void gcode_M121() { endstops.enable_globally(false); }
  4432. #if ENABLED(BLINKM)
  4433. /**
  4434. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4435. */
  4436. inline void gcode_M150() {
  4437. SendColors(
  4438. code_seen('R') ? code_value_byte() : 0,
  4439. code_seen('U') ? code_value_byte() : 0,
  4440. code_seen('B') ? code_value_byte() : 0
  4441. );
  4442. }
  4443. #endif // BLINKM
  4444. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4445. /**
  4446. * M155: Send data to a I2C slave device
  4447. *
  4448. * This is a PoC, the formating and arguments for the GCODE will
  4449. * change to be more compatible, the current proposal is:
  4450. *
  4451. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4452. *
  4453. * M155 B<byte-1 value in base 10>
  4454. * M155 B<byte-2 value in base 10>
  4455. * M155 B<byte-3 value in base 10>
  4456. *
  4457. * M155 S1 ; Send the buffered data and reset the buffer
  4458. * M155 R1 ; Reset the buffer without sending data
  4459. *
  4460. */
  4461. inline void gcode_M155() {
  4462. // Set the target address
  4463. if (code_seen('A'))
  4464. i2c.address(code_value_byte());
  4465. // Add a new byte to the buffer
  4466. else if (code_seen('B'))
  4467. i2c.addbyte(code_value_int());
  4468. // Flush the buffer to the bus
  4469. else if (code_seen('S')) i2c.send();
  4470. // Reset and rewind the buffer
  4471. else if (code_seen('R')) i2c.reset();
  4472. }
  4473. /**
  4474. * M156: Request X bytes from I2C slave device
  4475. *
  4476. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4477. */
  4478. inline void gcode_M156() {
  4479. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4480. int bytes = code_seen('B') ? code_value_int() : 1;
  4481. if (addr && bytes > 0 && bytes <= 32) {
  4482. i2c.address(addr);
  4483. i2c.reqbytes(bytes);
  4484. }
  4485. else {
  4486. SERIAL_ERROR_START;
  4487. SERIAL_ERRORLN("Bad i2c request");
  4488. }
  4489. }
  4490. #endif //EXPERIMENTAL_I2CBUS
  4491. /**
  4492. * M200: Set filament diameter and set E axis units to cubic units
  4493. *
  4494. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4495. * D<mm> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4496. */
  4497. inline void gcode_M200() {
  4498. if (get_target_extruder_from_command(200)) return;
  4499. if (code_seen('D')) {
  4500. float diameter = code_value_linear_units();
  4501. // setting any extruder filament size disables volumetric on the assumption that
  4502. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4503. // for all extruders
  4504. volumetric_enabled = (diameter != 0.0);
  4505. if (volumetric_enabled) {
  4506. filament_size[target_extruder] = diameter;
  4507. // make sure all extruders have some sane value for the filament size
  4508. for (int i = 0; i < EXTRUDERS; i++)
  4509. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4510. }
  4511. }
  4512. else {
  4513. //reserved for setting filament diameter via UFID or filament measuring device
  4514. return;
  4515. }
  4516. calculate_volumetric_multipliers();
  4517. }
  4518. /**
  4519. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4520. */
  4521. inline void gcode_M201() {
  4522. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4523. if (code_seen(axis_codes[i])) {
  4524. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4525. }
  4526. }
  4527. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4528. planner.reset_acceleration_rates();
  4529. }
  4530. #if 0 // Not used for Sprinter/grbl gen6
  4531. inline void gcode_M202() {
  4532. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4533. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4534. }
  4535. }
  4536. #endif
  4537. /**
  4538. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4539. */
  4540. inline void gcode_M203() {
  4541. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4542. if (code_seen(axis_codes[i])) {
  4543. planner.max_feedrate[i] = code_value_axis_units(i);
  4544. }
  4545. }
  4546. }
  4547. /**
  4548. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4549. *
  4550. * P = Printing moves
  4551. * R = Retract only (no X, Y, Z) moves
  4552. * T = Travel (non printing) moves
  4553. *
  4554. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4555. */
  4556. inline void gcode_M204() {
  4557. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4558. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4559. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4560. SERIAL_EOL;
  4561. }
  4562. if (code_seen('P')) {
  4563. planner.acceleration = code_value_linear_units();
  4564. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4565. SERIAL_EOL;
  4566. }
  4567. if (code_seen('R')) {
  4568. planner.retract_acceleration = code_value_linear_units();
  4569. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4570. SERIAL_EOL;
  4571. }
  4572. if (code_seen('T')) {
  4573. planner.travel_acceleration = code_value_linear_units();
  4574. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4575. SERIAL_EOL;
  4576. }
  4577. }
  4578. /**
  4579. * M205: Set Advanced Settings
  4580. *
  4581. * S = Min Feed Rate (mm/s)
  4582. * T = Min Travel Feed Rate (mm/s)
  4583. * B = Min Segment Time (µs)
  4584. * X = Max XY Jerk (mm/s/s)
  4585. * Z = Max Z Jerk (mm/s/s)
  4586. * E = Max E Jerk (mm/s/s)
  4587. */
  4588. inline void gcode_M205() {
  4589. if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
  4590. if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
  4591. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4592. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4593. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4594. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4595. }
  4596. /**
  4597. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4598. */
  4599. inline void gcode_M206() {
  4600. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4601. if (code_seen(axis_codes[i]))
  4602. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4603. #if ENABLED(SCARA)
  4604. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4605. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4606. #endif
  4607. sync_plan_position();
  4608. report_current_position();
  4609. }
  4610. #if ENABLED(DELTA)
  4611. /**
  4612. * M665: Set delta configurations
  4613. *
  4614. * L = diagonal rod
  4615. * R = delta radius
  4616. * S = segments per second
  4617. * A = Alpha (Tower 1) diagonal rod trim
  4618. * B = Beta (Tower 2) diagonal rod trim
  4619. * C = Gamma (Tower 3) diagonal rod trim
  4620. */
  4621. inline void gcode_M665() {
  4622. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4623. if (code_seen('R')) delta_radius = code_value_linear_units();
  4624. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4625. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4626. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4627. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4628. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4629. }
  4630. /**
  4631. * M666: Set delta endstop adjustment
  4632. */
  4633. inline void gcode_M666() {
  4634. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4635. if (DEBUGGING(LEVELING)) {
  4636. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4637. }
  4638. #endif
  4639. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4640. if (code_seen(axis_codes[i])) {
  4641. endstop_adj[i] = code_value_axis_units(i);
  4642. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4643. if (DEBUGGING(LEVELING)) {
  4644. SERIAL_ECHOPGM("endstop_adj[");
  4645. SERIAL_ECHO(axis_codes[i]);
  4646. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4647. SERIAL_EOL;
  4648. }
  4649. #endif
  4650. }
  4651. }
  4652. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4653. if (DEBUGGING(LEVELING)) {
  4654. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4655. }
  4656. #endif
  4657. }
  4658. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4659. /**
  4660. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4661. */
  4662. inline void gcode_M666() {
  4663. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4664. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4665. SERIAL_EOL;
  4666. }
  4667. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4668. #if ENABLED(FWRETRACT)
  4669. /**
  4670. * M207: Set firmware retraction values
  4671. *
  4672. * S[+mm] retract_length
  4673. * W[+mm] retract_length_swap (multi-extruder)
  4674. * F[mm/min] retract_feedrate
  4675. * Z[mm] retract_zlift
  4676. */
  4677. inline void gcode_M207() {
  4678. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4679. if (code_seen('F')) retract_feedrate = code_value_axis_units(E_AXIS) / 60;
  4680. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4681. #if EXTRUDERS > 1
  4682. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4683. #endif
  4684. }
  4685. /**
  4686. * M208: Set firmware un-retraction values
  4687. *
  4688. * S[+mm] retract_recover_length (in addition to M207 S*)
  4689. * W[+mm] retract_recover_length_swap (multi-extruder)
  4690. * F[mm/min] retract_recover_feedrate
  4691. */
  4692. inline void gcode_M208() {
  4693. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4694. if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
  4695. #if EXTRUDERS > 1
  4696. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4697. #endif
  4698. }
  4699. /**
  4700. * M209: Enable automatic retract (M209 S1)
  4701. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4702. */
  4703. inline void gcode_M209() {
  4704. if (code_seen('S')) {
  4705. int t = code_value_int();
  4706. switch (t) {
  4707. case 0:
  4708. autoretract_enabled = false;
  4709. break;
  4710. case 1:
  4711. autoretract_enabled = true;
  4712. break;
  4713. default:
  4714. unknown_command_error();
  4715. return;
  4716. }
  4717. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4718. }
  4719. }
  4720. #endif // FWRETRACT
  4721. #if HOTENDS > 1
  4722. /**
  4723. * M218 - set hotend offset (in mm)
  4724. *
  4725. * T<tool>
  4726. * X<xoffset>
  4727. * Y<yoffset>
  4728. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4729. */
  4730. inline void gcode_M218() {
  4731. if (get_target_extruder_from_command(218)) return;
  4732. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4733. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4734. #if ENABLED(DUAL_X_CARRIAGE)
  4735. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4736. #endif
  4737. SERIAL_ECHO_START;
  4738. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4739. for (int e = 0; e < HOTENDS; e++) {
  4740. SERIAL_CHAR(' ');
  4741. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4742. SERIAL_CHAR(',');
  4743. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4744. #if ENABLED(DUAL_X_CARRIAGE)
  4745. SERIAL_CHAR(',');
  4746. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4747. #endif
  4748. }
  4749. SERIAL_EOL;
  4750. }
  4751. #endif // HOTENDS > 1
  4752. /**
  4753. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4754. */
  4755. inline void gcode_M220() {
  4756. if (code_seen('S')) feedrate_multiplier = code_value_int();
  4757. }
  4758. /**
  4759. * M221: Set extrusion percentage (M221 T0 S95)
  4760. */
  4761. inline void gcode_M221() {
  4762. if (code_seen('S')) {
  4763. int sval = code_value_int();
  4764. if (get_target_extruder_from_command(221)) return;
  4765. extruder_multiplier[target_extruder] = sval;
  4766. }
  4767. }
  4768. /**
  4769. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4770. */
  4771. inline void gcode_M226() {
  4772. if (code_seen('P')) {
  4773. int pin_number = code_value_int();
  4774. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4775. if (pin_state >= -1 && pin_state <= 1) {
  4776. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4777. if (sensitive_pins[i] == pin_number) {
  4778. pin_number = -1;
  4779. break;
  4780. }
  4781. }
  4782. if (pin_number > -1) {
  4783. int target = LOW;
  4784. stepper.synchronize();
  4785. pinMode(pin_number, INPUT);
  4786. switch (pin_state) {
  4787. case 1:
  4788. target = HIGH;
  4789. break;
  4790. case 0:
  4791. target = LOW;
  4792. break;
  4793. case -1:
  4794. target = !digitalRead(pin_number);
  4795. break;
  4796. }
  4797. while (digitalRead(pin_number) != target) idle();
  4798. } // pin_number > -1
  4799. } // pin_state -1 0 1
  4800. } // code_seen('P')
  4801. }
  4802. #if HAS_SERVOS
  4803. /**
  4804. * M280: Get or set servo position. P<index> S<angle>
  4805. */
  4806. inline void gcode_M280() {
  4807. int servo_index = code_seen('P') ? code_value_int() : -1;
  4808. int servo_position = 0;
  4809. if (code_seen('S')) {
  4810. servo_position = code_value_int();
  4811. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4812. servo[servo_index].move(servo_position);
  4813. else {
  4814. SERIAL_ERROR_START;
  4815. SERIAL_ERROR("Servo ");
  4816. SERIAL_ERROR(servo_index);
  4817. SERIAL_ERRORLN(" out of range");
  4818. }
  4819. }
  4820. else if (servo_index >= 0) {
  4821. SERIAL_ECHO_START;
  4822. SERIAL_ECHO(" Servo ");
  4823. SERIAL_ECHO(servo_index);
  4824. SERIAL_ECHO(": ");
  4825. SERIAL_ECHOLN(servo[servo_index].read());
  4826. }
  4827. }
  4828. #endif // HAS_SERVOS
  4829. #if HAS_BUZZER
  4830. /**
  4831. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4832. */
  4833. inline void gcode_M300() {
  4834. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4835. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4836. // Limits the tone duration to 0-5 seconds.
  4837. NOMORE(duration, 5000);
  4838. buzzer.tone(duration, frequency);
  4839. }
  4840. #endif // HAS_BUZZER
  4841. #if ENABLED(PIDTEMP)
  4842. /**
  4843. * M301: Set PID parameters P I D (and optionally C, L)
  4844. *
  4845. * P[float] Kp term
  4846. * I[float] Ki term (unscaled)
  4847. * D[float] Kd term (unscaled)
  4848. *
  4849. * With PID_ADD_EXTRUSION_RATE:
  4850. *
  4851. * C[float] Kc term
  4852. * L[float] LPQ length
  4853. */
  4854. inline void gcode_M301() {
  4855. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4856. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4857. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4858. if (e < HOTENDS) { // catch bad input value
  4859. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4860. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4861. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4862. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4863. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4864. if (code_seen('L')) lpq_len = code_value_float();
  4865. NOMORE(lpq_len, LPQ_MAX_LEN);
  4866. #endif
  4867. thermalManager.updatePID();
  4868. SERIAL_ECHO_START;
  4869. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4870. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4871. SERIAL_ECHO(e);
  4872. #endif // PID_PARAMS_PER_HOTEND
  4873. SERIAL_ECHO(" p:");
  4874. SERIAL_ECHO(PID_PARAM(Kp, e));
  4875. SERIAL_ECHO(" i:");
  4876. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4877. SERIAL_ECHO(" d:");
  4878. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4879. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4880. SERIAL_ECHO(" c:");
  4881. //Kc does not have scaling applied above, or in resetting defaults
  4882. SERIAL_ECHO(PID_PARAM(Kc, e));
  4883. #endif
  4884. SERIAL_EOL;
  4885. }
  4886. else {
  4887. SERIAL_ERROR_START;
  4888. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4889. }
  4890. }
  4891. #endif // PIDTEMP
  4892. #if ENABLED(PIDTEMPBED)
  4893. inline void gcode_M304() {
  4894. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4895. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4896. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4897. thermalManager.updatePID();
  4898. SERIAL_ECHO_START;
  4899. SERIAL_ECHO(" p:");
  4900. SERIAL_ECHO(thermalManager.bedKp);
  4901. SERIAL_ECHO(" i:");
  4902. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4903. SERIAL_ECHO(" d:");
  4904. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4905. }
  4906. #endif // PIDTEMPBED
  4907. #if defined(CHDK) || HAS_PHOTOGRAPH
  4908. /**
  4909. * M240: Trigger a camera by emulating a Canon RC-1
  4910. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4911. */
  4912. inline void gcode_M240() {
  4913. #ifdef CHDK
  4914. OUT_WRITE(CHDK, HIGH);
  4915. chdkHigh = millis();
  4916. chdkActive = true;
  4917. #elif HAS_PHOTOGRAPH
  4918. const uint8_t NUM_PULSES = 16;
  4919. const float PULSE_LENGTH = 0.01524;
  4920. for (int i = 0; i < NUM_PULSES; i++) {
  4921. WRITE(PHOTOGRAPH_PIN, HIGH);
  4922. _delay_ms(PULSE_LENGTH);
  4923. WRITE(PHOTOGRAPH_PIN, LOW);
  4924. _delay_ms(PULSE_LENGTH);
  4925. }
  4926. delay(7.33);
  4927. for (int i = 0; i < NUM_PULSES; i++) {
  4928. WRITE(PHOTOGRAPH_PIN, HIGH);
  4929. _delay_ms(PULSE_LENGTH);
  4930. WRITE(PHOTOGRAPH_PIN, LOW);
  4931. _delay_ms(PULSE_LENGTH);
  4932. }
  4933. #endif // !CHDK && HAS_PHOTOGRAPH
  4934. }
  4935. #endif // CHDK || PHOTOGRAPH_PIN
  4936. #if HAS_LCD_CONTRAST
  4937. /**
  4938. * M250: Read and optionally set the LCD contrast
  4939. */
  4940. inline void gcode_M250() {
  4941. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4942. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4943. SERIAL_PROTOCOL(lcd_contrast);
  4944. SERIAL_EOL;
  4945. }
  4946. #endif // HAS_LCD_CONTRAST
  4947. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4948. /**
  4949. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4950. */
  4951. inline void gcode_M302() {
  4952. thermalManager.extrude_min_temp = code_seen('S') ? code_value_temp_abs() : 0;
  4953. }
  4954. #endif // PREVENT_DANGEROUS_EXTRUDE
  4955. /**
  4956. * M303: PID relay autotune
  4957. *
  4958. * S<temperature> sets the target temperature. (default 150C)
  4959. * E<extruder> (-1 for the bed) (default 0)
  4960. * C<cycles>
  4961. * U<bool> with a non-zero value will apply the result to current settings
  4962. */
  4963. inline void gcode_M303() {
  4964. #if HAS_PID_HEATING
  4965. int e = code_seen('E') ? code_value_int() : 0;
  4966. int c = code_seen('C') ? code_value_int() : 5;
  4967. bool u = code_seen('U') && code_value_bool();
  4968. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4969. if (e >= 0 && e < HOTENDS)
  4970. target_extruder = e;
  4971. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4972. thermalManager.PID_autotune(temp, e, c, u);
  4973. KEEPALIVE_STATE(IN_HANDLER);
  4974. #else
  4975. SERIAL_ERROR_START;
  4976. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4977. #endif
  4978. }
  4979. #if ENABLED(SCARA)
  4980. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4981. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4982. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4983. if (IsRunning()) {
  4984. //gcode_get_destination(); // For X Y Z E F
  4985. delta[X_AXIS] = delta_x;
  4986. delta[Y_AXIS] = delta_y;
  4987. calculate_SCARA_forward_Transform(delta);
  4988. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4989. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4990. prepare_move();
  4991. //ok_to_send();
  4992. return true;
  4993. }
  4994. return false;
  4995. }
  4996. /**
  4997. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4998. */
  4999. inline bool gcode_M360() {
  5000. SERIAL_ECHOLN(" Cal: Theta 0 ");
  5001. return SCARA_move_to_cal(0, 120);
  5002. }
  5003. /**
  5004. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5005. */
  5006. inline bool gcode_M361() {
  5007. SERIAL_ECHOLN(" Cal: Theta 90 ");
  5008. return SCARA_move_to_cal(90, 130);
  5009. }
  5010. /**
  5011. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5012. */
  5013. inline bool gcode_M362() {
  5014. SERIAL_ECHOLN(" Cal: Psi 0 ");
  5015. return SCARA_move_to_cal(60, 180);
  5016. }
  5017. /**
  5018. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5019. */
  5020. inline bool gcode_M363() {
  5021. SERIAL_ECHOLN(" Cal: Psi 90 ");
  5022. return SCARA_move_to_cal(50, 90);
  5023. }
  5024. /**
  5025. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5026. */
  5027. inline bool gcode_M364() {
  5028. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  5029. return SCARA_move_to_cal(45, 135);
  5030. }
  5031. /**
  5032. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  5033. */
  5034. inline void gcode_M365() {
  5035. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5036. if (code_seen(axis_codes[i])) {
  5037. axis_scaling[i] = code_value_float();
  5038. }
  5039. }
  5040. }
  5041. #endif // SCARA
  5042. #if ENABLED(EXT_SOLENOID)
  5043. void enable_solenoid(uint8_t num) {
  5044. switch (num) {
  5045. case 0:
  5046. OUT_WRITE(SOL0_PIN, HIGH);
  5047. break;
  5048. #if HAS_SOLENOID_1
  5049. case 1:
  5050. OUT_WRITE(SOL1_PIN, HIGH);
  5051. break;
  5052. #endif
  5053. #if HAS_SOLENOID_2
  5054. case 2:
  5055. OUT_WRITE(SOL2_PIN, HIGH);
  5056. break;
  5057. #endif
  5058. #if HAS_SOLENOID_3
  5059. case 3:
  5060. OUT_WRITE(SOL3_PIN, HIGH);
  5061. break;
  5062. #endif
  5063. default:
  5064. SERIAL_ECHO_START;
  5065. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5066. break;
  5067. }
  5068. }
  5069. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5070. void disable_all_solenoids() {
  5071. OUT_WRITE(SOL0_PIN, LOW);
  5072. OUT_WRITE(SOL1_PIN, LOW);
  5073. OUT_WRITE(SOL2_PIN, LOW);
  5074. OUT_WRITE(SOL3_PIN, LOW);
  5075. }
  5076. /**
  5077. * M380: Enable solenoid on the active extruder
  5078. */
  5079. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5080. /**
  5081. * M381: Disable all solenoids
  5082. */
  5083. inline void gcode_M381() { disable_all_solenoids(); }
  5084. #endif // EXT_SOLENOID
  5085. /**
  5086. * M400: Finish all moves
  5087. */
  5088. inline void gcode_M400() { stepper.synchronize(); }
  5089. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (ENABLED(HAS_SERVO_ENDSTOPS) || ENABLED(Z_PROBE_ALLEN_KEY))
  5090. /**
  5091. * M401: Engage Z Servo endstop if available
  5092. */
  5093. inline void gcode_M401() {
  5094. #if ENABLED(HAS_SERVO_ENDSTOPS)
  5095. raise_z_for_servo();
  5096. #endif
  5097. deploy_z_probe();
  5098. }
  5099. /**
  5100. * M402: Retract Z Servo endstop if enabled
  5101. */
  5102. inline void gcode_M402() {
  5103. #if ENABLED(HAS_SERVO_ENDSTOPS)
  5104. raise_z_for_servo();
  5105. #endif
  5106. stow_z_probe(false);
  5107. }
  5108. #endif // AUTO_BED_LEVELING_FEATURE && (ENABLED(HAS_SERVO_ENDSTOPS) || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5109. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5110. /**
  5111. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  5112. */
  5113. inline void gcode_M404() {
  5114. if (code_seen('W')) {
  5115. filament_width_nominal = code_value_linear_units();
  5116. }
  5117. else {
  5118. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5119. SERIAL_PROTOCOLLN(filament_width_nominal);
  5120. }
  5121. }
  5122. /**
  5123. * M405: Turn on filament sensor for control
  5124. */
  5125. inline void gcode_M405() {
  5126. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5127. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5128. if (code_seen('D')) meas_delay_cm = code_value_int();
  5129. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5130. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5131. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5132. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5133. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5134. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5135. }
  5136. filament_sensor = true;
  5137. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5138. //SERIAL_PROTOCOL(filament_width_meas);
  5139. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5140. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5141. }
  5142. /**
  5143. * M406: Turn off filament sensor for control
  5144. */
  5145. inline void gcode_M406() { filament_sensor = false; }
  5146. /**
  5147. * M407: Get measured filament diameter on serial output
  5148. */
  5149. inline void gcode_M407() {
  5150. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5151. SERIAL_PROTOCOLLN(filament_width_meas);
  5152. }
  5153. #endif // FILAMENT_WIDTH_SENSOR
  5154. #if DISABLED(DELTA) && DISABLED(SCARA)
  5155. void set_current_position_from_planner() {
  5156. stepper.synchronize();
  5157. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5158. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5159. current_position[X_AXIS] = pos.x;
  5160. current_position[Y_AXIS] = pos.y;
  5161. current_position[Z_AXIS] = pos.z;
  5162. #else
  5163. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5164. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5165. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5166. #endif
  5167. sync_plan_position(); // ...re-apply to planner position
  5168. }
  5169. #endif
  5170. /**
  5171. * M410: Quickstop - Abort all planned moves
  5172. *
  5173. * This will stop the carriages mid-move, so most likely they
  5174. * will be out of sync with the stepper position after this.
  5175. */
  5176. inline void gcode_M410() {
  5177. stepper.quick_stop();
  5178. #if DISABLED(DELTA) && DISABLED(SCARA)
  5179. set_current_position_from_planner();
  5180. #endif
  5181. }
  5182. #if ENABLED(MESH_BED_LEVELING)
  5183. /**
  5184. * M420: Enable/Disable Mesh Bed Leveling
  5185. */
  5186. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5187. /**
  5188. * M421: Set a single Mesh Bed Leveling Z coordinate
  5189. * Use either 'M421 X<mm> Y<mm> Z<mm>' or 'M421 I<xindex> J<yindex> Z<mm>'
  5190. */
  5191. inline void gcode_M421() {
  5192. int8_t px, py;
  5193. float z = 0;
  5194. bool hasX, hasY, hasZ, hasI, hasJ;
  5195. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5196. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5197. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5198. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5199. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5200. if (hasX && hasY && hasZ) {
  5201. if (px >= 0 && py >= 0)
  5202. mbl.set_z(px, py, z);
  5203. else {
  5204. SERIAL_ERROR_START;
  5205. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5206. }
  5207. }
  5208. else if (hasI && hasJ && hasZ) {
  5209. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5210. mbl.set_z(px, py, z);
  5211. else {
  5212. SERIAL_ERROR_START;
  5213. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5214. }
  5215. }
  5216. else {
  5217. SERIAL_ERROR_START;
  5218. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5219. }
  5220. }
  5221. #endif
  5222. /**
  5223. * M428: Set home_offset based on the distance between the
  5224. * current_position and the nearest "reference point."
  5225. * If an axis is past center its endstop position
  5226. * is the reference-point. Otherwise it uses 0. This allows
  5227. * the Z offset to be set near the bed when using a max endstop.
  5228. *
  5229. * M428 can't be used more than 2cm away from 0 or an endstop.
  5230. *
  5231. * Use M206 to set these values directly.
  5232. */
  5233. inline void gcode_M428() {
  5234. bool err = false;
  5235. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5236. if (axis_homed[i]) {
  5237. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5238. diff = current_position[i] - base;
  5239. if (diff > -20 && diff < 20) {
  5240. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5241. }
  5242. else {
  5243. SERIAL_ERROR_START;
  5244. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5245. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5246. #if HAS_BUZZER
  5247. buzzer.tone(200, 40);
  5248. #endif
  5249. err = true;
  5250. break;
  5251. }
  5252. }
  5253. }
  5254. if (!err) {
  5255. #if ENABLED(DELTA) || ENABLED(SCARA)
  5256. sync_plan_position_delta();
  5257. #else
  5258. sync_plan_position();
  5259. #endif
  5260. report_current_position();
  5261. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5262. #if HAS_BUZZER
  5263. buzzer.tone(200, 659);
  5264. buzzer.tone(200, 698);
  5265. #endif
  5266. }
  5267. }
  5268. /**
  5269. * M500: Store settings in EEPROM
  5270. */
  5271. inline void gcode_M500() {
  5272. Config_StoreSettings();
  5273. }
  5274. /**
  5275. * M501: Read settings from EEPROM
  5276. */
  5277. inline void gcode_M501() {
  5278. Config_RetrieveSettings();
  5279. }
  5280. /**
  5281. * M502: Revert to default settings
  5282. */
  5283. inline void gcode_M502() {
  5284. Config_ResetDefault();
  5285. }
  5286. /**
  5287. * M503: print settings currently in memory
  5288. */
  5289. inline void gcode_M503() {
  5290. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5291. }
  5292. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5293. /**
  5294. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5295. */
  5296. inline void gcode_M540() {
  5297. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5298. }
  5299. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5300. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5301. inline void gcode_SET_Z_PROBE_OFFSET() {
  5302. SERIAL_ECHO_START;
  5303. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5304. SERIAL_CHAR(' ');
  5305. if (code_seen('Z')) {
  5306. float value = code_value_axis_units(Z_AXIS);
  5307. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5308. zprobe_zoffset = value;
  5309. SERIAL_ECHO(zprobe_zoffset);
  5310. }
  5311. else {
  5312. SERIAL_ECHOPGM(MSG_Z_MIN);
  5313. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5314. SERIAL_ECHOPGM(MSG_Z_MAX);
  5315. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5316. }
  5317. }
  5318. else {
  5319. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5320. }
  5321. SERIAL_EOL;
  5322. }
  5323. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5324. #if ENABLED(FILAMENTCHANGEENABLE)
  5325. /**
  5326. * M600: Pause for filament change
  5327. *
  5328. * E[distance] - Retract the filament this far (negative value)
  5329. * Z[distance] - Move the Z axis by this distance
  5330. * X[position] - Move to this X position, with Y
  5331. * Y[position] - Move to this Y position, with X
  5332. * L[distance] - Retract distance for removal (manual reload)
  5333. *
  5334. * Default values are used for omitted arguments.
  5335. *
  5336. */
  5337. inline void gcode_M600() {
  5338. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5339. SERIAL_ERROR_START;
  5340. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5341. return;
  5342. }
  5343. float lastpos[NUM_AXIS];
  5344. #if ENABLED(DELTA)
  5345. float fr60 = feedrate / 60;
  5346. #endif
  5347. for (int i = 0; i < NUM_AXIS; i++)
  5348. lastpos[i] = destination[i] = current_position[i];
  5349. #if ENABLED(DELTA)
  5350. #define RUNPLAN calculate_delta(destination); \
  5351. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5352. #else
  5353. #define RUNPLAN line_to_destination();
  5354. #endif
  5355. //retract by E
  5356. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5357. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5358. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5359. #endif
  5360. RUNPLAN;
  5361. //lift Z
  5362. if (code_seen('Z')) destination[Z_AXIS] += code_value_axis_units(Z_AXIS);
  5363. #ifdef FILAMENTCHANGE_ZADD
  5364. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5365. #endif
  5366. RUNPLAN;
  5367. //move xy
  5368. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5369. #ifdef FILAMENTCHANGE_XPOS
  5370. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5371. #endif
  5372. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5373. #ifdef FILAMENTCHANGE_YPOS
  5374. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5375. #endif
  5376. RUNPLAN;
  5377. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5378. #ifdef FILAMENTCHANGE_FINALRETRACT
  5379. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5380. #endif
  5381. RUNPLAN;
  5382. //finish moves
  5383. stepper.synchronize();
  5384. //disable extruder steppers so filament can be removed
  5385. disable_e0();
  5386. disable_e1();
  5387. disable_e2();
  5388. disable_e3();
  5389. delay(100);
  5390. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5391. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5392. millis_t next_tick = 0;
  5393. #endif
  5394. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5395. while (!lcd_clicked()) {
  5396. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5397. millis_t ms = millis();
  5398. if (ELAPSED(ms, next_tick)) {
  5399. lcd_quick_feedback();
  5400. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5401. }
  5402. idle(true);
  5403. #else
  5404. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5405. destination[E_AXIS] = current_position[E_AXIS];
  5406. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5407. stepper.synchronize();
  5408. #endif
  5409. } // while(!lcd_clicked)
  5410. KEEPALIVE_STATE(IN_HANDLER);
  5411. lcd_quick_feedback(); // click sound feedback
  5412. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5413. current_position[E_AXIS] = 0;
  5414. stepper.synchronize();
  5415. #endif
  5416. //return to normal
  5417. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5418. #ifdef FILAMENTCHANGE_FINALRETRACT
  5419. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5420. #endif
  5421. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5422. sync_plan_position_e();
  5423. RUNPLAN; //should do nothing
  5424. lcd_reset_alert_level();
  5425. #if ENABLED(DELTA)
  5426. // Move XYZ to starting position, then E
  5427. calculate_delta(lastpos);
  5428. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5429. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5430. #else
  5431. // Move XY to starting position, then Z, then E
  5432. destination[X_AXIS] = lastpos[X_AXIS];
  5433. destination[Y_AXIS] = lastpos[Y_AXIS];
  5434. line_to_destination();
  5435. destination[Z_AXIS] = lastpos[Z_AXIS];
  5436. line_to_destination();
  5437. destination[E_AXIS] = lastpos[E_AXIS];
  5438. line_to_destination();
  5439. #endif
  5440. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5441. filament_ran_out = false;
  5442. #endif
  5443. }
  5444. #endif // FILAMENTCHANGEENABLE
  5445. #if ENABLED(DUAL_X_CARRIAGE)
  5446. /**
  5447. * M605: Set dual x-carriage movement mode
  5448. *
  5449. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5450. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5451. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5452. * millimeters x-offset and an optional differential hotend temperature of
  5453. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5454. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5455. *
  5456. * Note: the X axis should be homed after changing dual x-carriage mode.
  5457. */
  5458. inline void gcode_M605() {
  5459. stepper.synchronize();
  5460. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5461. switch (dual_x_carriage_mode) {
  5462. case DXC_DUPLICATION_MODE:
  5463. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5464. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5465. SERIAL_ECHO_START;
  5466. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5467. SERIAL_CHAR(' ');
  5468. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5469. SERIAL_CHAR(',');
  5470. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5471. SERIAL_CHAR(' ');
  5472. SERIAL_ECHO(duplicate_extruder_x_offset);
  5473. SERIAL_CHAR(',');
  5474. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5475. break;
  5476. case DXC_FULL_CONTROL_MODE:
  5477. case DXC_AUTO_PARK_MODE:
  5478. break;
  5479. default:
  5480. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5481. break;
  5482. }
  5483. active_extruder_parked = false;
  5484. extruder_duplication_enabled = false;
  5485. delayed_move_time = 0;
  5486. }
  5487. #endif // DUAL_X_CARRIAGE
  5488. /**
  5489. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5490. */
  5491. inline void gcode_M907() {
  5492. #if HAS_DIGIPOTSS
  5493. for (int i = 0; i < NUM_AXIS; i++)
  5494. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5495. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5496. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5497. #endif
  5498. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5499. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5500. #endif
  5501. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5502. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5503. #endif
  5504. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5505. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5506. #endif
  5507. #if ENABLED(DIGIPOT_I2C)
  5508. // this one uses actual amps in floating point
  5509. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5510. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5511. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5512. #endif
  5513. #if ENABLED(DAC_STEPPER_CURRENT)
  5514. if (code_seen('S')) {
  5515. float dac_percent = code_value_float();
  5516. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5517. }
  5518. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5519. #endif
  5520. }
  5521. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5522. /**
  5523. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5524. */
  5525. inline void gcode_M908() {
  5526. #if HAS_DIGIPOTSS
  5527. stepper.digitalPotWrite(
  5528. code_seen('P') ? code_value_int() : 0,
  5529. code_seen('S') ? code_value_int() : 0
  5530. );
  5531. #endif
  5532. #ifdef DAC_STEPPER_CURRENT
  5533. dac_current_raw(
  5534. code_seen('P') ? code_value_byte() : -1,
  5535. code_seen('S') ? code_value_ushort() : 0
  5536. );
  5537. #endif
  5538. }
  5539. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5540. inline void gcode_M909() { dac_print_values(); }
  5541. inline void gcode_M910() { dac_commit_eeprom(); }
  5542. #endif
  5543. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5544. #if HAS_MICROSTEPS
  5545. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5546. inline void gcode_M350() {
  5547. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5548. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5549. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5550. stepper.microstep_readings();
  5551. }
  5552. /**
  5553. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5554. * S# determines MS1 or MS2, X# sets the pin high/low.
  5555. */
  5556. inline void gcode_M351() {
  5557. if (code_seen('S')) switch (code_value_byte()) {
  5558. case 1:
  5559. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5560. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5561. break;
  5562. case 2:
  5563. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5564. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5565. break;
  5566. }
  5567. stepper.microstep_readings();
  5568. }
  5569. #endif // HAS_MICROSTEPS
  5570. /**
  5571. * M999: Restart after being stopped
  5572. *
  5573. * Default behaviour is to flush the serial buffer and request
  5574. * a resend to the host starting on the last N line received.
  5575. *
  5576. * Sending "M999 S1" will resume printing without flushing the
  5577. * existing command buffer.
  5578. *
  5579. */
  5580. inline void gcode_M999() {
  5581. Running = true;
  5582. lcd_reset_alert_level();
  5583. if (code_seen('S') && code_value_bool()) return;
  5584. // gcode_LastN = Stopped_gcode_LastN;
  5585. FlushSerialRequestResend();
  5586. }
  5587. /**
  5588. * T0-T3: Switch tool, usually switching extruders
  5589. *
  5590. * F[mm/min] Set the movement feedrate
  5591. */
  5592. inline void gcode_T(uint8_t tmp_extruder) {
  5593. if (tmp_extruder >= EXTRUDERS) {
  5594. SERIAL_ECHO_START;
  5595. SERIAL_CHAR('T');
  5596. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5597. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5598. return;
  5599. }
  5600. float stored_feedrate = feedrate;
  5601. if (code_seen('F')) {
  5602. float next_feedrate = code_value_axis_units(E_AXIS);
  5603. if (next_feedrate > 0.0) stored_feedrate = feedrate = next_feedrate;
  5604. }
  5605. else {
  5606. #ifdef XY_TRAVEL_SPEED
  5607. feedrate = XY_TRAVEL_SPEED;
  5608. #else
  5609. feedrate = min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]);
  5610. #endif
  5611. }
  5612. #if HOTENDS > 1
  5613. if (tmp_extruder != active_extruder) {
  5614. // Save current position to return to after applying extruder offset
  5615. set_destination_to_current();
  5616. #if ENABLED(DUAL_X_CARRIAGE)
  5617. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5618. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5619. // Park old head: 1) raise 2) move to park position 3) lower
  5620. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5621. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5622. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5623. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5624. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5625. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5626. stepper.synchronize();
  5627. }
  5628. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5629. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5630. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5631. active_extruder = tmp_extruder;
  5632. // This function resets the max/min values - the current position may be overwritten below.
  5633. set_axis_is_at_home(X_AXIS);
  5634. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5635. current_position[X_AXIS] = inactive_extruder_x_pos;
  5636. inactive_extruder_x_pos = destination[X_AXIS];
  5637. }
  5638. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5639. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5640. if (active_extruder_parked)
  5641. current_position[X_AXIS] = inactive_extruder_x_pos;
  5642. else
  5643. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5644. inactive_extruder_x_pos = destination[X_AXIS];
  5645. extruder_duplication_enabled = false;
  5646. }
  5647. else {
  5648. // record raised toolhead position for use by unpark
  5649. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5650. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5651. active_extruder_parked = true;
  5652. delayed_move_time = 0;
  5653. }
  5654. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5655. #else // !DUAL_X_CARRIAGE
  5656. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5657. // Offset extruder, make sure to apply the bed level rotation matrix
  5658. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5659. hotend_offset[Y_AXIS][tmp_extruder],
  5660. 0),
  5661. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5662. hotend_offset[Y_AXIS][active_extruder],
  5663. 0),
  5664. offset_vec = tmp_offset_vec - act_offset_vec;
  5665. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5666. if (DEBUGGING(LEVELING)) {
  5667. SERIAL_ECHOLNPGM(">>> gcode_T");
  5668. tmp_offset_vec.debug("tmp_offset_vec");
  5669. act_offset_vec.debug("act_offset_vec");
  5670. offset_vec.debug("offset_vec (BEFORE)");
  5671. DEBUG_POS("BEFORE rotation", current_position);
  5672. }
  5673. #endif
  5674. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5675. current_position[X_AXIS] += offset_vec.x;
  5676. current_position[Y_AXIS] += offset_vec.y;
  5677. current_position[Z_AXIS] += offset_vec.z;
  5678. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5679. if (DEBUGGING(LEVELING)) {
  5680. offset_vec.debug("offset_vec (AFTER)");
  5681. DEBUG_POS("AFTER rotation", current_position);
  5682. SERIAL_ECHOLNPGM("<<< gcode_T");
  5683. }
  5684. #endif
  5685. #else // !AUTO_BED_LEVELING_FEATURE
  5686. // The newly-selected extruder is actually at...
  5687. for (int i=X_AXIS; i<=Y_AXIS; i++) {
  5688. float diff = hotend_offset[i][tmp_extruder] - hotend_offset[i][active_extruder];
  5689. current_position[i] += diff;
  5690. position_shift[i] += diff; // Offset the coordinate space
  5691. update_software_endstops((AxisEnum)i);
  5692. }
  5693. #endif // !AUTO_BED_LEVELING_FEATURE
  5694. // Set the new active extruder
  5695. active_extruder = tmp_extruder;
  5696. #endif // !DUAL_X_CARRIAGE
  5697. // Tell the planner the new "current position"
  5698. #if ENABLED(DELTA)
  5699. sync_plan_position_delta();
  5700. #else
  5701. sync_plan_position();
  5702. #endif
  5703. // Move to the "old position" (move the extruder into place)
  5704. if (IsRunning()) prepare_move();
  5705. } // (tmp_extruder != active_extruder)
  5706. #if ENABLED(EXT_SOLENOID)
  5707. stepper.synchronize();
  5708. disable_all_solenoids();
  5709. enable_solenoid_on_active_extruder();
  5710. #endif // EXT_SOLENOID
  5711. #endif // HOTENDS > 1
  5712. feedrate = stored_feedrate;
  5713. SERIAL_ECHO_START;
  5714. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5715. SERIAL_PROTOCOLLN((int)active_extruder);
  5716. }
  5717. /**
  5718. * Process a single command and dispatch it to its handler
  5719. * This is called from the main loop()
  5720. */
  5721. void process_next_command() {
  5722. current_command = command_queue[cmd_queue_index_r];
  5723. if (DEBUGGING(ECHO)) {
  5724. SERIAL_ECHO_START;
  5725. SERIAL_ECHOLN(current_command);
  5726. }
  5727. // Sanitize the current command:
  5728. // - Skip leading spaces
  5729. // - Bypass N[-0-9][0-9]*[ ]*
  5730. // - Overwrite * with nul to mark the end
  5731. while (*current_command == ' ') ++current_command;
  5732. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5733. current_command += 2; // skip N[-0-9]
  5734. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5735. while (*current_command == ' ') ++current_command; // skip [ ]*
  5736. }
  5737. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5738. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5739. char *cmd_ptr = current_command;
  5740. // Get the command code, which must be G, M, or T
  5741. char command_code = *cmd_ptr++;
  5742. // Skip spaces to get the numeric part
  5743. while (*cmd_ptr == ' ') cmd_ptr++;
  5744. uint16_t codenum = 0; // define ahead of goto
  5745. // Bail early if there's no code
  5746. bool code_is_good = NUMERIC(*cmd_ptr);
  5747. if (!code_is_good) goto ExitUnknownCommand;
  5748. // Get and skip the code number
  5749. do {
  5750. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5751. cmd_ptr++;
  5752. } while (NUMERIC(*cmd_ptr));
  5753. // Skip all spaces to get to the first argument, or nul
  5754. while (*cmd_ptr == ' ') cmd_ptr++;
  5755. // The command's arguments (if any) start here, for sure!
  5756. current_command_args = cmd_ptr;
  5757. KEEPALIVE_STATE(IN_HANDLER);
  5758. // Handle a known G, M, or T
  5759. switch (command_code) {
  5760. case 'G': switch (codenum) {
  5761. // G0, G1
  5762. case 0:
  5763. case 1:
  5764. gcode_G0_G1();
  5765. break;
  5766. // G2, G3
  5767. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5768. case 2: // G2 - CW ARC
  5769. case 3: // G3 - CCW ARC
  5770. gcode_G2_G3(codenum == 2);
  5771. break;
  5772. #endif
  5773. // G4 Dwell
  5774. case 4:
  5775. gcode_G4();
  5776. break;
  5777. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5778. // G5
  5779. case 5: // G5 - Cubic B_spline
  5780. gcode_G5();
  5781. break;
  5782. #endif // BEZIER_CURVE_SUPPORT
  5783. #if ENABLED(FWRETRACT)
  5784. case 10: // G10: retract
  5785. case 11: // G11: retract_recover
  5786. gcode_G10_G11(codenum == 10);
  5787. break;
  5788. #endif // FWRETRACT
  5789. #if ENABLED(INCH_MODE_SUPPORT)
  5790. case 20: //G20: Inch Mode
  5791. gcode_G20();
  5792. break;
  5793. case 21: //G21: MM Mode
  5794. gcode_G21();
  5795. break;
  5796. #endif
  5797. case 28: // G28: Home all axes, one at a time
  5798. gcode_G28();
  5799. break;
  5800. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5801. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5802. gcode_G29();
  5803. break;
  5804. #endif
  5805. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5806. #if DISABLED(Z_PROBE_SLED)
  5807. case 30: // G30 Single Z probe
  5808. gcode_G30();
  5809. break;
  5810. #else // Z_PROBE_SLED
  5811. case 31: // G31: dock the sled
  5812. case 32: // G32: undock the sled
  5813. dock_sled(codenum == 31);
  5814. break;
  5815. #endif // Z_PROBE_SLED
  5816. #endif // AUTO_BED_LEVELING_FEATURE
  5817. case 90: // G90
  5818. relative_mode = false;
  5819. break;
  5820. case 91: // G91
  5821. relative_mode = true;
  5822. break;
  5823. case 92: // G92
  5824. gcode_G92();
  5825. break;
  5826. }
  5827. break;
  5828. case 'M': switch (codenum) {
  5829. #if ENABLED(ULTIPANEL)
  5830. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5831. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5832. gcode_M0_M1();
  5833. break;
  5834. #endif // ULTIPANEL
  5835. case 17:
  5836. gcode_M17();
  5837. break;
  5838. #if ENABLED(SDSUPPORT)
  5839. case 20: // M20 - list SD card
  5840. gcode_M20(); break;
  5841. case 21: // M21 - init SD card
  5842. gcode_M21(); break;
  5843. case 22: //M22 - release SD card
  5844. gcode_M22(); break;
  5845. case 23: //M23 - Select file
  5846. gcode_M23(); break;
  5847. case 24: //M24 - Start SD print
  5848. gcode_M24(); break;
  5849. case 25: //M25 - Pause SD print
  5850. gcode_M25(); break;
  5851. case 26: //M26 - Set SD index
  5852. gcode_M26(); break;
  5853. case 27: //M27 - Get SD status
  5854. gcode_M27(); break;
  5855. case 28: //M28 - Start SD write
  5856. gcode_M28(); break;
  5857. case 29: //M29 - Stop SD write
  5858. gcode_M29(); break;
  5859. case 30: //M30 <filename> Delete File
  5860. gcode_M30(); break;
  5861. case 32: //M32 - Select file and start SD print
  5862. gcode_M32(); break;
  5863. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5864. case 33: //M33 - Get the long full path to a file or folder
  5865. gcode_M33(); break;
  5866. #endif // LONG_FILENAME_HOST_SUPPORT
  5867. case 928: //M928 - Start SD write
  5868. gcode_M928(); break;
  5869. #endif //SDSUPPORT
  5870. case 31: //M31 take time since the start of the SD print or an M109 command
  5871. gcode_M31();
  5872. break;
  5873. case 42: //M42 -Change pin status via gcode
  5874. gcode_M42();
  5875. break;
  5876. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5877. case 48: // M48 Z probe repeatability
  5878. gcode_M48();
  5879. break;
  5880. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5881. case 75: // Start print timer
  5882. gcode_M75();
  5883. break;
  5884. case 76: // Pause print timer
  5885. gcode_M76();
  5886. break;
  5887. case 77: // Stop print timer
  5888. gcode_M77();
  5889. break;
  5890. #if ENABLED(PRINTCOUNTER)
  5891. case 78: // Show print statistics
  5892. gcode_M78();
  5893. break;
  5894. #endif
  5895. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5896. case 100:
  5897. gcode_M100();
  5898. break;
  5899. #endif
  5900. case 104: // M104
  5901. gcode_M104();
  5902. break;
  5903. case 110: // M110: Set Current Line Number
  5904. gcode_M110();
  5905. break;
  5906. case 111: // M111: Set debug level
  5907. gcode_M111();
  5908. break;
  5909. case 112: // M112: Emergency Stop
  5910. gcode_M112();
  5911. break;
  5912. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5913. case 113: // M113: Set Host Keepalive interval
  5914. gcode_M113();
  5915. break;
  5916. #endif
  5917. case 140: // M140: Set bed temp
  5918. gcode_M140();
  5919. break;
  5920. case 105: // M105: Read current temperature
  5921. gcode_M105();
  5922. KEEPALIVE_STATE(NOT_BUSY);
  5923. return; // "ok" already printed
  5924. case 109: // M109: Wait for temperature
  5925. gcode_M109();
  5926. break;
  5927. #if HAS_TEMP_BED
  5928. case 190: // M190: Wait for bed heater to reach target
  5929. gcode_M190();
  5930. break;
  5931. #endif // HAS_TEMP_BED
  5932. #if FAN_COUNT > 0
  5933. case 106: // M106: Fan On
  5934. gcode_M106();
  5935. break;
  5936. case 107: // M107: Fan Off
  5937. gcode_M107();
  5938. break;
  5939. #endif // FAN_COUNT > 0
  5940. #if ENABLED(BARICUDA)
  5941. // PWM for HEATER_1_PIN
  5942. #if HAS_HEATER_1
  5943. case 126: // M126: valve open
  5944. gcode_M126();
  5945. break;
  5946. case 127: // M127: valve closed
  5947. gcode_M127();
  5948. break;
  5949. #endif // HAS_HEATER_1
  5950. // PWM for HEATER_2_PIN
  5951. #if HAS_HEATER_2
  5952. case 128: // M128: valve open
  5953. gcode_M128();
  5954. break;
  5955. case 129: // M129: valve closed
  5956. gcode_M129();
  5957. break;
  5958. #endif // HAS_HEATER_2
  5959. #endif // BARICUDA
  5960. #if HAS_POWER_SWITCH
  5961. case 80: // M80: Turn on Power Supply
  5962. gcode_M80();
  5963. break;
  5964. #endif // HAS_POWER_SWITCH
  5965. case 81: // M81: Turn off Power, including Power Supply, if possible
  5966. gcode_M81();
  5967. break;
  5968. case 82:
  5969. gcode_M82();
  5970. break;
  5971. case 83:
  5972. gcode_M83();
  5973. break;
  5974. case 18: // (for compatibility)
  5975. case 84: // M84
  5976. gcode_M18_M84();
  5977. break;
  5978. case 85: // M85
  5979. gcode_M85();
  5980. break;
  5981. case 92: // M92: Set the steps-per-unit for one or more axes
  5982. gcode_M92();
  5983. break;
  5984. case 115: // M115: Report capabilities
  5985. gcode_M115();
  5986. break;
  5987. case 117: // M117: Set LCD message text, if possible
  5988. gcode_M117();
  5989. break;
  5990. case 114: // M114: Report current position
  5991. gcode_M114();
  5992. break;
  5993. case 120: // M120: Enable endstops
  5994. gcode_M120();
  5995. break;
  5996. case 121: // M121: Disable endstops
  5997. gcode_M121();
  5998. break;
  5999. case 119: // M119: Report endstop states
  6000. gcode_M119();
  6001. break;
  6002. #if ENABLED(ULTIPANEL)
  6003. case 145: // M145: Set material heatup parameters
  6004. gcode_M145();
  6005. break;
  6006. #endif
  6007. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6008. case 149:
  6009. gcode_M149();
  6010. break;
  6011. #endif
  6012. #if ENABLED(BLINKM)
  6013. case 150: // M150
  6014. gcode_M150();
  6015. break;
  6016. #endif //BLINKM
  6017. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6018. case 155:
  6019. gcode_M155();
  6020. break;
  6021. case 156:
  6022. gcode_M156();
  6023. break;
  6024. #endif //EXPERIMENTAL_I2CBUS
  6025. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  6026. gcode_M200();
  6027. break;
  6028. case 201: // M201
  6029. gcode_M201();
  6030. break;
  6031. #if 0 // Not used for Sprinter/grbl gen6
  6032. case 202: // M202
  6033. gcode_M202();
  6034. break;
  6035. #endif
  6036. case 203: // M203 max feedrate mm/sec
  6037. gcode_M203();
  6038. break;
  6039. case 204: // M204 acclereration S normal moves T filmanent only moves
  6040. gcode_M204();
  6041. break;
  6042. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6043. gcode_M205();
  6044. break;
  6045. case 206: // M206 additional homing offset
  6046. gcode_M206();
  6047. break;
  6048. #if ENABLED(DELTA)
  6049. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6050. gcode_M665();
  6051. break;
  6052. #endif
  6053. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6054. case 666: // M666 set delta / dual endstop adjustment
  6055. gcode_M666();
  6056. break;
  6057. #endif
  6058. #if ENABLED(FWRETRACT)
  6059. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6060. gcode_M207();
  6061. break;
  6062. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6063. gcode_M208();
  6064. break;
  6065. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6066. gcode_M209();
  6067. break;
  6068. #endif // FWRETRACT
  6069. #if HOTENDS > 1
  6070. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6071. gcode_M218();
  6072. break;
  6073. #endif
  6074. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6075. gcode_M220();
  6076. break;
  6077. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6078. gcode_M221();
  6079. break;
  6080. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6081. gcode_M226();
  6082. break;
  6083. #if HAS_SERVOS
  6084. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6085. gcode_M280();
  6086. break;
  6087. #endif // HAS_SERVOS
  6088. #if HAS_BUZZER
  6089. case 300: // M300 - Play beep tone
  6090. gcode_M300();
  6091. break;
  6092. #endif // HAS_BUZZER
  6093. #if ENABLED(PIDTEMP)
  6094. case 301: // M301
  6095. gcode_M301();
  6096. break;
  6097. #endif // PIDTEMP
  6098. #if ENABLED(PIDTEMPBED)
  6099. case 304: // M304
  6100. gcode_M304();
  6101. break;
  6102. #endif // PIDTEMPBED
  6103. #if defined(CHDK) || HAS_PHOTOGRAPH
  6104. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6105. gcode_M240();
  6106. break;
  6107. #endif // CHDK || PHOTOGRAPH_PIN
  6108. #if HAS_LCD_CONTRAST
  6109. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6110. gcode_M250();
  6111. break;
  6112. #endif // HAS_LCD_CONTRAST
  6113. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6114. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6115. gcode_M302();
  6116. break;
  6117. #endif // PREVENT_DANGEROUS_EXTRUDE
  6118. case 303: // M303 PID autotune
  6119. gcode_M303();
  6120. break;
  6121. #if ENABLED(SCARA)
  6122. case 360: // M360 SCARA Theta pos1
  6123. if (gcode_M360()) return;
  6124. break;
  6125. case 361: // M361 SCARA Theta pos2
  6126. if (gcode_M361()) return;
  6127. break;
  6128. case 362: // M362 SCARA Psi pos1
  6129. if (gcode_M362()) return;
  6130. break;
  6131. case 363: // M363 SCARA Psi pos2
  6132. if (gcode_M363()) return;
  6133. break;
  6134. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6135. if (gcode_M364()) return;
  6136. break;
  6137. case 365: // M365 Set SCARA scaling for X Y Z
  6138. gcode_M365();
  6139. break;
  6140. #endif // SCARA
  6141. case 400: // M400 finish all moves
  6142. gcode_M400();
  6143. break;
  6144. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (ENABLED(HAS_SERVO_ENDSTOPS) || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  6145. case 401:
  6146. gcode_M401();
  6147. break;
  6148. case 402:
  6149. gcode_M402();
  6150. break;
  6151. #endif // AUTO_BED_LEVELING_FEATURE && (ENABLED(HAS_SERVO_ENDSTOPS) || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  6152. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6153. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6154. gcode_M404();
  6155. break;
  6156. case 405: //M405 Turn on filament sensor for control
  6157. gcode_M405();
  6158. break;
  6159. case 406: //M406 Turn off filament sensor for control
  6160. gcode_M406();
  6161. break;
  6162. case 407: //M407 Display measured filament diameter
  6163. gcode_M407();
  6164. break;
  6165. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6166. case 410: // M410 quickstop - Abort all the planned moves.
  6167. gcode_M410();
  6168. break;
  6169. #if ENABLED(MESH_BED_LEVELING)
  6170. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6171. gcode_M420();
  6172. break;
  6173. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6174. gcode_M421();
  6175. break;
  6176. #endif
  6177. case 428: // M428 Apply current_position to home_offset
  6178. gcode_M428();
  6179. break;
  6180. case 500: // M500 Store settings in EEPROM
  6181. gcode_M500();
  6182. break;
  6183. case 501: // M501 Read settings from EEPROM
  6184. gcode_M501();
  6185. break;
  6186. case 502: // M502 Revert to default settings
  6187. gcode_M502();
  6188. break;
  6189. case 503: // M503 print settings currently in memory
  6190. gcode_M503();
  6191. break;
  6192. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6193. case 540:
  6194. gcode_M540();
  6195. break;
  6196. #endif
  6197. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6198. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6199. gcode_SET_Z_PROBE_OFFSET();
  6200. break;
  6201. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6202. #if ENABLED(FILAMENTCHANGEENABLE)
  6203. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6204. gcode_M600();
  6205. break;
  6206. #endif // FILAMENTCHANGEENABLE
  6207. #if ENABLED(DUAL_X_CARRIAGE)
  6208. case 605:
  6209. gcode_M605();
  6210. break;
  6211. #endif // DUAL_X_CARRIAGE
  6212. case 907: // M907 Set digital trimpot motor current using axis codes.
  6213. gcode_M907();
  6214. break;
  6215. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6216. case 908: // M908 Control digital trimpot directly.
  6217. gcode_M908();
  6218. break;
  6219. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6220. case 909: // M909 Print digipot/DAC current value
  6221. gcode_M909();
  6222. break;
  6223. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6224. gcode_M910();
  6225. break;
  6226. #endif
  6227. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6228. #if HAS_MICROSTEPS
  6229. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6230. gcode_M350();
  6231. break;
  6232. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6233. gcode_M351();
  6234. break;
  6235. #endif // HAS_MICROSTEPS
  6236. case 999: // M999: Restart after being Stopped
  6237. gcode_M999();
  6238. break;
  6239. }
  6240. break;
  6241. case 'T':
  6242. gcode_T(codenum);
  6243. break;
  6244. default: code_is_good = false;
  6245. }
  6246. KEEPALIVE_STATE(NOT_BUSY);
  6247. ExitUnknownCommand:
  6248. // Still unknown command? Throw an error
  6249. if (!code_is_good) unknown_command_error();
  6250. ok_to_send();
  6251. }
  6252. void FlushSerialRequestResend() {
  6253. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6254. MYSERIAL.flush();
  6255. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6256. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6257. ok_to_send();
  6258. }
  6259. void ok_to_send() {
  6260. refresh_cmd_timeout();
  6261. if (!send_ok[cmd_queue_index_r]) return;
  6262. SERIAL_PROTOCOLPGM(MSG_OK);
  6263. #if ENABLED(ADVANCED_OK)
  6264. char* p = command_queue[cmd_queue_index_r];
  6265. if (*p == 'N') {
  6266. SERIAL_PROTOCOL(' ');
  6267. SERIAL_ECHO(*p++);
  6268. while (NUMERIC_SIGNED(*p))
  6269. SERIAL_ECHO(*p++);
  6270. }
  6271. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6272. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6273. #endif
  6274. SERIAL_EOL;
  6275. }
  6276. void clamp_to_software_endstops(float target[3]) {
  6277. if (min_software_endstops) {
  6278. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6279. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6280. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6281. }
  6282. if (max_software_endstops) {
  6283. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6284. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6285. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6286. }
  6287. }
  6288. #if ENABLED(DELTA)
  6289. void recalc_delta_settings(float radius, float diagonal_rod) {
  6290. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6291. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6292. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6293. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6294. delta_tower3_x = 0.0; // back middle tower
  6295. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6296. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6297. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6298. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6299. }
  6300. void calculate_delta(float cartesian[3]) {
  6301. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6302. - sq(delta_tower1_x - cartesian[X_AXIS])
  6303. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6304. ) + cartesian[Z_AXIS];
  6305. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6306. - sq(delta_tower2_x - cartesian[X_AXIS])
  6307. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6308. ) + cartesian[Z_AXIS];
  6309. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6310. - sq(delta_tower3_x - cartesian[X_AXIS])
  6311. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6312. ) + cartesian[Z_AXIS];
  6313. /**
  6314. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6315. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6316. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6317. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6318. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6319. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6320. */
  6321. }
  6322. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6323. // Adjust print surface height by linear interpolation over the bed_level array.
  6324. void adjust_delta(float cartesian[3]) {
  6325. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6326. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6327. float h1 = 0.001 - half, h2 = half - 0.001,
  6328. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6329. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6330. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6331. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6332. z1 = bed_level[floor_x + half][floor_y + half],
  6333. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6334. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6335. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6336. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6337. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6338. offset = (1 - ratio_x) * left + ratio_x * right;
  6339. delta[X_AXIS] += offset;
  6340. delta[Y_AXIS] += offset;
  6341. delta[Z_AXIS] += offset;
  6342. /**
  6343. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6344. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6345. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6346. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6347. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6348. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6349. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6350. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6351. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6352. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6353. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6354. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6355. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6356. */
  6357. }
  6358. #endif // AUTO_BED_LEVELING_FEATURE
  6359. #endif // DELTA
  6360. #if ENABLED(MESH_BED_LEVELING)
  6361. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6362. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6363. if (!mbl.active()) {
  6364. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6365. set_current_to_destination();
  6366. return;
  6367. }
  6368. int pcx = mbl.cell_index_x(current_position[X_AXIS] - home_offset[X_AXIS]);
  6369. int pcy = mbl.cell_index_y(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6370. int cx = mbl.cell_index_x(x - home_offset[X_AXIS]);
  6371. int cy = mbl.cell_index_y(y - home_offset[Y_AXIS]);
  6372. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6373. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6374. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6375. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6376. if (pcx == cx && pcy == cy) {
  6377. // Start and end on same mesh square
  6378. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6379. set_current_to_destination();
  6380. return;
  6381. }
  6382. float nx, ny, nz, ne, normalized_dist;
  6383. if (cx > pcx && TEST(x_splits, cx)) {
  6384. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6385. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6386. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6387. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6388. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6389. CBI(x_splits, cx);
  6390. }
  6391. else if (cx < pcx && TEST(x_splits, pcx)) {
  6392. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6393. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6394. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6395. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6396. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6397. CBI(x_splits, pcx);
  6398. }
  6399. else if (cy > pcy && TEST(y_splits, cy)) {
  6400. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6401. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6402. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6403. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6404. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6405. CBI(y_splits, cy);
  6406. }
  6407. else if (cy < pcy && TEST(y_splits, pcy)) {
  6408. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6409. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6410. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6411. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6412. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6413. CBI(y_splits, pcy);
  6414. }
  6415. else {
  6416. // Already split on a border
  6417. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6418. set_current_to_destination();
  6419. return;
  6420. }
  6421. // Do the split and look for more borders
  6422. destination[X_AXIS] = nx;
  6423. destination[Y_AXIS] = ny;
  6424. destination[Z_AXIS] = nz;
  6425. destination[E_AXIS] = ne;
  6426. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6427. destination[X_AXIS] = x;
  6428. destination[Y_AXIS] = y;
  6429. destination[Z_AXIS] = z;
  6430. destination[E_AXIS] = e;
  6431. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6432. }
  6433. #endif // MESH_BED_LEVELING
  6434. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6435. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6436. if (DEBUGGING(DRYRUN)) return;
  6437. float de = dest_e - curr_e;
  6438. if (de) {
  6439. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6440. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6441. SERIAL_ECHO_START;
  6442. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6443. }
  6444. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6445. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6446. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6447. SERIAL_ECHO_START;
  6448. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6449. }
  6450. #endif
  6451. }
  6452. }
  6453. #endif // PREVENT_DANGEROUS_EXTRUDE
  6454. #if ENABLED(DELTA) || ENABLED(SCARA)
  6455. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  6456. float difference[NUM_AXIS];
  6457. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6458. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6459. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6460. if (cartesian_mm < 0.000001) return false;
  6461. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6462. float seconds = cartesian_mm / _feedrate;
  6463. int steps = max(1, int(delta_segments_per_second * seconds));
  6464. float inv_steps = 1.0/steps;
  6465. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6466. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6467. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6468. for (int s = 1; s <= steps; s++) {
  6469. float fraction = float(s) * inv_steps;
  6470. for (int8_t i = 0; i < NUM_AXIS; i++)
  6471. target[i] = current_position[i] + difference[i] * fraction;
  6472. calculate_delta(target);
  6473. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6474. if (!bed_leveling_in_progress) adjust_delta(target);
  6475. #endif
  6476. //DEBUG_POS("prepare_move_delta", target);
  6477. //DEBUG_POS("prepare_move_delta", delta);
  6478. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6479. }
  6480. return true;
  6481. }
  6482. #endif // DELTA || SCARA
  6483. #if ENABLED(SCARA)
  6484. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  6485. #endif
  6486. #if ENABLED(DUAL_X_CARRIAGE)
  6487. inline bool prepare_move_dual_x_carriage() {
  6488. if (active_extruder_parked) {
  6489. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6490. // move duplicate extruder into correct duplication position.
  6491. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6492. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6493. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6494. sync_plan_position();
  6495. stepper.synchronize();
  6496. extruder_duplication_enabled = true;
  6497. active_extruder_parked = false;
  6498. }
  6499. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6500. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6501. // This is a travel move (with no extrusion)
  6502. // Skip it, but keep track of the current position
  6503. // (so it can be used as the start of the next non-travel move)
  6504. if (delayed_move_time != 0xFFFFFFFFUL) {
  6505. set_current_to_destination();
  6506. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6507. delayed_move_time = millis();
  6508. return false;
  6509. }
  6510. }
  6511. delayed_move_time = 0;
  6512. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6513. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6514. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]), active_extruder);
  6515. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6516. active_extruder_parked = false;
  6517. }
  6518. }
  6519. return true;
  6520. }
  6521. #endif // DUAL_X_CARRIAGE
  6522. #if DISABLED(DELTA) && DISABLED(SCARA)
  6523. inline bool prepare_move_cartesian() {
  6524. // Do not use feedrate_multiplier for E or Z only moves
  6525. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6526. line_to_destination();
  6527. }
  6528. else {
  6529. #if ENABLED(MESH_BED_LEVELING)
  6530. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6531. return false;
  6532. #else
  6533. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6534. #endif
  6535. }
  6536. return true;
  6537. }
  6538. #endif // !DELTA && !SCARA
  6539. /**
  6540. * Prepare a single move and get ready for the next one
  6541. *
  6542. * (This may call planner.buffer_line several times to put
  6543. * smaller moves into the planner for DELTA or SCARA.)
  6544. */
  6545. void prepare_move() {
  6546. clamp_to_software_endstops(destination);
  6547. refresh_cmd_timeout();
  6548. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6549. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6550. #endif
  6551. #if ENABLED(SCARA)
  6552. if (!prepare_move_scara(destination)) return;
  6553. #elif ENABLED(DELTA)
  6554. if (!prepare_move_delta(destination)) return;
  6555. #else
  6556. #if ENABLED(DUAL_X_CARRIAGE)
  6557. if (!prepare_move_dual_x_carriage()) return;
  6558. #endif
  6559. if (!prepare_move_cartesian()) return;
  6560. #endif
  6561. set_current_to_destination();
  6562. }
  6563. #if ENABLED(ARC_SUPPORT)
  6564. /**
  6565. * Plan an arc in 2 dimensions
  6566. *
  6567. * The arc is approximated by generating many small linear segments.
  6568. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6569. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6570. * larger segments will tend to be more efficient. Your slicer should have
  6571. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6572. */
  6573. void plan_arc(
  6574. float target[NUM_AXIS], // Destination position
  6575. float* offset, // Center of rotation relative to current_position
  6576. uint8_t clockwise // Clockwise?
  6577. ) {
  6578. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6579. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6580. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6581. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6582. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6583. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6584. r_Y = -offset[Y_AXIS],
  6585. rt_X = target[X_AXIS] - center_X,
  6586. rt_Y = target[Y_AXIS] - center_Y;
  6587. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6588. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6589. if (angular_travel < 0) angular_travel += RADIANS(360);
  6590. if (clockwise) angular_travel -= RADIANS(360);
  6591. // Make a circle if the angular rotation is 0
  6592. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6593. angular_travel += RADIANS(360);
  6594. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6595. if (mm_of_travel < 0.001) return;
  6596. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6597. if (segments == 0) segments = 1;
  6598. float theta_per_segment = angular_travel / segments;
  6599. float linear_per_segment = linear_travel / segments;
  6600. float extruder_per_segment = extruder_travel / segments;
  6601. /**
  6602. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6603. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6604. * r_T = [cos(phi) -sin(phi);
  6605. * sin(phi) cos(phi] * r ;
  6606. *
  6607. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6608. * defined from the circle center to the initial position. Each line segment is formed by successive
  6609. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6610. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6611. * all double numbers are single precision on the Arduino. (True double precision will not have
  6612. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6613. * tool precision in some cases. Therefore, arc path correction is implemented.
  6614. *
  6615. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6616. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6617. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6618. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6619. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6620. * issue for CNC machines with the single precision Arduino calculations.
  6621. *
  6622. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6623. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6624. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6625. * This is important when there are successive arc motions.
  6626. */
  6627. // Vector rotation matrix values
  6628. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6629. float sin_T = theta_per_segment;
  6630. float arc_target[NUM_AXIS];
  6631. float sin_Ti, cos_Ti, r_new_Y;
  6632. uint16_t i;
  6633. int8_t count = 0;
  6634. // Initialize the linear axis
  6635. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6636. // Initialize the extruder axis
  6637. arc_target[E_AXIS] = current_position[E_AXIS];
  6638. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6639. millis_t next_idle_ms = millis() + 200UL;
  6640. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6641. thermalManager.manage_heater();
  6642. millis_t now = millis();
  6643. if (ELAPSED(now, next_idle_ms)) {
  6644. next_idle_ms = now + 200UL;
  6645. idle();
  6646. }
  6647. if (++count < N_ARC_CORRECTION) {
  6648. // Apply vector rotation matrix to previous r_X / 1
  6649. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6650. r_X = r_X * cos_T - r_Y * sin_T;
  6651. r_Y = r_new_Y;
  6652. }
  6653. else {
  6654. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6655. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6656. // To reduce stuttering, the sin and cos could be computed at different times.
  6657. // For now, compute both at the same time.
  6658. cos_Ti = cos(i * theta_per_segment);
  6659. sin_Ti = sin(i * theta_per_segment);
  6660. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6661. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6662. count = 0;
  6663. }
  6664. // Update arc_target location
  6665. arc_target[X_AXIS] = center_X + r_X;
  6666. arc_target[Y_AXIS] = center_Y + r_Y;
  6667. arc_target[Z_AXIS] += linear_per_segment;
  6668. arc_target[E_AXIS] += extruder_per_segment;
  6669. clamp_to_software_endstops(arc_target);
  6670. #if ENABLED(DELTA) || ENABLED(SCARA)
  6671. calculate_delta(arc_target);
  6672. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6673. adjust_delta(arc_target);
  6674. #endif
  6675. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6676. #else
  6677. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6678. #endif
  6679. }
  6680. // Ensure last segment arrives at target location.
  6681. #if ENABLED(DELTA) || ENABLED(SCARA)
  6682. calculate_delta(target);
  6683. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6684. adjust_delta(target);
  6685. #endif
  6686. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6687. #else
  6688. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6689. #endif
  6690. // As far as the parser is concerned, the position is now == target. In reality the
  6691. // motion control system might still be processing the action and the real tool position
  6692. // in any intermediate location.
  6693. set_current_to_destination();
  6694. }
  6695. #endif
  6696. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6697. void plan_cubic_move(const float offset[4]) {
  6698. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6699. // As far as the parser is concerned, the position is now == target. In reality the
  6700. // motion control system might still be processing the action and the real tool position
  6701. // in any intermediate location.
  6702. set_current_to_destination();
  6703. }
  6704. #endif // BEZIER_CURVE_SUPPORT
  6705. #if HAS_CONTROLLERFAN
  6706. void controllerFan() {
  6707. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6708. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6709. millis_t ms = millis();
  6710. if (ELAPSED(ms, nextMotorCheck)) {
  6711. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6712. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6713. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6714. #if EXTRUDERS > 1
  6715. || E1_ENABLE_READ == E_ENABLE_ON
  6716. #if HAS_X2_ENABLE
  6717. || X2_ENABLE_READ == X_ENABLE_ON
  6718. #endif
  6719. #if EXTRUDERS > 2
  6720. || E2_ENABLE_READ == E_ENABLE_ON
  6721. #if EXTRUDERS > 3
  6722. || E3_ENABLE_READ == E_ENABLE_ON
  6723. #endif
  6724. #endif
  6725. #endif
  6726. ) {
  6727. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6728. }
  6729. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6730. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6731. // allows digital or PWM fan output to be used (see M42 handling)
  6732. digitalWrite(CONTROLLERFAN_PIN, speed);
  6733. analogWrite(CONTROLLERFAN_PIN, speed);
  6734. }
  6735. }
  6736. #endif // HAS_CONTROLLERFAN
  6737. #if ENABLED(SCARA)
  6738. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6739. // Perform forward kinematics, and place results in delta[3]
  6740. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6741. float x_sin, x_cos, y_sin, y_cos;
  6742. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6743. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6744. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6745. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6746. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6747. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6748. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6749. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6750. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6751. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6752. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6753. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6754. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6755. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6756. }
  6757. void calculate_delta(float cartesian[3]) {
  6758. //reverse kinematics.
  6759. // Perform reversed kinematics, and place results in delta[3]
  6760. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6761. float SCARA_pos[2];
  6762. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6763. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6764. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6765. #if (Linkage_1 == Linkage_2)
  6766. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6767. #else
  6768. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6769. #endif
  6770. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6771. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6772. SCARA_K2 = Linkage_2 * SCARA_S2;
  6773. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6774. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6775. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6776. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6777. delta[Z_AXIS] = cartesian[Z_AXIS];
  6778. /**
  6779. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6780. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6781. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6782. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6783. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6784. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6785. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6786. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6787. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6788. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6789. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6790. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6791. SERIAL_EOL;
  6792. */
  6793. }
  6794. #endif // SCARA
  6795. #if ENABLED(TEMP_STAT_LEDS)
  6796. static bool red_led = false;
  6797. static millis_t next_status_led_update_ms = 0;
  6798. void handle_status_leds(void) {
  6799. float max_temp = 0.0;
  6800. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6801. next_status_led_update_ms += 500; // Update every 0.5s
  6802. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend)
  6803. max_temp = max(max(max_temp, thermalManager.degHotend(cur_hotend)), thermalManager.degTargetHotend(cur_hotend));
  6804. #if HAS_TEMP_BED
  6805. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6806. #endif
  6807. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6808. if (new_led != red_led) {
  6809. red_led = new_led;
  6810. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6811. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6812. }
  6813. }
  6814. }
  6815. #endif
  6816. void enable_all_steppers() {
  6817. enable_x();
  6818. enable_y();
  6819. enable_z();
  6820. enable_e0();
  6821. enable_e1();
  6822. enable_e2();
  6823. enable_e3();
  6824. }
  6825. void disable_all_steppers() {
  6826. disable_x();
  6827. disable_y();
  6828. disable_z();
  6829. disable_e0();
  6830. disable_e1();
  6831. disable_e2();
  6832. disable_e3();
  6833. }
  6834. /**
  6835. * Standard idle routine keeps the machine alive
  6836. */
  6837. void idle(
  6838. #if ENABLED(FILAMENTCHANGEENABLE)
  6839. bool no_stepper_sleep/*=false*/
  6840. #endif
  6841. ) {
  6842. lcd_update();
  6843. host_keepalive();
  6844. manage_inactivity(
  6845. #if ENABLED(FILAMENTCHANGEENABLE)
  6846. no_stepper_sleep
  6847. #endif
  6848. );
  6849. thermalManager.manage_heater();
  6850. #if ENABLED(PRINTCOUNTER)
  6851. print_job_timer.tick();
  6852. #endif
  6853. #if HAS_BUZZER
  6854. buzzer.tick();
  6855. #endif
  6856. }
  6857. /**
  6858. * Manage several activities:
  6859. * - Check for Filament Runout
  6860. * - Keep the command buffer full
  6861. * - Check for maximum inactive time between commands
  6862. * - Check for maximum inactive time between stepper commands
  6863. * - Check if pin CHDK needs to go LOW
  6864. * - Check for KILL button held down
  6865. * - Check for HOME button held down
  6866. * - Check if cooling fan needs to be switched on
  6867. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6868. */
  6869. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6870. #if HAS_FILRUNOUT
  6871. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6872. handle_filament_runout();
  6873. #endif
  6874. if (commands_in_queue < BUFSIZE) get_available_commands();
  6875. millis_t ms = millis();
  6876. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6877. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6878. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6879. #if ENABLED(DISABLE_INACTIVE_X)
  6880. disable_x();
  6881. #endif
  6882. #if ENABLED(DISABLE_INACTIVE_Y)
  6883. disable_y();
  6884. #endif
  6885. #if ENABLED(DISABLE_INACTIVE_Z)
  6886. disable_z();
  6887. #endif
  6888. #if ENABLED(DISABLE_INACTIVE_E)
  6889. disable_e0();
  6890. disable_e1();
  6891. disable_e2();
  6892. disable_e3();
  6893. #endif
  6894. }
  6895. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6896. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6897. chdkActive = false;
  6898. WRITE(CHDK, LOW);
  6899. }
  6900. #endif
  6901. #if HAS_KILL
  6902. // Check if the kill button was pressed and wait just in case it was an accidental
  6903. // key kill key press
  6904. // -------------------------------------------------------------------------------
  6905. static int killCount = 0; // make the inactivity button a bit less responsive
  6906. const int KILL_DELAY = 750;
  6907. if (!READ(KILL_PIN))
  6908. killCount++;
  6909. else if (killCount > 0)
  6910. killCount--;
  6911. // Exceeded threshold and we can confirm that it was not accidental
  6912. // KILL the machine
  6913. // ----------------------------------------------------------------
  6914. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6915. #endif
  6916. #if HAS_HOME
  6917. // Check to see if we have to home, use poor man's debouncer
  6918. // ---------------------------------------------------------
  6919. static int homeDebounceCount = 0; // poor man's debouncing count
  6920. const int HOME_DEBOUNCE_DELAY = 2500;
  6921. if (!READ(HOME_PIN)) {
  6922. if (!homeDebounceCount) {
  6923. enqueue_and_echo_commands_P(PSTR("G28"));
  6924. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6925. }
  6926. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6927. homeDebounceCount++;
  6928. else
  6929. homeDebounceCount = 0;
  6930. }
  6931. #endif
  6932. #if HAS_CONTROLLERFAN
  6933. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6934. #endif
  6935. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6936. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6937. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6938. bool oldstatus;
  6939. switch (active_extruder) {
  6940. case 0:
  6941. oldstatus = E0_ENABLE_READ;
  6942. enable_e0();
  6943. break;
  6944. #if EXTRUDERS > 1
  6945. case 1:
  6946. oldstatus = E1_ENABLE_READ;
  6947. enable_e1();
  6948. break;
  6949. #if EXTRUDERS > 2
  6950. case 2:
  6951. oldstatus = E2_ENABLE_READ;
  6952. enable_e2();
  6953. break;
  6954. #if EXTRUDERS > 3
  6955. case 3:
  6956. oldstatus = E3_ENABLE_READ;
  6957. enable_e3();
  6958. break;
  6959. #endif
  6960. #endif
  6961. #endif
  6962. }
  6963. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6964. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6965. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  6966. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  6967. current_position[E_AXIS] = oldepos;
  6968. destination[E_AXIS] = oldedes;
  6969. planner.set_e_position_mm(oldepos);
  6970. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6971. stepper.synchronize();
  6972. switch (active_extruder) {
  6973. case 0:
  6974. E0_ENABLE_WRITE(oldstatus);
  6975. break;
  6976. #if EXTRUDERS > 1
  6977. case 1:
  6978. E1_ENABLE_WRITE(oldstatus);
  6979. break;
  6980. #if EXTRUDERS > 2
  6981. case 2:
  6982. E2_ENABLE_WRITE(oldstatus);
  6983. break;
  6984. #if EXTRUDERS > 3
  6985. case 3:
  6986. E3_ENABLE_WRITE(oldstatus);
  6987. break;
  6988. #endif
  6989. #endif
  6990. #endif
  6991. }
  6992. }
  6993. #endif
  6994. #if ENABLED(DUAL_X_CARRIAGE)
  6995. // handle delayed move timeout
  6996. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6997. // travel moves have been received so enact them
  6998. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6999. set_destination_to_current();
  7000. prepare_move();
  7001. }
  7002. #endif
  7003. #if ENABLED(TEMP_STAT_LEDS)
  7004. handle_status_leds();
  7005. #endif
  7006. planner.check_axes_activity();
  7007. }
  7008. void kill(const char* lcd_msg) {
  7009. #if ENABLED(ULTRA_LCD)
  7010. lcd_setalertstatuspgm(lcd_msg);
  7011. #else
  7012. UNUSED(lcd_msg);
  7013. #endif
  7014. cli(); // Stop interrupts
  7015. thermalManager.disable_all_heaters();
  7016. disable_all_steppers();
  7017. #if HAS_POWER_SWITCH
  7018. pinMode(PS_ON_PIN, INPUT);
  7019. #endif
  7020. SERIAL_ERROR_START;
  7021. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7022. // FMC small patch to update the LCD before ending
  7023. sei(); // enable interrupts
  7024. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  7025. cli(); // disable interrupts
  7026. suicide();
  7027. while (1) {
  7028. #if ENABLED(USE_WATCHDOG)
  7029. watchdog_reset();
  7030. #endif
  7031. } // Wait for reset
  7032. }
  7033. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7034. void handle_filament_runout() {
  7035. if (!filament_ran_out) {
  7036. filament_ran_out = true;
  7037. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7038. stepper.synchronize();
  7039. }
  7040. }
  7041. #endif // FILAMENT_RUNOUT_SENSOR
  7042. #if ENABLED(FAST_PWM_FAN)
  7043. void setPwmFrequency(uint8_t pin, int val) {
  7044. val &= 0x07;
  7045. switch (digitalPinToTimer(pin)) {
  7046. #if defined(TCCR0A)
  7047. case TIMER0A:
  7048. case TIMER0B:
  7049. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7050. // TCCR0B |= val;
  7051. break;
  7052. #endif
  7053. #if defined(TCCR1A)
  7054. case TIMER1A:
  7055. case TIMER1B:
  7056. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7057. // TCCR1B |= val;
  7058. break;
  7059. #endif
  7060. #if defined(TCCR2)
  7061. case TIMER2:
  7062. case TIMER2:
  7063. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7064. TCCR2 |= val;
  7065. break;
  7066. #endif
  7067. #if defined(TCCR2A)
  7068. case TIMER2A:
  7069. case TIMER2B:
  7070. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7071. TCCR2B |= val;
  7072. break;
  7073. #endif
  7074. #if defined(TCCR3A)
  7075. case TIMER3A:
  7076. case TIMER3B:
  7077. case TIMER3C:
  7078. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7079. TCCR3B |= val;
  7080. break;
  7081. #endif
  7082. #if defined(TCCR4A)
  7083. case TIMER4A:
  7084. case TIMER4B:
  7085. case TIMER4C:
  7086. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7087. TCCR4B |= val;
  7088. break;
  7089. #endif
  7090. #if defined(TCCR5A)
  7091. case TIMER5A:
  7092. case TIMER5B:
  7093. case TIMER5C:
  7094. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7095. TCCR5B |= val;
  7096. break;
  7097. #endif
  7098. }
  7099. }
  7100. #endif // FAST_PWM_FAN
  7101. void stop() {
  7102. thermalManager.disable_all_heaters();
  7103. if (IsRunning()) {
  7104. Running = false;
  7105. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7106. SERIAL_ERROR_START;
  7107. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7108. LCD_MESSAGEPGM(MSG_STOPPED);
  7109. }
  7110. }
  7111. float calculate_volumetric_multiplier(float diameter) {
  7112. if (!volumetric_enabled || diameter == 0) return 1.0;
  7113. float d2 = diameter * 0.5;
  7114. return 1.0 / (M_PI * d2 * d2);
  7115. }
  7116. void calculate_volumetric_multipliers() {
  7117. for (int i = 0; i < EXTRUDERS; i++)
  7118. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7119. }