My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

stepper.cpp 40KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if HAS_DIGIPOTSS
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //============================= public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //============================= private variables ===========================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static unsigned int cleaning_buffer_counter;
  40. #ifdef Z_DUAL_ENDSTOPS
  41. static bool performing_homing = false,
  42. locked_z_motor = false,
  43. locked_z2_motor = false;
  44. #endif
  45. // Counter variables for the bresenham line tracer
  46. static long counter_x, counter_y, counter_z, counter_e;
  47. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  48. #ifdef ADVANCE
  49. static long advance_rate, advance, final_advance = 0;
  50. static long old_advance = 0;
  51. static long e_steps[4];
  52. #endif
  53. static long acceleration_time, deceleration_time;
  54. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  55. static unsigned short acc_step_rate; // needed for deccelaration start point
  56. static char step_loops;
  57. static unsigned short OCR1A_nominal;
  58. static unsigned short step_loops_nominal;
  59. volatile long endstops_trigsteps[3] = { 0 };
  60. volatile long endstops_stepsTotal, endstops_stepsDone;
  61. static volatile bool endstop_x_hit = false;
  62. static volatile bool endstop_y_hit = false;
  63. static volatile bool endstop_z_hit = false;
  64. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  65. bool abort_on_endstop_hit = false;
  66. #endif
  67. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  68. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  69. #endif
  70. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  71. static bool old_x_min_endstop = false;
  72. #endif
  73. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  74. static bool old_x_max_endstop = false;
  75. #endif
  76. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  77. static bool old_y_min_endstop = false;
  78. #endif
  79. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  80. static bool old_y_max_endstop = false;
  81. #endif
  82. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  83. static bool old_z_min_endstop = false;
  84. #endif
  85. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  86. static bool old_z_max_endstop = false;
  87. #endif
  88. #ifdef Z_DUAL_ENDSTOPS
  89. #if defined(Z2_MIN_PIN) && Z2_MIN_PIN >= 0
  90. static bool old_z2_min_endstop = false;
  91. #endif
  92. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
  93. static bool old_z2_max_endstop = false;
  94. #endif
  95. #endif
  96. static bool check_endstops = true;
  97. volatile long count_position[NUM_AXIS] = { 0 };
  98. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  99. //===========================================================================
  100. //================================ functions ================================
  101. //===========================================================================
  102. #ifdef DUAL_X_CARRIAGE
  103. #define X_APPLY_DIR(v,ALWAYS) \
  104. if (extruder_duplication_enabled || ALWAYS) { \
  105. X_DIR_WRITE(v); \
  106. X2_DIR_WRITE(v); \
  107. } \
  108. else { \
  109. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  110. }
  111. #define X_APPLY_STEP(v,ALWAYS) \
  112. if (extruder_duplication_enabled || ALWAYS) { \
  113. X_STEP_WRITE(v); \
  114. X2_STEP_WRITE(v); \
  115. } \
  116. else { \
  117. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  118. }
  119. #else
  120. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  121. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  122. #endif
  123. #ifdef Y_DUAL_STEPPER_DRIVERS
  124. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  125. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  126. #else
  127. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  128. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  129. #endif
  130. #ifdef Z_DUAL_STEPPER_DRIVERS
  131. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  132. #ifdef Z_DUAL_ENDSTOPS
  133. #define Z_APPLY_STEP(v,Q) \
  134. if (performing_homing) { \
  135. if (Z_HOME_DIR > 0) {\
  136. if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  137. if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  138. } else {\
  139. if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  140. if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  141. } \
  142. } else { \
  143. Z_STEP_WRITE(v); \
  144. Z2_STEP_WRITE(v); \
  145. }
  146. #else
  147. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  148. #endif
  149. #else
  150. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  151. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  152. #endif
  153. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  154. // intRes = intIn1 * intIn2 >> 16
  155. // uses:
  156. // r26 to store 0
  157. // r27 to store the byte 1 of the 24 bit result
  158. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  159. asm volatile ( \
  160. "clr r26 \n\t" \
  161. "mul %A1, %B2 \n\t" \
  162. "movw %A0, r0 \n\t" \
  163. "mul %A1, %A2 \n\t" \
  164. "add %A0, r1 \n\t" \
  165. "adc %B0, r26 \n\t" \
  166. "lsr r0 \n\t" \
  167. "adc %A0, r26 \n\t" \
  168. "adc %B0, r26 \n\t" \
  169. "clr r1 \n\t" \
  170. : \
  171. "=&r" (intRes) \
  172. : \
  173. "d" (charIn1), \
  174. "d" (intIn2) \
  175. : \
  176. "r26" \
  177. )
  178. // intRes = longIn1 * longIn2 >> 24
  179. // uses:
  180. // r26 to store 0
  181. // r27 to store the byte 1 of the 48bit result
  182. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  183. asm volatile ( \
  184. "clr r26 \n\t" \
  185. "mul %A1, %B2 \n\t" \
  186. "mov r27, r1 \n\t" \
  187. "mul %B1, %C2 \n\t" \
  188. "movw %A0, r0 \n\t" \
  189. "mul %C1, %C2 \n\t" \
  190. "add %B0, r0 \n\t" \
  191. "mul %C1, %B2 \n\t" \
  192. "add %A0, r0 \n\t" \
  193. "adc %B0, r1 \n\t" \
  194. "mul %A1, %C2 \n\t" \
  195. "add r27, r0 \n\t" \
  196. "adc %A0, r1 \n\t" \
  197. "adc %B0, r26 \n\t" \
  198. "mul %B1, %B2 \n\t" \
  199. "add r27, r0 \n\t" \
  200. "adc %A0, r1 \n\t" \
  201. "adc %B0, r26 \n\t" \
  202. "mul %C1, %A2 \n\t" \
  203. "add r27, r0 \n\t" \
  204. "adc %A0, r1 \n\t" \
  205. "adc %B0, r26 \n\t" \
  206. "mul %B1, %A2 \n\t" \
  207. "add r27, r1 \n\t" \
  208. "adc %A0, r26 \n\t" \
  209. "adc %B0, r26 \n\t" \
  210. "lsr r27 \n\t" \
  211. "adc %A0, r26 \n\t" \
  212. "adc %B0, r26 \n\t" \
  213. "clr r1 \n\t" \
  214. : \
  215. "=&r" (intRes) \
  216. : \
  217. "d" (longIn1), \
  218. "d" (longIn2) \
  219. : \
  220. "r26" , "r27" \
  221. )
  222. // Some useful constants
  223. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  224. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  225. void endstops_hit_on_purpose() {
  226. endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
  227. }
  228. void checkHitEndstops() {
  229. if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  230. SERIAL_ECHO_START;
  231. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  232. if (endstop_x_hit) {
  233. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  234. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  235. }
  236. if (endstop_y_hit) {
  237. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  238. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  239. }
  240. if (endstop_z_hit) {
  241. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  242. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  243. }
  244. SERIAL_EOL;
  245. endstops_hit_on_purpose();
  246. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  247. if (abort_on_endstop_hit) {
  248. card.sdprinting = false;
  249. card.closefile();
  250. quickStop();
  251. setTargetHotend0(0);
  252. setTargetHotend1(0);
  253. setTargetHotend2(0);
  254. setTargetHotend3(0);
  255. setTargetBed(0);
  256. }
  257. #endif
  258. }
  259. }
  260. void enable_endstops(bool check) { check_endstops = check; }
  261. // __________________________
  262. // /| |\ _________________ ^
  263. // / | | \ /| |\ |
  264. // / | | \ / | | \ s
  265. // / | | | | | \ p
  266. // / | | | | | \ e
  267. // +-----+------------------------+---+--+---------------+----+ e
  268. // | BLOCK 1 | BLOCK 2 | d
  269. //
  270. // time ----->
  271. //
  272. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  273. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  274. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  275. // The slope of acceleration is calculated with the leib ramp alghorithm.
  276. void st_wake_up() {
  277. // TCNT1 = 0;
  278. ENABLE_STEPPER_DRIVER_INTERRUPT();
  279. }
  280. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  281. unsigned short timer;
  282. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  283. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  284. step_rate = (step_rate >> 2) & 0x3fff;
  285. step_loops = 4;
  286. }
  287. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  288. step_rate = (step_rate >> 1) & 0x7fff;
  289. step_loops = 2;
  290. }
  291. else {
  292. step_loops = 1;
  293. }
  294. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  295. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  296. if (step_rate >= (8 * 256)) { // higher step rate
  297. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  298. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  299. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  300. MultiU16X8toH16(timer, tmp_step_rate, gain);
  301. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  302. }
  303. else { // lower step rates
  304. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  305. table_address += ((step_rate)>>1) & 0xfffc;
  306. timer = (unsigned short)pgm_read_word_near(table_address);
  307. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  308. }
  309. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  310. return timer;
  311. }
  312. // Initializes the trapezoid generator from the current block. Called whenever a new
  313. // block begins.
  314. FORCE_INLINE void trapezoid_generator_reset() {
  315. #ifdef ADVANCE
  316. advance = current_block->initial_advance;
  317. final_advance = current_block->final_advance;
  318. // Do E steps + advance steps
  319. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  320. old_advance = advance >>8;
  321. #endif
  322. deceleration_time = 0;
  323. // step_rate to timer interval
  324. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  325. // make a note of the number of step loops required at nominal speed
  326. step_loops_nominal = step_loops;
  327. acc_step_rate = current_block->initial_rate;
  328. acceleration_time = calc_timer(acc_step_rate);
  329. OCR1A = acceleration_time;
  330. // SERIAL_ECHO_START;
  331. // SERIAL_ECHOPGM("advance :");
  332. // SERIAL_ECHO(current_block->advance/256.0);
  333. // SERIAL_ECHOPGM("advance rate :");
  334. // SERIAL_ECHO(current_block->advance_rate/256.0);
  335. // SERIAL_ECHOPGM("initial advance :");
  336. // SERIAL_ECHO(current_block->initial_advance/256.0);
  337. // SERIAL_ECHOPGM("final advance :");
  338. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  339. }
  340. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  341. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  342. ISR(TIMER1_COMPA_vect) {
  343. if(cleaning_buffer_counter)
  344. {
  345. current_block = NULL;
  346. plan_discard_current_block();
  347. #ifdef SD_FINISHED_RELEASECOMMAND
  348. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  349. #endif
  350. cleaning_buffer_counter--;
  351. OCR1A = 200;
  352. return;
  353. }
  354. // If there is no current block, attempt to pop one from the buffer
  355. if (!current_block) {
  356. // Anything in the buffer?
  357. current_block = plan_get_current_block();
  358. if (current_block) {
  359. current_block->busy = true;
  360. trapezoid_generator_reset();
  361. counter_x = -(current_block->step_event_count >> 1);
  362. counter_y = counter_z = counter_e = counter_x;
  363. step_events_completed = 0;
  364. #ifdef Z_LATE_ENABLE
  365. if (current_block->steps[Z_AXIS] > 0) {
  366. enable_z();
  367. OCR1A = 2000; //1ms wait
  368. return;
  369. }
  370. #endif
  371. // #ifdef ADVANCE
  372. // e_steps[current_block->active_extruder] = 0;
  373. // #endif
  374. }
  375. else {
  376. OCR1A = 2000; // 1kHz.
  377. }
  378. }
  379. if (current_block != NULL) {
  380. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  381. out_bits = current_block->direction_bits;
  382. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  383. if (TEST(out_bits, X_AXIS)) {
  384. X_APPLY_DIR(INVERT_X_DIR,0);
  385. count_direction[X_AXIS] = -1;
  386. }
  387. else {
  388. X_APPLY_DIR(!INVERT_X_DIR,0);
  389. count_direction[X_AXIS] = 1;
  390. }
  391. if (TEST(out_bits, Y_AXIS)) {
  392. Y_APPLY_DIR(INVERT_Y_DIR,0);
  393. count_direction[Y_AXIS] = -1;
  394. }
  395. else {
  396. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  397. count_direction[Y_AXIS] = 1;
  398. }
  399. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  400. bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
  401. if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps[AXIS ##_AXIS] > 0)) { \
  402. endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
  403. endstop_## axis ##_hit = true; \
  404. step_events_completed = current_block->step_event_count; \
  405. } \
  406. old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
  407. // Check X and Y endstops
  408. if (check_endstops) {
  409. #ifdef COREXY
  410. // Head direction in -X axis for CoreXY bots.
  411. // If DeltaX == -DeltaY, the movement is only in Y axis
  412. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
  413. if (TEST(out_bits, X_HEAD))
  414. #else
  415. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
  416. #endif
  417. { // -direction
  418. #ifdef DUAL_X_CARRIAGE
  419. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  420. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  421. #endif
  422. {
  423. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  424. UPDATE_ENDSTOP(x, X, min, MIN);
  425. #endif
  426. }
  427. }
  428. else { // +direction
  429. #ifdef DUAL_X_CARRIAGE
  430. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  431. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  432. #endif
  433. {
  434. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  435. UPDATE_ENDSTOP(x, X, max, MAX);
  436. #endif
  437. }
  438. }
  439. #ifdef COREXY
  440. }
  441. // Head direction in -Y axis for CoreXY bots.
  442. // If DeltaX == DeltaY, the movement is only in X axis
  443. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  444. if (TEST(out_bits, Y_HEAD))
  445. #else
  446. if (TEST(out_bits, Y_AXIS)) // -direction
  447. #endif
  448. { // -direction
  449. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  450. UPDATE_ENDSTOP(y, Y, min, MIN);
  451. #endif
  452. }
  453. else { // +direction
  454. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  455. UPDATE_ENDSTOP(y, Y, max, MAX);
  456. #endif
  457. }
  458. #ifdef COREXY
  459. }
  460. #endif
  461. }
  462. if (TEST(out_bits, Z_AXIS)) { // -direction
  463. Z_APPLY_DIR(INVERT_Z_DIR,0);
  464. count_direction[Z_AXIS] = -1;
  465. if (check_endstops) {
  466. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  467. #ifdef Z_DUAL_ENDSTOPS
  468. bool z_min_endstop = READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING,
  469. z2_min_endstop =
  470. #if defined(Z2_MIN_PIN) && Z2_MIN_PIN >= 0
  471. READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING
  472. #else
  473. z_min_endstop
  474. #endif
  475. ;
  476. bool z_min_both = z_min_endstop && old_z_min_endstop,
  477. z2_min_both = z2_min_endstop && old_z2_min_endstop;
  478. if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) {
  479. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  480. endstop_z_hit = true;
  481. if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing...
  482. step_events_completed = current_block->step_event_count;
  483. }
  484. old_z_min_endstop = z_min_endstop;
  485. old_z2_min_endstop = z2_min_endstop;
  486. #else // !Z_DUAL_ENDSTOPS
  487. UPDATE_ENDSTOP(z, Z, min, MIN);
  488. #endif // !Z_DUAL_ENDSTOPS
  489. #endif // Z_MIN_PIN
  490. } // check_endstops
  491. }
  492. else { // +direction
  493. Z_APPLY_DIR(!INVERT_Z_DIR,0);
  494. count_direction[Z_AXIS] = 1;
  495. if (check_endstops) {
  496. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  497. #ifdef Z_DUAL_ENDSTOPS
  498. bool z_max_endstop = READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING,
  499. z2_max_endstop =
  500. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
  501. READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING
  502. #else
  503. z_max_endstop
  504. #endif
  505. ;
  506. bool z_max_both = z_max_endstop && old_z_max_endstop,
  507. z2_max_both = z2_max_endstop && old_z2_max_endstop;
  508. if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) {
  509. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  510. endstop_z_hit = true;
  511. // if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true");
  512. // if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true");
  513. if (!performing_homing || (performing_homing && z_max_both && z2_max_both)) //if not performing home or if both endstops were trigged during homing...
  514. step_events_completed = current_block->step_event_count;
  515. }
  516. old_z_max_endstop = z_max_endstop;
  517. old_z2_max_endstop = z2_max_endstop;
  518. #else // !Z_DUAL_ENDSTOPS
  519. UPDATE_ENDSTOP(z, Z, max, MAX);
  520. #endif // !Z_DUAL_ENDSTOPS
  521. #endif // Z_MAX_PIN
  522. } // check_endstops
  523. } // +direction
  524. #ifndef ADVANCE
  525. if (TEST(out_bits, E_AXIS)) { // -direction
  526. REV_E_DIR();
  527. count_direction[E_AXIS] = -1;
  528. }
  529. else { // +direction
  530. NORM_E_DIR();
  531. count_direction[E_AXIS] = 1;
  532. }
  533. #endif //!ADVANCE
  534. // Take multiple steps per interrupt (For high speed moves)
  535. for (int8_t i = 0; i < step_loops; i++) {
  536. #ifndef AT90USB
  537. MSerial.checkRx(); // Check for serial chars.
  538. #endif
  539. #ifdef ADVANCE
  540. counter_e += current_block->steps[E_AXIS];
  541. if (counter_e > 0) {
  542. counter_e -= current_block->step_event_count;
  543. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  544. }
  545. #endif //ADVANCE
  546. #ifdef CONFIG_STEPPERS_TOSHIBA
  547. /**
  548. * The Toshiba stepper controller require much longer pulses.
  549. * So we 'stage' decompose the pulses between high and low
  550. * instead of doing each in turn. The extra tests add enough
  551. * lag to allow it work with without needing NOPs
  552. */
  553. #define STEP_ADD(axis, AXIS) \
  554. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  555. if (counter_## axis > 0) { AXIS ##_STEP_WRITE(HIGH); }
  556. STEP_ADD(x,X);
  557. STEP_ADD(y,Y);
  558. STEP_ADD(z,Z);
  559. #ifndef ADVANCE
  560. STEP_ADD(e,E);
  561. #endif
  562. #define STEP_IF_COUNTER(axis, AXIS) \
  563. if (counter_## axis > 0) { \
  564. counter_## axis -= current_block->step_event_count; \
  565. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  566. AXIS ##_STEP_WRITE(LOW); \
  567. }
  568. STEP_IF_COUNTER(x, X);
  569. STEP_IF_COUNTER(y, Y);
  570. STEP_IF_COUNTER(z, Z);
  571. #ifndef ADVANCE
  572. STEP_IF_COUNTER(e, E);
  573. #endif
  574. #else // !CONFIG_STEPPERS_TOSHIBA
  575. #define APPLY_MOVEMENT(axis, AXIS) \
  576. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  577. if (counter_## axis > 0) { \
  578. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
  579. counter_## axis -= current_block->step_event_count; \
  580. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  581. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
  582. }
  583. APPLY_MOVEMENT(x, X);
  584. APPLY_MOVEMENT(y, Y);
  585. APPLY_MOVEMENT(z, Z);
  586. #ifndef ADVANCE
  587. APPLY_MOVEMENT(e, E);
  588. #endif
  589. #endif // CONFIG_STEPPERS_TOSHIBA
  590. step_events_completed++;
  591. if (step_events_completed >= current_block->step_event_count) break;
  592. }
  593. // Calculare new timer value
  594. unsigned short timer;
  595. unsigned short step_rate;
  596. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  597. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  598. acc_step_rate += current_block->initial_rate;
  599. // upper limit
  600. if (acc_step_rate > current_block->nominal_rate)
  601. acc_step_rate = current_block->nominal_rate;
  602. // step_rate to timer interval
  603. timer = calc_timer(acc_step_rate);
  604. OCR1A = timer;
  605. acceleration_time += timer;
  606. #ifdef ADVANCE
  607. for(int8_t i=0; i < step_loops; i++) {
  608. advance += advance_rate;
  609. }
  610. //if (advance > current_block->advance) advance = current_block->advance;
  611. // Do E steps + advance steps
  612. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  613. old_advance = advance >>8;
  614. #endif
  615. }
  616. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  617. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  618. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  619. step_rate = current_block->final_rate;
  620. }
  621. else {
  622. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  623. }
  624. // lower limit
  625. if (step_rate < current_block->final_rate)
  626. step_rate = current_block->final_rate;
  627. // step_rate to timer interval
  628. timer = calc_timer(step_rate);
  629. OCR1A = timer;
  630. deceleration_time += timer;
  631. #ifdef ADVANCE
  632. for(int8_t i=0; i < step_loops; i++) {
  633. advance -= advance_rate;
  634. }
  635. if (advance < final_advance) advance = final_advance;
  636. // Do E steps + advance steps
  637. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  638. old_advance = advance >>8;
  639. #endif //ADVANCE
  640. }
  641. else {
  642. OCR1A = OCR1A_nominal;
  643. // ensure we're running at the correct step rate, even if we just came off an acceleration
  644. step_loops = step_loops_nominal;
  645. }
  646. // If current block is finished, reset pointer
  647. if (step_events_completed >= current_block->step_event_count) {
  648. current_block = NULL;
  649. plan_discard_current_block();
  650. }
  651. }
  652. }
  653. #ifdef ADVANCE
  654. unsigned char old_OCR0A;
  655. // Timer interrupt for E. e_steps is set in the main routine;
  656. // Timer 0 is shared with millies
  657. ISR(TIMER0_COMPA_vect)
  658. {
  659. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  660. OCR0A = old_OCR0A;
  661. // Set E direction (Depends on E direction + advance)
  662. for(unsigned char i=0; i<4;i++) {
  663. if (e_steps[0] != 0) {
  664. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  665. if (e_steps[0] < 0) {
  666. E0_DIR_WRITE(INVERT_E0_DIR);
  667. e_steps[0]++;
  668. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  669. }
  670. else if (e_steps[0] > 0) {
  671. E0_DIR_WRITE(!INVERT_E0_DIR);
  672. e_steps[0]--;
  673. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  674. }
  675. }
  676. #if EXTRUDERS > 1
  677. if (e_steps[1] != 0) {
  678. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  679. if (e_steps[1] < 0) {
  680. E1_DIR_WRITE(INVERT_E1_DIR);
  681. e_steps[1]++;
  682. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  683. }
  684. else if (e_steps[1] > 0) {
  685. E1_DIR_WRITE(!INVERT_E1_DIR);
  686. e_steps[1]--;
  687. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  688. }
  689. }
  690. #endif
  691. #if EXTRUDERS > 2
  692. if (e_steps[2] != 0) {
  693. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  694. if (e_steps[2] < 0) {
  695. E2_DIR_WRITE(INVERT_E2_DIR);
  696. e_steps[2]++;
  697. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  698. }
  699. else if (e_steps[2] > 0) {
  700. E2_DIR_WRITE(!INVERT_E2_DIR);
  701. e_steps[2]--;
  702. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  703. }
  704. }
  705. #endif
  706. #if EXTRUDERS > 3
  707. if (e_steps[3] != 0) {
  708. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  709. if (e_steps[3] < 0) {
  710. E3_DIR_WRITE(INVERT_E3_DIR);
  711. e_steps[3]++;
  712. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  713. }
  714. else if (e_steps[3] > 0) {
  715. E3_DIR_WRITE(!INVERT_E3_DIR);
  716. e_steps[3]--;
  717. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  718. }
  719. }
  720. #endif
  721. }
  722. }
  723. #endif // ADVANCE
  724. void st_init() {
  725. digipot_init(); //Initialize Digipot Motor Current
  726. microstep_init(); //Initialize Microstepping Pins
  727. // initialise TMC Steppers
  728. #ifdef HAVE_TMCDRIVER
  729. tmc_init();
  730. #endif
  731. // initialise L6470 Steppers
  732. #ifdef HAVE_L6470DRIVER
  733. L6470_init();
  734. #endif
  735. // Initialize Dir Pins
  736. #if defined(X_DIR_PIN) && X_DIR_PIN >= 0
  737. X_DIR_INIT;
  738. #endif
  739. #if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
  740. X2_DIR_INIT;
  741. #endif
  742. #if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
  743. Y_DIR_INIT;
  744. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
  745. Y2_DIR_INIT;
  746. #endif
  747. #endif
  748. #if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
  749. Z_DIR_INIT;
  750. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
  751. Z2_DIR_INIT;
  752. #endif
  753. #endif
  754. #if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
  755. E0_DIR_INIT;
  756. #endif
  757. #if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
  758. E1_DIR_INIT;
  759. #endif
  760. #if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
  761. E2_DIR_INIT;
  762. #endif
  763. #if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
  764. E3_DIR_INIT;
  765. #endif
  766. //Initialize Enable Pins - steppers default to disabled.
  767. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
  768. X_ENABLE_INIT;
  769. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  770. #endif
  771. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
  772. X2_ENABLE_INIT;
  773. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  774. #endif
  775. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
  776. Y_ENABLE_INIT;
  777. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  778. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
  779. Y2_ENABLE_INIT;
  780. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  781. #endif
  782. #endif
  783. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
  784. Z_ENABLE_INIT;
  785. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  786. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
  787. Z2_ENABLE_INIT;
  788. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  789. #endif
  790. #endif
  791. #if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
  792. E0_ENABLE_INIT;
  793. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  794. #endif
  795. #if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
  796. E1_ENABLE_INIT;
  797. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  798. #endif
  799. #if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
  800. E2_ENABLE_INIT;
  801. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  802. #endif
  803. #if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
  804. E3_ENABLE_INIT;
  805. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  806. #endif
  807. //endstops and pullups
  808. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  809. SET_INPUT(X_MIN_PIN);
  810. #ifdef ENDSTOPPULLUP_XMIN
  811. WRITE(X_MIN_PIN,HIGH);
  812. #endif
  813. #endif
  814. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  815. SET_INPUT(Y_MIN_PIN);
  816. #ifdef ENDSTOPPULLUP_YMIN
  817. WRITE(Y_MIN_PIN,HIGH);
  818. #endif
  819. #endif
  820. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  821. SET_INPUT(Z_MIN_PIN);
  822. #ifdef ENDSTOPPULLUP_ZMIN
  823. WRITE(Z_MIN_PIN,HIGH);
  824. #endif
  825. #endif
  826. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  827. SET_INPUT(X_MAX_PIN);
  828. #ifdef ENDSTOPPULLUP_XMAX
  829. WRITE(X_MAX_PIN,HIGH);
  830. #endif
  831. #endif
  832. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  833. SET_INPUT(Y_MAX_PIN);
  834. #ifdef ENDSTOPPULLUP_YMAX
  835. WRITE(Y_MAX_PIN,HIGH);
  836. #endif
  837. #endif
  838. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  839. SET_INPUT(Z_MAX_PIN);
  840. #ifdef ENDSTOPPULLUP_ZMAX
  841. WRITE(Z_MAX_PIN,HIGH);
  842. #endif
  843. #endif
  844. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
  845. SET_INPUT(Z2_MAX_PIN);
  846. #ifdef ENDSTOPPULLUP_ZMAX
  847. WRITE(Z2_MAX_PIN,HIGH);
  848. #endif
  849. #endif
  850. #define AXIS_INIT(axis, AXIS, PIN) \
  851. AXIS ##_STEP_INIT; \
  852. AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
  853. disable_## axis()
  854. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  855. // Initialize Step Pins
  856. #if defined(X_STEP_PIN) && X_STEP_PIN >= 0
  857. AXIS_INIT(x, X, X);
  858. #endif
  859. #if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
  860. AXIS_INIT(x, X2, X);
  861. #endif
  862. #if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
  863. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
  864. Y2_STEP_INIT;
  865. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  866. #endif
  867. AXIS_INIT(y, Y, Y);
  868. #endif
  869. #if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
  870. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
  871. Z2_STEP_INIT;
  872. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  873. #endif
  874. AXIS_INIT(z, Z, Z);
  875. #endif
  876. #if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
  877. E_AXIS_INIT(0);
  878. #endif
  879. #if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
  880. E_AXIS_INIT(1);
  881. #endif
  882. #if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
  883. E_AXIS_INIT(2);
  884. #endif
  885. #if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
  886. E_AXIS_INIT(3);
  887. #endif
  888. // waveform generation = 0100 = CTC
  889. TCCR1B &= ~BIT(WGM13);
  890. TCCR1B |= BIT(WGM12);
  891. TCCR1A &= ~BIT(WGM11);
  892. TCCR1A &= ~BIT(WGM10);
  893. // output mode = 00 (disconnected)
  894. TCCR1A &= ~(3<<COM1A0);
  895. TCCR1A &= ~(3<<COM1B0);
  896. // Set the timer pre-scaler
  897. // Generally we use a divider of 8, resulting in a 2MHz timer
  898. // frequency on a 16MHz MCU. If you are going to change this, be
  899. // sure to regenerate speed_lookuptable.h with
  900. // create_speed_lookuptable.py
  901. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  902. OCR1A = 0x4000;
  903. TCNT1 = 0;
  904. ENABLE_STEPPER_DRIVER_INTERRUPT();
  905. #ifdef ADVANCE
  906. #if defined(TCCR0A) && defined(WGM01)
  907. TCCR0A &= ~BIT(WGM01);
  908. TCCR0A &= ~BIT(WGM00);
  909. #endif
  910. e_steps[0] = 0;
  911. e_steps[1] = 0;
  912. e_steps[2] = 0;
  913. e_steps[3] = 0;
  914. TIMSK0 |= BIT(OCIE0A);
  915. #endif //ADVANCE
  916. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  917. sei();
  918. }
  919. // Block until all buffered steps are executed
  920. void st_synchronize() {
  921. while (blocks_queued()) {
  922. manage_heater();
  923. manage_inactivity();
  924. lcd_update();
  925. }
  926. }
  927. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  928. CRITICAL_SECTION_START;
  929. count_position[X_AXIS] = x;
  930. count_position[Y_AXIS] = y;
  931. count_position[Z_AXIS] = z;
  932. count_position[E_AXIS] = e;
  933. CRITICAL_SECTION_END;
  934. }
  935. void st_set_e_position(const long &e) {
  936. CRITICAL_SECTION_START;
  937. count_position[E_AXIS] = e;
  938. CRITICAL_SECTION_END;
  939. }
  940. long st_get_position(uint8_t axis) {
  941. long count_pos;
  942. CRITICAL_SECTION_START;
  943. count_pos = count_position[axis];
  944. CRITICAL_SECTION_END;
  945. return count_pos;
  946. }
  947. #ifdef ENABLE_AUTO_BED_LEVELING
  948. float st_get_position_mm(uint8_t axis) {
  949. float steper_position_in_steps = st_get_position(axis);
  950. return steper_position_in_steps / axis_steps_per_unit[axis];
  951. }
  952. #endif // ENABLE_AUTO_BED_LEVELING
  953. void finishAndDisableSteppers() {
  954. st_synchronize();
  955. disable_x();
  956. disable_y();
  957. disable_z();
  958. disable_e0();
  959. disable_e1();
  960. disable_e2();
  961. disable_e3();
  962. }
  963. void quickStop() {
  964. cleaning_buffer_counter = 5000;
  965. DISABLE_STEPPER_DRIVER_INTERRUPT();
  966. while (blocks_queued()) plan_discard_current_block();
  967. current_block = NULL;
  968. ENABLE_STEPPER_DRIVER_INTERRUPT();
  969. }
  970. #ifdef BABYSTEPPING
  971. // MUST ONLY BE CALLED BY AN ISR,
  972. // No other ISR should ever interrupt this!
  973. void babystep(const uint8_t axis, const bool direction) {
  974. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  975. enable_## axis(); \
  976. uint8_t old_pin = AXIS ##_DIR_READ; \
  977. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
  978. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
  979. _delay_us(1U); \
  980. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
  981. AXIS ##_APPLY_DIR(old_pin, true); \
  982. }
  983. switch(axis) {
  984. case X_AXIS:
  985. BABYSTEP_AXIS(x, X, false);
  986. break;
  987. case Y_AXIS:
  988. BABYSTEP_AXIS(y, Y, false);
  989. break;
  990. case Z_AXIS: {
  991. #ifndef DELTA
  992. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  993. #else // DELTA
  994. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  995. enable_x();
  996. enable_y();
  997. enable_z();
  998. uint8_t old_x_dir_pin = X_DIR_READ,
  999. old_y_dir_pin = Y_DIR_READ,
  1000. old_z_dir_pin = Z_DIR_READ;
  1001. //setup new step
  1002. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  1003. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  1004. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  1005. //perform step
  1006. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1007. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1008. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1009. _delay_us(1U);
  1010. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1011. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1012. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1013. //get old pin state back.
  1014. X_DIR_WRITE(old_x_dir_pin);
  1015. Y_DIR_WRITE(old_y_dir_pin);
  1016. Z_DIR_WRITE(old_z_dir_pin);
  1017. #endif
  1018. } break;
  1019. default: break;
  1020. }
  1021. }
  1022. #endif //BABYSTEPPING
  1023. // From Arduino DigitalPotControl example
  1024. void digitalPotWrite(int address, int value) {
  1025. #if HAS_DIGIPOTSS
  1026. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1027. SPI.transfer(address); // send in the address and value via SPI:
  1028. SPI.transfer(value);
  1029. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1030. //delay(10);
  1031. #endif
  1032. }
  1033. // Initialize Digipot Motor Current
  1034. void digipot_init() {
  1035. #if HAS_DIGIPOTSS
  1036. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1037. SPI.begin();
  1038. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1039. for (int i = 0; i <= 4; i++) {
  1040. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1041. digipot_current(i,digipot_motor_current[i]);
  1042. }
  1043. #endif
  1044. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1045. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1046. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1047. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1048. digipot_current(0, motor_current_setting[0]);
  1049. digipot_current(1, motor_current_setting[1]);
  1050. digipot_current(2, motor_current_setting[2]);
  1051. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1052. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1053. #endif
  1054. }
  1055. void digipot_current(uint8_t driver, int current) {
  1056. #if HAS_DIGIPOTSS
  1057. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1058. digitalPotWrite(digipot_ch[driver], current);
  1059. #endif
  1060. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1061. switch(driver) {
  1062. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1063. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1064. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1065. }
  1066. #endif
  1067. }
  1068. void microstep_init() {
  1069. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1070. pinMode(E1_MS1_PIN,OUTPUT);
  1071. pinMode(E1_MS2_PIN,OUTPUT);
  1072. #endif
  1073. #if defined(X_MS1_PIN) && X_MS1_PIN >= 0
  1074. pinMode(X_MS1_PIN,OUTPUT);
  1075. pinMode(X_MS2_PIN,OUTPUT);
  1076. pinMode(Y_MS1_PIN,OUTPUT);
  1077. pinMode(Y_MS2_PIN,OUTPUT);
  1078. pinMode(Z_MS1_PIN,OUTPUT);
  1079. pinMode(Z_MS2_PIN,OUTPUT);
  1080. pinMode(E0_MS1_PIN,OUTPUT);
  1081. pinMode(E0_MS2_PIN,OUTPUT);
  1082. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1083. for (uint16_t i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
  1084. microstep_mode(i, microstep_modes[i]);
  1085. #endif
  1086. }
  1087. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1088. if (ms1 >= 0) switch(driver) {
  1089. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1090. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1091. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1092. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1093. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1094. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1095. #endif
  1096. }
  1097. if (ms2 >= 0) switch(driver) {
  1098. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1099. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1100. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1101. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1102. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1103. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1104. #endif
  1105. }
  1106. }
  1107. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1108. switch(stepping_mode) {
  1109. case 1: microstep_ms(driver,MICROSTEP1); break;
  1110. case 2: microstep_ms(driver,MICROSTEP2); break;
  1111. case 4: microstep_ms(driver,MICROSTEP4); break;
  1112. case 8: microstep_ms(driver,MICROSTEP8); break;
  1113. case 16: microstep_ms(driver,MICROSTEP16); break;
  1114. }
  1115. }
  1116. void microstep_readings() {
  1117. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1118. SERIAL_PROTOCOLPGM("X: ");
  1119. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1120. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1121. SERIAL_PROTOCOLPGM("Y: ");
  1122. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1123. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1124. SERIAL_PROTOCOLPGM("Z: ");
  1125. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1126. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1127. SERIAL_PROTOCOLPGM("E0: ");
  1128. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1129. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1130. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1131. SERIAL_PROTOCOLPGM("E1: ");
  1132. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1133. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1134. #endif
  1135. }
  1136. #ifdef Z_DUAL_ENDSTOPS
  1137. void In_Homing_Process(bool state) { performing_homing = state; }
  1138. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1139. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1140. #endif