My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 187KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  31. #if defined(MESH_BED_LEVELING)
  32. #include "mesh_bed_leveling.h"
  33. #endif // MESH_BED_LEVELING
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home all Axis
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Displays measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. #ifdef ENABLE_AUTO_BED_LEVELING
  185. int xy_travel_speed = XY_TRAVEL_SPEED;
  186. #endif
  187. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  188. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  189. int feedmultiply = 100; //100->1 200->2
  190. int saved_feedmultiply;
  191. int extrudemultiply = 100; //100->1 200->2
  192. int extruder_multiply[EXTRUDERS] = { 100
  193. #if EXTRUDERS > 1
  194. , 100
  195. #if EXTRUDERS > 2
  196. , 100
  197. #if EXTRUDERS > 3
  198. , 100
  199. #endif
  200. #endif
  201. #endif
  202. };
  203. bool volumetric_enabled = false;
  204. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  205. #if EXTRUDERS > 1
  206. , DEFAULT_NOMINAL_FILAMENT_DIA
  207. #if EXTRUDERS > 2
  208. , DEFAULT_NOMINAL_FILAMENT_DIA
  209. #if EXTRUDERS > 3
  210. , DEFAULT_NOMINAL_FILAMENT_DIA
  211. #endif
  212. #endif
  213. #endif
  214. };
  215. float volumetric_multiplier[EXTRUDERS] = {1.0
  216. #if EXTRUDERS > 1
  217. , 1.0
  218. #if EXTRUDERS > 2
  219. , 1.0
  220. #if EXTRUDERS > 3
  221. , 1.0
  222. #endif
  223. #endif
  224. #endif
  225. };
  226. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  227. float home_offset[3] = { 0, 0, 0 };
  228. #ifdef DELTA
  229. float endstop_adj[3] = { 0, 0, 0 };
  230. #elif defined(Z_DUAL_ENDSTOPS)
  231. float z_endstop_adj = 0;
  232. #endif
  233. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  234. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  235. bool axis_known_position[3] = { false, false, false };
  236. float zprobe_zoffset;
  237. // Extruder offset
  238. #if EXTRUDERS > 1
  239. #ifndef DUAL_X_CARRIAGE
  240. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  241. #else
  242. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  243. #endif
  244. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  245. #if defined(EXTRUDER_OFFSET_X)
  246. EXTRUDER_OFFSET_X
  247. #else
  248. 0
  249. #endif
  250. ,
  251. #if defined(EXTRUDER_OFFSET_Y)
  252. EXTRUDER_OFFSET_Y
  253. #else
  254. 0
  255. #endif
  256. };
  257. #endif
  258. uint8_t active_extruder = 0;
  259. int fanSpeed = 0;
  260. #ifdef SERVO_ENDSTOPS
  261. int servo_endstops[] = SERVO_ENDSTOPS;
  262. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  263. #endif
  264. #ifdef BARICUDA
  265. int ValvePressure = 0;
  266. int EtoPPressure = 0;
  267. #endif
  268. #ifdef FWRETRACT
  269. bool autoretract_enabled = false;
  270. bool retracted[EXTRUDERS] = { false
  271. #if EXTRUDERS > 1
  272. , false
  273. #if EXTRUDERS > 2
  274. , false
  275. #if EXTRUDERS > 3
  276. , false
  277. #endif
  278. #endif
  279. #endif
  280. };
  281. bool retracted_swap[EXTRUDERS] = { false
  282. #if EXTRUDERS > 1
  283. , false
  284. #if EXTRUDERS > 2
  285. , false
  286. #if EXTRUDERS > 3
  287. , false
  288. #endif
  289. #endif
  290. #endif
  291. };
  292. float retract_length = RETRACT_LENGTH;
  293. float retract_length_swap = RETRACT_LENGTH_SWAP;
  294. float retract_feedrate = RETRACT_FEEDRATE;
  295. float retract_zlift = RETRACT_ZLIFT;
  296. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  297. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  298. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  299. #endif // FWRETRACT
  300. #ifdef ULTIPANEL
  301. bool powersupply =
  302. #ifdef PS_DEFAULT_OFF
  303. false
  304. #else
  305. true
  306. #endif
  307. ;
  308. #endif
  309. #ifdef DELTA
  310. float delta[3] = { 0, 0, 0 };
  311. #define SIN_60 0.8660254037844386
  312. #define COS_60 0.5
  313. // these are the default values, can be overriden with M665
  314. float delta_radius = DELTA_RADIUS;
  315. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  316. float delta_tower1_y = -COS_60 * delta_radius;
  317. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  318. float delta_tower2_y = -COS_60 * delta_radius;
  319. float delta_tower3_x = 0; // back middle tower
  320. float delta_tower3_y = delta_radius;
  321. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  322. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  323. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  324. #ifdef ENABLE_AUTO_BED_LEVELING
  325. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  326. #endif
  327. #endif
  328. #ifdef SCARA
  329. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  330. static float delta[3] = { 0, 0, 0 };
  331. #endif
  332. bool cancel_heatup = false;
  333. #ifdef FILAMENT_SENSOR
  334. //Variables for Filament Sensor input
  335. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  336. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  337. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  338. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  339. int delay_index1=0; //index into ring buffer
  340. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  341. float delay_dist=0; //delay distance counter
  342. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  343. #endif
  344. #ifdef FILAMENT_RUNOUT_SENSOR
  345. static bool filrunoutEnqued = false;
  346. #endif
  347. const char errormagic[] PROGMEM = "Error:";
  348. const char echomagic[] PROGMEM = "echo:";
  349. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  350. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  351. static float offset[3] = { 0, 0, 0 };
  352. static bool home_all_axis = true;
  353. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  354. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  355. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  356. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  357. static bool fromsd[BUFSIZE];
  358. static int bufindr = 0;
  359. static int bufindw = 0;
  360. static int buflen = 0;
  361. static char serial_char;
  362. static int serial_count = 0;
  363. static boolean comment_mode = false;
  364. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  365. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  366. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  367. // Inactivity shutdown
  368. static unsigned long previous_millis_cmd = 0;
  369. static unsigned long max_inactive_time = 0;
  370. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  371. unsigned long starttime = 0; ///< Print job start time
  372. unsigned long stoptime = 0; ///< Print job stop time
  373. static uint8_t tmp_extruder;
  374. bool Stopped = false;
  375. #if NUM_SERVOS > 0
  376. Servo servos[NUM_SERVOS];
  377. #endif
  378. bool CooldownNoWait = true;
  379. bool target_direction;
  380. #ifdef CHDK
  381. unsigned long chdkHigh = 0;
  382. boolean chdkActive = false;
  383. #endif
  384. //===========================================================================
  385. //=============================Routines======================================
  386. //===========================================================================
  387. void get_arc_coordinates();
  388. bool setTargetedHotend(int code);
  389. void serial_echopair_P(const char *s_P, float v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, double v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. void serial_echopair_P(const char *s_P, unsigned long v)
  394. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. #ifdef SDSUPPORT
  396. #include "SdFatUtil.h"
  397. int freeMemory() { return SdFatUtil::FreeRam(); }
  398. #else
  399. extern "C" {
  400. extern unsigned int __bss_end;
  401. extern unsigned int __heap_start;
  402. extern void *__brkval;
  403. int freeMemory() {
  404. int free_memory;
  405. if ((int)__brkval == 0)
  406. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  407. else
  408. free_memory = ((int)&free_memory) - ((int)__brkval);
  409. return free_memory;
  410. }
  411. }
  412. #endif //!SDSUPPORT
  413. //Injects the next command from the pending sequence of commands, when possible
  414. //Return false if and only if no command was pending
  415. static bool drain_queued_commands_P()
  416. {
  417. char cmd[30];
  418. if(!queued_commands_P)
  419. return false;
  420. // Get the next 30 chars from the sequence of gcodes to run
  421. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  422. cmd[sizeof(cmd)-1]= 0;
  423. // Look for the end of line, or the end of sequence
  424. size_t i= 0;
  425. char c;
  426. while( (c= cmd[i]) && c!='\n' )
  427. ++i; // look for the end of this gcode command
  428. cmd[i]= 0;
  429. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  430. {
  431. if(c)
  432. queued_commands_P+= i+1; // move to next command
  433. else
  434. queued_commands_P= NULL; // will have no more commands in the sequence
  435. }
  436. return true;
  437. }
  438. //Record one or many commands to run from program memory.
  439. //Aborts the current queue, if any.
  440. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  441. void enquecommands_P(const char* pgcode)
  442. {
  443. queued_commands_P= pgcode;
  444. drain_queued_commands_P(); // first command exectuted asap (when possible)
  445. }
  446. //adds a single command to the main command buffer, from RAM
  447. //that is really done in a non-safe way.
  448. //needs overworking someday
  449. //Returns false if it failed to do so
  450. bool enquecommand(const char *cmd)
  451. {
  452. if(*cmd==';')
  453. return false;
  454. if(buflen >= BUFSIZE)
  455. return false;
  456. //this is dangerous if a mixing of serial and this happens
  457. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  458. SERIAL_ECHO_START;
  459. SERIAL_ECHOPGM(MSG_Enqueing);
  460. SERIAL_ECHO(cmdbuffer[bufindw]);
  461. SERIAL_ECHOLNPGM("\"");
  462. bufindw= (bufindw + 1)%BUFSIZE;
  463. buflen += 1;
  464. return true;
  465. }
  466. void setup_killpin()
  467. {
  468. #if defined(KILL_PIN) && KILL_PIN > -1
  469. SET_INPUT(KILL_PIN);
  470. WRITE(KILL_PIN,HIGH);
  471. #endif
  472. }
  473. void setup_filrunoutpin()
  474. {
  475. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  476. pinMode(FILRUNOUT_PIN,INPUT);
  477. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  478. WRITE(FILLRUNOUT_PIN,HIGH);
  479. #endif
  480. #endif
  481. }
  482. // Set home pin
  483. void setup_homepin(void)
  484. {
  485. #if defined(HOME_PIN) && HOME_PIN > -1
  486. SET_INPUT(HOME_PIN);
  487. WRITE(HOME_PIN,HIGH);
  488. #endif
  489. }
  490. void setup_photpin()
  491. {
  492. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  493. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  494. #endif
  495. }
  496. void setup_powerhold()
  497. {
  498. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  499. OUT_WRITE(SUICIDE_PIN, HIGH);
  500. #endif
  501. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  502. #if defined(PS_DEFAULT_OFF)
  503. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  504. #else
  505. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  506. #endif
  507. #endif
  508. }
  509. void suicide()
  510. {
  511. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  512. OUT_WRITE(SUICIDE_PIN, LOW);
  513. #endif
  514. }
  515. void servo_init()
  516. {
  517. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  518. servos[0].attach(SERVO0_PIN);
  519. #endif
  520. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  521. servos[1].attach(SERVO1_PIN);
  522. #endif
  523. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  524. servos[2].attach(SERVO2_PIN);
  525. #endif
  526. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  527. servos[3].attach(SERVO3_PIN);
  528. #endif
  529. #if (NUM_SERVOS >= 5)
  530. #error "TODO: enter initalisation code for more servos"
  531. #endif
  532. // Set position of Servo Endstops that are defined
  533. #ifdef SERVO_ENDSTOPS
  534. for(int8_t i = 0; i < 3; i++)
  535. {
  536. if(servo_endstops[i] > -1) {
  537. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  538. }
  539. }
  540. #endif
  541. #if SERVO_LEVELING
  542. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  543. servos[servo_endstops[Z_AXIS]].detach();
  544. #endif
  545. }
  546. void setup()
  547. {
  548. setup_killpin();
  549. setup_filrunoutpin();
  550. setup_powerhold();
  551. MYSERIAL.begin(BAUDRATE);
  552. SERIAL_PROTOCOLLNPGM("start");
  553. SERIAL_ECHO_START;
  554. // Check startup - does nothing if bootloader sets MCUSR to 0
  555. byte mcu = MCUSR;
  556. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  557. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  558. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  559. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  560. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  561. MCUSR=0;
  562. SERIAL_ECHOPGM(MSG_MARLIN);
  563. SERIAL_ECHOLNPGM(STRING_VERSION);
  564. #ifdef STRING_VERSION_CONFIG_H
  565. #ifdef STRING_CONFIG_H_AUTHOR
  566. SERIAL_ECHO_START;
  567. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  568. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  569. SERIAL_ECHOPGM(MSG_AUTHOR);
  570. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  571. SERIAL_ECHOPGM("Compiled: ");
  572. SERIAL_ECHOLNPGM(__DATE__);
  573. #endif // STRING_CONFIG_H_AUTHOR
  574. #endif // STRING_VERSION_CONFIG_H
  575. SERIAL_ECHO_START;
  576. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  577. SERIAL_ECHO(freeMemory());
  578. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  579. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  580. for(int8_t i = 0; i < BUFSIZE; i++)
  581. {
  582. fromsd[i] = false;
  583. }
  584. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  585. Config_RetrieveSettings();
  586. tp_init(); // Initialize temperature loop
  587. plan_init(); // Initialize planner;
  588. watchdog_init();
  589. st_init(); // Initialize stepper, this enables interrupts!
  590. setup_photpin();
  591. servo_init();
  592. lcd_init();
  593. _delay_ms(1000); // wait 1sec to display the splash screen
  594. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  595. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  596. #endif
  597. #ifdef DIGIPOT_I2C
  598. digipot_i2c_init();
  599. #endif
  600. #ifdef Z_PROBE_SLED
  601. pinMode(SERVO0_PIN, OUTPUT);
  602. digitalWrite(SERVO0_PIN, LOW); // turn it off
  603. #endif // Z_PROBE_SLED
  604. setup_homepin();
  605. #ifdef STAT_LED_RED
  606. pinMode(STAT_LED_RED, OUTPUT);
  607. digitalWrite(STAT_LED_RED, LOW); // turn it off
  608. #endif
  609. #ifdef STAT_LED_BLUE
  610. pinMode(STAT_LED_BLUE, OUTPUT);
  611. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  612. #endif
  613. }
  614. void loop()
  615. {
  616. if(buflen < (BUFSIZE-1))
  617. get_command();
  618. #ifdef SDSUPPORT
  619. card.checkautostart(false);
  620. #endif
  621. if(buflen)
  622. {
  623. #ifdef SDSUPPORT
  624. if(card.saving)
  625. {
  626. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  627. {
  628. card.write_command(cmdbuffer[bufindr]);
  629. if(card.logging)
  630. {
  631. process_commands();
  632. }
  633. else
  634. {
  635. SERIAL_PROTOCOLLNPGM(MSG_OK);
  636. }
  637. }
  638. else
  639. {
  640. card.closefile();
  641. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  642. }
  643. }
  644. else
  645. {
  646. process_commands();
  647. }
  648. #else
  649. process_commands();
  650. #endif //SDSUPPORT
  651. buflen = (buflen-1);
  652. bufindr = (bufindr + 1)%BUFSIZE;
  653. }
  654. //check heater every n milliseconds
  655. manage_heater();
  656. manage_inactivity();
  657. checkHitEndstops();
  658. lcd_update();
  659. }
  660. void get_command()
  661. {
  662. if(drain_queued_commands_P()) // priority is given to non-serial commands
  663. return;
  664. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  665. serial_char = MYSERIAL.read();
  666. if(serial_char == '\n' ||
  667. serial_char == '\r' ||
  668. serial_count >= (MAX_CMD_SIZE - 1) )
  669. {
  670. // end of line == end of comment
  671. comment_mode = false;
  672. if(!serial_count) {
  673. // short cut for empty lines
  674. return;
  675. }
  676. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  677. fromsd[bufindw] = false;
  678. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  679. {
  680. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  681. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  682. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  683. SERIAL_ERROR_START;
  684. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  685. SERIAL_ERRORLN(gcode_LastN);
  686. //Serial.println(gcode_N);
  687. FlushSerialRequestResend();
  688. serial_count = 0;
  689. return;
  690. }
  691. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  692. {
  693. byte checksum = 0;
  694. byte count = 0;
  695. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  696. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  697. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  698. SERIAL_ERROR_START;
  699. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  700. SERIAL_ERRORLN(gcode_LastN);
  701. FlushSerialRequestResend();
  702. serial_count = 0;
  703. return;
  704. }
  705. //if no errors, continue parsing
  706. }
  707. else
  708. {
  709. SERIAL_ERROR_START;
  710. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  711. SERIAL_ERRORLN(gcode_LastN);
  712. FlushSerialRequestResend();
  713. serial_count = 0;
  714. return;
  715. }
  716. gcode_LastN = gcode_N;
  717. //if no errors, continue parsing
  718. }
  719. else // if we don't receive 'N' but still see '*'
  720. {
  721. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  722. {
  723. SERIAL_ERROR_START;
  724. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  725. SERIAL_ERRORLN(gcode_LastN);
  726. serial_count = 0;
  727. return;
  728. }
  729. }
  730. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  731. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  732. switch(strtol(strchr_pointer + 1, NULL, 10)){
  733. case 0:
  734. case 1:
  735. case 2:
  736. case 3:
  737. if (Stopped == true) {
  738. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  739. LCD_MESSAGEPGM(MSG_STOPPED);
  740. }
  741. break;
  742. default:
  743. break;
  744. }
  745. }
  746. //If command was e-stop process now
  747. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  748. kill();
  749. bufindw = (bufindw + 1)%BUFSIZE;
  750. buflen += 1;
  751. serial_count = 0; //clear buffer
  752. }
  753. else if(serial_char == '\\') { //Handle escapes
  754. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  755. // if we have one more character, copy it over
  756. serial_char = MYSERIAL.read();
  757. cmdbuffer[bufindw][serial_count++] = serial_char;
  758. }
  759. //otherwise do nothing
  760. }
  761. else { // its not a newline, carriage return or escape char
  762. if(serial_char == ';') comment_mode = true;
  763. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  764. }
  765. }
  766. #ifdef SDSUPPORT
  767. if(!card.sdprinting || serial_count!=0){
  768. return;
  769. }
  770. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  771. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  772. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  773. static bool stop_buffering=false;
  774. if(buflen==0) stop_buffering=false;
  775. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  776. int16_t n=card.get();
  777. serial_char = (char)n;
  778. if(serial_char == '\n' ||
  779. serial_char == '\r' ||
  780. (serial_char == '#' && comment_mode == false) ||
  781. (serial_char == ':' && comment_mode == false) ||
  782. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  783. {
  784. if(card.eof()){
  785. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  786. stoptime=millis();
  787. char time[30];
  788. unsigned long t=(stoptime-starttime)/1000;
  789. int hours, minutes;
  790. minutes=(t/60)%60;
  791. hours=t/60/60;
  792. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  793. SERIAL_ECHO_START;
  794. SERIAL_ECHOLN(time);
  795. lcd_setstatus(time);
  796. card.printingHasFinished();
  797. card.checkautostart(true);
  798. }
  799. if(serial_char=='#')
  800. stop_buffering=true;
  801. if(!serial_count)
  802. {
  803. comment_mode = false; //for new command
  804. return; //if empty line
  805. }
  806. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  807. // if(!comment_mode){
  808. fromsd[bufindw] = true;
  809. buflen += 1;
  810. bufindw = (bufindw + 1)%BUFSIZE;
  811. // }
  812. comment_mode = false; //for new command
  813. serial_count = 0; //clear buffer
  814. }
  815. else
  816. {
  817. if(serial_char == ';') comment_mode = true;
  818. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  819. }
  820. }
  821. #endif //SDSUPPORT
  822. }
  823. float code_value()
  824. {
  825. return (strtod(strchr_pointer + 1, NULL));
  826. }
  827. long code_value_long()
  828. {
  829. return (strtol(strchr_pointer + 1, NULL, 10));
  830. }
  831. bool code_seen(char code)
  832. {
  833. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  834. return (strchr_pointer != NULL); //Return True if a character was found
  835. }
  836. #define DEFINE_PGM_READ_ANY(type, reader) \
  837. static inline type pgm_read_any(const type *p) \
  838. { return pgm_read_##reader##_near(p); }
  839. DEFINE_PGM_READ_ANY(float, float);
  840. DEFINE_PGM_READ_ANY(signed char, byte);
  841. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  842. static const PROGMEM type array##_P[3] = \
  843. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  844. static inline type array(int axis) \
  845. { return pgm_read_any(&array##_P[axis]); }
  846. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  847. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  848. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  849. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  850. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  851. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  852. #ifdef DUAL_X_CARRIAGE
  853. #define DXC_FULL_CONTROL_MODE 0
  854. #define DXC_AUTO_PARK_MODE 1
  855. #define DXC_DUPLICATION_MODE 2
  856. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  857. static float x_home_pos(int extruder) {
  858. if (extruder == 0)
  859. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  860. else
  861. // In dual carriage mode the extruder offset provides an override of the
  862. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  863. // This allow soft recalibration of the second extruder offset position without firmware reflash
  864. // (through the M218 command).
  865. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  866. }
  867. static int x_home_dir(int extruder) {
  868. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  869. }
  870. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  871. static bool active_extruder_parked = false; // used in mode 1 & 2
  872. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  873. static unsigned long delayed_move_time = 0; // used in mode 1
  874. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  875. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  876. bool extruder_duplication_enabled = false; // used in mode 2
  877. #endif //DUAL_X_CARRIAGE
  878. static void axis_is_at_home(int axis) {
  879. #ifdef DUAL_X_CARRIAGE
  880. if (axis == X_AXIS) {
  881. if (active_extruder != 0) {
  882. current_position[X_AXIS] = x_home_pos(active_extruder);
  883. min_pos[X_AXIS] = X2_MIN_POS;
  884. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  885. return;
  886. }
  887. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  888. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  889. min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS];
  890. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS],
  891. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  892. return;
  893. }
  894. }
  895. #endif
  896. #ifdef SCARA
  897. float homeposition[3];
  898. char i;
  899. if (axis < 2)
  900. {
  901. for (i=0; i<3; i++)
  902. {
  903. homeposition[i] = base_home_pos(i);
  904. }
  905. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  906. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  907. // Works out real Homeposition angles using inverse kinematics,
  908. // and calculates homing offset using forward kinematics
  909. calculate_delta(homeposition);
  910. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  911. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  912. for (i=0; i<2; i++)
  913. {
  914. delta[i] -= home_offset[i];
  915. }
  916. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  917. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  918. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  919. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  920. calculate_SCARA_forward_Transform(delta);
  921. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  922. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  923. current_position[axis] = delta[axis];
  924. // SCARA home positions are based on configuration since the actual limits are determined by the
  925. // inverse kinematic transform.
  926. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  927. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  928. }
  929. else
  930. {
  931. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  932. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  933. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  934. }
  935. #else
  936. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  937. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  938. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  939. #endif
  940. }
  941. #ifdef ENABLE_AUTO_BED_LEVELING
  942. #ifdef AUTO_BED_LEVELING_GRID
  943. #ifndef DELTA
  944. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  945. {
  946. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  947. planeNormal.debug("planeNormal");
  948. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  949. //bedLevel.debug("bedLevel");
  950. //plan_bed_level_matrix.debug("bed level before");
  951. //vector_3 uncorrected_position = plan_get_position_mm();
  952. //uncorrected_position.debug("position before");
  953. vector_3 corrected_position = plan_get_position();
  954. // corrected_position.debug("position after");
  955. current_position[X_AXIS] = corrected_position.x;
  956. current_position[Y_AXIS] = corrected_position.y;
  957. current_position[Z_AXIS] = corrected_position.z;
  958. // put the bed at 0 so we don't go below it.
  959. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  960. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  961. }
  962. #endif
  963. #else // not AUTO_BED_LEVELING_GRID
  964. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  965. plan_bed_level_matrix.set_to_identity();
  966. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  967. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  968. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  969. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  970. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  971. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  972. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  973. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  974. vector_3 corrected_position = plan_get_position();
  975. current_position[X_AXIS] = corrected_position.x;
  976. current_position[Y_AXIS] = corrected_position.y;
  977. current_position[Z_AXIS] = corrected_position.z;
  978. // put the bed at 0 so we don't go below it.
  979. current_position[Z_AXIS] = zprobe_zoffset;
  980. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  981. }
  982. #endif // AUTO_BED_LEVELING_GRID
  983. static void run_z_probe() {
  984. #ifdef DELTA
  985. float start_z = current_position[Z_AXIS];
  986. long start_steps = st_get_position(Z_AXIS);
  987. // move down slowly until you find the bed
  988. feedrate = homing_feedrate[Z_AXIS] / 4;
  989. destination[Z_AXIS] = -10;
  990. prepare_move_raw();
  991. st_synchronize();
  992. endstops_hit_on_purpose();
  993. // we have to let the planner know where we are right now as it is not where we said to go.
  994. long stop_steps = st_get_position(Z_AXIS);
  995. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  996. current_position[Z_AXIS] = mm;
  997. calculate_delta(current_position);
  998. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  999. #else
  1000. plan_bed_level_matrix.set_to_identity();
  1001. feedrate = homing_feedrate[Z_AXIS];
  1002. // move down until you find the bed
  1003. float zPosition = -10;
  1004. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1005. st_synchronize();
  1006. // we have to let the planner know where we are right now as it is not where we said to go.
  1007. zPosition = st_get_position_mm(Z_AXIS);
  1008. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1009. // move up the retract distance
  1010. zPosition += home_retract_mm(Z_AXIS);
  1011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1012. st_synchronize();
  1013. endstops_hit_on_purpose();
  1014. // move back down slowly to find bed
  1015. if (homing_bump_divisor[Z_AXIS] >= 1)
  1016. {
  1017. feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
  1018. }
  1019. else
  1020. {
  1021. feedrate = homing_feedrate[Z_AXIS]/10;
  1022. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1023. }
  1024. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1025. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1026. st_synchronize();
  1027. endstops_hit_on_purpose();
  1028. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1029. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1030. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1031. #endif
  1032. }
  1033. static void do_blocking_move_to(float x, float y, float z) {
  1034. float oldFeedRate = feedrate;
  1035. #ifdef DELTA
  1036. feedrate = XY_TRAVEL_SPEED;
  1037. destination[X_AXIS] = x;
  1038. destination[Y_AXIS] = y;
  1039. destination[Z_AXIS] = z;
  1040. prepare_move_raw();
  1041. st_synchronize();
  1042. #else
  1043. feedrate = homing_feedrate[Z_AXIS];
  1044. current_position[Z_AXIS] = z;
  1045. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1046. st_synchronize();
  1047. feedrate = xy_travel_speed;
  1048. current_position[X_AXIS] = x;
  1049. current_position[Y_AXIS] = y;
  1050. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1051. st_synchronize();
  1052. #endif
  1053. feedrate = oldFeedRate;
  1054. }
  1055. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1056. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1057. }
  1058. static void setup_for_endstop_move() {
  1059. saved_feedrate = feedrate;
  1060. saved_feedmultiply = feedmultiply;
  1061. feedmultiply = 100;
  1062. previous_millis_cmd = millis();
  1063. enable_endstops(true);
  1064. }
  1065. static void clean_up_after_endstop_move() {
  1066. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1067. enable_endstops(false);
  1068. #endif
  1069. feedrate = saved_feedrate;
  1070. feedmultiply = saved_feedmultiply;
  1071. previous_millis_cmd = millis();
  1072. }
  1073. static void engage_z_probe() {
  1074. // Engage Z Servo endstop if enabled
  1075. #ifdef SERVO_ENDSTOPS
  1076. if (servo_endstops[Z_AXIS] > -1) {
  1077. #if SERVO_LEVELING
  1078. servos[servo_endstops[Z_AXIS]].attach(0);
  1079. #endif
  1080. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1081. #if SERVO_LEVELING
  1082. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1083. servos[servo_endstops[Z_AXIS]].detach();
  1084. #endif
  1085. }
  1086. #elif defined(Z_PROBE_ALLEN_KEY)
  1087. feedrate = homing_feedrate[X_AXIS];
  1088. // Move to the start position to initiate deployment
  1089. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1090. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1091. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1092. prepare_move_raw();
  1093. // Home X to touch the belt
  1094. feedrate = homing_feedrate[X_AXIS]/10;
  1095. destination[X_AXIS] = 0;
  1096. prepare_move_raw();
  1097. // Home Y for safety
  1098. feedrate = homing_feedrate[X_AXIS]/2;
  1099. destination[Y_AXIS] = 0;
  1100. prepare_move_raw();
  1101. st_synchronize();
  1102. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1103. if (z_min_endstop)
  1104. {
  1105. if (!Stopped)
  1106. {
  1107. SERIAL_ERROR_START;
  1108. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1109. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1110. }
  1111. Stop();
  1112. }
  1113. #endif
  1114. }
  1115. static void retract_z_probe() {
  1116. // Retract Z Servo endstop if enabled
  1117. #ifdef SERVO_ENDSTOPS
  1118. if (servo_endstops[Z_AXIS] > -1)
  1119. {
  1120. #if Z_RAISE_AFTER_PROBING > 0
  1121. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  1122. st_synchronize();
  1123. #endif
  1124. #if SERVO_LEVELING
  1125. servos[servo_endstops[Z_AXIS]].attach(0);
  1126. #endif
  1127. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1128. #if SERVO_LEVELING
  1129. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1130. servos[servo_endstops[Z_AXIS]].detach();
  1131. #endif
  1132. }
  1133. #elif defined(Z_PROBE_ALLEN_KEY)
  1134. // Move up for safety
  1135. feedrate = homing_feedrate[X_AXIS];
  1136. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1137. prepare_move_raw();
  1138. // Move to the start position to initiate retraction
  1139. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1140. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1141. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1142. prepare_move_raw();
  1143. // Move the nozzle down to push the probe into retracted position
  1144. feedrate = homing_feedrate[Z_AXIS]/10;
  1145. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1146. prepare_move_raw();
  1147. // Move up for safety
  1148. feedrate = homing_feedrate[Z_AXIS]/2;
  1149. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1150. prepare_move_raw();
  1151. // Home XY for safety
  1152. feedrate = homing_feedrate[X_AXIS]/2;
  1153. destination[X_AXIS] = 0;
  1154. destination[Y_AXIS] = 0;
  1155. prepare_move_raw();
  1156. st_synchronize();
  1157. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1158. if (!z_min_endstop)
  1159. {
  1160. if (!Stopped)
  1161. {
  1162. SERIAL_ERROR_START;
  1163. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1164. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1165. }
  1166. Stop();
  1167. }
  1168. #endif
  1169. }
  1170. enum ProbeAction {
  1171. ProbeStay = 0,
  1172. ProbeEngage = BIT(0),
  1173. ProbeRetract = BIT(1),
  1174. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
  1175. };
  1176. /// Probe bed height at position (x,y), returns the measured z value
  1177. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1178. // move to right place
  1179. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1180. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1181. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1182. if (retract_action & ProbeEngage) engage_z_probe();
  1183. #endif
  1184. run_z_probe();
  1185. float measured_z = current_position[Z_AXIS];
  1186. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1187. if (retract_action & ProbeRetract) retract_z_probe();
  1188. #endif
  1189. if (verbose_level > 2) {
  1190. SERIAL_PROTOCOLPGM(MSG_BED);
  1191. SERIAL_PROTOCOLPGM(" X: ");
  1192. SERIAL_PROTOCOL_F(x, 3);
  1193. SERIAL_PROTOCOLPGM(" Y: ");
  1194. SERIAL_PROTOCOL_F(y, 3);
  1195. SERIAL_PROTOCOLPGM(" Z: ");
  1196. SERIAL_PROTOCOL_F(measured_z, 3);
  1197. SERIAL_EOL;
  1198. }
  1199. return measured_z;
  1200. }
  1201. #ifdef DELTA
  1202. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1203. if (bed_level[x][y] != 0.0) {
  1204. return; // Don't overwrite good values.
  1205. }
  1206. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1207. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1208. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1209. float median = c; // Median is robust (ignores outliers).
  1210. if (a < b) {
  1211. if (b < c) median = b;
  1212. if (c < a) median = a;
  1213. } else { // b <= a
  1214. if (c < b) median = b;
  1215. if (a < c) median = a;
  1216. }
  1217. bed_level[x][y] = median;
  1218. }
  1219. // Fill in the unprobed points (corners of circular print surface)
  1220. // using linear extrapolation, away from the center.
  1221. static void extrapolate_unprobed_bed_level() {
  1222. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1223. for (int y = 0; y <= half; y++) {
  1224. for (int x = 0; x <= half; x++) {
  1225. if (x + y < 3) continue;
  1226. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1227. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1228. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1229. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1230. }
  1231. }
  1232. }
  1233. // Print calibration results for plotting or manual frame adjustment.
  1234. static void print_bed_level() {
  1235. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1236. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1237. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1238. SERIAL_PROTOCOLPGM(" ");
  1239. }
  1240. SERIAL_ECHOLN("");
  1241. }
  1242. }
  1243. // Reset calibration results to zero.
  1244. void reset_bed_level() {
  1245. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1246. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1247. bed_level[x][y] = 0.0;
  1248. }
  1249. }
  1250. }
  1251. #endif // DELTA
  1252. #endif // ENABLE_AUTO_BED_LEVELING
  1253. static void homeaxis(int axis) {
  1254. #define HOMEAXIS_DO(LETTER) \
  1255. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1256. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1257. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1258. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1259. 0) {
  1260. int axis_home_dir = home_dir(axis);
  1261. #ifdef DUAL_X_CARRIAGE
  1262. if (axis == X_AXIS)
  1263. axis_home_dir = x_home_dir(active_extruder);
  1264. #endif
  1265. current_position[axis] = 0;
  1266. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1267. #ifndef Z_PROBE_SLED
  1268. // Engage Servo endstop if enabled
  1269. #ifdef SERVO_ENDSTOPS
  1270. #if SERVO_LEVELING
  1271. if (axis==Z_AXIS) {
  1272. engage_z_probe();
  1273. }
  1274. else
  1275. #endif
  1276. if (servo_endstops[axis] > -1) {
  1277. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1278. }
  1279. #endif
  1280. #endif // Z_PROBE_SLED
  1281. #ifdef Z_DUAL_ENDSTOPS
  1282. if (axis==Z_AXIS) In_Homing_Process(true);
  1283. #endif
  1284. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1285. feedrate = homing_feedrate[axis];
  1286. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1287. st_synchronize();
  1288. current_position[axis] = 0;
  1289. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1290. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1291. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1292. st_synchronize();
  1293. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1294. if (homing_bump_divisor[axis] >= 1)
  1295. {
  1296. feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
  1297. }
  1298. else
  1299. {
  1300. feedrate = homing_feedrate[axis]/10;
  1301. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1302. }
  1303. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1304. st_synchronize();
  1305. #ifdef Z_DUAL_ENDSTOPS
  1306. if (axis==Z_AXIS)
  1307. {
  1308. feedrate = homing_feedrate[axis];
  1309. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1310. if (axis_home_dir > 0)
  1311. {
  1312. destination[axis] = (-1) * fabs(z_endstop_adj);
  1313. if (z_endstop_adj > 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1314. } else {
  1315. destination[axis] = fabs(z_endstop_adj);
  1316. if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1317. }
  1318. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1319. st_synchronize();
  1320. Lock_z_motor(false);
  1321. Lock_z2_motor(false);
  1322. In_Homing_Process(false);
  1323. }
  1324. #endif
  1325. #ifdef DELTA
  1326. // retrace by the amount specified in endstop_adj
  1327. if (endstop_adj[axis] * axis_home_dir < 0) {
  1328. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1329. destination[axis] = endstop_adj[axis];
  1330. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1331. st_synchronize();
  1332. }
  1333. #endif
  1334. axis_is_at_home(axis);
  1335. destination[axis] = current_position[axis];
  1336. feedrate = 0.0;
  1337. endstops_hit_on_purpose();
  1338. axis_known_position[axis] = true;
  1339. // Retract Servo endstop if enabled
  1340. #ifdef SERVO_ENDSTOPS
  1341. if (servo_endstops[axis] > -1) {
  1342. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1343. }
  1344. #endif
  1345. #if SERVO_LEVELING
  1346. #ifndef Z_PROBE_SLED
  1347. if (axis==Z_AXIS) retract_z_probe();
  1348. #endif
  1349. #endif
  1350. }
  1351. }
  1352. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1353. void refresh_cmd_timeout(void)
  1354. {
  1355. previous_millis_cmd = millis();
  1356. }
  1357. #ifdef FWRETRACT
  1358. void retract(bool retracting, bool swapretract = false) {
  1359. if(retracting && !retracted[active_extruder]) {
  1360. destination[X_AXIS]=current_position[X_AXIS];
  1361. destination[Y_AXIS]=current_position[Y_AXIS];
  1362. destination[Z_AXIS]=current_position[Z_AXIS];
  1363. destination[E_AXIS]=current_position[E_AXIS];
  1364. if (swapretract) {
  1365. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1366. } else {
  1367. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1368. }
  1369. plan_set_e_position(current_position[E_AXIS]);
  1370. float oldFeedrate = feedrate;
  1371. feedrate=retract_feedrate*60;
  1372. retracted[active_extruder]=true;
  1373. prepare_move();
  1374. if(retract_zlift > 0.01) {
  1375. current_position[Z_AXIS]-=retract_zlift;
  1376. #ifdef DELTA
  1377. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1378. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1379. #else
  1380. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1381. #endif
  1382. prepare_move();
  1383. }
  1384. feedrate = oldFeedrate;
  1385. } else if(!retracting && retracted[active_extruder]) {
  1386. destination[X_AXIS]=current_position[X_AXIS];
  1387. destination[Y_AXIS]=current_position[Y_AXIS];
  1388. destination[Z_AXIS]=current_position[Z_AXIS];
  1389. destination[E_AXIS]=current_position[E_AXIS];
  1390. if(retract_zlift > 0.01) {
  1391. current_position[Z_AXIS]+=retract_zlift;
  1392. #ifdef DELTA
  1393. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1394. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1395. #else
  1396. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1397. #endif
  1398. //prepare_move();
  1399. }
  1400. if (swapretract) {
  1401. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1402. } else {
  1403. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1404. }
  1405. plan_set_e_position(current_position[E_AXIS]);
  1406. float oldFeedrate = feedrate;
  1407. feedrate=retract_recover_feedrate*60;
  1408. retracted[active_extruder]=false;
  1409. prepare_move();
  1410. feedrate = oldFeedrate;
  1411. }
  1412. } //retract
  1413. #endif //FWRETRACT
  1414. #ifdef Z_PROBE_SLED
  1415. #ifndef SLED_DOCKING_OFFSET
  1416. #define SLED_DOCKING_OFFSET 0
  1417. #endif
  1418. //
  1419. // Method to dock/undock a sled designed by Charles Bell.
  1420. //
  1421. // dock[in] If true, move to MAX_X and engage the electromagnet
  1422. // offset[in] The additional distance to move to adjust docking location
  1423. //
  1424. static void dock_sled(bool dock, int offset=0) {
  1425. int z_loc;
  1426. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1427. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1428. SERIAL_ECHO_START;
  1429. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1430. return;
  1431. }
  1432. if (dock) {
  1433. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1434. current_position[Y_AXIS],
  1435. current_position[Z_AXIS]);
  1436. // turn off magnet
  1437. digitalWrite(SERVO0_PIN, LOW);
  1438. } else {
  1439. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1440. z_loc = Z_RAISE_BEFORE_PROBING;
  1441. else
  1442. z_loc = current_position[Z_AXIS];
  1443. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1444. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1445. // turn on magnet
  1446. digitalWrite(SERVO0_PIN, HIGH);
  1447. }
  1448. }
  1449. #endif
  1450. /**
  1451. *
  1452. * G-Code Handler functions
  1453. *
  1454. */
  1455. /**
  1456. * G0, G1: Coordinated movement of X Y Z E axes
  1457. */
  1458. inline void gcode_G0_G1() {
  1459. if (!Stopped) {
  1460. get_coordinates(); // For X Y Z E F
  1461. #ifdef FWRETRACT
  1462. if (autoretract_enabled)
  1463. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1464. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1465. // Is this move an attempt to retract or recover?
  1466. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1467. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1468. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1469. retract(!retracted[active_extruder]);
  1470. return;
  1471. }
  1472. }
  1473. #endif //FWRETRACT
  1474. prepare_move();
  1475. //ClearToSend();
  1476. }
  1477. }
  1478. /**
  1479. * G2: Clockwise Arc
  1480. * G3: Counterclockwise Arc
  1481. */
  1482. inline void gcode_G2_G3(bool clockwise) {
  1483. if (!Stopped) {
  1484. get_arc_coordinates();
  1485. prepare_arc_move(clockwise);
  1486. }
  1487. }
  1488. /**
  1489. * G4: Dwell S<seconds> or P<milliseconds>
  1490. */
  1491. inline void gcode_G4() {
  1492. unsigned long codenum=0;
  1493. LCD_MESSAGEPGM(MSG_DWELL);
  1494. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1495. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1496. st_synchronize();
  1497. previous_millis_cmd = millis();
  1498. codenum += previous_millis_cmd; // keep track of when we started waiting
  1499. while(millis() < codenum) {
  1500. manage_heater();
  1501. manage_inactivity();
  1502. lcd_update();
  1503. }
  1504. }
  1505. #ifdef FWRETRACT
  1506. /**
  1507. * G10 - Retract filament according to settings of M207
  1508. * G11 - Recover filament according to settings of M208
  1509. */
  1510. inline void gcode_G10_G11(bool doRetract=false) {
  1511. #if EXTRUDERS > 1
  1512. if (doRetract) {
  1513. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1514. }
  1515. #endif
  1516. retract(doRetract
  1517. #if EXTRUDERS > 1
  1518. , retracted_swap[active_extruder]
  1519. #endif
  1520. );
  1521. }
  1522. #endif //FWRETRACT
  1523. /**
  1524. * G28: Home all axes, one at a time
  1525. */
  1526. inline void gcode_G28() {
  1527. #ifdef ENABLE_AUTO_BED_LEVELING
  1528. #ifdef DELTA
  1529. reset_bed_level();
  1530. #else
  1531. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1532. #endif
  1533. #endif
  1534. #if defined(MESH_BED_LEVELING)
  1535. uint8_t mbl_was_active = mbl.active;
  1536. mbl.active = 0;
  1537. #endif // MESH_BED_LEVELING
  1538. saved_feedrate = feedrate;
  1539. saved_feedmultiply = feedmultiply;
  1540. feedmultiply = 100;
  1541. previous_millis_cmd = millis();
  1542. enable_endstops(true);
  1543. for (int i = X_AXIS; i <= NUM_AXIS; i++) destination[i] = current_position[i];
  1544. feedrate = 0.0;
  1545. #ifdef DELTA
  1546. // A delta can only safely home all axis at the same time
  1547. // all axis have to home at the same time
  1548. // Move all carriages up together until the first endstop is hit.
  1549. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1550. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1551. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1552. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1553. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1554. st_synchronize();
  1555. endstops_hit_on_purpose();
  1556. // Destination reached
  1557. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1558. // take care of back off and rehome now we are all at the top
  1559. HOMEAXIS(X);
  1560. HOMEAXIS(Y);
  1561. HOMEAXIS(Z);
  1562. calculate_delta(current_position);
  1563. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1564. #else // NOT DELTA
  1565. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1566. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1567. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1568. HOMEAXIS(Z);
  1569. }
  1570. #endif
  1571. #ifdef QUICK_HOME
  1572. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1573. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1574. #ifndef DUAL_X_CARRIAGE
  1575. int x_axis_home_dir = home_dir(X_AXIS);
  1576. #else
  1577. int x_axis_home_dir = x_home_dir(active_extruder);
  1578. extruder_duplication_enabled = false;
  1579. #endif
  1580. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1581. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1582. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1583. feedrate = homing_feedrate[X_AXIS];
  1584. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1585. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1586. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1587. } else {
  1588. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1589. }
  1590. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1591. st_synchronize();
  1592. axis_is_at_home(X_AXIS);
  1593. axis_is_at_home(Y_AXIS);
  1594. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1595. destination[X_AXIS] = current_position[X_AXIS];
  1596. destination[Y_AXIS] = current_position[Y_AXIS];
  1597. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1598. feedrate = 0.0;
  1599. st_synchronize();
  1600. endstops_hit_on_purpose();
  1601. current_position[X_AXIS] = destination[X_AXIS];
  1602. current_position[Y_AXIS] = destination[Y_AXIS];
  1603. #ifndef SCARA
  1604. current_position[Z_AXIS] = destination[Z_AXIS];
  1605. #endif
  1606. }
  1607. #endif //QUICK_HOME
  1608. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1609. #ifdef DUAL_X_CARRIAGE
  1610. int tmp_extruder = active_extruder;
  1611. extruder_duplication_enabled = false;
  1612. active_extruder = !active_extruder;
  1613. HOMEAXIS(X);
  1614. inactive_extruder_x_pos = current_position[X_AXIS];
  1615. active_extruder = tmp_extruder;
  1616. HOMEAXIS(X);
  1617. // reset state used by the different modes
  1618. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1619. delayed_move_time = 0;
  1620. active_extruder_parked = true;
  1621. #else
  1622. HOMEAXIS(X);
  1623. #endif
  1624. }
  1625. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1626. if (code_seen(axis_codes[X_AXIS])) {
  1627. if (code_value_long() != 0) {
  1628. current_position[X_AXIS] = code_value()
  1629. #ifndef SCARA
  1630. + home_offset[X_AXIS]
  1631. #endif
  1632. ;
  1633. }
  1634. }
  1635. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1636. current_position[Y_AXIS] = code_value()
  1637. #ifndef SCARA
  1638. + home_offset[Y_AXIS]
  1639. #endif
  1640. ;
  1641. }
  1642. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1643. #ifndef Z_SAFE_HOMING
  1644. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1645. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1646. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1647. feedrate = max_feedrate[Z_AXIS];
  1648. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1649. st_synchronize();
  1650. #endif
  1651. HOMEAXIS(Z);
  1652. }
  1653. #else // Z_SAFE_HOMING
  1654. if (home_all_axis) {
  1655. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1656. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1657. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1658. feedrate = XY_TRAVEL_SPEED / 60;
  1659. current_position[Z_AXIS] = 0;
  1660. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1661. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1662. st_synchronize();
  1663. current_position[X_AXIS] = destination[X_AXIS];
  1664. current_position[Y_AXIS] = destination[Y_AXIS];
  1665. HOMEAXIS(Z);
  1666. }
  1667. // Let's see if X and Y are homed and probe is inside bed area.
  1668. if (code_seen(axis_codes[Z_AXIS])) {
  1669. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1670. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1671. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1672. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1673. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1674. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1675. current_position[Z_AXIS] = 0;
  1676. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1677. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1678. feedrate = max_feedrate[Z_AXIS];
  1679. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1680. st_synchronize();
  1681. HOMEAXIS(Z);
  1682. }
  1683. else {
  1684. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1685. SERIAL_ECHO_START;
  1686. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1687. }
  1688. }
  1689. else {
  1690. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1691. SERIAL_ECHO_START;
  1692. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1693. }
  1694. }
  1695. #endif // Z_SAFE_HOMING
  1696. #endif // Z_HOME_DIR < 0
  1697. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1698. current_position[Z_AXIS] = code_value() + home_offset[Z_AXIS];
  1699. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1700. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1701. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1702. #endif
  1703. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1704. #endif // else DELTA
  1705. #ifdef SCARA
  1706. calculate_delta(current_position);
  1707. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1708. #endif
  1709. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1710. enable_endstops(false);
  1711. #endif
  1712. #if defined(MESH_BED_LEVELING)
  1713. if (mbl_was_active) {
  1714. current_position[X_AXIS] = mbl.get_x(0);
  1715. current_position[Y_AXIS] = mbl.get_y(0);
  1716. destination[X_AXIS] = current_position[X_AXIS];
  1717. destination[Y_AXIS] = current_position[Y_AXIS];
  1718. destination[Z_AXIS] = current_position[Z_AXIS];
  1719. destination[E_AXIS] = current_position[E_AXIS];
  1720. feedrate = homing_feedrate[X_AXIS];
  1721. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1722. st_synchronize();
  1723. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1724. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1725. mbl.active = 1;
  1726. }
  1727. #endif
  1728. feedrate = saved_feedrate;
  1729. feedmultiply = saved_feedmultiply;
  1730. previous_millis_cmd = millis();
  1731. endstops_hit_on_purpose();
  1732. }
  1733. #if defined(MESH_BED_LEVELING)
  1734. inline void gcode_G29() {
  1735. static int probe_point = -1;
  1736. int state = 0;
  1737. if (code_seen('S') || code_seen('s')) {
  1738. state = code_value_long();
  1739. if (state < 0 || state > 2) {
  1740. SERIAL_PROTOCOLPGM("S out of range (0-2).\n");
  1741. return;
  1742. }
  1743. }
  1744. if (state == 0) { // Dump mesh_bed_leveling
  1745. if (mbl.active) {
  1746. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1747. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1748. SERIAL_PROTOCOLPGM(",");
  1749. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1750. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1751. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1752. SERIAL_PROTOCOLPGM("\nMeasured points:\n");
  1753. for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
  1754. for (int x=0; x<MESH_NUM_X_POINTS; x++) {
  1755. SERIAL_PROTOCOLPGM(" ");
  1756. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1757. }
  1758. SERIAL_EOL;
  1759. }
  1760. } else {
  1761. SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n");
  1762. }
  1763. } else if (state == 1) { // Begin probing mesh points
  1764. mbl.reset();
  1765. probe_point = 0;
  1766. enquecommands_P(PSTR("G28"));
  1767. enquecommands_P(PSTR("G29 S2"));
  1768. } else if (state == 2) { // Goto next point
  1769. if (probe_point < 0) {
  1770. SERIAL_PROTOCOLPGM("Mesh probing not started.\n");
  1771. return;
  1772. }
  1773. int ix, iy;
  1774. if (probe_point == 0) {
  1775. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1776. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1777. } else {
  1778. ix = (probe_point-1) % MESH_NUM_X_POINTS;
  1779. iy = (probe_point-1) / MESH_NUM_X_POINTS;
  1780. if (iy&1) { // Zig zag
  1781. ix = (MESH_NUM_X_POINTS - 1) - ix;
  1782. }
  1783. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1784. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1786. st_synchronize();
  1787. }
  1788. if (probe_point == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS) {
  1789. SERIAL_PROTOCOLPGM("Mesh done.\n");
  1790. probe_point = -1;
  1791. mbl.active = 1;
  1792. enquecommands_P(PSTR("G28"));
  1793. return;
  1794. }
  1795. ix = probe_point % MESH_NUM_X_POINTS;
  1796. iy = probe_point / MESH_NUM_X_POINTS;
  1797. if (iy&1) { // Zig zag
  1798. ix = (MESH_NUM_X_POINTS - 1) - ix;
  1799. }
  1800. current_position[X_AXIS] = mbl.get_x(ix);
  1801. current_position[Y_AXIS] = mbl.get_y(iy);
  1802. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1803. st_synchronize();
  1804. probe_point++;
  1805. }
  1806. }
  1807. #endif
  1808. #ifdef ENABLE_AUTO_BED_LEVELING
  1809. /**
  1810. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1811. * Will fail if the printer has not been homed with G28.
  1812. *
  1813. * Enhanced G29 Auto Bed Leveling Probe Routine
  1814. *
  1815. * Parameters With AUTO_BED_LEVELING_GRID:
  1816. *
  1817. * P Set the size of the grid that will be probed (P x P points).
  1818. * Not supported by non-linear delta printer bed leveling.
  1819. * Example: "G29 P4"
  1820. *
  1821. * S Set the XY travel speed between probe points (in mm/min)
  1822. *
  1823. * D Dry-Run mode. Just evaluate the bed Topology - It does not apply or clean the rotation Matrix
  1824. * Useful to check the topology after a first run of G29.
  1825. *
  1826. * V Set the verbose level (0-4). Example: "G29 V3"
  1827. *
  1828. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1829. * This is useful for manual bed leveling and finding flaws in the bed (to
  1830. * assist with part placement).
  1831. * Not supported by non-linear delta printer bed leveling.
  1832. *
  1833. * F Set the Front limit of the probing grid
  1834. * B Set the Back limit of the probing grid
  1835. * L Set the Left limit of the probing grid
  1836. * R Set the Right limit of the probing grid
  1837. *
  1838. * Global Parameters:
  1839. *
  1840. * E/e By default G29 engages / disengages the probe for each point.
  1841. * Include "E" to engage and disengage the probe just once.
  1842. * There's no extra effect if you have a fixed probe.
  1843. * Usage: "G29 E" or "G29 e"
  1844. *
  1845. */
  1846. inline void gcode_G29() {
  1847. // Prevent user from running a G29 without first homing in X and Y
  1848. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1849. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1850. SERIAL_ECHO_START;
  1851. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1852. return;
  1853. }
  1854. int verbose_level = 1;
  1855. float x_tmp, y_tmp, z_tmp, real_z;
  1856. if (code_seen('V') || code_seen('v')) {
  1857. verbose_level = code_value_long();
  1858. if (verbose_level < 0 || verbose_level > 4) {
  1859. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1860. return;
  1861. }
  1862. }
  1863. bool dryrun = code_seen('D') || code_seen('d');
  1864. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1865. #ifdef AUTO_BED_LEVELING_GRID
  1866. #ifndef DELTA
  1867. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1868. #endif
  1869. if (verbose_level > 0)
  1870. {
  1871. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1872. if (dryrun) SERIAL_ECHOLN("Running in DRY-RUN mode");
  1873. }
  1874. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1875. #ifndef DELTA
  1876. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1877. if (auto_bed_leveling_grid_points < 2) {
  1878. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1879. return;
  1880. }
  1881. #endif
  1882. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1883. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1884. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1885. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1886. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1887. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1888. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1889. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1890. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1891. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1892. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1893. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1894. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1895. if (left_out || right_out || front_out || back_out) {
  1896. if (left_out) {
  1897. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1898. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1899. }
  1900. if (right_out) {
  1901. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1902. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1903. }
  1904. if (front_out) {
  1905. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1906. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1907. }
  1908. if (back_out) {
  1909. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1910. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1911. }
  1912. return;
  1913. }
  1914. #endif // AUTO_BED_LEVELING_GRID
  1915. #ifdef Z_PROBE_SLED
  1916. dock_sled(false); // engage (un-dock) the probe
  1917. #elif defined(Z_PROBE_ALLEN_KEY)
  1918. engage_z_probe();
  1919. #endif
  1920. st_synchronize();
  1921. if (!dryrun)
  1922. {
  1923. #ifdef DELTA
  1924. reset_bed_level();
  1925. #else
  1926. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1927. //vector_3 corrected_position = plan_get_position_mm();
  1928. //corrected_position.debug("position before G29");
  1929. plan_bed_level_matrix.set_to_identity();
  1930. vector_3 uncorrected_position = plan_get_position();
  1931. // uncorrected_position.debug("position during G29");
  1932. current_position[X_AXIS] = uncorrected_position.x;
  1933. current_position[Y_AXIS] = uncorrected_position.y;
  1934. current_position[Z_AXIS] = uncorrected_position.z;
  1935. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1936. #endif
  1937. }
  1938. setup_for_endstop_move();
  1939. feedrate = homing_feedrate[Z_AXIS];
  1940. #ifdef AUTO_BED_LEVELING_GRID
  1941. // probe at the points of a lattice grid
  1942. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1943. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1944. #ifndef DELTA
  1945. // solve the plane equation ax + by + d = z
  1946. // A is the matrix with rows [x y 1] for all the probed points
  1947. // B is the vector of the Z positions
  1948. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1949. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1950. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1951. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1952. eqnBVector[abl2], // "B" vector of Z points
  1953. mean = 0.0;
  1954. #else
  1955. delta_grid_spacing[0] = xGridSpacing;
  1956. delta_grid_spacing[1] = yGridSpacing;
  1957. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1958. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1959. #endif
  1960. int probePointCounter = 0;
  1961. bool zig = true;
  1962. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1963. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1964. int xStart, xStop, xInc;
  1965. if (zig) {
  1966. xStart = 0;
  1967. xStop = auto_bed_leveling_grid_points;
  1968. xInc = 1;
  1969. }
  1970. else {
  1971. xStart = auto_bed_leveling_grid_points - 1;
  1972. xStop = -1;
  1973. xInc = -1;
  1974. }
  1975. #ifndef DELTA
  1976. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1977. // This gets the probe points in more readable order.
  1978. if (!do_topography_map) zig = !zig;
  1979. #endif
  1980. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  1981. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1982. // raise extruder
  1983. float measured_z,
  1984. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1985. #ifdef DELTA
  1986. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1987. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1988. if (distance_from_center > DELTA_PROBABLE_RADIUS)
  1989. continue;
  1990. #endif //DELTA
  1991. // Enhanced G29 - Do not retract servo between probes
  1992. ProbeAction act;
  1993. if (enhanced_g29) {
  1994. if (yProbe == front_probe_bed_position && xCount == 0)
  1995. act = ProbeEngage;
  1996. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1997. act = ProbeRetract;
  1998. else
  1999. act = ProbeStay;
  2000. }
  2001. else
  2002. act = ProbeEngageAndRetract;
  2003. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2004. #ifndef DELTA
  2005. mean += measured_z;
  2006. eqnBVector[probePointCounter] = measured_z;
  2007. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2008. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2009. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2010. #else
  2011. bed_level[xCount][yCount] = measured_z + z_offset;
  2012. #endif
  2013. probePointCounter++;
  2014. } //xProbe
  2015. } //yProbe
  2016. clean_up_after_endstop_move();
  2017. #ifndef DELTA
  2018. // solve lsq problem
  2019. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2020. mean /= abl2;
  2021. if (verbose_level) {
  2022. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2023. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2024. SERIAL_PROTOCOLPGM(" b: ");
  2025. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2026. SERIAL_PROTOCOLPGM(" d: ");
  2027. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2028. SERIAL_EOL;
  2029. if (verbose_level > 2) {
  2030. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2031. SERIAL_PROTOCOL_F(mean, 8);
  2032. SERIAL_EOL;
  2033. }
  2034. }
  2035. // Show the Topography map if enabled
  2036. if (do_topography_map) {
  2037. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2038. SERIAL_PROTOCOLPGM("+-----------+\n");
  2039. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2040. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2041. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2042. SERIAL_PROTOCOLPGM("+-----------+\n");
  2043. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2044. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2045. int ind = yy * auto_bed_leveling_grid_points + xx;
  2046. float diff = eqnBVector[ind] - mean;
  2047. if (diff >= 0.0)
  2048. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2049. else
  2050. SERIAL_PROTOCOLPGM(" ");
  2051. SERIAL_PROTOCOL_F(diff, 5);
  2052. } // xx
  2053. SERIAL_EOL;
  2054. } // yy
  2055. SERIAL_EOL;
  2056. } //do_topography_map
  2057. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2058. free(plane_equation_coefficients);
  2059. #else //Delta
  2060. if (!dryrun) extrapolate_unprobed_bed_level();
  2061. print_bed_level();
  2062. #endif //Delta
  2063. #else // !AUTO_BED_LEVELING_GRID
  2064. // Probe at 3 arbitrary points
  2065. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  2066. if (enhanced_g29) {
  2067. // Basic Enhanced G29
  2068. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
  2069. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
  2070. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
  2071. }
  2072. else {
  2073. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngageAndRetract, verbose_level);
  2074. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeEngageAndRetract, verbose_level);
  2075. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeEngageAndRetract, verbose_level);
  2076. }
  2077. clean_up_after_endstop_move();
  2078. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2079. #endif // !AUTO_BED_LEVELING_GRID
  2080. #ifndef DELTA
  2081. if (verbose_level > 0) plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2082. // Correct the Z height difference from z-probe position and hotend tip position.
  2083. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2084. // When the bed is uneven, this height must be corrected.
  2085. if (!dryrun)
  2086. {
  2087. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2088. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2089. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2090. z_tmp = current_position[Z_AXIS];
  2091. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2092. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2093. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2094. }
  2095. #endif
  2096. #ifdef Z_PROBE_SLED
  2097. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2098. #elif defined(Z_PROBE_ALLEN_KEY)
  2099. retract_z_probe();
  2100. #endif
  2101. #ifdef Z_PROBE_END_SCRIPT
  2102. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2103. st_synchronize();
  2104. #endif
  2105. }
  2106. #ifndef Z_PROBE_SLED
  2107. inline void gcode_G30() {
  2108. engage_z_probe(); // Engage Z Servo endstop if available
  2109. st_synchronize();
  2110. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2111. setup_for_endstop_move();
  2112. feedrate = homing_feedrate[Z_AXIS];
  2113. run_z_probe();
  2114. SERIAL_PROTOCOLPGM(MSG_BED);
  2115. SERIAL_PROTOCOLPGM(" X: ");
  2116. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2117. SERIAL_PROTOCOLPGM(" Y: ");
  2118. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2119. SERIAL_PROTOCOLPGM(" Z: ");
  2120. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2121. SERIAL_EOL;
  2122. clean_up_after_endstop_move();
  2123. retract_z_probe(); // Retract Z Servo endstop if available
  2124. }
  2125. #endif //!Z_PROBE_SLED
  2126. #endif //ENABLE_AUTO_BED_LEVELING
  2127. /**
  2128. * G92: Set current position to given X Y Z E
  2129. */
  2130. inline void gcode_G92() {
  2131. if (!code_seen(axis_codes[E_AXIS]))
  2132. st_synchronize();
  2133. for (int i = 0; i < NUM_AXIS; i++) {
  2134. if (code_seen(axis_codes[i])) {
  2135. current_position[i] = code_value();
  2136. if (i == E_AXIS)
  2137. plan_set_e_position(current_position[E_AXIS]);
  2138. else
  2139. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2140. }
  2141. }
  2142. }
  2143. #ifdef ULTIPANEL
  2144. /**
  2145. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2146. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2147. */
  2148. inline void gcode_M0_M1() {
  2149. char *src = strchr_pointer + 2;
  2150. unsigned long codenum = 0;
  2151. bool hasP = false, hasS = false;
  2152. if (code_seen('P')) {
  2153. codenum = code_value(); // milliseconds to wait
  2154. hasP = codenum > 0;
  2155. }
  2156. if (code_seen('S')) {
  2157. codenum = code_value() * 1000; // seconds to wait
  2158. hasS = codenum > 0;
  2159. }
  2160. char* starpos = strchr(src, '*');
  2161. if (starpos != NULL) *(starpos) = '\0';
  2162. while (*src == ' ') ++src;
  2163. if (!hasP && !hasS && *src != '\0')
  2164. lcd_setstatus(src);
  2165. else
  2166. LCD_MESSAGEPGM(MSG_USERWAIT);
  2167. lcd_ignore_click();
  2168. st_synchronize();
  2169. previous_millis_cmd = millis();
  2170. if (codenum > 0) {
  2171. codenum += previous_millis_cmd; // keep track of when we started waiting
  2172. while(millis() < codenum && !lcd_clicked()) {
  2173. manage_heater();
  2174. manage_inactivity();
  2175. lcd_update();
  2176. }
  2177. lcd_ignore_click(false);
  2178. }
  2179. else {
  2180. if (!lcd_detected()) return;
  2181. while (!lcd_clicked()) {
  2182. manage_heater();
  2183. manage_inactivity();
  2184. lcd_update();
  2185. }
  2186. }
  2187. if (IS_SD_PRINTING)
  2188. LCD_MESSAGEPGM(MSG_RESUMING);
  2189. else
  2190. LCD_MESSAGEPGM(WELCOME_MSG);
  2191. }
  2192. #endif // ULTIPANEL
  2193. /**
  2194. * M17: Enable power on all stepper motors
  2195. */
  2196. inline void gcode_M17() {
  2197. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2198. enable_x();
  2199. enable_y();
  2200. enable_z();
  2201. enable_e0();
  2202. enable_e1();
  2203. enable_e2();
  2204. enable_e3();
  2205. }
  2206. #ifdef SDSUPPORT
  2207. /**
  2208. * M20: List SD card to serial output
  2209. */
  2210. inline void gcode_M20() {
  2211. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2212. card.ls();
  2213. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2214. }
  2215. /**
  2216. * M21: Init SD Card
  2217. */
  2218. inline void gcode_M21() {
  2219. card.initsd();
  2220. }
  2221. /**
  2222. * M22: Release SD Card
  2223. */
  2224. inline void gcode_M22() {
  2225. card.release();
  2226. }
  2227. /**
  2228. * M23: Select a file
  2229. */
  2230. inline void gcode_M23() {
  2231. char* codepos = strchr_pointer + 4;
  2232. char* starpos = strchr(codepos, '*');
  2233. if (starpos) *starpos = '\0';
  2234. card.openFile(codepos, true);
  2235. }
  2236. /**
  2237. * M24: Start SD Print
  2238. */
  2239. inline void gcode_M24() {
  2240. card.startFileprint();
  2241. starttime = millis();
  2242. }
  2243. /**
  2244. * M25: Pause SD Print
  2245. */
  2246. inline void gcode_M25() {
  2247. card.pauseSDPrint();
  2248. }
  2249. /**
  2250. * M26: Set SD Card file index
  2251. */
  2252. inline void gcode_M26() {
  2253. if (card.cardOK && code_seen('S'))
  2254. card.setIndex(code_value_long());
  2255. }
  2256. /**
  2257. * M27: Get SD Card status
  2258. */
  2259. inline void gcode_M27() {
  2260. card.getStatus();
  2261. }
  2262. /**
  2263. * M28: Start SD Write
  2264. */
  2265. inline void gcode_M28() {
  2266. char* codepos = strchr_pointer + 4;
  2267. char* starpos = strchr(codepos, '*');
  2268. if (starpos) {
  2269. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2270. strchr_pointer = strchr(npos, ' ') + 1;
  2271. *(starpos) = '\0';
  2272. }
  2273. card.openFile(codepos, false);
  2274. }
  2275. /**
  2276. * M29: Stop SD Write
  2277. * Processed in write to file routine above
  2278. */
  2279. inline void gcode_M29() {
  2280. // card.saving = false;
  2281. }
  2282. /**
  2283. * M30 <filename>: Delete SD Card file
  2284. */
  2285. inline void gcode_M30() {
  2286. if (card.cardOK) {
  2287. card.closefile();
  2288. char* starpos = strchr(strchr_pointer + 4, '*');
  2289. if (starpos) {
  2290. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2291. strchr_pointer = strchr(npos, ' ') + 1;
  2292. *(starpos) = '\0';
  2293. }
  2294. card.removeFile(strchr_pointer + 4);
  2295. }
  2296. }
  2297. #endif
  2298. /**
  2299. * M31: Get the time since the start of SD Print (or last M109)
  2300. */
  2301. inline void gcode_M31() {
  2302. stoptime = millis();
  2303. unsigned long t = (stoptime - starttime) / 1000;
  2304. int min = t / 60, sec = t % 60;
  2305. char time[30];
  2306. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2307. SERIAL_ECHO_START;
  2308. SERIAL_ECHOLN(time);
  2309. lcd_setstatus(time);
  2310. autotempShutdown();
  2311. }
  2312. #ifdef SDSUPPORT
  2313. /**
  2314. * M32: Select file and start SD Print
  2315. */
  2316. inline void gcode_M32() {
  2317. if (card.sdprinting)
  2318. st_synchronize();
  2319. char* codepos = strchr_pointer + 4;
  2320. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2321. if (! namestartpos)
  2322. namestartpos = codepos; //default name position, 4 letters after the M
  2323. else
  2324. namestartpos++; //to skip the '!'
  2325. char* starpos = strchr(codepos, '*');
  2326. if (starpos) *(starpos) = '\0';
  2327. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2328. if (card.cardOK) {
  2329. card.openFile(namestartpos, true, !call_procedure);
  2330. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2331. card.setIndex(code_value_long());
  2332. card.startFileprint();
  2333. if (!call_procedure)
  2334. starttime = millis(); //procedure calls count as normal print time.
  2335. }
  2336. }
  2337. /**
  2338. * M928: Start SD Write
  2339. */
  2340. inline void gcode_M928() {
  2341. char* starpos = strchr(strchr_pointer + 5, '*');
  2342. if (starpos) {
  2343. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2344. strchr_pointer = strchr(npos, ' ') + 1;
  2345. *(starpos) = '\0';
  2346. }
  2347. card.openLogFile(strchr_pointer + 5);
  2348. }
  2349. #endif // SDSUPPORT
  2350. /**
  2351. * M42: Change pin status via GCode
  2352. */
  2353. inline void gcode_M42() {
  2354. if (code_seen('S')) {
  2355. int pin_status = code_value(),
  2356. pin_number = LED_PIN;
  2357. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2358. pin_number = code_value();
  2359. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2360. if (sensitive_pins[i] == pin_number) {
  2361. pin_number = -1;
  2362. break;
  2363. }
  2364. }
  2365. #if defined(FAN_PIN) && FAN_PIN > -1
  2366. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2367. #endif
  2368. if (pin_number > -1) {
  2369. pinMode(pin_number, OUTPUT);
  2370. digitalWrite(pin_number, pin_status);
  2371. analogWrite(pin_number, pin_status);
  2372. }
  2373. } // code_seen('S')
  2374. }
  2375. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2376. #if Z_MIN_PIN == -1
  2377. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2378. #endif
  2379. /**
  2380. * M48: Z-Probe repeatability measurement function.
  2381. *
  2382. * Usage:
  2383. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2384. * n = Number of samples (4-50, default 10)
  2385. * X = Sample X position
  2386. * Y = Sample Y position
  2387. * V = Verbose level (0-4, default=1)
  2388. * E = Engage probe for each reading
  2389. * L = Number of legs of movement before probe
  2390. *
  2391. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2392. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2393. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2394. * regenerated.
  2395. *
  2396. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2397. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2398. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2399. */
  2400. inline void gcode_M48() {
  2401. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2402. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2403. double X_current, Y_current, Z_current;
  2404. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2405. if (code_seen('V') || code_seen('v')) {
  2406. verbose_level = code_value();
  2407. if (verbose_level < 0 || verbose_level > 4 ) {
  2408. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2409. return;
  2410. }
  2411. }
  2412. if (verbose_level > 0)
  2413. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2414. if (code_seen('n')) {
  2415. n_samples = code_value();
  2416. if (n_samples < 4 || n_samples > 50) {
  2417. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2418. return;
  2419. }
  2420. }
  2421. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2422. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2423. Z_current = st_get_position_mm(Z_AXIS);
  2424. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2425. ext_position = st_get_position_mm(E_AXIS);
  2426. if (code_seen('E') || code_seen('e'))
  2427. engage_probe_for_each_reading++;
  2428. if (code_seen('X') || code_seen('x')) {
  2429. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2430. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2431. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2432. return;
  2433. }
  2434. }
  2435. if (code_seen('Y') || code_seen('y')) {
  2436. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2437. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2438. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2439. return;
  2440. }
  2441. }
  2442. if (code_seen('L') || code_seen('l')) {
  2443. n_legs = code_value();
  2444. if (n_legs == 1) n_legs = 2;
  2445. if (n_legs < 0 || n_legs > 15) {
  2446. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2447. return;
  2448. }
  2449. }
  2450. //
  2451. // Do all the preliminary setup work. First raise the probe.
  2452. //
  2453. st_synchronize();
  2454. plan_bed_level_matrix.set_to_identity();
  2455. plan_buffer_line(X_current, Y_current, Z_start_location,
  2456. ext_position,
  2457. homing_feedrate[Z_AXIS] / 60,
  2458. active_extruder);
  2459. st_synchronize();
  2460. //
  2461. // Now get everything to the specified probe point So we can safely do a probe to
  2462. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2463. // use that as a starting point for each probe.
  2464. //
  2465. if (verbose_level > 2)
  2466. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2467. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2468. ext_position,
  2469. homing_feedrate[X_AXIS]/60,
  2470. active_extruder);
  2471. st_synchronize();
  2472. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2473. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2474. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2475. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2476. //
  2477. // OK, do the inital probe to get us close to the bed.
  2478. // Then retrace the right amount and use that in subsequent probes
  2479. //
  2480. engage_z_probe();
  2481. setup_for_endstop_move();
  2482. run_z_probe();
  2483. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2484. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2485. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2486. ext_position,
  2487. homing_feedrate[X_AXIS]/60,
  2488. active_extruder);
  2489. st_synchronize();
  2490. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2491. if (engage_probe_for_each_reading) retract_z_probe();
  2492. for (n=0; n < n_samples; n++) {
  2493. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2494. if (n_legs) {
  2495. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2496. int l;
  2497. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2498. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2499. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2500. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2501. //SERIAL_ECHOPAIR(" theta: ",theta);
  2502. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2503. //SERIAL_PROTOCOLLNPGM("");
  2504. float dir = rotational_direction ? 1 : -1;
  2505. for (l = 0; l < n_legs - 1; l++) {
  2506. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2507. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2508. if (radius < 0.0) radius = -radius;
  2509. X_current = X_probe_location + cos(theta) * radius;
  2510. Y_current = Y_probe_location + sin(theta) * radius;
  2511. // Make sure our X & Y are sane
  2512. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2513. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2514. if (verbose_level > 3) {
  2515. SERIAL_ECHOPAIR("x: ", X_current);
  2516. SERIAL_ECHOPAIR("y: ", Y_current);
  2517. SERIAL_PROTOCOLLNPGM("");
  2518. }
  2519. do_blocking_move_to( X_current, Y_current, Z_current );
  2520. }
  2521. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2522. }
  2523. if (engage_probe_for_each_reading) {
  2524. engage_z_probe();
  2525. delay(1000);
  2526. }
  2527. setup_for_endstop_move();
  2528. run_z_probe();
  2529. sample_set[n] = current_position[Z_AXIS];
  2530. //
  2531. // Get the current mean for the data points we have so far
  2532. //
  2533. sum = 0.0;
  2534. for (j=0; j<=n; j++) sum += sample_set[j];
  2535. mean = sum / (double (n+1));
  2536. //
  2537. // Now, use that mean to calculate the standard deviation for the
  2538. // data points we have so far
  2539. //
  2540. sum = 0.0;
  2541. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2542. sigma = sqrt( sum / (double (n+1)) );
  2543. if (verbose_level > 1) {
  2544. SERIAL_PROTOCOL(n+1);
  2545. SERIAL_PROTOCOL(" of ");
  2546. SERIAL_PROTOCOL(n_samples);
  2547. SERIAL_PROTOCOLPGM(" z: ");
  2548. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2549. }
  2550. if (verbose_level > 2) {
  2551. SERIAL_PROTOCOL(" mean: ");
  2552. SERIAL_PROTOCOL_F(mean,6);
  2553. SERIAL_PROTOCOL(" sigma: ");
  2554. SERIAL_PROTOCOL_F(sigma,6);
  2555. }
  2556. if (verbose_level > 0) SERIAL_EOL;
  2557. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2558. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2559. st_synchronize();
  2560. if (engage_probe_for_each_reading) {
  2561. retract_z_probe();
  2562. delay(1000);
  2563. }
  2564. }
  2565. retract_z_probe();
  2566. delay(1000);
  2567. clean_up_after_endstop_move();
  2568. // enable_endstops(true);
  2569. if (verbose_level > 0) {
  2570. SERIAL_PROTOCOLPGM("Mean: ");
  2571. SERIAL_PROTOCOL_F(mean, 6);
  2572. SERIAL_EOL;
  2573. }
  2574. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2575. SERIAL_PROTOCOL_F(sigma, 6);
  2576. SERIAL_EOL; SERIAL_EOL;
  2577. }
  2578. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2579. /**
  2580. * M104: Set hot end temperature
  2581. */
  2582. inline void gcode_M104() {
  2583. if (setTargetedHotend(104)) return;
  2584. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2585. #ifdef DUAL_X_CARRIAGE
  2586. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2587. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2588. #endif
  2589. setWatch();
  2590. }
  2591. /**
  2592. * M105: Read hot end and bed temperature
  2593. */
  2594. inline void gcode_M105() {
  2595. if (setTargetedHotend(105)) return;
  2596. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2597. SERIAL_PROTOCOLPGM("ok T:");
  2598. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2599. SERIAL_PROTOCOLPGM(" /");
  2600. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2601. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2602. SERIAL_PROTOCOLPGM(" B:");
  2603. SERIAL_PROTOCOL_F(degBed(),1);
  2604. SERIAL_PROTOCOLPGM(" /");
  2605. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2606. #endif //TEMP_BED_PIN
  2607. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2608. SERIAL_PROTOCOLPGM(" T");
  2609. SERIAL_PROTOCOL(cur_extruder);
  2610. SERIAL_PROTOCOLPGM(":");
  2611. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2612. SERIAL_PROTOCOLPGM(" /");
  2613. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2614. }
  2615. #else
  2616. SERIAL_ERROR_START;
  2617. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2618. #endif
  2619. SERIAL_PROTOCOLPGM(" @:");
  2620. #ifdef EXTRUDER_WATTS
  2621. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2622. SERIAL_PROTOCOLPGM("W");
  2623. #else
  2624. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2625. #endif
  2626. SERIAL_PROTOCOLPGM(" B@:");
  2627. #ifdef BED_WATTS
  2628. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2629. SERIAL_PROTOCOLPGM("W");
  2630. #else
  2631. SERIAL_PROTOCOL(getHeaterPower(-1));
  2632. #endif
  2633. #ifdef SHOW_TEMP_ADC_VALUES
  2634. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2635. SERIAL_PROTOCOLPGM(" ADC B:");
  2636. SERIAL_PROTOCOL_F(degBed(),1);
  2637. SERIAL_PROTOCOLPGM("C->");
  2638. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2639. #endif
  2640. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2641. SERIAL_PROTOCOLPGM(" T");
  2642. SERIAL_PROTOCOL(cur_extruder);
  2643. SERIAL_PROTOCOLPGM(":");
  2644. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2645. SERIAL_PROTOCOLPGM("C->");
  2646. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2647. }
  2648. #endif
  2649. SERIAL_PROTOCOLLN("");
  2650. }
  2651. #if defined(FAN_PIN) && FAN_PIN > -1
  2652. /**
  2653. * M106: Set Fan Speed
  2654. */
  2655. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2656. /**
  2657. * M107: Fan Off
  2658. */
  2659. inline void gcode_M107() { fanSpeed = 0; }
  2660. #endif //FAN_PIN
  2661. /**
  2662. * M109: Wait for extruder(s) to reach temperature
  2663. */
  2664. inline void gcode_M109() {
  2665. if (setTargetedHotend(109)) return;
  2666. LCD_MESSAGEPGM(MSG_HEATING);
  2667. CooldownNoWait = code_seen('S');
  2668. if (CooldownNoWait || code_seen('R')) {
  2669. setTargetHotend(code_value(), tmp_extruder);
  2670. #ifdef DUAL_X_CARRIAGE
  2671. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2672. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2673. #endif
  2674. }
  2675. #ifdef AUTOTEMP
  2676. autotemp_enabled = code_seen('F');
  2677. if (autotemp_enabled) autotemp_factor = code_value();
  2678. if (code_seen('S')) autotemp_min = code_value();
  2679. if (code_seen('B')) autotemp_max = code_value();
  2680. #endif
  2681. setWatch();
  2682. unsigned long timetemp = millis();
  2683. /* See if we are heating up or cooling down */
  2684. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2685. cancel_heatup = false;
  2686. #ifdef TEMP_RESIDENCY_TIME
  2687. long residencyStart = -1;
  2688. /* continue to loop until we have reached the target temp
  2689. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2690. while((!cancel_heatup)&&((residencyStart == -1) ||
  2691. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2692. #else
  2693. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2694. #endif //TEMP_RESIDENCY_TIME
  2695. { // while loop
  2696. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2697. SERIAL_PROTOCOLPGM("T:");
  2698. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2699. SERIAL_PROTOCOLPGM(" E:");
  2700. SERIAL_PROTOCOL((int)tmp_extruder);
  2701. #ifdef TEMP_RESIDENCY_TIME
  2702. SERIAL_PROTOCOLPGM(" W:");
  2703. if (residencyStart > -1) {
  2704. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2705. SERIAL_PROTOCOLLN( timetemp );
  2706. }
  2707. else {
  2708. SERIAL_PROTOCOLLN( "?" );
  2709. }
  2710. #else
  2711. SERIAL_PROTOCOLLN("");
  2712. #endif
  2713. timetemp = millis();
  2714. }
  2715. manage_heater();
  2716. manage_inactivity();
  2717. lcd_update();
  2718. #ifdef TEMP_RESIDENCY_TIME
  2719. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2720. // or when current temp falls outside the hysteresis after target temp was reached
  2721. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2722. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2723. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2724. {
  2725. residencyStart = millis();
  2726. }
  2727. #endif //TEMP_RESIDENCY_TIME
  2728. }
  2729. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2730. starttime = previous_millis_cmd = millis();
  2731. }
  2732. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2733. /**
  2734. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2735. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2736. */
  2737. inline void gcode_M190() {
  2738. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2739. CooldownNoWait = code_seen('S');
  2740. if (CooldownNoWait || code_seen('R'))
  2741. setTargetBed(code_value());
  2742. unsigned long timetemp = millis();
  2743. cancel_heatup = false;
  2744. target_direction = isHeatingBed(); // true if heating, false if cooling
  2745. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2746. unsigned long ms = millis();
  2747. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2748. timetemp = ms;
  2749. float tt = degHotend(active_extruder);
  2750. SERIAL_PROTOCOLPGM("T:");
  2751. SERIAL_PROTOCOL(tt);
  2752. SERIAL_PROTOCOLPGM(" E:");
  2753. SERIAL_PROTOCOL((int)active_extruder);
  2754. SERIAL_PROTOCOLPGM(" B:");
  2755. SERIAL_PROTOCOL_F(degBed(), 1);
  2756. SERIAL_PROTOCOLLN("");
  2757. }
  2758. manage_heater();
  2759. manage_inactivity();
  2760. lcd_update();
  2761. }
  2762. LCD_MESSAGEPGM(MSG_BED_DONE);
  2763. previous_millis_cmd = millis();
  2764. }
  2765. #endif // TEMP_BED_PIN > -1
  2766. /**
  2767. * M112: Emergency Stop
  2768. */
  2769. inline void gcode_M112() {
  2770. kill();
  2771. }
  2772. #ifdef BARICUDA
  2773. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2774. /**
  2775. * M126: Heater 1 valve open
  2776. */
  2777. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2778. /**
  2779. * M127: Heater 1 valve close
  2780. */
  2781. inline void gcode_M127() { ValvePressure = 0; }
  2782. #endif
  2783. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2784. /**
  2785. * M128: Heater 2 valve open
  2786. */
  2787. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2788. /**
  2789. * M129: Heater 2 valve close
  2790. */
  2791. inline void gcode_M129() { EtoPPressure = 0; }
  2792. #endif
  2793. #endif //BARICUDA
  2794. /**
  2795. * M140: Set bed temperature
  2796. */
  2797. inline void gcode_M140() {
  2798. if (code_seen('S')) setTargetBed(code_value());
  2799. }
  2800. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2801. /**
  2802. * M80: Turn on Power Supply
  2803. */
  2804. inline void gcode_M80() {
  2805. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2806. // If you have a switch on suicide pin, this is useful
  2807. // if you want to start another print with suicide feature after
  2808. // a print without suicide...
  2809. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2810. OUT_WRITE(SUICIDE_PIN, HIGH);
  2811. #endif
  2812. #ifdef ULTIPANEL
  2813. powersupply = true;
  2814. LCD_MESSAGEPGM(WELCOME_MSG);
  2815. lcd_update();
  2816. #endif
  2817. }
  2818. #endif // PS_ON_PIN
  2819. /**
  2820. * M81: Turn off Power Supply
  2821. */
  2822. inline void gcode_M81() {
  2823. disable_heater();
  2824. st_synchronize();
  2825. disable_e0();
  2826. disable_e1();
  2827. disable_e2();
  2828. disable_e3();
  2829. finishAndDisableSteppers();
  2830. fanSpeed = 0;
  2831. delay(1000); // Wait 1 second before switching off
  2832. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2833. st_synchronize();
  2834. suicide();
  2835. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2836. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2837. #endif
  2838. #ifdef ULTIPANEL
  2839. powersupply = false;
  2840. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2841. lcd_update();
  2842. #endif
  2843. }
  2844. /**
  2845. * M82: Set E codes absolute (default)
  2846. */
  2847. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2848. /**
  2849. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2850. */
  2851. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2852. /**
  2853. * M18, M84: Disable all stepper motors
  2854. */
  2855. inline void gcode_M18_M84() {
  2856. if (code_seen('S')) {
  2857. stepper_inactive_time = code_value() * 1000;
  2858. }
  2859. else {
  2860. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2861. if (all_axis) {
  2862. st_synchronize();
  2863. disable_e0();
  2864. disable_e1();
  2865. disable_e2();
  2866. disable_e3();
  2867. finishAndDisableSteppers();
  2868. }
  2869. else {
  2870. st_synchronize();
  2871. if (code_seen('X')) disable_x();
  2872. if (code_seen('Y')) disable_y();
  2873. if (code_seen('Z')) disable_z();
  2874. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2875. if (code_seen('E')) {
  2876. disable_e0();
  2877. disable_e1();
  2878. disable_e2();
  2879. disable_e3();
  2880. }
  2881. #endif
  2882. }
  2883. }
  2884. }
  2885. /**
  2886. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2887. */
  2888. inline void gcode_M85() {
  2889. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2890. }
  2891. /**
  2892. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2893. */
  2894. inline void gcode_M92() {
  2895. for(int8_t i=0; i < NUM_AXIS; i++) {
  2896. if (code_seen(axis_codes[i])) {
  2897. if (i == E_AXIS) {
  2898. float value = code_value();
  2899. if (value < 20.0) {
  2900. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2901. max_e_jerk *= factor;
  2902. max_feedrate[i] *= factor;
  2903. axis_steps_per_sqr_second[i] *= factor;
  2904. }
  2905. axis_steps_per_unit[i] = value;
  2906. }
  2907. else {
  2908. axis_steps_per_unit[i] = code_value();
  2909. }
  2910. }
  2911. }
  2912. }
  2913. /**
  2914. * M114: Output current position to serial port
  2915. */
  2916. inline void gcode_M114() {
  2917. SERIAL_PROTOCOLPGM("X:");
  2918. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2919. SERIAL_PROTOCOLPGM(" Y:");
  2920. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2921. SERIAL_PROTOCOLPGM(" Z:");
  2922. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2923. SERIAL_PROTOCOLPGM(" E:");
  2924. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2925. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2926. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2927. SERIAL_PROTOCOLPGM(" Y:");
  2928. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2929. SERIAL_PROTOCOLPGM(" Z:");
  2930. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2931. SERIAL_PROTOCOLLN("");
  2932. #ifdef SCARA
  2933. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2934. SERIAL_PROTOCOL(delta[X_AXIS]);
  2935. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2936. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2937. SERIAL_PROTOCOLLN("");
  2938. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2939. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2940. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2941. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2942. SERIAL_PROTOCOLLN("");
  2943. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2944. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2945. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2946. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2947. SERIAL_PROTOCOLLN("");
  2948. SERIAL_PROTOCOLLN("");
  2949. #endif
  2950. }
  2951. /**
  2952. * M115: Capabilities string
  2953. */
  2954. inline void gcode_M115() {
  2955. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2956. }
  2957. /**
  2958. * M117: Set LCD Status Message
  2959. */
  2960. inline void gcode_M117() {
  2961. char* codepos = strchr_pointer + 5;
  2962. char* starpos = strchr(codepos, '*');
  2963. if (starpos) *starpos = '\0';
  2964. lcd_setstatus(codepos);
  2965. }
  2966. /**
  2967. * M119: Output endstop states to serial output
  2968. */
  2969. inline void gcode_M119() {
  2970. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2971. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2972. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2973. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2974. #endif
  2975. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2976. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2977. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2978. #endif
  2979. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2980. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2981. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2982. #endif
  2983. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2984. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2985. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2986. #endif
  2987. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2988. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2989. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2990. #endif
  2991. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2992. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2993. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2994. #endif
  2995. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  2996. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  2997. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2998. #endif
  2999. }
  3000. /**
  3001. * M120: Enable endstops
  3002. */
  3003. inline void gcode_M120() { enable_endstops(false); }
  3004. /**
  3005. * M121: Disable endstops
  3006. */
  3007. inline void gcode_M121() { enable_endstops(true); }
  3008. #ifdef BLINKM
  3009. /**
  3010. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3011. */
  3012. inline void gcode_M150() {
  3013. SendColors(
  3014. code_seen('R') ? (byte)code_value() : 0,
  3015. code_seen('U') ? (byte)code_value() : 0,
  3016. code_seen('B') ? (byte)code_value() : 0
  3017. );
  3018. }
  3019. #endif // BLINKM
  3020. /**
  3021. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3022. * T<extruder>
  3023. * D<millimeters>
  3024. */
  3025. inline void gcode_M200() {
  3026. tmp_extruder = active_extruder;
  3027. if (code_seen('T')) {
  3028. tmp_extruder = code_value();
  3029. if (tmp_extruder >= EXTRUDERS) {
  3030. SERIAL_ECHO_START;
  3031. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3032. return;
  3033. }
  3034. }
  3035. float area = .0;
  3036. if (code_seen('D')) {
  3037. float diameter = code_value();
  3038. // setting any extruder filament size disables volumetric on the assumption that
  3039. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3040. // for all extruders
  3041. volumetric_enabled = (diameter != 0.0);
  3042. if (volumetric_enabled) {
  3043. filament_size[tmp_extruder] = diameter;
  3044. // make sure all extruders have some sane value for the filament size
  3045. for (int i=0; i<EXTRUDERS; i++)
  3046. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3047. }
  3048. }
  3049. else {
  3050. //reserved for setting filament diameter via UFID or filament measuring device
  3051. return;
  3052. }
  3053. calculate_volumetric_multipliers();
  3054. }
  3055. /**
  3056. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3057. */
  3058. inline void gcode_M201() {
  3059. for (int8_t i=0; i < NUM_AXIS; i++) {
  3060. if (code_seen(axis_codes[i])) {
  3061. max_acceleration_units_per_sq_second[i] = code_value();
  3062. }
  3063. }
  3064. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3065. reset_acceleration_rates();
  3066. }
  3067. #if 0 // Not used for Sprinter/grbl gen6
  3068. inline void gcode_M202() {
  3069. for(int8_t i=0; i < NUM_AXIS; i++) {
  3070. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3071. }
  3072. }
  3073. #endif
  3074. /**
  3075. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3076. */
  3077. inline void gcode_M203() {
  3078. for (int8_t i=0; i < NUM_AXIS; i++) {
  3079. if (code_seen(axis_codes[i])) {
  3080. max_feedrate[i] = code_value();
  3081. }
  3082. }
  3083. }
  3084. /**
  3085. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3086. *
  3087. * P = Printing moves
  3088. * R = Retract only (no X, Y, Z) moves
  3089. * T = Travel (non printing) moves
  3090. *
  3091. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3092. */
  3093. inline void gcode_M204() {
  3094. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3095. {
  3096. acceleration = code_value();
  3097. travel_acceleration = acceleration;
  3098. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3099. SERIAL_EOL;
  3100. }
  3101. if (code_seen('P'))
  3102. {
  3103. acceleration = code_value();
  3104. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3105. SERIAL_EOL;
  3106. }
  3107. if (code_seen('R'))
  3108. {
  3109. retract_acceleration = code_value();
  3110. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3111. SERIAL_EOL;
  3112. }
  3113. if (code_seen('T'))
  3114. {
  3115. travel_acceleration = code_value();
  3116. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3117. SERIAL_EOL;
  3118. }
  3119. }
  3120. /**
  3121. * M205: Set Advanced Settings
  3122. *
  3123. * S = Min Feed Rate (mm/s)
  3124. * T = Min Travel Feed Rate (mm/s)
  3125. * B = Min Segment Time (µs)
  3126. * X = Max XY Jerk (mm/s/s)
  3127. * Z = Max Z Jerk (mm/s/s)
  3128. * E = Max E Jerk (mm/s/s)
  3129. */
  3130. inline void gcode_M205() {
  3131. if (code_seen('S')) minimumfeedrate = code_value();
  3132. if (code_seen('T')) mintravelfeedrate = code_value();
  3133. if (code_seen('B')) minsegmenttime = code_value();
  3134. if (code_seen('X')) max_xy_jerk = code_value();
  3135. if (code_seen('Z')) max_z_jerk = code_value();
  3136. if (code_seen('E')) max_e_jerk = code_value();
  3137. }
  3138. /**
  3139. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3140. */
  3141. inline void gcode_M206() {
  3142. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3143. if (code_seen(axis_codes[i])) {
  3144. home_offset[i] = code_value();
  3145. }
  3146. }
  3147. #ifdef SCARA
  3148. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3149. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3150. #endif
  3151. }
  3152. #ifdef DELTA
  3153. /**
  3154. * M665: Set delta configurations
  3155. *
  3156. * L = diagonal rod
  3157. * R = delta radius
  3158. * S = segments per second
  3159. */
  3160. inline void gcode_M665() {
  3161. if (code_seen('L')) delta_diagonal_rod = code_value();
  3162. if (code_seen('R')) delta_radius = code_value();
  3163. if (code_seen('S')) delta_segments_per_second = code_value();
  3164. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3165. }
  3166. /**
  3167. * M666: Set delta endstop adjustment
  3168. */
  3169. inline void gcode_M666() {
  3170. for (int8_t i = 0; i < 3; i++) {
  3171. if (code_seen(axis_codes[i])) {
  3172. endstop_adj[i] = code_value();
  3173. }
  3174. }
  3175. }
  3176. #elif defined(Z_DUAL_ENDSTOPS)
  3177. /**
  3178. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3179. */
  3180. inline void gcode_M666() {
  3181. if (code_seen('Z')) z_endstop_adj = code_value();
  3182. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3183. SERIAL_EOL;
  3184. }
  3185. #endif // DELTA
  3186. #ifdef FWRETRACT
  3187. /**
  3188. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3189. */
  3190. inline void gcode_M207() {
  3191. if (code_seen('S')) retract_length = code_value();
  3192. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3193. if (code_seen('Z')) retract_zlift = code_value();
  3194. }
  3195. /**
  3196. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3197. */
  3198. inline void gcode_M208() {
  3199. if (code_seen('S')) retract_recover_length = code_value();
  3200. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3201. }
  3202. /**
  3203. * M209: Enable automatic retract (M209 S1)
  3204. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3205. */
  3206. inline void gcode_M209() {
  3207. if (code_seen('S')) {
  3208. int t = code_value();
  3209. switch(t) {
  3210. case 0:
  3211. autoretract_enabled = false;
  3212. break;
  3213. case 1:
  3214. autoretract_enabled = true;
  3215. break;
  3216. default:
  3217. SERIAL_ECHO_START;
  3218. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3219. SERIAL_ECHO(cmdbuffer[bufindr]);
  3220. SERIAL_ECHOLNPGM("\"");
  3221. return;
  3222. }
  3223. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3224. }
  3225. }
  3226. #endif // FWRETRACT
  3227. #if EXTRUDERS > 1
  3228. /**
  3229. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3230. */
  3231. inline void gcode_M218() {
  3232. if (setTargetedHotend(218)) return;
  3233. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3234. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3235. #ifdef DUAL_X_CARRIAGE
  3236. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3237. #endif
  3238. SERIAL_ECHO_START;
  3239. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3240. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3241. SERIAL_ECHO(" ");
  3242. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3243. SERIAL_ECHO(",");
  3244. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3245. #ifdef DUAL_X_CARRIAGE
  3246. SERIAL_ECHO(",");
  3247. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3248. #endif
  3249. }
  3250. SERIAL_EOL;
  3251. }
  3252. #endif // EXTRUDERS > 1
  3253. /**
  3254. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3255. */
  3256. inline void gcode_M220() {
  3257. if (code_seen('S')) feedmultiply = code_value();
  3258. }
  3259. /**
  3260. * M221: Set extrusion percentage (M221 T0 S95)
  3261. */
  3262. inline void gcode_M221() {
  3263. if (code_seen('S')) {
  3264. int sval = code_value();
  3265. if (code_seen('T')) {
  3266. if (setTargetedHotend(221)) return;
  3267. extruder_multiply[tmp_extruder] = sval;
  3268. }
  3269. else {
  3270. extrudemultiply = sval;
  3271. }
  3272. }
  3273. }
  3274. /**
  3275. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3276. */
  3277. inline void gcode_M226() {
  3278. if (code_seen('P')) {
  3279. int pin_number = code_value();
  3280. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3281. if (pin_state >= -1 && pin_state <= 1) {
  3282. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3283. if (sensitive_pins[i] == pin_number) {
  3284. pin_number = -1;
  3285. break;
  3286. }
  3287. }
  3288. if (pin_number > -1) {
  3289. int target = LOW;
  3290. st_synchronize();
  3291. pinMode(pin_number, INPUT);
  3292. switch(pin_state){
  3293. case 1:
  3294. target = HIGH;
  3295. break;
  3296. case 0:
  3297. target = LOW;
  3298. break;
  3299. case -1:
  3300. target = !digitalRead(pin_number);
  3301. break;
  3302. }
  3303. while(digitalRead(pin_number) != target) {
  3304. manage_heater();
  3305. manage_inactivity();
  3306. lcd_update();
  3307. }
  3308. } // pin_number > -1
  3309. } // pin_state -1 0 1
  3310. } // code_seen('P')
  3311. }
  3312. #if NUM_SERVOS > 0
  3313. /**
  3314. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3315. */
  3316. inline void gcode_M280() {
  3317. int servo_index = code_seen('P') ? code_value() : -1;
  3318. int servo_position = 0;
  3319. if (code_seen('S')) {
  3320. servo_position = code_value();
  3321. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3322. #if SERVO_LEVELING
  3323. servos[servo_index].attach(0);
  3324. #endif
  3325. servos[servo_index].write(servo_position);
  3326. #if SERVO_LEVELING
  3327. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3328. servos[servo_index].detach();
  3329. #endif
  3330. }
  3331. else {
  3332. SERIAL_ECHO_START;
  3333. SERIAL_ECHO("Servo ");
  3334. SERIAL_ECHO(servo_index);
  3335. SERIAL_ECHOLN(" out of range");
  3336. }
  3337. }
  3338. else if (servo_index >= 0) {
  3339. SERIAL_PROTOCOL(MSG_OK);
  3340. SERIAL_PROTOCOL(" Servo ");
  3341. SERIAL_PROTOCOL(servo_index);
  3342. SERIAL_PROTOCOL(": ");
  3343. SERIAL_PROTOCOL(servos[servo_index].read());
  3344. SERIAL_PROTOCOLLN("");
  3345. }
  3346. }
  3347. #endif // NUM_SERVOS > 0
  3348. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3349. /**
  3350. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3351. */
  3352. inline void gcode_M300() {
  3353. int beepS = code_seen('S') ? code_value() : 110;
  3354. int beepP = code_seen('P') ? code_value() : 1000;
  3355. if (beepS > 0) {
  3356. #if BEEPER > 0
  3357. tone(BEEPER, beepS);
  3358. delay(beepP);
  3359. noTone(BEEPER);
  3360. #elif defined(ULTRALCD)
  3361. lcd_buzz(beepS, beepP);
  3362. #elif defined(LCD_USE_I2C_BUZZER)
  3363. lcd_buzz(beepP, beepS);
  3364. #endif
  3365. }
  3366. else {
  3367. delay(beepP);
  3368. }
  3369. }
  3370. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3371. #ifdef PIDTEMP
  3372. /**
  3373. * M301: Set PID parameters P I D (and optionally C)
  3374. */
  3375. inline void gcode_M301() {
  3376. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3377. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3378. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3379. if (e < EXTRUDERS) { // catch bad input value
  3380. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3381. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3382. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3383. #ifdef PID_ADD_EXTRUSION_RATE
  3384. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3385. #endif
  3386. updatePID();
  3387. SERIAL_PROTOCOL(MSG_OK);
  3388. #ifdef PID_PARAMS_PER_EXTRUDER
  3389. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3390. SERIAL_PROTOCOL(e);
  3391. #endif // PID_PARAMS_PER_EXTRUDER
  3392. SERIAL_PROTOCOL(" p:");
  3393. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3394. SERIAL_PROTOCOL(" i:");
  3395. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3396. SERIAL_PROTOCOL(" d:");
  3397. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3398. #ifdef PID_ADD_EXTRUSION_RATE
  3399. SERIAL_PROTOCOL(" c:");
  3400. //Kc does not have scaling applied above, or in resetting defaults
  3401. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3402. #endif
  3403. SERIAL_PROTOCOLLN("");
  3404. }
  3405. else {
  3406. SERIAL_ECHO_START;
  3407. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3408. }
  3409. }
  3410. #endif // PIDTEMP
  3411. #ifdef PIDTEMPBED
  3412. inline void gcode_M304() {
  3413. if (code_seen('P')) bedKp = code_value();
  3414. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3415. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3416. updatePID();
  3417. SERIAL_PROTOCOL(MSG_OK);
  3418. SERIAL_PROTOCOL(" p:");
  3419. SERIAL_PROTOCOL(bedKp);
  3420. SERIAL_PROTOCOL(" i:");
  3421. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3422. SERIAL_PROTOCOL(" d:");
  3423. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3424. SERIAL_PROTOCOLLN("");
  3425. }
  3426. #endif // PIDTEMPBED
  3427. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3428. /**
  3429. * M240: Trigger a camera by emulating a Canon RC-1
  3430. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3431. */
  3432. inline void gcode_M240() {
  3433. #ifdef CHDK
  3434. OUT_WRITE(CHDK, HIGH);
  3435. chdkHigh = millis();
  3436. chdkActive = true;
  3437. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3438. const uint8_t NUM_PULSES = 16;
  3439. const float PULSE_LENGTH = 0.01524;
  3440. for (int i = 0; i < NUM_PULSES; i++) {
  3441. WRITE(PHOTOGRAPH_PIN, HIGH);
  3442. _delay_ms(PULSE_LENGTH);
  3443. WRITE(PHOTOGRAPH_PIN, LOW);
  3444. _delay_ms(PULSE_LENGTH);
  3445. }
  3446. delay(7.33);
  3447. for (int i = 0; i < NUM_PULSES; i++) {
  3448. WRITE(PHOTOGRAPH_PIN, HIGH);
  3449. _delay_ms(PULSE_LENGTH);
  3450. WRITE(PHOTOGRAPH_PIN, LOW);
  3451. _delay_ms(PULSE_LENGTH);
  3452. }
  3453. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3454. }
  3455. #endif // CHDK || PHOTOGRAPH_PIN
  3456. #ifdef DOGLCD
  3457. /**
  3458. * M250: Read and optionally set the LCD contrast
  3459. */
  3460. inline void gcode_M250() {
  3461. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3462. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3463. SERIAL_PROTOCOL(lcd_contrast);
  3464. SERIAL_PROTOCOLLN("");
  3465. }
  3466. #endif // DOGLCD
  3467. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3468. /**
  3469. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3470. */
  3471. inline void gcode_M302() {
  3472. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3473. }
  3474. #endif // PREVENT_DANGEROUS_EXTRUDE
  3475. /**
  3476. * M303: PID relay autotune
  3477. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3478. * E<extruder> (-1 for the bed)
  3479. * C<cycles>
  3480. */
  3481. inline void gcode_M303() {
  3482. int e = code_seen('E') ? code_value_long() : 0;
  3483. int c = code_seen('C') ? code_value_long() : 5;
  3484. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3485. PID_autotune(temp, e, c);
  3486. }
  3487. #ifdef SCARA
  3488. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3489. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3490. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3491. if (! Stopped) {
  3492. //get_coordinates(); // For X Y Z E F
  3493. delta[X_AXIS] = delta_x;
  3494. delta[Y_AXIS] = delta_y;
  3495. calculate_SCARA_forward_Transform(delta);
  3496. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3497. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3498. prepare_move();
  3499. //ClearToSend();
  3500. return true;
  3501. }
  3502. return false;
  3503. }
  3504. /**
  3505. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3506. */
  3507. inline bool gcode_M360() {
  3508. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3509. return SCARA_move_to_cal(0, 120);
  3510. }
  3511. /**
  3512. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3513. */
  3514. inline bool gcode_M361() {
  3515. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3516. return SCARA_move_to_cal(90, 130);
  3517. }
  3518. /**
  3519. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3520. */
  3521. inline bool gcode_M362() {
  3522. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3523. return SCARA_move_to_cal(60, 180);
  3524. }
  3525. /**
  3526. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3527. */
  3528. inline bool gcode_M363() {
  3529. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3530. return SCARA_move_to_cal(50, 90);
  3531. }
  3532. /**
  3533. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3534. */
  3535. inline bool gcode_M364() {
  3536. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3537. return SCARA_move_to_cal(45, 135);
  3538. }
  3539. /**
  3540. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3541. */
  3542. inline void gcode_M365() {
  3543. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3544. if (code_seen(axis_codes[i])) {
  3545. axis_scaling[i] = code_value();
  3546. }
  3547. }
  3548. }
  3549. #endif // SCARA
  3550. #ifdef EXT_SOLENOID
  3551. void enable_solenoid(uint8_t num) {
  3552. switch(num) {
  3553. case 0:
  3554. OUT_WRITE(SOL0_PIN, HIGH);
  3555. break;
  3556. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3557. case 1:
  3558. OUT_WRITE(SOL1_PIN, HIGH);
  3559. break;
  3560. #endif
  3561. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3562. case 2:
  3563. OUT_WRITE(SOL2_PIN, HIGH);
  3564. break;
  3565. #endif
  3566. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3567. case 3:
  3568. OUT_WRITE(SOL3_PIN, HIGH);
  3569. break;
  3570. #endif
  3571. default:
  3572. SERIAL_ECHO_START;
  3573. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3574. break;
  3575. }
  3576. }
  3577. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3578. void disable_all_solenoids() {
  3579. OUT_WRITE(SOL0_PIN, LOW);
  3580. OUT_WRITE(SOL1_PIN, LOW);
  3581. OUT_WRITE(SOL2_PIN, LOW);
  3582. OUT_WRITE(SOL3_PIN, LOW);
  3583. }
  3584. /**
  3585. * M380: Enable solenoid on the active extruder
  3586. */
  3587. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3588. /**
  3589. * M381: Disable all solenoids
  3590. */
  3591. inline void gcode_M381() { disable_all_solenoids(); }
  3592. #endif // EXT_SOLENOID
  3593. /**
  3594. * M400: Finish all moves
  3595. */
  3596. inline void gcode_M400() { st_synchronize(); }
  3597. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3598. /**
  3599. * M401: Engage Z Servo endstop if available
  3600. */
  3601. inline void gcode_M401() { engage_z_probe(); }
  3602. /**
  3603. * M402: Retract Z Servo endstop if enabled
  3604. */
  3605. inline void gcode_M402() { retract_z_probe(); }
  3606. #endif
  3607. #ifdef FILAMENT_SENSOR
  3608. /**
  3609. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3610. */
  3611. inline void gcode_M404() {
  3612. #if FILWIDTH_PIN > -1
  3613. if (code_seen('W')) {
  3614. filament_width_nominal = code_value();
  3615. }
  3616. else {
  3617. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3618. SERIAL_PROTOCOLLN(filament_width_nominal);
  3619. }
  3620. #endif
  3621. }
  3622. /**
  3623. * M405: Turn on filament sensor for control
  3624. */
  3625. inline void gcode_M405() {
  3626. if (code_seen('D')) meas_delay_cm = code_value();
  3627. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3628. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3629. int temp_ratio = widthFil_to_size_ratio();
  3630. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3631. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3632. delay_index1 = delay_index2 = 0;
  3633. }
  3634. filament_sensor = true;
  3635. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3636. //SERIAL_PROTOCOL(filament_width_meas);
  3637. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3638. //SERIAL_PROTOCOL(extrudemultiply);
  3639. }
  3640. /**
  3641. * M406: Turn off filament sensor for control
  3642. */
  3643. inline void gcode_M406() { filament_sensor = false; }
  3644. /**
  3645. * M407: Get measured filament diameter on serial output
  3646. */
  3647. inline void gcode_M407() {
  3648. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3649. SERIAL_PROTOCOLLN(filament_width_meas);
  3650. }
  3651. #endif // FILAMENT_SENSOR
  3652. /**
  3653. * M500: Store settings in EEPROM
  3654. */
  3655. inline void gcode_M500() {
  3656. Config_StoreSettings();
  3657. }
  3658. /**
  3659. * M501: Read settings from EEPROM
  3660. */
  3661. inline void gcode_M501() {
  3662. Config_RetrieveSettings();
  3663. }
  3664. /**
  3665. * M502: Revert to default settings
  3666. */
  3667. inline void gcode_M502() {
  3668. Config_ResetDefault();
  3669. }
  3670. /**
  3671. * M503: print settings currently in memory
  3672. */
  3673. inline void gcode_M503() {
  3674. Config_PrintSettings(code_seen('S') && code_value == 0);
  3675. }
  3676. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3677. /**
  3678. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3679. */
  3680. inline void gcode_M540() {
  3681. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3682. }
  3683. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3684. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3685. inline void gcode_SET_Z_PROBE_OFFSET() {
  3686. float value;
  3687. if (code_seen('Z')) {
  3688. value = code_value();
  3689. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3690. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3691. SERIAL_ECHO_START;
  3692. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3693. SERIAL_PROTOCOLLN("");
  3694. }
  3695. else {
  3696. SERIAL_ECHO_START;
  3697. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3698. SERIAL_ECHOPGM(MSG_Z_MIN);
  3699. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3700. SERIAL_ECHOPGM(MSG_Z_MAX);
  3701. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3702. SERIAL_PROTOCOLLN("");
  3703. }
  3704. }
  3705. else {
  3706. SERIAL_ECHO_START;
  3707. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3708. SERIAL_ECHO(-zprobe_zoffset);
  3709. SERIAL_PROTOCOLLN("");
  3710. }
  3711. }
  3712. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3713. #ifdef FILAMENTCHANGEENABLE
  3714. /**
  3715. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3716. */
  3717. inline void gcode_M600() {
  3718. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3719. for (int i=0; i<NUM_AXIS; i++)
  3720. target[i] = lastpos[i] = current_position[i];
  3721. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3722. #ifdef DELTA
  3723. #define RUNPLAN calculate_delta(target); BASICPLAN
  3724. #else
  3725. #define RUNPLAN BASICPLAN
  3726. #endif
  3727. //retract by E
  3728. if (code_seen('E')) target[E_AXIS] += code_value();
  3729. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3730. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3731. #endif
  3732. RUNPLAN;
  3733. //lift Z
  3734. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3735. #ifdef FILAMENTCHANGE_ZADD
  3736. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3737. #endif
  3738. RUNPLAN;
  3739. //move xy
  3740. if (code_seen('X')) target[X_AXIS] = code_value();
  3741. #ifdef FILAMENTCHANGE_XPOS
  3742. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3743. #endif
  3744. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3745. #ifdef FILAMENTCHANGE_YPOS
  3746. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3747. #endif
  3748. RUNPLAN;
  3749. if (code_seen('L')) target[E_AXIS] += code_value();
  3750. #ifdef FILAMENTCHANGE_FINALRETRACT
  3751. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3752. #endif
  3753. RUNPLAN;
  3754. //finish moves
  3755. st_synchronize();
  3756. //disable extruder steppers so filament can be removed
  3757. disable_e0();
  3758. disable_e1();
  3759. disable_e2();
  3760. disable_e3();
  3761. delay(100);
  3762. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3763. uint8_t cnt = 0;
  3764. while (!lcd_clicked()) {
  3765. cnt++;
  3766. manage_heater();
  3767. manage_inactivity(true);
  3768. lcd_update();
  3769. if (cnt == 0) {
  3770. #if BEEPER > 0
  3771. OUT_WRITE(BEEPER,HIGH);
  3772. delay(3);
  3773. WRITE(BEEPER,LOW);
  3774. delay(3);
  3775. #else
  3776. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3777. lcd_buzz(1000/6, 100);
  3778. #else
  3779. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3780. #endif
  3781. #endif
  3782. }
  3783. } // while(!lcd_clicked)
  3784. //return to normal
  3785. if (code_seen('L')) target[E_AXIS] -= code_value();
  3786. #ifdef FILAMENTCHANGE_FINALRETRACT
  3787. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3788. #endif
  3789. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3790. plan_set_e_position(current_position[E_AXIS]);
  3791. RUNPLAN; //should do nothing
  3792. lcd_reset_alert_level();
  3793. #ifdef DELTA
  3794. calculate_delta(lastpos);
  3795. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3796. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3797. #else
  3798. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3799. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3800. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3801. #endif
  3802. #ifdef FILAMENT_RUNOUT_SENSOR
  3803. filrunoutEnqued = false;
  3804. #endif
  3805. }
  3806. #endif // FILAMENTCHANGEENABLE
  3807. #ifdef DUAL_X_CARRIAGE
  3808. /**
  3809. * M605: Set dual x-carriage movement mode
  3810. *
  3811. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3812. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3813. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3814. * millimeters x-offset and an optional differential hotend temperature of
  3815. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3816. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3817. *
  3818. * Note: the X axis should be homed after changing dual x-carriage mode.
  3819. */
  3820. inline void gcode_M605() {
  3821. st_synchronize();
  3822. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3823. switch(dual_x_carriage_mode) {
  3824. case DXC_DUPLICATION_MODE:
  3825. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3826. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3827. SERIAL_ECHO_START;
  3828. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3829. SERIAL_ECHO(" ");
  3830. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3831. SERIAL_ECHO(",");
  3832. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3833. SERIAL_ECHO(" ");
  3834. SERIAL_ECHO(duplicate_extruder_x_offset);
  3835. SERIAL_ECHO(",");
  3836. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3837. break;
  3838. case DXC_FULL_CONTROL_MODE:
  3839. case DXC_AUTO_PARK_MODE:
  3840. break;
  3841. default:
  3842. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3843. break;
  3844. }
  3845. active_extruder_parked = false;
  3846. extruder_duplication_enabled = false;
  3847. delayed_move_time = 0;
  3848. }
  3849. #endif // DUAL_X_CARRIAGE
  3850. /**
  3851. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3852. */
  3853. inline void gcode_M907() {
  3854. #if HAS_DIGIPOTSS
  3855. for (int i=0;i<NUM_AXIS;i++)
  3856. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3857. if (code_seen('B')) digipot_current(4, code_value());
  3858. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3859. #endif
  3860. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3861. if (code_seen('X')) digipot_current(0, code_value());
  3862. #endif
  3863. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3864. if (code_seen('Z')) digipot_current(1, code_value());
  3865. #endif
  3866. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3867. if (code_seen('E')) digipot_current(2, code_value());
  3868. #endif
  3869. #ifdef DIGIPOT_I2C
  3870. // this one uses actual amps in floating point
  3871. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3872. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3873. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3874. #endif
  3875. }
  3876. #if HAS_DIGIPOTSS
  3877. /**
  3878. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3879. */
  3880. inline void gcode_M908() {
  3881. digitalPotWrite(
  3882. code_seen('P') ? code_value() : 0,
  3883. code_seen('S') ? code_value() : 0
  3884. );
  3885. }
  3886. #endif // HAS_DIGIPOTSS
  3887. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3888. inline void gcode_M350() {
  3889. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3890. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3891. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3892. if(code_seen('B')) microstep_mode(4,code_value());
  3893. microstep_readings();
  3894. #endif
  3895. }
  3896. /**
  3897. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3898. * S# determines MS1 or MS2, X# sets the pin high/low.
  3899. */
  3900. inline void gcode_M351() {
  3901. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3902. if (code_seen('S')) switch(code_value_long()) {
  3903. case 1:
  3904. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3905. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3906. break;
  3907. case 2:
  3908. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3909. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3910. break;
  3911. }
  3912. microstep_readings();
  3913. #endif
  3914. }
  3915. /**
  3916. * M999: Restart after being stopped
  3917. */
  3918. inline void gcode_M999() {
  3919. Stopped = false;
  3920. lcd_reset_alert_level();
  3921. gcode_LastN = Stopped_gcode_LastN;
  3922. FlushSerialRequestResend();
  3923. }
  3924. inline void gcode_T() {
  3925. tmp_extruder = code_value();
  3926. if (tmp_extruder >= EXTRUDERS) {
  3927. SERIAL_ECHO_START;
  3928. SERIAL_ECHO("T");
  3929. SERIAL_ECHO(tmp_extruder);
  3930. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3931. }
  3932. else {
  3933. boolean make_move = false;
  3934. if (code_seen('F')) {
  3935. make_move = true;
  3936. next_feedrate = code_value();
  3937. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3938. }
  3939. #if EXTRUDERS > 1
  3940. if (tmp_extruder != active_extruder) {
  3941. // Save current position to return to after applying extruder offset
  3942. memcpy(destination, current_position, sizeof(destination));
  3943. #ifdef DUAL_X_CARRIAGE
  3944. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3945. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3946. // Park old head: 1) raise 2) move to park position 3) lower
  3947. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3948. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3949. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3950. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3951. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3952. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3953. st_synchronize();
  3954. }
  3955. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3956. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3957. extruder_offset[Y_AXIS][active_extruder] +
  3958. extruder_offset[Y_AXIS][tmp_extruder];
  3959. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3960. extruder_offset[Z_AXIS][active_extruder] +
  3961. extruder_offset[Z_AXIS][tmp_extruder];
  3962. active_extruder = tmp_extruder;
  3963. // This function resets the max/min values - the current position may be overwritten below.
  3964. axis_is_at_home(X_AXIS);
  3965. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3966. current_position[X_AXIS] = inactive_extruder_x_pos;
  3967. inactive_extruder_x_pos = destination[X_AXIS];
  3968. }
  3969. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3970. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3971. if (active_extruder == 0 || active_extruder_parked)
  3972. current_position[X_AXIS] = inactive_extruder_x_pos;
  3973. else
  3974. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3975. inactive_extruder_x_pos = destination[X_AXIS];
  3976. extruder_duplication_enabled = false;
  3977. }
  3978. else {
  3979. // record raised toolhead position for use by unpark
  3980. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3981. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3982. active_extruder_parked = true;
  3983. delayed_move_time = 0;
  3984. }
  3985. #else // !DUAL_X_CARRIAGE
  3986. // Offset extruder (only by XY)
  3987. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3988. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3989. // Set the new active extruder and position
  3990. active_extruder = tmp_extruder;
  3991. #endif // !DUAL_X_CARRIAGE
  3992. #ifdef DELTA
  3993. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3994. //sent position to plan_set_position();
  3995. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3996. #else
  3997. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3998. #endif
  3999. // Move to the old position if 'F' was in the parameters
  4000. if (make_move && !Stopped) prepare_move();
  4001. }
  4002. #ifdef EXT_SOLENOID
  4003. st_synchronize();
  4004. disable_all_solenoids();
  4005. enable_solenoid_on_active_extruder();
  4006. #endif // EXT_SOLENOID
  4007. #endif // EXTRUDERS > 1
  4008. SERIAL_ECHO_START;
  4009. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4010. SERIAL_PROTOCOLLN((int)active_extruder);
  4011. }
  4012. }
  4013. /**
  4014. * Process Commands and dispatch them to handlers
  4015. */
  4016. void process_commands() {
  4017. if (code_seen('G')) {
  4018. int gCode = code_value_long();
  4019. switch(gCode) {
  4020. // G0, G1
  4021. case 0:
  4022. case 1:
  4023. gcode_G0_G1();
  4024. break;
  4025. // G2, G3
  4026. #ifndef SCARA
  4027. case 2: // G2 - CW ARC
  4028. case 3: // G3 - CCW ARC
  4029. gcode_G2_G3(gCode == 2);
  4030. break;
  4031. #endif
  4032. // G4 Dwell
  4033. case 4:
  4034. gcode_G4();
  4035. break;
  4036. #ifdef FWRETRACT
  4037. case 10: // G10: retract
  4038. case 11: // G11: retract_recover
  4039. gcode_G10_G11(gCode == 10);
  4040. break;
  4041. #endif //FWRETRACT
  4042. case 28: // G28: Home all axes, one at a time
  4043. gcode_G28();
  4044. break;
  4045. #if defined(MESH_BED_LEVELING)
  4046. case 29: // G29 Handle mesh based leveling
  4047. gcode_G29();
  4048. break;
  4049. #endif
  4050. #ifdef ENABLE_AUTO_BED_LEVELING
  4051. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4052. gcode_G29();
  4053. break;
  4054. #ifndef Z_PROBE_SLED
  4055. case 30: // G30 Single Z Probe
  4056. gcode_G30();
  4057. break;
  4058. #else // Z_PROBE_SLED
  4059. case 31: // G31: dock the sled
  4060. case 32: // G32: undock the sled
  4061. dock_sled(gCode == 31);
  4062. break;
  4063. #endif // Z_PROBE_SLED
  4064. #endif // ENABLE_AUTO_BED_LEVELING
  4065. case 90: // G90
  4066. relative_mode = false;
  4067. break;
  4068. case 91: // G91
  4069. relative_mode = true;
  4070. break;
  4071. case 92: // G92
  4072. gcode_G92();
  4073. break;
  4074. }
  4075. }
  4076. else if (code_seen('M')) {
  4077. switch( code_value_long() ) {
  4078. #ifdef ULTIPANEL
  4079. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4080. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4081. gcode_M0_M1();
  4082. break;
  4083. #endif // ULTIPANEL
  4084. case 17:
  4085. gcode_M17();
  4086. break;
  4087. #ifdef SDSUPPORT
  4088. case 20: // M20 - list SD card
  4089. gcode_M20(); break;
  4090. case 21: // M21 - init SD card
  4091. gcode_M21(); break;
  4092. case 22: //M22 - release SD card
  4093. gcode_M22(); break;
  4094. case 23: //M23 - Select file
  4095. gcode_M23(); break;
  4096. case 24: //M24 - Start SD print
  4097. gcode_M24(); break;
  4098. case 25: //M25 - Pause SD print
  4099. gcode_M25(); break;
  4100. case 26: //M26 - Set SD index
  4101. gcode_M26(); break;
  4102. case 27: //M27 - Get SD status
  4103. gcode_M27(); break;
  4104. case 28: //M28 - Start SD write
  4105. gcode_M28(); break;
  4106. case 29: //M29 - Stop SD write
  4107. gcode_M29(); break;
  4108. case 30: //M30 <filename> Delete File
  4109. gcode_M30(); break;
  4110. case 32: //M32 - Select file and start SD print
  4111. gcode_M32(); break;
  4112. case 928: //M928 - Start SD write
  4113. gcode_M928(); break;
  4114. #endif //SDSUPPORT
  4115. case 31: //M31 take time since the start of the SD print or an M109 command
  4116. gcode_M31();
  4117. break;
  4118. case 42: //M42 -Change pin status via gcode
  4119. gcode_M42();
  4120. break;
  4121. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4122. case 48: // M48 Z-Probe repeatability
  4123. gcode_M48();
  4124. break;
  4125. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4126. case 104: // M104
  4127. gcode_M104();
  4128. break;
  4129. case 112: // M112 Emergency Stop
  4130. gcode_M112();
  4131. break;
  4132. case 140: // M140 Set bed temp
  4133. gcode_M140();
  4134. break;
  4135. case 105: // M105 Read current temperature
  4136. gcode_M105();
  4137. return;
  4138. break;
  4139. case 109: // M109 Wait for temperature
  4140. gcode_M109();
  4141. break;
  4142. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4143. case 190: // M190 - Wait for bed heater to reach target.
  4144. gcode_M190();
  4145. break;
  4146. #endif //TEMP_BED_PIN
  4147. #if defined(FAN_PIN) && FAN_PIN > -1
  4148. case 106: //M106 Fan On
  4149. gcode_M106();
  4150. break;
  4151. case 107: //M107 Fan Off
  4152. gcode_M107();
  4153. break;
  4154. #endif //FAN_PIN
  4155. #ifdef BARICUDA
  4156. // PWM for HEATER_1_PIN
  4157. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4158. case 126: // M126 valve open
  4159. gcode_M126();
  4160. break;
  4161. case 127: // M127 valve closed
  4162. gcode_M127();
  4163. break;
  4164. #endif //HEATER_1_PIN
  4165. // PWM for HEATER_2_PIN
  4166. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4167. case 128: // M128 valve open
  4168. gcode_M128();
  4169. break;
  4170. case 129: // M129 valve closed
  4171. gcode_M129();
  4172. break;
  4173. #endif //HEATER_2_PIN
  4174. #endif //BARICUDA
  4175. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4176. case 80: // M80 - Turn on Power Supply
  4177. gcode_M80();
  4178. break;
  4179. #endif // PS_ON_PIN
  4180. case 81: // M81 - Turn off Power Supply
  4181. gcode_M81();
  4182. break;
  4183. case 82:
  4184. gcode_M82();
  4185. break;
  4186. case 83:
  4187. gcode_M83();
  4188. break;
  4189. case 18: //compatibility
  4190. case 84: // M84
  4191. gcode_M18_M84();
  4192. break;
  4193. case 85: // M85
  4194. gcode_M85();
  4195. break;
  4196. case 92: // M92
  4197. gcode_M92();
  4198. break;
  4199. case 115: // M115
  4200. gcode_M115();
  4201. break;
  4202. case 117: // M117 display message
  4203. gcode_M117();
  4204. break;
  4205. case 114: // M114
  4206. gcode_M114();
  4207. break;
  4208. case 120: // M120
  4209. gcode_M120();
  4210. break;
  4211. case 121: // M121
  4212. gcode_M121();
  4213. break;
  4214. case 119: // M119
  4215. gcode_M119();
  4216. break;
  4217. //TODO: update for all axis, use for loop
  4218. #ifdef BLINKM
  4219. case 150: // M150
  4220. gcode_M150();
  4221. break;
  4222. #endif //BLINKM
  4223. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4224. gcode_M200();
  4225. break;
  4226. case 201: // M201
  4227. gcode_M201();
  4228. break;
  4229. #if 0 // Not used for Sprinter/grbl gen6
  4230. case 202: // M202
  4231. gcode_M202();
  4232. break;
  4233. #endif
  4234. case 203: // M203 max feedrate mm/sec
  4235. gcode_M203();
  4236. break;
  4237. case 204: // M204 acclereration S normal moves T filmanent only moves
  4238. gcode_M204();
  4239. break;
  4240. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4241. gcode_M205();
  4242. break;
  4243. case 206: // M206 additional homing offset
  4244. gcode_M206();
  4245. break;
  4246. #ifdef DELTA
  4247. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4248. gcode_M665();
  4249. break;
  4250. case 666: // M666 set delta endstop adjustment
  4251. gcode_M666();
  4252. break;
  4253. #elif defined(Z_DUAL_ENDSTOPS)
  4254. case 666: // M666 set delta endstop adjustment
  4255. gcode_M666();
  4256. break;
  4257. #endif // DELTA
  4258. #ifdef FWRETRACT
  4259. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4260. gcode_M207();
  4261. break;
  4262. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4263. gcode_M208();
  4264. break;
  4265. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4266. gcode_M209();
  4267. break;
  4268. #endif // FWRETRACT
  4269. #if EXTRUDERS > 1
  4270. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4271. gcode_M218();
  4272. break;
  4273. #endif
  4274. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4275. gcode_M220();
  4276. break;
  4277. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4278. gcode_M221();
  4279. break;
  4280. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4281. gcode_M226();
  4282. break;
  4283. #if NUM_SERVOS > 0
  4284. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4285. gcode_M280();
  4286. break;
  4287. #endif // NUM_SERVOS > 0
  4288. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4289. case 300: // M300 - Play beep tone
  4290. gcode_M300();
  4291. break;
  4292. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4293. #ifdef PIDTEMP
  4294. case 301: // M301
  4295. gcode_M301();
  4296. break;
  4297. #endif // PIDTEMP
  4298. #ifdef PIDTEMPBED
  4299. case 304: // M304
  4300. gcode_M304();
  4301. break;
  4302. #endif // PIDTEMPBED
  4303. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4304. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4305. gcode_M240();
  4306. break;
  4307. #endif // CHDK || PHOTOGRAPH_PIN
  4308. #ifdef DOGLCD
  4309. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4310. gcode_M250();
  4311. break;
  4312. #endif // DOGLCD
  4313. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4314. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4315. gcode_M302();
  4316. break;
  4317. #endif // PREVENT_DANGEROUS_EXTRUDE
  4318. case 303: // M303 PID autotune
  4319. gcode_M303();
  4320. break;
  4321. #ifdef SCARA
  4322. case 360: // M360 SCARA Theta pos1
  4323. if (gcode_M360()) return;
  4324. break;
  4325. case 361: // M361 SCARA Theta pos2
  4326. if (gcode_M361()) return;
  4327. break;
  4328. case 362: // M362 SCARA Psi pos1
  4329. if (gcode_M362()) return;
  4330. break;
  4331. case 363: // M363 SCARA Psi pos2
  4332. if (gcode_M363()) return;
  4333. break;
  4334. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4335. if (gcode_M364()) return;
  4336. break;
  4337. case 365: // M365 Set SCARA scaling for X Y Z
  4338. gcode_M365();
  4339. break;
  4340. #endif // SCARA
  4341. case 400: // M400 finish all moves
  4342. gcode_M400();
  4343. break;
  4344. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4345. case 401:
  4346. gcode_M401();
  4347. break;
  4348. case 402:
  4349. gcode_M402();
  4350. break;
  4351. #endif
  4352. #ifdef FILAMENT_SENSOR
  4353. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4354. gcode_M404();
  4355. break;
  4356. case 405: //M405 Turn on filament sensor for control
  4357. gcode_M405();
  4358. break;
  4359. case 406: //M406 Turn off filament sensor for control
  4360. gcode_M406();
  4361. break;
  4362. case 407: //M407 Display measured filament diameter
  4363. gcode_M407();
  4364. break;
  4365. #endif // FILAMENT_SENSOR
  4366. case 500: // M500 Store settings in EEPROM
  4367. gcode_M500();
  4368. break;
  4369. case 501: // M501 Read settings from EEPROM
  4370. gcode_M501();
  4371. break;
  4372. case 502: // M502 Revert to default settings
  4373. gcode_M502();
  4374. break;
  4375. case 503: // M503 print settings currently in memory
  4376. gcode_M503();
  4377. break;
  4378. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4379. case 540:
  4380. gcode_M540();
  4381. break;
  4382. #endif
  4383. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4384. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4385. gcode_SET_Z_PROBE_OFFSET();
  4386. break;
  4387. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4388. #ifdef FILAMENTCHANGEENABLE
  4389. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4390. gcode_M600();
  4391. break;
  4392. #endif // FILAMENTCHANGEENABLE
  4393. #ifdef DUAL_X_CARRIAGE
  4394. case 605:
  4395. gcode_M605();
  4396. break;
  4397. #endif // DUAL_X_CARRIAGE
  4398. case 907: // M907 Set digital trimpot motor current using axis codes.
  4399. gcode_M907();
  4400. break;
  4401. #if HAS_DIGIPOTSS
  4402. case 908: // M908 Control digital trimpot directly.
  4403. gcode_M908();
  4404. break;
  4405. #endif // HAS_DIGIPOTSS
  4406. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4407. gcode_M350();
  4408. break;
  4409. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4410. gcode_M351();
  4411. break;
  4412. case 999: // M999: Restart after being Stopped
  4413. gcode_M999();
  4414. break;
  4415. }
  4416. }
  4417. else if (code_seen('T')) {
  4418. gcode_T();
  4419. }
  4420. else {
  4421. SERIAL_ECHO_START;
  4422. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4423. SERIAL_ECHO(cmdbuffer[bufindr]);
  4424. SERIAL_ECHOLNPGM("\"");
  4425. }
  4426. ClearToSend();
  4427. }
  4428. void FlushSerialRequestResend()
  4429. {
  4430. //char cmdbuffer[bufindr][100]="Resend:";
  4431. MYSERIAL.flush();
  4432. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4433. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4434. ClearToSend();
  4435. }
  4436. void ClearToSend()
  4437. {
  4438. previous_millis_cmd = millis();
  4439. #ifdef SDSUPPORT
  4440. if(fromsd[bufindr])
  4441. return;
  4442. #endif //SDSUPPORT
  4443. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4444. }
  4445. void get_coordinates()
  4446. {
  4447. bool seen[4]={false,false,false,false};
  4448. for(int8_t i=0; i < NUM_AXIS; i++) {
  4449. if(code_seen(axis_codes[i]))
  4450. {
  4451. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4452. seen[i]=true;
  4453. }
  4454. else destination[i] = current_position[i]; //Are these else lines really needed?
  4455. }
  4456. if(code_seen('F')) {
  4457. next_feedrate = code_value();
  4458. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4459. }
  4460. }
  4461. void get_arc_coordinates()
  4462. {
  4463. #ifdef SF_ARC_FIX
  4464. bool relative_mode_backup = relative_mode;
  4465. relative_mode = true;
  4466. #endif
  4467. get_coordinates();
  4468. #ifdef SF_ARC_FIX
  4469. relative_mode=relative_mode_backup;
  4470. #endif
  4471. if(code_seen('I')) {
  4472. offset[0] = code_value();
  4473. }
  4474. else {
  4475. offset[0] = 0.0;
  4476. }
  4477. if(code_seen('J')) {
  4478. offset[1] = code_value();
  4479. }
  4480. else {
  4481. offset[1] = 0.0;
  4482. }
  4483. }
  4484. void clamp_to_software_endstops(float target[3])
  4485. {
  4486. if (min_software_endstops) {
  4487. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4488. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4489. float negative_z_offset = 0;
  4490. #ifdef ENABLE_AUTO_BED_LEVELING
  4491. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4492. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4493. #endif
  4494. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4495. }
  4496. if (max_software_endstops) {
  4497. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4498. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4499. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4500. }
  4501. }
  4502. #ifdef DELTA
  4503. void recalc_delta_settings(float radius, float diagonal_rod)
  4504. {
  4505. delta_tower1_x= -SIN_60*radius; // front left tower
  4506. delta_tower1_y= -COS_60*radius;
  4507. delta_tower2_x= SIN_60*radius; // front right tower
  4508. delta_tower2_y= -COS_60*radius;
  4509. delta_tower3_x= 0.0; // back middle tower
  4510. delta_tower3_y= radius;
  4511. delta_diagonal_rod_2= sq(diagonal_rod);
  4512. }
  4513. void calculate_delta(float cartesian[3])
  4514. {
  4515. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4516. - sq(delta_tower1_x-cartesian[X_AXIS])
  4517. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4518. ) + cartesian[Z_AXIS];
  4519. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4520. - sq(delta_tower2_x-cartesian[X_AXIS])
  4521. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4522. ) + cartesian[Z_AXIS];
  4523. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4524. - sq(delta_tower3_x-cartesian[X_AXIS])
  4525. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4526. ) + cartesian[Z_AXIS];
  4527. /*
  4528. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4529. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4530. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4531. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4532. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4533. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4534. */
  4535. }
  4536. #ifdef ENABLE_AUTO_BED_LEVELING
  4537. // Adjust print surface height by linear interpolation over the bed_level array.
  4538. int delta_grid_spacing[2] = { 0, 0 };
  4539. void adjust_delta(float cartesian[3])
  4540. {
  4541. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4542. return; // G29 not done
  4543. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4544. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4545. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4546. int floor_x = floor(grid_x);
  4547. int floor_y = floor(grid_y);
  4548. float ratio_x = grid_x - floor_x;
  4549. float ratio_y = grid_y - floor_y;
  4550. float z1 = bed_level[floor_x+half][floor_y+half];
  4551. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4552. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4553. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4554. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4555. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4556. float offset = (1-ratio_x)*left + ratio_x*right;
  4557. delta[X_AXIS] += offset;
  4558. delta[Y_AXIS] += offset;
  4559. delta[Z_AXIS] += offset;
  4560. /*
  4561. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4562. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4563. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4564. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4565. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4566. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4567. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4568. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4569. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4570. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4571. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4572. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4573. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4574. */
  4575. }
  4576. #endif //ENABLE_AUTO_BED_LEVELING
  4577. void prepare_move_raw()
  4578. {
  4579. previous_millis_cmd = millis();
  4580. calculate_delta(destination);
  4581. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4582. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4583. active_extruder);
  4584. for(int8_t i=0; i < NUM_AXIS; i++) {
  4585. current_position[i] = destination[i];
  4586. }
  4587. }
  4588. #endif //DELTA
  4589. #if defined(MESH_BED_LEVELING)
  4590. #if !defined(MIN)
  4591. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4592. #endif // ! MIN
  4593. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4594. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4595. {
  4596. if (!mbl.active) {
  4597. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4598. for(int8_t i=0; i < NUM_AXIS; i++) {
  4599. current_position[i] = destination[i];
  4600. }
  4601. return;
  4602. }
  4603. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4604. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4605. int ix = mbl.select_x_index(x);
  4606. int iy = mbl.select_y_index(y);
  4607. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4608. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4609. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4610. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4611. if (pix == ix && piy == iy) {
  4612. // Start and end on same mesh square
  4613. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4614. for(int8_t i=0; i < NUM_AXIS; i++) {
  4615. current_position[i] = destination[i];
  4616. }
  4617. return;
  4618. }
  4619. float nx, ny, ne, normalized_dist;
  4620. if (ix > pix && (x_splits) & BIT(ix)) {
  4621. nx = mbl.get_x(ix);
  4622. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4623. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4624. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4625. x_splits ^= BIT(ix);
  4626. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4627. nx = mbl.get_x(pix);
  4628. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4629. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4630. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4631. x_splits ^= BIT(pix);
  4632. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4633. ny = mbl.get_y(iy);
  4634. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4635. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4636. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4637. y_splits ^= BIT(iy);
  4638. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4639. ny = mbl.get_y(piy);
  4640. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4641. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4642. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4643. y_splits ^= BIT(piy);
  4644. } else {
  4645. // Already split on a border
  4646. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4647. for(int8_t i=0; i < NUM_AXIS; i++) {
  4648. current_position[i] = destination[i];
  4649. }
  4650. return;
  4651. }
  4652. // Do the split and look for more borders
  4653. destination[X_AXIS] = nx;
  4654. destination[Y_AXIS] = ny;
  4655. destination[E_AXIS] = ne;
  4656. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4657. destination[X_AXIS] = x;
  4658. destination[Y_AXIS] = y;
  4659. destination[E_AXIS] = e;
  4660. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4661. }
  4662. #endif // MESH_BED_LEVELING
  4663. void prepare_move()
  4664. {
  4665. clamp_to_software_endstops(destination);
  4666. previous_millis_cmd = millis();
  4667. #ifdef SCARA //for now same as delta-code
  4668. float difference[NUM_AXIS];
  4669. for (int8_t i=0; i < NUM_AXIS; i++) {
  4670. difference[i] = destination[i] - current_position[i];
  4671. }
  4672. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4673. sq(difference[Y_AXIS]) +
  4674. sq(difference[Z_AXIS]));
  4675. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4676. if (cartesian_mm < 0.000001) { return; }
  4677. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4678. int steps = max(1, int(scara_segments_per_second * seconds));
  4679. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4680. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4681. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4682. for (int s = 1; s <= steps; s++) {
  4683. float fraction = float(s) / float(steps);
  4684. for(int8_t i=0; i < NUM_AXIS; i++) {
  4685. destination[i] = current_position[i] + difference[i] * fraction;
  4686. }
  4687. calculate_delta(destination);
  4688. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4689. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4690. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4691. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4692. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4693. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4694. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4695. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4696. active_extruder);
  4697. }
  4698. #endif // SCARA
  4699. #ifdef DELTA
  4700. float difference[NUM_AXIS];
  4701. for (int8_t i=0; i < NUM_AXIS; i++) {
  4702. difference[i] = destination[i] - current_position[i];
  4703. }
  4704. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4705. sq(difference[Y_AXIS]) +
  4706. sq(difference[Z_AXIS]));
  4707. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4708. if (cartesian_mm < 0.000001) { return; }
  4709. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4710. int steps = max(1, int(delta_segments_per_second * seconds));
  4711. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4712. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4713. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4714. for (int s = 1; s <= steps; s++) {
  4715. float fraction = float(s) / float(steps);
  4716. for(int8_t i=0; i < NUM_AXIS; i++) {
  4717. destination[i] = current_position[i] + difference[i] * fraction;
  4718. }
  4719. calculate_delta(destination);
  4720. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4721. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4722. active_extruder);
  4723. }
  4724. #endif // DELTA
  4725. #ifdef DUAL_X_CARRIAGE
  4726. if (active_extruder_parked)
  4727. {
  4728. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4729. {
  4730. // move duplicate extruder into correct duplication position.
  4731. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4732. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4733. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4734. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4735. st_synchronize();
  4736. extruder_duplication_enabled = true;
  4737. active_extruder_parked = false;
  4738. }
  4739. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4740. {
  4741. if (current_position[E_AXIS] == destination[E_AXIS])
  4742. {
  4743. // this is a travel move - skit it but keep track of current position (so that it can later
  4744. // be used as start of first non-travel move)
  4745. if (delayed_move_time != 0xFFFFFFFFUL)
  4746. {
  4747. memcpy(current_position, destination, sizeof(current_position));
  4748. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4749. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4750. delayed_move_time = millis();
  4751. return;
  4752. }
  4753. }
  4754. delayed_move_time = 0;
  4755. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4756. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4757. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4758. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4759. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4760. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4761. active_extruder_parked = false;
  4762. }
  4763. }
  4764. #endif //DUAL_X_CARRIAGE
  4765. #if ! (defined DELTA || defined SCARA)
  4766. // Do not use feedmultiply for E or Z only moves
  4767. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4768. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4769. } else {
  4770. #if defined(MESH_BED_LEVELING)
  4771. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4772. return;
  4773. #else
  4774. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4775. #endif // MESH_BED_LEVELING
  4776. }
  4777. #endif // !(DELTA || SCARA)
  4778. for(int8_t i=0; i < NUM_AXIS; i++) {
  4779. current_position[i] = destination[i];
  4780. }
  4781. }
  4782. void prepare_arc_move(char isclockwise) {
  4783. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4784. // Trace the arc
  4785. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4786. // As far as the parser is concerned, the position is now == target. In reality the
  4787. // motion control system might still be processing the action and the real tool position
  4788. // in any intermediate location.
  4789. for(int8_t i=0; i < NUM_AXIS; i++) {
  4790. current_position[i] = destination[i];
  4791. }
  4792. previous_millis_cmd = millis();
  4793. }
  4794. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4795. #if defined(FAN_PIN)
  4796. #if CONTROLLERFAN_PIN == FAN_PIN
  4797. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4798. #endif
  4799. #endif
  4800. unsigned long lastMotor = 0; // Last time a motor was turned on
  4801. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4802. void controllerFan() {
  4803. uint32_t ms = millis();
  4804. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4805. lastMotorCheck = ms;
  4806. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4807. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4808. #if EXTRUDERS > 1
  4809. || E1_ENABLE_READ == E_ENABLE_ON
  4810. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4811. || X2_ENABLE_READ == X_ENABLE_ON
  4812. #endif
  4813. #if EXTRUDERS > 2
  4814. || E2_ENABLE_READ == E_ENABLE_ON
  4815. #if EXTRUDERS > 3
  4816. || E3_ENABLE_READ == E_ENABLE_ON
  4817. #endif
  4818. #endif
  4819. #endif
  4820. ) {
  4821. lastMotor = ms; //... set time to NOW so the fan will turn on
  4822. }
  4823. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4824. // allows digital or PWM fan output to be used (see M42 handling)
  4825. digitalWrite(CONTROLLERFAN_PIN, speed);
  4826. analogWrite(CONTROLLERFAN_PIN, speed);
  4827. }
  4828. }
  4829. #endif
  4830. #ifdef SCARA
  4831. void calculate_SCARA_forward_Transform(float f_scara[3])
  4832. {
  4833. // Perform forward kinematics, and place results in delta[3]
  4834. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4835. float x_sin, x_cos, y_sin, y_cos;
  4836. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4837. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4838. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4839. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4840. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4841. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4842. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4843. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4844. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4845. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4846. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4847. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4848. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4849. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4850. }
  4851. void calculate_delta(float cartesian[3]){
  4852. //reverse kinematics.
  4853. // Perform reversed kinematics, and place results in delta[3]
  4854. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4855. float SCARA_pos[2];
  4856. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4857. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4858. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4859. #if (Linkage_1 == Linkage_2)
  4860. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4861. #else
  4862. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4863. #endif
  4864. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4865. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4866. SCARA_K2 = Linkage_2 * SCARA_S2;
  4867. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4868. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4869. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4870. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4871. delta[Z_AXIS] = cartesian[Z_AXIS];
  4872. /*
  4873. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4874. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4875. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4876. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4877. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4878. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4879. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4880. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4881. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4882. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4883. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4884. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4885. SERIAL_ECHOLN(" ");*/
  4886. }
  4887. #endif
  4888. #ifdef TEMP_STAT_LEDS
  4889. static bool blue_led = false;
  4890. static bool red_led = false;
  4891. static uint32_t stat_update = 0;
  4892. void handle_status_leds(void) {
  4893. float max_temp = 0.0;
  4894. if(millis() > stat_update) {
  4895. stat_update += 500; // Update every 0.5s
  4896. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4897. max_temp = max(max_temp, degHotend(cur_extruder));
  4898. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4899. }
  4900. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4901. max_temp = max(max_temp, degTargetBed());
  4902. max_temp = max(max_temp, degBed());
  4903. #endif
  4904. if((max_temp > 55.0) && (red_led == false)) {
  4905. digitalWrite(STAT_LED_RED, 1);
  4906. digitalWrite(STAT_LED_BLUE, 0);
  4907. red_led = true;
  4908. blue_led = false;
  4909. }
  4910. if((max_temp < 54.0) && (blue_led == false)) {
  4911. digitalWrite(STAT_LED_RED, 0);
  4912. digitalWrite(STAT_LED_BLUE, 1);
  4913. red_led = false;
  4914. blue_led = true;
  4915. }
  4916. }
  4917. }
  4918. #endif
  4919. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4920. {
  4921. #if defined(KILL_PIN) && KILL_PIN > -1
  4922. static int killCount = 0; // make the inactivity button a bit less responsive
  4923. const int KILL_DELAY = 750;
  4924. #endif
  4925. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4926. if(card.sdprinting) {
  4927. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4928. filrunout(); }
  4929. #endif
  4930. #if defined(HOME_PIN) && HOME_PIN > -1
  4931. static int homeDebounceCount = 0; // poor man's debouncing count
  4932. const int HOME_DEBOUNCE_DELAY = 750;
  4933. #endif
  4934. if(buflen < (BUFSIZE-1))
  4935. get_command();
  4936. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4937. if(max_inactive_time)
  4938. kill();
  4939. if(stepper_inactive_time) {
  4940. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4941. {
  4942. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4943. disable_x();
  4944. disable_y();
  4945. disable_z();
  4946. disable_e0();
  4947. disable_e1();
  4948. disable_e2();
  4949. disable_e3();
  4950. }
  4951. }
  4952. }
  4953. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4954. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4955. {
  4956. chdkActive = false;
  4957. WRITE(CHDK, LOW);
  4958. }
  4959. #endif
  4960. #if defined(KILL_PIN) && KILL_PIN > -1
  4961. // Check if the kill button was pressed and wait just in case it was an accidental
  4962. // key kill key press
  4963. // -------------------------------------------------------------------------------
  4964. if( 0 == READ(KILL_PIN) )
  4965. {
  4966. killCount++;
  4967. }
  4968. else if (killCount > 0)
  4969. {
  4970. killCount--;
  4971. }
  4972. // Exceeded threshold and we can confirm that it was not accidental
  4973. // KILL the machine
  4974. // ----------------------------------------------------------------
  4975. if ( killCount >= KILL_DELAY)
  4976. {
  4977. kill();
  4978. }
  4979. #endif
  4980. #if defined(HOME_PIN) && HOME_PIN > -1
  4981. // Check to see if we have to home, use poor man's debouncer
  4982. // ---------------------------------------------------------
  4983. if ( 0 == READ(HOME_PIN) )
  4984. {
  4985. if (homeDebounceCount == 0)
  4986. {
  4987. enquecommands_P((PSTR("G28")));
  4988. homeDebounceCount++;
  4989. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4990. }
  4991. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4992. {
  4993. homeDebounceCount++;
  4994. }
  4995. else
  4996. {
  4997. homeDebounceCount = 0;
  4998. }
  4999. }
  5000. #endif
  5001. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5002. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5003. #endif
  5004. #ifdef EXTRUDER_RUNOUT_PREVENT
  5005. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5006. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5007. {
  5008. bool oldstatus=E0_ENABLE_READ;
  5009. enable_e0();
  5010. float oldepos=current_position[E_AXIS];
  5011. float oldedes=destination[E_AXIS];
  5012. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5013. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5014. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5015. current_position[E_AXIS]=oldepos;
  5016. destination[E_AXIS]=oldedes;
  5017. plan_set_e_position(oldepos);
  5018. previous_millis_cmd=millis();
  5019. st_synchronize();
  5020. E0_ENABLE_WRITE(oldstatus);
  5021. }
  5022. #endif
  5023. #if defined(DUAL_X_CARRIAGE)
  5024. // handle delayed move timeout
  5025. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  5026. {
  5027. // travel moves have been received so enact them
  5028. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5029. memcpy(destination,current_position,sizeof(destination));
  5030. prepare_move();
  5031. }
  5032. #endif
  5033. #ifdef TEMP_STAT_LEDS
  5034. handle_status_leds();
  5035. #endif
  5036. check_axes_activity();
  5037. }
  5038. void kill()
  5039. {
  5040. cli(); // Stop interrupts
  5041. disable_heater();
  5042. disable_x();
  5043. disable_y();
  5044. disable_z();
  5045. disable_e0();
  5046. disable_e1();
  5047. disable_e2();
  5048. disable_e3();
  5049. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5050. pinMode(PS_ON_PIN,INPUT);
  5051. #endif
  5052. SERIAL_ERROR_START;
  5053. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5054. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5055. // FMC small patch to update the LCD before ending
  5056. sei(); // enable interrupts
  5057. for ( int i=5; i--; lcd_update())
  5058. {
  5059. delay(200);
  5060. }
  5061. cli(); // disable interrupts
  5062. suicide();
  5063. while(1) { /* Intentionally left empty */ } // Wait for reset
  5064. }
  5065. #ifdef FILAMENT_RUNOUT_SENSOR
  5066. void filrunout()
  5067. {
  5068. if filrunoutEnqued == false {
  5069. filrunoutEnqued = true;
  5070. enquecommand("M600");
  5071. }
  5072. }
  5073. #endif
  5074. void Stop()
  5075. {
  5076. disable_heater();
  5077. if(Stopped == false) {
  5078. Stopped = true;
  5079. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5080. SERIAL_ERROR_START;
  5081. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5082. LCD_MESSAGEPGM(MSG_STOPPED);
  5083. }
  5084. }
  5085. bool IsStopped() { return Stopped; };
  5086. #ifdef FAST_PWM_FAN
  5087. void setPwmFrequency(uint8_t pin, int val)
  5088. {
  5089. val &= 0x07;
  5090. switch(digitalPinToTimer(pin))
  5091. {
  5092. #if defined(TCCR0A)
  5093. case TIMER0A:
  5094. case TIMER0B:
  5095. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5096. // TCCR0B |= val;
  5097. break;
  5098. #endif
  5099. #if defined(TCCR1A)
  5100. case TIMER1A:
  5101. case TIMER1B:
  5102. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5103. // TCCR1B |= val;
  5104. break;
  5105. #endif
  5106. #if defined(TCCR2)
  5107. case TIMER2:
  5108. case TIMER2:
  5109. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5110. TCCR2 |= val;
  5111. break;
  5112. #endif
  5113. #if defined(TCCR2A)
  5114. case TIMER2A:
  5115. case TIMER2B:
  5116. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5117. TCCR2B |= val;
  5118. break;
  5119. #endif
  5120. #if defined(TCCR3A)
  5121. case TIMER3A:
  5122. case TIMER3B:
  5123. case TIMER3C:
  5124. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5125. TCCR3B |= val;
  5126. break;
  5127. #endif
  5128. #if defined(TCCR4A)
  5129. case TIMER4A:
  5130. case TIMER4B:
  5131. case TIMER4C:
  5132. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5133. TCCR4B |= val;
  5134. break;
  5135. #endif
  5136. #if defined(TCCR5A)
  5137. case TIMER5A:
  5138. case TIMER5B:
  5139. case TIMER5C:
  5140. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5141. TCCR5B |= val;
  5142. break;
  5143. #endif
  5144. }
  5145. }
  5146. #endif //FAST_PWM_FAN
  5147. bool setTargetedHotend(int code){
  5148. tmp_extruder = active_extruder;
  5149. if(code_seen('T')) {
  5150. tmp_extruder = code_value();
  5151. if(tmp_extruder >= EXTRUDERS) {
  5152. SERIAL_ECHO_START;
  5153. switch(code){
  5154. case 104:
  5155. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5156. break;
  5157. case 105:
  5158. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5159. break;
  5160. case 109:
  5161. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5162. break;
  5163. case 218:
  5164. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5165. break;
  5166. case 221:
  5167. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5168. break;
  5169. }
  5170. SERIAL_ECHOLN(tmp_extruder);
  5171. return true;
  5172. }
  5173. }
  5174. return false;
  5175. }
  5176. float calculate_volumetric_multiplier(float diameter) {
  5177. if (!volumetric_enabled || diameter == 0) return 1.0;
  5178. float d2 = diameter * 0.5;
  5179. return 1.0 / (M_PI * d2 * d2);
  5180. }
  5181. void calculate_volumetric_multipliers() {
  5182. for (int i=0; i<EXTRUDERS; i++)
  5183. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5184. }