My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

Marlin_main.cpp 435KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207 (Requires FWRETRACT)
  53. * G11 - Retract recover filament according to settings of M208 (Requires FWRETRACT)
  54. * G12 - Clean tool (Requires NOZZLE_CLEAN_FEATURE)
  55. * G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
  56. * G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
  57. * G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
  58. * G20 - Set input units to inches (Requires INCH_MODE_SUPPORT)
  59. * G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT)
  60. * G26 - Mesh Validation Pattern (Requires UBL_G26_MESH_VALIDATION)
  61. * G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
  62. * G28 - Home one or more axes
  63. * G29 - Start or continue the bed leveling probe procedure (Requires bed leveling)
  64. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  65. * G31 - Dock sled (Z_PROBE_SLED only)
  66. * G32 - Undock sled (Z_PROBE_SLED only)
  67. * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
  68. * G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)
  69. * G42 - Coordinated move to a mesh point (Requires AUTO_BED_LEVELING_UBL)
  70. * G90 - Use Absolute Coordinates
  71. * G91 - Use Relative Coordinates
  72. * G92 - Set current position to coordinates given
  73. *
  74. * "M" Codes
  75. *
  76. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  77. * M1 -> M0
  78. * M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
  79. * M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
  80. * M5 - Turn laser/spindle off
  81. * M17 - Enable/Power all stepper motors
  82. * M18 - Disable all stepper motors; same as M84
  83. * M20 - List SD card. (Requires SDSUPPORT)
  84. * M21 - Init SD card. (Requires SDSUPPORT)
  85. * M22 - Release SD card. (Requires SDSUPPORT)
  86. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  87. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  88. * M25 - Pause SD print. (Requires SDSUPPORT)
  89. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  90. * M27 - Report SD print status. (Requires SDSUPPORT)
  91. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  92. * M29 - Stop SD write. (Requires SDSUPPORT)
  93. * M30 - Delete file from SD: "M30 /path/file.gco"
  94. * M31 - Report time since last M109 or SD card start to serial.
  95. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  96. * Use P to run other files as sub-programs: "M32 P !filename#"
  97. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  98. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  99. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  100. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  101. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  102. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  103. * M75 - Start the print job timer.
  104. * M76 - Pause the print job timer.
  105. * M77 - Stop the print job timer.
  106. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  107. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
  108. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
  109. * M82 - Set E codes absolute (default).
  110. * M83 - Set E codes relative while in Absolute (G90) mode.
  111. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  112. * duration after which steppers should turn off. S0 disables the timeout.
  113. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  114. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  115. * M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
  116. * M104 - Set extruder target temp.
  117. * M105 - Report current temperatures.
  118. * M106 - Fan on.
  119. * M107 - Fan off.
  120. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  121. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  122. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  123. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  124. * M110 - Set the current line number. (Used by host printing)
  125. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  126. * M112 - Emergency stop.
  127. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  128. * M114 - Report current position.
  129. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  130. * M117 - Display a message on the controller screen. (Requires an LCD)
  131. * M118 - Display a message in the host console.
  132. * M119 - Report endstops status.
  133. * M120 - Enable endstops detection.
  134. * M121 - Disable endstops detection.
  135. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  136. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  137. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  138. * M128 - EtoP Open. (Requires BARICUDA)
  139. * M129 - EtoP Closed. (Requires BARICUDA)
  140. * M140 - Set bed target temp. S<temp>
  141. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  142. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  143. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, or PCA9632)
  144. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  145. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  146. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  147. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  148. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  149. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  150. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  151. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  152. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  153. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  154. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  155. * M205 - Set advanced settings. Current units apply:
  156. S<print> T<travel> minimum speeds
  157. B<minimum segment time>
  158. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  159. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  160. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  161. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  162. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  163. Every normal extrude-only move will be classified as retract depending on the direction.
  164. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  165. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  166. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  167. * M221 - Set Flow Percentage: "M221 S<percent>"
  168. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  169. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  170. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  171. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  172. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  173. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  174. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  175. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  176. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  177. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  178. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  179. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  180. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  181. * M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
  182. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  183. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  184. * M400 - Finish all moves.
  185. * M401 - Lower Z probe. (Requires a probe)
  186. * M402 - Raise Z probe. (Requires a probe)
  187. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  188. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  189. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  190. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  191. * M410 - Quickstop. Abort all planned moves.
  192. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  193. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  194. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  195. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  196. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  197. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  198. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  199. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  200. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
  201. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  202. * M666 - Set delta endstop adjustment. (Requires DELTA)
  203. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  204. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  205. * M860 - Report the position of position encoder modules.
  206. * M861 - Report the status of position encoder modules.
  207. * M862 - Perform an axis continuity test for position encoder modules.
  208. * M863 - Perform steps-per-mm calibration for position encoder modules.
  209. * M864 - Change position encoder module I2C address.
  210. * M865 - Check position encoder module firmware version.
  211. * M866 - Report or reset position encoder module error count.
  212. * M867 - Enable/disable or toggle error correction for position encoder modules.
  213. * M868 - Report or set position encoder module error correction threshold.
  214. * M869 - Report position encoder module error.
  215. * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
  216. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  217. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  218. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  219. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  220. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  221. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  222. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  223. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  224. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  225. *
  226. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  227. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  228. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  229. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  230. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  231. *
  232. * ************ Custom codes - This can change to suit future G-code regulations
  233. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  234. * M999 - Restart after being stopped by error
  235. *
  236. * "T" Codes
  237. *
  238. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  239. *
  240. */
  241. #include "Marlin.h"
  242. #include "ultralcd.h"
  243. #include "planner.h"
  244. #include "stepper.h"
  245. #include "endstops.h"
  246. #include "temperature.h"
  247. #include "cardreader.h"
  248. #include "configuration_store.h"
  249. #include "language.h"
  250. #ifdef ARDUINO
  251. #include "pins_arduino.h"
  252. #endif
  253. #include "math.h"
  254. #include "nozzle.h"
  255. #include "duration_t.h"
  256. #include "types.h"
  257. #include "gcode.h"
  258. #if HAS_ABL
  259. #include "vector_3.h"
  260. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  261. #include "least_squares_fit.h"
  262. #endif
  263. #elif ENABLED(MESH_BED_LEVELING)
  264. #include "mesh_bed_leveling.h"
  265. #endif
  266. #if ENABLED(BEZIER_CURVE_SUPPORT)
  267. #include "planner_bezier.h"
  268. #endif
  269. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  270. #include "buzzer.h"
  271. #endif
  272. #if ENABLED(MAX7219_DEBUG)
  273. #include "Max7219_Debug_LEDs.h"
  274. #endif
  275. #if ENABLED(NEOPIXEL_RGBW_LED)
  276. #include <Adafruit_NeoPixel.h>
  277. #endif
  278. #if ENABLED(BLINKM)
  279. #include "blinkm.h"
  280. #include "Wire.h"
  281. #endif
  282. #if ENABLED(PCA9632)
  283. #include "pca9632.h"
  284. #endif
  285. #if HAS_SERVOS
  286. #include "src/HAL/servo.h"
  287. #endif
  288. #if HAS_DIGIPOTSS
  289. #include <SPI.h>
  290. #endif
  291. #if ENABLED(DAC_STEPPER_CURRENT)
  292. #include "stepper_dac.h"
  293. #endif
  294. #if ENABLED(EXPERIMENTAL_I2CBUS)
  295. #include "twibus.h"
  296. #endif
  297. #if ENABLED(I2C_POSITION_ENCODERS)
  298. #include "I2CPositionEncoder.h"
  299. #endif
  300. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  301. #include "src/HAL/HAL_endstop_interrupts.h"
  302. #endif
  303. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  304. void gcode_M100();
  305. void M100_dump_routine(const char * const title, const char *start, const char *end);
  306. #endif
  307. #if ENABLED(SDSUPPORT)
  308. CardReader card;
  309. #endif
  310. #if ENABLED(EXPERIMENTAL_I2CBUS)
  311. TWIBus i2c;
  312. #endif
  313. #if ENABLED(G38_PROBE_TARGET)
  314. bool G38_move = false,
  315. G38_endstop_hit = false;
  316. #endif
  317. #if ENABLED(AUTO_BED_LEVELING_UBL)
  318. #include "ubl.h"
  319. extern bool defer_return_to_status;
  320. unified_bed_leveling ubl;
  321. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  322. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  323. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  324. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  325. || isnan(ubl.z_values[0][0]))
  326. #endif
  327. bool Running = true;
  328. uint8_t marlin_debug_flags = DEBUG_NONE;
  329. /**
  330. * Cartesian Current Position
  331. * Used to track the logical position as moves are queued.
  332. * Used by 'line_to_current_position' to do a move after changing it.
  333. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  334. */
  335. float current_position[XYZE] = { 0.0 };
  336. /**
  337. * Cartesian Destination
  338. * A temporary position, usually applied to 'current_position'.
  339. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  340. * 'line_to_destination' sets 'current_position' to 'destination'.
  341. */
  342. float destination[XYZE] = { 0.0 };
  343. /**
  344. * axis_homed
  345. * Flags that each linear axis was homed.
  346. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  347. *
  348. * axis_known_position
  349. * Flags that the position is known in each linear axis. Set when homed.
  350. * Cleared whenever a stepper powers off, potentially losing its position.
  351. */
  352. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  353. /**
  354. * GCode line number handling. Hosts may opt to include line numbers when
  355. * sending commands to Marlin, and lines will be checked for sequentiality.
  356. * M110 N<int> sets the current line number.
  357. */
  358. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  359. /**
  360. * GCode Command Queue
  361. * A simple ring buffer of BUFSIZE command strings.
  362. *
  363. * Commands are copied into this buffer by the command injectors
  364. * (immediate, serial, sd card) and they are processed sequentially by
  365. * the main loop. The process_next_command function parses the next
  366. * command and hands off execution to individual handler functions.
  367. */
  368. uint8_t commands_in_queue = 0; // Count of commands in the queue
  369. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  370. cmd_queue_index_w = 0; // Ring buffer write position
  371. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  372. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  373. #else // This can be collapsed back to the way it was soon.
  374. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  375. #endif
  376. /**
  377. * Next Injected Command pointer. NULL if no commands are being injected.
  378. * Used by Marlin internally to ensure that commands initiated from within
  379. * are enqueued ahead of any pending serial or sd card commands.
  380. */
  381. static const char *injected_commands_P = NULL;
  382. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  383. TempUnit input_temp_units = TEMPUNIT_C;
  384. #endif
  385. /**
  386. * Feed rates are often configured with mm/m
  387. * but the planner and stepper like mm/s units.
  388. */
  389. static const float homing_feedrate_mm_s[] PROGMEM = {
  390. #if ENABLED(DELTA)
  391. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  392. #else
  393. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  394. #endif
  395. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  396. };
  397. FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
  398. float feedrate_mm_s = MMM_TO_MMS(1500.0);
  399. static float saved_feedrate_mm_s;
  400. int16_t feedrate_percentage = 100, saved_feedrate_percentage,
  401. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  402. // Initialized by settings.load()
  403. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  404. volumetric_enabled;
  405. float filament_size[EXTRUDERS], volumetric_multiplier[EXTRUDERS];
  406. #if HAS_WORKSPACE_OFFSET
  407. #if HAS_POSITION_SHIFT
  408. // The distance that XYZ has been offset by G92. Reset by G28.
  409. float position_shift[XYZ] = { 0 };
  410. #endif
  411. #if HAS_HOME_OFFSET
  412. // This offset is added to the configured home position.
  413. // Set by M206, M428, or menu item. Saved to EEPROM.
  414. float home_offset[XYZ] = { 0 };
  415. #endif
  416. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  417. // The above two are combined to save on computes
  418. float workspace_offset[XYZ] = { 0 };
  419. #endif
  420. #endif
  421. // Software Endstops are based on the configured limits.
  422. #if HAS_SOFTWARE_ENDSTOPS
  423. bool soft_endstops_enabled = true;
  424. #endif
  425. float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
  426. soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
  427. #if FAN_COUNT > 0
  428. int16_t fanSpeeds[FAN_COUNT] = { 0 };
  429. #if ENABLED(PROBING_FANS_OFF)
  430. bool fans_paused = false;
  431. int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
  432. #endif
  433. #endif
  434. // The active extruder (tool). Set with T<extruder> command.
  435. uint8_t active_extruder = 0;
  436. // Relative Mode. Enable with G91, disable with G90.
  437. static bool relative_mode = false;
  438. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  439. volatile bool wait_for_heatup = true;
  440. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  441. #if HAS_RESUME_CONTINUE
  442. volatile bool wait_for_user = false;
  443. #endif
  444. const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
  445. // Number of characters read in the current line of serial input
  446. static int serial_count = 0;
  447. // Inactivity shutdown
  448. millis_t previous_cmd_ms = 0;
  449. static millis_t max_inactive_time = 0;
  450. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  451. // Print Job Timer
  452. #if ENABLED(PRINTCOUNTER)
  453. PrintCounter print_job_timer = PrintCounter();
  454. #else
  455. Stopwatch print_job_timer = Stopwatch();
  456. #endif
  457. // Buzzer - I2C on the LCD or a BEEPER_PIN
  458. #if ENABLED(LCD_USE_I2C_BUZZER)
  459. #define BUZZ(d,f) lcd_buzz(d, f)
  460. #elif PIN_EXISTS(BEEPER)
  461. Buzzer buzzer;
  462. #define BUZZ(d,f) buzzer.tone(d, f)
  463. #else
  464. #define BUZZ(d,f) NOOP
  465. #endif
  466. static uint8_t target_extruder;
  467. #if HAS_BED_PROBE
  468. float zprobe_zoffset; // Initialized by settings.load()
  469. #endif
  470. #if HAS_ABL
  471. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  472. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  473. #elif defined(XY_PROBE_SPEED)
  474. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  475. #else
  476. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  477. #endif
  478. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  479. #if ENABLED(DELTA)
  480. #define ADJUST_DELTA(V) \
  481. if (planner.abl_enabled) { \
  482. const float zadj = bilinear_z_offset(V); \
  483. delta[A_AXIS] += zadj; \
  484. delta[B_AXIS] += zadj; \
  485. delta[C_AXIS] += zadj; \
  486. }
  487. #else
  488. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  489. #endif
  490. #elif IS_KINEMATIC
  491. #define ADJUST_DELTA(V) NOOP
  492. #endif
  493. #if ENABLED(Z_DUAL_ENDSTOPS)
  494. float z_endstop_adj;
  495. #endif
  496. // Extruder offsets
  497. #if HOTENDS > 1
  498. float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
  499. #endif
  500. #if HAS_Z_SERVO_ENDSTOP
  501. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  502. #endif
  503. #if ENABLED(BARICUDA)
  504. uint8_t baricuda_valve_pressure = 0,
  505. baricuda_e_to_p_pressure = 0;
  506. #endif
  507. #if ENABLED(FWRETRACT) // Initialized by settings.load()...
  508. bool autoretract_enabled, // M209 S - Autoretract switch
  509. retracted[EXTRUDERS] = { false }; // Which extruders are currently retracted
  510. float retract_length, // M207 S - G10 Retract length
  511. retract_feedrate_mm_s, // M207 F - G10 Retract feedrate
  512. retract_zlift, // M207 Z - G10 Retract hop size
  513. retract_recover_length, // M208 S - G11 Recover length
  514. retract_recover_feedrate_mm_s, // M208 F - G11 Recover feedrate
  515. swap_retract_length, // M207 W - G10 Swap Retract length
  516. swap_retract_recover_length, // M208 W - G11 Swap Recover length
  517. swap_retract_recover_feedrate_mm_s; // M208 R - G11 Swap Recover feedrate
  518. #if EXTRUDERS > 1
  519. bool retracted_swap[EXTRUDERS] = { false }; // Which extruders are swap-retracted
  520. #else
  521. constexpr bool retracted_swap[1] = { false };
  522. #endif
  523. #endif // FWRETRACT
  524. #if HAS_POWER_SWITCH
  525. bool powersupply_on =
  526. #if ENABLED(PS_DEFAULT_OFF)
  527. false
  528. #else
  529. true
  530. #endif
  531. ;
  532. #endif
  533. #if ENABLED(DELTA)
  534. float delta[ABC],
  535. endstop_adj[ABC] = { 0 };
  536. // Initialized by settings.load()
  537. float delta_radius,
  538. delta_tower_angle_trim[2],
  539. delta_tower[ABC][2],
  540. delta_diagonal_rod,
  541. delta_calibration_radius,
  542. delta_diagonal_rod_2_tower[ABC],
  543. delta_segments_per_second,
  544. delta_clip_start_height = Z_MAX_POS;
  545. float delta_safe_distance_from_top();
  546. #endif
  547. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  548. int bilinear_grid_spacing[2], bilinear_start[2];
  549. float bilinear_grid_factor[2],
  550. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  551. #endif
  552. #if IS_SCARA
  553. // Float constants for SCARA calculations
  554. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  555. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  556. L2_2 = sq(float(L2));
  557. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  558. delta[ABC];
  559. #endif
  560. float cartes[XYZ] = { 0 };
  561. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  562. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  563. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  564. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  565. uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting
  566. measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  567. int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  568. #endif
  569. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  570. static bool filament_ran_out = false;
  571. #endif
  572. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  573. AdvancedPauseMenuResponse advanced_pause_menu_response;
  574. #endif
  575. #if ENABLED(MIXING_EXTRUDER)
  576. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  577. #if MIXING_VIRTUAL_TOOLS > 1
  578. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  579. #endif
  580. #endif
  581. static bool send_ok[BUFSIZE];
  582. #if HAS_SERVOS
  583. HAL_SERVO_LIB servo[NUM_SERVOS];
  584. #define MOVE_SERVO(I, P) servo[I].move(P)
  585. #if HAS_Z_SERVO_ENDSTOP
  586. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  587. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  588. #endif
  589. #endif
  590. #ifdef CHDK
  591. millis_t chdkHigh = 0;
  592. bool chdkActive = false;
  593. #endif
  594. #ifdef AUTOMATIC_CURRENT_CONTROL
  595. bool auto_current_control = 0;
  596. #endif
  597. #if ENABLED(PID_EXTRUSION_SCALING)
  598. int lpq_len = 20;
  599. #endif
  600. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  601. MarlinBusyState busy_state = NOT_BUSY;
  602. static millis_t next_busy_signal_ms = 0;
  603. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  604. #else
  605. #define host_keepalive() NOOP
  606. #endif
  607. #if ENABLED(I2C_POSITION_ENCODERS)
  608. I2CPositionEncodersMgr I2CPEM;
  609. uint8_t blockBufferIndexRef = 0;
  610. millis_t lastUpdateMillis;
  611. #endif
  612. #if ENABLED(CNC_WORKSPACE_PLANES)
  613. static WorkspacePlane workspace_plane = PLANE_XY;
  614. #endif
  615. FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  616. FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  617. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  618. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  619. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  620. typedef void __void_##CONFIG##__
  621. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  622. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  623. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  624. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  625. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  626. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  627. /**
  628. * ***************************************************************************
  629. * ******************************** FUNCTIONS ********************************
  630. * ***************************************************************************
  631. */
  632. void stop();
  633. void get_available_commands();
  634. void process_next_command();
  635. void prepare_move_to_destination();
  636. void get_cartesian_from_steppers();
  637. void set_current_from_steppers_for_axis(const AxisEnum axis);
  638. #if ENABLED(ARC_SUPPORT)
  639. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  640. #endif
  641. #if ENABLED(BEZIER_CURVE_SUPPORT)
  642. void plan_cubic_move(const float offset[4]);
  643. #endif
  644. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  645. void report_current_position();
  646. void report_current_position_detail();
  647. #if ENABLED(DEBUG_LEVELING_FEATURE)
  648. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  649. serialprintPGM(prefix);
  650. SERIAL_CHAR('(');
  651. SERIAL_ECHO(x);
  652. SERIAL_ECHOPAIR(", ", y);
  653. SERIAL_ECHOPAIR(", ", z);
  654. SERIAL_CHAR(')');
  655. if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
  656. }
  657. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  658. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  659. }
  660. #if HAS_ABL
  661. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  662. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  663. }
  664. #endif
  665. #define DEBUG_POS(SUFFIX,VAR) do { \
  666. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
  667. #endif
  668. /**
  669. * sync_plan_position
  670. *
  671. * Set the planner/stepper positions directly from current_position with
  672. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  673. */
  674. void sync_plan_position() {
  675. #if ENABLED(DEBUG_LEVELING_FEATURE)
  676. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  677. #endif
  678. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  679. }
  680. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  681. #if IS_KINEMATIC
  682. inline void sync_plan_position_kinematic() {
  683. #if ENABLED(DEBUG_LEVELING_FEATURE)
  684. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  685. #endif
  686. planner.set_position_mm_kinematic(current_position);
  687. }
  688. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  689. #else
  690. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  691. #endif
  692. #if ENABLED(DIGIPOT_I2C)
  693. extern void digipot_i2c_set_current(uint8_t channel, float current);
  694. extern void digipot_i2c_init();
  695. #endif
  696. /**
  697. * Inject the next "immediate" command, when possible, onto the front of the queue.
  698. * Return true if any immediate commands remain to inject.
  699. */
  700. static bool drain_injected_commands_P() {
  701. if (injected_commands_P != NULL) {
  702. size_t i = 0;
  703. char c, cmd[30];
  704. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  705. cmd[sizeof(cmd) - 1] = '\0';
  706. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  707. cmd[i] = '\0';
  708. if (enqueue_and_echo_command(cmd)) // success?
  709. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  710. }
  711. return (injected_commands_P != NULL); // return whether any more remain
  712. }
  713. /**
  714. * Record one or many commands to run from program memory.
  715. * Aborts the current queue, if any.
  716. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  717. */
  718. void enqueue_and_echo_commands_P(const char * const pgcode) {
  719. injected_commands_P = pgcode;
  720. drain_injected_commands_P(); // first command executed asap (when possible)
  721. }
  722. /**
  723. * Clear the Marlin command queue
  724. */
  725. void clear_command_queue() {
  726. cmd_queue_index_r = cmd_queue_index_w;
  727. commands_in_queue = 0;
  728. }
  729. /**
  730. * Once a new command is in the ring buffer, call this to commit it
  731. */
  732. inline void _commit_command(bool say_ok) {
  733. send_ok[cmd_queue_index_w] = say_ok;
  734. if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
  735. commands_in_queue++;
  736. }
  737. /**
  738. * Copy a command from RAM into the main command buffer.
  739. * Return true if the command was successfully added.
  740. * Return false for a full buffer, or if the 'command' is a comment.
  741. */
  742. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  743. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  744. strcpy(command_queue[cmd_queue_index_w], cmd);
  745. _commit_command(say_ok);
  746. return true;
  747. }
  748. /**
  749. * Enqueue with Serial Echo
  750. */
  751. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  752. if (_enqueuecommand(cmd, say_ok)) {
  753. SERIAL_ECHO_START();
  754. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  755. SERIAL_CHAR('"');
  756. SERIAL_EOL();
  757. return true;
  758. }
  759. return false;
  760. }
  761. void setup_killpin() {
  762. #if HAS_KILL
  763. SET_INPUT_PULLUP(KILL_PIN);
  764. #endif
  765. }
  766. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  767. void setup_filrunoutpin() {
  768. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  769. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  770. #else
  771. SET_INPUT(FIL_RUNOUT_PIN);
  772. #endif
  773. }
  774. #endif
  775. void setup_powerhold() {
  776. #if HAS_SUICIDE
  777. OUT_WRITE(SUICIDE_PIN, HIGH);
  778. #endif
  779. #if HAS_POWER_SWITCH
  780. #if ENABLED(PS_DEFAULT_OFF)
  781. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  782. #else
  783. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  784. #endif
  785. #endif
  786. }
  787. void suicide() {
  788. #if HAS_SUICIDE
  789. OUT_WRITE(SUICIDE_PIN, LOW);
  790. #endif
  791. }
  792. void servo_init() {
  793. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  794. servo[0].attach(SERVO0_PIN);
  795. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  796. #endif
  797. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  798. servo[1].attach(SERVO1_PIN);
  799. servo[1].detach();
  800. #endif
  801. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  802. servo[2].attach(SERVO2_PIN);
  803. servo[2].detach();
  804. #endif
  805. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  806. servo[3].attach(SERVO3_PIN);
  807. servo[3].detach();
  808. #endif
  809. #if HAS_Z_SERVO_ENDSTOP
  810. /**
  811. * Set position of Z Servo Endstop
  812. *
  813. * The servo might be deployed and positioned too low to stow
  814. * when starting up the machine or rebooting the board.
  815. * There's no way to know where the nozzle is positioned until
  816. * homing has been done - no homing with z-probe without init!
  817. *
  818. */
  819. STOW_Z_SERVO();
  820. #endif
  821. }
  822. /**
  823. * Stepper Reset (RigidBoard, et.al.)
  824. */
  825. #if HAS_STEPPER_RESET
  826. void disableStepperDrivers() {
  827. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  828. }
  829. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  830. #endif
  831. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  832. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  833. i2c.receive(bytes);
  834. }
  835. void i2c_on_request() { // just send dummy data for now
  836. i2c.reply("Hello World!\n");
  837. }
  838. #endif
  839. #if HAS_COLOR_LEDS
  840. #if ENABLED(NEOPIXEL_RGBW_LED)
  841. Adafruit_NeoPixel pixels(NEOPIXEL_PIXELS, NEOPIXEL_PIN, NEO_GRBW + NEO_KHZ800);
  842. void set_neopixel_color(const uint32_t color) {
  843. for (uint16_t i = 0; i < pixels.numPixels(); ++i)
  844. pixels.setPixelColor(i, color);
  845. pixels.show();
  846. }
  847. void setup_neopixel() {
  848. pixels.setBrightness(255); // 0 - 255 range
  849. pixels.begin();
  850. pixels.show(); // initialize to all off
  851. #if ENABLED(NEOPIXEL_STARTUP_TEST)
  852. delay(2000);
  853. set_neopixel_color(pixels.Color(255, 0, 0, 0)); // red
  854. delay(2000);
  855. set_neopixel_color(pixels.Color(0, 255, 0, 0)); // green
  856. delay(2000);
  857. set_neopixel_color(pixels.Color(0, 0, 255, 0)); // blue
  858. delay(2000);
  859. #endif
  860. set_neopixel_color(pixels.Color(0, 0, 0, 255)); // white
  861. }
  862. #endif // NEOPIXEL_RGBW_LED
  863. void set_led_color(
  864. const uint8_t r, const uint8_t g, const uint8_t b
  865. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED)
  866. , const uint8_t w = 0
  867. #if ENABLED(NEOPIXEL_RGBW_LED)
  868. , bool isSequence = false
  869. #endif
  870. #endif
  871. ) {
  872. #if ENABLED(NEOPIXEL_RGBW_LED)
  873. const uint32_t color = pixels.Color(r, g, b, w);
  874. static uint16_t nextLed = 0;
  875. if (!isSequence)
  876. set_neopixel_color(color);
  877. else {
  878. pixels.setPixelColor(nextLed, color);
  879. pixels.show();
  880. if (++nextLed >= pixels.numPixels()) nextLed = 0;
  881. return;
  882. }
  883. #endif
  884. #if ENABLED(BLINKM)
  885. // This variant uses i2c to send the RGB components to the device.
  886. SendColors(r, g, b);
  887. #endif
  888. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  889. // This variant uses 3 separate pins for the RGB components.
  890. // If the pins can do PWM then their intensity will be set.
  891. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  892. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  893. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  894. analogWrite(RGB_LED_R_PIN, r);
  895. analogWrite(RGB_LED_G_PIN, g);
  896. analogWrite(RGB_LED_B_PIN, b);
  897. #if ENABLED(RGBW_LED)
  898. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  899. analogWrite(RGB_LED_W_PIN, w);
  900. #endif
  901. #endif
  902. #if ENABLED(PCA9632)
  903. // Update I2C LED driver
  904. PCA9632_SetColor(r, g, b);
  905. #endif
  906. }
  907. #endif // HAS_COLOR_LEDS
  908. void gcode_line_error(const char* err, bool doFlush = true) {
  909. SERIAL_ERROR_START();
  910. serialprintPGM(err);
  911. SERIAL_ERRORLN(gcode_LastN);
  912. //Serial.println(gcode_N);
  913. if (doFlush) FlushSerialRequestResend();
  914. serial_count = 0;
  915. }
  916. /**
  917. * Get all commands waiting on the serial port and queue them.
  918. * Exit when the buffer is full or when no more characters are
  919. * left on the serial port.
  920. */
  921. inline void get_serial_commands() {
  922. static char serial_line_buffer[MAX_CMD_SIZE];
  923. static bool serial_comment_mode = false;
  924. // If the command buffer is empty for too long,
  925. // send "wait" to indicate Marlin is still waiting.
  926. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  927. static millis_t last_command_time = 0;
  928. const millis_t ms = millis();
  929. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  930. SERIAL_ECHOLNPGM(MSG_WAIT);
  931. last_command_time = ms;
  932. }
  933. #endif
  934. /**
  935. * Loop while serial characters are incoming and the queue is not full
  936. */
  937. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  938. char serial_char = MYSERIAL.read();
  939. /**
  940. * If the character ends the line
  941. */
  942. if (serial_char == '\n' || serial_char == '\r') {
  943. serial_comment_mode = false; // end of line == end of comment
  944. if (!serial_count) continue; // skip empty lines
  945. serial_line_buffer[serial_count] = 0; // terminate string
  946. serial_count = 0; //reset buffer
  947. char* command = serial_line_buffer;
  948. while (*command == ' ') command++; // skip any leading spaces
  949. char *npos = (*command == 'N') ? command : NULL, // Require the N parameter to start the line
  950. *apos = strchr(command, '*');
  951. if (npos) {
  952. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  953. if (M110) {
  954. char* n2pos = strchr(command + 4, 'N');
  955. if (n2pos) npos = n2pos;
  956. }
  957. gcode_N = strtol(npos + 1, NULL, 10);
  958. if (gcode_N != gcode_LastN + 1 && !M110) {
  959. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  960. return;
  961. }
  962. if (apos) {
  963. byte checksum = 0, count = 0;
  964. while (command[count] != '*') checksum ^= command[count++];
  965. if (strtol(apos + 1, NULL, 10) != checksum) {
  966. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  967. return;
  968. }
  969. // if no errors, continue parsing
  970. }
  971. else {
  972. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  973. return;
  974. }
  975. gcode_LastN = gcode_N;
  976. // if no errors, continue parsing
  977. }
  978. else if (apos) { // No '*' without 'N'
  979. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  980. return;
  981. }
  982. // Movement commands alert when stopped
  983. if (IsStopped()) {
  984. char* gpos = strchr(command, 'G');
  985. if (gpos) {
  986. const int codenum = strtol(gpos + 1, NULL, 10);
  987. switch (codenum) {
  988. case 0:
  989. case 1:
  990. case 2:
  991. case 3:
  992. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  993. LCD_MESSAGEPGM(MSG_STOPPED);
  994. break;
  995. }
  996. }
  997. }
  998. #if DISABLED(EMERGENCY_PARSER)
  999. // If command was e-stop process now
  1000. if (strcmp(command, "M108") == 0) {
  1001. wait_for_heatup = false;
  1002. #if ENABLED(ULTIPANEL)
  1003. wait_for_user = false;
  1004. #endif
  1005. }
  1006. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  1007. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  1008. #endif
  1009. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  1010. last_command_time = ms;
  1011. #endif
  1012. // Add the command to the queue
  1013. _enqueuecommand(serial_line_buffer, true);
  1014. }
  1015. else if (serial_count >= MAX_CMD_SIZE - 1) {
  1016. // Keep fetching, but ignore normal characters beyond the max length
  1017. // The command will be injected when EOL is reached
  1018. }
  1019. else if (serial_char == '\\') { // Handle escapes
  1020. if (MYSERIAL.available() > 0) {
  1021. // if we have one more character, copy it over
  1022. serial_char = MYSERIAL.read();
  1023. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1024. }
  1025. // otherwise do nothing
  1026. }
  1027. else { // it's not a newline, carriage return or escape char
  1028. if (serial_char == ';') serial_comment_mode = true;
  1029. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1030. }
  1031. } // queue has space, serial has data
  1032. }
  1033. #if ENABLED(SDSUPPORT)
  1034. /**
  1035. * Get commands from the SD Card until the command buffer is full
  1036. * or until the end of the file is reached. The special character '#'
  1037. * can also interrupt buffering.
  1038. */
  1039. inline void get_sdcard_commands() {
  1040. static bool stop_buffering = false,
  1041. sd_comment_mode = false;
  1042. if (!card.sdprinting) return;
  1043. /**
  1044. * '#' stops reading from SD to the buffer prematurely, so procedural
  1045. * macro calls are possible. If it occurs, stop_buffering is triggered
  1046. * and the buffer is run dry; this character _can_ occur in serial com
  1047. * due to checksums, however, no checksums are used in SD printing.
  1048. */
  1049. if (commands_in_queue == 0) stop_buffering = false;
  1050. uint16_t sd_count = 0;
  1051. bool card_eof = card.eof();
  1052. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1053. const int16_t n = card.get();
  1054. char sd_char = (char)n;
  1055. card_eof = card.eof();
  1056. if (card_eof || n == -1
  1057. || sd_char == '\n' || sd_char == '\r'
  1058. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1059. ) {
  1060. if (card_eof) {
  1061. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1062. card.printingHasFinished();
  1063. #if ENABLED(PRINTER_EVENT_LEDS)
  1064. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1065. set_led_color(0, 255, 0); // Green
  1066. #if HAS_RESUME_CONTINUE
  1067. enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
  1068. #else
  1069. safe_delay(1000);
  1070. #endif
  1071. set_led_color(0, 0, 0); // OFF
  1072. #endif
  1073. card.checkautostart(true);
  1074. }
  1075. else if (n == -1) {
  1076. SERIAL_ERROR_START();
  1077. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1078. }
  1079. if (sd_char == '#') stop_buffering = true;
  1080. sd_comment_mode = false; // for new command
  1081. if (!sd_count) continue; // skip empty lines (and comment lines)
  1082. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1083. sd_count = 0; // clear sd line buffer
  1084. _commit_command(false);
  1085. }
  1086. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1087. /**
  1088. * Keep fetching, but ignore normal characters beyond the max length
  1089. * The command will be injected when EOL is reached
  1090. */
  1091. }
  1092. else {
  1093. if (sd_char == ';') sd_comment_mode = true;
  1094. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1095. }
  1096. }
  1097. }
  1098. #endif // SDSUPPORT
  1099. /**
  1100. * Add to the circular command queue the next command from:
  1101. * - The command-injection queue (injected_commands_P)
  1102. * - The active serial input (usually USB)
  1103. * - The SD card file being actively printed
  1104. */
  1105. void get_available_commands() {
  1106. // if any immediate commands remain, don't get other commands yet
  1107. if (drain_injected_commands_P()) return;
  1108. get_serial_commands();
  1109. #if ENABLED(SDSUPPORT)
  1110. get_sdcard_commands();
  1111. #endif
  1112. }
  1113. /**
  1114. * Set target_extruder from the T parameter or the active_extruder
  1115. *
  1116. * Returns TRUE if the target is invalid
  1117. */
  1118. bool get_target_extruder_from_command(const uint16_t code) {
  1119. if (parser.seenval('T')) {
  1120. const int8_t e = parser.value_byte();
  1121. if (e >= EXTRUDERS) {
  1122. SERIAL_ECHO_START();
  1123. SERIAL_CHAR('M');
  1124. SERIAL_ECHO(code);
  1125. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
  1126. return true;
  1127. }
  1128. target_extruder = e;
  1129. }
  1130. else
  1131. target_extruder = active_extruder;
  1132. return false;
  1133. }
  1134. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1135. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1136. #endif
  1137. #if ENABLED(DUAL_X_CARRIAGE)
  1138. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1139. static float x_home_pos(const int extruder) {
  1140. if (extruder == 0)
  1141. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1142. else
  1143. /**
  1144. * In dual carriage mode the extruder offset provides an override of the
  1145. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1146. * This allows soft recalibration of the second extruder home position
  1147. * without firmware reflash (through the M218 command).
  1148. */
  1149. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1150. }
  1151. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1152. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1153. static bool active_extruder_parked = false; // used in mode 1 & 2
  1154. static float raised_parked_position[XYZE]; // used in mode 1
  1155. static millis_t delayed_move_time = 0; // used in mode 1
  1156. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1157. static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
  1158. #endif // DUAL_X_CARRIAGE
  1159. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1160. /**
  1161. * Software endstops can be used to monitor the open end of
  1162. * an axis that has a hardware endstop on the other end. Or
  1163. * they can prevent axes from moving past endstops and grinding.
  1164. *
  1165. * To keep doing their job as the coordinate system changes,
  1166. * the software endstop positions must be refreshed to remain
  1167. * at the same positions relative to the machine.
  1168. */
  1169. void update_software_endstops(const AxisEnum axis) {
  1170. const float offs = 0.0
  1171. #if HAS_HOME_OFFSET
  1172. + home_offset[axis]
  1173. #endif
  1174. #if HAS_POSITION_SHIFT
  1175. + position_shift[axis]
  1176. #endif
  1177. ;
  1178. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1179. workspace_offset[axis] = offs;
  1180. #endif
  1181. #if ENABLED(DUAL_X_CARRIAGE)
  1182. if (axis == X_AXIS) {
  1183. // In Dual X mode hotend_offset[X] is T1's home position
  1184. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1185. if (active_extruder != 0) {
  1186. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1187. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1188. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1189. }
  1190. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1191. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1192. // but not so far to the right that T1 would move past the end
  1193. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1194. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1195. }
  1196. else {
  1197. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1198. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1199. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1200. }
  1201. }
  1202. #elif ENABLED(DELTA)
  1203. soft_endstop_min[axis] = base_min_pos(axis) + (axis == Z_AXIS ? 0 : offs);
  1204. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1205. #else
  1206. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1207. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1208. #endif
  1209. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1210. if (DEBUGGING(LEVELING)) {
  1211. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1212. #if HAS_HOME_OFFSET
  1213. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1214. #endif
  1215. #if HAS_POSITION_SHIFT
  1216. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1217. #endif
  1218. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1219. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1220. }
  1221. #endif
  1222. #if ENABLED(DELTA)
  1223. if (axis == Z_AXIS)
  1224. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1225. #endif
  1226. }
  1227. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1228. #if HAS_M206_COMMAND
  1229. /**
  1230. * Change the home offset for an axis, update the current
  1231. * position and the software endstops to retain the same
  1232. * relative distance to the new home.
  1233. *
  1234. * Since this changes the current_position, code should
  1235. * call sync_plan_position soon after this.
  1236. */
  1237. static void set_home_offset(const AxisEnum axis, const float v) {
  1238. current_position[axis] += v - home_offset[axis];
  1239. home_offset[axis] = v;
  1240. update_software_endstops(axis);
  1241. }
  1242. #endif // HAS_M206_COMMAND
  1243. /**
  1244. * Set an axis' current position to its home position (after homing).
  1245. *
  1246. * For Core and Cartesian robots this applies one-to-one when an
  1247. * individual axis has been homed.
  1248. *
  1249. * DELTA should wait until all homing is done before setting the XYZ
  1250. * current_position to home, because homing is a single operation.
  1251. * In the case where the axis positions are already known and previously
  1252. * homed, DELTA could home to X or Y individually by moving either one
  1253. * to the center. However, homing Z always homes XY and Z.
  1254. *
  1255. * SCARA should wait until all XY homing is done before setting the XY
  1256. * current_position to home, because neither X nor Y is at home until
  1257. * both are at home. Z can however be homed individually.
  1258. *
  1259. * Callers must sync the planner position after calling this!
  1260. */
  1261. static void set_axis_is_at_home(const AxisEnum axis) {
  1262. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1263. if (DEBUGGING(LEVELING)) {
  1264. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1265. SERIAL_CHAR(')');
  1266. SERIAL_EOL();
  1267. }
  1268. #endif
  1269. axis_known_position[axis] = axis_homed[axis] = true;
  1270. #if HAS_POSITION_SHIFT
  1271. position_shift[axis] = 0;
  1272. update_software_endstops(axis);
  1273. #endif
  1274. #if ENABLED(DUAL_X_CARRIAGE)
  1275. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1276. current_position[X_AXIS] = x_home_pos(active_extruder);
  1277. return;
  1278. }
  1279. #endif
  1280. #if ENABLED(MORGAN_SCARA)
  1281. /**
  1282. * Morgan SCARA homes XY at the same time
  1283. */
  1284. if (axis == X_AXIS || axis == Y_AXIS) {
  1285. float homeposition[XYZ];
  1286. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1287. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1288. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1289. /**
  1290. * Get Home position SCARA arm angles using inverse kinematics,
  1291. * and calculate homing offset using forward kinematics
  1292. */
  1293. inverse_kinematics(homeposition);
  1294. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1295. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1296. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1297. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1298. /**
  1299. * SCARA home positions are based on configuration since the actual
  1300. * limits are determined by the inverse kinematic transform.
  1301. */
  1302. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1303. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1304. }
  1305. else
  1306. #endif
  1307. {
  1308. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1309. }
  1310. /**
  1311. * Z Probe Z Homing? Account for the probe's Z offset.
  1312. */
  1313. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1314. if (axis == Z_AXIS) {
  1315. #if HOMING_Z_WITH_PROBE
  1316. current_position[Z_AXIS] -= zprobe_zoffset;
  1317. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1318. if (DEBUGGING(LEVELING)) {
  1319. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1320. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1321. }
  1322. #endif
  1323. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1324. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1325. #endif
  1326. }
  1327. #endif
  1328. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1329. if (DEBUGGING(LEVELING)) {
  1330. #if HAS_HOME_OFFSET
  1331. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1332. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1333. #endif
  1334. DEBUG_POS("", current_position);
  1335. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1336. SERIAL_CHAR(')');
  1337. SERIAL_EOL();
  1338. }
  1339. #endif
  1340. #if ENABLED(I2C_POSITION_ENCODERS)
  1341. I2CPEM.homed(axis);
  1342. #endif
  1343. }
  1344. /**
  1345. * Some planner shorthand inline functions
  1346. */
  1347. inline float get_homing_bump_feedrate(const AxisEnum axis) {
  1348. static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
  1349. uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
  1350. if (hbd < 1) {
  1351. hbd = 10;
  1352. SERIAL_ECHO_START();
  1353. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1354. }
  1355. return homing_feedrate(axis) / hbd;
  1356. }
  1357. /**
  1358. * Move the planner to the current position from wherever it last moved
  1359. * (or from wherever it has been told it is located).
  1360. */
  1361. inline void line_to_current_position() {
  1362. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1363. }
  1364. /**
  1365. * Move the planner to the position stored in the destination array, which is
  1366. * used by G0/G1/G2/G3/G5 and many other functions to set a destination.
  1367. */
  1368. inline void line_to_destination(const float fr_mm_s) {
  1369. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1370. }
  1371. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1372. inline void set_current_to_destination() { COPY(current_position, destination); }
  1373. inline void set_destination_to_current() { COPY(destination, current_position); }
  1374. #if IS_KINEMATIC
  1375. /**
  1376. * Calculate delta, start a line, and set current_position to destination
  1377. */
  1378. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1379. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1380. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1381. #endif
  1382. refresh_cmd_timeout();
  1383. #if UBL_DELTA
  1384. // ubl segmented line will do z-only moves in single segment
  1385. ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
  1386. #else
  1387. if ( current_position[X_AXIS] == destination[X_AXIS]
  1388. && current_position[Y_AXIS] == destination[Y_AXIS]
  1389. && current_position[Z_AXIS] == destination[Z_AXIS]
  1390. && current_position[E_AXIS] == destination[E_AXIS]
  1391. ) return;
  1392. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1393. #endif
  1394. set_current_to_destination();
  1395. }
  1396. #endif // IS_KINEMATIC
  1397. /**
  1398. * Plan a move to (X, Y, Z) and set the current_position
  1399. * The final current_position may not be the one that was requested
  1400. */
  1401. void do_blocking_move_to(const float &lx, const float &ly, const float &lz, const float &fr_mm_s/*=0.0*/) {
  1402. const float old_feedrate_mm_s = feedrate_mm_s;
  1403. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1404. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, lx, ly, lz);
  1405. #endif
  1406. #if ENABLED(DELTA)
  1407. if (!position_is_reachable_xy(lx, ly)) return;
  1408. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1409. set_destination_to_current(); // sync destination at the start
  1410. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1411. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1412. #endif
  1413. // when in the danger zone
  1414. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1415. if (lz > delta_clip_start_height) { // staying in the danger zone
  1416. destination[X_AXIS] = lx; // move directly (uninterpolated)
  1417. destination[Y_AXIS] = ly;
  1418. destination[Z_AXIS] = lz;
  1419. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1420. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1421. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1422. #endif
  1423. return;
  1424. }
  1425. else {
  1426. destination[Z_AXIS] = delta_clip_start_height;
  1427. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1428. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1429. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1430. #endif
  1431. }
  1432. }
  1433. if (lz > current_position[Z_AXIS]) { // raising?
  1434. destination[Z_AXIS] = lz;
  1435. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1436. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1437. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1438. #endif
  1439. }
  1440. destination[X_AXIS] = lx;
  1441. destination[Y_AXIS] = ly;
  1442. prepare_move_to_destination(); // set_current_to_destination
  1443. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1444. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1445. #endif
  1446. if (lz < current_position[Z_AXIS]) { // lowering?
  1447. destination[Z_AXIS] = lz;
  1448. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1450. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1451. #endif
  1452. }
  1453. #elif IS_SCARA
  1454. if (!position_is_reachable_xy(lx, ly)) return;
  1455. set_destination_to_current();
  1456. // If Z needs to raise, do it before moving XY
  1457. if (destination[Z_AXIS] < lz) {
  1458. destination[Z_AXIS] = lz;
  1459. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1460. }
  1461. destination[X_AXIS] = lx;
  1462. destination[Y_AXIS] = ly;
  1463. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1464. // If Z needs to lower, do it after moving XY
  1465. if (destination[Z_AXIS] > lz) {
  1466. destination[Z_AXIS] = lz;
  1467. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1468. }
  1469. #else
  1470. // If Z needs to raise, do it before moving XY
  1471. if (current_position[Z_AXIS] < lz) {
  1472. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1473. current_position[Z_AXIS] = lz;
  1474. line_to_current_position();
  1475. }
  1476. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1477. current_position[X_AXIS] = lx;
  1478. current_position[Y_AXIS] = ly;
  1479. line_to_current_position();
  1480. // If Z needs to lower, do it after moving XY
  1481. if (current_position[Z_AXIS] > lz) {
  1482. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1483. current_position[Z_AXIS] = lz;
  1484. line_to_current_position();
  1485. }
  1486. #endif
  1487. stepper.synchronize();
  1488. feedrate_mm_s = old_feedrate_mm_s;
  1489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1490. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1491. #endif
  1492. }
  1493. void do_blocking_move_to_x(const float &lx, const float &fr_mm_s/*=0.0*/) {
  1494. do_blocking_move_to(lx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1495. }
  1496. void do_blocking_move_to_z(const float &lz, const float &fr_mm_s/*=0.0*/) {
  1497. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], lz, fr_mm_s);
  1498. }
  1499. void do_blocking_move_to_xy(const float &lx, const float &ly, const float &fr_mm_s/*=0.0*/) {
  1500. do_blocking_move_to(lx, ly, current_position[Z_AXIS], fr_mm_s);
  1501. }
  1502. //
  1503. // Prepare to do endstop or probe moves
  1504. // with custom feedrates.
  1505. //
  1506. // - Save current feedrates
  1507. // - Reset the rate multiplier
  1508. // - Reset the command timeout
  1509. // - Enable the endstops (for endstop moves)
  1510. //
  1511. static void setup_for_endstop_or_probe_move() {
  1512. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1513. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1514. #endif
  1515. saved_feedrate_mm_s = feedrate_mm_s;
  1516. saved_feedrate_percentage = feedrate_percentage;
  1517. feedrate_percentage = 100;
  1518. refresh_cmd_timeout();
  1519. }
  1520. static void clean_up_after_endstop_or_probe_move() {
  1521. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1522. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1523. #endif
  1524. feedrate_mm_s = saved_feedrate_mm_s;
  1525. feedrate_percentage = saved_feedrate_percentage;
  1526. refresh_cmd_timeout();
  1527. }
  1528. #if HAS_BED_PROBE
  1529. /**
  1530. * Raise Z to a minimum height to make room for a probe to move
  1531. */
  1532. inline void do_probe_raise(const float z_raise) {
  1533. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1534. if (DEBUGGING(LEVELING)) {
  1535. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1536. SERIAL_CHAR(')');
  1537. SERIAL_EOL();
  1538. }
  1539. #endif
  1540. float z_dest = z_raise;
  1541. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1542. if (z_dest > current_position[Z_AXIS])
  1543. do_blocking_move_to_z(z_dest);
  1544. }
  1545. #endif // HAS_BED_PROBE
  1546. #if HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION)
  1547. bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
  1548. #if ENABLED(HOME_AFTER_DEACTIVATE)
  1549. const bool xx = x && !axis_known_position[X_AXIS],
  1550. yy = y && !axis_known_position[Y_AXIS],
  1551. zz = z && !axis_known_position[Z_AXIS];
  1552. #else
  1553. const bool xx = x && !axis_homed[X_AXIS],
  1554. yy = y && !axis_homed[Y_AXIS],
  1555. zz = z && !axis_homed[Z_AXIS];
  1556. #endif
  1557. if (xx || yy || zz) {
  1558. SERIAL_ECHO_START();
  1559. SERIAL_ECHOPGM(MSG_HOME " ");
  1560. if (xx) SERIAL_ECHOPGM(MSG_X);
  1561. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1562. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1563. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1564. #if ENABLED(ULTRA_LCD)
  1565. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1566. #endif
  1567. return true;
  1568. }
  1569. return false;
  1570. }
  1571. #endif
  1572. #if ENABLED(Z_PROBE_SLED)
  1573. #ifndef SLED_DOCKING_OFFSET
  1574. #define SLED_DOCKING_OFFSET 0
  1575. #endif
  1576. /**
  1577. * Method to dock/undock a sled designed by Charles Bell.
  1578. *
  1579. * stow[in] If false, move to MAX_X and engage the solenoid
  1580. * If true, move to MAX_X and release the solenoid
  1581. */
  1582. static void dock_sled(bool stow) {
  1583. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1584. if (DEBUGGING(LEVELING)) {
  1585. SERIAL_ECHOPAIR("dock_sled(", stow);
  1586. SERIAL_CHAR(')');
  1587. SERIAL_EOL();
  1588. }
  1589. #endif
  1590. // Dock sled a bit closer to ensure proper capturing
  1591. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1592. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1593. WRITE(SOL1_PIN, !stow); // switch solenoid
  1594. #endif
  1595. }
  1596. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1597. FORCE_INLINE void do_blocking_move_to(const float logical[XYZ], const float &fr_mm_s) {
  1598. do_blocking_move_to(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], fr_mm_s);
  1599. }
  1600. void run_deploy_moves_script() {
  1601. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1602. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1603. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1604. #endif
  1605. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1606. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1607. #endif
  1608. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1609. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1610. #endif
  1611. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1612. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1613. #endif
  1614. const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
  1615. do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1616. #endif
  1617. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1618. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1619. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1620. #endif
  1621. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1622. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1623. #endif
  1624. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1625. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1626. #endif
  1627. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1628. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1629. #endif
  1630. const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
  1631. do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1632. #endif
  1633. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1634. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1635. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1636. #endif
  1637. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1638. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1639. #endif
  1640. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1641. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1642. #endif
  1643. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1644. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1645. #endif
  1646. const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
  1647. do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1648. #endif
  1649. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1650. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1651. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1652. #endif
  1653. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1654. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1655. #endif
  1656. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1657. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1658. #endif
  1659. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1660. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1661. #endif
  1662. const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
  1663. do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1664. #endif
  1665. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1666. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1667. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1668. #endif
  1669. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1670. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1671. #endif
  1672. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1673. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1674. #endif
  1675. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1676. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1677. #endif
  1678. const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
  1679. do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1680. #endif
  1681. }
  1682. void run_stow_moves_script() {
  1683. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1684. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1685. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1686. #endif
  1687. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1688. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1689. #endif
  1690. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1691. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1692. #endif
  1693. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1694. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1695. #endif
  1696. const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
  1697. do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1698. #endif
  1699. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1700. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1701. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1702. #endif
  1703. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1704. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1705. #endif
  1706. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1707. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1708. #endif
  1709. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1710. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1711. #endif
  1712. const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
  1713. do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1714. #endif
  1715. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1716. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1717. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1718. #endif
  1719. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1720. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1721. #endif
  1722. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1723. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1724. #endif
  1725. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1726. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1727. #endif
  1728. const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
  1729. do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1730. #endif
  1731. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1732. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1733. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1734. #endif
  1735. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1736. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1737. #endif
  1738. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1739. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1740. #endif
  1741. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1742. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1743. #endif
  1744. const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
  1745. do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1746. #endif
  1747. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1748. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1749. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1750. #endif
  1751. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1752. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1753. #endif
  1754. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1755. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1756. #endif
  1757. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1758. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1759. #endif
  1760. const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
  1761. do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1762. #endif
  1763. }
  1764. #endif
  1765. #if ENABLED(PROBING_FANS_OFF)
  1766. void fans_pause(const bool p) {
  1767. if (p != fans_paused) {
  1768. fans_paused = p;
  1769. if (p)
  1770. for (uint8_t x = 0; x < FAN_COUNT; x++) {
  1771. paused_fanSpeeds[x] = fanSpeeds[x];
  1772. fanSpeeds[x] = 0;
  1773. }
  1774. else
  1775. for (uint8_t x = 0; x < FAN_COUNT; x++)
  1776. fanSpeeds[x] = paused_fanSpeeds[x];
  1777. }
  1778. }
  1779. #endif // PROBING_FANS_OFF
  1780. #if HAS_BED_PROBE
  1781. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1782. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1783. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1784. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1785. #else
  1786. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1787. #endif
  1788. #endif
  1789. #if QUIET_PROBING
  1790. void probing_pause(const bool p) {
  1791. #if ENABLED(PROBING_HEATERS_OFF)
  1792. thermalManager.pause(p);
  1793. #endif
  1794. #if ENABLED(PROBING_FANS_OFF)
  1795. fans_pause(p);
  1796. #endif
  1797. if (p) safe_delay(
  1798. #if DELAY_BEFORE_PROBING > 25
  1799. DELAY_BEFORE_PROBING
  1800. #else
  1801. 25
  1802. #endif
  1803. );
  1804. }
  1805. #endif // QUIET_PROBING
  1806. #if ENABLED(BLTOUCH)
  1807. void bltouch_command(int angle) {
  1808. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, angle); // Give the BL-Touch the command and wait
  1809. safe_delay(BLTOUCH_DELAY);
  1810. }
  1811. bool set_bltouch_deployed(const bool deploy) {
  1812. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1813. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1814. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1815. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1816. safe_delay(1500); // Wait for internal self-test to complete.
  1817. // (Measured completion time was 0.65 seconds
  1818. // after reset, deploy, and stow sequence)
  1819. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1820. SERIAL_ERROR_START();
  1821. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1822. stop(); // punt!
  1823. return true;
  1824. }
  1825. }
  1826. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1827. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1828. if (DEBUGGING(LEVELING)) {
  1829. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1830. SERIAL_CHAR(')');
  1831. SERIAL_EOL();
  1832. }
  1833. #endif
  1834. return false;
  1835. }
  1836. #endif // BLTOUCH
  1837. // returns false for ok and true for failure
  1838. bool set_probe_deployed(bool deploy) {
  1839. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1840. if (DEBUGGING(LEVELING)) {
  1841. DEBUG_POS("set_probe_deployed", current_position);
  1842. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1843. }
  1844. #endif
  1845. if (endstops.z_probe_enabled == deploy) return false;
  1846. // Make room for probe
  1847. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1848. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  1849. #if ENABLED(Z_PROBE_SLED)
  1850. #define _AUE_ARGS true, false, false
  1851. #else
  1852. #define _AUE_ARGS
  1853. #endif
  1854. if (axis_unhomed_error(_AUE_ARGS)) {
  1855. SERIAL_ERROR_START();
  1856. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1857. stop();
  1858. return true;
  1859. }
  1860. #endif
  1861. const float oldXpos = current_position[X_AXIS],
  1862. oldYpos = current_position[Y_AXIS];
  1863. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1864. // If endstop is already false, the Z probe is deployed
  1865. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1866. // Would a goto be less ugly?
  1867. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1868. // for a triggered when stowed manual probe.
  1869. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1870. // otherwise an Allen-Key probe can't be stowed.
  1871. #endif
  1872. #if ENABLED(SOLENOID_PROBE)
  1873. #if HAS_SOLENOID_1
  1874. WRITE(SOL1_PIN, deploy);
  1875. #endif
  1876. #elif ENABLED(Z_PROBE_SLED)
  1877. dock_sled(!deploy);
  1878. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1879. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[deploy ? 0 : 1]);
  1880. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1881. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1882. #endif
  1883. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1884. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1885. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1886. if (IsRunning()) {
  1887. SERIAL_ERROR_START();
  1888. SERIAL_ERRORLNPGM("Z-Probe failed");
  1889. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1890. }
  1891. stop();
  1892. return true;
  1893. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1894. #endif
  1895. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1896. endstops.enable_z_probe(deploy);
  1897. return false;
  1898. }
  1899. /**
  1900. * @brief Used by run_z_probe to do a single Z probe move.
  1901. *
  1902. * @param z Z destination
  1903. * @param fr_mm_s Feedrate in mm/s
  1904. * @return true to indicate an error
  1905. */
  1906. static bool do_probe_move(const float z, const float fr_mm_m) {
  1907. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1908. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1909. #endif
  1910. // Deploy BLTouch at the start of any probe
  1911. #if ENABLED(BLTOUCH)
  1912. if (set_bltouch_deployed(true)) return true;
  1913. #endif
  1914. #if QUIET_PROBING
  1915. probing_pause(true);
  1916. #endif
  1917. // Move down until probe triggered
  1918. do_blocking_move_to_z(z, MMM_TO_MMS(fr_mm_m));
  1919. // Check to see if the probe was triggered
  1920. const bool probe_triggered = TEST(Endstops::endstop_hit_bits,
  1921. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  1922. Z_MIN
  1923. #else
  1924. Z_MIN_PROBE
  1925. #endif
  1926. );
  1927. #if QUIET_PROBING
  1928. probing_pause(false);
  1929. #endif
  1930. // Retract BLTouch immediately after a probe if it was triggered
  1931. #if ENABLED(BLTOUCH)
  1932. if (probe_triggered && set_bltouch_deployed(false)) return true;
  1933. #endif
  1934. // Clear endstop flags
  1935. endstops.hit_on_purpose();
  1936. // Get Z where the steppers were interrupted
  1937. set_current_from_steppers_for_axis(Z_AXIS);
  1938. // Tell the planner where we actually are
  1939. SYNC_PLAN_POSITION_KINEMATIC();
  1940. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1941. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1942. #endif
  1943. return !probe_triggered;
  1944. }
  1945. /**
  1946. * @details Used by probe_pt to do a single Z probe.
  1947. * Leaves current_position[Z_AXIS] at the height where the probe triggered.
  1948. *
  1949. * @param short_move Flag for a shorter probe move towards the bed
  1950. * @return The raw Z position where the probe was triggered
  1951. */
  1952. static float run_z_probe(const bool short_move=true) {
  1953. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1954. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1955. #endif
  1956. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1957. refresh_cmd_timeout();
  1958. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1959. // Do a first probe at the fast speed
  1960. if (do_probe_move(-10, Z_PROBE_SPEED_FAST)) return NAN;
  1961. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1962. float first_probe_z = current_position[Z_AXIS];
  1963. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1964. #endif
  1965. // move up to make clearance for the probe
  1966. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1967. #else
  1968. // If the nozzle is above the travel height then
  1969. // move down quickly before doing the slow probe
  1970. float z = Z_CLEARANCE_DEPLOY_PROBE;
  1971. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1972. if (z < current_position[Z_AXIS]) {
  1973. // If we don't make it to the z position (i.e. the probe triggered), move up to make clearance for the probe
  1974. if (!do_probe_move(z, Z_PROBE_SPEED_FAST))
  1975. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1976. }
  1977. #endif
  1978. // move down slowly to find bed
  1979. if (do_probe_move(-10 + (short_move ? 0 : -(Z_MAX_LENGTH)), Z_PROBE_SPEED_SLOW)) return NAN;
  1980. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1981. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1982. #endif
  1983. // Debug: compare probe heights
  1984. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1985. if (DEBUGGING(LEVELING)) {
  1986. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1987. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1988. }
  1989. #endif
  1990. return RAW_CURRENT_POSITION(Z) + zprobe_zoffset
  1991. #if ENABLED(DELTA)
  1992. + home_offset[Z_AXIS] // Account for delta height adjustment
  1993. #endif
  1994. ;
  1995. }
  1996. /**
  1997. * - Move to the given XY
  1998. * - Deploy the probe, if not already deployed
  1999. * - Probe the bed, get the Z position
  2000. * - Depending on the 'stow' flag
  2001. * - Stow the probe, or
  2002. * - Raise to the BETWEEN height
  2003. * - Return the probed Z position
  2004. */
  2005. float probe_pt(const float &lx, const float &ly, const bool stow, const uint8_t verbose_level, const bool printable=true) {
  2006. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2007. if (DEBUGGING(LEVELING)) {
  2008. SERIAL_ECHOPAIR(">>> probe_pt(", lx);
  2009. SERIAL_ECHOPAIR(", ", ly);
  2010. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  2011. SERIAL_ECHOLNPGM("stow)");
  2012. DEBUG_POS("", current_position);
  2013. }
  2014. #endif
  2015. const float nx = lx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ly - (Y_PROBE_OFFSET_FROM_EXTRUDER);
  2016. if (printable
  2017. ? !position_is_reachable_xy(nx, ny)
  2018. : !position_is_reachable_by_probe_xy(lx, ly)
  2019. ) return NAN;
  2020. const float old_feedrate_mm_s = feedrate_mm_s;
  2021. #if ENABLED(DELTA)
  2022. if (current_position[Z_AXIS] > delta_clip_start_height)
  2023. do_blocking_move_to_z(delta_clip_start_height);
  2024. #endif
  2025. #if HAS_SOFTWARE_ENDSTOPS
  2026. // Store the status of the soft endstops and disable if we're probing a non-printable location
  2027. static bool enable_soft_endstops = soft_endstops_enabled;
  2028. if (!printable) soft_endstops_enabled = false;
  2029. #endif
  2030. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2031. // Move the probe to the given XY
  2032. do_blocking_move_to_xy(nx, ny);
  2033. float measured_z = NAN;
  2034. if (!DEPLOY_PROBE()) {
  2035. measured_z = run_z_probe(printable);
  2036. if (!stow)
  2037. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2038. else
  2039. if (STOW_PROBE()) measured_z = NAN;
  2040. }
  2041. #if HAS_SOFTWARE_ENDSTOPS
  2042. // Restore the soft endstop status
  2043. soft_endstops_enabled = enable_soft_endstops;
  2044. #endif
  2045. if (verbose_level > 2) {
  2046. SERIAL_PROTOCOLPGM("Bed X: ");
  2047. SERIAL_PROTOCOL_F(lx, 3);
  2048. SERIAL_PROTOCOLPGM(" Y: ");
  2049. SERIAL_PROTOCOL_F(ly, 3);
  2050. SERIAL_PROTOCOLPGM(" Z: ");
  2051. SERIAL_PROTOCOL_F(measured_z, 3);
  2052. SERIAL_EOL();
  2053. }
  2054. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2055. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2056. #endif
  2057. feedrate_mm_s = old_feedrate_mm_s;
  2058. if (isnan(measured_z)) {
  2059. LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
  2060. SERIAL_ERROR_START();
  2061. SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);
  2062. }
  2063. return measured_z;
  2064. }
  2065. #endif // HAS_BED_PROBE
  2066. #if HAS_LEVELING
  2067. bool leveling_is_valid() {
  2068. return
  2069. #if ENABLED(MESH_BED_LEVELING)
  2070. mbl.has_mesh()
  2071. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2072. !!bilinear_grid_spacing[X_AXIS]
  2073. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2074. true
  2075. #else // 3POINT, LINEAR
  2076. true
  2077. #endif
  2078. ;
  2079. }
  2080. bool leveling_is_active() {
  2081. return
  2082. #if ENABLED(MESH_BED_LEVELING)
  2083. mbl.active()
  2084. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2085. ubl.state.active
  2086. #else
  2087. planner.abl_enabled
  2088. #endif
  2089. ;
  2090. }
  2091. /**
  2092. * Turn bed leveling on or off, fixing the current
  2093. * position as-needed.
  2094. *
  2095. * Disable: Current position = physical position
  2096. * Enable: Current position = "unleveled" physical position
  2097. */
  2098. void set_bed_leveling_enabled(const bool enable/*=true*/) {
  2099. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2100. const bool can_change = (!enable || leveling_is_valid());
  2101. #else
  2102. constexpr bool can_change = true;
  2103. #endif
  2104. if (can_change && enable != leveling_is_active()) {
  2105. #if ENABLED(MESH_BED_LEVELING)
  2106. if (!enable)
  2107. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2108. const bool enabling = enable && leveling_is_valid();
  2109. mbl.set_active(enabling);
  2110. if (enabling) planner.unapply_leveling(current_position);
  2111. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2112. #if PLANNER_LEVELING
  2113. if (ubl.state.active) { // leveling from on to off
  2114. // change unleveled current_position to physical current_position without moving steppers.
  2115. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2116. ubl.state.active = false; // disable only AFTER calling apply_leveling
  2117. }
  2118. else { // leveling from off to on
  2119. ubl.state.active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
  2120. // change physical current_position to unleveled current_position without moving steppers.
  2121. planner.unapply_leveling(current_position);
  2122. }
  2123. #else
  2124. ubl.state.active = enable; // just flip the bit, current_position will be wrong until next move.
  2125. #endif
  2126. #else // ABL
  2127. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2128. // Force bilinear_z_offset to re-calculate next time
  2129. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2130. (void)bilinear_z_offset(reset);
  2131. #endif
  2132. // Enable or disable leveling compensation in the planner
  2133. planner.abl_enabled = enable;
  2134. if (!enable)
  2135. // When disabling just get the current position from the steppers.
  2136. // This will yield the smallest error when first converted back to steps.
  2137. set_current_from_steppers_for_axis(
  2138. #if ABL_PLANAR
  2139. ALL_AXES
  2140. #else
  2141. Z_AXIS
  2142. #endif
  2143. );
  2144. else
  2145. // When enabling, remove compensation from the current position,
  2146. // so compensation will give the right stepper counts.
  2147. planner.unapply_leveling(current_position);
  2148. #endif // ABL
  2149. }
  2150. }
  2151. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2152. void set_z_fade_height(const float zfh) {
  2153. const bool level_active = leveling_is_active();
  2154. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2155. if (level_active)
  2156. set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
  2157. planner.z_fade_height = zfh;
  2158. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2159. if (level_active)
  2160. set_bed_leveling_enabled(true); // turn back on after changing fade height
  2161. #else
  2162. planner.z_fade_height = zfh;
  2163. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2164. if (level_active) {
  2165. set_current_from_steppers_for_axis(
  2166. #if ABL_PLANAR
  2167. ALL_AXES
  2168. #else
  2169. Z_AXIS
  2170. #endif
  2171. );
  2172. }
  2173. #endif
  2174. }
  2175. #endif // LEVELING_FADE_HEIGHT
  2176. /**
  2177. * Reset calibration results to zero.
  2178. */
  2179. void reset_bed_level() {
  2180. set_bed_leveling_enabled(false);
  2181. #if ENABLED(MESH_BED_LEVELING)
  2182. if (leveling_is_valid()) {
  2183. mbl.reset();
  2184. mbl.set_has_mesh(false);
  2185. }
  2186. #else
  2187. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2188. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2189. #endif
  2190. #if ABL_PLANAR
  2191. planner.bed_level_matrix.set_to_identity();
  2192. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2193. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2194. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2195. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2196. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2197. z_values[x][y] = NAN;
  2198. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2199. ubl.reset();
  2200. #endif
  2201. #endif
  2202. }
  2203. #endif // HAS_LEVELING
  2204. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2205. /**
  2206. * Enable to produce output in JSON format suitable
  2207. * for SCAD or JavaScript mesh visualizers.
  2208. *
  2209. * Visualize meshes in OpenSCAD using the included script.
  2210. *
  2211. * buildroot/shared/scripts/MarlinMesh.scad
  2212. */
  2213. //#define SCAD_MESH_OUTPUT
  2214. /**
  2215. * Print calibration results for plotting or manual frame adjustment.
  2216. */
  2217. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2218. #ifndef SCAD_MESH_OUTPUT
  2219. for (uint8_t x = 0; x < sx; x++) {
  2220. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2221. SERIAL_PROTOCOLCHAR(' ');
  2222. SERIAL_PROTOCOL((int)x);
  2223. }
  2224. SERIAL_EOL();
  2225. #endif
  2226. #ifdef SCAD_MESH_OUTPUT
  2227. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2228. #endif
  2229. for (uint8_t y = 0; y < sy; y++) {
  2230. #ifdef SCAD_MESH_OUTPUT
  2231. SERIAL_PROTOCOLPGM(" ["); // open sub-array
  2232. #else
  2233. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2234. SERIAL_PROTOCOL((int)y);
  2235. #endif
  2236. for (uint8_t x = 0; x < sx; x++) {
  2237. SERIAL_PROTOCOLCHAR(' ');
  2238. const float offset = fn(x, y);
  2239. if (!isnan(offset)) {
  2240. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2241. SERIAL_PROTOCOL_F(offset, precision);
  2242. }
  2243. else {
  2244. #ifdef SCAD_MESH_OUTPUT
  2245. for (uint8_t i = 3; i < precision + 3; i++)
  2246. SERIAL_PROTOCOLCHAR(' ');
  2247. SERIAL_PROTOCOLPGM("NAN");
  2248. #else
  2249. for (uint8_t i = 0; i < precision + 3; i++)
  2250. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2251. #endif
  2252. }
  2253. #ifdef SCAD_MESH_OUTPUT
  2254. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2255. #endif
  2256. }
  2257. #ifdef SCAD_MESH_OUTPUT
  2258. SERIAL_PROTOCOLCHAR(' ');
  2259. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2260. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2261. #endif
  2262. SERIAL_EOL();
  2263. }
  2264. #ifdef SCAD_MESH_OUTPUT
  2265. SERIAL_PROTOCOLPGM("];"); // close 2D array
  2266. #endif
  2267. SERIAL_EOL();
  2268. }
  2269. #endif
  2270. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2271. /**
  2272. * Extrapolate a single point from its neighbors
  2273. */
  2274. static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  2275. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2276. if (DEBUGGING(LEVELING)) {
  2277. SERIAL_ECHOPGM("Extrapolate [");
  2278. if (x < 10) SERIAL_CHAR(' ');
  2279. SERIAL_ECHO((int)x);
  2280. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2281. SERIAL_CHAR(' ');
  2282. if (y < 10) SERIAL_CHAR(' ');
  2283. SERIAL_ECHO((int)y);
  2284. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2285. SERIAL_CHAR(']');
  2286. }
  2287. #endif
  2288. if (!isnan(z_values[x][y])) {
  2289. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2290. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2291. #endif
  2292. return; // Don't overwrite good values.
  2293. }
  2294. SERIAL_EOL();
  2295. // Get X neighbors, Y neighbors, and XY neighbors
  2296. const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
  2297. float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
  2298. b1 = z_values[x ][y1], b2 = z_values[x ][y2],
  2299. c1 = z_values[x1][y1], c2 = z_values[x2][y2];
  2300. // Treat far unprobed points as zero, near as equal to far
  2301. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2302. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2303. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2304. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2305. // Take the average instead of the median
  2306. z_values[x][y] = (a + b + c) / 3.0;
  2307. // Median is robust (ignores outliers).
  2308. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2309. // : ((c < b) ? b : (a < c) ? a : c);
  2310. }
  2311. //Enable this if your SCARA uses 180° of total area
  2312. //#define EXTRAPOLATE_FROM_EDGE
  2313. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2314. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2315. #define HALF_IN_X
  2316. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2317. #define HALF_IN_Y
  2318. #endif
  2319. #endif
  2320. /**
  2321. * Fill in the unprobed points (corners of circular print surface)
  2322. * using linear extrapolation, away from the center.
  2323. */
  2324. static void extrapolate_unprobed_bed_level() {
  2325. #ifdef HALF_IN_X
  2326. constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2327. #else
  2328. constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2329. ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
  2330. xlen = ctrx1;
  2331. #endif
  2332. #ifdef HALF_IN_Y
  2333. constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2334. #else
  2335. constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2336. ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
  2337. ylen = ctry1;
  2338. #endif
  2339. for (uint8_t xo = 0; xo <= xlen; xo++)
  2340. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2341. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2342. #ifndef HALF_IN_X
  2343. const uint8_t x1 = ctrx1 - xo;
  2344. #endif
  2345. #ifndef HALF_IN_Y
  2346. const uint8_t y1 = ctry1 - yo;
  2347. #ifndef HALF_IN_X
  2348. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2349. #endif
  2350. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2351. #endif
  2352. #ifndef HALF_IN_X
  2353. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2354. #endif
  2355. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2356. }
  2357. }
  2358. static void print_bilinear_leveling_grid() {
  2359. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2360. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2361. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2362. );
  2363. }
  2364. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2365. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2366. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2367. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2368. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2369. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2370. int bilinear_grid_spacing_virt[2] = { 0 };
  2371. float bilinear_grid_factor_virt[2] = { 0 };
  2372. static void print_bilinear_leveling_grid_virt() {
  2373. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2374. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2375. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2376. );
  2377. }
  2378. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2379. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2380. uint8_t ep = 0, ip = 1;
  2381. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2382. if (x) {
  2383. ep = GRID_MAX_POINTS_X - 1;
  2384. ip = GRID_MAX_POINTS_X - 2;
  2385. }
  2386. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2387. return LINEAR_EXTRAPOLATION(
  2388. z_values[ep][y - 1],
  2389. z_values[ip][y - 1]
  2390. );
  2391. else
  2392. return LINEAR_EXTRAPOLATION(
  2393. bed_level_virt_coord(ep + 1, y),
  2394. bed_level_virt_coord(ip + 1, y)
  2395. );
  2396. }
  2397. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2398. if (y) {
  2399. ep = GRID_MAX_POINTS_Y - 1;
  2400. ip = GRID_MAX_POINTS_Y - 2;
  2401. }
  2402. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2403. return LINEAR_EXTRAPOLATION(
  2404. z_values[x - 1][ep],
  2405. z_values[x - 1][ip]
  2406. );
  2407. else
  2408. return LINEAR_EXTRAPOLATION(
  2409. bed_level_virt_coord(x, ep + 1),
  2410. bed_level_virt_coord(x, ip + 1)
  2411. );
  2412. }
  2413. return z_values[x - 1][y - 1];
  2414. }
  2415. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2416. return (
  2417. p[i-1] * -t * sq(1 - t)
  2418. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2419. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2420. - p[i+2] * sq(t) * (1 - t)
  2421. ) * 0.5;
  2422. }
  2423. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2424. float row[4], column[4];
  2425. for (uint8_t i = 0; i < 4; i++) {
  2426. for (uint8_t j = 0; j < 4; j++) {
  2427. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2428. }
  2429. row[i] = bed_level_virt_cmr(column, 1, ty);
  2430. }
  2431. return bed_level_virt_cmr(row, 1, tx);
  2432. }
  2433. void bed_level_virt_interpolate() {
  2434. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2435. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2436. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2437. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2438. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2439. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2440. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2441. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2442. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2443. continue;
  2444. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2445. bed_level_virt_2cmr(
  2446. x + 1,
  2447. y + 1,
  2448. (float)tx / (BILINEAR_SUBDIVISIONS),
  2449. (float)ty / (BILINEAR_SUBDIVISIONS)
  2450. );
  2451. }
  2452. }
  2453. #endif // ABL_BILINEAR_SUBDIVISION
  2454. // Refresh after other values have been updated
  2455. void refresh_bed_level() {
  2456. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2457. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2458. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2459. bed_level_virt_interpolate();
  2460. #endif
  2461. }
  2462. #endif // AUTO_BED_LEVELING_BILINEAR
  2463. /**
  2464. * Home an individual linear axis
  2465. */
  2466. static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
  2467. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2468. if (DEBUGGING(LEVELING)) {
  2469. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2470. SERIAL_ECHOPAIR(", ", distance);
  2471. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2472. SERIAL_CHAR(')');
  2473. SERIAL_EOL();
  2474. }
  2475. #endif
  2476. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2477. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2478. if (deploy_bltouch) set_bltouch_deployed(true);
  2479. #endif
  2480. #if QUIET_PROBING
  2481. if (axis == Z_AXIS) probing_pause(true);
  2482. #endif
  2483. // Tell the planner we're at Z=0
  2484. current_position[axis] = 0;
  2485. #if IS_SCARA
  2486. SYNC_PLAN_POSITION_KINEMATIC();
  2487. current_position[axis] = distance;
  2488. inverse_kinematics(current_position);
  2489. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2490. #else
  2491. sync_plan_position();
  2492. current_position[axis] = distance;
  2493. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2494. #endif
  2495. stepper.synchronize();
  2496. #if QUIET_PROBING
  2497. if (axis == Z_AXIS) probing_pause(false);
  2498. #endif
  2499. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2500. if (deploy_bltouch) set_bltouch_deployed(false);
  2501. #endif
  2502. endstops.hit_on_purpose();
  2503. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2504. if (DEBUGGING(LEVELING)) {
  2505. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2506. SERIAL_CHAR(')');
  2507. SERIAL_EOL();
  2508. }
  2509. #endif
  2510. }
  2511. /**
  2512. * TMC2130 specific sensorless homing using stallGuard2.
  2513. * stallGuard2 only works when in spreadCycle mode.
  2514. * spreadCycle and stealthChop are mutually exclusive.
  2515. */
  2516. #if ENABLED(SENSORLESS_HOMING)
  2517. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2518. #if ENABLED(STEALTHCHOP)
  2519. if (enable) {
  2520. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2521. st.stealthChop(0);
  2522. }
  2523. else {
  2524. st.coolstep_min_speed(0);
  2525. st.stealthChop(1);
  2526. }
  2527. #endif
  2528. st.diag1_stall(enable ? 1 : 0);
  2529. }
  2530. #endif
  2531. /**
  2532. * Home an individual "raw axis" to its endstop.
  2533. * This applies to XYZ on Cartesian and Core robots, and
  2534. * to the individual ABC steppers on DELTA and SCARA.
  2535. *
  2536. * At the end of the procedure the axis is marked as
  2537. * homed and the current position of that axis is updated.
  2538. * Kinematic robots should wait till all axes are homed
  2539. * before updating the current position.
  2540. */
  2541. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2542. static void homeaxis(const AxisEnum axis) {
  2543. #if IS_SCARA
  2544. // Only Z homing (with probe) is permitted
  2545. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2546. #else
  2547. #define CAN_HOME(A) \
  2548. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2549. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2550. #endif
  2551. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2552. if (DEBUGGING(LEVELING)) {
  2553. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2554. SERIAL_CHAR(')');
  2555. SERIAL_EOL();
  2556. }
  2557. #endif
  2558. const int axis_home_dir =
  2559. #if ENABLED(DUAL_X_CARRIAGE)
  2560. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2561. #endif
  2562. home_dir(axis);
  2563. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2564. #if HOMING_Z_WITH_PROBE
  2565. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2566. #endif
  2567. // Set a flag for Z motor locking
  2568. #if ENABLED(Z_DUAL_ENDSTOPS)
  2569. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2570. #endif
  2571. // Disable stealthChop if used. Enable diag1 pin on driver.
  2572. #if ENABLED(SENSORLESS_HOMING)
  2573. #if ENABLED(X_IS_TMC2130)
  2574. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2575. #endif
  2576. #if ENABLED(Y_IS_TMC2130)
  2577. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2578. #endif
  2579. #endif
  2580. // Fast move towards endstop until triggered
  2581. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2582. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2583. #endif
  2584. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2585. // When homing Z with probe respect probe clearance
  2586. const float bump = axis_home_dir * (
  2587. #if HOMING_Z_WITH_PROBE
  2588. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2589. #endif
  2590. home_bump_mm(axis)
  2591. );
  2592. // If a second homing move is configured...
  2593. if (bump) {
  2594. // Move away from the endstop by the axis HOME_BUMP_MM
  2595. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2596. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2597. #endif
  2598. do_homing_move(axis, -bump);
  2599. // Slow move towards endstop until triggered
  2600. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2601. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2602. #endif
  2603. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2604. }
  2605. #if ENABLED(Z_DUAL_ENDSTOPS)
  2606. if (axis == Z_AXIS) {
  2607. float adj = FABS(z_endstop_adj);
  2608. bool lockZ1;
  2609. if (axis_home_dir > 0) {
  2610. adj = -adj;
  2611. lockZ1 = (z_endstop_adj > 0);
  2612. }
  2613. else
  2614. lockZ1 = (z_endstop_adj < 0);
  2615. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2616. // Move to the adjusted endstop height
  2617. do_homing_move(axis, adj);
  2618. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2619. stepper.set_homing_flag(false);
  2620. } // Z_AXIS
  2621. #endif
  2622. #if IS_SCARA
  2623. set_axis_is_at_home(axis);
  2624. SYNC_PLAN_POSITION_KINEMATIC();
  2625. #elif ENABLED(DELTA)
  2626. // Delta has already moved all three towers up in G28
  2627. // so here it re-homes each tower in turn.
  2628. // Delta homing treats the axes as normal linear axes.
  2629. // retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps
  2630. if (endstop_adj[axis] * Z_HOME_DIR <= 0) {
  2631. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2632. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2633. #endif
  2634. do_homing_move(axis, endstop_adj[axis] - 0.1);
  2635. }
  2636. #else
  2637. // For cartesian/core machines,
  2638. // set the axis to its home position
  2639. set_axis_is_at_home(axis);
  2640. sync_plan_position();
  2641. destination[axis] = current_position[axis];
  2642. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2643. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2644. #endif
  2645. #endif
  2646. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2647. #if ENABLED(SENSORLESS_HOMING)
  2648. #if ENABLED(X_IS_TMC2130)
  2649. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2650. #endif
  2651. #if ENABLED(Y_IS_TMC2130)
  2652. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2653. #endif
  2654. #endif
  2655. // Put away the Z probe
  2656. #if HOMING_Z_WITH_PROBE
  2657. if (axis == Z_AXIS && STOW_PROBE()) return;
  2658. #endif
  2659. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2660. if (DEBUGGING(LEVELING)) {
  2661. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2662. SERIAL_CHAR(')');
  2663. SERIAL_EOL();
  2664. }
  2665. #endif
  2666. } // homeaxis()
  2667. #if ENABLED(FWRETRACT)
  2668. /**
  2669. * Retract or recover according to firmware settings
  2670. *
  2671. * This function handles retract/recover moves for G10 and G11,
  2672. * plus auto-retract moves sent from G0/G1 when E-only moves are done.
  2673. *
  2674. * To simplify the logic, doubled retract/recover moves are ignored.
  2675. *
  2676. * Note: Z lift is done transparently to the planner. Aborting
  2677. * a print between G10 and G11 may corrupt the Z position.
  2678. *
  2679. * Note: Auto-retract will apply the set Z hop in addition to any Z hop
  2680. * included in the G-code. Use M207 Z0 to to prevent double hop.
  2681. */
  2682. void retract(const bool retracting
  2683. #if EXTRUDERS > 1
  2684. , bool swapping = false
  2685. #endif
  2686. ) {
  2687. static float hop_height, // Remember where the Z height started
  2688. hop_amount = 0.0; // Total amount lifted, for use in recover
  2689. // Simply never allow two retracts or recovers in a row
  2690. if (retracted[active_extruder] == retracting) return;
  2691. #if EXTRUDERS < 2
  2692. bool swapping = false;
  2693. #endif
  2694. if (!retracting) swapping = retracted_swap[active_extruder];
  2695. /* // debugging
  2696. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2697. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2698. SERIAL_ECHOLNPAIR("active extruder ", active_extruder);
  2699. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2700. SERIAL_ECHOPAIR("retracted[", i);
  2701. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2702. SERIAL_ECHOPAIR("retracted_swap[", i);
  2703. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2704. }
  2705. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2706. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2707. //*/
  2708. const bool has_zhop = retract_zlift > 0.01; // Is there a hop set?
  2709. const float old_feedrate_mm_s = feedrate_mm_s;
  2710. const int16_t old_flow = flow_percentage[active_extruder];
  2711. // Don't apply flow multiplication to retract/recover
  2712. flow_percentage[active_extruder] = 100;
  2713. // The current position will be the destination for E and Z moves
  2714. set_destination_to_current();
  2715. if (retracting) {
  2716. // Remember the Z height since G-code may include its own Z-hop
  2717. // For best results turn off Z hop if G-code already includes it
  2718. hop_height = destination[Z_AXIS];
  2719. // Retract by moving from a faux E position back to the current E position
  2720. feedrate_mm_s = retract_feedrate_mm_s;
  2721. current_position[E_AXIS] += (swapping ? swap_retract_length : retract_length) / volumetric_multiplier[active_extruder];
  2722. sync_plan_position_e();
  2723. prepare_move_to_destination();
  2724. // Is a Z hop set, and has the hop not yet been done?
  2725. if (has_zhop) {
  2726. hop_amount += retract_zlift; // Carriage is raised for retraction hop
  2727. current_position[Z_AXIS] -= retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2728. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2729. prepare_move_to_destination(); // Raise up to the old current pos
  2730. }
  2731. }
  2732. else {
  2733. // If a hop was done and Z hasn't changed, undo the Z hop
  2734. if (hop_amount && NEAR(hop_height, destination[Z_AXIS])) {
  2735. current_position[Z_AXIS] += hop_amount; // Pretend current pos is higher. Next move lowers Z.
  2736. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2737. prepare_move_to_destination(); // Lower to the old current pos
  2738. hop_amount = 0.0;
  2739. }
  2740. // A retract multiplier has been added here to get faster swap recovery
  2741. feedrate_mm_s = swapping ? swap_retract_recover_feedrate_mm_s : retract_recover_feedrate_mm_s;
  2742. const float move_e = swapping ? swap_retract_length + swap_retract_recover_length : retract_length + retract_recover_length;
  2743. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2744. sync_plan_position_e();
  2745. prepare_move_to_destination(); // Recover E
  2746. }
  2747. // Restore flow and feedrate
  2748. flow_percentage[active_extruder] = old_flow;
  2749. feedrate_mm_s = old_feedrate_mm_s;
  2750. // The active extruder is now retracted or recovered
  2751. retracted[active_extruder] = retracting;
  2752. // If swap retract/recover then update the retracted_swap flag too
  2753. #if EXTRUDERS > 1
  2754. if (swapping) retracted_swap[active_extruder] = retracting;
  2755. #endif
  2756. /* // debugging
  2757. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2758. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2759. SERIAL_ECHOLNPAIR("active_extruder ", active_extruder);
  2760. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2761. SERIAL_ECHOPAIR("retracted[", i);
  2762. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2763. SERIAL_ECHOPAIR("retracted_swap[", i);
  2764. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2765. }
  2766. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2767. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2768. //*/
  2769. } // retract()
  2770. #endif // FWRETRACT
  2771. #if ENABLED(MIXING_EXTRUDER)
  2772. void normalize_mix() {
  2773. float mix_total = 0.0;
  2774. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2775. // Scale all values if they don't add up to ~1.0
  2776. if (!NEAR(mix_total, 1.0)) {
  2777. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2778. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2779. }
  2780. }
  2781. #if ENABLED(DIRECT_MIXING_IN_G1)
  2782. // Get mixing parameters from the GCode
  2783. // The total "must" be 1.0 (but it will be normalized)
  2784. // If no mix factors are given, the old mix is preserved
  2785. void gcode_get_mix() {
  2786. const char* mixing_codes = "ABCDHI";
  2787. byte mix_bits = 0;
  2788. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2789. if (parser.seenval(mixing_codes[i])) {
  2790. SBI(mix_bits, i);
  2791. float v = parser.value_float();
  2792. NOLESS(v, 0.0);
  2793. mixing_factor[i] = RECIPROCAL(v);
  2794. }
  2795. }
  2796. // If any mixing factors were included, clear the rest
  2797. // If none were included, preserve the last mix
  2798. if (mix_bits) {
  2799. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2800. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2801. normalize_mix();
  2802. }
  2803. }
  2804. #endif
  2805. #endif
  2806. /**
  2807. * ***************************************************************************
  2808. * ***************************** G-CODE HANDLING *****************************
  2809. * ***************************************************************************
  2810. */
  2811. /**
  2812. * Set XYZE destination and feedrate from the current GCode command
  2813. *
  2814. * - Set destination from included axis codes
  2815. * - Set to current for missing axis codes
  2816. * - Set the feedrate, if included
  2817. */
  2818. void gcode_get_destination() {
  2819. LOOP_XYZE(i) {
  2820. if (parser.seen(axis_codes[i]))
  2821. destination[i] = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2822. else
  2823. destination[i] = current_position[i];
  2824. }
  2825. if (parser.linearval('F') > 0.0)
  2826. feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
  2827. #if ENABLED(PRINTCOUNTER)
  2828. if (!DEBUGGING(DRYRUN))
  2829. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2830. #endif
  2831. // Get ABCDHI mixing factors
  2832. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2833. gcode_get_mix();
  2834. #endif
  2835. }
  2836. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2837. /**
  2838. * Output a "busy" message at regular intervals
  2839. * while the machine is not accepting commands.
  2840. */
  2841. void host_keepalive() {
  2842. const millis_t ms = millis();
  2843. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2844. if (PENDING(ms, next_busy_signal_ms)) return;
  2845. switch (busy_state) {
  2846. case IN_HANDLER:
  2847. case IN_PROCESS:
  2848. SERIAL_ECHO_START();
  2849. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2850. break;
  2851. case PAUSED_FOR_USER:
  2852. SERIAL_ECHO_START();
  2853. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2854. break;
  2855. case PAUSED_FOR_INPUT:
  2856. SERIAL_ECHO_START();
  2857. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2858. break;
  2859. default:
  2860. break;
  2861. }
  2862. }
  2863. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2864. }
  2865. #endif // HOST_KEEPALIVE_FEATURE
  2866. /**************************************************
  2867. ***************** GCode Handlers *****************
  2868. **************************************************/
  2869. /**
  2870. * G0, G1: Coordinated movement of X Y Z E axes
  2871. */
  2872. inline void gcode_G0_G1(
  2873. #if IS_SCARA
  2874. bool fast_move=false
  2875. #endif
  2876. ) {
  2877. if (IsRunning()) {
  2878. gcode_get_destination(); // For X Y Z E F
  2879. #if ENABLED(FWRETRACT)
  2880. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  2881. // When M209 Autoretract is enabled, convert E-only moves to firmware retract/recover moves
  2882. if (autoretract_enabled && parser.seen('E') && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z'))) {
  2883. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2884. // Is this a retract or recover move?
  2885. if (WITHIN(FABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && retracted[active_extruder] == (echange > 0.0)) {
  2886. current_position[E_AXIS] = destination[E_AXIS]; // Hide a G1-based retract/recover from calculations
  2887. sync_plan_position_e(); // AND from the planner
  2888. return retract(echange < 0.0); // Firmware-based retract/recover (double-retract ignored)
  2889. }
  2890. }
  2891. }
  2892. #endif // FWRETRACT
  2893. #if IS_SCARA
  2894. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2895. #else
  2896. prepare_move_to_destination();
  2897. #endif
  2898. }
  2899. }
  2900. /**
  2901. * G2: Clockwise Arc
  2902. * G3: Counterclockwise Arc
  2903. *
  2904. * This command has two forms: IJ-form and R-form.
  2905. *
  2906. * - I specifies an X offset. J specifies a Y offset.
  2907. * At least one of the IJ parameters is required.
  2908. * X and Y can be omitted to do a complete circle.
  2909. * The given XY is not error-checked. The arc ends
  2910. * based on the angle of the destination.
  2911. * Mixing I or J with R will throw an error.
  2912. *
  2913. * - R specifies the radius. X or Y is required.
  2914. * Omitting both X and Y will throw an error.
  2915. * X or Y must differ from the current XY.
  2916. * Mixing R with I or J will throw an error.
  2917. *
  2918. * - P specifies the number of full circles to do
  2919. * before the specified arc move.
  2920. *
  2921. * Examples:
  2922. *
  2923. * G2 I10 ; CW circle centered at X+10
  2924. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2925. */
  2926. #if ENABLED(ARC_SUPPORT)
  2927. inline void gcode_G2_G3(bool clockwise) {
  2928. if (IsRunning()) {
  2929. #if ENABLED(SF_ARC_FIX)
  2930. const bool relative_mode_backup = relative_mode;
  2931. relative_mode = true;
  2932. #endif
  2933. gcode_get_destination();
  2934. #if ENABLED(SF_ARC_FIX)
  2935. relative_mode = relative_mode_backup;
  2936. #endif
  2937. float arc_offset[2] = { 0.0, 0.0 };
  2938. if (parser.seenval('R')) {
  2939. const float r = parser.value_linear_units(),
  2940. p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
  2941. p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
  2942. if (r && (p2 != p1 || q2 != q1)) {
  2943. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2944. dx = p2 - p1, dy = q2 - q1, // X and Y differences
  2945. d = HYPOT(dx, dy), // Linear distance between the points
  2946. h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2947. mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
  2948. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2949. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2950. arc_offset[0] = cx - p1;
  2951. arc_offset[1] = cy - q1;
  2952. }
  2953. }
  2954. else {
  2955. if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
  2956. if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
  2957. }
  2958. if (arc_offset[0] || arc_offset[1]) {
  2959. #if ENABLED(ARC_P_CIRCLES)
  2960. // P indicates number of circles to do
  2961. int8_t circles_to_do = parser.byteval('P');
  2962. if (!WITHIN(circles_to_do, 0, 100)) {
  2963. SERIAL_ERROR_START();
  2964. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2965. }
  2966. while (circles_to_do--)
  2967. plan_arc(current_position, arc_offset, clockwise);
  2968. #endif
  2969. // Send the arc to the planner
  2970. plan_arc(destination, arc_offset, clockwise);
  2971. refresh_cmd_timeout();
  2972. }
  2973. else {
  2974. // Bad arguments
  2975. SERIAL_ERROR_START();
  2976. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2977. }
  2978. }
  2979. }
  2980. #endif // ARC_SUPPORT
  2981. void dwell(millis_t time) {
  2982. refresh_cmd_timeout();
  2983. time += previous_cmd_ms;
  2984. while (PENDING(millis(), time)) idle();
  2985. }
  2986. /**
  2987. * G4: Dwell S<seconds> or P<milliseconds>
  2988. */
  2989. inline void gcode_G4() {
  2990. millis_t dwell_ms = 0;
  2991. if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
  2992. if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
  2993. stepper.synchronize();
  2994. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2995. dwell(dwell_ms);
  2996. }
  2997. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2998. /**
  2999. * Parameters interpreted according to:
  3000. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  3001. * However I, J omission is not supported at this point; all
  3002. * parameters can be omitted and default to zero.
  3003. */
  3004. /**
  3005. * G5: Cubic B-spline
  3006. */
  3007. inline void gcode_G5() {
  3008. if (IsRunning()) {
  3009. #if ENABLED(CNC_WORKSPACE_PLANES)
  3010. if (workspace_plane != PLANE_XY) {
  3011. SERIAL_ERROR_START();
  3012. SERIAL_ERRORLNPGM(MSG_ERR_BAD_PLANE_MODE);
  3013. return;
  3014. }
  3015. #endif
  3016. gcode_get_destination();
  3017. const float offset[] = {
  3018. parser.linearval('I'),
  3019. parser.linearval('J'),
  3020. parser.linearval('P'),
  3021. parser.linearval('Q')
  3022. };
  3023. plan_cubic_move(offset);
  3024. }
  3025. }
  3026. #endif // BEZIER_CURVE_SUPPORT
  3027. #if ENABLED(FWRETRACT)
  3028. /**
  3029. * G10 - Retract filament according to settings of M207
  3030. */
  3031. inline void gcode_G10() {
  3032. #if EXTRUDERS > 1
  3033. const bool rs = parser.boolval('S');
  3034. retracted_swap[active_extruder] = rs; // Use 'S' for swap, default to false
  3035. #endif
  3036. retract(true
  3037. #if EXTRUDERS > 1
  3038. , rs
  3039. #endif
  3040. );
  3041. }
  3042. /**
  3043. * G11 - Recover filament according to settings of M208
  3044. */
  3045. inline void gcode_G11() { retract(false); }
  3046. #endif // FWRETRACT
  3047. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  3048. /**
  3049. * G12: Clean the nozzle
  3050. */
  3051. inline void gcode_G12() {
  3052. // Don't allow nozzle cleaning without homing first
  3053. if (axis_unhomed_error()) return;
  3054. const uint8_t pattern = parser.ushortval('P', 0),
  3055. strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
  3056. objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
  3057. const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
  3058. Nozzle::clean(pattern, strokes, radius, objects);
  3059. }
  3060. #endif
  3061. #if ENABLED(CNC_WORKSPACE_PLANES)
  3062. void report_workspace_plane() {
  3063. SERIAL_ECHO_START();
  3064. SERIAL_ECHOPGM("Workspace Plane ");
  3065. serialprintPGM(workspace_plane == PLANE_YZ ? PSTR("YZ\n") : workspace_plane == PLANE_ZX ? PSTR("ZX\n") : PSTR("XY\n"));
  3066. }
  3067. /**
  3068. * G17: Select Plane XY
  3069. * G18: Select Plane ZX
  3070. * G19: Select Plane YZ
  3071. */
  3072. inline void gcode_G17() { workspace_plane = PLANE_XY; }
  3073. inline void gcode_G18() { workspace_plane = PLANE_ZX; }
  3074. inline void gcode_G19() { workspace_plane = PLANE_YZ; }
  3075. #endif // CNC_WORKSPACE_PLANES
  3076. #if ENABLED(INCH_MODE_SUPPORT)
  3077. /**
  3078. * G20: Set input mode to inches
  3079. */
  3080. inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
  3081. /**
  3082. * G21: Set input mode to millimeters
  3083. */
  3084. inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
  3085. #endif
  3086. #if ENABLED(NOZZLE_PARK_FEATURE)
  3087. /**
  3088. * G27: Park the nozzle
  3089. */
  3090. inline void gcode_G27() {
  3091. // Don't allow nozzle parking without homing first
  3092. if (axis_unhomed_error()) return;
  3093. Nozzle::park(parser.ushortval('P'));
  3094. }
  3095. #endif // NOZZLE_PARK_FEATURE
  3096. #if ENABLED(QUICK_HOME)
  3097. static void quick_home_xy() {
  3098. // Pretend the current position is 0,0
  3099. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3100. sync_plan_position();
  3101. const int x_axis_home_dir =
  3102. #if ENABLED(DUAL_X_CARRIAGE)
  3103. x_home_dir(active_extruder)
  3104. #else
  3105. home_dir(X_AXIS)
  3106. #endif
  3107. ;
  3108. const float mlx = max_length(X_AXIS),
  3109. mly = max_length(Y_AXIS),
  3110. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  3111. fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
  3112. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  3113. endstops.hit_on_purpose(); // clear endstop hit flags
  3114. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3115. }
  3116. #endif // QUICK_HOME
  3117. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3118. void log_machine_info() {
  3119. SERIAL_ECHOPGM("Machine Type: ");
  3120. #if ENABLED(DELTA)
  3121. SERIAL_ECHOLNPGM("Delta");
  3122. #elif IS_SCARA
  3123. SERIAL_ECHOLNPGM("SCARA");
  3124. #elif IS_CORE
  3125. SERIAL_ECHOLNPGM("Core");
  3126. #else
  3127. SERIAL_ECHOLNPGM("Cartesian");
  3128. #endif
  3129. SERIAL_ECHOPGM("Probe: ");
  3130. #if ENABLED(PROBE_MANUALLY)
  3131. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  3132. #elif ENABLED(FIX_MOUNTED_PROBE)
  3133. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  3134. #elif ENABLED(BLTOUCH)
  3135. SERIAL_ECHOLNPGM("BLTOUCH");
  3136. #elif HAS_Z_SERVO_ENDSTOP
  3137. SERIAL_ECHOLNPGM("SERVO PROBE");
  3138. #elif ENABLED(Z_PROBE_SLED)
  3139. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3140. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3141. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3142. #else
  3143. SERIAL_ECHOLNPGM("NONE");
  3144. #endif
  3145. #if HAS_BED_PROBE
  3146. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3147. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3148. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3149. #if X_PROBE_OFFSET_FROM_EXTRUDER > 0
  3150. SERIAL_ECHOPGM(" (Right");
  3151. #elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
  3152. SERIAL_ECHOPGM(" (Left");
  3153. #elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
  3154. SERIAL_ECHOPGM(" (Middle");
  3155. #else
  3156. SERIAL_ECHOPGM(" (Aligned With");
  3157. #endif
  3158. #if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
  3159. SERIAL_ECHOPGM("-Back");
  3160. #elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
  3161. SERIAL_ECHOPGM("-Front");
  3162. #elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
  3163. SERIAL_ECHOPGM("-Center");
  3164. #endif
  3165. if (zprobe_zoffset < 0)
  3166. SERIAL_ECHOPGM(" & Below");
  3167. else if (zprobe_zoffset > 0)
  3168. SERIAL_ECHOPGM(" & Above");
  3169. else
  3170. SERIAL_ECHOPGM(" & Same Z as");
  3171. SERIAL_ECHOLNPGM(" Nozzle)");
  3172. #endif
  3173. #if HAS_ABL
  3174. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3175. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3176. SERIAL_ECHOPGM("LINEAR");
  3177. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3178. SERIAL_ECHOPGM("BILINEAR");
  3179. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3180. SERIAL_ECHOPGM("3POINT");
  3181. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3182. SERIAL_ECHOPGM("UBL");
  3183. #endif
  3184. if (leveling_is_active()) {
  3185. SERIAL_ECHOLNPGM(" (enabled)");
  3186. #if ABL_PLANAR
  3187. const float diff[XYZ] = {
  3188. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3189. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3190. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3191. };
  3192. SERIAL_ECHOPGM("ABL Adjustment X");
  3193. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3194. SERIAL_ECHO(diff[X_AXIS]);
  3195. SERIAL_ECHOPGM(" Y");
  3196. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3197. SERIAL_ECHO(diff[Y_AXIS]);
  3198. SERIAL_ECHOPGM(" Z");
  3199. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3200. SERIAL_ECHO(diff[Z_AXIS]);
  3201. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3202. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3203. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3204. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3205. #endif
  3206. }
  3207. else
  3208. SERIAL_ECHOLNPGM(" (disabled)");
  3209. SERIAL_EOL();
  3210. #elif ENABLED(MESH_BED_LEVELING)
  3211. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3212. if (leveling_is_active()) {
  3213. float lz = current_position[Z_AXIS];
  3214. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3215. SERIAL_ECHOLNPGM(" (enabled)");
  3216. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3217. }
  3218. else
  3219. SERIAL_ECHOPGM(" (disabled)");
  3220. SERIAL_EOL();
  3221. #endif // MESH_BED_LEVELING
  3222. }
  3223. #endif // DEBUG_LEVELING_FEATURE
  3224. #if ENABLED(DELTA)
  3225. /**
  3226. * A delta can only safely home all axes at the same time
  3227. * This is like quick_home_xy() but for 3 towers.
  3228. */
  3229. inline bool home_delta() {
  3230. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3231. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3232. #endif
  3233. // Init the current position of all carriages to 0,0,0
  3234. ZERO(current_position);
  3235. sync_plan_position();
  3236. // Move all carriages together linearly until an endstop is hit.
  3237. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (DELTA_HEIGHT + home_offset[Z_AXIS] + 10);
  3238. feedrate_mm_s = homing_feedrate(X_AXIS);
  3239. line_to_current_position();
  3240. stepper.synchronize();
  3241. // If an endstop was not hit, then damage can occur if homing is continued.
  3242. // This can occur if the delta height (DELTA_HEIGHT + home_offset[Z_AXIS]) is
  3243. // not set correctly.
  3244. if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) {
  3245. LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED);
  3246. SERIAL_ERROR_START();
  3247. SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED);
  3248. return false;
  3249. }
  3250. endstops.hit_on_purpose(); // clear endstop hit flags
  3251. // At least one carriage has reached the top.
  3252. // Now re-home each carriage separately.
  3253. HOMEAXIS(A);
  3254. HOMEAXIS(B);
  3255. HOMEAXIS(C);
  3256. // Set all carriages to their home positions
  3257. // Do this here all at once for Delta, because
  3258. // XYZ isn't ABC. Applying this per-tower would
  3259. // give the impression that they are the same.
  3260. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3261. SYNC_PLAN_POSITION_KINEMATIC();
  3262. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3263. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3264. #endif
  3265. return true;
  3266. }
  3267. #endif // DELTA
  3268. #if ENABLED(Z_SAFE_HOMING)
  3269. inline void home_z_safely() {
  3270. // Disallow Z homing if X or Y are unknown
  3271. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3272. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3273. SERIAL_ECHO_START();
  3274. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3275. return;
  3276. }
  3277. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3278. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3279. #endif
  3280. SYNC_PLAN_POSITION_KINEMATIC();
  3281. /**
  3282. * Move the Z probe (or just the nozzle) to the safe homing point
  3283. */
  3284. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3285. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3286. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3287. #if HOMING_Z_WITH_PROBE
  3288. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3289. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3290. #endif
  3291. if (position_is_reachable_xy(destination[X_AXIS], destination[Y_AXIS])) {
  3292. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3293. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3294. #endif
  3295. // This causes the carriage on Dual X to unpark
  3296. #if ENABLED(DUAL_X_CARRIAGE)
  3297. active_extruder_parked = false;
  3298. #endif
  3299. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3300. HOMEAXIS(Z);
  3301. }
  3302. else {
  3303. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3304. SERIAL_ECHO_START();
  3305. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3306. }
  3307. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3308. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3309. #endif
  3310. }
  3311. #endif // Z_SAFE_HOMING
  3312. #if ENABLED(PROBE_MANUALLY)
  3313. bool g29_in_progress = false;
  3314. #else
  3315. constexpr bool g29_in_progress = false;
  3316. #endif
  3317. /**
  3318. * G28: Home all axes according to settings
  3319. *
  3320. * Parameters
  3321. *
  3322. * None Home to all axes with no parameters.
  3323. * With QUICK_HOME enabled XY will home together, then Z.
  3324. *
  3325. * Cartesian parameters
  3326. *
  3327. * X Home to the X endstop
  3328. * Y Home to the Y endstop
  3329. * Z Home to the Z endstop
  3330. *
  3331. */
  3332. inline void gcode_G28(const bool always_home_all) {
  3333. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3334. if (DEBUGGING(LEVELING)) {
  3335. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3336. log_machine_info();
  3337. }
  3338. #endif
  3339. // Wait for planner moves to finish!
  3340. stepper.synchronize();
  3341. // Cancel the active G29 session
  3342. #if ENABLED(PROBE_MANUALLY)
  3343. g29_in_progress = false;
  3344. #endif
  3345. // Disable the leveling matrix before homing
  3346. #if HAS_LEVELING
  3347. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3348. const bool ubl_state_at_entry = leveling_is_active();
  3349. #endif
  3350. set_bed_leveling_enabled(false);
  3351. #endif
  3352. #if ENABLED(CNC_WORKSPACE_PLANES)
  3353. workspace_plane = PLANE_XY;
  3354. #endif
  3355. // Always home with tool 0 active
  3356. #if HOTENDS > 1
  3357. const uint8_t old_tool_index = active_extruder;
  3358. tool_change(0, 0, true);
  3359. #endif
  3360. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3361. extruder_duplication_enabled = false;
  3362. #endif
  3363. setup_for_endstop_or_probe_move();
  3364. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3365. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3366. #endif
  3367. endstops.enable(true); // Enable endstops for next homing move
  3368. #if ENABLED(DELTA)
  3369. home_delta();
  3370. UNUSED(always_home_all);
  3371. #else // NOT DELTA
  3372. const bool homeX = always_home_all || parser.seen('X'),
  3373. homeY = always_home_all || parser.seen('Y'),
  3374. homeZ = always_home_all || parser.seen('Z'),
  3375. home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3376. set_destination_to_current();
  3377. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3378. if (home_all || homeZ) {
  3379. HOMEAXIS(Z);
  3380. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3381. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3382. #endif
  3383. }
  3384. #else
  3385. if (home_all || homeX || homeY) {
  3386. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3387. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3388. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3389. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3390. if (DEBUGGING(LEVELING))
  3391. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3392. #endif
  3393. do_blocking_move_to_z(destination[Z_AXIS]);
  3394. }
  3395. }
  3396. #endif
  3397. #if ENABLED(QUICK_HOME)
  3398. if (home_all || (homeX && homeY)) quick_home_xy();
  3399. #endif
  3400. #if ENABLED(HOME_Y_BEFORE_X)
  3401. // Home Y
  3402. if (home_all || homeY) {
  3403. HOMEAXIS(Y);
  3404. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3405. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3406. #endif
  3407. }
  3408. #endif
  3409. // Home X
  3410. if (home_all || homeX) {
  3411. #if ENABLED(DUAL_X_CARRIAGE)
  3412. // Always home the 2nd (right) extruder first
  3413. active_extruder = 1;
  3414. HOMEAXIS(X);
  3415. // Remember this extruder's position for later tool change
  3416. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3417. // Home the 1st (left) extruder
  3418. active_extruder = 0;
  3419. HOMEAXIS(X);
  3420. // Consider the active extruder to be parked
  3421. COPY(raised_parked_position, current_position);
  3422. delayed_move_time = 0;
  3423. active_extruder_parked = true;
  3424. #else
  3425. HOMEAXIS(X);
  3426. #endif
  3427. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3428. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3429. #endif
  3430. }
  3431. #if DISABLED(HOME_Y_BEFORE_X)
  3432. // Home Y
  3433. if (home_all || homeY) {
  3434. HOMEAXIS(Y);
  3435. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3436. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3437. #endif
  3438. }
  3439. #endif
  3440. // Home Z last if homing towards the bed
  3441. #if Z_HOME_DIR < 0
  3442. if (home_all || homeZ) {
  3443. #if ENABLED(Z_SAFE_HOMING)
  3444. home_z_safely();
  3445. #else
  3446. HOMEAXIS(Z);
  3447. #endif
  3448. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3449. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
  3450. #endif
  3451. } // home_all || homeZ
  3452. #endif // Z_HOME_DIR < 0
  3453. SYNC_PLAN_POSITION_KINEMATIC();
  3454. #endif // !DELTA (gcode_G28)
  3455. endstops.not_homing();
  3456. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3457. // move to a height where we can use the full xy-area
  3458. do_blocking_move_to_z(delta_clip_start_height);
  3459. #endif
  3460. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3461. set_bed_leveling_enabled(ubl_state_at_entry);
  3462. #endif
  3463. clean_up_after_endstop_or_probe_move();
  3464. // Restore the active tool after homing
  3465. #if HOTENDS > 1
  3466. tool_change(old_tool_index, 0,
  3467. #if ENABLED(PARKING_EXTRUDER)
  3468. false // fetch the previous toolhead
  3469. #else
  3470. true
  3471. #endif
  3472. );
  3473. #endif
  3474. lcd_refresh();
  3475. report_current_position();
  3476. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3477. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3478. #endif
  3479. } // G28
  3480. void home_all_axes() { gcode_G28(true); }
  3481. #if HAS_PROBING_PROCEDURE
  3482. void out_of_range_error(const char* p_edge) {
  3483. SERIAL_PROTOCOLPGM("?Probe ");
  3484. serialprintPGM(p_edge);
  3485. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3486. }
  3487. #endif
  3488. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3489. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3490. extern bool lcd_wait_for_move;
  3491. #endif
  3492. inline void _manual_goto_xy(const float &x, const float &y) {
  3493. const float old_feedrate_mm_s = feedrate_mm_s;
  3494. #if MANUAL_PROBE_HEIGHT > 0
  3495. const float prev_z = current_position[Z_AXIS];
  3496. feedrate_mm_s = homing_feedrate(Z_AXIS);
  3497. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MANUAL_PROBE_HEIGHT);
  3498. line_to_current_position();
  3499. #endif
  3500. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3501. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3502. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3503. line_to_current_position();
  3504. #if MANUAL_PROBE_HEIGHT > 0
  3505. feedrate_mm_s = homing_feedrate(Z_AXIS);
  3506. current_position[Z_AXIS] = prev_z; // move back to the previous Z.
  3507. line_to_current_position();
  3508. #endif
  3509. feedrate_mm_s = old_feedrate_mm_s;
  3510. stepper.synchronize();
  3511. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3512. lcd_wait_for_move = false;
  3513. #endif
  3514. }
  3515. #endif
  3516. #if ENABLED(MESH_BED_LEVELING)
  3517. // Save 130 bytes with non-duplication of PSTR
  3518. void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3519. void mbl_mesh_report() {
  3520. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3521. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3522. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3523. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3524. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3525. );
  3526. }
  3527. void mesh_probing_done() {
  3528. mbl.set_has_mesh(true);
  3529. home_all_axes();
  3530. set_bed_leveling_enabled(true);
  3531. #if ENABLED(MESH_G28_REST_ORIGIN)
  3532. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3533. set_destination_to_current();
  3534. line_to_destination(homing_feedrate(Z_AXIS));
  3535. stepper.synchronize();
  3536. #endif
  3537. }
  3538. /**
  3539. * G29: Mesh-based Z probe, probes a grid and produces a
  3540. * mesh to compensate for variable bed height
  3541. *
  3542. * Parameters With MESH_BED_LEVELING:
  3543. *
  3544. * S0 Produce a mesh report
  3545. * S1 Start probing mesh points
  3546. * S2 Probe the next mesh point
  3547. * S3 Xn Yn Zn.nn Manually modify a single point
  3548. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3549. * S5 Reset and disable mesh
  3550. *
  3551. * The S0 report the points as below
  3552. *
  3553. * +----> X-axis 1-n
  3554. * |
  3555. * |
  3556. * v Y-axis 1-n
  3557. *
  3558. */
  3559. inline void gcode_G29() {
  3560. static int mbl_probe_index = -1;
  3561. #if HAS_SOFTWARE_ENDSTOPS
  3562. static bool enable_soft_endstops;
  3563. #endif
  3564. const MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
  3565. if (!WITHIN(state, 0, 5)) {
  3566. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3567. return;
  3568. }
  3569. int8_t px, py;
  3570. switch (state) {
  3571. case MeshReport:
  3572. if (leveling_is_valid()) {
  3573. SERIAL_PROTOCOLLNPAIR("State: ", leveling_is_active() ? MSG_ON : MSG_OFF);
  3574. mbl_mesh_report();
  3575. }
  3576. else
  3577. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3578. break;
  3579. case MeshStart:
  3580. mbl.reset();
  3581. mbl_probe_index = 0;
  3582. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3583. break;
  3584. case MeshNext:
  3585. if (mbl_probe_index < 0) {
  3586. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3587. return;
  3588. }
  3589. // For each G29 S2...
  3590. if (mbl_probe_index == 0) {
  3591. #if HAS_SOFTWARE_ENDSTOPS
  3592. // For the initial G29 S2 save software endstop state
  3593. enable_soft_endstops = soft_endstops_enabled;
  3594. #endif
  3595. }
  3596. else {
  3597. // For G29 S2 after adjusting Z.
  3598. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3599. #if HAS_SOFTWARE_ENDSTOPS
  3600. soft_endstops_enabled = enable_soft_endstops;
  3601. #endif
  3602. }
  3603. // If there's another point to sample, move there with optional lift.
  3604. if (mbl_probe_index < GRID_MAX_POINTS) {
  3605. mbl.zigzag(mbl_probe_index, px, py);
  3606. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3607. #if HAS_SOFTWARE_ENDSTOPS
  3608. // Disable software endstops to allow manual adjustment
  3609. // If G29 is not completed, they will not be re-enabled
  3610. soft_endstops_enabled = false;
  3611. #endif
  3612. mbl_probe_index++;
  3613. }
  3614. else {
  3615. // One last "return to the bed" (as originally coded) at completion
  3616. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3617. line_to_current_position();
  3618. stepper.synchronize();
  3619. // After recording the last point, activate home and activate
  3620. mbl_probe_index = -1;
  3621. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3622. BUZZ(100, 659);
  3623. BUZZ(100, 698);
  3624. mesh_probing_done();
  3625. }
  3626. break;
  3627. case MeshSet:
  3628. if (parser.seenval('X')) {
  3629. px = parser.value_int() - 1;
  3630. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3631. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3632. return;
  3633. }
  3634. }
  3635. else {
  3636. SERIAL_CHAR('X'); echo_not_entered();
  3637. return;
  3638. }
  3639. if (parser.seenval('Y')) {
  3640. py = parser.value_int() - 1;
  3641. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3642. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3643. return;
  3644. }
  3645. }
  3646. else {
  3647. SERIAL_CHAR('Y'); echo_not_entered();
  3648. return;
  3649. }
  3650. if (parser.seenval('Z')) {
  3651. mbl.z_values[px][py] = parser.value_linear_units();
  3652. }
  3653. else {
  3654. SERIAL_CHAR('Z'); echo_not_entered();
  3655. return;
  3656. }
  3657. break;
  3658. case MeshSetZOffset:
  3659. if (parser.seenval('Z')) {
  3660. mbl.z_offset = parser.value_linear_units();
  3661. }
  3662. else {
  3663. SERIAL_CHAR('Z'); echo_not_entered();
  3664. return;
  3665. }
  3666. break;
  3667. case MeshReset:
  3668. reset_bed_level();
  3669. break;
  3670. } // switch(state)
  3671. report_current_position();
  3672. }
  3673. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3674. #if ABL_GRID
  3675. #if ENABLED(PROBE_Y_FIRST)
  3676. #define PR_OUTER_VAR xCount
  3677. #define PR_OUTER_END abl_grid_points_x
  3678. #define PR_INNER_VAR yCount
  3679. #define PR_INNER_END abl_grid_points_y
  3680. #else
  3681. #define PR_OUTER_VAR yCount
  3682. #define PR_OUTER_END abl_grid_points_y
  3683. #define PR_INNER_VAR xCount
  3684. #define PR_INNER_END abl_grid_points_x
  3685. #endif
  3686. #endif
  3687. /**
  3688. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3689. * Will fail if the printer has not been homed with G28.
  3690. *
  3691. * Enhanced G29 Auto Bed Leveling Probe Routine
  3692. *
  3693. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3694. * or alter the bed level data. Useful to check the topology
  3695. * after a first run of G29.
  3696. *
  3697. * J Jettison current bed leveling data
  3698. *
  3699. * V Set the verbose level (0-4). Example: "G29 V3"
  3700. *
  3701. * Parameters With LINEAR leveling only:
  3702. *
  3703. * P Set the size of the grid that will be probed (P x P points).
  3704. * Example: "G29 P4"
  3705. *
  3706. * X Set the X size of the grid that will be probed (X x Y points).
  3707. * Example: "G29 X7 Y5"
  3708. *
  3709. * Y Set the Y size of the grid that will be probed (X x Y points).
  3710. *
  3711. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3712. * This is useful for manual bed leveling and finding flaws in the bed (to
  3713. * assist with part placement).
  3714. * Not supported by non-linear delta printer bed leveling.
  3715. *
  3716. * Parameters With LINEAR and BILINEAR leveling only:
  3717. *
  3718. * S Set the XY travel speed between probe points (in units/min)
  3719. *
  3720. * F Set the Front limit of the probing grid
  3721. * B Set the Back limit of the probing grid
  3722. * L Set the Left limit of the probing grid
  3723. * R Set the Right limit of the probing grid
  3724. *
  3725. * Parameters with DEBUG_LEVELING_FEATURE only:
  3726. *
  3727. * C Make a totally fake grid with no actual probing.
  3728. * For use in testing when no probing is possible.
  3729. *
  3730. * Parameters with BILINEAR leveling only:
  3731. *
  3732. * Z Supply an additional Z probe offset
  3733. *
  3734. * Extra parameters with PROBE_MANUALLY:
  3735. *
  3736. * To do manual probing simply repeat G29 until the procedure is complete.
  3737. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3738. *
  3739. * Q Query leveling and G29 state
  3740. *
  3741. * A Abort current leveling procedure
  3742. *
  3743. * Extra parameters with BILINEAR only:
  3744. *
  3745. * W Write a mesh point. (If G29 is idle.)
  3746. * I X index for mesh point
  3747. * J Y index for mesh point
  3748. * X X for mesh point, overrides I
  3749. * Y Y for mesh point, overrides J
  3750. * Z Z for mesh point. Otherwise, raw current Z.
  3751. *
  3752. * Without PROBE_MANUALLY:
  3753. *
  3754. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3755. * Include "E" to engage/disengage the Z probe for each sample.
  3756. * There's no extra effect if you have a fixed Z probe.
  3757. *
  3758. */
  3759. inline void gcode_G29() {
  3760. // G29 Q is also available if debugging
  3761. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3762. const bool query = parser.seen('Q');
  3763. const uint8_t old_debug_flags = marlin_debug_flags;
  3764. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3765. if (DEBUGGING(LEVELING)) {
  3766. DEBUG_POS(">>> gcode_G29", current_position);
  3767. log_machine_info();
  3768. }
  3769. marlin_debug_flags = old_debug_flags;
  3770. #if DISABLED(PROBE_MANUALLY)
  3771. if (query) return;
  3772. #endif
  3773. #endif
  3774. #if ENABLED(PROBE_MANUALLY)
  3775. const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ;
  3776. #endif
  3777. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3778. const bool faux = parser.boolval('C');
  3779. #elif ENABLED(PROBE_MANUALLY)
  3780. const bool faux = no_action;
  3781. #else
  3782. bool constexpr faux = false;
  3783. #endif
  3784. // Don't allow auto-leveling without homing first
  3785. if (axis_unhomed_error()) return;
  3786. // Define local vars 'static' for manual probing, 'auto' otherwise
  3787. #if ENABLED(PROBE_MANUALLY)
  3788. #define ABL_VAR static
  3789. #else
  3790. #define ABL_VAR
  3791. #endif
  3792. ABL_VAR int verbose_level;
  3793. ABL_VAR float xProbe, yProbe, measured_z;
  3794. ABL_VAR bool dryrun, abl_should_enable;
  3795. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3796. ABL_VAR int abl_probe_index;
  3797. #endif
  3798. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3799. ABL_VAR bool enable_soft_endstops = true;
  3800. #endif
  3801. #if ABL_GRID
  3802. #if ENABLED(PROBE_MANUALLY)
  3803. ABL_VAR uint8_t PR_OUTER_VAR;
  3804. ABL_VAR int8_t PR_INNER_VAR;
  3805. #endif
  3806. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3807. ABL_VAR float xGridSpacing = 0, yGridSpacing = 0;
  3808. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3809. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3810. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3811. ABL_VAR bool do_topography_map;
  3812. #else // Bilinear
  3813. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3814. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3815. #endif
  3816. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3817. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3818. ABL_VAR int abl2;
  3819. #else // Bilinear
  3820. int constexpr abl2 = GRID_MAX_POINTS;
  3821. #endif
  3822. #endif
  3823. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3824. ABL_VAR float zoffset;
  3825. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3826. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3827. ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
  3828. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  3829. mean;
  3830. #endif
  3831. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3832. int constexpr abl2 = 3;
  3833. // Probe at 3 arbitrary points
  3834. ABL_VAR vector_3 points[3] = {
  3835. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3836. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3837. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3838. };
  3839. #endif // AUTO_BED_LEVELING_3POINT
  3840. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3841. struct linear_fit_data lsf_results;
  3842. incremental_LSF_reset(&lsf_results);
  3843. #endif
  3844. /**
  3845. * On the initial G29 fetch command parameters.
  3846. */
  3847. if (!g29_in_progress) {
  3848. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3849. abl_probe_index = -1;
  3850. #endif
  3851. abl_should_enable = leveling_is_active();
  3852. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3853. if (parser.seen('W')) {
  3854. if (!leveling_is_valid()) {
  3855. SERIAL_ERROR_START();
  3856. SERIAL_ERRORLNPGM("No bilinear grid");
  3857. return;
  3858. }
  3859. const float z = parser.floatval('Z', RAW_CURRENT_POSITION(Z));
  3860. if (!WITHIN(z, -10, 10)) {
  3861. SERIAL_ERROR_START();
  3862. SERIAL_ERRORLNPGM("Bad Z value");
  3863. return;
  3864. }
  3865. const float x = parser.floatval('X', NAN),
  3866. y = parser.floatval('Y', NAN);
  3867. int8_t i = parser.byteval('I', -1),
  3868. j = parser.byteval('J', -1);
  3869. if (!isnan(x) && !isnan(y)) {
  3870. // Get nearest i / j from x / y
  3871. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3872. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3873. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3874. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3875. }
  3876. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3877. set_bed_leveling_enabled(false);
  3878. z_values[i][j] = z;
  3879. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3880. bed_level_virt_interpolate();
  3881. #endif
  3882. set_bed_leveling_enabled(abl_should_enable);
  3883. }
  3884. return;
  3885. } // parser.seen('W')
  3886. #endif
  3887. #if HAS_LEVELING
  3888. // Jettison bed leveling data
  3889. if (parser.seen('J')) {
  3890. reset_bed_level();
  3891. return;
  3892. }
  3893. #endif
  3894. verbose_level = parser.intval('V');
  3895. if (!WITHIN(verbose_level, 0, 4)) {
  3896. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  3897. return;
  3898. }
  3899. dryrun = parser.boolval('D')
  3900. #if ENABLED(PROBE_MANUALLY)
  3901. || no_action
  3902. #endif
  3903. ;
  3904. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3905. do_topography_map = verbose_level > 2 || parser.boolval('T');
  3906. // X and Y specify points in each direction, overriding the default
  3907. // These values may be saved with the completed mesh
  3908. abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
  3909. abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
  3910. if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
  3911. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3912. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3913. return;
  3914. }
  3915. abl2 = abl_grid_points_x * abl_grid_points_y;
  3916. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3917. zoffset = parser.linearval('Z');
  3918. #endif
  3919. #if ABL_GRID
  3920. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  3921. left_probe_bed_position = (int)parser.linearval('L', LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION));
  3922. right_probe_bed_position = (int)parser.linearval('R', LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION));
  3923. front_probe_bed_position = (int)parser.linearval('F', LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION));
  3924. back_probe_bed_position = (int)parser.linearval('B', LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION));
  3925. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3926. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3927. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3928. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3929. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3930. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3931. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3932. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3933. if (left_out || right_out || front_out || back_out) {
  3934. if (left_out) {
  3935. out_of_range_error(PSTR("(L)eft"));
  3936. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3937. }
  3938. if (right_out) {
  3939. out_of_range_error(PSTR("(R)ight"));
  3940. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3941. }
  3942. if (front_out) {
  3943. out_of_range_error(PSTR("(F)ront"));
  3944. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3945. }
  3946. if (back_out) {
  3947. out_of_range_error(PSTR("(B)ack"));
  3948. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3949. }
  3950. return;
  3951. }
  3952. // probe at the points of a lattice grid
  3953. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3954. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3955. #endif // ABL_GRID
  3956. if (verbose_level > 0) {
  3957. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3958. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3959. }
  3960. stepper.synchronize();
  3961. // Disable auto bed leveling during G29
  3962. planner.abl_enabled = false;
  3963. if (!dryrun) {
  3964. // Re-orient the current position without leveling
  3965. // based on where the steppers are positioned.
  3966. set_current_from_steppers_for_axis(ALL_AXES);
  3967. // Sync the planner to where the steppers stopped
  3968. SYNC_PLAN_POSITION_KINEMATIC();
  3969. }
  3970. #if HAS_BED_PROBE
  3971. // Deploy the probe. Probe will raise if needed.
  3972. if (DEPLOY_PROBE()) {
  3973. planner.abl_enabled = abl_should_enable;
  3974. return;
  3975. }
  3976. #endif
  3977. if (!faux) setup_for_endstop_or_probe_move();
  3978. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3979. #if ENABLED(PROBE_MANUALLY)
  3980. if (!no_action)
  3981. #endif
  3982. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3983. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3984. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3985. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3986. ) {
  3987. if (dryrun) {
  3988. // Before reset bed level, re-enable to correct the position
  3989. planner.abl_enabled = abl_should_enable;
  3990. }
  3991. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3992. reset_bed_level();
  3993. // Initialize a grid with the given dimensions
  3994. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3995. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3996. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3997. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3998. // Can't re-enable (on error) until the new grid is written
  3999. abl_should_enable = false;
  4000. }
  4001. #endif // AUTO_BED_LEVELING_BILINEAR
  4002. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  4003. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4004. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  4005. #endif
  4006. // Probe at 3 arbitrary points
  4007. points[0].z = points[1].z = points[2].z = 0;
  4008. #endif // AUTO_BED_LEVELING_3POINT
  4009. } // !g29_in_progress
  4010. #if ENABLED(PROBE_MANUALLY)
  4011. // For manual probing, get the next index to probe now.
  4012. // On the first probe this will be incremented to 0.
  4013. if (!no_action) {
  4014. ++abl_probe_index;
  4015. g29_in_progress = true;
  4016. }
  4017. // Abort current G29 procedure, go back to idle state
  4018. if (seenA && g29_in_progress) {
  4019. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  4020. #if HAS_SOFTWARE_ENDSTOPS
  4021. soft_endstops_enabled = enable_soft_endstops;
  4022. #endif
  4023. planner.abl_enabled = abl_should_enable;
  4024. g29_in_progress = false;
  4025. #if ENABLED(LCD_BED_LEVELING)
  4026. lcd_wait_for_move = false;
  4027. #endif
  4028. }
  4029. // Query G29 status
  4030. if (verbose_level || seenQ) {
  4031. SERIAL_PROTOCOLPGM("Manual G29 ");
  4032. if (g29_in_progress) {
  4033. SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2));
  4034. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  4035. }
  4036. else
  4037. SERIAL_PROTOCOLLNPGM("idle");
  4038. }
  4039. if (no_action) return;
  4040. if (abl_probe_index == 0) {
  4041. // For the initial G29 save software endstop state
  4042. #if HAS_SOFTWARE_ENDSTOPS
  4043. enable_soft_endstops = soft_endstops_enabled;
  4044. #endif
  4045. }
  4046. else {
  4047. // For G29 after adjusting Z.
  4048. // Save the previous Z before going to the next point
  4049. measured_z = current_position[Z_AXIS];
  4050. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4051. mean += measured_z;
  4052. eqnBVector[abl_probe_index] = measured_z;
  4053. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4054. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4055. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4056. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4057. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4058. z_values[xCount][yCount] = measured_z + zoffset;
  4059. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4060. if (DEBUGGING(LEVELING)) {
  4061. SERIAL_PROTOCOLPAIR("Save X", xCount);
  4062. SERIAL_PROTOCOLPAIR(" Y", yCount);
  4063. SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
  4064. }
  4065. #endif
  4066. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4067. points[abl_probe_index].z = measured_z;
  4068. #endif
  4069. }
  4070. //
  4071. // If there's another point to sample, move there with optional lift.
  4072. //
  4073. #if ABL_GRID
  4074. // Skip any unreachable points
  4075. while (abl_probe_index < abl2) {
  4076. // Set xCount, yCount based on abl_probe_index, with zig-zag
  4077. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  4078. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  4079. // Probe in reverse order for every other row/column
  4080. bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  4081. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  4082. const float xBase = xCount * xGridSpacing + left_probe_bed_position,
  4083. yBase = yCount * yGridSpacing + front_probe_bed_position;
  4084. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4085. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4086. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4087. indexIntoAB[xCount][yCount] = abl_probe_index;
  4088. #endif
  4089. // Keep looping till a reachable point is found
  4090. if (position_is_reachable_xy(xProbe, yProbe)) break;
  4091. ++abl_probe_index;
  4092. }
  4093. // Is there a next point to move to?
  4094. if (abl_probe_index < abl2) {
  4095. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  4096. #if HAS_SOFTWARE_ENDSTOPS
  4097. // Disable software endstops to allow manual adjustment
  4098. // If G29 is not completed, they will not be re-enabled
  4099. soft_endstops_enabled = false;
  4100. #endif
  4101. return;
  4102. }
  4103. else {
  4104. // Leveling done! Fall through to G29 finishing code below
  4105. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  4106. // Re-enable software endstops, if needed
  4107. #if HAS_SOFTWARE_ENDSTOPS
  4108. soft_endstops_enabled = enable_soft_endstops;
  4109. #endif
  4110. }
  4111. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4112. // Probe at 3 arbitrary points
  4113. if (abl_probe_index < 3) {
  4114. xProbe = LOGICAL_X_POSITION(points[abl_probe_index].x);
  4115. yProbe = LOGICAL_Y_POSITION(points[abl_probe_index].y);
  4116. #if HAS_SOFTWARE_ENDSTOPS
  4117. // Disable software endstops to allow manual adjustment
  4118. // If G29 is not completed, they will not be re-enabled
  4119. soft_endstops_enabled = false;
  4120. #endif
  4121. return;
  4122. }
  4123. else {
  4124. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  4125. // Re-enable software endstops, if needed
  4126. #if HAS_SOFTWARE_ENDSTOPS
  4127. soft_endstops_enabled = enable_soft_endstops;
  4128. #endif
  4129. if (!dryrun) {
  4130. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4131. if (planeNormal.z < 0) {
  4132. planeNormal.x *= -1;
  4133. planeNormal.y *= -1;
  4134. planeNormal.z *= -1;
  4135. }
  4136. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4137. // Can't re-enable (on error) until the new grid is written
  4138. abl_should_enable = false;
  4139. }
  4140. }
  4141. #endif // AUTO_BED_LEVELING_3POINT
  4142. #else // !PROBE_MANUALLY
  4143. {
  4144. const bool stow_probe_after_each = parser.boolval('E');
  4145. #if ABL_GRID
  4146. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  4147. // Outer loop is Y with PROBE_Y_FIRST disabled
  4148. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
  4149. int8_t inStart, inStop, inInc;
  4150. if (zig) { // away from origin
  4151. inStart = 0;
  4152. inStop = PR_INNER_END;
  4153. inInc = 1;
  4154. }
  4155. else { // towards origin
  4156. inStart = PR_INNER_END - 1;
  4157. inStop = -1;
  4158. inInc = -1;
  4159. }
  4160. zig ^= true; // zag
  4161. // Inner loop is Y with PROBE_Y_FIRST enabled
  4162. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  4163. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  4164. yBase = front_probe_bed_position + yGridSpacing * yCount;
  4165. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4166. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4167. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4168. indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
  4169. #endif
  4170. #if IS_KINEMATIC
  4171. // Avoid probing outside the round or hexagonal area
  4172. if (!position_is_reachable_by_probe_xy(xProbe, yProbe)) continue;
  4173. #endif
  4174. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4175. if (isnan(measured_z)) {
  4176. planner.abl_enabled = abl_should_enable;
  4177. break;
  4178. }
  4179. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4180. mean += measured_z;
  4181. eqnBVector[abl_probe_index] = measured_z;
  4182. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4183. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4184. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4185. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4186. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4187. z_values[xCount][yCount] = measured_z + zoffset;
  4188. #endif
  4189. abl_should_enable = false;
  4190. idle();
  4191. } // inner
  4192. } // outer
  4193. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4194. // Probe at 3 arbitrary points
  4195. for (uint8_t i = 0; i < 3; ++i) {
  4196. // Retain the last probe position
  4197. xProbe = LOGICAL_X_POSITION(points[i].x);
  4198. yProbe = LOGICAL_Y_POSITION(points[i].y);
  4199. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4200. if (isnan(measured_z)) {
  4201. planner.abl_enabled = abl_should_enable;
  4202. break;
  4203. }
  4204. points[i].z = measured_z;
  4205. }
  4206. if (!dryrun && !isnan(measured_z)) {
  4207. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4208. if (planeNormal.z < 0) {
  4209. planeNormal.x *= -1;
  4210. planeNormal.y *= -1;
  4211. planeNormal.z *= -1;
  4212. }
  4213. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4214. // Can't re-enable (on error) until the new grid is written
  4215. abl_should_enable = false;
  4216. }
  4217. #endif // AUTO_BED_LEVELING_3POINT
  4218. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4219. if (STOW_PROBE()) {
  4220. planner.abl_enabled = abl_should_enable;
  4221. measured_z = NAN;
  4222. }
  4223. }
  4224. #endif // !PROBE_MANUALLY
  4225. //
  4226. // G29 Finishing Code
  4227. //
  4228. // Unless this is a dry run, auto bed leveling will
  4229. // definitely be enabled after this point.
  4230. //
  4231. // If code above wants to continue leveling, it should
  4232. // return or loop before this point.
  4233. //
  4234. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4235. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4236. #endif
  4237. #if ENABLED(PROBE_MANUALLY)
  4238. g29_in_progress = false;
  4239. #if ENABLED(LCD_BED_LEVELING)
  4240. lcd_wait_for_move = false;
  4241. #endif
  4242. #endif
  4243. // Calculate leveling, print reports, correct the position
  4244. if (!isnan(measured_z)) {
  4245. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4246. if (!dryrun) extrapolate_unprobed_bed_level();
  4247. print_bilinear_leveling_grid();
  4248. refresh_bed_level();
  4249. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4250. print_bilinear_leveling_grid_virt();
  4251. #endif
  4252. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4253. // For LINEAR leveling calculate matrix, print reports, correct the position
  4254. /**
  4255. * solve the plane equation ax + by + d = z
  4256. * A is the matrix with rows [x y 1] for all the probed points
  4257. * B is the vector of the Z positions
  4258. * the normal vector to the plane is formed by the coefficients of the
  4259. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4260. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4261. */
  4262. float plane_equation_coefficients[3];
  4263. finish_incremental_LSF(&lsf_results);
  4264. plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
  4265. plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
  4266. plane_equation_coefficients[2] = -lsf_results.D;
  4267. mean /= abl2;
  4268. if (verbose_level) {
  4269. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4270. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4271. SERIAL_PROTOCOLPGM(" b: ");
  4272. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4273. SERIAL_PROTOCOLPGM(" d: ");
  4274. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4275. SERIAL_EOL();
  4276. if (verbose_level > 2) {
  4277. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4278. SERIAL_PROTOCOL_F(mean, 8);
  4279. SERIAL_EOL();
  4280. }
  4281. }
  4282. // Create the matrix but don't correct the position yet
  4283. if (!dryrun)
  4284. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4285. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
  4286. );
  4287. // Show the Topography map if enabled
  4288. if (do_topography_map) {
  4289. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4290. " +--- BACK --+\n"
  4291. " | |\n"
  4292. " L | (+) | R\n"
  4293. " E | | I\n"
  4294. " F | (-) N (+) | G\n"
  4295. " T | | H\n"
  4296. " | (-) | T\n"
  4297. " | |\n"
  4298. " O-- FRONT --+\n"
  4299. " (0,0)");
  4300. float min_diff = 999;
  4301. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4302. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4303. int ind = indexIntoAB[xx][yy];
  4304. float diff = eqnBVector[ind] - mean,
  4305. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4306. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4307. z_tmp = 0;
  4308. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4309. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4310. if (diff >= 0.0)
  4311. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4312. else
  4313. SERIAL_PROTOCOLCHAR(' ');
  4314. SERIAL_PROTOCOL_F(diff, 5);
  4315. } // xx
  4316. SERIAL_EOL();
  4317. } // yy
  4318. SERIAL_EOL();
  4319. if (verbose_level > 3) {
  4320. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4321. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4322. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4323. int ind = indexIntoAB[xx][yy];
  4324. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4325. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4326. z_tmp = 0;
  4327. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4328. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4329. if (diff >= 0.0)
  4330. SERIAL_PROTOCOLPGM(" +");
  4331. // Include + for column alignment
  4332. else
  4333. SERIAL_PROTOCOLCHAR(' ');
  4334. SERIAL_PROTOCOL_F(diff, 5);
  4335. } // xx
  4336. SERIAL_EOL();
  4337. } // yy
  4338. SERIAL_EOL();
  4339. }
  4340. } //do_topography_map
  4341. #endif // AUTO_BED_LEVELING_LINEAR
  4342. #if ABL_PLANAR
  4343. // For LINEAR and 3POINT leveling correct the current position
  4344. if (verbose_level > 0)
  4345. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  4346. if (!dryrun) {
  4347. //
  4348. // Correct the current XYZ position based on the tilted plane.
  4349. //
  4350. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4351. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4352. #endif
  4353. float converted[XYZ];
  4354. COPY(converted, current_position);
  4355. planner.abl_enabled = true;
  4356. planner.unapply_leveling(converted); // use conversion machinery
  4357. planner.abl_enabled = false;
  4358. // Use the last measured distance to the bed, if possible
  4359. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4360. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4361. ) {
  4362. const float simple_z = current_position[Z_AXIS] - measured_z;
  4363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4364. if (DEBUGGING(LEVELING)) {
  4365. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4366. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4367. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4368. }
  4369. #endif
  4370. converted[Z_AXIS] = simple_z;
  4371. }
  4372. // The rotated XY and corrected Z are now current_position
  4373. COPY(current_position, converted);
  4374. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4375. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4376. #endif
  4377. }
  4378. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4379. if (!dryrun) {
  4380. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4381. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4382. #endif
  4383. // Unapply the offset because it is going to be immediately applied
  4384. // and cause compensation movement in Z
  4385. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4386. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4387. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4388. #endif
  4389. }
  4390. #endif // ABL_PLANAR
  4391. #ifdef Z_PROBE_END_SCRIPT
  4392. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4393. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4394. #endif
  4395. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4396. stepper.synchronize();
  4397. #endif
  4398. // Auto Bed Leveling is complete! Enable if possible.
  4399. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4400. } // !isnan(measured_z)
  4401. // Restore state after probing
  4402. if (!faux) clean_up_after_endstop_or_probe_move();
  4403. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4404. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4405. #endif
  4406. report_current_position();
  4407. KEEPALIVE_STATE(IN_HANDLER);
  4408. if (planner.abl_enabled)
  4409. SYNC_PLAN_POSITION_KINEMATIC();
  4410. }
  4411. #endif // HAS_ABL && !AUTO_BED_LEVELING_UBL
  4412. #if HAS_BED_PROBE
  4413. /**
  4414. * G30: Do a single Z probe at the current XY
  4415. *
  4416. * Parameters:
  4417. *
  4418. * X Probe X position (default current X)
  4419. * Y Probe Y position (default current Y)
  4420. * S0 Leave the probe deployed
  4421. */
  4422. inline void gcode_G30() {
  4423. const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
  4424. ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
  4425. if (!position_is_reachable_by_probe_xy(xpos, ypos)) return;
  4426. // Disable leveling so the planner won't mess with us
  4427. #if HAS_LEVELING
  4428. set_bed_leveling_enabled(false);
  4429. #endif
  4430. setup_for_endstop_or_probe_move();
  4431. const float measured_z = probe_pt(xpos, ypos, parser.boolval('S', true), 1);
  4432. if (!isnan(measured_z)) {
  4433. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4434. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4435. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4436. }
  4437. clean_up_after_endstop_or_probe_move();
  4438. report_current_position();
  4439. }
  4440. #if ENABLED(Z_PROBE_SLED)
  4441. /**
  4442. * G31: Deploy the Z probe
  4443. */
  4444. inline void gcode_G31() { DEPLOY_PROBE(); }
  4445. /**
  4446. * G32: Stow the Z probe
  4447. */
  4448. inline void gcode_G32() { STOW_PROBE(); }
  4449. #endif // Z_PROBE_SLED
  4450. #endif // HAS_BED_PROBE
  4451. #if PROBE_SELECTED
  4452. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4453. /**
  4454. * G33 - Delta '1-4-7-point' Auto-Calibration
  4455. * Calibrate height, endstops, delta radius, and tower angles.
  4456. *
  4457. * Parameters:
  4458. *
  4459. * Pn Number of probe points:
  4460. *
  4461. * P1 Probe center and set height only.
  4462. * P2 Probe center and towers. Set height, endstops, and delta radius.
  4463. * P3 Probe all positions: center, towers and opposite towers. Set all.
  4464. * P4-P7 Probe all positions at different locations and average them.
  4465. *
  4466. * T0 Don't calibrate tower angle corrections
  4467. *
  4468. * Cn.nn Calibration precision; when omitted calibrates to maximum precision
  4469. *
  4470. * Fn Force to run at least n iterations and takes the best result
  4471. *
  4472. * Vn Verbose level:
  4473. *
  4474. * V0 Dry-run mode. Report settings and probe results. No calibration.
  4475. * V1 Report settings
  4476. * V2 Report settings and probe results
  4477. *
  4478. * E Engage the probe for each point
  4479. */
  4480. void print_signed_float(const char * const prefix, const float &f) {
  4481. SERIAL_PROTOCOLPGM(" ");
  4482. serialprintPGM(prefix);
  4483. SERIAL_PROTOCOLCHAR(':');
  4484. if (f >= 0) SERIAL_CHAR('+');
  4485. SERIAL_PROTOCOL_F(f, 2);
  4486. }
  4487. inline void print_G33_settings(const bool end_stops, const bool tower_angles){ // TODO echo these to LCD ???
  4488. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4489. if (end_stops) {
  4490. print_signed_float(PSTR(" Ex"), endstop_adj[A_AXIS]);
  4491. print_signed_float(PSTR("Ey"), endstop_adj[B_AXIS]);
  4492. print_signed_float(PSTR("Ez"), endstop_adj[C_AXIS]);
  4493. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4494. }
  4495. SERIAL_EOL();
  4496. if (tower_angles) {
  4497. SERIAL_PROTOCOLPGM(".Tower angle : ");
  4498. print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
  4499. print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
  4500. SERIAL_PROTOCOLLNPGM(" Tz:+0.00");
  4501. }
  4502. }
  4503. void G33_cleanup(
  4504. #if HOTENDS > 1
  4505. const uint8_t old_tool_index
  4506. #endif
  4507. ) {
  4508. #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  4509. do_blocking_move_to_z(delta_clip_start_height);
  4510. #endif
  4511. STOW_PROBE();
  4512. clean_up_after_endstop_or_probe_move();
  4513. #if HOTENDS > 1
  4514. tool_change(old_tool_index, 0, true);
  4515. #endif
  4516. }
  4517. inline void gcode_G33() {
  4518. const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
  4519. if (!WITHIN(probe_points, 1, 7)) {
  4520. SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (1-7).");
  4521. return;
  4522. }
  4523. const int8_t verbose_level = parser.byteval('V', 1);
  4524. if (!WITHIN(verbose_level, 0, 2)) {
  4525. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
  4526. return;
  4527. }
  4528. const float calibration_precision = parser.floatval('C');
  4529. if (calibration_precision < 0) {
  4530. SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0).");
  4531. return;
  4532. }
  4533. const int8_t force_iterations = parser.intval('F', 0);
  4534. if (!WITHIN(force_iterations, 0, 30)) {
  4535. SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
  4536. return;
  4537. }
  4538. const bool towers_set = parser.boolval('T', true),
  4539. stow_after_each = parser.boolval('E'),
  4540. _1p_calibration = probe_points == 1,
  4541. _4p_calibration = probe_points == 2,
  4542. _4p_towers_points = _4p_calibration && towers_set,
  4543. _4p_opposite_points = _4p_calibration && !towers_set,
  4544. _7p_calibration = probe_points >= 3,
  4545. _7p_half_circle = probe_points == 3,
  4546. _7p_double_circle = probe_points == 5,
  4547. _7p_triple_circle = probe_points == 6,
  4548. _7p_quadruple_circle = probe_points == 7,
  4549. _7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
  4550. _7p_intermed_points = _7p_calibration && !_7p_half_circle;
  4551. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4552. const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
  4553. dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
  4554. int8_t iterations = 0;
  4555. float test_precision,
  4556. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4557. zero_std_dev_old = zero_std_dev,
  4558. zero_std_dev_min = zero_std_dev,
  4559. e_old[XYZ] = {
  4560. endstop_adj[A_AXIS],
  4561. endstop_adj[B_AXIS],
  4562. endstop_adj[C_AXIS]
  4563. },
  4564. dr_old = delta_radius,
  4565. zh_old = home_offset[Z_AXIS],
  4566. alpha_old = delta_tower_angle_trim[A_AXIS],
  4567. beta_old = delta_tower_angle_trim[B_AXIS];
  4568. if (!_1p_calibration) { // test if the outer radius is reachable
  4569. const float circles = (_7p_quadruple_circle ? 1.5 :
  4570. _7p_triple_circle ? 1.0 :
  4571. _7p_double_circle ? 0.5 : 0),
  4572. r = (1 + circles * 0.1) * delta_calibration_radius;
  4573. for (uint8_t axis = 1; axis < 13; ++axis) {
  4574. const float a = RADIANS(180 + 30 * axis);
  4575. if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) {
  4576. SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
  4577. return;
  4578. }
  4579. }
  4580. }
  4581. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4582. stepper.synchronize();
  4583. #if HAS_LEVELING
  4584. reset_bed_level(); // After calibration bed-level data is no longer valid
  4585. #endif
  4586. #if HOTENDS > 1
  4587. const uint8_t old_tool_index = active_extruder;
  4588. tool_change(0, 0, true);
  4589. #define G33_CLEANUP() G33_cleanup(old_tool_index)
  4590. #else
  4591. #define G33_CLEANUP() G33_cleanup()
  4592. #endif
  4593. setup_for_endstop_or_probe_move();
  4594. endstops.enable(true);
  4595. if (!home_delta())
  4596. return;
  4597. endstops.not_homing();
  4598. // print settings
  4599. const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
  4600. serialprintPGM(checkingac);
  4601. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4602. SERIAL_EOL();
  4603. lcd_setstatusPGM(checkingac);
  4604. print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
  4605. #if DISABLED(PROBE_MANUALLY)
  4606. const float measured_z = probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height
  4607. if (isnan(measured_z)) return G33_CLEANUP();
  4608. home_offset[Z_AXIS] -= measured_z;
  4609. #endif
  4610. do {
  4611. float z_at_pt[13] = { 0.0 };
  4612. test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
  4613. iterations++;
  4614. // Probe the points
  4615. if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
  4616. #if ENABLED(PROBE_MANUALLY)
  4617. z_at_pt[0] += lcd_probe_pt(0, 0);
  4618. #else
  4619. z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
  4620. if (isnan(z_at_pt[0])) return G33_CLEANUP();
  4621. #endif
  4622. }
  4623. if (_7p_calibration) { // probe extra center points
  4624. for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
  4625. const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
  4626. #if ENABLED(PROBE_MANUALLY)
  4627. z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
  4628. #else
  4629. z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
  4630. if (isnan(z_at_pt[0])) return G33_CLEANUP();
  4631. #endif
  4632. }
  4633. z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
  4634. }
  4635. if (!_1p_calibration) { // probe the radius
  4636. bool zig_zag = true;
  4637. const uint8_t start = _4p_opposite_points ? 3 : 1,
  4638. step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
  4639. for (uint8_t axis = start; axis < 13; axis += step) {
  4640. const float zigadd = (zig_zag ? 0.5 : 0.0),
  4641. offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
  4642. _7p_triple_circle ? zigadd + 0.5 :
  4643. _7p_double_circle ? zigadd : 0;
  4644. for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
  4645. const float a = RADIANS(180 + 30 * axis),
  4646. r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
  4647. #if ENABLED(PROBE_MANUALLY)
  4648. z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
  4649. #else
  4650. z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
  4651. if (isnan(z_at_pt[axis])) return G33_CLEANUP();
  4652. #endif
  4653. }
  4654. zig_zag = !zig_zag;
  4655. z_at_pt[axis] /= (2 * offset_circles + 1);
  4656. }
  4657. }
  4658. if (_7p_intermed_points) // average intermediates to tower and opposites
  4659. for (uint8_t axis = 1; axis < 13; axis += 2)
  4660. z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
  4661. float S1 = z_at_pt[0],
  4662. S2 = sq(z_at_pt[0]);
  4663. int16_t N = 1;
  4664. if (!_1p_calibration) // std dev from zero plane
  4665. for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) {
  4666. S1 += z_at_pt[axis];
  4667. S2 += sq(z_at_pt[axis]);
  4668. N++;
  4669. }
  4670. zero_std_dev_old = zero_std_dev;
  4671. zero_std_dev = round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4672. // Solve matrices
  4673. if ((zero_std_dev < test_precision && zero_std_dev > calibration_precision) || iterations <= force_iterations) {
  4674. if (zero_std_dev < zero_std_dev_min) {
  4675. COPY(e_old, endstop_adj);
  4676. dr_old = delta_radius;
  4677. zh_old = home_offset[Z_AXIS];
  4678. alpha_old = delta_tower_angle_trim[A_AXIS];
  4679. beta_old = delta_tower_angle_trim[B_AXIS];
  4680. }
  4681. float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0;
  4682. const float r_diff = delta_radius - delta_calibration_radius,
  4683. h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
  4684. r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
  4685. a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm
  4686. #define ZP(N,I) ((N) * z_at_pt[I])
  4687. #define Z1000(I) ZP(1.00, I)
  4688. #define Z1050(I) ZP(h_factor, I)
  4689. #define Z0700(I) ZP(h_factor * 2.0 / 3.00, I)
  4690. #define Z0350(I) ZP(h_factor / 3.00, I)
  4691. #define Z0175(I) ZP(h_factor / 6.00, I)
  4692. #define Z2250(I) ZP(r_factor, I)
  4693. #define Z0750(I) ZP(r_factor / 3.00, I)
  4694. #define Z0375(I) ZP(r_factor / 6.00, I)
  4695. #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
  4696. #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
  4697. #if ENABLED(PROBE_MANUALLY)
  4698. test_precision = 0.00; // forced end
  4699. #endif
  4700. switch (probe_points) {
  4701. case 1:
  4702. test_precision = 0.00; // forced end
  4703. LOOP_XYZ(i) e_delta[i] = Z1000(0);
  4704. break;
  4705. case 2:
  4706. if (towers_set) {
  4707. e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
  4708. e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
  4709. e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
  4710. r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
  4711. }
  4712. else {
  4713. e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
  4714. e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
  4715. e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
  4716. r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
  4717. }
  4718. break;
  4719. default:
  4720. e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
  4721. e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
  4722. e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
  4723. r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
  4724. if (towers_set) {
  4725. t_alpha = Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
  4726. t_beta = Z0888(1) - Z0444(5) - Z0444(9) + Z0888(7) - Z0444(11) - Z0444(3);
  4727. }
  4728. break;
  4729. }
  4730. LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
  4731. delta_radius += r_delta;
  4732. delta_tower_angle_trim[A_AXIS] += t_alpha;
  4733. delta_tower_angle_trim[B_AXIS] += t_beta;
  4734. // adjust delta_height and endstops by the max amount
  4735. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  4736. home_offset[Z_AXIS] -= z_temp;
  4737. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  4738. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4739. }
  4740. else if (zero_std_dev >= test_precision) { // step one back
  4741. COPY(endstop_adj, e_old);
  4742. delta_radius = dr_old;
  4743. home_offset[Z_AXIS] = zh_old;
  4744. delta_tower_angle_trim[A_AXIS] = alpha_old;
  4745. delta_tower_angle_trim[B_AXIS] = beta_old;
  4746. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4747. }
  4748. NOMORE(zero_std_dev_min, zero_std_dev);
  4749. // print report
  4750. if (verbose_level != 1) {
  4751. SERIAL_PROTOCOLPGM(". ");
  4752. print_signed_float(PSTR("c"), z_at_pt[0]);
  4753. if (_4p_towers_points || _7p_calibration) {
  4754. print_signed_float(PSTR(" x"), z_at_pt[1]);
  4755. print_signed_float(PSTR(" y"), z_at_pt[5]);
  4756. print_signed_float(PSTR(" z"), z_at_pt[9]);
  4757. }
  4758. if (!_4p_opposite_points) SERIAL_EOL();
  4759. if ((_4p_opposite_points) || _7p_calibration) {
  4760. if (_7p_calibration) {
  4761. SERIAL_CHAR('.');
  4762. SERIAL_PROTOCOL_SP(13);
  4763. }
  4764. print_signed_float(PSTR(" yz"), z_at_pt[7]);
  4765. print_signed_float(PSTR("zx"), z_at_pt[11]);
  4766. print_signed_float(PSTR("xy"), z_at_pt[3]);
  4767. SERIAL_EOL();
  4768. }
  4769. }
  4770. if (verbose_level != 0) { // !dry run
  4771. if ((zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) && iterations > force_iterations) { // end iterations
  4772. SERIAL_PROTOCOLPGM("Calibration OK");
  4773. SERIAL_PROTOCOL_SP(36);
  4774. #if DISABLED(PROBE_MANUALLY)
  4775. if (zero_std_dev >= test_precision && !_1p_calibration)
  4776. SERIAL_PROTOCOLPGM("rolling back.");
  4777. else
  4778. #endif
  4779. {
  4780. SERIAL_PROTOCOLPGM("std dev:");
  4781. SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
  4782. }
  4783. SERIAL_EOL();
  4784. char mess[21];
  4785. sprintf_P(mess, PSTR("Calibration sd:"));
  4786. if (zero_std_dev_min < 1)
  4787. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
  4788. else
  4789. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
  4790. lcd_setstatus(mess);
  4791. print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
  4792. serialprintPGM(save_message);
  4793. SERIAL_EOL();
  4794. }
  4795. else { // !end iterations
  4796. char mess[15];
  4797. if (iterations < 31)
  4798. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  4799. else
  4800. sprintf_P(mess, PSTR("No convergence"));
  4801. SERIAL_PROTOCOL(mess);
  4802. SERIAL_PROTOCOL_SP(36);
  4803. SERIAL_PROTOCOLPGM("std dev:");
  4804. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4805. SERIAL_EOL();
  4806. lcd_setstatus(mess);
  4807. print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
  4808. }
  4809. }
  4810. else { // dry run
  4811. const char *enddryrun = PSTR("End DRY-RUN");
  4812. serialprintPGM(enddryrun);
  4813. SERIAL_PROTOCOL_SP(39);
  4814. SERIAL_PROTOCOLPGM("std dev:");
  4815. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4816. SERIAL_EOL();
  4817. char mess[21];
  4818. sprintf_P(mess, enddryrun);
  4819. sprintf_P(&mess[11], PSTR(" sd:"));
  4820. if (zero_std_dev < 1)
  4821. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
  4822. else
  4823. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
  4824. lcd_setstatus(mess);
  4825. }
  4826. endstops.enable(true);
  4827. home_delta();
  4828. endstops.not_homing();
  4829. }
  4830. while ((zero_std_dev < test_precision && zero_std_dev > calibration_precision && iterations < 31) || iterations <= force_iterations);
  4831. G33_CLEANUP();
  4832. }
  4833. #endif // DELTA_AUTO_CALIBRATION
  4834. #endif // PROBE_SELECTED
  4835. #if ENABLED(G38_PROBE_TARGET)
  4836. static bool G38_run_probe() {
  4837. bool G38_pass_fail = false;
  4838. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4839. // Get direction of move and retract
  4840. float retract_mm[XYZ];
  4841. LOOP_XYZ(i) {
  4842. float dist = destination[i] - current_position[i];
  4843. retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4844. }
  4845. #endif
  4846. stepper.synchronize(); // wait until the machine is idle
  4847. // Move until destination reached or target hit
  4848. endstops.enable(true);
  4849. G38_move = true;
  4850. G38_endstop_hit = false;
  4851. prepare_move_to_destination();
  4852. stepper.synchronize();
  4853. G38_move = false;
  4854. endstops.hit_on_purpose();
  4855. set_current_from_steppers_for_axis(ALL_AXES);
  4856. SYNC_PLAN_POSITION_KINEMATIC();
  4857. if (G38_endstop_hit) {
  4858. G38_pass_fail = true;
  4859. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4860. // Move away by the retract distance
  4861. set_destination_to_current();
  4862. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4863. endstops.enable(false);
  4864. prepare_move_to_destination();
  4865. stepper.synchronize();
  4866. feedrate_mm_s /= 4;
  4867. // Bump the target more slowly
  4868. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4869. endstops.enable(true);
  4870. G38_move = true;
  4871. prepare_move_to_destination();
  4872. stepper.synchronize();
  4873. G38_move = false;
  4874. set_current_from_steppers_for_axis(ALL_AXES);
  4875. SYNC_PLAN_POSITION_KINEMATIC();
  4876. #endif
  4877. }
  4878. endstops.hit_on_purpose();
  4879. endstops.not_homing();
  4880. return G38_pass_fail;
  4881. }
  4882. /**
  4883. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4884. * G38.3 - probe toward workpiece, stop on contact
  4885. *
  4886. * Like G28 except uses Z min probe for all axes
  4887. */
  4888. inline void gcode_G38(bool is_38_2) {
  4889. // Get X Y Z E F
  4890. gcode_get_destination();
  4891. setup_for_endstop_or_probe_move();
  4892. // If any axis has enough movement, do the move
  4893. LOOP_XYZ(i)
  4894. if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4895. if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i);
  4896. // If G38.2 fails throw an error
  4897. if (!G38_run_probe() && is_38_2) {
  4898. SERIAL_ERROR_START();
  4899. SERIAL_ERRORLNPGM("Failed to reach target");
  4900. }
  4901. break;
  4902. }
  4903. clean_up_after_endstop_or_probe_move();
  4904. }
  4905. #endif // G38_PROBE_TARGET
  4906. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)
  4907. /**
  4908. * G42: Move X & Y axes to mesh coordinates (I & J)
  4909. */
  4910. inline void gcode_G42() {
  4911. if (IsRunning()) {
  4912. const bool hasI = parser.seenval('I');
  4913. const int8_t ix = hasI ? parser.value_int() : 0;
  4914. const bool hasJ = parser.seenval('J');
  4915. const int8_t iy = hasJ ? parser.value_int() : 0;
  4916. if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
  4917. SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
  4918. return;
  4919. }
  4920. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4921. #define _GET_MESH_X(I) bilinear_start[X_AXIS] + I * bilinear_grid_spacing[X_AXIS]
  4922. #define _GET_MESH_Y(J) bilinear_start[Y_AXIS] + J * bilinear_grid_spacing[Y_AXIS]
  4923. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  4924. #define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
  4925. #define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
  4926. #elif ENABLED(MESH_BED_LEVELING)
  4927. #define _GET_MESH_X(I) mbl.index_to_xpos[I]
  4928. #define _GET_MESH_Y(J) mbl.index_to_ypos[J]
  4929. #endif
  4930. set_destination_to_current();
  4931. if (hasI) destination[X_AXIS] = LOGICAL_X_POSITION(_GET_MESH_X(ix));
  4932. if (hasJ) destination[Y_AXIS] = LOGICAL_Y_POSITION(_GET_MESH_Y(iy));
  4933. if (parser.boolval('P')) {
  4934. if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  4935. if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  4936. }
  4937. const float fval = parser.linearval('F');
  4938. if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
  4939. // SCARA kinematic has "safe" XY raw moves
  4940. #if IS_SCARA
  4941. prepare_uninterpolated_move_to_destination();
  4942. #else
  4943. prepare_move_to_destination();
  4944. #endif
  4945. }
  4946. }
  4947. #endif // AUTO_BED_LEVELING_UBL
  4948. /**
  4949. * G92: Set current position to given X Y Z E
  4950. */
  4951. inline void gcode_G92() {
  4952. bool didXYZ = false,
  4953. didE = parser.seenval('E');
  4954. if (!didE) stepper.synchronize();
  4955. LOOP_XYZE(i) {
  4956. if (parser.seenval(axis_codes[i])) {
  4957. #if IS_SCARA
  4958. current_position[i] = parser.value_axis_units((AxisEnum)i);
  4959. if (i != E_AXIS) didXYZ = true;
  4960. #else
  4961. #if HAS_POSITION_SHIFT
  4962. const float p = current_position[i];
  4963. #endif
  4964. const float v = parser.value_axis_units((AxisEnum)i);
  4965. current_position[i] = v;
  4966. if (i != E_AXIS) {
  4967. didXYZ = true;
  4968. #if HAS_POSITION_SHIFT
  4969. position_shift[i] += v - p; // Offset the coordinate space
  4970. update_software_endstops((AxisEnum)i);
  4971. #if ENABLED(I2C_POSITION_ENCODERS)
  4972. I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum)i)].set_axis_offset(position_shift[i]);
  4973. #endif
  4974. #endif
  4975. }
  4976. #endif
  4977. }
  4978. }
  4979. if (didXYZ)
  4980. SYNC_PLAN_POSITION_KINEMATIC();
  4981. else if (didE)
  4982. sync_plan_position_e();
  4983. report_current_position();
  4984. }
  4985. #if HAS_RESUME_CONTINUE
  4986. /**
  4987. * M0: Unconditional stop - Wait for user button press on LCD
  4988. * M1: Conditional stop - Wait for user button press on LCD
  4989. */
  4990. inline void gcode_M0_M1() {
  4991. const char * const args = parser.string_arg;
  4992. millis_t ms = 0;
  4993. bool hasP = false, hasS = false;
  4994. if (parser.seenval('P')) {
  4995. ms = parser.value_millis(); // milliseconds to wait
  4996. hasP = ms > 0;
  4997. }
  4998. if (parser.seenval('S')) {
  4999. ms = parser.value_millis_from_seconds(); // seconds to wait
  5000. hasS = ms > 0;
  5001. }
  5002. #if ENABLED(ULTIPANEL)
  5003. if (!hasP && !hasS && args && *args)
  5004. lcd_setstatus(args, true);
  5005. else {
  5006. LCD_MESSAGEPGM(MSG_USERWAIT);
  5007. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  5008. dontExpireStatus();
  5009. #endif
  5010. }
  5011. #else
  5012. if (!hasP && !hasS && args && *args) {
  5013. SERIAL_ECHO_START();
  5014. SERIAL_ECHOLN(args);
  5015. }
  5016. #endif
  5017. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5018. wait_for_user = true;
  5019. stepper.synchronize();
  5020. refresh_cmd_timeout();
  5021. if (ms > 0) {
  5022. ms += previous_cmd_ms; // wait until this time for a click
  5023. while (PENDING(millis(), ms) && wait_for_user) idle();
  5024. }
  5025. else {
  5026. #if ENABLED(ULTIPANEL)
  5027. if (lcd_detected()) {
  5028. while (wait_for_user) idle();
  5029. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  5030. }
  5031. #else
  5032. while (wait_for_user) idle();
  5033. #endif
  5034. }
  5035. wait_for_user = false;
  5036. KEEPALIVE_STATE(IN_HANDLER);
  5037. }
  5038. #endif // HAS_RESUME_CONTINUE
  5039. #if ENABLED(SPINDLE_LASER_ENABLE)
  5040. /**
  5041. * M3: Spindle Clockwise
  5042. * M4: Spindle Counter-clockwise
  5043. *
  5044. * S0 turns off spindle.
  5045. *
  5046. * If no speed PWM output is defined then M3/M4 just turns it on.
  5047. *
  5048. * At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
  5049. * Hardware PWM is required. ISRs are too slow.
  5050. *
  5051. * NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
  5052. * No other settings give a PWM signal that goes from 0 to 5 volts.
  5053. *
  5054. * The system automatically sets WGM to Mode 1, so no special
  5055. * initialization is needed.
  5056. *
  5057. * WGM bits for timer 2 are automatically set by the system to
  5058. * Mode 1. This produces an acceptable 0 to 5 volt signal.
  5059. * No special initialization is needed.
  5060. *
  5061. * NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
  5062. * factors for timers 2, 3, 4, and 5 are acceptable.
  5063. *
  5064. * SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
  5065. * the spindle/laser during power-up or when connecting to the host
  5066. * (usually goes through a reset which sets all I/O pins to tri-state)
  5067. *
  5068. * PWM duty cycle goes from 0 (off) to 255 (always on).
  5069. */
  5070. // Wait for spindle to come up to speed
  5071. inline void delay_for_power_up() { dwell(SPINDLE_LASER_POWERUP_DELAY); }
  5072. // Wait for spindle to stop turning
  5073. inline void delay_for_power_down() { dwell(SPINDLE_LASER_POWERDOWN_DELAY); }
  5074. /**
  5075. * ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
  5076. *
  5077. * it accepts inputs of 0-255
  5078. */
  5079. inline void ocr_val_mode() {
  5080. uint8_t spindle_laser_power = parser.value_byte();
  5081. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5082. if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
  5083. analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
  5084. }
  5085. inline void gcode_M3_M4(bool is_M3) {
  5086. stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
  5087. #if SPINDLE_DIR_CHANGE
  5088. const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
  5089. if (SPINDLE_STOP_ON_DIR_CHANGE \
  5090. && READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
  5091. && READ(SPINDLE_DIR_PIN) != rotation_dir
  5092. ) {
  5093. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
  5094. delay_for_power_down();
  5095. }
  5096. WRITE(SPINDLE_DIR_PIN, rotation_dir);
  5097. #endif
  5098. /**
  5099. * Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
  5100. * Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
  5101. * Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
  5102. */
  5103. #if ENABLED(SPINDLE_LASER_PWM)
  5104. if (parser.seen('O')) ocr_val_mode();
  5105. else {
  5106. const float spindle_laser_power = parser.floatval('S');
  5107. if (spindle_laser_power == 0) {
  5108. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
  5109. delay_for_power_down();
  5110. }
  5111. else {
  5112. int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
  5113. NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
  5114. if (spindle_laser_power <= SPEED_POWER_MIN)
  5115. ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting
  5116. if (spindle_laser_power >= SPEED_POWER_MAX)
  5117. ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM
  5118. if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
  5119. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5120. analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
  5121. delay_for_power_up();
  5122. }
  5123. }
  5124. #else
  5125. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
  5126. delay_for_power_up();
  5127. #endif
  5128. }
  5129. /**
  5130. * M5 turn off spindle
  5131. */
  5132. inline void gcode_M5() {
  5133. stepper.synchronize();
  5134. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
  5135. delay_for_power_down();
  5136. }
  5137. #endif // SPINDLE_LASER_ENABLE
  5138. /**
  5139. * M17: Enable power on all stepper motors
  5140. */
  5141. inline void gcode_M17() {
  5142. LCD_MESSAGEPGM(MSG_NO_MOVE);
  5143. enable_all_steppers();
  5144. }
  5145. #if IS_KINEMATIC
  5146. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  5147. #else
  5148. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  5149. #endif
  5150. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  5151. static float resume_position[XYZE];
  5152. static bool move_away_flag = false;
  5153. #if ENABLED(SDSUPPORT)
  5154. static bool sd_print_paused = false;
  5155. #endif
  5156. static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
  5157. static millis_t next_buzz = 0;
  5158. static int8_t runout_beep = 0;
  5159. if (init) next_buzz = runout_beep = 0;
  5160. const millis_t ms = millis();
  5161. if (ELAPSED(ms, next_buzz)) {
  5162. if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
  5163. next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
  5164. BUZZ(300, 2000);
  5165. runout_beep++;
  5166. }
  5167. }
  5168. }
  5169. static void ensure_safe_temperature() {
  5170. bool heaters_heating = true;
  5171. wait_for_heatup = true; // M108 will clear this
  5172. while (wait_for_heatup && heaters_heating) {
  5173. idle();
  5174. heaters_heating = false;
  5175. HOTEND_LOOP() {
  5176. if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) {
  5177. heaters_heating = true;
  5178. #if ENABLED(ULTIPANEL)
  5179. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  5180. #endif
  5181. break;
  5182. }
  5183. }
  5184. }
  5185. }
  5186. static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos,
  5187. const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false
  5188. ) {
  5189. if (move_away_flag) return false; // already paused
  5190. if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) {
  5191. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5192. if (!thermalManager.allow_cold_extrude &&
  5193. thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
  5194. SERIAL_ERROR_START();
  5195. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5196. return false;
  5197. }
  5198. #endif
  5199. ensure_safe_temperature(); // wait for extruder to heat up before unloading
  5200. }
  5201. // Indicate that the printer is paused
  5202. move_away_flag = true;
  5203. // Pause the print job and timer
  5204. #if ENABLED(SDSUPPORT)
  5205. if (card.sdprinting) {
  5206. card.pauseSDPrint();
  5207. sd_print_paused = true;
  5208. }
  5209. #endif
  5210. print_job_timer.pause();
  5211. // Show initial message and wait for synchronize steppers
  5212. if (show_lcd) {
  5213. #if ENABLED(ULTIPANEL)
  5214. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
  5215. #endif
  5216. }
  5217. // Save current position
  5218. stepper.synchronize();
  5219. COPY(resume_position, current_position);
  5220. if (retract) {
  5221. // Initial retract before move to filament change position
  5222. set_destination_to_current();
  5223. destination[E_AXIS] += retract;
  5224. RUNPLAN(PAUSE_PARK_RETRACT_FEEDRATE);
  5225. stepper.synchronize();
  5226. }
  5227. // Lift Z axis
  5228. if (z_lift > 0)
  5229. do_blocking_move_to_z(current_position[Z_AXIS] + z_lift, PAUSE_PARK_Z_FEEDRATE);
  5230. // Move XY axes to filament exchange position
  5231. do_blocking_move_to_xy(x_pos, y_pos, PAUSE_PARK_XY_FEEDRATE);
  5232. if (unload_length != 0) {
  5233. if (show_lcd) {
  5234. #if ENABLED(ULTIPANEL)
  5235. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD);
  5236. idle();
  5237. #endif
  5238. }
  5239. // Unload filament
  5240. set_destination_to_current();
  5241. destination[E_AXIS] += unload_length;
  5242. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5243. stepper.synchronize();
  5244. }
  5245. if (show_lcd) {
  5246. #if ENABLED(ULTIPANEL)
  5247. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5248. #endif
  5249. }
  5250. #if HAS_BUZZER
  5251. filament_change_beep(max_beep_count, true);
  5252. #endif
  5253. idle();
  5254. // Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
  5255. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
  5256. disable_e_steppers();
  5257. safe_delay(100);
  5258. #endif
  5259. // Start the heater idle timers
  5260. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5261. HOTEND_LOOP()
  5262. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5263. return true;
  5264. }
  5265. static void wait_for_filament_reload(const int8_t max_beep_count = 0) {
  5266. bool nozzle_timed_out = false;
  5267. // Wait for filament insert by user and press button
  5268. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5269. wait_for_user = true; // LCD click or M108 will clear this
  5270. while (wait_for_user) {
  5271. #if HAS_BUZZER
  5272. filament_change_beep(max_beep_count);
  5273. #endif
  5274. // If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
  5275. // re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
  5276. if (!nozzle_timed_out)
  5277. HOTEND_LOOP()
  5278. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5279. if (nozzle_timed_out) {
  5280. #if ENABLED(ULTIPANEL)
  5281. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  5282. #endif
  5283. // Wait for LCD click or M108
  5284. while (wait_for_user) idle(true);
  5285. // Re-enable the heaters if they timed out
  5286. HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
  5287. // Wait for the heaters to reach the target temperatures
  5288. ensure_safe_temperature();
  5289. #if ENABLED(ULTIPANEL)
  5290. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5291. #endif
  5292. // Start the heater idle timers
  5293. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5294. HOTEND_LOOP()
  5295. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5296. wait_for_user = true; /* Wait for user to load filament */
  5297. nozzle_timed_out = false;
  5298. #if HAS_BUZZER
  5299. filament_change_beep(max_beep_count, true);
  5300. #endif
  5301. }
  5302. idle(true);
  5303. }
  5304. KEEPALIVE_STATE(IN_HANDLER);
  5305. }
  5306. static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) {
  5307. bool nozzle_timed_out = false;
  5308. if (!move_away_flag) return;
  5309. // Re-enable the heaters if they timed out
  5310. HOTEND_LOOP() {
  5311. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5312. thermalManager.reset_heater_idle_timer(e);
  5313. }
  5314. if (nozzle_timed_out) ensure_safe_temperature();
  5315. #if HAS_BUZZER
  5316. filament_change_beep(max_beep_count, true);
  5317. #endif
  5318. if (load_length != 0) {
  5319. #if ENABLED(ULTIPANEL)
  5320. // Show "insert filament"
  5321. if (nozzle_timed_out)
  5322. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5323. #endif
  5324. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5325. wait_for_user = true; // LCD click or M108 will clear this
  5326. while (wait_for_user && nozzle_timed_out) {
  5327. #if HAS_BUZZER
  5328. filament_change_beep(max_beep_count);
  5329. #endif
  5330. idle(true);
  5331. }
  5332. KEEPALIVE_STATE(IN_HANDLER);
  5333. #if ENABLED(ULTIPANEL)
  5334. // Show "load" message
  5335. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD);
  5336. #endif
  5337. // Load filament
  5338. destination[E_AXIS] += load_length;
  5339. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5340. stepper.synchronize();
  5341. }
  5342. #if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0
  5343. float extrude_length = initial_extrude_length;
  5344. do {
  5345. if (extrude_length > 0) {
  5346. // "Wait for filament extrude"
  5347. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE);
  5348. // Extrude filament to get into hotend
  5349. destination[E_AXIS] += extrude_length;
  5350. RUNPLAN(ADVANCED_PAUSE_EXTRUDE_FEEDRATE);
  5351. stepper.synchronize();
  5352. }
  5353. // Show "Extrude More" / "Resume" menu and wait for reply
  5354. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5355. wait_for_user = false;
  5356. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION);
  5357. while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
  5358. KEEPALIVE_STATE(IN_HANDLER);
  5359. extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH;
  5360. // Keep looping if "Extrude More" was selected
  5361. } while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE);
  5362. #endif
  5363. #if ENABLED(ULTIPANEL)
  5364. // "Wait for print to resume"
  5365. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
  5366. #endif
  5367. // Set extruder to saved position
  5368. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  5369. planner.set_e_position_mm(current_position[E_AXIS]);
  5370. // Move XY to starting position, then Z
  5371. do_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], PAUSE_PARK_XY_FEEDRATE);
  5372. do_blocking_move_to_z(resume_position[Z_AXIS], PAUSE_PARK_Z_FEEDRATE);
  5373. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5374. filament_ran_out = false;
  5375. #endif
  5376. #if ENABLED(ULTIPANEL)
  5377. // Show status screen
  5378. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
  5379. #endif
  5380. #if ENABLED(SDSUPPORT)
  5381. if (sd_print_paused) {
  5382. card.startFileprint();
  5383. sd_print_paused = false;
  5384. }
  5385. #endif
  5386. move_away_flag = false;
  5387. }
  5388. #endif // ADVANCED_PAUSE_FEATURE
  5389. #if ENABLED(SDSUPPORT)
  5390. /**
  5391. * M20: List SD card to serial output
  5392. */
  5393. inline void gcode_M20() {
  5394. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  5395. card.ls();
  5396. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  5397. }
  5398. /**
  5399. * M21: Init SD Card
  5400. */
  5401. inline void gcode_M21() { card.initsd(); }
  5402. /**
  5403. * M22: Release SD Card
  5404. */
  5405. inline void gcode_M22() { card.release(); }
  5406. /**
  5407. * M23: Open a file
  5408. */
  5409. inline void gcode_M23() {
  5410. // Simplify3D includes the size, so zero out all spaces (#7227)
  5411. for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0';
  5412. card.openFile(parser.string_arg, true);
  5413. }
  5414. /**
  5415. * M24: Start or Resume SD Print
  5416. */
  5417. inline void gcode_M24() {
  5418. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5419. resume_print();
  5420. #endif
  5421. card.startFileprint();
  5422. print_job_timer.start();
  5423. }
  5424. /**
  5425. * M25: Pause SD Print
  5426. */
  5427. inline void gcode_M25() {
  5428. card.pauseSDPrint();
  5429. print_job_timer.pause();
  5430. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5431. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  5432. #endif
  5433. }
  5434. /**
  5435. * M26: Set SD Card file index
  5436. */
  5437. inline void gcode_M26() {
  5438. if (card.cardOK && parser.seenval('S'))
  5439. card.setIndex(parser.value_long());
  5440. }
  5441. /**
  5442. * M27: Get SD Card status
  5443. */
  5444. inline void gcode_M27() { card.getStatus(); }
  5445. /**
  5446. * M28: Start SD Write
  5447. */
  5448. inline void gcode_M28() { card.openFile(parser.string_arg, false); }
  5449. /**
  5450. * M29: Stop SD Write
  5451. * Processed in write to file routine above
  5452. */
  5453. inline void gcode_M29() {
  5454. // card.saving = false;
  5455. }
  5456. /**
  5457. * M30 <filename>: Delete SD Card file
  5458. */
  5459. inline void gcode_M30() {
  5460. if (card.cardOK) {
  5461. card.closefile();
  5462. card.removeFile(parser.string_arg);
  5463. }
  5464. }
  5465. #endif // SDSUPPORT
  5466. /**
  5467. * M31: Get the time since the start of SD Print (or last M109)
  5468. */
  5469. inline void gcode_M31() {
  5470. char buffer[21];
  5471. duration_t elapsed = print_job_timer.duration();
  5472. elapsed.toString(buffer);
  5473. lcd_setstatus(buffer);
  5474. SERIAL_ECHO_START();
  5475. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  5476. }
  5477. #if ENABLED(SDSUPPORT)
  5478. /**
  5479. * M32: Select file and start SD Print
  5480. */
  5481. inline void gcode_M32() {
  5482. if (card.sdprinting)
  5483. stepper.synchronize();
  5484. char* namestartpos = parser.string_arg;
  5485. const bool call_procedure = parser.boolval('P');
  5486. if (card.cardOK) {
  5487. card.openFile(namestartpos, true, call_procedure);
  5488. if (parser.seenval('S'))
  5489. card.setIndex(parser.value_long());
  5490. card.startFileprint();
  5491. // Procedure calls count as normal print time.
  5492. if (!call_procedure) print_job_timer.start();
  5493. }
  5494. }
  5495. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5496. /**
  5497. * M33: Get the long full path of a file or folder
  5498. *
  5499. * Parameters:
  5500. * <dospath> Case-insensitive DOS-style path to a file or folder
  5501. *
  5502. * Example:
  5503. * M33 miscel~1/armchair/armcha~1.gco
  5504. *
  5505. * Output:
  5506. * /Miscellaneous/Armchair/Armchair.gcode
  5507. */
  5508. inline void gcode_M33() {
  5509. card.printLongPath(parser.string_arg);
  5510. }
  5511. #endif
  5512. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  5513. /**
  5514. * M34: Set SD Card Sorting Options
  5515. */
  5516. inline void gcode_M34() {
  5517. if (parser.seen('S')) card.setSortOn(parser.value_bool());
  5518. if (parser.seenval('F')) {
  5519. const int v = parser.value_long();
  5520. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  5521. }
  5522. //if (parser.seen('R')) card.setSortReverse(parser.value_bool());
  5523. }
  5524. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  5525. /**
  5526. * M928: Start SD Write
  5527. */
  5528. inline void gcode_M928() {
  5529. card.openLogFile(parser.string_arg);
  5530. }
  5531. #endif // SDSUPPORT
  5532. /**
  5533. * Sensitive pin test for M42, M226
  5534. */
  5535. static bool pin_is_protected(const int8_t pin) {
  5536. static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
  5537. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  5538. if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true;
  5539. return false;
  5540. }
  5541. /**
  5542. * M42: Change pin status via GCode
  5543. *
  5544. * P<pin> Pin number (LED if omitted)
  5545. * S<byte> Pin status from 0 - 255
  5546. */
  5547. inline void gcode_M42() {
  5548. if (!parser.seenval('S')) return;
  5549. const byte pin_status = parser.value_byte();
  5550. const int pin_number = parser.intval('P', LED_PIN);
  5551. if (pin_number < 0) return;
  5552. if (pin_is_protected(pin_number)) {
  5553. SERIAL_ERROR_START();
  5554. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  5555. return;
  5556. }
  5557. pinMode(pin_number, OUTPUT);
  5558. digitalWrite(pin_number, pin_status);
  5559. analogWrite(pin_number, pin_status);
  5560. #if FAN_COUNT > 0
  5561. switch (pin_number) {
  5562. #if HAS_FAN0
  5563. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  5564. #endif
  5565. #if HAS_FAN1
  5566. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  5567. #endif
  5568. #if HAS_FAN2
  5569. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  5570. #endif
  5571. }
  5572. #endif
  5573. }
  5574. #if ENABLED(PINS_DEBUGGING)
  5575. #include "pinsDebug.h"
  5576. inline void toggle_pins() {
  5577. const bool I_flag = parser.boolval('I');
  5578. const int repeat = parser.intval('R', 1),
  5579. start = parser.intval('S'),
  5580. end = parser.intval('E', NUM_DIGITAL_PINS - 1),
  5581. wait = parser.intval('W', 500);
  5582. for (uint8_t pin = start; pin <= end; pin++) {
  5583. //report_pin_state_extended(pin, I_flag, false);
  5584. if (!I_flag && pin_is_protected(pin)) {
  5585. report_pin_state_extended(pin, I_flag, true, "Untouched ");
  5586. SERIAL_EOL();
  5587. }
  5588. else {
  5589. report_pin_state_extended(pin, I_flag, true, "Pulsing ");
  5590. #if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
  5591. if (pin == TEENSY_E2) {
  5592. SET_OUTPUT(TEENSY_E2);
  5593. for (int16_t j = 0; j < repeat; j++) {
  5594. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5595. WRITE(TEENSY_E2, HIGH); safe_delay(wait);
  5596. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5597. }
  5598. }
  5599. else if (pin == TEENSY_E3) {
  5600. SET_OUTPUT(TEENSY_E3);
  5601. for (int16_t j = 0; j < repeat; j++) {
  5602. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5603. WRITE(TEENSY_E3, HIGH); safe_delay(wait);
  5604. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5605. }
  5606. }
  5607. else
  5608. #endif
  5609. {
  5610. pinMode(pin, OUTPUT);
  5611. for (int16_t j = 0; j < repeat; j++) {
  5612. digitalWrite(pin, 0); safe_delay(wait);
  5613. digitalWrite(pin, 1); safe_delay(wait);
  5614. digitalWrite(pin, 0); safe_delay(wait);
  5615. }
  5616. }
  5617. }
  5618. SERIAL_EOL();
  5619. }
  5620. SERIAL_ECHOLNPGM("Done.");
  5621. } // toggle_pins
  5622. inline void servo_probe_test() {
  5623. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  5624. SERIAL_ERROR_START();
  5625. SERIAL_ERRORLNPGM("SERVO not setup");
  5626. #elif !HAS_Z_SERVO_ENDSTOP
  5627. SERIAL_ERROR_START();
  5628. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  5629. #else // HAS_Z_SERVO_ENDSTOP
  5630. const uint8_t probe_index = parser.byteval('P', Z_ENDSTOP_SERVO_NR);
  5631. SERIAL_PROTOCOLLNPGM("Servo probe test");
  5632. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  5633. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  5634. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  5635. bool probe_inverting;
  5636. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  5637. #define PROBE_TEST_PIN Z_MIN_PIN
  5638. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  5639. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  5640. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  5641. #if Z_MIN_ENDSTOP_INVERTING
  5642. SERIAL_PROTOCOLLNPGM("true");
  5643. #else
  5644. SERIAL_PROTOCOLLNPGM("false");
  5645. #endif
  5646. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  5647. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  5648. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  5649. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  5650. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  5651. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  5652. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  5653. SERIAL_PROTOCOLLNPGM("true");
  5654. #else
  5655. SERIAL_PROTOCOLLNPGM("false");
  5656. #endif
  5657. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5658. #endif
  5659. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5660. SET_INPUT_PULLUP(PROBE_TEST_PIN);
  5661. bool deploy_state, stow_state;
  5662. for (uint8_t i = 0; i < 4; i++) {
  5663. MOVE_SERVO(probe_index, z_servo_angle[0]); //deploy
  5664. safe_delay(500);
  5665. deploy_state = READ(PROBE_TEST_PIN);
  5666. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  5667. safe_delay(500);
  5668. stow_state = READ(PROBE_TEST_PIN);
  5669. }
  5670. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5671. refresh_cmd_timeout();
  5672. if (deploy_state != stow_state) {
  5673. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5674. if (deploy_state) {
  5675. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5676. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5677. }
  5678. else {
  5679. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5680. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5681. }
  5682. #if ENABLED(BLTOUCH)
  5683. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5684. #endif
  5685. }
  5686. else { // measure active signal length
  5687. MOVE_SERVO(probe_index, z_servo_angle[0]); // deploy
  5688. safe_delay(500);
  5689. SERIAL_PROTOCOLLNPGM("please trigger probe");
  5690. uint16_t probe_counter = 0;
  5691. // Allow 30 seconds max for operator to trigger probe
  5692. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  5693. safe_delay(2);
  5694. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  5695. refresh_cmd_timeout();
  5696. if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered
  5697. for (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter)
  5698. safe_delay(2);
  5699. if (probe_counter == 50)
  5700. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  5701. else if (probe_counter >= 2)
  5702. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  5703. else
  5704. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  5705. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  5706. } // pulse detected
  5707. } // for loop waiting for trigger
  5708. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  5709. } // measure active signal length
  5710. #endif
  5711. } // servo_probe_test
  5712. /**
  5713. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  5714. *
  5715. * M43 - report name and state of pin(s)
  5716. * P<pin> Pin to read or watch. If omitted, reads all pins.
  5717. * I Flag to ignore Marlin's pin protection.
  5718. *
  5719. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  5720. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  5721. * I Flag to ignore Marlin's pin protection.
  5722. *
  5723. * M43 E<bool> - Enable / disable background endstop monitoring
  5724. * - Machine continues to operate
  5725. * - Reports changes to endstops
  5726. * - Toggles LED_PIN when an endstop changes
  5727. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  5728. *
  5729. * M43 T - Toggle pin(s) and report which pin is being toggled
  5730. * S<pin> - Start Pin number. If not given, will default to 0
  5731. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  5732. * I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
  5733. * R - Repeat pulses on each pin this number of times before continueing to next pin
  5734. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  5735. *
  5736. * M43 S - Servo probe test
  5737. * P<index> - Probe index (optional - defaults to 0
  5738. */
  5739. inline void gcode_M43() {
  5740. if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
  5741. toggle_pins();
  5742. return;
  5743. }
  5744. // Enable or disable endstop monitoring
  5745. if (parser.seen('E')) {
  5746. endstop_monitor_flag = parser.value_bool();
  5747. SERIAL_PROTOCOLPGM("endstop monitor ");
  5748. serialprintPGM(endstop_monitor_flag ? PSTR("en") : PSTR("dis"));
  5749. SERIAL_PROTOCOLLNPGM("abled");
  5750. return;
  5751. }
  5752. if (parser.seen('S')) {
  5753. servo_probe_test();
  5754. return;
  5755. }
  5756. // Get the range of pins to test or watch
  5757. const uint8_t first_pin = parser.byteval('P'),
  5758. last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  5759. if (first_pin > last_pin) return;
  5760. const bool ignore_protection = parser.boolval('I');
  5761. // Watch until click, M108, or reset
  5762. if (parser.boolval('W')) {
  5763. SERIAL_PROTOCOLLNPGM("Watching pins");
  5764. byte pin_state[last_pin - first_pin + 1];
  5765. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5766. if (pin_is_protected(pin) && !ignore_protection) continue;
  5767. pinMode(pin, INPUT_PULLUP);
  5768. delay(1);
  5769. /*
  5770. if (IS_ANALOG(pin))
  5771. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  5772. else
  5773. //*/
  5774. pin_state[pin - first_pin] = digitalRead(pin);
  5775. }
  5776. #if HAS_RESUME_CONTINUE
  5777. wait_for_user = true;
  5778. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5779. #endif
  5780. for (;;) {
  5781. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5782. if (pin_is_protected(pin) && !ignore_protection) continue;
  5783. const byte val =
  5784. /*
  5785. IS_ANALOG(pin)
  5786. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  5787. :
  5788. //*/
  5789. digitalRead(pin);
  5790. if (val != pin_state[pin - first_pin]) {
  5791. report_pin_state_extended(pin, ignore_protection, false);
  5792. pin_state[pin - first_pin] = val;
  5793. }
  5794. }
  5795. #if HAS_RESUME_CONTINUE
  5796. if (!wait_for_user) {
  5797. KEEPALIVE_STATE(IN_HANDLER);
  5798. break;
  5799. }
  5800. #endif
  5801. safe_delay(200);
  5802. }
  5803. return;
  5804. }
  5805. // Report current state of selected pin(s)
  5806. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  5807. report_pin_state_extended(pin, ignore_protection, true);
  5808. }
  5809. #endif // PINS_DEBUGGING
  5810. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5811. /**
  5812. * M48: Z probe repeatability measurement function.
  5813. *
  5814. * Usage:
  5815. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  5816. * P = Number of sampled points (4-50, default 10)
  5817. * X = Sample X position
  5818. * Y = Sample Y position
  5819. * V = Verbose level (0-4, default=1)
  5820. * E = Engage Z probe for each reading
  5821. * L = Number of legs of movement before probe
  5822. * S = Schizoid (Or Star if you prefer)
  5823. *
  5824. * This function assumes the bed has been homed. Specifically, that a G28 command
  5825. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  5826. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  5827. * regenerated.
  5828. */
  5829. inline void gcode_M48() {
  5830. if (axis_unhomed_error()) return;
  5831. const int8_t verbose_level = parser.byteval('V', 1);
  5832. if (!WITHIN(verbose_level, 0, 4)) {
  5833. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  5834. return;
  5835. }
  5836. if (verbose_level > 0)
  5837. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  5838. const int8_t n_samples = parser.byteval('P', 10);
  5839. if (!WITHIN(n_samples, 4, 50)) {
  5840. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  5841. return;
  5842. }
  5843. const bool stow_probe_after_each = parser.boolval('E');
  5844. float X_current = current_position[X_AXIS],
  5845. Y_current = current_position[Y_AXIS];
  5846. const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
  5847. Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5848. #if DISABLED(DELTA)
  5849. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  5850. out_of_range_error(PSTR("X"));
  5851. return;
  5852. }
  5853. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  5854. out_of_range_error(PSTR("Y"));
  5855. return;
  5856. }
  5857. #else
  5858. if (!position_is_reachable_by_probe_xy(X_probe_location, Y_probe_location)) {
  5859. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  5860. return;
  5861. }
  5862. #endif
  5863. bool seen_L = parser.seen('L');
  5864. uint8_t n_legs = seen_L ? parser.value_byte() : 0;
  5865. if (n_legs > 15) {
  5866. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  5867. return;
  5868. }
  5869. if (n_legs == 1) n_legs = 2;
  5870. const bool schizoid_flag = parser.boolval('S');
  5871. if (schizoid_flag && !seen_L) n_legs = 7;
  5872. /**
  5873. * Now get everything to the specified probe point So we can safely do a
  5874. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  5875. * we don't want to use that as a starting point for each probe.
  5876. */
  5877. if (verbose_level > 2)
  5878. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  5879. // Disable bed level correction in M48 because we want the raw data when we probe
  5880. #if HAS_LEVELING
  5881. const bool was_enabled = leveling_is_active();
  5882. set_bed_leveling_enabled(false);
  5883. #endif
  5884. setup_for_endstop_or_probe_move();
  5885. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  5886. // Move to the first point, deploy, and probe
  5887. const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  5888. bool probing_good = !isnan(t);
  5889. if (probing_good) {
  5890. randomSeed(millis());
  5891. for (uint8_t n = 0; n < n_samples; n++) {
  5892. if (n_legs) {
  5893. const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  5894. float angle = random(0.0, 360.0);
  5895. const float radius = random(
  5896. #if ENABLED(DELTA)
  5897. 0.1250000000 * (DELTA_PROBEABLE_RADIUS),
  5898. 0.3333333333 * (DELTA_PROBEABLE_RADIUS)
  5899. #else
  5900. 5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
  5901. #endif
  5902. );
  5903. if (verbose_level > 3) {
  5904. SERIAL_ECHOPAIR("Starting radius: ", radius);
  5905. SERIAL_ECHOPAIR(" angle: ", angle);
  5906. SERIAL_ECHOPGM(" Direction: ");
  5907. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  5908. SERIAL_ECHOLNPGM("Clockwise");
  5909. }
  5910. for (uint8_t l = 0; l < n_legs - 1; l++) {
  5911. double delta_angle;
  5912. if (schizoid_flag)
  5913. // The points of a 5 point star are 72 degrees apart. We need to
  5914. // skip a point and go to the next one on the star.
  5915. delta_angle = dir * 2.0 * 72.0;
  5916. else
  5917. // If we do this line, we are just trying to move further
  5918. // around the circle.
  5919. delta_angle = dir * (float) random(25, 45);
  5920. angle += delta_angle;
  5921. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  5922. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  5923. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  5924. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  5925. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  5926. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  5927. #if DISABLED(DELTA)
  5928. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  5929. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  5930. #else
  5931. // If we have gone out too far, we can do a simple fix and scale the numbers
  5932. // back in closer to the origin.
  5933. while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
  5934. X_current *= 0.8;
  5935. Y_current *= 0.8;
  5936. if (verbose_level > 3) {
  5937. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  5938. SERIAL_ECHOLNPAIR(", ", Y_current);
  5939. }
  5940. }
  5941. #endif
  5942. if (verbose_level > 3) {
  5943. SERIAL_PROTOCOLPGM("Going to:");
  5944. SERIAL_ECHOPAIR(" X", X_current);
  5945. SERIAL_ECHOPAIR(" Y", Y_current);
  5946. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  5947. }
  5948. do_blocking_move_to_xy(X_current, Y_current);
  5949. } // n_legs loop
  5950. } // n_legs
  5951. // Probe a single point
  5952. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  5953. // Break the loop if the probe fails
  5954. probing_good = !isnan(sample_set[n]);
  5955. if (!probing_good) break;
  5956. /**
  5957. * Get the current mean for the data points we have so far
  5958. */
  5959. double sum = 0.0;
  5960. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  5961. mean = sum / (n + 1);
  5962. NOMORE(min, sample_set[n]);
  5963. NOLESS(max, sample_set[n]);
  5964. /**
  5965. * Now, use that mean to calculate the standard deviation for the
  5966. * data points we have so far
  5967. */
  5968. sum = 0.0;
  5969. for (uint8_t j = 0; j <= n; j++)
  5970. sum += sq(sample_set[j] - mean);
  5971. sigma = SQRT(sum / (n + 1));
  5972. if (verbose_level > 0) {
  5973. if (verbose_level > 1) {
  5974. SERIAL_PROTOCOL(n + 1);
  5975. SERIAL_PROTOCOLPGM(" of ");
  5976. SERIAL_PROTOCOL((int)n_samples);
  5977. SERIAL_PROTOCOLPGM(": z: ");
  5978. SERIAL_PROTOCOL_F(sample_set[n], 3);
  5979. if (verbose_level > 2) {
  5980. SERIAL_PROTOCOLPGM(" mean: ");
  5981. SERIAL_PROTOCOL_F(mean, 4);
  5982. SERIAL_PROTOCOLPGM(" sigma: ");
  5983. SERIAL_PROTOCOL_F(sigma, 6);
  5984. SERIAL_PROTOCOLPGM(" min: ");
  5985. SERIAL_PROTOCOL_F(min, 3);
  5986. SERIAL_PROTOCOLPGM(" max: ");
  5987. SERIAL_PROTOCOL_F(max, 3);
  5988. SERIAL_PROTOCOLPGM(" range: ");
  5989. SERIAL_PROTOCOL_F(max-min, 3);
  5990. }
  5991. SERIAL_EOL();
  5992. }
  5993. }
  5994. } // n_samples loop
  5995. }
  5996. STOW_PROBE();
  5997. if (probing_good) {
  5998. SERIAL_PROTOCOLLNPGM("Finished!");
  5999. if (verbose_level > 0) {
  6000. SERIAL_PROTOCOLPGM("Mean: ");
  6001. SERIAL_PROTOCOL_F(mean, 6);
  6002. SERIAL_PROTOCOLPGM(" Min: ");
  6003. SERIAL_PROTOCOL_F(min, 3);
  6004. SERIAL_PROTOCOLPGM(" Max: ");
  6005. SERIAL_PROTOCOL_F(max, 3);
  6006. SERIAL_PROTOCOLPGM(" Range: ");
  6007. SERIAL_PROTOCOL_F(max-min, 3);
  6008. SERIAL_EOL();
  6009. }
  6010. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  6011. SERIAL_PROTOCOL_F(sigma, 6);
  6012. SERIAL_EOL();
  6013. SERIAL_EOL();
  6014. }
  6015. clean_up_after_endstop_or_probe_move();
  6016. // Re-enable bed level correction if it had been on
  6017. #if HAS_LEVELING
  6018. set_bed_leveling_enabled(was_enabled);
  6019. #endif
  6020. report_current_position();
  6021. }
  6022. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6023. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  6024. inline void gcode_M49() {
  6025. ubl.g26_debug_flag ^= true;
  6026. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  6027. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  6028. }
  6029. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  6030. /**
  6031. * M75: Start print timer
  6032. */
  6033. inline void gcode_M75() { print_job_timer.start(); }
  6034. /**
  6035. * M76: Pause print timer
  6036. */
  6037. inline void gcode_M76() { print_job_timer.pause(); }
  6038. /**
  6039. * M77: Stop print timer
  6040. */
  6041. inline void gcode_M77() { print_job_timer.stop(); }
  6042. #if ENABLED(PRINTCOUNTER)
  6043. /**
  6044. * M78: Show print statistics
  6045. */
  6046. inline void gcode_M78() {
  6047. // "M78 S78" will reset the statistics
  6048. if (parser.intval('S') == 78)
  6049. print_job_timer.initStats();
  6050. else
  6051. print_job_timer.showStats();
  6052. }
  6053. #endif
  6054. /**
  6055. * M104: Set hot end temperature
  6056. */
  6057. inline void gcode_M104() {
  6058. if (get_target_extruder_from_command(104)) return;
  6059. if (DEBUGGING(DRYRUN)) return;
  6060. #if ENABLED(SINGLENOZZLE)
  6061. if (target_extruder != active_extruder) return;
  6062. #endif
  6063. if (parser.seenval('S')) {
  6064. const int16_t temp = parser.value_celsius();
  6065. thermalManager.setTargetHotend(temp, target_extruder);
  6066. #if ENABLED(DUAL_X_CARRIAGE)
  6067. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6068. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6069. #endif
  6070. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6071. /**
  6072. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  6073. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  6074. * standby mode, for instance in a dual extruder setup, without affecting
  6075. * the running print timer.
  6076. */
  6077. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6078. print_job_timer.stop();
  6079. LCD_MESSAGEPGM(WELCOME_MSG);
  6080. }
  6081. #endif
  6082. if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
  6083. lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6084. }
  6085. #if ENABLED(AUTOTEMP)
  6086. planner.autotemp_M104_M109();
  6087. #endif
  6088. }
  6089. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6090. void print_heater_state(const float &c, const float &t,
  6091. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6092. const float r,
  6093. #endif
  6094. const int8_t e=-2
  6095. ) {
  6096. #if !(HAS_TEMP_BED && HAS_TEMP_HOTEND) && HOTENDS <= 1
  6097. UNUSED(e);
  6098. #endif
  6099. SERIAL_PROTOCOLCHAR(' ');
  6100. SERIAL_PROTOCOLCHAR(
  6101. #if HAS_TEMP_BED && HAS_TEMP_HOTEND
  6102. e == -1 ? 'B' : 'T'
  6103. #elif HAS_TEMP_HOTEND
  6104. 'T'
  6105. #else
  6106. 'B'
  6107. #endif
  6108. );
  6109. #if HOTENDS > 1
  6110. if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e);
  6111. #endif
  6112. SERIAL_PROTOCOLCHAR(':');
  6113. SERIAL_PROTOCOL(c);
  6114. SERIAL_PROTOCOLPAIR(" /" , t);
  6115. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6116. SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR);
  6117. SERIAL_PROTOCOLCHAR(')');
  6118. #endif
  6119. }
  6120. void print_heaterstates() {
  6121. #if HAS_TEMP_HOTEND
  6122. print_heater_state(thermalManager.degHotend(target_extruder), thermalManager.degTargetHotend(target_extruder)
  6123. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6124. , thermalManager.rawHotendTemp(target_extruder)
  6125. #endif
  6126. );
  6127. #endif
  6128. #if HAS_TEMP_BED
  6129. print_heater_state(thermalManager.degBed(), thermalManager.degTargetBed(),
  6130. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6131. thermalManager.rawBedTemp(),
  6132. #endif
  6133. -1 // BED
  6134. );
  6135. #endif
  6136. #if HOTENDS > 1
  6137. HOTEND_LOOP() print_heater_state(thermalManager.degHotend(e), thermalManager.degTargetHotend(e),
  6138. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6139. thermalManager.rawHotendTemp(e),
  6140. #endif
  6141. e
  6142. );
  6143. #endif
  6144. SERIAL_PROTOCOLPGM(" @:");
  6145. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  6146. #if HAS_TEMP_BED
  6147. SERIAL_PROTOCOLPGM(" B@:");
  6148. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  6149. #endif
  6150. #if HOTENDS > 1
  6151. HOTEND_LOOP() {
  6152. SERIAL_PROTOCOLPAIR(" @", e);
  6153. SERIAL_PROTOCOLCHAR(':');
  6154. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  6155. }
  6156. #endif
  6157. }
  6158. #endif
  6159. /**
  6160. * M105: Read hot end and bed temperature
  6161. */
  6162. inline void gcode_M105() {
  6163. if (get_target_extruder_from_command(105)) return;
  6164. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6165. SERIAL_PROTOCOLPGM(MSG_OK);
  6166. print_heaterstates();
  6167. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  6168. SERIAL_ERROR_START();
  6169. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  6170. #endif
  6171. SERIAL_EOL();
  6172. }
  6173. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  6174. static uint8_t auto_report_temp_interval;
  6175. static millis_t next_temp_report_ms;
  6176. /**
  6177. * M155: Set temperature auto-report interval. M155 S<seconds>
  6178. */
  6179. inline void gcode_M155() {
  6180. if (parser.seenval('S')) {
  6181. auto_report_temp_interval = parser.value_byte();
  6182. NOMORE(auto_report_temp_interval, 60);
  6183. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6184. }
  6185. }
  6186. inline void auto_report_temperatures() {
  6187. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  6188. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6189. print_heaterstates();
  6190. SERIAL_EOL();
  6191. }
  6192. }
  6193. #endif // AUTO_REPORT_TEMPERATURES
  6194. #if FAN_COUNT > 0
  6195. /**
  6196. * M106: Set Fan Speed
  6197. *
  6198. * S<int> Speed between 0-255
  6199. * P<index> Fan index, if more than one fan
  6200. */
  6201. inline void gcode_M106() {
  6202. uint16_t s = parser.ushortval('S', 255);
  6203. NOMORE(s, 255);
  6204. const uint8_t p = parser.byteval('P', 0);
  6205. if (p < FAN_COUNT) fanSpeeds[p] = s;
  6206. }
  6207. /**
  6208. * M107: Fan Off
  6209. */
  6210. inline void gcode_M107() {
  6211. const uint16_t p = parser.ushortval('P');
  6212. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  6213. }
  6214. #endif // FAN_COUNT > 0
  6215. #if DISABLED(EMERGENCY_PARSER)
  6216. /**
  6217. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  6218. */
  6219. inline void gcode_M108() { wait_for_heatup = false; }
  6220. /**
  6221. * M112: Emergency Stop
  6222. */
  6223. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  6224. /**
  6225. * M410: Quickstop - Abort all planned moves
  6226. *
  6227. * This will stop the carriages mid-move, so most likely they
  6228. * will be out of sync with the stepper position after this.
  6229. */
  6230. inline void gcode_M410() { quickstop_stepper(); }
  6231. #endif
  6232. /**
  6233. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  6234. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  6235. */
  6236. #ifndef MIN_COOLING_SLOPE_DEG
  6237. #define MIN_COOLING_SLOPE_DEG 1.50
  6238. #endif
  6239. #ifndef MIN_COOLING_SLOPE_TIME
  6240. #define MIN_COOLING_SLOPE_TIME 60
  6241. #endif
  6242. inline void gcode_M109() {
  6243. if (get_target_extruder_from_command(109)) return;
  6244. if (DEBUGGING(DRYRUN)) return;
  6245. #if ENABLED(SINGLENOZZLE)
  6246. if (target_extruder != active_extruder) return;
  6247. #endif
  6248. const bool no_wait_for_cooling = parser.seenval('S');
  6249. if (no_wait_for_cooling || parser.seenval('R')) {
  6250. const int16_t temp = parser.value_celsius();
  6251. thermalManager.setTargetHotend(temp, target_extruder);
  6252. #if ENABLED(DUAL_X_CARRIAGE)
  6253. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6254. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6255. #endif
  6256. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6257. /**
  6258. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  6259. * standby mode, (e.g., in a dual extruder setup) without affecting
  6260. * the running print timer.
  6261. */
  6262. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6263. print_job_timer.stop();
  6264. LCD_MESSAGEPGM(WELCOME_MSG);
  6265. }
  6266. else
  6267. print_job_timer.start();
  6268. #endif
  6269. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6270. }
  6271. else return;
  6272. #if ENABLED(AUTOTEMP)
  6273. planner.autotemp_M104_M109();
  6274. #endif
  6275. #if TEMP_RESIDENCY_TIME > 0
  6276. millis_t residency_start_ms = 0;
  6277. // Loop until the temperature has stabilized
  6278. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  6279. #else
  6280. // Loop until the temperature is very close target
  6281. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  6282. #endif
  6283. float target_temp = -1.0, old_temp = 9999.0;
  6284. bool wants_to_cool = false;
  6285. wait_for_heatup = true;
  6286. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6287. #if DISABLED(BUSY_WHILE_HEATING)
  6288. KEEPALIVE_STATE(NOT_BUSY);
  6289. #endif
  6290. #if ENABLED(PRINTER_EVENT_LEDS)
  6291. const float start_temp = thermalManager.degHotend(target_extruder);
  6292. uint8_t old_blue = 0;
  6293. #endif
  6294. do {
  6295. // Target temperature might be changed during the loop
  6296. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  6297. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  6298. target_temp = thermalManager.degTargetHotend(target_extruder);
  6299. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6300. if (no_wait_for_cooling && wants_to_cool) break;
  6301. }
  6302. now = millis();
  6303. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  6304. next_temp_ms = now + 1000UL;
  6305. print_heaterstates();
  6306. #if TEMP_RESIDENCY_TIME > 0
  6307. SERIAL_PROTOCOLPGM(" W:");
  6308. if (residency_start_ms)
  6309. SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6310. else
  6311. SERIAL_PROTOCOLCHAR('?');
  6312. #endif
  6313. SERIAL_EOL();
  6314. }
  6315. idle();
  6316. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6317. const float temp = thermalManager.degHotend(target_extruder);
  6318. #if ENABLED(PRINTER_EVENT_LEDS)
  6319. // Gradually change LED strip from violet to red as nozzle heats up
  6320. if (!wants_to_cool) {
  6321. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  6322. if (blue != old_blue) {
  6323. old_blue = blue;
  6324. set_led_color(255, 0, blue
  6325. #if ENABLED(NEOPIXEL_RGBW_LED)
  6326. , 0, true
  6327. #endif
  6328. );
  6329. }
  6330. }
  6331. #endif
  6332. #if TEMP_RESIDENCY_TIME > 0
  6333. const float temp_diff = FABS(target_temp - temp);
  6334. if (!residency_start_ms) {
  6335. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  6336. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  6337. }
  6338. else if (temp_diff > TEMP_HYSTERESIS) {
  6339. // Restart the timer whenever the temperature falls outside the hysteresis.
  6340. residency_start_ms = now;
  6341. }
  6342. #endif
  6343. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  6344. if (wants_to_cool) {
  6345. // break after MIN_COOLING_SLOPE_TIME seconds
  6346. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  6347. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6348. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  6349. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  6350. old_temp = temp;
  6351. }
  6352. }
  6353. } while (wait_for_heatup && TEMP_CONDITIONS);
  6354. if (wait_for_heatup) {
  6355. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  6356. #if ENABLED(PRINTER_EVENT_LEDS)
  6357. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED)
  6358. set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
  6359. #else
  6360. set_led_color(255, 255, 255); // Set LEDs All On
  6361. #endif
  6362. #endif
  6363. }
  6364. #if DISABLED(BUSY_WHILE_HEATING)
  6365. KEEPALIVE_STATE(IN_HANDLER);
  6366. #endif
  6367. }
  6368. #if HAS_TEMP_BED
  6369. #ifndef MIN_COOLING_SLOPE_DEG_BED
  6370. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  6371. #endif
  6372. #ifndef MIN_COOLING_SLOPE_TIME_BED
  6373. #define MIN_COOLING_SLOPE_TIME_BED 60
  6374. #endif
  6375. /**
  6376. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  6377. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  6378. */
  6379. inline void gcode_M190() {
  6380. if (DEBUGGING(DRYRUN)) return;
  6381. LCD_MESSAGEPGM(MSG_BED_HEATING);
  6382. const bool no_wait_for_cooling = parser.seenval('S');
  6383. if (no_wait_for_cooling || parser.seenval('R')) {
  6384. thermalManager.setTargetBed(parser.value_celsius());
  6385. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6386. if (parser.value_celsius() > BED_MINTEMP)
  6387. print_job_timer.start();
  6388. #endif
  6389. }
  6390. else return;
  6391. #if TEMP_BED_RESIDENCY_TIME > 0
  6392. millis_t residency_start_ms = 0;
  6393. // Loop until the temperature has stabilized
  6394. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  6395. #else
  6396. // Loop until the temperature is very close target
  6397. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  6398. #endif
  6399. float target_temp = -1.0, old_temp = 9999.0;
  6400. bool wants_to_cool = false;
  6401. wait_for_heatup = true;
  6402. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6403. #if DISABLED(BUSY_WHILE_HEATING)
  6404. KEEPALIVE_STATE(NOT_BUSY);
  6405. #endif
  6406. target_extruder = active_extruder; // for print_heaterstates
  6407. #if ENABLED(PRINTER_EVENT_LEDS)
  6408. const float start_temp = thermalManager.degBed();
  6409. uint8_t old_red = 255;
  6410. #endif
  6411. do {
  6412. // Target temperature might be changed during the loop
  6413. if (target_temp != thermalManager.degTargetBed()) {
  6414. wants_to_cool = thermalManager.isCoolingBed();
  6415. target_temp = thermalManager.degTargetBed();
  6416. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6417. if (no_wait_for_cooling && wants_to_cool) break;
  6418. }
  6419. now = millis();
  6420. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  6421. next_temp_ms = now + 1000UL;
  6422. print_heaterstates();
  6423. #if TEMP_BED_RESIDENCY_TIME > 0
  6424. SERIAL_PROTOCOLPGM(" W:");
  6425. if (residency_start_ms)
  6426. SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6427. else
  6428. SERIAL_PROTOCOLCHAR('?');
  6429. #endif
  6430. SERIAL_EOL();
  6431. }
  6432. idle();
  6433. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6434. const float temp = thermalManager.degBed();
  6435. #if ENABLED(PRINTER_EVENT_LEDS)
  6436. // Gradually change LED strip from blue to violet as bed heats up
  6437. if (!wants_to_cool) {
  6438. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  6439. if (red != old_red) {
  6440. old_red = red;
  6441. set_led_color(red, 0, 255
  6442. #if ENABLED(NEOPIXEL_RGBW_LED)
  6443. , 0, true
  6444. #endif
  6445. );
  6446. }
  6447. }
  6448. #endif
  6449. #if TEMP_BED_RESIDENCY_TIME > 0
  6450. const float temp_diff = FABS(target_temp - temp);
  6451. if (!residency_start_ms) {
  6452. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  6453. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  6454. }
  6455. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  6456. // Restart the timer whenever the temperature falls outside the hysteresis.
  6457. residency_start_ms = now;
  6458. }
  6459. #endif // TEMP_BED_RESIDENCY_TIME > 0
  6460. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  6461. if (wants_to_cool) {
  6462. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  6463. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  6464. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6465. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  6466. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  6467. old_temp = temp;
  6468. }
  6469. }
  6470. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  6471. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  6472. #if DISABLED(BUSY_WHILE_HEATING)
  6473. KEEPALIVE_STATE(IN_HANDLER);
  6474. #endif
  6475. }
  6476. #endif // HAS_TEMP_BED
  6477. /**
  6478. * M110: Set Current Line Number
  6479. */
  6480. inline void gcode_M110() {
  6481. if (parser.seenval('N')) gcode_LastN = parser.value_long();
  6482. }
  6483. /**
  6484. * M111: Set the debug level
  6485. */
  6486. inline void gcode_M111() {
  6487. if (parser.seen('S')) marlin_debug_flags = parser.byteval('S');
  6488. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO,
  6489. str_debug_2[] PROGMEM = MSG_DEBUG_INFO,
  6490. str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS,
  6491. str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN,
  6492. str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION
  6493. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6494. , str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING
  6495. #endif
  6496. ;
  6497. const static char* const debug_strings[] PROGMEM = {
  6498. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
  6499. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6500. , str_debug_32
  6501. #endif
  6502. };
  6503. SERIAL_ECHO_START();
  6504. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  6505. if (marlin_debug_flags) {
  6506. uint8_t comma = 0;
  6507. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  6508. if (TEST(marlin_debug_flags, i)) {
  6509. if (comma++) SERIAL_CHAR(',');
  6510. serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
  6511. }
  6512. }
  6513. }
  6514. else {
  6515. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  6516. }
  6517. SERIAL_EOL();
  6518. }
  6519. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6520. /**
  6521. * M113: Get or set Host Keepalive interval (0 to disable)
  6522. *
  6523. * S<seconds> Optional. Set the keepalive interval.
  6524. */
  6525. inline void gcode_M113() {
  6526. if (parser.seenval('S')) {
  6527. host_keepalive_interval = parser.value_byte();
  6528. NOMORE(host_keepalive_interval, 60);
  6529. }
  6530. else {
  6531. SERIAL_ECHO_START();
  6532. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  6533. }
  6534. }
  6535. #endif
  6536. #if ENABLED(BARICUDA)
  6537. #if HAS_HEATER_1
  6538. /**
  6539. * M126: Heater 1 valve open
  6540. */
  6541. inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
  6542. /**
  6543. * M127: Heater 1 valve close
  6544. */
  6545. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  6546. #endif
  6547. #if HAS_HEATER_2
  6548. /**
  6549. * M128: Heater 2 valve open
  6550. */
  6551. inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
  6552. /**
  6553. * M129: Heater 2 valve close
  6554. */
  6555. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  6556. #endif
  6557. #endif // BARICUDA
  6558. /**
  6559. * M140: Set bed temperature
  6560. */
  6561. inline void gcode_M140() {
  6562. if (DEBUGGING(DRYRUN)) return;
  6563. if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
  6564. }
  6565. #if ENABLED(ULTIPANEL)
  6566. /**
  6567. * M145: Set the heatup state for a material in the LCD menu
  6568. *
  6569. * S<material> (0=PLA, 1=ABS)
  6570. * H<hotend temp>
  6571. * B<bed temp>
  6572. * F<fan speed>
  6573. */
  6574. inline void gcode_M145() {
  6575. const uint8_t material = (uint8_t)parser.intval('S');
  6576. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  6577. SERIAL_ERROR_START();
  6578. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  6579. }
  6580. else {
  6581. int v;
  6582. if (parser.seenval('H')) {
  6583. v = parser.value_int();
  6584. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  6585. }
  6586. if (parser.seenval('F')) {
  6587. v = parser.value_int();
  6588. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  6589. }
  6590. #if TEMP_SENSOR_BED != 0
  6591. if (parser.seenval('B')) {
  6592. v = parser.value_int();
  6593. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  6594. }
  6595. #endif
  6596. }
  6597. }
  6598. #endif // ULTIPANEL
  6599. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6600. /**
  6601. * M149: Set temperature units
  6602. */
  6603. inline void gcode_M149() {
  6604. if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
  6605. else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
  6606. else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
  6607. }
  6608. #endif
  6609. #if HAS_POWER_SWITCH
  6610. /**
  6611. * M80 : Turn on the Power Supply
  6612. * M80 S : Report the current state and exit
  6613. */
  6614. inline void gcode_M80() {
  6615. // S: Report the current power supply state and exit
  6616. if (parser.seen('S')) {
  6617. serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
  6618. return;
  6619. }
  6620. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
  6621. /**
  6622. * If you have a switch on suicide pin, this is useful
  6623. * if you want to start another print with suicide feature after
  6624. * a print without suicide...
  6625. */
  6626. #if HAS_SUICIDE
  6627. OUT_WRITE(SUICIDE_PIN, HIGH);
  6628. #endif
  6629. #if ENABLED(HAVE_TMC2130)
  6630. delay(100);
  6631. tmc2130_init(); // Settings only stick when the driver has power
  6632. #endif
  6633. powersupply_on = true;
  6634. #if ENABLED(ULTIPANEL)
  6635. LCD_MESSAGEPGM(WELCOME_MSG);
  6636. #endif
  6637. }
  6638. #endif // HAS_POWER_SWITCH
  6639. /**
  6640. * M81: Turn off Power, including Power Supply, if there is one.
  6641. *
  6642. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  6643. */
  6644. inline void gcode_M81() {
  6645. thermalManager.disable_all_heaters();
  6646. stepper.finish_and_disable();
  6647. #if FAN_COUNT > 0
  6648. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  6649. #if ENABLED(PROBING_FANS_OFF)
  6650. fans_paused = false;
  6651. ZERO(paused_fanSpeeds);
  6652. #endif
  6653. #endif
  6654. safe_delay(1000); // Wait 1 second before switching off
  6655. #if HAS_SUICIDE
  6656. stepper.synchronize();
  6657. suicide();
  6658. #elif HAS_POWER_SWITCH
  6659. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  6660. powersupply_on = false;
  6661. #endif
  6662. #if ENABLED(ULTIPANEL)
  6663. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  6664. #endif
  6665. }
  6666. /**
  6667. * M82: Set E codes absolute (default)
  6668. */
  6669. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  6670. /**
  6671. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  6672. */
  6673. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  6674. /**
  6675. * M18, M84: Disable stepper motors
  6676. */
  6677. inline void gcode_M18_M84() {
  6678. if (parser.seenval('S')) {
  6679. stepper_inactive_time = parser.value_millis_from_seconds();
  6680. }
  6681. else {
  6682. bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
  6683. if (all_axis) {
  6684. stepper.finish_and_disable();
  6685. }
  6686. else {
  6687. stepper.synchronize();
  6688. if (parser.seen('X')) disable_X();
  6689. if (parser.seen('Y')) disable_Y();
  6690. if (parser.seen('Z')) disable_Z();
  6691. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS
  6692. if (parser.seen('E')) disable_e_steppers();
  6693. #endif
  6694. }
  6695. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  6696. ubl_lcd_map_control = defer_return_to_status = false;
  6697. #endif
  6698. }
  6699. }
  6700. /**
  6701. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  6702. */
  6703. inline void gcode_M85() {
  6704. if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
  6705. }
  6706. /**
  6707. * Multi-stepper support for M92, M201, M203
  6708. */
  6709. #if ENABLED(DISTINCT_E_FACTORS)
  6710. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  6711. #define TARGET_EXTRUDER target_extruder
  6712. #else
  6713. #define GET_TARGET_EXTRUDER(CMD) NOOP
  6714. #define TARGET_EXTRUDER 0
  6715. #endif
  6716. /**
  6717. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  6718. * (Follows the same syntax as G92)
  6719. *
  6720. * With multiple extruders use T to specify which one.
  6721. */
  6722. inline void gcode_M92() {
  6723. GET_TARGET_EXTRUDER(92);
  6724. LOOP_XYZE(i) {
  6725. if (parser.seen(axis_codes[i])) {
  6726. if (i == E_AXIS) {
  6727. const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
  6728. if (value < 20.0) {
  6729. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  6730. planner.max_jerk[E_AXIS] *= factor;
  6731. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  6732. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  6733. }
  6734. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  6735. }
  6736. else {
  6737. planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
  6738. }
  6739. }
  6740. }
  6741. planner.refresh_positioning();
  6742. }
  6743. /**
  6744. * Output the current position to serial
  6745. */
  6746. void report_current_position() {
  6747. SERIAL_PROTOCOLPGM("X:");
  6748. SERIAL_PROTOCOL(current_position[X_AXIS]);
  6749. SERIAL_PROTOCOLPGM(" Y:");
  6750. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  6751. SERIAL_PROTOCOLPGM(" Z:");
  6752. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  6753. SERIAL_PROTOCOLPGM(" E:");
  6754. SERIAL_PROTOCOL(current_position[E_AXIS]);
  6755. stepper.report_positions();
  6756. #if IS_SCARA
  6757. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  6758. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  6759. SERIAL_EOL();
  6760. #endif
  6761. }
  6762. #ifdef M114_DETAIL
  6763. void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) {
  6764. char str[12];
  6765. for (uint8_t i = 0; i < n; i++) {
  6766. SERIAL_CHAR(' ');
  6767. SERIAL_CHAR(axis_codes[i]);
  6768. SERIAL_CHAR(':');
  6769. SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
  6770. }
  6771. SERIAL_EOL();
  6772. }
  6773. inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); }
  6774. void report_current_position_detail() {
  6775. stepper.synchronize();
  6776. SERIAL_PROTOCOLPGM("\nLogical:");
  6777. report_xyze(current_position);
  6778. SERIAL_PROTOCOLPGM("Raw: ");
  6779. const float raw[XYZ] = { RAW_X_POSITION(current_position[X_AXIS]), RAW_Y_POSITION(current_position[Y_AXIS]), RAW_Z_POSITION(current_position[Z_AXIS]) };
  6780. report_xyz(raw);
  6781. SERIAL_PROTOCOLPGM("Leveled:");
  6782. float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  6783. planner.apply_leveling(leveled);
  6784. report_xyz(leveled);
  6785. SERIAL_PROTOCOLPGM("UnLevel:");
  6786. float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
  6787. planner.unapply_leveling(unleveled);
  6788. report_xyz(unleveled);
  6789. #if IS_KINEMATIC
  6790. #if IS_SCARA
  6791. SERIAL_PROTOCOLPGM("ScaraK: ");
  6792. #else
  6793. SERIAL_PROTOCOLPGM("DeltaK: ");
  6794. #endif
  6795. inverse_kinematics(leveled); // writes delta[]
  6796. report_xyz(delta);
  6797. #endif
  6798. SERIAL_PROTOCOLPGM("Stepper:");
  6799. const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) };
  6800. report_xyze(step_count, 4, 0);
  6801. #if IS_SCARA
  6802. const float deg[XYZ] = {
  6803. stepper.get_axis_position_degrees(A_AXIS),
  6804. stepper.get_axis_position_degrees(B_AXIS)
  6805. };
  6806. SERIAL_PROTOCOLPGM("Degrees:");
  6807. report_xyze(deg, 2);
  6808. #endif
  6809. SERIAL_PROTOCOLPGM("FromStp:");
  6810. get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
  6811. const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
  6812. report_xyze(from_steppers);
  6813. const float diff[XYZE] = {
  6814. from_steppers[X_AXIS] - leveled[X_AXIS],
  6815. from_steppers[Y_AXIS] - leveled[Y_AXIS],
  6816. from_steppers[Z_AXIS] - leveled[Z_AXIS],
  6817. from_steppers[E_AXIS] - current_position[E_AXIS]
  6818. };
  6819. SERIAL_PROTOCOLPGM("Differ: ");
  6820. report_xyze(diff);
  6821. }
  6822. #endif // M114_DETAIL
  6823. /**
  6824. * M114: Report current position to host
  6825. */
  6826. inline void gcode_M114() {
  6827. #ifdef M114_DETAIL
  6828. if (parser.seen('D')) {
  6829. report_current_position_detail();
  6830. return;
  6831. }
  6832. #endif
  6833. stepper.synchronize();
  6834. report_current_position();
  6835. }
  6836. /**
  6837. * M115: Capabilities string
  6838. */
  6839. inline void gcode_M115() {
  6840. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  6841. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  6842. // EEPROM (M500, M501)
  6843. #if ENABLED(EEPROM_SETTINGS)
  6844. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  6845. #else
  6846. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  6847. #endif
  6848. // AUTOREPORT_TEMP (M155)
  6849. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  6850. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  6851. #else
  6852. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  6853. #endif
  6854. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  6855. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  6856. // Print Job timer M75, M76, M77
  6857. SERIAL_PROTOCOLLNPGM("Cap:PRINT_JOB:1");
  6858. // AUTOLEVEL (G29)
  6859. #if HAS_ABL
  6860. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  6861. #else
  6862. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  6863. #endif
  6864. // Z_PROBE (G30)
  6865. #if HAS_BED_PROBE
  6866. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  6867. #else
  6868. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  6869. #endif
  6870. // MESH_REPORT (M420 V)
  6871. #if HAS_LEVELING
  6872. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  6873. #else
  6874. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  6875. #endif
  6876. // SOFTWARE_POWER (M80, M81)
  6877. #if HAS_POWER_SWITCH
  6878. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  6879. #else
  6880. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  6881. #endif
  6882. // CASE LIGHTS (M355)
  6883. #if HAS_CASE_LIGHT
  6884. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  6885. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  6886. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
  6887. }
  6888. else
  6889. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  6890. #else
  6891. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  6892. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  6893. #endif
  6894. // EMERGENCY_PARSER (M108, M112, M410)
  6895. #if ENABLED(EMERGENCY_PARSER)
  6896. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  6897. #else
  6898. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  6899. #endif
  6900. #endif // EXTENDED_CAPABILITIES_REPORT
  6901. }
  6902. /**
  6903. * M117: Set LCD Status Message
  6904. */
  6905. inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
  6906. /**
  6907. * M118: Display a message in the host console.
  6908. *
  6909. * A Append '// ' for an action command, as in OctoPrint
  6910. * E Have the host 'echo:' the text
  6911. */
  6912. inline void gcode_M118() {
  6913. if (parser.boolval('E')) SERIAL_ECHO_START();
  6914. if (parser.boolval('A')) SERIAL_ECHOPGM("// ");
  6915. SERIAL_ECHOLN(parser.string_arg);
  6916. }
  6917. /**
  6918. * M119: Output endstop states to serial output
  6919. */
  6920. inline void gcode_M119() { endstops.M119(); }
  6921. /**
  6922. * M120: Enable endstops and set non-homing endstop state to "enabled"
  6923. */
  6924. inline void gcode_M120() { endstops.enable_globally(true); }
  6925. /**
  6926. * M121: Disable endstops and set non-homing endstop state to "disabled"
  6927. */
  6928. inline void gcode_M121() { endstops.enable_globally(false); }
  6929. #if ENABLED(PARK_HEAD_ON_PAUSE)
  6930. /**
  6931. * M125: Store current position and move to filament change position.
  6932. * Called on pause (by M25) to prevent material leaking onto the
  6933. * object. On resume (M24) the head will be moved back and the
  6934. * print will resume.
  6935. *
  6936. * If Marlin is compiled without SD Card support, M125 can be
  6937. * used directly to pause the print and move to park position,
  6938. * resuming with a button click or M108.
  6939. *
  6940. * L = override retract length
  6941. * X = override X
  6942. * Y = override Y
  6943. * Z = override Z raise
  6944. */
  6945. inline void gcode_M125() {
  6946. // Initial retract before move to filament change position
  6947. const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  6948. #ifdef PAUSE_PARK_RETRACT_LENGTH
  6949. - (PAUSE_PARK_RETRACT_LENGTH)
  6950. #endif
  6951. ;
  6952. // Lift Z axis
  6953. const float z_lift = parser.linearval('Z')
  6954. #ifdef PAUSE_PARK_Z_ADD
  6955. + PAUSE_PARK_Z_ADD
  6956. #endif
  6957. ;
  6958. // Move XY axes to filament change position or given position
  6959. const float x_pos = parser.linearval('X')
  6960. #ifdef PAUSE_PARK_X_POS
  6961. + PAUSE_PARK_X_POS
  6962. #endif
  6963. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6964. + (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
  6965. #endif
  6966. ;
  6967. const float y_pos = parser.linearval('Y')
  6968. #ifdef PAUSE_PARK_Y_POS
  6969. + PAUSE_PARK_Y_POS
  6970. #endif
  6971. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6972. + (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
  6973. #endif
  6974. ;
  6975. #if DISABLED(SDSUPPORT)
  6976. const bool job_running = print_job_timer.isRunning();
  6977. #endif
  6978. if (pause_print(retract, z_lift, x_pos, y_pos)) {
  6979. #if DISABLED(SDSUPPORT)
  6980. // Wait for lcd click or M108
  6981. wait_for_filament_reload();
  6982. // Return to print position and continue
  6983. resume_print();
  6984. if (job_running) print_job_timer.start();
  6985. #endif
  6986. }
  6987. }
  6988. #endif // PARK_HEAD_ON_PAUSE
  6989. #if HAS_COLOR_LEDS
  6990. /**
  6991. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  6992. *
  6993. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  6994. *
  6995. * Examples:
  6996. *
  6997. * M150 R255 ; Turn LED red
  6998. * M150 R255 U127 ; Turn LED orange (PWM only)
  6999. * M150 ; Turn LED off
  7000. * M150 R U B ; Turn LED white
  7001. * M150 W ; Turn LED white using a white LED
  7002. *
  7003. */
  7004. inline void gcode_M150() {
  7005. set_led_color(
  7006. parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7007. parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7008. parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  7009. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED)
  7010. , parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  7011. #endif
  7012. );
  7013. }
  7014. #endif // HAS_COLOR_LEDS
  7015. /**
  7016. * M200: Set filament diameter and set E axis units to cubic units
  7017. *
  7018. * T<extruder> - Optional extruder number. Current extruder if omitted.
  7019. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  7020. */
  7021. inline void gcode_M200() {
  7022. if (get_target_extruder_from_command(200)) return;
  7023. if (parser.seen('D')) {
  7024. // setting any extruder filament size disables volumetric on the assumption that
  7025. // slicers either generate in extruder values as cubic mm or as as filament feeds
  7026. // for all extruders
  7027. volumetric_enabled = (parser.value_linear_units() != 0.0);
  7028. if (volumetric_enabled) {
  7029. filament_size[target_extruder] = parser.value_linear_units();
  7030. // make sure all extruders have some sane value for the filament size
  7031. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7032. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  7033. }
  7034. }
  7035. calculate_volumetric_multipliers();
  7036. }
  7037. /**
  7038. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  7039. *
  7040. * With multiple extruders use T to specify which one.
  7041. */
  7042. inline void gcode_M201() {
  7043. GET_TARGET_EXTRUDER(201);
  7044. LOOP_XYZE(i) {
  7045. if (parser.seen(axis_codes[i])) {
  7046. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7047. planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
  7048. }
  7049. }
  7050. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  7051. planner.reset_acceleration_rates();
  7052. }
  7053. #if 0 // Not used for Sprinter/grbl gen6
  7054. inline void gcode_M202() {
  7055. LOOP_XYZE(i) {
  7056. if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  7057. }
  7058. }
  7059. #endif
  7060. /**
  7061. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  7062. *
  7063. * With multiple extruders use T to specify which one.
  7064. */
  7065. inline void gcode_M203() {
  7066. GET_TARGET_EXTRUDER(203);
  7067. LOOP_XYZE(i)
  7068. if (parser.seen(axis_codes[i])) {
  7069. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7070. planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
  7071. }
  7072. }
  7073. /**
  7074. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  7075. *
  7076. * P = Printing moves
  7077. * R = Retract only (no X, Y, Z) moves
  7078. * T = Travel (non printing) moves
  7079. *
  7080. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  7081. */
  7082. inline void gcode_M204() {
  7083. if (parser.seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  7084. planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
  7085. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  7086. }
  7087. if (parser.seen('P')) {
  7088. planner.acceleration = parser.value_linear_units();
  7089. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  7090. }
  7091. if (parser.seen('R')) {
  7092. planner.retract_acceleration = parser.value_linear_units();
  7093. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  7094. }
  7095. if (parser.seen('T')) {
  7096. planner.travel_acceleration = parser.value_linear_units();
  7097. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  7098. }
  7099. }
  7100. /**
  7101. * M205: Set Advanced Settings
  7102. *
  7103. * S = Min Feed Rate (units/s)
  7104. * T = Min Travel Feed Rate (units/s)
  7105. * B = Min Segment Time (µs)
  7106. * X = Max X Jerk (units/sec^2)
  7107. * Y = Max Y Jerk (units/sec^2)
  7108. * Z = Max Z Jerk (units/sec^2)
  7109. * E = Max E Jerk (units/sec^2)
  7110. */
  7111. inline void gcode_M205() {
  7112. if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
  7113. if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
  7114. if (parser.seen('B')) planner.min_segment_time = parser.value_millis();
  7115. if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
  7116. if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
  7117. if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
  7118. if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
  7119. }
  7120. #if HAS_M206_COMMAND
  7121. /**
  7122. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  7123. *
  7124. * *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
  7125. * *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
  7126. * *** In the 2.0 release, it will simply be disabled by default.
  7127. */
  7128. inline void gcode_M206() {
  7129. LOOP_XYZ(i)
  7130. if (parser.seen(axis_codes[i]))
  7131. set_home_offset((AxisEnum)i, parser.value_linear_units());
  7132. #if ENABLED(MORGAN_SCARA)
  7133. if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_linear_units()); // Theta
  7134. if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_linear_units()); // Psi
  7135. #endif
  7136. SYNC_PLAN_POSITION_KINEMATIC();
  7137. report_current_position();
  7138. }
  7139. #endif // HAS_M206_COMMAND
  7140. #if ENABLED(DELTA)
  7141. /**
  7142. * M665: Set delta configurations
  7143. *
  7144. * H = delta height
  7145. * L = diagonal rod
  7146. * R = delta radius
  7147. * S = segments per second
  7148. * B = delta calibration radius
  7149. * X = Alpha (Tower 1) angle trim
  7150. * Y = Beta (Tower 2) angle trim
  7151. * Z = Rotate A and B by this angle
  7152. */
  7153. inline void gcode_M665() {
  7154. if (parser.seen('H')) {
  7155. home_offset[Z_AXIS] = parser.value_linear_units() - DELTA_HEIGHT;
  7156. update_software_endstops(Z_AXIS);
  7157. }
  7158. if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
  7159. if (parser.seen('R')) delta_radius = parser.value_linear_units();
  7160. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7161. if (parser.seen('B')) delta_calibration_radius = parser.value_float();
  7162. if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
  7163. if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
  7164. if (parser.seen('Z')) { // rotate all 3 axis for Z = 0
  7165. delta_tower_angle_trim[A_AXIS] -= parser.value_float();
  7166. delta_tower_angle_trim[B_AXIS] -= parser.value_float();
  7167. }
  7168. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  7169. }
  7170. /**
  7171. * M666: Set delta endstop adjustment
  7172. */
  7173. inline void gcode_M666() {
  7174. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7175. if (DEBUGGING(LEVELING)) {
  7176. SERIAL_ECHOLNPGM(">>> gcode_M666");
  7177. }
  7178. #endif
  7179. LOOP_XYZ(i) {
  7180. if (parser.seen(axis_codes[i])) {
  7181. endstop_adj[i] = parser.value_linear_units();
  7182. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7183. if (DEBUGGING(LEVELING)) {
  7184. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  7185. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  7186. }
  7187. #endif
  7188. }
  7189. }
  7190. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7191. if (DEBUGGING(LEVELING)) {
  7192. SERIAL_ECHOLNPGM("<<< gcode_M666");
  7193. }
  7194. #endif
  7195. // normalize endstops so all are <=0; set the residue to delta height
  7196. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  7197. home_offset[Z_AXIS] -= z_temp;
  7198. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  7199. }
  7200. #elif IS_SCARA
  7201. /**
  7202. * M665: Set SCARA settings
  7203. *
  7204. * Parameters:
  7205. *
  7206. * S[segments-per-second] - Segments-per-second
  7207. * P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
  7208. * T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
  7209. *
  7210. * A, P, and X are all aliases for the shoulder angle
  7211. * B, T, and Y are all aliases for the elbow angle
  7212. */
  7213. inline void gcode_M665() {
  7214. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7215. const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
  7216. const uint8_t sumAPX = hasA + hasP + hasX;
  7217. if (sumAPX == 1)
  7218. home_offset[A_AXIS] = parser.value_float();
  7219. else if (sumAPX > 1) {
  7220. SERIAL_ERROR_START();
  7221. SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
  7222. return;
  7223. }
  7224. const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
  7225. const uint8_t sumBTY = hasB + hasT + hasY;
  7226. if (sumBTY == 1)
  7227. home_offset[B_AXIS] = parser.value_float();
  7228. else if (sumBTY > 1) {
  7229. SERIAL_ERROR_START();
  7230. SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
  7231. return;
  7232. }
  7233. }
  7234. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  7235. /**
  7236. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  7237. */
  7238. inline void gcode_M666() {
  7239. if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
  7240. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  7241. }
  7242. #endif // !DELTA && Z_DUAL_ENDSTOPS
  7243. #if ENABLED(FWRETRACT)
  7244. /**
  7245. * M207: Set firmware retraction values
  7246. *
  7247. * S[+units] retract_length
  7248. * W[+units] swap_retract_length (multi-extruder)
  7249. * F[units/min] retract_feedrate_mm_s
  7250. * Z[units] retract_zlift
  7251. */
  7252. inline void gcode_M207() {
  7253. if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
  7254. if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7255. if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
  7256. if (parser.seen('W')) swap_retract_length = parser.value_axis_units(E_AXIS);
  7257. }
  7258. /**
  7259. * M208: Set firmware un-retraction values
  7260. *
  7261. * S[+units] retract_recover_length (in addition to M207 S*)
  7262. * W[+units] swap_retract_recover_length (multi-extruder)
  7263. * F[units/min] retract_recover_feedrate_mm_s
  7264. * R[units/min] swap_retract_recover_feedrate_mm_s
  7265. */
  7266. inline void gcode_M208() {
  7267. if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
  7268. if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7269. if (parser.seen('R')) swap_retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7270. if (parser.seen('W')) swap_retract_recover_length = parser.value_axis_units(E_AXIS);
  7271. }
  7272. /**
  7273. * M209: Enable automatic retract (M209 S1)
  7274. * For slicers that don't support G10/11, reversed extrude-only
  7275. * moves will be classified as retraction.
  7276. */
  7277. inline void gcode_M209() {
  7278. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  7279. if (parser.seen('S')) {
  7280. autoretract_enabled = parser.value_bool();
  7281. for (uint8_t i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  7282. }
  7283. }
  7284. }
  7285. #endif // FWRETRACT
  7286. /**
  7287. * M211: Enable, Disable, and/or Report software endstops
  7288. *
  7289. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  7290. */
  7291. inline void gcode_M211() {
  7292. SERIAL_ECHO_START();
  7293. #if HAS_SOFTWARE_ENDSTOPS
  7294. if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
  7295. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7296. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  7297. #else
  7298. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7299. SERIAL_ECHOPGM(MSG_OFF);
  7300. #endif
  7301. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  7302. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  7303. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  7304. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  7305. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  7306. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  7307. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  7308. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  7309. }
  7310. #if HOTENDS > 1
  7311. /**
  7312. * M218 - set hotend offset (in linear units)
  7313. *
  7314. * T<tool>
  7315. * X<xoffset>
  7316. * Y<yoffset>
  7317. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
  7318. */
  7319. inline void gcode_M218() {
  7320. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  7321. if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
  7322. if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
  7323. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7324. if (parser.seenval('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
  7325. #endif
  7326. SERIAL_ECHO_START();
  7327. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7328. HOTEND_LOOP() {
  7329. SERIAL_CHAR(' ');
  7330. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  7331. SERIAL_CHAR(',');
  7332. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  7333. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7334. SERIAL_CHAR(',');
  7335. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  7336. #endif
  7337. }
  7338. SERIAL_EOL();
  7339. }
  7340. #endif // HOTENDS > 1
  7341. /**
  7342. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  7343. */
  7344. inline void gcode_M220() {
  7345. if (parser.seenval('S')) feedrate_percentage = parser.value_int();
  7346. }
  7347. /**
  7348. * M221: Set extrusion percentage (M221 T0 S95)
  7349. */
  7350. inline void gcode_M221() {
  7351. if (get_target_extruder_from_command(221)) return;
  7352. if (parser.seenval('S'))
  7353. flow_percentage[target_extruder] = parser.value_int();
  7354. }
  7355. /**
  7356. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  7357. */
  7358. inline void gcode_M226() {
  7359. if (parser.seen('P')) {
  7360. const int pin_number = parser.value_int(),
  7361. pin_state = parser.intval('S', -1); // required pin state - default is inverted
  7362. if (WITHIN(pin_state, -1, 1) && pin_number > -1 && !pin_is_protected(pin_number)) {
  7363. int target = LOW;
  7364. stepper.synchronize();
  7365. pinMode(pin_number, INPUT);
  7366. switch (pin_state) {
  7367. case 1:
  7368. target = HIGH;
  7369. break;
  7370. case 0:
  7371. target = LOW;
  7372. break;
  7373. case -1:
  7374. target = !digitalRead(pin_number);
  7375. break;
  7376. }
  7377. while (digitalRead(pin_number) != target) idle();
  7378. } // pin_state -1 0 1 && pin_number > -1
  7379. } // parser.seen('P')
  7380. }
  7381. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7382. /**
  7383. * M260: Send data to a I2C slave device
  7384. *
  7385. * This is a PoC, the formating and arguments for the GCODE will
  7386. * change to be more compatible, the current proposal is:
  7387. *
  7388. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  7389. *
  7390. * M260 B<byte-1 value in base 10>
  7391. * M260 B<byte-2 value in base 10>
  7392. * M260 B<byte-3 value in base 10>
  7393. *
  7394. * M260 S1 ; Send the buffered data and reset the buffer
  7395. * M260 R1 ; Reset the buffer without sending data
  7396. *
  7397. */
  7398. inline void gcode_M260() {
  7399. // Set the target address
  7400. if (parser.seen('A')) i2c.address(parser.value_byte());
  7401. // Add a new byte to the buffer
  7402. if (parser.seen('B')) i2c.addbyte(parser.value_byte());
  7403. // Flush the buffer to the bus
  7404. if (parser.seen('S')) i2c.send();
  7405. // Reset and rewind the buffer
  7406. else if (parser.seen('R')) i2c.reset();
  7407. }
  7408. /**
  7409. * M261: Request X bytes from I2C slave device
  7410. *
  7411. * Usage: M261 A<slave device address base 10> B<number of bytes>
  7412. */
  7413. inline void gcode_M261() {
  7414. if (parser.seen('A')) i2c.address(parser.value_byte());
  7415. uint8_t bytes = parser.byteval('B', 1);
  7416. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  7417. i2c.relay(bytes);
  7418. }
  7419. else {
  7420. SERIAL_ERROR_START();
  7421. SERIAL_ERRORLN("Bad i2c request");
  7422. }
  7423. }
  7424. #endif // EXPERIMENTAL_I2CBUS
  7425. #if HAS_SERVOS
  7426. /**
  7427. * M280: Get or set servo position. P<index> [S<angle>]
  7428. */
  7429. inline void gcode_M280() {
  7430. if (!parser.seen('P')) return;
  7431. const int servo_index = parser.value_int();
  7432. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  7433. if (parser.seen('S'))
  7434. MOVE_SERVO(servo_index, parser.value_int());
  7435. else {
  7436. SERIAL_ECHO_START();
  7437. SERIAL_ECHOPAIR(" Servo ", servo_index);
  7438. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  7439. }
  7440. }
  7441. else {
  7442. SERIAL_ERROR_START();
  7443. SERIAL_ECHOPAIR("Servo ", servo_index);
  7444. SERIAL_ECHOLNPGM(" out of range");
  7445. }
  7446. }
  7447. #endif // HAS_SERVOS
  7448. #if HAS_BUZZER
  7449. /**
  7450. * M300: Play beep sound S<frequency Hz> P<duration ms>
  7451. */
  7452. inline void gcode_M300() {
  7453. uint16_t const frequency = parser.ushortval('S', 260);
  7454. uint16_t duration = parser.ushortval('P', 1000);
  7455. // Limits the tone duration to 0-5 seconds.
  7456. NOMORE(duration, 5000);
  7457. BUZZ(duration, frequency);
  7458. }
  7459. #endif // HAS_BUZZER
  7460. #if ENABLED(PIDTEMP)
  7461. /**
  7462. * M301: Set PID parameters P I D (and optionally C, L)
  7463. *
  7464. * P[float] Kp term
  7465. * I[float] Ki term (unscaled)
  7466. * D[float] Kd term (unscaled)
  7467. *
  7468. * With PID_EXTRUSION_SCALING:
  7469. *
  7470. * C[float] Kc term
  7471. * L[float] LPQ length
  7472. */
  7473. inline void gcode_M301() {
  7474. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  7475. // default behaviour (omitting E parameter) is to update for extruder 0 only
  7476. const uint8_t e = parser.byteval('E'); // extruder being updated
  7477. if (e < HOTENDS) { // catch bad input value
  7478. if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
  7479. if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
  7480. if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
  7481. #if ENABLED(PID_EXTRUSION_SCALING)
  7482. if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
  7483. if (parser.seen('L')) lpq_len = parser.value_float();
  7484. NOMORE(lpq_len, LPQ_MAX_LEN);
  7485. #endif
  7486. thermalManager.updatePID();
  7487. SERIAL_ECHO_START();
  7488. #if ENABLED(PID_PARAMS_PER_HOTEND)
  7489. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  7490. #endif // PID_PARAMS_PER_HOTEND
  7491. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  7492. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  7493. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  7494. #if ENABLED(PID_EXTRUSION_SCALING)
  7495. //Kc does not have scaling applied above, or in resetting defaults
  7496. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  7497. #endif
  7498. SERIAL_EOL();
  7499. }
  7500. else {
  7501. SERIAL_ERROR_START();
  7502. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  7503. }
  7504. }
  7505. #endif // PIDTEMP
  7506. #if ENABLED(PIDTEMPBED)
  7507. inline void gcode_M304() {
  7508. if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
  7509. if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
  7510. if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
  7511. thermalManager.updatePID();
  7512. SERIAL_ECHO_START();
  7513. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  7514. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  7515. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  7516. }
  7517. #endif // PIDTEMPBED
  7518. #if defined(CHDK) || HAS_PHOTOGRAPH
  7519. /**
  7520. * M240: Trigger a camera by emulating a Canon RC-1
  7521. * See http://www.doc-diy.net/photo/rc-1_hacked/
  7522. */
  7523. inline void gcode_M240() {
  7524. #ifdef CHDK
  7525. OUT_WRITE(CHDK, HIGH);
  7526. chdkHigh = millis();
  7527. chdkActive = true;
  7528. #elif HAS_PHOTOGRAPH
  7529. const uint8_t NUM_PULSES = 16;
  7530. const float PULSE_LENGTH = 0.01524;
  7531. for (int i = 0; i < NUM_PULSES; i++) {
  7532. WRITE(PHOTOGRAPH_PIN, HIGH);
  7533. _delay_ms(PULSE_LENGTH);
  7534. WRITE(PHOTOGRAPH_PIN, LOW);
  7535. _delay_ms(PULSE_LENGTH);
  7536. }
  7537. delay(7.33);
  7538. for (int i = 0; i < NUM_PULSES; i++) {
  7539. WRITE(PHOTOGRAPH_PIN, HIGH);
  7540. _delay_ms(PULSE_LENGTH);
  7541. WRITE(PHOTOGRAPH_PIN, LOW);
  7542. _delay_ms(PULSE_LENGTH);
  7543. }
  7544. #endif // !CHDK && HAS_PHOTOGRAPH
  7545. }
  7546. #endif // CHDK || PHOTOGRAPH_PIN
  7547. #if HAS_LCD_CONTRAST
  7548. /**
  7549. * M250: Read and optionally set the LCD contrast
  7550. */
  7551. inline void gcode_M250() {
  7552. if (parser.seen('C')) set_lcd_contrast(parser.value_int());
  7553. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  7554. SERIAL_PROTOCOL(lcd_contrast);
  7555. SERIAL_EOL();
  7556. }
  7557. #endif // HAS_LCD_CONTRAST
  7558. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7559. /**
  7560. * M302: Allow cold extrudes, or set the minimum extrude temperature
  7561. *
  7562. * S<temperature> sets the minimum extrude temperature
  7563. * P<bool> enables (1) or disables (0) cold extrusion
  7564. *
  7565. * Examples:
  7566. *
  7567. * M302 ; report current cold extrusion state
  7568. * M302 P0 ; enable cold extrusion checking
  7569. * M302 P1 ; disables cold extrusion checking
  7570. * M302 S0 ; always allow extrusion (disables checking)
  7571. * M302 S170 ; only allow extrusion above 170
  7572. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  7573. */
  7574. inline void gcode_M302() {
  7575. const bool seen_S = parser.seen('S');
  7576. if (seen_S) {
  7577. thermalManager.extrude_min_temp = parser.value_celsius();
  7578. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  7579. }
  7580. if (parser.seen('P'))
  7581. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
  7582. else if (!seen_S) {
  7583. // Report current state
  7584. SERIAL_ECHO_START();
  7585. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  7586. SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
  7587. SERIAL_ECHOLNPGM("C)");
  7588. }
  7589. }
  7590. #endif // PREVENT_COLD_EXTRUSION
  7591. /**
  7592. * M303: PID relay autotune
  7593. *
  7594. * S<temperature> sets the target temperature. (default 150C)
  7595. * E<extruder> (-1 for the bed) (default 0)
  7596. * C<cycles>
  7597. * U<bool> with a non-zero value will apply the result to current settings
  7598. */
  7599. inline void gcode_M303() {
  7600. #if HAS_PID_HEATING
  7601. const int e = parser.intval('E'), c = parser.intval('C', 5);
  7602. const bool u = parser.boolval('U');
  7603. int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
  7604. if (WITHIN(e, 0, HOTENDS - 1))
  7605. target_extruder = e;
  7606. #if DISABLED(BUSY_WHILE_HEATING)
  7607. KEEPALIVE_STATE(NOT_BUSY);
  7608. #endif
  7609. thermalManager.PID_autotune(temp, e, c, u);
  7610. #if DISABLED(BUSY_WHILE_HEATING)
  7611. KEEPALIVE_STATE(IN_HANDLER);
  7612. #endif
  7613. #else
  7614. SERIAL_ERROR_START();
  7615. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  7616. #endif
  7617. }
  7618. #if ENABLED(MORGAN_SCARA)
  7619. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  7620. if (IsRunning()) {
  7621. forward_kinematics_SCARA(delta_a, delta_b);
  7622. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  7623. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  7624. destination[Z_AXIS] = current_position[Z_AXIS];
  7625. prepare_move_to_destination();
  7626. return true;
  7627. }
  7628. return false;
  7629. }
  7630. /**
  7631. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  7632. */
  7633. inline bool gcode_M360() {
  7634. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  7635. return SCARA_move_to_cal(0, 120);
  7636. }
  7637. /**
  7638. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  7639. */
  7640. inline bool gcode_M361() {
  7641. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  7642. return SCARA_move_to_cal(90, 130);
  7643. }
  7644. /**
  7645. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  7646. */
  7647. inline bool gcode_M362() {
  7648. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  7649. return SCARA_move_to_cal(60, 180);
  7650. }
  7651. /**
  7652. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  7653. */
  7654. inline bool gcode_M363() {
  7655. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  7656. return SCARA_move_to_cal(50, 90);
  7657. }
  7658. /**
  7659. * M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
  7660. */
  7661. inline bool gcode_M364() {
  7662. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  7663. return SCARA_move_to_cal(45, 135);
  7664. }
  7665. #endif // SCARA
  7666. #if ENABLED(EXT_SOLENOID)
  7667. void enable_solenoid(const uint8_t num) {
  7668. switch (num) {
  7669. case 0:
  7670. OUT_WRITE(SOL0_PIN, HIGH);
  7671. break;
  7672. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  7673. case 1:
  7674. OUT_WRITE(SOL1_PIN, HIGH);
  7675. break;
  7676. #endif
  7677. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  7678. case 2:
  7679. OUT_WRITE(SOL2_PIN, HIGH);
  7680. break;
  7681. #endif
  7682. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  7683. case 3:
  7684. OUT_WRITE(SOL3_PIN, HIGH);
  7685. break;
  7686. #endif
  7687. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  7688. case 4:
  7689. OUT_WRITE(SOL4_PIN, HIGH);
  7690. break;
  7691. #endif
  7692. default:
  7693. SERIAL_ECHO_START();
  7694. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  7695. break;
  7696. }
  7697. }
  7698. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  7699. void disable_all_solenoids() {
  7700. OUT_WRITE(SOL0_PIN, LOW);
  7701. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  7702. OUT_WRITE(SOL1_PIN, LOW);
  7703. #endif
  7704. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  7705. OUT_WRITE(SOL2_PIN, LOW);
  7706. #endif
  7707. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  7708. OUT_WRITE(SOL3_PIN, LOW);
  7709. #endif
  7710. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  7711. OUT_WRITE(SOL4_PIN, LOW);
  7712. #endif
  7713. }
  7714. /**
  7715. * M380: Enable solenoid on the active extruder
  7716. */
  7717. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  7718. /**
  7719. * M381: Disable all solenoids
  7720. */
  7721. inline void gcode_M381() { disable_all_solenoids(); }
  7722. #endif // EXT_SOLENOID
  7723. /**
  7724. * M400: Finish all moves
  7725. */
  7726. inline void gcode_M400() { stepper.synchronize(); }
  7727. #if HAS_BED_PROBE
  7728. /**
  7729. * M401: Engage Z Servo endstop if available
  7730. */
  7731. inline void gcode_M401() { DEPLOY_PROBE(); }
  7732. /**
  7733. * M402: Retract Z Servo endstop if enabled
  7734. */
  7735. inline void gcode_M402() { STOW_PROBE(); }
  7736. #endif // HAS_BED_PROBE
  7737. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7738. /**
  7739. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  7740. */
  7741. inline void gcode_M404() {
  7742. if (parser.seen('W')) {
  7743. filament_width_nominal = parser.value_linear_units();
  7744. }
  7745. else {
  7746. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  7747. SERIAL_PROTOCOLLN(filament_width_nominal);
  7748. }
  7749. }
  7750. /**
  7751. * M405: Turn on filament sensor for control
  7752. */
  7753. inline void gcode_M405() {
  7754. // This is technically a linear measurement, but since it's quantized to centimeters and is a different
  7755. // unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
  7756. if (parser.seen('D')) {
  7757. meas_delay_cm = parser.value_byte();
  7758. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  7759. }
  7760. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  7761. const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  7762. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  7763. measurement_delay[i] = temp_ratio;
  7764. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  7765. }
  7766. filament_sensor = true;
  7767. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7768. //SERIAL_PROTOCOL(filament_width_meas);
  7769. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  7770. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  7771. }
  7772. /**
  7773. * M406: Turn off filament sensor for control
  7774. */
  7775. inline void gcode_M406() {
  7776. filament_sensor = false;
  7777. calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
  7778. }
  7779. /**
  7780. * M407: Get measured filament diameter on serial output
  7781. */
  7782. inline void gcode_M407() {
  7783. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7784. SERIAL_PROTOCOLLN(filament_width_meas);
  7785. }
  7786. #endif // FILAMENT_WIDTH_SENSOR
  7787. void quickstop_stepper() {
  7788. stepper.quick_stop();
  7789. stepper.synchronize();
  7790. set_current_from_steppers_for_axis(ALL_AXES);
  7791. SYNC_PLAN_POSITION_KINEMATIC();
  7792. }
  7793. #if HAS_LEVELING
  7794. /**
  7795. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  7796. *
  7797. * S[bool] Turns leveling on or off
  7798. * Z[height] Sets the Z fade height (0 or none to disable)
  7799. * V[bool] Verbose - Print the leveling grid
  7800. *
  7801. * With AUTO_BED_LEVELING_UBL only:
  7802. *
  7803. * L[index] Load UBL mesh from index (0 is default)
  7804. */
  7805. inline void gcode_M420() {
  7806. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7807. // L to load a mesh from the EEPROM
  7808. if (parser.seen('L')) {
  7809. #if ENABLED(EEPROM_SETTINGS)
  7810. const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.state.storage_slot;
  7811. const int16_t a = settings.calc_num_meshes();
  7812. if (!a) {
  7813. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  7814. return;
  7815. }
  7816. if (!WITHIN(storage_slot, 0, a - 1)) {
  7817. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  7818. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  7819. return;
  7820. }
  7821. settings.load_mesh(storage_slot);
  7822. ubl.state.storage_slot = storage_slot;
  7823. #else
  7824. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  7825. return;
  7826. #endif
  7827. }
  7828. // L to load a mesh from the EEPROM
  7829. if (parser.seen('L') || parser.seen('V')) {
  7830. ubl.display_map(0); // Currently only supports one map type
  7831. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  7832. SERIAL_ECHOLNPAIR("ubl.state.storage_slot = ", ubl.state.storage_slot);
  7833. }
  7834. #endif // AUTO_BED_LEVELING_UBL
  7835. // V to print the matrix or mesh
  7836. if (parser.seen('V')) {
  7837. #if ABL_PLANAR
  7838. planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
  7839. #else
  7840. if (leveling_is_valid()) {
  7841. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7842. print_bilinear_leveling_grid();
  7843. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7844. print_bilinear_leveling_grid_virt();
  7845. #endif
  7846. #elif ENABLED(MESH_BED_LEVELING)
  7847. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  7848. mbl_mesh_report();
  7849. #endif
  7850. }
  7851. #endif
  7852. }
  7853. const bool to_enable = parser.boolval('S');
  7854. if (parser.seen('S'))
  7855. set_bed_leveling_enabled(to_enable);
  7856. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7857. if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units());
  7858. #endif
  7859. const bool new_status = leveling_is_active();
  7860. if (to_enable && !new_status) {
  7861. SERIAL_ERROR_START();
  7862. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  7863. }
  7864. SERIAL_ECHO_START();
  7865. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  7866. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7867. SERIAL_ECHO_START();
  7868. SERIAL_ECHOPGM("Fade Height ");
  7869. if (planner.z_fade_height > 0.0)
  7870. SERIAL_ECHOLN(planner.z_fade_height);
  7871. else
  7872. SERIAL_ECHOLNPGM(MSG_OFF);
  7873. #endif
  7874. }
  7875. #endif
  7876. #if ENABLED(MESH_BED_LEVELING)
  7877. /**
  7878. * M421: Set a single Mesh Bed Leveling Z coordinate
  7879. *
  7880. * Usage:
  7881. * M421 X<linear> Y<linear> Z<linear>
  7882. * M421 X<linear> Y<linear> Q<offset>
  7883. * M421 I<xindex> J<yindex> Z<linear>
  7884. * M421 I<xindex> J<yindex> Q<offset>
  7885. */
  7886. inline void gcode_M421() {
  7887. const bool hasX = parser.seen('X'), hasI = parser.seen('I');
  7888. const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(RAW_X_POSITION(parser.value_linear_units())) : -1;
  7889. const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
  7890. const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(RAW_Y_POSITION(parser.value_linear_units())) : -1;
  7891. const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
  7892. if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
  7893. SERIAL_ERROR_START();
  7894. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7895. }
  7896. else if (ix < 0 || iy < 0) {
  7897. SERIAL_ERROR_START();
  7898. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7899. }
  7900. else
  7901. mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
  7902. }
  7903. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7904. /**
  7905. * M421: Set a single Mesh Bed Leveling Z coordinate
  7906. *
  7907. * Usage:
  7908. * M421 I<xindex> J<yindex> Z<linear>
  7909. * M421 I<xindex> J<yindex> Q<offset>
  7910. */
  7911. inline void gcode_M421() {
  7912. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  7913. const bool hasI = ix >= 0,
  7914. hasJ = iy >= 0,
  7915. hasZ = parser.seen('Z'),
  7916. hasQ = !hasZ && parser.seen('Q');
  7917. if (!hasI || !hasJ || !(hasZ || hasQ)) {
  7918. SERIAL_ERROR_START();
  7919. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7920. }
  7921. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  7922. SERIAL_ERROR_START();
  7923. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7924. }
  7925. else {
  7926. z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
  7927. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7928. bed_level_virt_interpolate();
  7929. #endif
  7930. }
  7931. }
  7932. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  7933. /**
  7934. * M421: Set a single Mesh Bed Leveling Z coordinate
  7935. *
  7936. * Usage:
  7937. * M421 I<xindex> J<yindex> Z<linear>
  7938. * M421 I<xindex> J<yindex> Q<offset>
  7939. * M421 C Z<linear>
  7940. * M421 C Q<offset>
  7941. */
  7942. inline void gcode_M421() {
  7943. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  7944. const bool hasI = ix >= 0,
  7945. hasJ = iy >= 0,
  7946. hasC = parser.seen('C'),
  7947. hasZ = parser.seen('Z'),
  7948. hasQ = !hasZ && parser.seen('Q');
  7949. if (hasC) {
  7950. const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
  7951. ix = location.x_index;
  7952. iy = location.y_index;
  7953. }
  7954. if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
  7955. SERIAL_ERROR_START();
  7956. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7957. }
  7958. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  7959. SERIAL_ERROR_START();
  7960. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7961. }
  7962. else
  7963. ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
  7964. }
  7965. #endif // AUTO_BED_LEVELING_UBL
  7966. #if HAS_M206_COMMAND
  7967. /**
  7968. * M428: Set home_offset based on the distance between the
  7969. * current_position and the nearest "reference point."
  7970. * If an axis is past center its endstop position
  7971. * is the reference-point. Otherwise it uses 0. This allows
  7972. * the Z offset to be set near the bed when using a max endstop.
  7973. *
  7974. * M428 can't be used more than 2cm away from 0 or an endstop.
  7975. *
  7976. * Use M206 to set these values directly.
  7977. */
  7978. inline void gcode_M428() {
  7979. bool err = false;
  7980. LOOP_XYZ(i) {
  7981. if (axis_homed[i]) {
  7982. const float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  7983. diff = base - RAW_POSITION(current_position[i], i);
  7984. if (WITHIN(diff, -20, 20)) {
  7985. set_home_offset((AxisEnum)i, diff);
  7986. }
  7987. else {
  7988. SERIAL_ERROR_START();
  7989. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  7990. LCD_ALERTMESSAGEPGM("Err: Too far!");
  7991. BUZZ(200, 40);
  7992. err = true;
  7993. break;
  7994. }
  7995. }
  7996. }
  7997. if (!err) {
  7998. SYNC_PLAN_POSITION_KINEMATIC();
  7999. report_current_position();
  8000. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  8001. BUZZ(100, 659);
  8002. BUZZ(100, 698);
  8003. }
  8004. }
  8005. #endif // HAS_M206_COMMAND
  8006. /**
  8007. * M500: Store settings in EEPROM
  8008. */
  8009. inline void gcode_M500() {
  8010. (void)settings.save();
  8011. }
  8012. /**
  8013. * M501: Read settings from EEPROM
  8014. */
  8015. inline void gcode_M501() {
  8016. (void)settings.load();
  8017. }
  8018. /**
  8019. * M502: Revert to default settings
  8020. */
  8021. inline void gcode_M502() {
  8022. (void)settings.reset();
  8023. }
  8024. #if DISABLED(DISABLE_M503)
  8025. /**
  8026. * M503: print settings currently in memory
  8027. */
  8028. inline void gcode_M503() {
  8029. (void)settings.report(!parser.boolval('S', true));
  8030. }
  8031. #endif
  8032. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8033. /**
  8034. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  8035. */
  8036. inline void gcode_M540() {
  8037. if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
  8038. }
  8039. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  8040. #if HAS_BED_PROBE
  8041. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  8042. static float last_zoffset = NAN;
  8043. if (!isnan(last_zoffset)) {
  8044. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
  8045. const float diff = zprobe_zoffset - last_zoffset;
  8046. #endif
  8047. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8048. // Correct bilinear grid for new probe offset
  8049. if (diff) {
  8050. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  8051. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  8052. z_values[x][y] -= diff;
  8053. }
  8054. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8055. bed_level_virt_interpolate();
  8056. #endif
  8057. #endif
  8058. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  8059. if (!no_babystep && leveling_is_active())
  8060. thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
  8061. #else
  8062. UNUSED(no_babystep);
  8063. #endif
  8064. #if ENABLED(DELTA) // correct the delta_height
  8065. home_offset[Z_AXIS] -= diff;
  8066. #endif
  8067. }
  8068. last_zoffset = zprobe_zoffset;
  8069. }
  8070. inline void gcode_M851() {
  8071. SERIAL_ECHO_START();
  8072. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  8073. if (parser.seen('Z')) {
  8074. const float value = parser.value_linear_units();
  8075. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  8076. zprobe_zoffset = value;
  8077. refresh_zprobe_zoffset();
  8078. SERIAL_ECHO(zprobe_zoffset);
  8079. }
  8080. else
  8081. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  8082. }
  8083. else
  8084. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  8085. SERIAL_EOL();
  8086. }
  8087. #endif // HAS_BED_PROBE
  8088. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  8089. /**
  8090. * M600: Pause for filament change
  8091. *
  8092. * E[distance] - Retract the filament this far (negative value)
  8093. * Z[distance] - Move the Z axis by this distance
  8094. * X[position] - Move to this X position, with Y
  8095. * Y[position] - Move to this Y position, with X
  8096. * U[distance] - Retract distance for removal (negative value) (manual reload)
  8097. * L[distance] - Extrude distance for insertion (positive value) (manual reload)
  8098. * B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
  8099. *
  8100. * Default values are used for omitted arguments.
  8101. *
  8102. */
  8103. inline void gcode_M600() {
  8104. #if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
  8105. // Don't allow filament change without homing first
  8106. if (axis_unhomed_error()) home_all_axes();
  8107. #endif
  8108. // Initial retract before move to filament change position
  8109. const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
  8110. #ifdef PAUSE_PARK_RETRACT_LENGTH
  8111. - (PAUSE_PARK_RETRACT_LENGTH)
  8112. #endif
  8113. ;
  8114. // Lift Z axis
  8115. const float z_lift = parser.linearval('Z', 0
  8116. #ifdef PAUSE_PARK_Z_ADD
  8117. + PAUSE_PARK_Z_ADD
  8118. #endif
  8119. );
  8120. // Move XY axes to filament exchange position
  8121. const float x_pos = parser.linearval('X', 0
  8122. #ifdef PAUSE_PARK_X_POS
  8123. + PAUSE_PARK_X_POS
  8124. #endif
  8125. );
  8126. const float y_pos = parser.linearval('Y', 0
  8127. #ifdef PAUSE_PARK_Y_POS
  8128. + PAUSE_PARK_Y_POS
  8129. #endif
  8130. );
  8131. // Unload filament
  8132. const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
  8133. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  8134. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  8135. #endif
  8136. ;
  8137. // Load filament
  8138. const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  8139. #ifdef FILAMENT_CHANGE_LOAD_LENGTH
  8140. + FILAMENT_CHANGE_LOAD_LENGTH
  8141. #endif
  8142. ;
  8143. const int beep_count = parser.intval('B',
  8144. #ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8145. FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8146. #else
  8147. -1
  8148. #endif
  8149. );
  8150. const bool job_running = print_job_timer.isRunning();
  8151. if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
  8152. wait_for_filament_reload(beep_count);
  8153. resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
  8154. }
  8155. // Resume the print job timer if it was running
  8156. if (job_running) print_job_timer.start();
  8157. }
  8158. #endif // ADVANCED_PAUSE_FEATURE
  8159. #if ENABLED(MK2_MULTIPLEXER)
  8160. inline void select_multiplexed_stepper(const uint8_t e) {
  8161. stepper.synchronize();
  8162. disable_e_steppers();
  8163. WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  8164. WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  8165. WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
  8166. safe_delay(100);
  8167. }
  8168. /**
  8169. * M702: Unload all extruders
  8170. */
  8171. inline void gcode_M702() {
  8172. for (uint8_t s = 0; s < E_STEPPERS; s++) {
  8173. select_multiplexed_stepper(e);
  8174. // TODO: standard unload filament function
  8175. // MK2 firmware behavior:
  8176. // - Make sure temperature is high enough
  8177. // - Raise Z to at least 15 to make room
  8178. // - Extrude 1cm of filament in 1 second
  8179. // - Under 230C quickly purge ~12mm, over 230C purge ~10mm
  8180. // - Change E max feedrate to 80, eject the filament from the tube. Sync.
  8181. // - Restore E max feedrate to 50
  8182. }
  8183. // Go back to the last active extruder
  8184. select_multiplexed_stepper(active_extruder);
  8185. disable_e_steppers();
  8186. }
  8187. #endif // MK2_MULTIPLEXER
  8188. #if ENABLED(DUAL_X_CARRIAGE)
  8189. /**
  8190. * M605: Set dual x-carriage movement mode
  8191. *
  8192. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  8193. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  8194. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  8195. * units x-offset and an optional differential hotend temperature of
  8196. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  8197. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  8198. *
  8199. * Note: the X axis should be homed after changing dual x-carriage mode.
  8200. */
  8201. inline void gcode_M605() {
  8202. stepper.synchronize();
  8203. if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
  8204. switch (dual_x_carriage_mode) {
  8205. case DXC_FULL_CONTROL_MODE:
  8206. case DXC_AUTO_PARK_MODE:
  8207. break;
  8208. case DXC_DUPLICATION_MODE:
  8209. if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
  8210. if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
  8211. SERIAL_ECHO_START();
  8212. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  8213. SERIAL_CHAR(' ');
  8214. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  8215. SERIAL_CHAR(',');
  8216. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  8217. SERIAL_CHAR(' ');
  8218. SERIAL_ECHO(duplicate_extruder_x_offset);
  8219. SERIAL_CHAR(',');
  8220. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  8221. break;
  8222. default:
  8223. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  8224. break;
  8225. }
  8226. active_extruder_parked = false;
  8227. extruder_duplication_enabled = false;
  8228. delayed_move_time = 0;
  8229. }
  8230. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  8231. inline void gcode_M605() {
  8232. stepper.synchronize();
  8233. extruder_duplication_enabled = parser.intval('S') == (int)DXC_DUPLICATION_MODE;
  8234. SERIAL_ECHO_START();
  8235. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  8236. }
  8237. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  8238. #if ENABLED(LIN_ADVANCE)
  8239. /**
  8240. * M900: Set and/or Get advance K factor and WH/D ratio
  8241. *
  8242. * K<factor> Set advance K factor
  8243. * R<ratio> Set ratio directly (overrides WH/D)
  8244. * W<width> H<height> D<diam> Set ratio from WH/D
  8245. */
  8246. inline void gcode_M900() {
  8247. stepper.synchronize();
  8248. const float newK = parser.floatval('K', -1);
  8249. if (newK >= 0) planner.extruder_advance_k = newK;
  8250. float newR = parser.floatval('R', -1);
  8251. if (newR < 0) {
  8252. const float newD = parser.floatval('D', -1),
  8253. newW = parser.floatval('W', -1),
  8254. newH = parser.floatval('H', -1);
  8255. if (newD >= 0 && newW >= 0 && newH >= 0)
  8256. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  8257. }
  8258. if (newR >= 0) planner.advance_ed_ratio = newR;
  8259. SERIAL_ECHO_START();
  8260. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  8261. SERIAL_ECHOPGM(" E/D=");
  8262. const float ratio = planner.advance_ed_ratio;
  8263. if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
  8264. SERIAL_EOL();
  8265. }
  8266. #endif // LIN_ADVANCE
  8267. #if ENABLED(HAVE_TMC2130)
  8268. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  8269. SERIAL_CHAR(name);
  8270. SERIAL_ECHOPGM(" axis driver current: ");
  8271. SERIAL_ECHOLN(st.getCurrent());
  8272. }
  8273. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  8274. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  8275. tmc2130_get_current(st, name);
  8276. }
  8277. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  8278. SERIAL_CHAR(name);
  8279. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  8280. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  8281. SERIAL_EOL();
  8282. }
  8283. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  8284. st.clear_otpw();
  8285. SERIAL_CHAR(name);
  8286. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  8287. }
  8288. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  8289. SERIAL_CHAR(name);
  8290. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  8291. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  8292. }
  8293. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  8294. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  8295. tmc2130_get_pwmthrs(st, name, spmm);
  8296. }
  8297. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  8298. SERIAL_CHAR(name);
  8299. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  8300. SERIAL_ECHOLN(st.sgt());
  8301. }
  8302. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  8303. st.sgt(sgt_val);
  8304. tmc2130_get_sgt(st, name);
  8305. }
  8306. /**
  8307. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8308. * Report driver currents when no axis specified
  8309. *
  8310. * S1: Enable automatic current control
  8311. * S0: Disable
  8312. */
  8313. inline void gcode_M906() {
  8314. uint16_t values[XYZE];
  8315. LOOP_XYZE(i)
  8316. values[i] = parser.intval(axis_codes[i]);
  8317. #if ENABLED(X_IS_TMC2130)
  8318. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  8319. else tmc2130_get_current(stepperX, 'X');
  8320. #endif
  8321. #if ENABLED(Y_IS_TMC2130)
  8322. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  8323. else tmc2130_get_current(stepperY, 'Y');
  8324. #endif
  8325. #if ENABLED(Z_IS_TMC2130)
  8326. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  8327. else tmc2130_get_current(stepperZ, 'Z');
  8328. #endif
  8329. #if ENABLED(E0_IS_TMC2130)
  8330. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  8331. else tmc2130_get_current(stepperE0, 'E');
  8332. #endif
  8333. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  8334. if (parser.seen('S')) auto_current_control = parser.value_bool();
  8335. #endif
  8336. }
  8337. /**
  8338. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  8339. * The flag is held by the library and persist until manually cleared by M912
  8340. */
  8341. inline void gcode_M911() {
  8342. const bool reportX = parser.seen('X'), reportY = parser.seen('Y'), reportZ = parser.seen('Z'), reportE = parser.seen('E'),
  8343. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  8344. #if ENABLED(X_IS_TMC2130)
  8345. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  8346. #endif
  8347. #if ENABLED(Y_IS_TMC2130)
  8348. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  8349. #endif
  8350. #if ENABLED(Z_IS_TMC2130)
  8351. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  8352. #endif
  8353. #if ENABLED(E0_IS_TMC2130)
  8354. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  8355. #endif
  8356. }
  8357. /**
  8358. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  8359. */
  8360. inline void gcode_M912() {
  8361. const bool clearX = parser.seen('X'), clearY = parser.seen('Y'), clearZ = parser.seen('Z'), clearE = parser.seen('E'),
  8362. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  8363. #if ENABLED(X_IS_TMC2130)
  8364. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  8365. #endif
  8366. #if ENABLED(Y_IS_TMC2130)
  8367. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  8368. #endif
  8369. #if ENABLED(Z_IS_TMC2130)
  8370. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  8371. #endif
  8372. #if ENABLED(E0_IS_TMC2130)
  8373. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  8374. #endif
  8375. }
  8376. /**
  8377. * M913: Set HYBRID_THRESHOLD speed.
  8378. */
  8379. #if ENABLED(HYBRID_THRESHOLD)
  8380. inline void gcode_M913() {
  8381. uint16_t values[XYZE];
  8382. LOOP_XYZE(i)
  8383. values[i] = parser.intval(axis_codes[i]);
  8384. #if ENABLED(X_IS_TMC2130)
  8385. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  8386. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  8387. #endif
  8388. #if ENABLED(Y_IS_TMC2130)
  8389. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  8390. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  8391. #endif
  8392. #if ENABLED(Z_IS_TMC2130)
  8393. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  8394. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  8395. #endif
  8396. #if ENABLED(E0_IS_TMC2130)
  8397. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  8398. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  8399. #endif
  8400. }
  8401. #endif // HYBRID_THRESHOLD
  8402. /**
  8403. * M914: Set SENSORLESS_HOMING sensitivity.
  8404. */
  8405. #if ENABLED(SENSORLESS_HOMING)
  8406. inline void gcode_M914() {
  8407. #if ENABLED(X_IS_TMC2130)
  8408. if (parser.seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', parser.value_int());
  8409. else tmc2130_get_sgt(stepperX, 'X');
  8410. #endif
  8411. #if ENABLED(Y_IS_TMC2130)
  8412. if (parser.seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', parser.value_int());
  8413. else tmc2130_get_sgt(stepperY, 'Y');
  8414. #endif
  8415. }
  8416. #endif // SENSORLESS_HOMING
  8417. #endif // HAVE_TMC2130
  8418. /**
  8419. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  8420. */
  8421. inline void gcode_M907() {
  8422. #if HAS_DIGIPOTSS
  8423. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
  8424. if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
  8425. if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
  8426. #elif HAS_MOTOR_CURRENT_PWM
  8427. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  8428. if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
  8429. #endif
  8430. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  8431. if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
  8432. #endif
  8433. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  8434. if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
  8435. #endif
  8436. #endif
  8437. #if ENABLED(DIGIPOT_I2C)
  8438. // this one uses actual amps in floating point
  8439. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
  8440. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  8441. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
  8442. #endif
  8443. #if ENABLED(DAC_STEPPER_CURRENT)
  8444. if (parser.seen('S')) {
  8445. const float dac_percent = parser.value_float();
  8446. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  8447. }
  8448. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
  8449. #endif
  8450. }
  8451. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8452. /**
  8453. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  8454. */
  8455. inline void gcode_M908() {
  8456. #if HAS_DIGIPOTSS
  8457. stepper.digitalPotWrite(
  8458. parser.intval('P'),
  8459. parser.intval('S')
  8460. );
  8461. #endif
  8462. #ifdef DAC_STEPPER_CURRENT
  8463. dac_current_raw(
  8464. parser.byteval('P', -1),
  8465. parser.ushortval('S', 0)
  8466. );
  8467. #endif
  8468. }
  8469. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8470. inline void gcode_M909() { dac_print_values(); }
  8471. inline void gcode_M910() { dac_commit_eeprom(); }
  8472. #endif
  8473. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8474. #if HAS_MICROSTEPS
  8475. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8476. inline void gcode_M350() {
  8477. if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
  8478. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
  8479. if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
  8480. stepper.microstep_readings();
  8481. }
  8482. /**
  8483. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  8484. * S# determines MS1 or MS2, X# sets the pin high/low.
  8485. */
  8486. inline void gcode_M351() {
  8487. if (parser.seenval('S')) switch (parser.value_byte()) {
  8488. case 1:
  8489. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
  8490. if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
  8491. break;
  8492. case 2:
  8493. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
  8494. if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
  8495. break;
  8496. }
  8497. stepper.microstep_readings();
  8498. }
  8499. #endif // HAS_MICROSTEPS
  8500. #if HAS_CASE_LIGHT
  8501. #ifndef INVERT_CASE_LIGHT
  8502. #define INVERT_CASE_LIGHT false
  8503. #endif
  8504. int case_light_brightness; // LCD routine wants INT
  8505. bool case_light_on;
  8506. void update_case_light() {
  8507. pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
  8508. uint8_t case_light_bright = (uint8_t)case_light_brightness;
  8509. if (case_light_on) {
  8510. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  8511. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness );
  8512. }
  8513. else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH);
  8514. }
  8515. else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
  8516. }
  8517. #endif // HAS_CASE_LIGHT
  8518. /**
  8519. * M355: Turn case light on/off and set brightness
  8520. *
  8521. * P<byte> Set case light brightness (PWM pin required - ignored otherwise)
  8522. *
  8523. * S<bool> Set case light on/off
  8524. *
  8525. * When S turns on the light on a PWM pin then the current brightness level is used/restored
  8526. *
  8527. * M355 P200 S0 turns off the light & sets the brightness level
  8528. * M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
  8529. */
  8530. inline void gcode_M355() {
  8531. #if HAS_CASE_LIGHT
  8532. uint8_t args = 0;
  8533. if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
  8534. if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
  8535. if (args) update_case_light();
  8536. // always report case light status
  8537. SERIAL_ECHO_START();
  8538. if (!case_light_on) {
  8539. SERIAL_ECHOLN("Case light: off");
  8540. }
  8541. else {
  8542. if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
  8543. else SERIAL_ECHOLNPAIR("Case light: ", case_light_brightness);
  8544. }
  8545. #else
  8546. SERIAL_ERROR_START();
  8547. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  8548. #endif // HAS_CASE_LIGHT
  8549. }
  8550. #if ENABLED(MIXING_EXTRUDER)
  8551. /**
  8552. * M163: Set a single mix factor for a mixing extruder
  8553. * This is called "weight" by some systems.
  8554. *
  8555. * S[index] The channel index to set
  8556. * P[float] The mix value
  8557. *
  8558. */
  8559. inline void gcode_M163() {
  8560. const int mix_index = parser.intval('S');
  8561. if (mix_index < MIXING_STEPPERS) {
  8562. float mix_value = parser.floatval('P');
  8563. NOLESS(mix_value, 0.0);
  8564. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  8565. }
  8566. }
  8567. #if MIXING_VIRTUAL_TOOLS > 1
  8568. /**
  8569. * M164: Store the current mix factors as a virtual tool.
  8570. *
  8571. * S[index] The virtual tool to store
  8572. *
  8573. */
  8574. inline void gcode_M164() {
  8575. const int tool_index = parser.intval('S');
  8576. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  8577. normalize_mix();
  8578. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8579. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  8580. }
  8581. }
  8582. #endif
  8583. #if ENABLED(DIRECT_MIXING_IN_G1)
  8584. /**
  8585. * M165: Set multiple mix factors for a mixing extruder.
  8586. * Factors that are left out will be set to 0.
  8587. * All factors together must add up to 1.0.
  8588. *
  8589. * A[factor] Mix factor for extruder stepper 1
  8590. * B[factor] Mix factor for extruder stepper 2
  8591. * C[factor] Mix factor for extruder stepper 3
  8592. * D[factor] Mix factor for extruder stepper 4
  8593. * H[factor] Mix factor for extruder stepper 5
  8594. * I[factor] Mix factor for extruder stepper 6
  8595. *
  8596. */
  8597. inline void gcode_M165() { gcode_get_mix(); }
  8598. #endif
  8599. #endif // MIXING_EXTRUDER
  8600. /**
  8601. * M999: Restart after being stopped
  8602. *
  8603. * Default behaviour is to flush the serial buffer and request
  8604. * a resend to the host starting on the last N line received.
  8605. *
  8606. * Sending "M999 S1" will resume printing without flushing the
  8607. * existing command buffer.
  8608. *
  8609. */
  8610. inline void gcode_M999() {
  8611. Running = true;
  8612. lcd_reset_alert_level();
  8613. if (parser.boolval('S')) return;
  8614. // gcode_LastN = Stopped_gcode_LastN;
  8615. FlushSerialRequestResend();
  8616. }
  8617. #if ENABLED(SWITCHING_EXTRUDER)
  8618. #if EXTRUDERS > 3
  8619. #define REQ_ANGLES 4
  8620. #define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
  8621. #else
  8622. #define REQ_ANGLES 2
  8623. #define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
  8624. #endif
  8625. inline void move_extruder_servo(const uint8_t e) {
  8626. constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  8627. static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  8628. stepper.synchronize();
  8629. #if EXTRUDERS & 1
  8630. if (e < EXTRUDERS - 1)
  8631. #endif
  8632. {
  8633. MOVE_SERVO(_SERVO_NR, angles[e]);
  8634. safe_delay(500);
  8635. }
  8636. }
  8637. #endif // SWITCHING_EXTRUDER
  8638. #if ENABLED(SWITCHING_NOZZLE)
  8639. inline void move_nozzle_servo(const uint8_t e) {
  8640. const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  8641. stepper.synchronize();
  8642. MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
  8643. safe_delay(500);
  8644. }
  8645. #endif
  8646. inline void invalid_extruder_error(const uint8_t e) {
  8647. SERIAL_ECHO_START();
  8648. SERIAL_CHAR('T');
  8649. SERIAL_ECHO_F(e, DEC);
  8650. SERIAL_CHAR(' ');
  8651. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  8652. }
  8653. #if ENABLED(PARKING_EXTRUDER)
  8654. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  8655. #define PE_MAGNET_ON_STATE !PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  8656. #else
  8657. #define PE_MAGNET_ON_STATE PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  8658. #endif
  8659. void pe_set_magnet(const uint8_t extruder_num, const uint8_t state) {
  8660. switch (extruder_num) {
  8661. case 1: OUT_WRITE(SOL1_PIN, state); break;
  8662. default: OUT_WRITE(SOL0_PIN, state); break;
  8663. }
  8664. #if PARKING_EXTRUDER_SOLENOIDS_DELAY > 0
  8665. dwell(PARKING_EXTRUDER_SOLENOIDS_DELAY);
  8666. #endif
  8667. }
  8668. inline void pe_activate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, PE_MAGNET_ON_STATE); }
  8669. inline void pe_deactivate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, !PE_MAGNET_ON_STATE); }
  8670. #endif // PARKING_EXTRUDER
  8671. #if HAS_FANMUX
  8672. void fanmux_switch(const uint8_t e) {
  8673. WRITE(FANMUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  8674. #if PIN_EXISTS(FANMUX1)
  8675. WRITE(FANMUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  8676. #if PIN_EXISTS(FANMUX2)
  8677. WRITE(FANMUX2, TEST(e, 2) ? HIGH : LOW);
  8678. #endif
  8679. #endif
  8680. }
  8681. FORCE_INLINE void fanmux_init(void){
  8682. SET_OUTPUT(FANMUX0_PIN);
  8683. #if PIN_EXISTS(FANMUX1)
  8684. SET_OUTPUT(FANMUX1_PIN);
  8685. #if PIN_EXISTS(FANMUX2)
  8686. SET_OUTPUT(FANMUX2_PIN);
  8687. #endif
  8688. #endif
  8689. fanmux_switch(0);
  8690. }
  8691. #endif // HAS_FANMUX
  8692. /**
  8693. * Perform a tool-change, which may result in moving the
  8694. * previous tool out of the way and the new tool into place.
  8695. */
  8696. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  8697. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8698. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  8699. return invalid_extruder_error(tmp_extruder);
  8700. // T0-Tnnn: Switch virtual tool by changing the mix
  8701. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  8702. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  8703. #else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8704. if (tmp_extruder >= EXTRUDERS)
  8705. return invalid_extruder_error(tmp_extruder);
  8706. #if HOTENDS > 1
  8707. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  8708. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  8709. if (tmp_extruder != active_extruder) {
  8710. if (!no_move && axis_unhomed_error()) {
  8711. no_move = true;
  8712. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8713. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("No move on toolchange");
  8714. #endif
  8715. }
  8716. // Save current position to destination, for use later
  8717. set_destination_to_current();
  8718. #if ENABLED(DUAL_X_CARRIAGE)
  8719. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8720. if (DEBUGGING(LEVELING)) {
  8721. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  8722. switch (dual_x_carriage_mode) {
  8723. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  8724. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  8725. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  8726. }
  8727. }
  8728. #endif
  8729. const float xhome = x_home_pos(active_extruder);
  8730. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  8731. && IsRunning()
  8732. && (delayed_move_time || current_position[X_AXIS] != xhome)
  8733. ) {
  8734. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  8735. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8736. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  8737. #endif
  8738. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8739. if (DEBUGGING(LEVELING)) {
  8740. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  8741. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  8742. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  8743. }
  8744. #endif
  8745. // Park old head: 1) raise 2) move to park position 3) lower
  8746. for (uint8_t i = 0; i < 3; i++)
  8747. planner.buffer_line(
  8748. i == 0 ? current_position[X_AXIS] : xhome,
  8749. current_position[Y_AXIS],
  8750. i == 2 ? current_position[Z_AXIS] : raised_z,
  8751. current_position[E_AXIS],
  8752. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  8753. active_extruder
  8754. );
  8755. stepper.synchronize();
  8756. }
  8757. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  8758. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  8759. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  8760. // Activate the new extruder ahead of calling set_axis_is_at_home!
  8761. active_extruder = tmp_extruder;
  8762. // This function resets the max/min values - the current position may be overwritten below.
  8763. set_axis_is_at_home(X_AXIS);
  8764. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8765. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  8766. #endif
  8767. // Only when auto-parking are carriages safe to move
  8768. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  8769. switch (dual_x_carriage_mode) {
  8770. case DXC_FULL_CONTROL_MODE:
  8771. // New current position is the position of the activated extruder
  8772. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8773. // Save the inactive extruder's position (from the old current_position)
  8774. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8775. break;
  8776. case DXC_AUTO_PARK_MODE:
  8777. // record raised toolhead position for use by unpark
  8778. COPY(raised_parked_position, current_position);
  8779. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  8780. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8781. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8782. #endif
  8783. active_extruder_parked = true;
  8784. delayed_move_time = 0;
  8785. break;
  8786. case DXC_DUPLICATION_MODE:
  8787. // If the new extruder is the left one, set it "parked"
  8788. // This triggers the second extruder to move into the duplication position
  8789. active_extruder_parked = (active_extruder == 0);
  8790. if (active_extruder_parked)
  8791. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8792. else
  8793. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  8794. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8795. extruder_duplication_enabled = false;
  8796. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8797. if (DEBUGGING(LEVELING)) {
  8798. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  8799. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  8800. }
  8801. #endif
  8802. break;
  8803. }
  8804. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8805. if (DEBUGGING(LEVELING)) {
  8806. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  8807. DEBUG_POS("New extruder (parked)", current_position);
  8808. }
  8809. #endif
  8810. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  8811. #else // !DUAL_X_CARRIAGE
  8812. #if ENABLED(PARKING_EXTRUDER) // Dual Parking extruder
  8813. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  8814. float z_raise = 0;
  8815. if (!no_move) {
  8816. const float parkingposx[] = PARKING_EXTRUDER_PARKING_X,
  8817. midpos = ((parkingposx[1] - parkingposx[0])/2) + parkingposx[0] + hotend_offset[X_AXIS][active_extruder],
  8818. grabpos = parkingposx[tmp_extruder] + hotend_offset[X_AXIS][active_extruder]
  8819. + (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE);
  8820. /**
  8821. * Steps:
  8822. * 1. raise Z-Axis to have enough clearance
  8823. * 2. move to park poition of old extruder
  8824. * 3. disengage magnetc field, wait for delay
  8825. * 4. move near new extruder
  8826. * 5. engage magnetic field for new extruder
  8827. * 6. move to parking incl. offset of new extruder
  8828. * 7. lower Z-Axis
  8829. */
  8830. // STEP 1
  8831. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8832. SERIAL_ECHOLNPGM("Starting Autopark");
  8833. if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position);
  8834. #endif
  8835. z_raise = PARKING_EXTRUDER_SECURITY_RAISE;
  8836. current_position[Z_AXIS] += z_raise;
  8837. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8838. SERIAL_ECHOLNPGM("(1) Raise Z-Axis ");
  8839. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving to Raised Z-Position", current_position);
  8840. #endif
  8841. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  8842. stepper.synchronize();
  8843. // STEP 2
  8844. current_position[X_AXIS] = parkingposx[active_extruder] + hotend_offset[X_AXIS][active_extruder];
  8845. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8846. SERIAL_ECHOLNPAIR("(2) Park extruder ", active_extruder);
  8847. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving ParkPos", current_position);
  8848. #endif
  8849. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  8850. stepper.synchronize();
  8851. // STEP 3
  8852. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8853. SERIAL_ECHOLNPGM("(3) Disengage magnet ");
  8854. #endif
  8855. pe_deactivate_magnet(active_extruder);
  8856. // STEP 4
  8857. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8858. SERIAL_ECHOLNPGM("(4) Move to position near new extruder");
  8859. #endif
  8860. current_position[X_AXIS] += (active_extruder == 0 ? 10 : -10); // move 10mm away from parked extruder
  8861. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8862. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving away from parked extruder", current_position);
  8863. #endif
  8864. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  8865. stepper.synchronize();
  8866. // STEP 5
  8867. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8868. SERIAL_ECHOLNPGM("(5) Engage magnetic field");
  8869. #endif
  8870. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  8871. pe_activate_magnet(active_extruder); //just save power for inverted magnets
  8872. #endif
  8873. pe_activate_magnet(tmp_extruder);
  8874. // STEP 6
  8875. current_position[X_AXIS] = grabpos + (tmp_extruder == 0 ? (+10) : (-10));
  8876. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  8877. current_position[X_AXIS] = grabpos;
  8878. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8879. SERIAL_ECHOLNPAIR("(6) Unpark extruder ", tmp_extruder);
  8880. if (DEBUGGING(LEVELING)) DEBUG_POS("Move UnparkPos", current_position);
  8881. #endif
  8882. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS]/2, active_extruder);
  8883. stepper.synchronize();
  8884. // Step 7
  8885. current_position[X_AXIS] = midpos - hotend_offset[X_AXIS][tmp_extruder];
  8886. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8887. SERIAL_ECHOLNPGM("(7) Move midway between hotends");
  8888. if (DEBUGGING(LEVELING)) DEBUG_POS("Move midway to new extruder", current_position);
  8889. #endif
  8890. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  8891. stepper.synchronize();
  8892. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8893. SERIAL_ECHOLNPGM("Autopark done.");
  8894. #endif
  8895. }
  8896. else { // nomove == true
  8897. // Only engage magnetic field for new extruder
  8898. pe_activate_magnet(tmp_extruder);
  8899. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  8900. pe_activate_magnet(active_extruder); // Just save power for inverted magnets
  8901. #endif
  8902. }
  8903. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][tmp_extruder] - hotend_offset[Z_AXIS][active_extruder]; // Apply Zoffset
  8904. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8905. if (DEBUGGING(LEVELING)) DEBUG_POS("Applying Z-offset", current_position);
  8906. #endif
  8907. #endif // dualParking extruder
  8908. #if ENABLED(SWITCHING_NOZZLE)
  8909. #define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR)
  8910. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  8911. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  8912. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  8913. // Always raise by some amount (destination copied from current_position earlier)
  8914. current_position[Z_AXIS] += z_raise;
  8915. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  8916. move_nozzle_servo(tmp_extruder);
  8917. #endif
  8918. /**
  8919. * Set current_position to the position of the new nozzle.
  8920. * Offsets are based on linear distance, so we need to get
  8921. * the resulting position in coordinate space.
  8922. *
  8923. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  8924. * - With mesh leveling, update Z for the new position
  8925. * - Otherwise, just use the raw linear distance
  8926. *
  8927. * Software endstops are altered here too. Consider a case where:
  8928. * E0 at X=0 ... E1 at X=10
  8929. * When we switch to E1 now X=10, but E1 can't move left.
  8930. * To express this we apply the change in XY to the software endstops.
  8931. * E1 can move farther right than E0, so the right limit is extended.
  8932. *
  8933. * Note that we don't adjust the Z software endstops. Why not?
  8934. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  8935. * because the bed is 1mm lower at the new position. As long as
  8936. * the first nozzle is out of the way, the carriage should be
  8937. * allowed to move 1mm lower. This technically "breaks" the
  8938. * Z software endstop. But this is technically correct (and
  8939. * there is no viable alternative).
  8940. */
  8941. #if ABL_PLANAR
  8942. // Offset extruder, make sure to apply the bed level rotation matrix
  8943. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  8944. hotend_offset[Y_AXIS][tmp_extruder],
  8945. 0),
  8946. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  8947. hotend_offset[Y_AXIS][active_extruder],
  8948. 0),
  8949. offset_vec = tmp_offset_vec - act_offset_vec;
  8950. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8951. if (DEBUGGING(LEVELING)) {
  8952. tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
  8953. act_offset_vec.debug(PSTR("act_offset_vec"));
  8954. offset_vec.debug(PSTR("offset_vec (BEFORE)"));
  8955. }
  8956. #endif
  8957. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  8958. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8959. if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
  8960. #endif
  8961. // Adjustments to the current position
  8962. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  8963. current_position[Z_AXIS] += offset_vec.z;
  8964. #else // !ABL_PLANAR
  8965. const float xydiff[2] = {
  8966. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  8967. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  8968. };
  8969. #if ENABLED(MESH_BED_LEVELING)
  8970. if (leveling_is_active()) {
  8971. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8972. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  8973. #endif
  8974. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  8975. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  8976. z1 = current_position[Z_AXIS], z2 = z1;
  8977. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  8978. planner.apply_leveling(x2, y2, z2);
  8979. current_position[Z_AXIS] += z2 - z1;
  8980. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8981. if (DEBUGGING(LEVELING))
  8982. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  8983. #endif
  8984. }
  8985. #endif // MESH_BED_LEVELING
  8986. #endif // !HAS_ABL
  8987. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8988. if (DEBUGGING(LEVELING)) {
  8989. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  8990. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  8991. SERIAL_ECHOLNPGM(" }");
  8992. }
  8993. #endif
  8994. // The newly-selected extruder XY is actually at...
  8995. current_position[X_AXIS] += xydiff[X_AXIS];
  8996. current_position[Y_AXIS] += xydiff[Y_AXIS];
  8997. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) || ENABLED(PARKING_EXTRUDER)
  8998. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  8999. #if HAS_POSITION_SHIFT
  9000. position_shift[i] += xydiff[i];
  9001. #endif
  9002. update_software_endstops((AxisEnum)i);
  9003. }
  9004. #endif
  9005. // Set the new active extruder
  9006. active_extruder = tmp_extruder;
  9007. #endif // !DUAL_X_CARRIAGE
  9008. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9009. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  9010. #endif
  9011. // Tell the planner the new "current position"
  9012. SYNC_PLAN_POSITION_KINEMATIC();
  9013. // Move to the "old position" (move the extruder into place)
  9014. if (!no_move && IsRunning()) {
  9015. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9016. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  9017. #endif
  9018. prepare_move_to_destination();
  9019. }
  9020. #if ENABLED(SWITCHING_NOZZLE)
  9021. // Move back down, if needed. (Including when the new tool is higher.)
  9022. if (z_raise != z_diff) {
  9023. destination[Z_AXIS] += z_diff;
  9024. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  9025. prepare_move_to_destination();
  9026. }
  9027. #endif
  9028. } // (tmp_extruder != active_extruder)
  9029. stepper.synchronize();
  9030. #if ENABLED(EXT_SOLENOID) && !ENABLED(PARKING_EXTRUDER)
  9031. disable_all_solenoids();
  9032. enable_solenoid_on_active_extruder();
  9033. #endif // EXT_SOLENOID
  9034. feedrate_mm_s = old_feedrate_mm_s;
  9035. #else // HOTENDS <= 1
  9036. UNUSED(fr_mm_s);
  9037. UNUSED(no_move);
  9038. #if ENABLED(MK2_MULTIPLEXER)
  9039. if (tmp_extruder >= E_STEPPERS)
  9040. return invalid_extruder_error(tmp_extruder);
  9041. select_multiplexed_stepper(tmp_extruder);
  9042. #endif
  9043. // Set the new active extruder
  9044. active_extruder = tmp_extruder;
  9045. #endif // HOTENDS <= 1
  9046. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  9047. stepper.synchronize();
  9048. move_extruder_servo(active_extruder);
  9049. #endif
  9050. #if HAS_FANMUX
  9051. fanmux_switch(active_extruder);
  9052. #endif
  9053. SERIAL_ECHO_START();
  9054. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  9055. #endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  9056. }
  9057. /**
  9058. * T0-T3: Switch tool, usually switching extruders
  9059. *
  9060. * F[units/min] Set the movement feedrate
  9061. * S1 Don't move the tool in XY after change
  9062. */
  9063. inline void gcode_T(uint8_t tmp_extruder) {
  9064. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9065. if (DEBUGGING(LEVELING)) {
  9066. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  9067. SERIAL_CHAR(')');
  9068. SERIAL_EOL();
  9069. DEBUG_POS("BEFORE", current_position);
  9070. }
  9071. #endif
  9072. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  9073. tool_change(tmp_extruder);
  9074. #elif HOTENDS > 1
  9075. tool_change(
  9076. tmp_extruder,
  9077. MMM_TO_MMS(parser.linearval('F')),
  9078. (tmp_extruder == active_extruder) || parser.boolval('S')
  9079. );
  9080. #endif
  9081. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9082. if (DEBUGGING(LEVELING)) {
  9083. DEBUG_POS("AFTER", current_position);
  9084. SERIAL_ECHOLNPGM("<<< gcode_T");
  9085. }
  9086. #endif
  9087. }
  9088. /**
  9089. * Process a single command and dispatch it to its handler
  9090. * This is called from the main loop()
  9091. */
  9092. void process_next_command() {
  9093. char * const current_command = command_queue[cmd_queue_index_r];
  9094. if (DEBUGGING(ECHO)) {
  9095. SERIAL_ECHO_START();
  9096. SERIAL_ECHOLN(current_command);
  9097. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  9098. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  9099. M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
  9100. #endif
  9101. }
  9102. KEEPALIVE_STATE(IN_HANDLER);
  9103. // Parse the next command in the queue
  9104. parser.parse(current_command);
  9105. // Handle a known G, M, or T
  9106. switch (parser.command_letter) {
  9107. case 'G': switch (parser.codenum) {
  9108. // G0, G1
  9109. case 0:
  9110. case 1:
  9111. #if IS_SCARA
  9112. gcode_G0_G1(parser.codenum == 0);
  9113. #else
  9114. gcode_G0_G1();
  9115. #endif
  9116. break;
  9117. // G2, G3
  9118. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  9119. case 2: // G2: CW ARC
  9120. case 3: // G3: CCW ARC
  9121. gcode_G2_G3(parser.codenum == 2);
  9122. break;
  9123. #endif
  9124. // G4 Dwell
  9125. case 4:
  9126. gcode_G4();
  9127. break;
  9128. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9129. case 5: // G5: Cubic B_spline
  9130. gcode_G5();
  9131. break;
  9132. #endif // BEZIER_CURVE_SUPPORT
  9133. #if ENABLED(FWRETRACT)
  9134. case 10: // G10: retract
  9135. gcode_G10();
  9136. break;
  9137. case 11: // G11: retract_recover
  9138. gcode_G11();
  9139. break;
  9140. #endif // FWRETRACT
  9141. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  9142. case 12:
  9143. gcode_G12(); // G12: Nozzle Clean
  9144. break;
  9145. #endif // NOZZLE_CLEAN_FEATURE
  9146. #if ENABLED(CNC_WORKSPACE_PLANES)
  9147. case 17: // G17: Select Plane XY
  9148. gcode_G17();
  9149. break;
  9150. case 18: // G18: Select Plane ZX
  9151. gcode_G18();
  9152. break;
  9153. case 19: // G19: Select Plane YZ
  9154. gcode_G19();
  9155. break;
  9156. #endif // CNC_WORKSPACE_PLANES
  9157. #if ENABLED(INCH_MODE_SUPPORT)
  9158. case 20: // G20: Inch Mode
  9159. gcode_G20();
  9160. break;
  9161. case 21: // G21: MM Mode
  9162. gcode_G21();
  9163. break;
  9164. #endif // INCH_MODE_SUPPORT
  9165. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  9166. case 26: // G26: Mesh Validation Pattern generation
  9167. gcode_G26();
  9168. break;
  9169. #endif // AUTO_BED_LEVELING_UBL
  9170. #if ENABLED(NOZZLE_PARK_FEATURE)
  9171. case 27: // G27: Nozzle Park
  9172. gcode_G27();
  9173. break;
  9174. #endif // NOZZLE_PARK_FEATURE
  9175. case 28: // G28: Home all axes, one at a time
  9176. gcode_G28(false);
  9177. break;
  9178. #if HAS_LEVELING
  9179. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  9180. // or provides access to the UBL System if enabled.
  9181. gcode_G29();
  9182. break;
  9183. #endif // HAS_LEVELING
  9184. #if HAS_BED_PROBE
  9185. case 30: // G30 Single Z probe
  9186. gcode_G30();
  9187. break;
  9188. #if ENABLED(Z_PROBE_SLED)
  9189. case 31: // G31: dock the sled
  9190. gcode_G31();
  9191. break;
  9192. case 32: // G32: undock the sled
  9193. gcode_G32();
  9194. break;
  9195. #endif // Z_PROBE_SLED
  9196. #endif // HAS_BED_PROBE
  9197. #if PROBE_SELECTED
  9198. #if ENABLED(DELTA_AUTO_CALIBRATION)
  9199. case 33: // G33: Delta Auto-Calibration
  9200. gcode_G33();
  9201. break;
  9202. #endif // DELTA_AUTO_CALIBRATION
  9203. #endif // PROBE_SELECTED
  9204. #if ENABLED(G38_PROBE_TARGET)
  9205. case 38: // G38.2 & G38.3
  9206. if (parser.subcode == 2 || parser.subcode == 3)
  9207. gcode_G38(parser.subcode == 2);
  9208. break;
  9209. #endif
  9210. case 90: // G90
  9211. relative_mode = false;
  9212. break;
  9213. case 91: // G91
  9214. relative_mode = true;
  9215. break;
  9216. case 92: // G92
  9217. gcode_G92();
  9218. break;
  9219. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)
  9220. case 42:
  9221. gcode_G42();
  9222. break;
  9223. #endif
  9224. #if ENABLED(DEBUG_GCODE_PARSER)
  9225. case 800:
  9226. parser.debug(); // GCode Parser Test for G
  9227. break;
  9228. #endif
  9229. }
  9230. break;
  9231. case 'M': switch (parser.codenum) {
  9232. #if HAS_RESUME_CONTINUE
  9233. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  9234. case 1: // M1: Conditional stop - Wait for user button press on LCD
  9235. gcode_M0_M1();
  9236. break;
  9237. #endif // ULTIPANEL
  9238. #if ENABLED(SPINDLE_LASER_ENABLE)
  9239. case 3:
  9240. gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
  9241. break; // synchronizes with movement commands
  9242. case 4:
  9243. gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
  9244. break; // synchronizes with movement commands
  9245. case 5:
  9246. gcode_M5(); // M5 - turn spindle/laser off
  9247. break; // synchronizes with movement commands
  9248. #endif
  9249. case 17: // M17: Enable all stepper motors
  9250. gcode_M17();
  9251. break;
  9252. #if ENABLED(SDSUPPORT)
  9253. case 20: // M20: list SD card
  9254. gcode_M20(); break;
  9255. case 21: // M21: init SD card
  9256. gcode_M21(); break;
  9257. case 22: // M22: release SD card
  9258. gcode_M22(); break;
  9259. case 23: // M23: Select file
  9260. gcode_M23(); break;
  9261. case 24: // M24: Start SD print
  9262. gcode_M24(); break;
  9263. case 25: // M25: Pause SD print
  9264. gcode_M25(); break;
  9265. case 26: // M26: Set SD index
  9266. gcode_M26(); break;
  9267. case 27: // M27: Get SD status
  9268. gcode_M27(); break;
  9269. case 28: // M28: Start SD write
  9270. gcode_M28(); break;
  9271. case 29: // M29: Stop SD write
  9272. gcode_M29(); break;
  9273. case 30: // M30 <filename> Delete File
  9274. gcode_M30(); break;
  9275. case 32: // M32: Select file and start SD print
  9276. gcode_M32(); break;
  9277. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  9278. case 33: // M33: Get the long full path to a file or folder
  9279. gcode_M33(); break;
  9280. #endif
  9281. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  9282. case 34: // M34: Set SD card sorting options
  9283. gcode_M34(); break;
  9284. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  9285. case 928: // M928: Start SD write
  9286. gcode_M928(); break;
  9287. #endif // SDSUPPORT
  9288. case 31: // M31: Report time since the start of SD print or last M109
  9289. gcode_M31(); break;
  9290. case 42: // M42: Change pin state
  9291. gcode_M42(); break;
  9292. #if ENABLED(PINS_DEBUGGING)
  9293. case 43: // M43: Read pin state
  9294. gcode_M43(); break;
  9295. #endif
  9296. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  9297. case 48: // M48: Z probe repeatability test
  9298. gcode_M48();
  9299. break;
  9300. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  9301. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  9302. case 49: // M49: Turn on or off G26 debug flag for verbose output
  9303. gcode_M49();
  9304. break;
  9305. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  9306. case 75: // M75: Start print timer
  9307. gcode_M75(); break;
  9308. case 76: // M76: Pause print timer
  9309. gcode_M76(); break;
  9310. case 77: // M77: Stop print timer
  9311. gcode_M77(); break;
  9312. #if ENABLED(PRINTCOUNTER)
  9313. case 78: // M78: Show print statistics
  9314. gcode_M78(); break;
  9315. #endif
  9316. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  9317. case 100: // M100: Free Memory Report
  9318. gcode_M100();
  9319. break;
  9320. #endif
  9321. case 104: // M104: Set hot end temperature
  9322. gcode_M104();
  9323. break;
  9324. case 110: // M110: Set Current Line Number
  9325. gcode_M110();
  9326. break;
  9327. case 111: // M111: Set debug level
  9328. gcode_M111();
  9329. break;
  9330. #if DISABLED(EMERGENCY_PARSER)
  9331. case 108: // M108: Cancel Waiting
  9332. gcode_M108();
  9333. break;
  9334. case 112: // M112: Emergency Stop
  9335. gcode_M112();
  9336. break;
  9337. case 410: // M410 quickstop - Abort all the planned moves.
  9338. gcode_M410();
  9339. break;
  9340. #endif
  9341. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  9342. case 113: // M113: Set Host Keepalive interval
  9343. gcode_M113();
  9344. break;
  9345. #endif
  9346. case 140: // M140: Set bed temperature
  9347. gcode_M140();
  9348. break;
  9349. case 105: // M105: Report current temperature
  9350. gcode_M105();
  9351. KEEPALIVE_STATE(NOT_BUSY);
  9352. return; // "ok" already printed
  9353. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9354. case 155: // M155: Set temperature auto-report interval
  9355. gcode_M155();
  9356. break;
  9357. #endif
  9358. case 109: // M109: Wait for hotend temperature to reach target
  9359. gcode_M109();
  9360. break;
  9361. #if HAS_TEMP_BED
  9362. case 190: // M190: Wait for bed temperature to reach target
  9363. gcode_M190();
  9364. break;
  9365. #endif // HAS_TEMP_BED
  9366. #if FAN_COUNT > 0
  9367. case 106: // M106: Fan On
  9368. gcode_M106();
  9369. break;
  9370. case 107: // M107: Fan Off
  9371. gcode_M107();
  9372. break;
  9373. #endif // FAN_COUNT > 0
  9374. #if ENABLED(PARK_HEAD_ON_PAUSE)
  9375. case 125: // M125: Store current position and move to filament change position
  9376. gcode_M125(); break;
  9377. #endif
  9378. #if ENABLED(BARICUDA)
  9379. // PWM for HEATER_1_PIN
  9380. #if HAS_HEATER_1
  9381. case 126: // M126: valve open
  9382. gcode_M126();
  9383. break;
  9384. case 127: // M127: valve closed
  9385. gcode_M127();
  9386. break;
  9387. #endif // HAS_HEATER_1
  9388. // PWM for HEATER_2_PIN
  9389. #if HAS_HEATER_2
  9390. case 128: // M128: valve open
  9391. gcode_M128();
  9392. break;
  9393. case 129: // M129: valve closed
  9394. gcode_M129();
  9395. break;
  9396. #endif // HAS_HEATER_2
  9397. #endif // BARICUDA
  9398. #if HAS_POWER_SWITCH
  9399. case 80: // M80: Turn on Power Supply
  9400. gcode_M80();
  9401. break;
  9402. #endif // HAS_POWER_SWITCH
  9403. case 81: // M81: Turn off Power, including Power Supply, if possible
  9404. gcode_M81();
  9405. break;
  9406. case 82: // M82: Set E axis normal mode (same as other axes)
  9407. gcode_M82();
  9408. break;
  9409. case 83: // M83: Set E axis relative mode
  9410. gcode_M83();
  9411. break;
  9412. case 18: // M18 => M84
  9413. case 84: // M84: Disable all steppers or set timeout
  9414. gcode_M18_M84();
  9415. break;
  9416. case 85: // M85: Set inactivity stepper shutdown timeout
  9417. gcode_M85();
  9418. break;
  9419. case 92: // M92: Set the steps-per-unit for one or more axes
  9420. gcode_M92();
  9421. break;
  9422. case 114: // M114: Report current position
  9423. gcode_M114();
  9424. break;
  9425. case 115: // M115: Report capabilities
  9426. gcode_M115();
  9427. break;
  9428. case 117: // M117: Set LCD message text, if possible
  9429. gcode_M117();
  9430. break;
  9431. case 118: // M118: Display a message in the host console
  9432. gcode_M118();
  9433. break;
  9434. case 119: // M119: Report endstop states
  9435. gcode_M119();
  9436. break;
  9437. case 120: // M120: Enable endstops
  9438. gcode_M120();
  9439. break;
  9440. case 121: // M121: Disable endstops
  9441. gcode_M121();
  9442. break;
  9443. #if ENABLED(ULTIPANEL)
  9444. case 145: // M145: Set material heatup parameters
  9445. gcode_M145();
  9446. break;
  9447. #endif
  9448. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  9449. case 149: // M149: Set temperature units
  9450. gcode_M149();
  9451. break;
  9452. #endif
  9453. #if HAS_COLOR_LEDS
  9454. case 150: // M150: Set Status LED Color
  9455. gcode_M150();
  9456. break;
  9457. #endif // HAS_COLOR_LEDS
  9458. #if ENABLED(MIXING_EXTRUDER)
  9459. case 163: // M163: Set a component weight for mixing extruder
  9460. gcode_M163();
  9461. break;
  9462. #if MIXING_VIRTUAL_TOOLS > 1
  9463. case 164: // M164: Save current mix as a virtual extruder
  9464. gcode_M164();
  9465. break;
  9466. #endif
  9467. #if ENABLED(DIRECT_MIXING_IN_G1)
  9468. case 165: // M165: Set multiple mix weights
  9469. gcode_M165();
  9470. break;
  9471. #endif
  9472. #endif
  9473. case 200: // M200: Set filament diameter, E to cubic units
  9474. gcode_M200();
  9475. break;
  9476. case 201: // M201: Set max acceleration for print moves (units/s^2)
  9477. gcode_M201();
  9478. break;
  9479. #if 0 // Not used for Sprinter/grbl gen6
  9480. case 202: // M202
  9481. gcode_M202();
  9482. break;
  9483. #endif
  9484. case 203: // M203: Set max feedrate (units/sec)
  9485. gcode_M203();
  9486. break;
  9487. case 204: // M204: Set acceleration
  9488. gcode_M204();
  9489. break;
  9490. case 205: // M205: Set advanced settings
  9491. gcode_M205();
  9492. break;
  9493. #if HAS_M206_COMMAND
  9494. case 206: // M206: Set home offsets
  9495. gcode_M206();
  9496. break;
  9497. #endif
  9498. #if ENABLED(DELTA)
  9499. case 665: // M665: Set delta configurations
  9500. gcode_M665();
  9501. break;
  9502. #endif
  9503. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  9504. case 666: // M666: Set delta or dual endstop adjustment
  9505. gcode_M666();
  9506. break;
  9507. #endif
  9508. #if ENABLED(FWRETRACT)
  9509. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  9510. gcode_M207();
  9511. break;
  9512. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  9513. gcode_M208();
  9514. break;
  9515. case 209: // M209: Turn Automatic Retract Detection on/off
  9516. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209();
  9517. break;
  9518. #endif // FWRETRACT
  9519. case 211: // M211: Enable, Disable, and/or Report software endstops
  9520. gcode_M211();
  9521. break;
  9522. #if HOTENDS > 1
  9523. case 218: // M218: Set a tool offset
  9524. gcode_M218();
  9525. break;
  9526. #endif
  9527. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  9528. gcode_M220();
  9529. break;
  9530. case 221: // M221: Set Flow Percentage
  9531. gcode_M221();
  9532. break;
  9533. case 226: // M226: Wait until a pin reaches a state
  9534. gcode_M226();
  9535. break;
  9536. #if HAS_SERVOS
  9537. case 280: // M280: Set servo position absolute
  9538. gcode_M280();
  9539. break;
  9540. #endif // HAS_SERVOS
  9541. #if HAS_BUZZER
  9542. case 300: // M300: Play beep tone
  9543. gcode_M300();
  9544. break;
  9545. #endif // HAS_BUZZER
  9546. #if ENABLED(PIDTEMP)
  9547. case 301: // M301: Set hotend PID parameters
  9548. gcode_M301();
  9549. break;
  9550. #endif // PIDTEMP
  9551. #if ENABLED(PIDTEMPBED)
  9552. case 304: // M304: Set bed PID parameters
  9553. gcode_M304();
  9554. break;
  9555. #endif // PIDTEMPBED
  9556. #if defined(CHDK) || HAS_PHOTOGRAPH
  9557. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  9558. gcode_M240();
  9559. break;
  9560. #endif // CHDK || PHOTOGRAPH_PIN
  9561. #if HAS_LCD_CONTRAST
  9562. case 250: // M250: Set LCD contrast
  9563. gcode_M250();
  9564. break;
  9565. #endif // HAS_LCD_CONTRAST
  9566. #if ENABLED(EXPERIMENTAL_I2CBUS)
  9567. case 260: // M260: Send data to an i2c slave
  9568. gcode_M260();
  9569. break;
  9570. case 261: // M261: Request data from an i2c slave
  9571. gcode_M261();
  9572. break;
  9573. #endif // EXPERIMENTAL_I2CBUS
  9574. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9575. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  9576. gcode_M302();
  9577. break;
  9578. #endif // PREVENT_COLD_EXTRUSION
  9579. case 303: // M303: PID autotune
  9580. gcode_M303();
  9581. break;
  9582. #if ENABLED(MORGAN_SCARA)
  9583. case 360: // M360: SCARA Theta pos1
  9584. if (gcode_M360()) return;
  9585. break;
  9586. case 361: // M361: SCARA Theta pos2
  9587. if (gcode_M361()) return;
  9588. break;
  9589. case 362: // M362: SCARA Psi pos1
  9590. if (gcode_M362()) return;
  9591. break;
  9592. case 363: // M363: SCARA Psi pos2
  9593. if (gcode_M363()) return;
  9594. break;
  9595. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  9596. if (gcode_M364()) return;
  9597. break;
  9598. #endif // SCARA
  9599. case 400: // M400: Finish all moves
  9600. gcode_M400();
  9601. break;
  9602. #if HAS_BED_PROBE
  9603. case 401: // M401: Deploy probe
  9604. gcode_M401();
  9605. break;
  9606. case 402: // M402: Stow probe
  9607. gcode_M402();
  9608. break;
  9609. #endif // HAS_BED_PROBE
  9610. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  9611. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  9612. gcode_M404();
  9613. break;
  9614. case 405: // M405: Turn on filament sensor for control
  9615. gcode_M405();
  9616. break;
  9617. case 406: // M406: Turn off filament sensor for control
  9618. gcode_M406();
  9619. break;
  9620. case 407: // M407: Display measured filament diameter
  9621. gcode_M407();
  9622. break;
  9623. #endif // FILAMENT_WIDTH_SENSOR
  9624. #if HAS_LEVELING
  9625. case 420: // M420: Enable/Disable Bed Leveling
  9626. gcode_M420();
  9627. break;
  9628. #endif
  9629. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9630. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  9631. gcode_M421();
  9632. break;
  9633. #endif
  9634. #if HAS_M206_COMMAND
  9635. case 428: // M428: Apply current_position to home_offset
  9636. gcode_M428();
  9637. break;
  9638. #endif
  9639. case 500: // M500: Store settings in EEPROM
  9640. gcode_M500();
  9641. break;
  9642. case 501: // M501: Read settings from EEPROM
  9643. gcode_M501();
  9644. break;
  9645. case 502: // M502: Revert to default settings
  9646. gcode_M502();
  9647. break;
  9648. #if DISABLED(DISABLE_M503)
  9649. case 503: // M503: print settings currently in memory
  9650. gcode_M503();
  9651. break;
  9652. #endif
  9653. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  9654. case 540: // M540: Set abort on endstop hit for SD printing
  9655. gcode_M540();
  9656. break;
  9657. #endif
  9658. #if HAS_BED_PROBE
  9659. case 851: // M851: Set Z Probe Z Offset
  9660. gcode_M851();
  9661. break;
  9662. #endif // HAS_BED_PROBE
  9663. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  9664. case 600: // M600: Pause for filament change
  9665. gcode_M600();
  9666. break;
  9667. #endif // ADVANCED_PAUSE_FEATURE
  9668. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  9669. case 605: // M605: Set Dual X Carriage movement mode
  9670. gcode_M605();
  9671. break;
  9672. #endif // DUAL_X_CARRIAGE
  9673. #if ENABLED(MK2_MULTIPLEXER)
  9674. case 702: // M702: Unload all extruders
  9675. gcode_M702();
  9676. break;
  9677. #endif
  9678. #if ENABLED(LIN_ADVANCE)
  9679. case 900: // M900: Set advance K factor.
  9680. gcode_M900();
  9681. break;
  9682. #endif
  9683. #if ENABLED(HAVE_TMC2130)
  9684. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  9685. gcode_M906();
  9686. break;
  9687. #endif
  9688. case 907: // M907: Set digital trimpot motor current using axis codes.
  9689. gcode_M907();
  9690. break;
  9691. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  9692. case 908: // M908: Control digital trimpot directly.
  9693. gcode_M908();
  9694. break;
  9695. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  9696. case 909: // M909: Print digipot/DAC current value
  9697. gcode_M909();
  9698. break;
  9699. case 910: // M910: Commit digipot/DAC value to external EEPROM
  9700. gcode_M910();
  9701. break;
  9702. #endif
  9703. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  9704. #if ENABLED(HAVE_TMC2130)
  9705. case 911: // M911: Report TMC2130 prewarn triggered flags
  9706. gcode_M911();
  9707. break;
  9708. case 912: // M911: Clear TMC2130 prewarn triggered flags
  9709. gcode_M912();
  9710. break;
  9711. #if ENABLED(HYBRID_THRESHOLD)
  9712. case 913: // M913: Set HYBRID_THRESHOLD speed.
  9713. gcode_M913();
  9714. break;
  9715. #endif
  9716. #if ENABLED(SENSORLESS_HOMING)
  9717. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  9718. gcode_M914();
  9719. break;
  9720. #endif
  9721. #endif
  9722. #if HAS_MICROSTEPS
  9723. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  9724. gcode_M350();
  9725. break;
  9726. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  9727. gcode_M351();
  9728. break;
  9729. #endif // HAS_MICROSTEPS
  9730. case 355: // M355 set case light brightness
  9731. gcode_M355();
  9732. break;
  9733. #if ENABLED(DEBUG_GCODE_PARSER)
  9734. case 800:
  9735. parser.debug(); // GCode Parser Test for M
  9736. break;
  9737. #endif
  9738. #if ENABLED(I2C_POSITION_ENCODERS)
  9739. case 860: // M860 Report encoder module position
  9740. gcode_M860();
  9741. break;
  9742. case 861: // M861 Report encoder module status
  9743. gcode_M861();
  9744. break;
  9745. case 862: // M862 Perform axis test
  9746. gcode_M862();
  9747. break;
  9748. case 863: // M863 Calibrate steps/mm
  9749. gcode_M863();
  9750. break;
  9751. case 864: // M864 Change module address
  9752. gcode_M864();
  9753. break;
  9754. case 865: // M865 Check module firmware version
  9755. gcode_M865();
  9756. break;
  9757. case 866: // M866 Report axis error count
  9758. gcode_M866();
  9759. break;
  9760. case 867: // M867 Toggle error correction
  9761. gcode_M867();
  9762. break;
  9763. case 868: // M868 Set error correction threshold
  9764. gcode_M868();
  9765. break;
  9766. case 869: // M869 Report axis error
  9767. gcode_M869();
  9768. break;
  9769. #endif // I2C_POSITION_ENCODERS
  9770. case 999: // M999: Restart after being Stopped
  9771. gcode_M999();
  9772. break;
  9773. }
  9774. break;
  9775. case 'T':
  9776. gcode_T(parser.codenum);
  9777. break;
  9778. default: parser.unknown_command_error();
  9779. }
  9780. KEEPALIVE_STATE(NOT_BUSY);
  9781. ok_to_send();
  9782. }
  9783. /**
  9784. * Send a "Resend: nnn" message to the host to
  9785. * indicate that a command needs to be re-sent.
  9786. */
  9787. void FlushSerialRequestResend() {
  9788. //char command_queue[cmd_queue_index_r][100]="Resend:";
  9789. MYSERIAL.flush();
  9790. SERIAL_PROTOCOLPGM(MSG_RESEND);
  9791. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  9792. ok_to_send();
  9793. }
  9794. /**
  9795. * Send an "ok" message to the host, indicating
  9796. * that a command was successfully processed.
  9797. *
  9798. * If ADVANCED_OK is enabled also include:
  9799. * N<int> Line number of the command, if any
  9800. * P<int> Planner space remaining
  9801. * B<int> Block queue space remaining
  9802. */
  9803. void ok_to_send() {
  9804. refresh_cmd_timeout();
  9805. if (!send_ok[cmd_queue_index_r]) return;
  9806. SERIAL_PROTOCOLPGM(MSG_OK);
  9807. #if ENABLED(ADVANCED_OK)
  9808. char* p = command_queue[cmd_queue_index_r];
  9809. if (*p == 'N') {
  9810. SERIAL_PROTOCOL(' ');
  9811. SERIAL_ECHO(*p++);
  9812. while (NUMERIC_SIGNED(*p))
  9813. SERIAL_ECHO(*p++);
  9814. }
  9815. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  9816. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  9817. #endif
  9818. SERIAL_EOL();
  9819. }
  9820. #if HAS_SOFTWARE_ENDSTOPS
  9821. /**
  9822. * Constrain the given coordinates to the software endstops.
  9823. */
  9824. // NOTE: This makes no sense for delta beds other than Z-axis.
  9825. // For delta the X/Y would need to be clamped at
  9826. // DELTA_PRINTABLE_RADIUS from center of bed, but delta
  9827. // now enforces is_position_reachable for X/Y regardless
  9828. // of HAS_SOFTWARE_ENDSTOPS, so that enforcement would be
  9829. // redundant here.
  9830. void clamp_to_software_endstops(float target[XYZ]) {
  9831. if (!soft_endstops_enabled) return;
  9832. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  9833. #if DISABLED(DELTA)
  9834. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  9835. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  9836. #endif
  9837. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  9838. #endif
  9839. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9840. #if DISABLED(DELTA)
  9841. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  9842. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  9843. #endif
  9844. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  9845. #endif
  9846. }
  9847. #endif
  9848. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9849. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  9850. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  9851. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  9852. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  9853. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  9854. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  9855. #else
  9856. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  9857. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  9858. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  9859. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  9860. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  9861. #endif
  9862. // Get the Z adjustment for non-linear bed leveling
  9863. float bilinear_z_offset(const float logical[XYZ]) {
  9864. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  9865. last_x = -999.999, last_y = -999.999;
  9866. // Whole units for the grid line indices. Constrained within bounds.
  9867. static int8_t gridx, gridy, nextx, nexty,
  9868. last_gridx = -99, last_gridy = -99;
  9869. // XY relative to the probed area
  9870. const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
  9871. y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
  9872. #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
  9873. // Keep using the last grid box
  9874. #define FAR_EDGE_OR_BOX 2
  9875. #else
  9876. // Just use the grid far edge
  9877. #define FAR_EDGE_OR_BOX 1
  9878. #endif
  9879. if (last_x != x) {
  9880. last_x = x;
  9881. ratio_x = x * ABL_BG_FACTOR(X_AXIS);
  9882. const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
  9883. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  9884. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  9885. // Beyond the grid maintain height at grid edges
  9886. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  9887. #endif
  9888. gridx = gx;
  9889. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  9890. }
  9891. if (last_y != y || last_gridx != gridx) {
  9892. if (last_y != y) {
  9893. last_y = y;
  9894. ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
  9895. const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
  9896. ratio_y -= gy;
  9897. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  9898. // Beyond the grid maintain height at grid edges
  9899. NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
  9900. #endif
  9901. gridy = gy;
  9902. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  9903. }
  9904. if (last_gridx != gridx || last_gridy != gridy) {
  9905. last_gridx = gridx;
  9906. last_gridy = gridy;
  9907. // Z at the box corners
  9908. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  9909. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  9910. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  9911. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  9912. }
  9913. // Bilinear interpolate. Needed since y or gridx has changed.
  9914. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  9915. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  9916. D = R - L;
  9917. }
  9918. const float offset = L + ratio_x * D; // the offset almost always changes
  9919. /*
  9920. static float last_offset = 0;
  9921. if (FABS(last_offset - offset) > 0.2) {
  9922. SERIAL_ECHOPGM("Sudden Shift at ");
  9923. SERIAL_ECHOPAIR("x=", x);
  9924. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  9925. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  9926. SERIAL_ECHOPAIR(" y=", y);
  9927. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  9928. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  9929. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  9930. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  9931. SERIAL_ECHOPAIR(" z1=", z1);
  9932. SERIAL_ECHOPAIR(" z2=", z2);
  9933. SERIAL_ECHOPAIR(" z3=", z3);
  9934. SERIAL_ECHOLNPAIR(" z4=", z4);
  9935. SERIAL_ECHOPAIR(" L=", L);
  9936. SERIAL_ECHOPAIR(" R=", R);
  9937. SERIAL_ECHOLNPAIR(" offset=", offset);
  9938. }
  9939. last_offset = offset;
  9940. //*/
  9941. return offset;
  9942. }
  9943. #endif // AUTO_BED_LEVELING_BILINEAR
  9944. #if ENABLED(DELTA)
  9945. /**
  9946. * Recalculate factors used for delta kinematics whenever
  9947. * settings have been changed (e.g., by M665).
  9948. */
  9949. void recalc_delta_settings(float radius, float diagonal_rod) {
  9950. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  9951. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  9952. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
  9953. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
  9954. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
  9955. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
  9956. delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
  9957. delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
  9958. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
  9959. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
  9960. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
  9961. }
  9962. #if ENABLED(DELTA_FAST_SQRT) && defined(ARDUINO_ARCH_AVR)
  9963. /**
  9964. * Fast inverse sqrt from Quake III Arena
  9965. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  9966. */
  9967. float Q_rsqrt(float number) {
  9968. long i;
  9969. float x2, y;
  9970. const float threehalfs = 1.5f;
  9971. x2 = number * 0.5f;
  9972. y = number;
  9973. i = * ( long * ) &y; // evil floating point bit level hacking
  9974. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  9975. y = * ( float * ) &i;
  9976. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  9977. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  9978. return y;
  9979. }
  9980. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  9981. #else
  9982. #define _SQRT(n) SQRT(n)
  9983. #endif
  9984. /**
  9985. * Delta Inverse Kinematics
  9986. *
  9987. * Calculate the tower positions for a given logical
  9988. * position, storing the result in the delta[] array.
  9989. *
  9990. * This is an expensive calculation, requiring 3 square
  9991. * roots per segmented linear move, and strains the limits
  9992. * of a Mega2560 with a Graphical Display.
  9993. *
  9994. * Suggested optimizations include:
  9995. *
  9996. * - Disable the home_offset (M206) and/or position_shift (G92)
  9997. * features to remove up to 12 float additions.
  9998. *
  9999. * - Use a fast-inverse-sqrt function and add the reciprocal.
  10000. * (see above)
  10001. */
  10002. // Macro to obtain the Z position of an individual tower
  10003. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  10004. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  10005. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  10006. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  10007. ) \
  10008. )
  10009. #define DELTA_RAW_IK() do { \
  10010. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  10011. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  10012. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  10013. }while(0)
  10014. #define DELTA_LOGICAL_IK() do { \
  10015. const float raw[XYZ] = { \
  10016. RAW_X_POSITION(logical[X_AXIS]), \
  10017. RAW_Y_POSITION(logical[Y_AXIS]), \
  10018. RAW_Z_POSITION(logical[Z_AXIS]) \
  10019. }; \
  10020. DELTA_RAW_IK(); \
  10021. }while(0)
  10022. #define DELTA_DEBUG() do { \
  10023. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  10024. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  10025. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  10026. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  10027. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  10028. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  10029. }while(0)
  10030. void inverse_kinematics(const float logical[XYZ]) {
  10031. DELTA_LOGICAL_IK();
  10032. // DELTA_DEBUG();
  10033. }
  10034. /**
  10035. * Calculate the highest Z position where the
  10036. * effector has the full range of XY motion.
  10037. */
  10038. float delta_safe_distance_from_top() {
  10039. float cartesian[XYZ] = {
  10040. LOGICAL_X_POSITION(0),
  10041. LOGICAL_Y_POSITION(0),
  10042. LOGICAL_Z_POSITION(0)
  10043. };
  10044. inverse_kinematics(cartesian);
  10045. float distance = delta[A_AXIS];
  10046. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  10047. inverse_kinematics(cartesian);
  10048. return FABS(distance - delta[A_AXIS]);
  10049. }
  10050. /**
  10051. * Delta Forward Kinematics
  10052. *
  10053. * See the Wikipedia article "Trilateration"
  10054. * https://en.wikipedia.org/wiki/Trilateration
  10055. *
  10056. * Establish a new coordinate system in the plane of the
  10057. * three carriage points. This system has its origin at
  10058. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  10059. * plane with a Z component of zero.
  10060. * We will define unit vectors in this coordinate system
  10061. * in our original coordinate system. Then when we calculate
  10062. * the Xnew, Ynew and Znew values, we can translate back into
  10063. * the original system by moving along those unit vectors
  10064. * by the corresponding values.
  10065. *
  10066. * Variable names matched to Marlin, c-version, and avoid the
  10067. * use of any vector library.
  10068. *
  10069. * by Andreas Hardtung 2016-06-07
  10070. * based on a Java function from "Delta Robot Kinematics V3"
  10071. * by Steve Graves
  10072. *
  10073. * The result is stored in the cartes[] array.
  10074. */
  10075. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  10076. // Create a vector in old coordinates along x axis of new coordinate
  10077. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  10078. // Get the Magnitude of vector.
  10079. float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  10080. // Create unit vector by dividing by magnitude.
  10081. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  10082. // Get the vector from the origin of the new system to the third point.
  10083. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  10084. // Use the dot product to find the component of this vector on the X axis.
  10085. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  10086. // Create a vector along the x axis that represents the x component of p13.
  10087. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  10088. // Subtract the X component from the original vector leaving only Y. We use the
  10089. // variable that will be the unit vector after we scale it.
  10090. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  10091. // The magnitude of Y component
  10092. float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  10093. // Convert to a unit vector
  10094. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  10095. // The cross product of the unit x and y is the unit z
  10096. // float[] ez = vectorCrossProd(ex, ey);
  10097. float ez[3] = {
  10098. ex[1] * ey[2] - ex[2] * ey[1],
  10099. ex[2] * ey[0] - ex[0] * ey[2],
  10100. ex[0] * ey[1] - ex[1] * ey[0]
  10101. };
  10102. // We now have the d, i and j values defined in Wikipedia.
  10103. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  10104. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  10105. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  10106. Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  10107. // Start from the origin of the old coordinates and add vectors in the
  10108. // old coords that represent the Xnew, Ynew and Znew to find the point
  10109. // in the old system.
  10110. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  10111. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  10112. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  10113. }
  10114. void forward_kinematics_DELTA(float point[ABC]) {
  10115. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  10116. }
  10117. #endif // DELTA
  10118. /**
  10119. * Get the stepper positions in the cartes[] array.
  10120. * Forward kinematics are applied for DELTA and SCARA.
  10121. *
  10122. * The result is in the current coordinate space with
  10123. * leveling applied. The coordinates need to be run through
  10124. * unapply_leveling to obtain the "ideal" coordinates
  10125. * suitable for current_position, etc.
  10126. */
  10127. void get_cartesian_from_steppers() {
  10128. #if ENABLED(DELTA)
  10129. forward_kinematics_DELTA(
  10130. stepper.get_axis_position_mm(A_AXIS),
  10131. stepper.get_axis_position_mm(B_AXIS),
  10132. stepper.get_axis_position_mm(C_AXIS)
  10133. );
  10134. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  10135. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  10136. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  10137. #elif IS_SCARA
  10138. forward_kinematics_SCARA(
  10139. stepper.get_axis_position_degrees(A_AXIS),
  10140. stepper.get_axis_position_degrees(B_AXIS)
  10141. );
  10142. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  10143. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  10144. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  10145. #else
  10146. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  10147. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  10148. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  10149. #endif
  10150. }
  10151. /**
  10152. * Set the current_position for an axis based on
  10153. * the stepper positions, removing any leveling that
  10154. * may have been applied.
  10155. */
  10156. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  10157. get_cartesian_from_steppers();
  10158. #if PLANNER_LEVELING
  10159. planner.unapply_leveling(cartes);
  10160. #endif
  10161. if (axis == ALL_AXES)
  10162. COPY(current_position, cartes);
  10163. else
  10164. current_position[axis] = cartes[axis];
  10165. }
  10166. #if ENABLED(MESH_BED_LEVELING)
  10167. /**
  10168. * Prepare a mesh-leveled linear move in a Cartesian setup,
  10169. * splitting the move where it crosses mesh borders.
  10170. */
  10171. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  10172. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  10173. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  10174. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  10175. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  10176. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  10177. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  10178. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  10179. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  10180. if (cx1 == cx2 && cy1 == cy2) {
  10181. // Start and end on same mesh square
  10182. line_to_destination(fr_mm_s);
  10183. set_current_to_destination();
  10184. return;
  10185. }
  10186. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10187. float normalized_dist, end[XYZE];
  10188. // Split at the left/front border of the right/top square
  10189. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10190. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10191. COPY(end, destination);
  10192. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  10193. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10194. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  10195. CBI(x_splits, gcx);
  10196. }
  10197. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10198. COPY(end, destination);
  10199. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  10200. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10201. destination[X_AXIS] = MBL_SEGMENT_END(X);
  10202. CBI(y_splits, gcy);
  10203. }
  10204. else {
  10205. // Already split on a border
  10206. line_to_destination(fr_mm_s);
  10207. set_current_to_destination();
  10208. return;
  10209. }
  10210. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  10211. destination[E_AXIS] = MBL_SEGMENT_END(E);
  10212. // Do the split and look for more borders
  10213. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10214. // Restore destination from stack
  10215. COPY(destination, end);
  10216. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10217. }
  10218. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  10219. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  10220. /**
  10221. * Prepare a bilinear-leveled linear move on Cartesian,
  10222. * splitting the move where it crosses grid borders.
  10223. */
  10224. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  10225. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  10226. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  10227. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  10228. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  10229. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  10230. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  10231. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  10232. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  10233. if (cx1 == cx2 && cy1 == cy2) {
  10234. // Start and end on same mesh square
  10235. line_to_destination(fr_mm_s);
  10236. set_current_to_destination();
  10237. return;
  10238. }
  10239. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10240. float normalized_dist, end[XYZE];
  10241. // Split at the left/front border of the right/top square
  10242. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10243. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10244. COPY(end, destination);
  10245. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  10246. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10247. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  10248. CBI(x_splits, gcx);
  10249. }
  10250. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10251. COPY(end, destination);
  10252. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  10253. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10254. destination[X_AXIS] = LINE_SEGMENT_END(X);
  10255. CBI(y_splits, gcy);
  10256. }
  10257. else {
  10258. // Already split on a border
  10259. line_to_destination(fr_mm_s);
  10260. set_current_to_destination();
  10261. return;
  10262. }
  10263. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  10264. destination[E_AXIS] = LINE_SEGMENT_END(E);
  10265. // Do the split and look for more borders
  10266. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10267. // Restore destination from stack
  10268. COPY(destination, end);
  10269. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10270. }
  10271. #endif // AUTO_BED_LEVELING_BILINEAR
  10272. #if IS_KINEMATIC && !UBL_DELTA
  10273. /**
  10274. * Prepare a linear move in a DELTA or SCARA setup.
  10275. *
  10276. * This calls planner.buffer_line several times, adding
  10277. * small incremental moves for DELTA or SCARA.
  10278. */
  10279. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  10280. // Get the top feedrate of the move in the XY plane
  10281. const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  10282. // If the move is only in Z/E don't split up the move
  10283. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  10284. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  10285. return false;
  10286. }
  10287. // Fail if attempting move outside printable radius
  10288. if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) return true;
  10289. // Get the cartesian distances moved in XYZE
  10290. const float difference[XYZE] = {
  10291. ltarget[X_AXIS] - current_position[X_AXIS],
  10292. ltarget[Y_AXIS] - current_position[Y_AXIS],
  10293. ltarget[Z_AXIS] - current_position[Z_AXIS],
  10294. ltarget[E_AXIS] - current_position[E_AXIS]
  10295. };
  10296. // Get the linear distance in XYZ
  10297. float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  10298. // If the move is very short, check the E move distance
  10299. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]);
  10300. // No E move either? Game over.
  10301. if (UNEAR_ZERO(cartesian_mm)) return true;
  10302. // Minimum number of seconds to move the given distance
  10303. const float seconds = cartesian_mm / _feedrate_mm_s;
  10304. // The number of segments-per-second times the duration
  10305. // gives the number of segments
  10306. uint16_t segments = delta_segments_per_second * seconds;
  10307. // For SCARA minimum segment size is 0.25mm
  10308. #if IS_SCARA
  10309. NOMORE(segments, cartesian_mm * 4);
  10310. #endif
  10311. // At least one segment is required
  10312. NOLESS(segments, 1);
  10313. // The approximate length of each segment
  10314. const float inv_segments = 1.0 / float(segments),
  10315. segment_distance[XYZE] = {
  10316. difference[X_AXIS] * inv_segments,
  10317. difference[Y_AXIS] * inv_segments,
  10318. difference[Z_AXIS] * inv_segments,
  10319. difference[E_AXIS] * inv_segments
  10320. };
  10321. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  10322. // SERIAL_ECHOPAIR(" seconds=", seconds);
  10323. // SERIAL_ECHOLNPAIR(" segments=", segments);
  10324. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10325. // SCARA needs to scale the feed rate from mm/s to degrees/s
  10326. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  10327. feed_factor = inv_segment_length * _feedrate_mm_s;
  10328. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  10329. oldB = stepper.get_axis_position_degrees(B_AXIS);
  10330. #endif
  10331. // Get the logical current position as starting point
  10332. float logical[XYZE];
  10333. COPY(logical, current_position);
  10334. // Drop one segment so the last move is to the exact target.
  10335. // If there's only 1 segment, loops will be skipped entirely.
  10336. --segments;
  10337. // Calculate and execute the segments
  10338. for (uint16_t s = segments + 1; --s;) {
  10339. LOOP_XYZE(i) logical[i] += segment_distance[i];
  10340. #if ENABLED(DELTA)
  10341. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  10342. #else
  10343. inverse_kinematics(logical);
  10344. #endif
  10345. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  10346. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10347. // For SCARA scale the feed rate from mm/s to degrees/s
  10348. // Use ratio between the length of the move and the larger angle change
  10349. const float adiff = abs(delta[A_AXIS] - oldA),
  10350. bdiff = abs(delta[B_AXIS] - oldB);
  10351. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10352. oldA = delta[A_AXIS];
  10353. oldB = delta[B_AXIS];
  10354. #else
  10355. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  10356. #endif
  10357. }
  10358. // Since segment_distance is only approximate,
  10359. // the final move must be to the exact destination.
  10360. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10361. // For SCARA scale the feed rate from mm/s to degrees/s
  10362. // With segments > 1 length is 1 segment, otherwise total length
  10363. inverse_kinematics(ltarget);
  10364. ADJUST_DELTA(ltarget);
  10365. const float adiff = abs(delta[A_AXIS] - oldA),
  10366. bdiff = abs(delta[B_AXIS] - oldB);
  10367. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10368. #else
  10369. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  10370. #endif
  10371. return false;
  10372. }
  10373. #else // !IS_KINEMATIC || UBL_DELTA
  10374. /**
  10375. * Prepare a linear move in a Cartesian setup.
  10376. * If Mesh Bed Leveling is enabled, perform a mesh move.
  10377. *
  10378. * Returns true if the caller didn't update current_position.
  10379. */
  10380. inline bool prepare_move_to_destination_cartesian() {
  10381. #if ENABLED(AUTO_BED_LEVELING_UBL)
  10382. const float fr_scaled = MMS_SCALED(feedrate_mm_s);
  10383. if (ubl.state.active) { // direct use of ubl.state.active for speed
  10384. ubl.line_to_destination_cartesian(fr_scaled, active_extruder);
  10385. return true;
  10386. }
  10387. else
  10388. line_to_destination(fr_scaled);
  10389. #else
  10390. // Do not use feedrate_percentage for E or Z only moves
  10391. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS])
  10392. line_to_destination();
  10393. else {
  10394. const float fr_scaled = MMS_SCALED(feedrate_mm_s);
  10395. #if ENABLED(MESH_BED_LEVELING)
  10396. if (mbl.active()) { // direct used of mbl.active() for speed
  10397. mesh_line_to_destination(fr_scaled);
  10398. return true;
  10399. }
  10400. else
  10401. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10402. if (planner.abl_enabled) { // direct use of abl_enabled for speed
  10403. bilinear_line_to_destination(fr_scaled);
  10404. return true;
  10405. }
  10406. else
  10407. #endif
  10408. line_to_destination(fr_scaled);
  10409. }
  10410. #endif
  10411. return false;
  10412. }
  10413. #endif // !IS_KINEMATIC || UBL_DELTA
  10414. #if ENABLED(DUAL_X_CARRIAGE)
  10415. /**
  10416. * Prepare a linear move in a dual X axis setup
  10417. */
  10418. inline bool prepare_move_to_destination_dualx() {
  10419. if (active_extruder_parked) {
  10420. switch (dual_x_carriage_mode) {
  10421. case DXC_FULL_CONTROL_MODE:
  10422. break;
  10423. case DXC_AUTO_PARK_MODE:
  10424. if (current_position[E_AXIS] == destination[E_AXIS]) {
  10425. // This is a travel move (with no extrusion)
  10426. // Skip it, but keep track of the current position
  10427. // (so it can be used as the start of the next non-travel move)
  10428. if (delayed_move_time != 0xFFFFFFFFUL) {
  10429. set_current_to_destination();
  10430. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  10431. delayed_move_time = millis();
  10432. return true;
  10433. }
  10434. }
  10435. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  10436. for (uint8_t i = 0; i < 3; i++)
  10437. planner.buffer_line(
  10438. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  10439. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  10440. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  10441. current_position[E_AXIS],
  10442. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  10443. active_extruder
  10444. );
  10445. delayed_move_time = 0;
  10446. active_extruder_parked = false;
  10447. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10448. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  10449. #endif
  10450. break;
  10451. case DXC_DUPLICATION_MODE:
  10452. if (active_extruder == 0) {
  10453. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10454. if (DEBUGGING(LEVELING)) {
  10455. SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
  10456. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  10457. }
  10458. #endif
  10459. // move duplicate extruder into correct duplication position.
  10460. planner.set_position_mm(
  10461. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  10462. current_position[Y_AXIS],
  10463. current_position[Z_AXIS],
  10464. current_position[E_AXIS]
  10465. );
  10466. planner.buffer_line(
  10467. current_position[X_AXIS] + duplicate_extruder_x_offset,
  10468. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  10469. planner.max_feedrate_mm_s[X_AXIS], 1
  10470. );
  10471. SYNC_PLAN_POSITION_KINEMATIC();
  10472. stepper.synchronize();
  10473. extruder_duplication_enabled = true;
  10474. active_extruder_parked = false;
  10475. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10476. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  10477. #endif
  10478. }
  10479. else {
  10480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10481. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  10482. #endif
  10483. }
  10484. break;
  10485. }
  10486. }
  10487. return false;
  10488. }
  10489. #endif // DUAL_X_CARRIAGE
  10490. /**
  10491. * Prepare a single move and get ready for the next one
  10492. *
  10493. * This may result in several calls to planner.buffer_line to
  10494. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  10495. */
  10496. void prepare_move_to_destination() {
  10497. clamp_to_software_endstops(destination);
  10498. refresh_cmd_timeout();
  10499. #if ENABLED(PREVENT_COLD_EXTRUSION)
  10500. if (!DEBUGGING(DRYRUN)) {
  10501. if (destination[E_AXIS] != current_position[E_AXIS]) {
  10502. if (thermalManager.tooColdToExtrude(active_extruder)) {
  10503. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10504. SERIAL_ECHO_START();
  10505. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  10506. }
  10507. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  10508. if (destination[E_AXIS] - current_position[E_AXIS] > EXTRUDE_MAXLENGTH) {
  10509. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10510. SERIAL_ECHO_START();
  10511. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  10512. }
  10513. #endif
  10514. }
  10515. }
  10516. #endif
  10517. if (
  10518. #if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely)
  10519. ubl.prepare_segmented_line_to(destination, feedrate_mm_s)
  10520. #elif IS_KINEMATIC
  10521. prepare_kinematic_move_to(destination)
  10522. #elif ENABLED(DUAL_X_CARRIAGE)
  10523. prepare_move_to_destination_dualx() || prepare_move_to_destination_cartesian()
  10524. #else
  10525. prepare_move_to_destination_cartesian()
  10526. #endif
  10527. ) return;
  10528. set_current_to_destination();
  10529. }
  10530. #if ENABLED(ARC_SUPPORT)
  10531. #if N_ARC_CORRECTION < 1
  10532. #undef N_ARC_CORRECTION
  10533. #define N_ARC_CORRECTION 1
  10534. #endif
  10535. /**
  10536. * Plan an arc in 2 dimensions
  10537. *
  10538. * The arc is approximated by generating many small linear segments.
  10539. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  10540. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  10541. * larger segments will tend to be more efficient. Your slicer should have
  10542. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  10543. */
  10544. void plan_arc(
  10545. float logical[XYZE], // Destination position
  10546. float *offset, // Center of rotation relative to current_position
  10547. uint8_t clockwise // Clockwise?
  10548. ) {
  10549. #if ENABLED(CNC_WORKSPACE_PLANES)
  10550. AxisEnum p_axis, q_axis, l_axis;
  10551. switch (workspace_plane) {
  10552. case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
  10553. case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
  10554. case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
  10555. }
  10556. #else
  10557. constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
  10558. #endif
  10559. // Radius vector from center to current location
  10560. float r_P = -offset[0], r_Q = -offset[1];
  10561. const float radius = HYPOT(r_P, r_Q),
  10562. center_P = current_position[p_axis] - r_P,
  10563. center_Q = current_position[q_axis] - r_Q,
  10564. rt_X = logical[p_axis] - center_P,
  10565. rt_Y = logical[q_axis] - center_Q,
  10566. linear_travel = logical[l_axis] - current_position[l_axis],
  10567. extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
  10568. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  10569. float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
  10570. if (angular_travel < 0) angular_travel += RADIANS(360);
  10571. if (clockwise) angular_travel -= RADIANS(360);
  10572. // Make a circle if the angular rotation is 0 and the target is current position
  10573. if (angular_travel == 0 && current_position[p_axis] == logical[p_axis] && current_position[q_axis] == logical[q_axis])
  10574. angular_travel = RADIANS(360);
  10575. const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
  10576. if (mm_of_travel < 0.001) return;
  10577. uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
  10578. if (segments == 0) segments = 1;
  10579. /**
  10580. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  10581. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  10582. * r_T = [cos(phi) -sin(phi);
  10583. * sin(phi) cos(phi)] * r ;
  10584. *
  10585. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  10586. * defined from the circle center to the initial position. Each line segment is formed by successive
  10587. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  10588. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  10589. * all double numbers are single precision on the Arduino. (True double precision will not have
  10590. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  10591. * tool precision in some cases. Therefore, arc path correction is implemented.
  10592. *
  10593. * Small angle approximation may be used to reduce computation overhead further. This approximation
  10594. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  10595. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  10596. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  10597. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  10598. * issue for CNC machines with the single precision Arduino calculations.
  10599. *
  10600. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  10601. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  10602. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  10603. * This is important when there are successive arc motions.
  10604. */
  10605. // Vector rotation matrix values
  10606. float arc_target[XYZE];
  10607. const float theta_per_segment = angular_travel / segments,
  10608. linear_per_segment = linear_travel / segments,
  10609. extruder_per_segment = extruder_travel / segments,
  10610. sin_T = theta_per_segment,
  10611. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  10612. // Initialize the linear axis
  10613. arc_target[l_axis] = current_position[l_axis];
  10614. // Initialize the extruder axis
  10615. arc_target[E_AXIS] = current_position[E_AXIS];
  10616. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  10617. millis_t next_idle_ms = millis() + 200UL;
  10618. #if N_ARC_CORRECTION > 1
  10619. int8_t arc_recalc_count = N_ARC_CORRECTION;
  10620. #endif
  10621. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  10622. thermalManager.manage_heater();
  10623. if (ELAPSED(millis(), next_idle_ms)) {
  10624. next_idle_ms = millis() + 200UL;
  10625. idle();
  10626. }
  10627. #if N_ARC_CORRECTION > 1
  10628. if (--arc_recalc_count) {
  10629. // Apply vector rotation matrix to previous r_P / 1
  10630. const float r_new_Y = r_P * sin_T + r_Q * cos_T;
  10631. r_P = r_P * cos_T - r_Q * sin_T;
  10632. r_Q = r_new_Y;
  10633. }
  10634. else
  10635. #endif
  10636. {
  10637. #if N_ARC_CORRECTION > 1
  10638. arc_recalc_count = N_ARC_CORRECTION;
  10639. #endif
  10640. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  10641. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  10642. // To reduce stuttering, the sin and cos could be computed at different times.
  10643. // For now, compute both at the same time.
  10644. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
  10645. r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
  10646. r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
  10647. }
  10648. // Update arc_target location
  10649. arc_target[p_axis] = center_P + r_P;
  10650. arc_target[q_axis] = center_Q + r_Q;
  10651. arc_target[l_axis] += linear_per_segment;
  10652. arc_target[E_AXIS] += extruder_per_segment;
  10653. clamp_to_software_endstops(arc_target);
  10654. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  10655. }
  10656. // Ensure last segment arrives at target location.
  10657. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  10658. // As far as the parser is concerned, the position is now == target. In reality the
  10659. // motion control system might still be processing the action and the real tool position
  10660. // in any intermediate location.
  10661. set_current_to_destination();
  10662. } // plan_arc
  10663. #endif // ARC_SUPPORT
  10664. #if ENABLED(BEZIER_CURVE_SUPPORT)
  10665. void plan_cubic_move(const float offset[4]) {
  10666. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  10667. // As far as the parser is concerned, the position is now == destination. In reality the
  10668. // motion control system might still be processing the action and the real tool position
  10669. // in any intermediate location.
  10670. set_current_to_destination();
  10671. }
  10672. #endif // BEZIER_CURVE_SUPPORT
  10673. #if ENABLED(USE_CONTROLLER_FAN)
  10674. void controllerFan() {
  10675. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  10676. nextMotorCheck = 0; // Last time the state was checked
  10677. const millis_t ms = millis();
  10678. if (ELAPSED(ms, nextMotorCheck)) {
  10679. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  10680. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
  10681. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  10682. #if E_STEPPERS > 1
  10683. || E1_ENABLE_READ == E_ENABLE_ON
  10684. #if HAS_X2_ENABLE
  10685. || X2_ENABLE_READ == X_ENABLE_ON
  10686. #endif
  10687. #if E_STEPPERS > 2
  10688. || E2_ENABLE_READ == E_ENABLE_ON
  10689. #if E_STEPPERS > 3
  10690. || E3_ENABLE_READ == E_ENABLE_ON
  10691. #if E_STEPPERS > 4
  10692. || E4_ENABLE_READ == E_ENABLE_ON
  10693. #endif // E_STEPPERS > 4
  10694. #endif // E_STEPPERS > 3
  10695. #endif // E_STEPPERS > 2
  10696. #endif // E_STEPPERS > 1
  10697. ) {
  10698. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  10699. }
  10700. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  10701. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  10702. // allows digital or PWM fan output to be used (see M42 handling)
  10703. WRITE(CONTROLLER_FAN_PIN, speed);
  10704. analogWrite(CONTROLLER_FAN_PIN, speed);
  10705. }
  10706. }
  10707. #endif // USE_CONTROLLER_FAN
  10708. #if ENABLED(MORGAN_SCARA)
  10709. /**
  10710. * Morgan SCARA Forward Kinematics. Results in cartes[].
  10711. * Maths and first version by QHARLEY.
  10712. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  10713. */
  10714. void forward_kinematics_SCARA(const float &a, const float &b) {
  10715. float a_sin = sin(RADIANS(a)) * L1,
  10716. a_cos = cos(RADIANS(a)) * L1,
  10717. b_sin = sin(RADIANS(b)) * L2,
  10718. b_cos = cos(RADIANS(b)) * L2;
  10719. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  10720. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  10721. /*
  10722. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  10723. SERIAL_ECHOPAIR(" b=", b);
  10724. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  10725. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  10726. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  10727. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  10728. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  10729. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  10730. //*/
  10731. }
  10732. /**
  10733. * Morgan SCARA Inverse Kinematics. Results in delta[].
  10734. *
  10735. * See http://forums.reprap.org/read.php?185,283327
  10736. *
  10737. * Maths and first version by QHARLEY.
  10738. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  10739. */
  10740. void inverse_kinematics(const float logical[XYZ]) {
  10741. static float C2, S2, SK1, SK2, THETA, PSI;
  10742. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  10743. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  10744. if (L1 == L2)
  10745. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  10746. else
  10747. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  10748. S2 = SQRT(1 - sq(C2));
  10749. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  10750. SK1 = L1 + L2 * C2;
  10751. // Rotated Arm2 gives the distance from Arm1 to Arm2
  10752. SK2 = L2 * S2;
  10753. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  10754. THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
  10755. // Angle of Arm2
  10756. PSI = ATAN2(S2, C2);
  10757. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  10758. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  10759. delta[C_AXIS] = logical[Z_AXIS];
  10760. /*
  10761. DEBUG_POS("SCARA IK", logical);
  10762. DEBUG_POS("SCARA IK", delta);
  10763. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  10764. SERIAL_ECHOPAIR(",", sy);
  10765. SERIAL_ECHOPAIR(" C2=", C2);
  10766. SERIAL_ECHOPAIR(" S2=", S2);
  10767. SERIAL_ECHOPAIR(" Theta=", THETA);
  10768. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  10769. //*/
  10770. }
  10771. #endif // MORGAN_SCARA
  10772. #if ENABLED(TEMP_STAT_LEDS)
  10773. static bool red_led = false;
  10774. static millis_t next_status_led_update_ms = 0;
  10775. void handle_status_leds(void) {
  10776. if (ELAPSED(millis(), next_status_led_update_ms)) {
  10777. next_status_led_update_ms += 500; // Update every 0.5s
  10778. float max_temp = 0.0;
  10779. #if HAS_TEMP_BED
  10780. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  10781. #endif
  10782. HOTEND_LOOP()
  10783. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  10784. const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  10785. if (new_led != red_led) {
  10786. red_led = new_led;
  10787. #if PIN_EXISTS(STAT_LED_RED)
  10788. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  10789. #if PIN_EXISTS(STAT_LED_BLUE)
  10790. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  10791. #endif
  10792. #else
  10793. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  10794. #endif
  10795. }
  10796. }
  10797. }
  10798. #endif
  10799. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10800. void handle_filament_runout() {
  10801. if (!filament_ran_out) {
  10802. filament_ran_out = true;
  10803. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  10804. stepper.synchronize();
  10805. }
  10806. }
  10807. #endif // FILAMENT_RUNOUT_SENSOR
  10808. #if ENABLED(FAST_PWM_FAN)
  10809. void setPwmFrequency(uint8_t pin, int val) {
  10810. val &= 0x07;
  10811. switch (digitalPinToTimer(pin)) {
  10812. #ifdef TCCR0A
  10813. #if !AVR_AT90USB1286_FAMILY
  10814. case TIMER0A:
  10815. #endif
  10816. case TIMER0B:
  10817. //_SET_CS(0, val);
  10818. break;
  10819. #endif
  10820. #ifdef TCCR1A
  10821. case TIMER1A:
  10822. case TIMER1B:
  10823. //_SET_CS(1, val);
  10824. break;
  10825. #endif
  10826. #ifdef TCCR2
  10827. case TIMER2:
  10828. case TIMER2:
  10829. _SET_CS(2, val);
  10830. break;
  10831. #endif
  10832. #ifdef TCCR2A
  10833. case TIMER2A:
  10834. case TIMER2B:
  10835. _SET_CS(2, val);
  10836. break;
  10837. #endif
  10838. #ifdef TCCR3A
  10839. case TIMER3A:
  10840. case TIMER3B:
  10841. case TIMER3C:
  10842. _SET_CS(3, val);
  10843. break;
  10844. #endif
  10845. #ifdef TCCR4A
  10846. case TIMER4A:
  10847. case TIMER4B:
  10848. case TIMER4C:
  10849. _SET_CS(4, val);
  10850. break;
  10851. #endif
  10852. #ifdef TCCR5A
  10853. case TIMER5A:
  10854. case TIMER5B:
  10855. case TIMER5C:
  10856. _SET_CS(5, val);
  10857. break;
  10858. #endif
  10859. }
  10860. }
  10861. #endif // FAST_PWM_FAN
  10862. float calculate_volumetric_multiplier(const float diameter) {
  10863. if (!volumetric_enabled || diameter == 0) return 1.0;
  10864. return 1.0 / (M_PI * sq(diameter * 0.5));
  10865. }
  10866. void calculate_volumetric_multipliers() {
  10867. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  10868. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  10869. }
  10870. void enable_all_steppers() {
  10871. enable_X();
  10872. enable_Y();
  10873. enable_Z();
  10874. enable_E0();
  10875. enable_E1();
  10876. enable_E2();
  10877. enable_E3();
  10878. enable_E4();
  10879. }
  10880. void disable_e_steppers() {
  10881. disable_E0();
  10882. disable_E1();
  10883. disable_E2();
  10884. disable_E3();
  10885. disable_E4();
  10886. }
  10887. void disable_all_steppers() {
  10888. disable_X();
  10889. disable_Y();
  10890. disable_Z();
  10891. disable_e_steppers();
  10892. }
  10893. #if ENABLED(HAVE_TMC2130)
  10894. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  10895. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  10896. const bool is_otpw = st.checkOT();
  10897. // Report if a warning was triggered
  10898. static bool previous_otpw = false;
  10899. if (is_otpw && !previous_otpw) {
  10900. char timestamp[10];
  10901. duration_t elapsed = print_job_timer.duration();
  10902. const bool has_days = (elapsed.value > 60*60*24L);
  10903. (void)elapsed.toDigital(timestamp, has_days);
  10904. SERIAL_ECHO(timestamp);
  10905. SERIAL_ECHOPGM(": ");
  10906. SERIAL_ECHO(axisID);
  10907. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  10908. }
  10909. previous_otpw = is_otpw;
  10910. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  10911. // Return if user has not enabled current control start with M906 S1.
  10912. if (!auto_current_control) return;
  10913. /**
  10914. * Decrease current if is_otpw is true.
  10915. * Bail out if driver is disabled.
  10916. * Increase current if OTPW has not been triggered yet.
  10917. */
  10918. uint16_t current = st.getCurrent();
  10919. if (is_otpw) {
  10920. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  10921. #if ENABLED(REPORT_CURRENT_CHANGE)
  10922. SERIAL_ECHO(axisID);
  10923. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  10924. #endif
  10925. }
  10926. else if (!st.isEnabled())
  10927. return;
  10928. else if (!is_otpw && !st.getOTPW()) {
  10929. current += CURRENT_STEP;
  10930. if (current <= AUTO_ADJUST_MAX) {
  10931. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  10932. #if ENABLED(REPORT_CURRENT_CHANGE)
  10933. SERIAL_ECHO(axisID);
  10934. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  10935. #endif
  10936. }
  10937. }
  10938. SERIAL_EOL();
  10939. #endif
  10940. }
  10941. void checkOverTemp() {
  10942. static millis_t next_cOT = 0;
  10943. if (ELAPSED(millis(), next_cOT)) {
  10944. next_cOT = millis() + 5000;
  10945. #if ENABLED(X_IS_TMC2130)
  10946. automatic_current_control(stepperX, "X");
  10947. #endif
  10948. #if ENABLED(Y_IS_TMC2130)
  10949. automatic_current_control(stepperY, "Y");
  10950. #endif
  10951. #if ENABLED(Z_IS_TMC2130)
  10952. automatic_current_control(stepperZ, "Z");
  10953. #endif
  10954. #if ENABLED(X2_IS_TMC2130)
  10955. automatic_current_control(stepperX2, "X2");
  10956. #endif
  10957. #if ENABLED(Y2_IS_TMC2130)
  10958. automatic_current_control(stepperY2, "Y2");
  10959. #endif
  10960. #if ENABLED(Z2_IS_TMC2130)
  10961. automatic_current_control(stepperZ2, "Z2");
  10962. #endif
  10963. #if ENABLED(E0_IS_TMC2130)
  10964. automatic_current_control(stepperE0, "E0");
  10965. #endif
  10966. #if ENABLED(E1_IS_TMC2130)
  10967. automatic_current_control(stepperE1, "E1");
  10968. #endif
  10969. #if ENABLED(E2_IS_TMC2130)
  10970. automatic_current_control(stepperE2, "E2");
  10971. #endif
  10972. #if ENABLED(E3_IS_TMC2130)
  10973. automatic_current_control(stepperE3, "E3");
  10974. #endif
  10975. #if ENABLED(E4_IS_TMC2130)
  10976. automatic_current_control(stepperE4, "E4");
  10977. #endif
  10978. #if ENABLED(E4_IS_TMC2130)
  10979. automatic_current_control(stepperE4);
  10980. #endif
  10981. }
  10982. }
  10983. #endif // HAVE_TMC2130
  10984. /**
  10985. * Manage several activities:
  10986. * - Check for Filament Runout
  10987. * - Keep the command buffer full
  10988. * - Check for maximum inactive time between commands
  10989. * - Check for maximum inactive time between stepper commands
  10990. * - Check if pin CHDK needs to go LOW
  10991. * - Check for KILL button held down
  10992. * - Check for HOME button held down
  10993. * - Check if cooling fan needs to be switched on
  10994. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  10995. */
  10996. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  10997. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10998. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  10999. handle_filament_runout();
  11000. #endif
  11001. if (commands_in_queue < BUFSIZE) get_available_commands();
  11002. const millis_t ms = millis();
  11003. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  11004. SERIAL_ERROR_START();
  11005. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
  11006. kill(PSTR(MSG_KILLED));
  11007. }
  11008. // Prevent steppers timing-out in the middle of M600
  11009. #if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
  11010. #define MOVE_AWAY_TEST !move_away_flag
  11011. #else
  11012. #define MOVE_AWAY_TEST true
  11013. #endif
  11014. if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  11015. && !ignore_stepper_queue && !planner.blocks_queued()) {
  11016. #if ENABLED(DISABLE_INACTIVE_X)
  11017. disable_X();
  11018. #endif
  11019. #if ENABLED(DISABLE_INACTIVE_Y)
  11020. disable_Y();
  11021. #endif
  11022. #if ENABLED(DISABLE_INACTIVE_Z)
  11023. disable_Z();
  11024. #endif
  11025. #if ENABLED(DISABLE_INACTIVE_E)
  11026. disable_e_steppers();
  11027. #endif
  11028. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  11029. ubl_lcd_map_control = defer_return_to_status = false;
  11030. #endif
  11031. }
  11032. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  11033. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  11034. chdkActive = false;
  11035. WRITE(CHDK, LOW);
  11036. }
  11037. #endif
  11038. #if HAS_KILL
  11039. // Check if the kill button was pressed and wait just in case it was an accidental
  11040. // key kill key press
  11041. // -------------------------------------------------------------------------------
  11042. static int killCount = 0; // make the inactivity button a bit less responsive
  11043. const int KILL_DELAY = 750;
  11044. if (!READ(KILL_PIN))
  11045. killCount++;
  11046. else if (killCount > 0)
  11047. killCount--;
  11048. // Exceeded threshold and we can confirm that it was not accidental
  11049. // KILL the machine
  11050. // ----------------------------------------------------------------
  11051. if (killCount >= KILL_DELAY) {
  11052. SERIAL_ERROR_START();
  11053. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  11054. kill(PSTR(MSG_KILLED));
  11055. }
  11056. #endif
  11057. #if HAS_HOME
  11058. // Check to see if we have to home, use poor man's debouncer
  11059. // ---------------------------------------------------------
  11060. static int homeDebounceCount = 0; // poor man's debouncing count
  11061. const int HOME_DEBOUNCE_DELAY = 2500;
  11062. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  11063. if (!homeDebounceCount) {
  11064. enqueue_and_echo_commands_P(PSTR("G28"));
  11065. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  11066. }
  11067. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  11068. homeDebounceCount++;
  11069. else
  11070. homeDebounceCount = 0;
  11071. }
  11072. #endif
  11073. #if ENABLED(USE_CONTROLLER_FAN)
  11074. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  11075. #endif
  11076. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  11077. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  11078. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  11079. #if ENABLED(SWITCHING_EXTRUDER)
  11080. const bool oldstatus = E0_ENABLE_READ;
  11081. enable_E0();
  11082. #else // !SWITCHING_EXTRUDER
  11083. bool oldstatus;
  11084. switch (active_extruder) {
  11085. default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  11086. #if E_STEPPERS > 1
  11087. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  11088. #if E_STEPPERS > 2
  11089. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  11090. #if E_STEPPERS > 3
  11091. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  11092. #if E_STEPPERS > 4
  11093. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  11094. #endif // E_STEPPERS > 4
  11095. #endif // E_STEPPERS > 3
  11096. #endif // E_STEPPERS > 2
  11097. #endif // E_STEPPERS > 1
  11098. }
  11099. #endif // !SWITCHING_EXTRUDER
  11100. previous_cmd_ms = ms; // refresh_cmd_timeout()
  11101. const float olde = current_position[E_AXIS];
  11102. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  11103. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  11104. current_position[E_AXIS] = olde;
  11105. planner.set_e_position_mm(olde);
  11106. stepper.synchronize();
  11107. #if ENABLED(SWITCHING_EXTRUDER)
  11108. E0_ENABLE_WRITE(oldstatus);
  11109. #else
  11110. switch (active_extruder) {
  11111. case 0: E0_ENABLE_WRITE(oldstatus); break;
  11112. #if E_STEPPERS > 1
  11113. case 1: E1_ENABLE_WRITE(oldstatus); break;
  11114. #if E_STEPPERS > 2
  11115. case 2: E2_ENABLE_WRITE(oldstatus); break;
  11116. #if E_STEPPERS > 3
  11117. case 3: E3_ENABLE_WRITE(oldstatus); break;
  11118. #if E_STEPPERS > 4
  11119. case 4: E4_ENABLE_WRITE(oldstatus); break;
  11120. #endif // E_STEPPERS > 4
  11121. #endif // E_STEPPERS > 3
  11122. #endif // E_STEPPERS > 2
  11123. #endif // E_STEPPERS > 1
  11124. }
  11125. #endif // !SWITCHING_EXTRUDER
  11126. }
  11127. #endif // EXTRUDER_RUNOUT_PREVENT
  11128. #if ENABLED(DUAL_X_CARRIAGE)
  11129. // handle delayed move timeout
  11130. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  11131. // travel moves have been received so enact them
  11132. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  11133. set_destination_to_current();
  11134. prepare_move_to_destination();
  11135. }
  11136. #endif
  11137. #if ENABLED(TEMP_STAT_LEDS)
  11138. handle_status_leds();
  11139. #endif
  11140. #if ENABLED(HAVE_TMC2130)
  11141. checkOverTemp();
  11142. #endif
  11143. planner.check_axes_activity();
  11144. }
  11145. /**
  11146. * Standard idle routine keeps the machine alive
  11147. */
  11148. void idle(
  11149. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  11150. bool no_stepper_sleep/*=false*/
  11151. #endif
  11152. ) {
  11153. #if ENABLED(MAX7219_DEBUG)
  11154. Max7219_idle_tasks();
  11155. #endif // MAX7219_DEBUG
  11156. lcd_update();
  11157. host_keepalive();
  11158. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  11159. auto_report_temperatures();
  11160. #endif
  11161. manage_inactivity(
  11162. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  11163. no_stepper_sleep
  11164. #endif
  11165. );
  11166. thermalManager.manage_heater();
  11167. #if ENABLED(PRINTCOUNTER)
  11168. print_job_timer.tick();
  11169. #endif
  11170. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  11171. buzzer.tick();
  11172. #endif
  11173. #if ENABLED(I2C_POSITION_ENCODERS)
  11174. if (planner.blocks_queued() &&
  11175. ( (blockBufferIndexRef != planner.block_buffer_head) ||
  11176. ((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
  11177. blockBufferIndexRef = planner.block_buffer_head;
  11178. I2CPEM.update();
  11179. lastUpdateMillis = millis();
  11180. }
  11181. #endif
  11182. }
  11183. /**
  11184. * Kill all activity and lock the machine.
  11185. * After this the machine will need to be reset.
  11186. */
  11187. void kill(const char* lcd_msg) {
  11188. SERIAL_ERROR_START();
  11189. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  11190. thermalManager.disable_all_heaters();
  11191. disable_all_steppers();
  11192. #if ENABLED(ULTRA_LCD)
  11193. kill_screen(lcd_msg);
  11194. #else
  11195. UNUSED(lcd_msg);
  11196. #endif
  11197. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  11198. cli(); // Stop interrupts
  11199. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  11200. thermalManager.disable_all_heaters(); //turn off heaters again
  11201. #ifdef ACTION_ON_KILL
  11202. SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);
  11203. #endif
  11204. #if HAS_POWER_SWITCH
  11205. SET_INPUT(PS_ON_PIN);
  11206. #endif
  11207. suicide();
  11208. while (1) {
  11209. #if ENABLED(USE_WATCHDOG)
  11210. watchdog_reset();
  11211. #endif
  11212. } // Wait for reset
  11213. }
  11214. /**
  11215. * Turn off heaters and stop the print in progress
  11216. * After a stop the machine may be resumed with M999
  11217. */
  11218. void stop() {
  11219. thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
  11220. #if ENABLED(PROBING_FANS_OFF)
  11221. if (fans_paused) fans_pause(false); // put things back the way they were
  11222. #endif
  11223. if (IsRunning()) {
  11224. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  11225. SERIAL_ERROR_START();
  11226. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  11227. LCD_MESSAGEPGM(MSG_STOPPED);
  11228. safe_delay(350); // allow enough time for messages to get out before stopping
  11229. Running = false;
  11230. }
  11231. }
  11232. /**
  11233. * Marlin entry-point: Set up before the program loop
  11234. * - Set up the kill pin, filament runout, power hold
  11235. * - Start the serial port
  11236. * - Print startup messages and diagnostics
  11237. * - Get EEPROM or default settings
  11238. * - Initialize managers for:
  11239. * • temperature
  11240. * • planner
  11241. * • watchdog
  11242. * • stepper
  11243. * • photo pin
  11244. * • servos
  11245. * • LCD controller
  11246. * • Digipot I2C
  11247. * • Z probe sled
  11248. * • status LEDs
  11249. */
  11250. void setup() {
  11251. #if ENABLED(MAX7219_DEBUG)
  11252. Max7219_init();
  11253. #endif
  11254. #ifdef DISABLE_JTAG
  11255. // Disable JTAG on AT90USB chips to free up pins for IO
  11256. MCUCR = 0x80;
  11257. MCUCR = 0x80;
  11258. #endif
  11259. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11260. setup_filrunoutpin();
  11261. #endif
  11262. setup_killpin();
  11263. setup_powerhold();
  11264. #if HAS_STEPPER_RESET
  11265. disableStepperDrivers();
  11266. #endif
  11267. MYSERIAL.begin(BAUDRATE);
  11268. while(!MYSERIAL);
  11269. SERIAL_PROTOCOLLNPGM("start");
  11270. SERIAL_ECHO_START();
  11271. // Check startup - does nothing if bootloader sets MCUSR to 0
  11272. byte mcu = HAL_get_reset_source();
  11273. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  11274. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  11275. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  11276. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  11277. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  11278. HAL_clear_reset_source();
  11279. #if ENABLED(USE_WATCHDOG) //reinit watchdog after HAL_get_reset_source call
  11280. watchdog_init();
  11281. #endif
  11282. SERIAL_ECHOPGM(MSG_MARLIN);
  11283. SERIAL_CHAR(' ');
  11284. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  11285. SERIAL_EOL();
  11286. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  11287. SERIAL_ECHO_START();
  11288. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  11289. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  11290. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  11291. SERIAL_ECHO_START();
  11292. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  11293. #endif
  11294. SERIAL_ECHO_START();
  11295. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  11296. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  11297. // Send "ok" after commands by default
  11298. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  11299. // Load data from EEPROM if available (or use defaults)
  11300. // This also updates variables in the planner, elsewhere
  11301. (void)settings.load();
  11302. #if HAS_M206_COMMAND
  11303. // Initialize current position based on home_offset
  11304. COPY(current_position, home_offset);
  11305. #else
  11306. ZERO(current_position);
  11307. #endif
  11308. // Vital to init stepper/planner equivalent for current_position
  11309. SYNC_PLAN_POSITION_KINEMATIC();
  11310. thermalManager.init(); // Initialize temperature loop
  11311. stepper.init(); // Initialize stepper, this enables interrupts!
  11312. servo_init();
  11313. #if HAS_PHOTOGRAPH
  11314. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  11315. #endif
  11316. #if HAS_CASE_LIGHT
  11317. case_light_on = CASE_LIGHT_DEFAULT_ON;
  11318. case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
  11319. update_case_light();
  11320. #endif
  11321. #if ENABLED(SPINDLE_LASER_ENABLE)
  11322. OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
  11323. #if SPINDLE_DIR_CHANGE
  11324. OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
  11325. #endif
  11326. #if ENABLED(SPINDLE_LASER_PWM)
  11327. SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
  11328. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
  11329. #endif
  11330. #endif
  11331. #if HAS_BED_PROBE
  11332. endstops.enable_z_probe(false);
  11333. #endif
  11334. #if ENABLED(USE_CONTROLLER_FAN)
  11335. SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
  11336. #endif
  11337. #if HAS_STEPPER_RESET
  11338. enableStepperDrivers();
  11339. #endif
  11340. #if ENABLED(DIGIPOT_I2C)
  11341. digipot_i2c_init();
  11342. #endif
  11343. #if ENABLED(DAC_STEPPER_CURRENT)
  11344. dac_init();
  11345. #endif
  11346. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  11347. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  11348. #endif
  11349. #if HAS_HOME
  11350. SET_INPUT_PULLUP(HOME_PIN);
  11351. #endif
  11352. #if PIN_EXISTS(STAT_LED_RED)
  11353. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  11354. #endif
  11355. #if PIN_EXISTS(STAT_LED_BLUE)
  11356. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  11357. #endif
  11358. #if ENABLED(NEOPIXEL_RGBW_LED)
  11359. SET_OUTPUT(NEOPIXEL_PIN);
  11360. setup_neopixel();
  11361. #endif
  11362. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  11363. SET_OUTPUT(RGB_LED_R_PIN);
  11364. SET_OUTPUT(RGB_LED_G_PIN);
  11365. SET_OUTPUT(RGB_LED_B_PIN);
  11366. #if ENABLED(RGBW_LED)
  11367. SET_OUTPUT(RGB_LED_W_PIN);
  11368. #endif
  11369. #endif
  11370. #if ENABLED(MK2_MULTIPLEXER)
  11371. SET_OUTPUT(E_MUX0_PIN);
  11372. SET_OUTPUT(E_MUX1_PIN);
  11373. SET_OUTPUT(E_MUX2_PIN);
  11374. #endif
  11375. #if HAS_FANMUX
  11376. fanmux_init();
  11377. #endif
  11378. lcd_init();
  11379. #ifndef CUSTOM_BOOTSCREEN_TIMEOUT
  11380. #define CUSTOM_BOOTSCREEN_TIMEOUT 2500
  11381. #endif
  11382. #if ENABLED(SHOW_BOOTSCREEN)
  11383. #if ENABLED(DOGLCD) // On DOGM the first bootscreen is already drawn
  11384. #if ENABLED(SHOW_CUSTOM_BOOTSCREEN)
  11385. safe_delay(CUSTOM_BOOTSCREEN_TIMEOUT); // Custom boot screen pause
  11386. lcd_bootscreen(); // Show Marlin boot screen
  11387. #endif
  11388. safe_delay(BOOTSCREEN_TIMEOUT); // Pause
  11389. #elif ENABLED(ULTRA_LCD)
  11390. lcd_bootscreen();
  11391. #if DISABLED(SDSUPPORT)
  11392. lcd_init();
  11393. #endif
  11394. #endif
  11395. #endif
  11396. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  11397. // Initialize mixing to 100% color 1
  11398. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11399. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  11400. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  11401. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11402. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  11403. #endif
  11404. #if ENABLED(BLTOUCH)
  11405. // Make sure any BLTouch error condition is cleared
  11406. bltouch_command(BLTOUCH_RESET);
  11407. set_bltouch_deployed(true);
  11408. set_bltouch_deployed(false);
  11409. #endif
  11410. #if ENABLED(I2C_POSITION_ENCODERS)
  11411. I2CPEM.init();
  11412. #endif
  11413. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  11414. i2c.onReceive(i2c_on_receive);
  11415. i2c.onRequest(i2c_on_request);
  11416. #endif
  11417. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  11418. setup_endstop_interrupts();
  11419. #endif
  11420. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  11421. move_extruder_servo(0); // Initialize extruder servo
  11422. #endif
  11423. #if ENABLED(SWITCHING_NOZZLE)
  11424. move_nozzle_servo(0); // Initialize nozzle servo
  11425. #endif
  11426. #if ENABLED(PARKING_EXTRUDER)
  11427. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  11428. pe_activate_magnet(0);
  11429. pe_activate_magnet(1);
  11430. #else
  11431. pe_deactivate_magnet(0);
  11432. pe_deactivate_magnet(1);
  11433. #endif
  11434. #endif
  11435. }
  11436. /**
  11437. * The main Marlin program loop
  11438. *
  11439. * - Save or log commands to SD
  11440. * - Process available commands (if not saving)
  11441. * - Call heater manager
  11442. * - Call inactivity manager
  11443. * - Call endstop manager
  11444. * - Call LCD update
  11445. */
  11446. void loop() {
  11447. if (commands_in_queue < BUFSIZE) get_available_commands();
  11448. #if ENABLED(SDSUPPORT)
  11449. card.checkautostart(false);
  11450. #endif
  11451. if (commands_in_queue) {
  11452. #if ENABLED(SDSUPPORT)
  11453. if (card.saving) {
  11454. char* command = command_queue[cmd_queue_index_r];
  11455. if (strstr_P(command, PSTR("M29"))) {
  11456. // M29 closes the file
  11457. card.closefile();
  11458. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  11459. ok_to_send();
  11460. }
  11461. else {
  11462. // Write the string from the read buffer to SD
  11463. card.write_command(command);
  11464. if (card.logging)
  11465. process_next_command(); // The card is saving because it's logging
  11466. else
  11467. ok_to_send();
  11468. }
  11469. }
  11470. else
  11471. process_next_command();
  11472. #else
  11473. process_next_command();
  11474. #endif // SDSUPPORT
  11475. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  11476. if (commands_in_queue) {
  11477. --commands_in_queue;
  11478. if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
  11479. }
  11480. }
  11481. endstops.report_state();
  11482. idle();
  11483. }