My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

Marlin.pde 55KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "planner.h"
  26. #include "stepper.h"
  27. #include "temperature.h"
  28. #include "motion_control.h"
  29. #include "cardreader.h"
  30. #include "watchdog.h"
  31. #include "EEPROMwrite.h"
  32. #include "language.h"
  33. #include "pins_arduino.h"
  34. #define VERSION_STRING "1.0.0"
  35. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  36. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. //Implemented Codes
  38. //-------------------
  39. // G0 -> G1
  40. // G1 - Coordinated Movement X Y Z E
  41. // G2 - CW ARC
  42. // G3 - CCW ARC
  43. // G4 - Dwell S<seconds> or P<milliseconds>
  44. // G10 - retract filament according to settings of M207
  45. // G11 - retract recover filament according to settings of M208
  46. // G28 - Home all Axis
  47. // G90 - Use Absolute Coordinates
  48. // G91 - Use Relative Coordinates
  49. // G92 - Set current position to cordinates given
  50. //RepRap M Codes
  51. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  52. // M1 - Same as M0
  53. // M104 - Set extruder target temp
  54. // M105 - Read current temp
  55. // M106 - Fan on
  56. // M107 - Fan off
  57. // M109 - Wait for extruder current temp to reach target temp.
  58. // M114 - Display current position
  59. //Custom M Codes
  60. // M17 - Enable/Power all stepper motors
  61. // M18 - Disable all stepper motors; same as M84
  62. // M20 - List SD card
  63. // M21 - Init SD card
  64. // M22 - Release SD card
  65. // M23 - Select SD file (M23 filename.g)
  66. // M24 - Start/resume SD print
  67. // M25 - Pause SD print
  68. // M26 - Set SD position in bytes (M26 S12345)
  69. // M27 - Report SD print status
  70. // M28 - Start SD write (M28 filename.g)
  71. // M29 - Stop SD write
  72. // M30 - Delete file from SD (M30 filename.g)
  73. // M31 - Output time since last M109 or SD card start to serial
  74. // M42 - Change pin status via gcode
  75. // M80 - Turn on Power Supply
  76. // M81 - Turn off Power Supply
  77. // M82 - Set E codes absolute (default)
  78. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  79. // M84 - Disable steppers until next move,
  80. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  81. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  82. // M92 - Set axis_steps_per_unit - same syntax as G92
  83. // M114 - Output current position to serial port
  84. // M115 - Capabilities string
  85. // M117 - display message
  86. // M119 - Output Endstop status to serial port
  87. // M140 - Set bed target temp
  88. // M190 - Wait for bed current temp to reach target temp.
  89. // M200 - Set filament diameter
  90. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  91. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  92. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  93. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  94. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  95. // M206 - set additional homeing offset
  96. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  97. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  98. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  99. // M220 S<factor in percent>- set speed factor override percentage
  100. // M221 S<factor in percent>- set extrude factor override percentage
  101. // M240 - Trigger a camera to take a photograph
  102. // M301 - Set PID parameters P I and D
  103. // M302 - Allow cold extrudes
  104. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  105. // M400 - Finish all moves
  106. // M500 - stores paramters in EEPROM
  107. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  108. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  109. // M503 - print the current settings (from memory not from eeprom)
  110. // M999 - Restart after being stopped by error
  111. //Stepper Movement Variables
  112. //===========================================================================
  113. //=============================imported variables============================
  114. //===========================================================================
  115. //===========================================================================
  116. //=============================public variables=============================
  117. //===========================================================================
  118. #ifdef SDSUPPORT
  119. CardReader card;
  120. #endif
  121. float homing_feedrate[] = HOMING_FEEDRATE;
  122. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  123. volatile int feedmultiply=100; //100->1 200->2
  124. int saved_feedmultiply;
  125. volatile bool feedmultiplychanged=false;
  126. volatile int extrudemultiply=100; //100->1 200->2
  127. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  128. float add_homeing[3]={0,0,0};
  129. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  130. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  131. uint8_t active_extruder = 0;
  132. unsigned char FanSpeed=0;
  133. #ifdef FWRETRACT
  134. bool autoretract_enabled=true;
  135. bool retracted=false;
  136. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  137. float retract_recover_length=0, retract_recover_feedrate=8*60;
  138. #endif
  139. //===========================================================================
  140. //=============================private variables=============================
  141. //===========================================================================
  142. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  143. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  144. static float offset[3] = {0.0, 0.0, 0.0};
  145. static bool home_all_axis = true;
  146. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  147. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  148. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  149. static bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
  150. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  151. static bool fromsd[BUFSIZE];
  152. static int bufindr = 0;
  153. static int bufindw = 0;
  154. static int buflen = 0;
  155. //static int i = 0;
  156. static char serial_char;
  157. static int serial_count = 0;
  158. static boolean comment_mode = false;
  159. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  160. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  161. //static float tt = 0;
  162. //static float bt = 0;
  163. //Inactivity shutdown variables
  164. static unsigned long previous_millis_cmd = 0;
  165. static unsigned long max_inactive_time = 0;
  166. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  167. static unsigned long starttime=0;
  168. static unsigned long stoptime=0;
  169. static uint8_t tmp_extruder;
  170. bool Stopped=false;
  171. //===========================================================================
  172. //=============================ROUTINES=============================
  173. //===========================================================================
  174. void get_arc_coordinates();
  175. void serial_echopair_P(const char *s_P, float v)
  176. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  177. void serial_echopair_P(const char *s_P, double v)
  178. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  179. void serial_echopair_P(const char *s_P, unsigned long v)
  180. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  181. extern "C"{
  182. extern unsigned int __bss_end;
  183. extern unsigned int __heap_start;
  184. extern void *__brkval;
  185. int freeMemory() {
  186. int free_memory;
  187. if((int)__brkval == 0)
  188. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  189. else
  190. free_memory = ((int)&free_memory) - ((int)__brkval);
  191. return free_memory;
  192. }
  193. }
  194. //adds an command to the main command buffer
  195. //thats really done in a non-safe way.
  196. //needs overworking someday
  197. void enquecommand(const char *cmd)
  198. {
  199. if(buflen < BUFSIZE)
  200. {
  201. //this is dangerous if a mixing of serial and this happsens
  202. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  203. SERIAL_ECHO_START;
  204. SERIAL_ECHOPGM("enqueing \"");
  205. SERIAL_ECHO(cmdbuffer[bufindw]);
  206. SERIAL_ECHOLNPGM("\"");
  207. bufindw= (bufindw + 1)%BUFSIZE;
  208. buflen += 1;
  209. }
  210. }
  211. void setup_killpin()
  212. {
  213. #if( KILL_PIN>-1 )
  214. pinMode(KILL_PIN,INPUT);
  215. WRITE(KILL_PIN,HIGH);
  216. #endif
  217. }
  218. void setup_photpin()
  219. {
  220. #ifdef PHOTOGRAPH_PIN
  221. #if (PHOTOGRAPH_PIN > -1)
  222. SET_OUTPUT(PHOTOGRAPH_PIN);
  223. WRITE(PHOTOGRAPH_PIN, LOW);
  224. #endif
  225. #endif
  226. }
  227. void setup_powerhold()
  228. {
  229. #ifdef SUICIDE_PIN
  230. #if (SUICIDE_PIN> -1)
  231. SET_OUTPUT(SUICIDE_PIN);
  232. WRITE(SUICIDE_PIN, HIGH);
  233. #endif
  234. #endif
  235. }
  236. void suicide()
  237. {
  238. #ifdef SUICIDE_PIN
  239. #if (SUICIDE_PIN> -1)
  240. SET_OUTPUT(SUICIDE_PIN);
  241. WRITE(SUICIDE_PIN, LOW);
  242. #endif
  243. #endif
  244. }
  245. void setup()
  246. {
  247. setup_killpin();
  248. setup_powerhold();
  249. MYSERIAL.begin(BAUDRATE);
  250. SERIAL_PROTOCOLLNPGM("start");
  251. SERIAL_ECHO_START;
  252. // Check startup - does nothing if bootloader sets MCUSR to 0
  253. byte mcu = MCUSR;
  254. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  255. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  256. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  257. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  258. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  259. MCUSR=0;
  260. SERIAL_ECHOPGM(MSG_MARLIN);
  261. SERIAL_ECHOLNPGM(VERSION_STRING);
  262. #ifdef STRING_VERSION_CONFIG_H
  263. #ifdef STRING_CONFIG_H_AUTHOR
  264. SERIAL_ECHO_START;
  265. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  266. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  267. SERIAL_ECHOPGM(MSG_AUTHOR);
  268. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  269. #endif
  270. #endif
  271. SERIAL_ECHO_START;
  272. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  273. SERIAL_ECHO(freeMemory());
  274. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  275. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  276. for(int8_t i = 0; i < BUFSIZE; i++)
  277. {
  278. fromsd[i] = false;
  279. }
  280. EEPROM_RetrieveSettings(); // loads data from EEPROM if available
  281. for(int8_t i=0; i < NUM_AXIS; i++)
  282. {
  283. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  284. }
  285. tp_init(); // Initialize temperature loop
  286. plan_init(); // Initialize planner;
  287. st_init(); // Initialize stepper;
  288. wd_init();
  289. setup_photpin();
  290. LCD_INIT;
  291. }
  292. void loop()
  293. {
  294. if(buflen < (BUFSIZE-1))
  295. get_command();
  296. #ifdef SDSUPPORT
  297. card.checkautostart(false);
  298. #endif
  299. if(buflen)
  300. {
  301. #ifdef SDSUPPORT
  302. if(card.saving)
  303. {
  304. if(strstr(cmdbuffer[bufindr],"M29") == NULL)
  305. {
  306. card.write_command(cmdbuffer[bufindr]);
  307. SERIAL_PROTOCOLLNPGM(MSG_OK);
  308. }
  309. else
  310. {
  311. card.closefile();
  312. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  313. }
  314. }
  315. else
  316. {
  317. process_commands();
  318. }
  319. #else
  320. process_commands();
  321. #endif //SDSUPPORT
  322. buflen = (buflen-1);
  323. bufindr = (bufindr + 1)%BUFSIZE;
  324. }
  325. //check heater every n milliseconds
  326. manage_heater();
  327. manage_inactivity();
  328. checkHitEndstops();
  329. LCD_STATUS;
  330. }
  331. void get_command()
  332. {
  333. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  334. serial_char = MYSERIAL.read();
  335. if(serial_char == '\n' ||
  336. serial_char == '\r' ||
  337. (serial_char == ':' && comment_mode == false) ||
  338. serial_count >= (MAX_CMD_SIZE - 1) )
  339. {
  340. if(!serial_count) { //if empty line
  341. comment_mode = false; //for new command
  342. return;
  343. }
  344. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  345. if(!comment_mode){
  346. comment_mode = false; //for new command
  347. fromsd[bufindw] = false;
  348. if(strstr(cmdbuffer[bufindw], "N") != NULL)
  349. {
  350. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  351. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  352. if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
  353. SERIAL_ERROR_START;
  354. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  355. SERIAL_ERRORLN(gcode_LastN);
  356. //Serial.println(gcode_N);
  357. FlushSerialRequestResend();
  358. serial_count = 0;
  359. return;
  360. }
  361. if(strstr(cmdbuffer[bufindw], "*") != NULL)
  362. {
  363. byte checksum = 0;
  364. byte count = 0;
  365. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  366. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  367. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  368. SERIAL_ERROR_START;
  369. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  370. SERIAL_ERRORLN(gcode_LastN);
  371. FlushSerialRequestResend();
  372. serial_count = 0;
  373. return;
  374. }
  375. //if no errors, continue parsing
  376. }
  377. else
  378. {
  379. SERIAL_ERROR_START;
  380. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  381. SERIAL_ERRORLN(gcode_LastN);
  382. FlushSerialRequestResend();
  383. serial_count = 0;
  384. return;
  385. }
  386. gcode_LastN = gcode_N;
  387. //if no errors, continue parsing
  388. }
  389. else // if we don't receive 'N' but still see '*'
  390. {
  391. if((strstr(cmdbuffer[bufindw], "*") != NULL))
  392. {
  393. SERIAL_ERROR_START;
  394. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  395. SERIAL_ERRORLN(gcode_LastN);
  396. serial_count = 0;
  397. return;
  398. }
  399. }
  400. if((strstr(cmdbuffer[bufindw], "G") != NULL)){
  401. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  402. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  403. case 0:
  404. case 1:
  405. case 2:
  406. case 3:
  407. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  408. #ifdef SDSUPPORT
  409. if(card.saving)
  410. break;
  411. #endif //SDSUPPORT
  412. SERIAL_PROTOCOLLNPGM(MSG_OK);
  413. }
  414. else {
  415. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  416. LCD_MESSAGEPGM(MSG_STOPPED);
  417. }
  418. break;
  419. default:
  420. break;
  421. }
  422. }
  423. bufindw = (bufindw + 1)%BUFSIZE;
  424. buflen += 1;
  425. }
  426. serial_count = 0; //clear buffer
  427. }
  428. else
  429. {
  430. if(serial_char == ';') comment_mode = true;
  431. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  432. }
  433. }
  434. #ifdef SDSUPPORT
  435. if(!card.sdprinting || serial_count!=0){
  436. return;
  437. }
  438. while( !card.eof() && buflen < BUFSIZE) {
  439. int16_t n=card.get();
  440. serial_char = (char)n;
  441. if(serial_char == '\n' ||
  442. serial_char == '\r' ||
  443. (serial_char == ':' && comment_mode == false) ||
  444. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  445. {
  446. if(card.eof()){
  447. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  448. stoptime=millis();
  449. char time[30];
  450. unsigned long t=(stoptime-starttime)/1000;
  451. int sec,min;
  452. min=t/60;
  453. sec=t%60;
  454. sprintf(time,"%i min, %i sec",min,sec);
  455. SERIAL_ECHO_START;
  456. SERIAL_ECHOLN(time);
  457. LCD_MESSAGE(time);
  458. card.printingHasFinished();
  459. card.checkautostart(true);
  460. }
  461. if(!serial_count)
  462. {
  463. comment_mode = false; //for new command
  464. return; //if empty line
  465. }
  466. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  467. // if(!comment_mode){
  468. fromsd[bufindw] = true;
  469. buflen += 1;
  470. bufindw = (bufindw + 1)%BUFSIZE;
  471. // }
  472. comment_mode = false; //for new command
  473. serial_count = 0; //clear buffer
  474. }
  475. else
  476. {
  477. if(serial_char == ';') comment_mode = true;
  478. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  479. }
  480. }
  481. #endif //SDSUPPORT
  482. }
  483. float code_value()
  484. {
  485. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  486. }
  487. long code_value_long()
  488. {
  489. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  490. }
  491. bool code_seen(char code_string[]) //Return True if the string was found
  492. {
  493. return (strstr(cmdbuffer[bufindr], code_string) != NULL);
  494. }
  495. bool code_seen(char code)
  496. {
  497. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  498. return (strchr_pointer != NULL); //Return True if a character was found
  499. }
  500. #define DEFINE_PGM_READ_ANY(type, reader) \
  501. static inline type pgm_read_any(const type *p) \
  502. { return pgm_read_##reader##_near(p); }
  503. DEFINE_PGM_READ_ANY(float, float);
  504. DEFINE_PGM_READ_ANY(signed char, byte);
  505. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  506. static const PROGMEM type array##_P[3] = \
  507. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  508. static inline type array(int axis) \
  509. { return pgm_read_any(&array##_P[axis]); }
  510. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  511. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  512. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  513. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  514. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  515. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  516. static void axis_is_at_home(int axis) {
  517. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  518. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  519. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  520. }
  521. static void homeaxis(int axis) {
  522. #define HOMEAXIS_DO(LETTER) \
  523. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  524. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  525. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  526. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  527. 0) {
  528. current_position[axis] = 0;
  529. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  530. destination[axis] = 1.5 * max_length(axis) * home_dir(axis);
  531. feedrate = homing_feedrate[axis];
  532. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  533. st_synchronize();
  534. current_position[axis] = 0;
  535. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  536. destination[axis] = -home_retract_mm(axis) * home_dir(axis);
  537. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  538. st_synchronize();
  539. destination[axis] = 2*home_retract_mm(axis) * home_dir(axis);
  540. feedrate = homing_feedrate[axis]/2 ;
  541. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  542. st_synchronize();
  543. axis_is_at_home(axis);
  544. destination[axis] = current_position[axis];
  545. feedrate = 0.0;
  546. endstops_hit_on_purpose();
  547. }
  548. }
  549. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  550. void process_commands()
  551. {
  552. unsigned long codenum; //throw away variable
  553. char *starpos = NULL;
  554. if(code_seen('G'))
  555. {
  556. switch((int)code_value())
  557. {
  558. case 0: // G0 -> G1
  559. case 1: // G1
  560. if(Stopped == false) {
  561. get_coordinates(); // For X Y Z E F
  562. prepare_move();
  563. //ClearToSend();
  564. return;
  565. }
  566. //break;
  567. case 2: // G2 - CW ARC
  568. if(Stopped == false) {
  569. get_arc_coordinates();
  570. prepare_arc_move(true);
  571. return;
  572. }
  573. case 3: // G3 - CCW ARC
  574. if(Stopped == false) {
  575. get_arc_coordinates();
  576. prepare_arc_move(false);
  577. return;
  578. }
  579. case 4: // G4 dwell
  580. LCD_MESSAGEPGM(MSG_DWELL);
  581. codenum = 0;
  582. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  583. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  584. st_synchronize();
  585. codenum += millis(); // keep track of when we started waiting
  586. previous_millis_cmd = millis();
  587. while(millis() < codenum ){
  588. manage_heater();
  589. manage_inactivity();
  590. LCD_STATUS;
  591. }
  592. break;
  593. #ifdef FWRETRACT
  594. case 10: // G10 retract
  595. if(!retracted)
  596. {
  597. destination[X_AXIS]=current_position[X_AXIS];
  598. destination[Y_AXIS]=current_position[Y_AXIS];
  599. destination[Z_AXIS]=current_position[Z_AXIS];
  600. current_position[Z_AXIS]+=-retract_zlift;
  601. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  602. feedrate=retract_feedrate;
  603. retracted=true;
  604. prepare_move();
  605. }
  606. break;
  607. case 11: // G10 retract_recover
  608. if(!retracted)
  609. {
  610. destination[X_AXIS]=current_position[X_AXIS];
  611. destination[Y_AXIS]=current_position[Y_AXIS];
  612. destination[Z_AXIS]=current_position[Z_AXIS];
  613. current_position[Z_AXIS]+=retract_zlift;
  614. current_position[E_AXIS]+=-retract_recover_length;
  615. feedrate=retract_recover_feedrate;
  616. retracted=false;
  617. prepare_move();
  618. }
  619. break;
  620. #endif //FWRETRACT
  621. case 28: //G28 Home all Axis one at a time
  622. saved_feedrate = feedrate;
  623. saved_feedmultiply = feedmultiply;
  624. feedmultiply = 100;
  625. previous_millis_cmd = millis();
  626. enable_endstops(true);
  627. for(int8_t i=0; i < NUM_AXIS; i++) {
  628. destination[i] = current_position[i];
  629. }
  630. feedrate = 0.0;
  631. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  632. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  633. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  634. HOMEAXIS(Z);
  635. }
  636. #endif
  637. #ifdef QUICK_HOME
  638. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  639. {
  640. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  641. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  642. destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
  643. feedrate = homing_feedrate[X_AXIS];
  644. if(homing_feedrate[Y_AXIS]<feedrate)
  645. feedrate =homing_feedrate[Y_AXIS];
  646. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  647. st_synchronize();
  648. axis_is_at_home(X_AXIS);
  649. axis_is_at_home(Y_AXIS);
  650. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  651. destination[X_AXIS] = current_position[X_AXIS];
  652. destination[Y_AXIS] = current_position[Y_AXIS];
  653. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  654. feedrate = 0.0;
  655. st_synchronize();
  656. endstops_hit_on_purpose();
  657. }
  658. #endif
  659. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  660. {
  661. HOMEAXIS(X);
  662. }
  663. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  664. HOMEAXIS(Y);
  665. }
  666. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  667. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  668. HOMEAXIS(Z);
  669. }
  670. #endif
  671. if(code_seen(axis_codes[X_AXIS]))
  672. {
  673. if(code_value_long() != 0) {
  674. current_position[X_AXIS]=code_value()+add_homeing[0];
  675. }
  676. }
  677. if(code_seen(axis_codes[Y_AXIS])) {
  678. if(code_value_long() != 0) {
  679. current_position[Y_AXIS]=code_value()+add_homeing[1];
  680. }
  681. }
  682. if(code_seen(axis_codes[Z_AXIS])) {
  683. if(code_value_long() != 0) {
  684. current_position[Z_AXIS]=code_value()+add_homeing[2];
  685. }
  686. }
  687. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  688. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  689. enable_endstops(false);
  690. #endif
  691. feedrate = saved_feedrate;
  692. feedmultiply = saved_feedmultiply;
  693. previous_millis_cmd = millis();
  694. endstops_hit_on_purpose();
  695. break;
  696. case 90: // G90
  697. relative_mode = false;
  698. break;
  699. case 91: // G91
  700. relative_mode = true;
  701. break;
  702. case 92: // G92
  703. if(!code_seen(axis_codes[E_AXIS]))
  704. st_synchronize();
  705. for(int8_t i=0; i < NUM_AXIS; i++) {
  706. if(code_seen(axis_codes[i])) {
  707. if(i == E_AXIS) {
  708. current_position[i] = code_value();
  709. plan_set_e_position(current_position[E_AXIS]);
  710. }
  711. else {
  712. current_position[i] = code_value()+add_homeing[i];
  713. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  714. }
  715. }
  716. }
  717. break;
  718. }
  719. }
  720. else if(code_seen('M'))
  721. {
  722. switch( (int)code_value() )
  723. {
  724. #ifdef ULTRA_LCD
  725. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  726. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  727. {
  728. LCD_MESSAGEPGM(MSG_USERWAIT);
  729. codenum = 0;
  730. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  731. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  732. st_synchronize();
  733. previous_millis_cmd = millis();
  734. if (codenum > 0){
  735. codenum += millis(); // keep track of when we started waiting
  736. while(millis() < codenum && !CLICKED){
  737. manage_heater();
  738. manage_inactivity();
  739. LCD_STATUS;
  740. }
  741. }else{
  742. while(!CLICKED){
  743. manage_heater();
  744. manage_inactivity();
  745. LCD_STATUS;
  746. }
  747. }
  748. }
  749. break;
  750. #endif
  751. case 17:
  752. LCD_MESSAGEPGM(MSG_NO_MOVE);
  753. enable_x();
  754. enable_y();
  755. enable_z();
  756. enable_e0();
  757. enable_e1();
  758. enable_e2();
  759. break;
  760. #ifdef SDSUPPORT
  761. case 20: // M20 - list SD card
  762. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  763. card.ls();
  764. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  765. break;
  766. case 21: // M21 - init SD card
  767. card.initsd();
  768. break;
  769. case 22: //M22 - release SD card
  770. card.release();
  771. break;
  772. case 23: //M23 - Select file
  773. starpos = (strchr(strchr_pointer + 4,'*'));
  774. if(starpos!=NULL)
  775. *(starpos-1)='\0';
  776. card.openFile(strchr_pointer + 4,true);
  777. break;
  778. case 24: //M24 - Start SD print
  779. card.startFileprint();
  780. starttime=millis();
  781. break;
  782. case 25: //M25 - Pause SD print
  783. card.pauseSDPrint();
  784. break;
  785. case 26: //M26 - Set SD index
  786. if(card.cardOK && code_seen('S')) {
  787. card.setIndex(code_value_long());
  788. }
  789. break;
  790. case 27: //M27 - Get SD status
  791. card.getStatus();
  792. break;
  793. case 28: //M28 - Start SD write
  794. starpos = (strchr(strchr_pointer + 4,'*'));
  795. if(starpos != NULL){
  796. char* npos = strchr(cmdbuffer[bufindr], 'N');
  797. strchr_pointer = strchr(npos,' ') + 1;
  798. *(starpos-1) = '\0';
  799. }
  800. card.openFile(strchr_pointer+4,false);
  801. break;
  802. case 29: //M29 - Stop SD write
  803. //processed in write to file routine above
  804. //card,saving = false;
  805. break;
  806. case 30: //M30 <filename> Delete File
  807. if (card.cardOK){
  808. card.closefile();
  809. starpos = (strchr(strchr_pointer + 4,'*'));
  810. if(starpos != NULL){
  811. char* npos = strchr(cmdbuffer[bufindr], 'N');
  812. strchr_pointer = strchr(npos,' ') + 1;
  813. *(starpos-1) = '\0';
  814. }
  815. card.removeFile(strchr_pointer + 4);
  816. }
  817. break;
  818. #endif //SDSUPPORT
  819. case 31: //M31 take time since the start of the SD print or an M109 command
  820. {
  821. stoptime=millis();
  822. char time[30];
  823. unsigned long t=(stoptime-starttime)/1000;
  824. int sec,min;
  825. min=t/60;
  826. sec=t%60;
  827. sprintf(time,"%i min, %i sec",min,sec);
  828. SERIAL_ECHO_START;
  829. SERIAL_ECHOLN(time);
  830. LCD_MESSAGE(time);
  831. autotempShutdown();
  832. }
  833. break;
  834. case 42: //M42 -Change pin status via gcode
  835. if (code_seen('S'))
  836. {
  837. int pin_status = code_value();
  838. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  839. {
  840. int pin_number = code_value();
  841. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  842. {
  843. if (sensitive_pins[i] == pin_number)
  844. {
  845. pin_number = -1;
  846. break;
  847. }
  848. }
  849. if (pin_number > -1)
  850. {
  851. pinMode(pin_number, OUTPUT);
  852. digitalWrite(pin_number, pin_status);
  853. analogWrite(pin_number, pin_status);
  854. }
  855. }
  856. }
  857. break;
  858. case 104: // M104
  859. tmp_extruder = active_extruder;
  860. if(code_seen('T')) {
  861. tmp_extruder = code_value();
  862. if(tmp_extruder >= EXTRUDERS) {
  863. SERIAL_ECHO_START;
  864. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  865. SERIAL_ECHOLN(tmp_extruder);
  866. break;
  867. }
  868. }
  869. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  870. setWatch();
  871. break;
  872. case 140: // M140 set bed temp
  873. if (code_seen('S')) setTargetBed(code_value());
  874. break;
  875. case 105 : // M105
  876. tmp_extruder = active_extruder;
  877. if(code_seen('T')) {
  878. tmp_extruder = code_value();
  879. if(tmp_extruder >= EXTRUDERS) {
  880. SERIAL_ECHO_START;
  881. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  882. SERIAL_ECHOLN(tmp_extruder);
  883. break;
  884. }
  885. }
  886. #if (TEMP_0_PIN > -1)
  887. SERIAL_PROTOCOLPGM("ok T:");
  888. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  889. SERIAL_PROTOCOLPGM(" /");
  890. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  891. #if TEMP_BED_PIN > -1
  892. SERIAL_PROTOCOLPGM(" B:");
  893. SERIAL_PROTOCOL_F(degBed(),1);
  894. SERIAL_PROTOCOLPGM(" /");
  895. SERIAL_PROTOCOL_F(degTargetBed(),1);
  896. #endif //TEMP_BED_PIN
  897. #else
  898. SERIAL_ERROR_START;
  899. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  900. #endif
  901. #ifdef PIDTEMP
  902. SERIAL_PROTOCOLPGM(" @:");
  903. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  904. #endif
  905. SERIAL_PROTOCOLLN("");
  906. return;
  907. break;
  908. case 109:
  909. {// M109 - Wait for extruder heater to reach target.
  910. tmp_extruder = active_extruder;
  911. if(code_seen('T')) {
  912. tmp_extruder = code_value();
  913. if(tmp_extruder >= EXTRUDERS) {
  914. SERIAL_ECHO_START;
  915. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  916. SERIAL_ECHOLN(tmp_extruder);
  917. break;
  918. }
  919. }
  920. LCD_MESSAGEPGM(MSG_HEATING);
  921. #ifdef AUTOTEMP
  922. autotemp_enabled=false;
  923. #endif
  924. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  925. #ifdef AUTOTEMP
  926. if (code_seen('S')) autotemp_min=code_value();
  927. if (code_seen('B')) autotemp_max=code_value();
  928. if (code_seen('F'))
  929. {
  930. autotemp_factor=code_value();
  931. autotemp_enabled=true;
  932. }
  933. #endif
  934. setWatch();
  935. codenum = millis();
  936. /* See if we are heating up or cooling down */
  937. bool target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  938. #ifdef TEMP_RESIDENCY_TIME
  939. long residencyStart;
  940. residencyStart = -1;
  941. /* continue to loop until we have reached the target temp
  942. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  943. while((residencyStart == -1) ||
  944. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  945. #else
  946. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  947. #endif //TEMP_RESIDENCY_TIME
  948. if( (millis() - codenum) > 1000UL )
  949. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  950. SERIAL_PROTOCOLPGM("T:");
  951. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  952. SERIAL_PROTOCOLPGM(" E:");
  953. SERIAL_PROTOCOL((int)tmp_extruder);
  954. #ifdef TEMP_RESIDENCY_TIME
  955. SERIAL_PROTOCOLPGM(" W:");
  956. if(residencyStart > -1)
  957. {
  958. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  959. SERIAL_PROTOCOLLN( codenum );
  960. }
  961. else
  962. {
  963. SERIAL_PROTOCOLLN( "?" );
  964. }
  965. #else
  966. SERIAL_PROTOCOLLN("");
  967. #endif
  968. codenum = millis();
  969. }
  970. manage_heater();
  971. manage_inactivity();
  972. LCD_STATUS;
  973. #ifdef TEMP_RESIDENCY_TIME
  974. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  975. or when current temp falls outside the hysteresis after target temp was reached */
  976. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  977. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  978. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  979. {
  980. residencyStart = millis();
  981. }
  982. #endif //TEMP_RESIDENCY_TIME
  983. }
  984. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  985. starttime=millis();
  986. previous_millis_cmd = millis();
  987. }
  988. break;
  989. case 190: // M190 - Wait for bed heater to reach target.
  990. #if TEMP_BED_PIN > -1
  991. LCD_MESSAGEPGM(MSG_BED_HEATING);
  992. if (code_seen('S')) setTargetBed(code_value());
  993. codenum = millis();
  994. while(isHeatingBed())
  995. {
  996. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  997. {
  998. float tt=degHotend(active_extruder);
  999. SERIAL_PROTOCOLPGM("T:");
  1000. SERIAL_PROTOCOL(tt);
  1001. SERIAL_PROTOCOLPGM(" E:");
  1002. SERIAL_PROTOCOL((int)active_extruder);
  1003. SERIAL_PROTOCOLPGM(" B:");
  1004. SERIAL_PROTOCOL_F(degBed(),1);
  1005. SERIAL_PROTOCOLLN("");
  1006. codenum = millis();
  1007. }
  1008. manage_heater();
  1009. manage_inactivity();
  1010. LCD_STATUS;
  1011. }
  1012. LCD_MESSAGEPGM(MSG_BED_DONE);
  1013. previous_millis_cmd = millis();
  1014. #endif
  1015. break;
  1016. #if FAN_PIN > -1
  1017. case 106: //M106 Fan On
  1018. if (code_seen('S')){
  1019. FanSpeed=constrain(code_value(),0,255);
  1020. }
  1021. else {
  1022. FanSpeed=255;
  1023. }
  1024. break;
  1025. case 107: //M107 Fan Off
  1026. FanSpeed = 0;
  1027. break;
  1028. #endif //FAN_PIN
  1029. #if (PS_ON_PIN > -1)
  1030. case 80: // M80 - ATX Power On
  1031. SET_OUTPUT(PS_ON_PIN); //GND
  1032. WRITE(PS_ON_PIN, LOW);
  1033. break;
  1034. #endif
  1035. case 81: // M81 - ATX Power Off
  1036. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1037. st_synchronize();
  1038. suicide();
  1039. #elif (PS_ON_PIN > -1)
  1040. SET_INPUT(PS_ON_PIN); //Floating
  1041. #endif
  1042. break;
  1043. case 82:
  1044. axis_relative_modes[3] = false;
  1045. break;
  1046. case 83:
  1047. axis_relative_modes[3] = true;
  1048. break;
  1049. case 18: //compatibility
  1050. case 84: // M84
  1051. if(code_seen('S')){
  1052. stepper_inactive_time = code_value() * 1000;
  1053. }
  1054. else
  1055. {
  1056. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1057. if(all_axis)
  1058. {
  1059. st_synchronize();
  1060. disable_e0();
  1061. disable_e1();
  1062. disable_e2();
  1063. finishAndDisableSteppers();
  1064. }
  1065. else
  1066. {
  1067. st_synchronize();
  1068. if(code_seen('X')) disable_x();
  1069. if(code_seen('Y')) disable_y();
  1070. if(code_seen('Z')) disable_z();
  1071. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1072. if(code_seen('E')) {
  1073. disable_e0();
  1074. disable_e1();
  1075. disable_e2();
  1076. }
  1077. #endif
  1078. LCD_MESSAGEPGM(MSG_PART_RELEASE);
  1079. }
  1080. }
  1081. break;
  1082. case 85: // M85
  1083. code_seen('S');
  1084. max_inactive_time = code_value() * 1000;
  1085. break;
  1086. case 92: // M92
  1087. for(int8_t i=0; i < NUM_AXIS; i++)
  1088. {
  1089. if(code_seen(axis_codes[i]))
  1090. if(i == 3) { // E
  1091. float value = code_value();
  1092. if(value < 20.0) {
  1093. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1094. max_e_jerk *= factor;
  1095. max_feedrate[i] *= factor;
  1096. axis_steps_per_sqr_second[i] *= factor;
  1097. }
  1098. axis_steps_per_unit[i] = value;
  1099. }
  1100. else {
  1101. axis_steps_per_unit[i] = code_value();
  1102. }
  1103. }
  1104. break;
  1105. case 115: // M115
  1106. SerialprintPGM(MSG_M115_REPORT);
  1107. break;
  1108. case 117: // M117 display message
  1109. LCD_MESSAGE(cmdbuffer[bufindr]+5);
  1110. break;
  1111. case 114: // M114
  1112. SERIAL_PROTOCOLPGM("X:");
  1113. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1114. SERIAL_PROTOCOLPGM("Y:");
  1115. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1116. SERIAL_PROTOCOLPGM("Z:");
  1117. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1118. SERIAL_PROTOCOLPGM("E:");
  1119. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1120. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1121. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1122. SERIAL_PROTOCOLPGM("Y:");
  1123. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1124. SERIAL_PROTOCOLPGM("Z:");
  1125. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1126. SERIAL_PROTOCOLLN("");
  1127. break;
  1128. case 120: // M120
  1129. enable_endstops(false) ;
  1130. break;
  1131. case 121: // M121
  1132. enable_endstops(true) ;
  1133. break;
  1134. case 119: // M119
  1135. #if (X_MIN_PIN > -1)
  1136. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1137. SERIAL_PROTOCOL(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?"H ":"L "));
  1138. #endif
  1139. #if (X_MAX_PIN > -1)
  1140. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1141. SERIAL_PROTOCOL(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?"H ":"L "));
  1142. #endif
  1143. #if (Y_MIN_PIN > -1)
  1144. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1145. SERIAL_PROTOCOL(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?"H ":"L "));
  1146. #endif
  1147. #if (Y_MAX_PIN > -1)
  1148. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1149. SERIAL_PROTOCOL(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?"H ":"L "));
  1150. #endif
  1151. #if (Z_MIN_PIN > -1)
  1152. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1153. SERIAL_PROTOCOL(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?"H ":"L "));
  1154. #endif
  1155. #if (Z_MAX_PIN > -1)
  1156. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1157. SERIAL_PROTOCOL(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?"H ":"L "));
  1158. #endif
  1159. SERIAL_PROTOCOLLN("");
  1160. break;
  1161. //TODO: update for all axis, use for loop
  1162. case 201: // M201
  1163. for(int8_t i=0; i < NUM_AXIS; i++)
  1164. {
  1165. if(code_seen(axis_codes[i]))
  1166. {
  1167. max_acceleration_units_per_sq_second[i] = code_value();
  1168. axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1169. }
  1170. }
  1171. break;
  1172. #if 0 // Not used for Sprinter/grbl gen6
  1173. case 202: // M202
  1174. for(int8_t i=0; i < NUM_AXIS; i++) {
  1175. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1176. }
  1177. break;
  1178. #endif
  1179. case 203: // M203 max feedrate mm/sec
  1180. for(int8_t i=0; i < NUM_AXIS; i++) {
  1181. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1182. }
  1183. break;
  1184. case 204: // M204 acclereration S normal moves T filmanent only moves
  1185. {
  1186. if(code_seen('S')) acceleration = code_value() ;
  1187. if(code_seen('T')) retract_acceleration = code_value() ;
  1188. }
  1189. break;
  1190. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1191. {
  1192. if(code_seen('S')) minimumfeedrate = code_value();
  1193. if(code_seen('T')) mintravelfeedrate = code_value();
  1194. if(code_seen('B')) minsegmenttime = code_value() ;
  1195. if(code_seen('X')) max_xy_jerk = code_value() ;
  1196. if(code_seen('Z')) max_z_jerk = code_value() ;
  1197. if(code_seen('E')) max_e_jerk = code_value() ;
  1198. }
  1199. break;
  1200. case 206: // M206 additional homeing offset
  1201. for(int8_t i=0; i < 3; i++)
  1202. {
  1203. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1204. }
  1205. break;
  1206. #ifdef FWRETRACT
  1207. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1208. {
  1209. if(code_seen('S'))
  1210. {
  1211. retract_length = code_value() ;
  1212. }
  1213. if(code_seen('F'))
  1214. {
  1215. retract_feedrate = code_value() ;
  1216. }
  1217. if(code_seen('Z'))
  1218. {
  1219. retract_zlift = code_value() ;
  1220. }
  1221. }break;
  1222. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1223. {
  1224. if(code_seen('S'))
  1225. {
  1226. retract_recover_length = code_value() ;
  1227. }
  1228. if(code_seen('F'))
  1229. {
  1230. retract_recover_feedrate = code_value() ;
  1231. }
  1232. }break;
  1233. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1234. {
  1235. if(code_seen('S'))
  1236. {
  1237. int t= code_value() ;
  1238. switch(t)
  1239. {
  1240. case 0: autoretract_enabled=false;retracted=false;break;
  1241. case 1: autoretract_enabled=true;retracted=false;break;
  1242. default:
  1243. SERIAL_ECHO_START;
  1244. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1245. SERIAL_ECHO(cmdbuffer[bufindr]);
  1246. SERIAL_ECHOLNPGM("\"");
  1247. }
  1248. }
  1249. }break;
  1250. #endif
  1251. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1252. {
  1253. if(code_seen('S'))
  1254. {
  1255. feedmultiply = code_value() ;
  1256. feedmultiplychanged=true;
  1257. }
  1258. }
  1259. break;
  1260. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1261. {
  1262. if(code_seen('S'))
  1263. {
  1264. extrudemultiply = code_value() ;
  1265. }
  1266. }
  1267. break;
  1268. #ifdef PIDTEMP
  1269. case 301: // M301
  1270. {
  1271. if(code_seen('P')) Kp = code_value();
  1272. if(code_seen('I')) Ki = code_value()*PID_dT;
  1273. if(code_seen('D')) Kd = code_value()/PID_dT;
  1274. #ifdef PID_ADD_EXTRUSION_RATE
  1275. if(code_seen('C')) Kc = code_value();
  1276. #endif
  1277. updatePID();
  1278. SERIAL_PROTOCOL(MSG_OK);
  1279. SERIAL_PROTOCOL(" p:");
  1280. SERIAL_PROTOCOL(Kp);
  1281. SERIAL_PROTOCOL(" i:");
  1282. SERIAL_PROTOCOL(Ki/PID_dT);
  1283. SERIAL_PROTOCOL(" d:");
  1284. SERIAL_PROTOCOL(Kd*PID_dT);
  1285. #ifdef PID_ADD_EXTRUSION_RATE
  1286. SERIAL_PROTOCOL(" c:");
  1287. SERIAL_PROTOCOL(Kc*PID_dT);
  1288. #endif
  1289. SERIAL_PROTOCOLLN("");
  1290. }
  1291. break;
  1292. #endif //PIDTEMP
  1293. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  1294. {
  1295. #ifdef PHOTOGRAPH_PIN
  1296. #if (PHOTOGRAPH_PIN > -1)
  1297. const uint8_t NUM_PULSES=16;
  1298. const float PULSE_LENGTH=0.01524;
  1299. for(int i=0; i < NUM_PULSES; i++) {
  1300. WRITE(PHOTOGRAPH_PIN, HIGH);
  1301. _delay_ms(PULSE_LENGTH);
  1302. WRITE(PHOTOGRAPH_PIN, LOW);
  1303. _delay_ms(PULSE_LENGTH);
  1304. }
  1305. delay(7.33);
  1306. for(int i=0; i < NUM_PULSES; i++) {
  1307. WRITE(PHOTOGRAPH_PIN, HIGH);
  1308. _delay_ms(PULSE_LENGTH);
  1309. WRITE(PHOTOGRAPH_PIN, LOW);
  1310. _delay_ms(PULSE_LENGTH);
  1311. }
  1312. #endif
  1313. #endif
  1314. }
  1315. break;
  1316. case 302: // allow cold extrudes
  1317. {
  1318. allow_cold_extrudes(true);
  1319. }
  1320. break;
  1321. case 303: // M303 PID autotune
  1322. {
  1323. float temp = 150.0;
  1324. if (code_seen('S')) temp=code_value();
  1325. PID_autotune(temp);
  1326. }
  1327. break;
  1328. case 400: // M400 finish all moves
  1329. {
  1330. st_synchronize();
  1331. }
  1332. break;
  1333. case 500: // Store settings in EEPROM
  1334. {
  1335. EEPROM_StoreSettings();
  1336. }
  1337. break;
  1338. case 501: // Read settings from EEPROM
  1339. {
  1340. EEPROM_RetrieveSettings();
  1341. }
  1342. break;
  1343. case 502: // Revert to default settings
  1344. {
  1345. EEPROM_RetrieveSettings(true);
  1346. }
  1347. break;
  1348. case 503: // print settings currently in memory
  1349. {
  1350. EEPROM_printSettings();
  1351. }
  1352. break;
  1353. case 999: // Restart after being stopped
  1354. Stopped = false;
  1355. gcode_LastN = Stopped_gcode_LastN;
  1356. FlushSerialRequestResend();
  1357. break;
  1358. }
  1359. }
  1360. else if(code_seen('T'))
  1361. {
  1362. tmp_extruder = code_value();
  1363. if(tmp_extruder >= EXTRUDERS) {
  1364. SERIAL_ECHO_START;
  1365. SERIAL_ECHO("T");
  1366. SERIAL_ECHO(tmp_extruder);
  1367. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  1368. }
  1369. else {
  1370. active_extruder = tmp_extruder;
  1371. SERIAL_ECHO_START;
  1372. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  1373. SERIAL_PROTOCOLLN((int)active_extruder);
  1374. }
  1375. }
  1376. else
  1377. {
  1378. SERIAL_ECHO_START;
  1379. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1380. SERIAL_ECHO(cmdbuffer[bufindr]);
  1381. SERIAL_ECHOLNPGM("\"");
  1382. }
  1383. ClearToSend();
  1384. }
  1385. void FlushSerialRequestResend()
  1386. {
  1387. //char cmdbuffer[bufindr][100]="Resend:";
  1388. MYSERIAL.flush();
  1389. SERIAL_PROTOCOLPGM(MSG_RESEND);
  1390. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  1391. ClearToSend();
  1392. }
  1393. void ClearToSend()
  1394. {
  1395. previous_millis_cmd = millis();
  1396. #ifdef SDSUPPORT
  1397. if(fromsd[bufindr])
  1398. return;
  1399. #endif //SDSUPPORT
  1400. SERIAL_PROTOCOLLNPGM(MSG_OK);
  1401. }
  1402. void get_coordinates()
  1403. {
  1404. bool seen[4]={false,false,false,false};
  1405. for(int8_t i=0; i < NUM_AXIS; i++) {
  1406. if(code_seen(axis_codes[i]))
  1407. {
  1408. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  1409. seen[i]=true;
  1410. }
  1411. else destination[i] = current_position[i]; //Are these else lines really needed?
  1412. }
  1413. if(code_seen('F')) {
  1414. next_feedrate = code_value();
  1415. if(next_feedrate > 0.0) feedrate = next_feedrate;
  1416. }
  1417. #ifdef FWRETRACT
  1418. if(autoretract_enabled)
  1419. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  1420. {
  1421. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1422. if(echange<-MIN_RETRACT) //retract
  1423. {
  1424. if(!retracted)
  1425. {
  1426. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  1427. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  1428. float correctede=-echange-retract_length;
  1429. //to generate the additional steps, not the destination is changed, but inversely the current position
  1430. current_position[E_AXIS]+=-correctede;
  1431. feedrate=retract_feedrate;
  1432. retracted=true;
  1433. }
  1434. }
  1435. else
  1436. if(echange>MIN_RETRACT) //retract_recover
  1437. {
  1438. if(retracted)
  1439. {
  1440. //current_position[Z_AXIS]+=-retract_zlift;
  1441. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  1442. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  1443. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  1444. feedrate=retract_recover_feedrate;
  1445. retracted=false;
  1446. }
  1447. }
  1448. }
  1449. #endif //FWRETRACT
  1450. }
  1451. void get_arc_coordinates()
  1452. {
  1453. #ifdef SF_ARC_FIX
  1454. bool relative_mode_backup = relative_mode;
  1455. relative_mode = true;
  1456. #endif
  1457. get_coordinates();
  1458. #ifdef SF_ARC_FIX
  1459. relative_mode=relative_mode_backup;
  1460. #endif
  1461. if(code_seen('I')) {
  1462. offset[0] = code_value();
  1463. }
  1464. else {
  1465. offset[0] = 0.0;
  1466. }
  1467. if(code_seen('J')) {
  1468. offset[1] = code_value();
  1469. }
  1470. else {
  1471. offset[1] = 0.0;
  1472. }
  1473. }
  1474. void clamp_to_software_endstops(float target[3])
  1475. {
  1476. if (min_software_endstops) {
  1477. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  1478. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  1479. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  1480. }
  1481. if (max_software_endstops) {
  1482. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  1483. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  1484. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  1485. }
  1486. }
  1487. void prepare_move()
  1488. {
  1489. clamp_to_software_endstops(destination);
  1490. previous_millis_cmd = millis();
  1491. // Do not use feedmultiply for E or Z only moves
  1492. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  1493. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1494. }
  1495. else {
  1496. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  1497. }
  1498. for(int8_t i=0; i < NUM_AXIS; i++) {
  1499. current_position[i] = destination[i];
  1500. }
  1501. }
  1502. void prepare_arc_move(char isclockwise) {
  1503. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  1504. // Trace the arc
  1505. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  1506. // As far as the parser is concerned, the position is now == target. In reality the
  1507. // motion control system might still be processing the action and the real tool position
  1508. // in any intermediate location.
  1509. for(int8_t i=0; i < NUM_AXIS; i++) {
  1510. current_position[i] = destination[i];
  1511. }
  1512. previous_millis_cmd = millis();
  1513. }
  1514. #ifdef CONTROLLERFAN_PIN
  1515. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  1516. unsigned long lastMotorCheck = 0;
  1517. void controllerFan()
  1518. {
  1519. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  1520. {
  1521. lastMotorCheck = millis();
  1522. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN)
  1523. #if EXTRUDERS > 2
  1524. || !READ(E2_ENABLE_PIN)
  1525. #endif
  1526. #if EXTRUDER > 1
  1527. || !READ(E2_ENABLE_PIN)
  1528. #endif
  1529. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  1530. {
  1531. lastMotor = millis(); //... set time to NOW so the fan will turn on
  1532. }
  1533. if ((millis() - lastMotor) >= (CONTROLLERFAN_SEC*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  1534. {
  1535. WRITE(CONTROLLERFAN_PIN, LOW); //... turn the fan off
  1536. }
  1537. else
  1538. {
  1539. WRITE(CONTROLLERFAN_PIN, HIGH); //... turn the fan on
  1540. }
  1541. }
  1542. }
  1543. #endif
  1544. void manage_inactivity()
  1545. {
  1546. if( (millis() - previous_millis_cmd) > max_inactive_time )
  1547. if(max_inactive_time)
  1548. kill();
  1549. if(stepper_inactive_time) {
  1550. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  1551. {
  1552. if(blocks_queued() == false) {
  1553. disable_x();
  1554. disable_y();
  1555. disable_z();
  1556. disable_e0();
  1557. disable_e1();
  1558. disable_e2();
  1559. }
  1560. }
  1561. }
  1562. #if( KILL_PIN>-1 )
  1563. if( 0 == READ(KILL_PIN) )
  1564. kill();
  1565. #endif
  1566. #ifdef CONTROLLERFAN_PIN
  1567. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  1568. #endif
  1569. #ifdef EXTRUDER_RUNOUT_PREVENT
  1570. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  1571. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  1572. {
  1573. bool oldstatus=READ(E0_ENABLE_PIN);
  1574. enable_e0();
  1575. float oldepos=current_position[E_AXIS];
  1576. float oldedes=destination[E_AXIS];
  1577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  1578. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  1579. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  1580. current_position[E_AXIS]=oldepos;
  1581. destination[E_AXIS]=oldedes;
  1582. plan_set_e_position(oldepos);
  1583. previous_millis_cmd=millis();
  1584. st_synchronize();
  1585. WRITE(E0_ENABLE_PIN,oldstatus);
  1586. }
  1587. #endif
  1588. check_axes_activity();
  1589. }
  1590. void kill()
  1591. {
  1592. cli(); // Stop interrupts
  1593. disable_heater();
  1594. disable_x();
  1595. disable_y();
  1596. disable_z();
  1597. disable_e0();
  1598. disable_e1();
  1599. disable_e2();
  1600. if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  1601. SERIAL_ERROR_START;
  1602. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  1603. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  1604. suicide();
  1605. while(1); // Wait for reset
  1606. }
  1607. void Stop()
  1608. {
  1609. disable_heater();
  1610. if(Stopped == false) {
  1611. Stopped = true;
  1612. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  1613. SERIAL_ERROR_START;
  1614. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  1615. LCD_MESSAGEPGM(MSG_STOPPED);
  1616. }
  1617. }
  1618. bool IsStopped() { return Stopped; };
  1619. #ifdef FAST_PWM_FAN
  1620. void setPwmFrequency(uint8_t pin, int val)
  1621. {
  1622. val &= 0x07;
  1623. switch(digitalPinToTimer(pin))
  1624. {
  1625. #if defined(TCCR0A)
  1626. case TIMER0A:
  1627. case TIMER0B:
  1628. // TCCR0B &= ~(CS00 | CS01 | CS02);
  1629. // TCCR0B |= val;
  1630. break;
  1631. #endif
  1632. #if defined(TCCR1A)
  1633. case TIMER1A:
  1634. case TIMER1B:
  1635. // TCCR1B &= ~(CS10 | CS11 | CS12);
  1636. // TCCR1B |= val;
  1637. break;
  1638. #endif
  1639. #if defined(TCCR2)
  1640. case TIMER2:
  1641. case TIMER2:
  1642. TCCR2 &= ~(CS10 | CS11 | CS12);
  1643. TCCR2 |= val;
  1644. break;
  1645. #endif
  1646. #if defined(TCCR2A)
  1647. case TIMER2A:
  1648. case TIMER2B:
  1649. TCCR2B &= ~(CS20 | CS21 | CS22);
  1650. TCCR2B |= val;
  1651. break;
  1652. #endif
  1653. #if defined(TCCR3A)
  1654. case TIMER3A:
  1655. case TIMER3B:
  1656. case TIMER3C:
  1657. TCCR3B &= ~(CS30 | CS31 | CS32);
  1658. TCCR3B |= val;
  1659. break;
  1660. #endif
  1661. #if defined(TCCR4A)
  1662. case TIMER4A:
  1663. case TIMER4B:
  1664. case TIMER4C:
  1665. TCCR4B &= ~(CS40 | CS41 | CS42);
  1666. TCCR4B |= val;
  1667. break;
  1668. #endif
  1669. #if defined(TCCR5A)
  1670. case TIMER5A:
  1671. case TIMER5B:
  1672. case TIMER5C:
  1673. TCCR5B &= ~(CS50 | CS51 | CS52);
  1674. TCCR5B |= val;
  1675. break;
  1676. #endif
  1677. }
  1678. }
  1679. #endif