My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.h 13KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
  24. * Derived from Grbl
  25. *
  26. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  27. *
  28. * Grbl is free software: you can redistribute it and/or modify
  29. * it under the terms of the GNU General Public License as published by
  30. * the Free Software Foundation, either version 3 of the License, or
  31. * (at your option) any later version.
  32. *
  33. * Grbl is distributed in the hope that it will be useful,
  34. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  35. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  36. * GNU General Public License for more details.
  37. *
  38. * You should have received a copy of the GNU General Public License
  39. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  40. */
  41. #ifndef STEPPER_H
  42. #define STEPPER_H
  43. #include "planner.h"
  44. #include "speed_lookuptable.h"
  45. #include "stepper_indirection.h"
  46. #include "language.h"
  47. #include "types.h"
  48. class Stepper;
  49. extern Stepper stepper;
  50. class Stepper {
  51. public:
  52. static block_t* current_block; // A pointer to the block currently being traced
  53. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  54. static bool abort_on_endstop_hit;
  55. #endif
  56. #if ENABLED(Z_DUAL_ENDSTOPS)
  57. static bool performing_homing;
  58. #endif
  59. #if HAS_MOTOR_CURRENT_PWM
  60. #ifndef PWM_MOTOR_CURRENT
  61. #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
  62. #endif
  63. static uint32_t motor_current_setting[3];
  64. #endif
  65. private:
  66. static uint8_t last_direction_bits; // The next stepping-bits to be output
  67. static uint16_t cleaning_buffer_counter;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. static bool locked_z_motor, locked_z2_motor;
  70. #endif
  71. // Counter variables for the Bresenham line tracer
  72. static long counter_X, counter_Y, counter_Z, counter_E;
  73. static volatile uint32_t step_events_completed; // The number of step events executed in the current block
  74. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  75. static HAL_TIMER_TYPE nextMainISR, nextAdvanceISR, eISR_Rate;
  76. #define _NEXT_ISR(T) nextMainISR = T
  77. #if ENABLED(LIN_ADVANCE)
  78. static volatile int e_steps[E_STEPPERS];
  79. static int final_estep_rate;
  80. static int current_estep_rate[E_STEPPERS]; // Actual extruder speed [steps/s]
  81. static int current_adv_steps[E_STEPPERS]; // The amount of current added esteps due to advance.
  82. // i.e., the current amount of pressure applied
  83. // to the spring (=filament).
  84. #else
  85. static long e_steps[E_STEPPERS];
  86. static long advance_rate, advance, final_advance;
  87. static long old_advance;
  88. #endif
  89. #else
  90. #define _NEXT_ISR(T) HAL_timer_set_count(STEP_TIMER_NUM, T);
  91. #endif // ADVANCE or LIN_ADVANCE
  92. static long acceleration_time, deceleration_time;
  93. //unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  94. static HAL_TIMER_TYPE acc_step_rate; // needed for deceleration start point
  95. static uint8_t step_loops, step_loops_nominal;
  96. static HAL_TIMER_TYPE OCR1A_nominal;
  97. static volatile long endstops_trigsteps[XYZ];
  98. static volatile long endstops_stepsTotal, endstops_stepsDone;
  99. //
  100. // Positions of stepper motors, in step units
  101. //
  102. static volatile long count_position[NUM_AXIS];
  103. //
  104. // Current direction of stepper motors (+1 or -1)
  105. //
  106. static volatile signed char count_direction[NUM_AXIS];
  107. //
  108. // Mixing extruder mix counters
  109. //
  110. #if ENABLED(MIXING_EXTRUDER)
  111. static long counter_m[MIXING_STEPPERS];
  112. #define MIXING_STEPPERS_LOOP(VAR) \
  113. for (uint8_t VAR = 0; VAR < MIXING_STEPPERS; VAR++) \
  114. if (current_block->mix_event_count[VAR])
  115. #endif
  116. public:
  117. //
  118. // Constructor / initializer
  119. //
  120. Stepper() { };
  121. //
  122. // Initialize stepper hardware
  123. //
  124. static void init();
  125. //
  126. // Interrupt Service Routines
  127. //
  128. static void isr();
  129. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  130. static void advance_isr();
  131. static void advance_isr_scheduler();
  132. #endif
  133. //
  134. // Block until all buffered steps are executed
  135. //
  136. static void synchronize();
  137. //
  138. // Set the current position in steps
  139. //
  140. static void set_position(const long &a, const long &b, const long &c, const long &e);
  141. static void set_position(const AxisEnum &a, const long &v);
  142. static void set_e_position(const long &e);
  143. //
  144. // Set direction bits for all steppers
  145. //
  146. static void set_directions();
  147. //
  148. // Get the position of a stepper, in steps
  149. //
  150. static long position(AxisEnum axis);
  151. //
  152. // Report the positions of the steppers, in steps
  153. //
  154. static void report_positions();
  155. //
  156. // Get the position (mm) of an axis based on stepper position(s)
  157. //
  158. static float get_axis_position_mm(AxisEnum axis);
  159. //
  160. // SCARA AB axes are in degrees, not mm
  161. //
  162. #if IS_SCARA
  163. static FORCE_INLINE float get_axis_position_degrees(AxisEnum axis) { return get_axis_position_mm(axis); }
  164. #endif
  165. //
  166. // The stepper subsystem goes to sleep when it runs out of things to execute. Call this
  167. // to notify the subsystem that it is time to go to work.
  168. //
  169. static void wake_up();
  170. //
  171. // Wait for moves to finish and disable all steppers
  172. //
  173. static void finish_and_disable();
  174. //
  175. // Quickly stop all steppers and clear the blocks queue
  176. //
  177. static void quick_stop();
  178. //
  179. // The direction of a single motor
  180. //
  181. static FORCE_INLINE bool motor_direction(AxisEnum axis) { return TEST(last_direction_bits, axis); }
  182. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  183. static void digitalPotWrite(const int16_t address, const int16_t value);
  184. static void digipot_current(const uint8_t driver, const int16_t current);
  185. #endif
  186. #if HAS_MICROSTEPS
  187. static void microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2);
  188. static void microstep_mode(const uint8_t driver, const uint8_t stepping);
  189. static void microstep_readings();
  190. #endif
  191. #if ENABLED(Z_DUAL_ENDSTOPS)
  192. static FORCE_INLINE void set_homing_flag(const bool state) { performing_homing = state; }
  193. static FORCE_INLINE void set_z_lock(const bool state) { locked_z_motor = state; }
  194. static FORCE_INLINE void set_z2_lock(const bool state) { locked_z2_motor = state; }
  195. #endif
  196. #if ENABLED(BABYSTEPPING)
  197. static void babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
  198. #endif
  199. static inline void kill_current_block() {
  200. step_events_completed = current_block->step_event_count;
  201. }
  202. //
  203. // Handle a triggered endstop
  204. //
  205. static void endstop_triggered(AxisEnum axis);
  206. //
  207. // Triggered position of an axis in mm (not core-savvy)
  208. //
  209. static FORCE_INLINE float triggered_position_mm(AxisEnum axis) {
  210. return endstops_trigsteps[axis] * planner.steps_to_mm[axis];
  211. }
  212. #if HAS_MOTOR_CURRENT_PWM
  213. static void refresh_motor_power();
  214. #endif
  215. private:
  216. static FORCE_INLINE HAL_TIMER_TYPE calc_timer(HAL_TIMER_TYPE step_rate) {
  217. HAL_TIMER_TYPE timer;
  218. NOMORE(step_rate, MAX_STEP_FREQUENCY);
  219. // TODO: HAL: tidy this up, use condtionals_post.h
  220. #ifdef CPU_32_BIT
  221. #if ENABLED(DISABLE_MULTI_STEPPING)
  222. step_loops = 1;
  223. #else
  224. if (step_rate > STEP_DOUBLER_FREQUENCY * 2) { // If steprate > (STEP_DOUBLER_FREQUENCY * 2) kHz >> step 4 times
  225. step_rate >>= 2;
  226. step_loops = 4;
  227. }
  228. else if (step_rate > STEP_DOUBLER_FREQUENCY) { // If steprate > STEP_DOUBLER_FREQUENCY kHz >> step 2 times
  229. step_rate >>= 1;
  230. step_loops = 2;
  231. }
  232. else {
  233. step_loops = 1;
  234. }
  235. #endif
  236. #else
  237. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  238. step_rate >>= 2;
  239. step_loops = 4;
  240. }
  241. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  242. step_rate >>= 1;
  243. step_loops = 2;
  244. }
  245. else {
  246. step_loops = 1;
  247. }
  248. #endif
  249. #ifdef CPU_32_BIT
  250. // In case of high-performance processor, it is able to calculate in real-time
  251. timer = (uint32_t)(HAL_STEPPER_TIMER_RATE) / step_rate;
  252. if (timer < (HAL_STEPPER_TIMER_RATE / (STEP_DOUBLER_FREQUENCY * 2))) { // (STEP_DOUBLER_FREQUENCY * 2 kHz - this should never happen)
  253. timer = (HAL_STEPPER_TIMER_RATE / (STEP_DOUBLER_FREQUENCY * 2));
  254. }
  255. #else
  256. NOLESS(step_rate, F_CPU / 500000);
  257. step_rate -= F_CPU / 500000; // Correct for minimal speed
  258. if (step_rate >= (8 * 256)) { // higher step rate
  259. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
  260. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  261. unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
  262. MultiU16X8toH16(timer, tmp_step_rate, gain);
  263. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  264. }
  265. else { // lower step rates
  266. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  267. table_address += ((step_rate) >> 1) & 0xfffc;
  268. timer = (unsigned short)pgm_read_word_near(table_address);
  269. timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
  270. }
  271. if (timer < 100) { // (20kHz - this should never happen)
  272. timer = 100;
  273. MYSERIAL.print(MSG_STEPPER_TOO_HIGH);
  274. MYSERIAL.println(step_rate);
  275. }
  276. #endif
  277. return timer;
  278. }
  279. // Initialize the trapezoid generator from the current block.
  280. // Called whenever a new block begins.
  281. static FORCE_INLINE void trapezoid_generator_reset() {
  282. static int8_t last_extruder = -1;
  283. if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) {
  284. last_direction_bits = current_block->direction_bits;
  285. last_extruder = current_block->active_extruder;
  286. set_directions();
  287. }
  288. #if ENABLED(ADVANCE)
  289. advance = current_block->initial_advance;
  290. final_advance = current_block->final_advance;
  291. // Do E steps + advance steps
  292. #if ENABLED(MIXING_EXTRUDER)
  293. long advance_factor = (advance >> 8) - old_advance;
  294. // ...for mixing steppers proportionally
  295. MIXING_STEPPERS_LOOP(j)
  296. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  297. #else
  298. // ...for the active extruder
  299. e_steps[TOOL_E_INDEX] += ((advance >> 8) - old_advance);
  300. #endif
  301. old_advance = advance >> 8;
  302. #endif
  303. deceleration_time = 0;
  304. // step_rate to timer interval
  305. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  306. // make a note of the number of step loops required at nominal speed
  307. step_loops_nominal = step_loops;
  308. acc_step_rate = current_block->initial_rate;
  309. acceleration_time = calc_timer(acc_step_rate);
  310. _NEXT_ISR(acceleration_time);
  311. #if ENABLED(LIN_ADVANCE)
  312. if (current_block->use_advance_lead) {
  313. current_estep_rate[current_block->active_extruder] = ((unsigned long)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  314. final_estep_rate = (current_block->nominal_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  315. }
  316. #endif
  317. // SERIAL_ECHO_START();
  318. // SERIAL_ECHOPGM("advance :");
  319. // SERIAL_ECHO(current_block->advance/256.0);
  320. // SERIAL_ECHOPGM("advance rate :");
  321. // SERIAL_ECHO(current_block->advance_rate/256.0);
  322. // SERIAL_ECHOPGM("initial advance :");
  323. // SERIAL_ECHO(current_block->initial_advance/256.0);
  324. // SERIAL_ECHOPGM("final advance :");
  325. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  326. }
  327. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  328. static void digipot_init();
  329. #endif
  330. #if HAS_MICROSTEPS
  331. static void microstep_init();
  332. #endif
  333. };
  334. #endif // STEPPER_H