My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 36KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if HAS_DIGIPOTSS
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //============================= public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //============================= private variables ===========================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static unsigned int cleaning_buffer_counter;
  40. // Counter variables for the bresenham line tracer
  41. static long counter_x, counter_y, counter_z, counter_e;
  42. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  43. #ifdef ADVANCE
  44. static long advance_rate, advance, final_advance = 0;
  45. static long old_advance = 0;
  46. static long e_steps[4];
  47. #endif
  48. static long acceleration_time, deceleration_time;
  49. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  50. static unsigned short acc_step_rate; // needed for deccelaration start point
  51. static char step_loops;
  52. static unsigned short OCR1A_nominal;
  53. static unsigned short step_loops_nominal;
  54. volatile long endstops_trigsteps[3] = { 0 };
  55. volatile long endstops_stepsTotal, endstops_stepsDone;
  56. static volatile bool endstop_x_hit = false;
  57. static volatile bool endstop_y_hit = false;
  58. static volatile bool endstop_z_hit = false;
  59. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  60. bool abort_on_endstop_hit = false;
  61. #endif
  62. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  63. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  64. #endif
  65. static bool old_x_min_endstop = false,
  66. old_x_max_endstop = false,
  67. old_y_min_endstop = false,
  68. old_y_max_endstop = false,
  69. old_z_min_endstop = false,
  70. old_z_max_endstop = false;
  71. static bool check_endstops = true;
  72. volatile long count_position[NUM_AXIS] = { 0 };
  73. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  74. //===========================================================================
  75. //================================ functions ================================
  76. //===========================================================================
  77. #ifdef DUAL_X_CARRIAGE
  78. #define X_APPLY_DIR(v,ALWAYS) \
  79. if (extruder_duplication_enabled || ALWAYS) { \
  80. X_DIR_WRITE(v); \
  81. X2_DIR_WRITE(v); \
  82. } \
  83. else { \
  84. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  85. }
  86. #define X_APPLY_STEP(v,ALWAYS) \
  87. if (extruder_duplication_enabled || ALWAYS) { \
  88. X_STEP_WRITE(v); \
  89. X2_STEP_WRITE(v); \
  90. } \
  91. else { \
  92. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  93. }
  94. #else
  95. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  96. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  97. #endif
  98. #ifdef Y_DUAL_STEPPER_DRIVERS
  99. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  100. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  101. #else
  102. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  103. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  104. #endif
  105. #ifdef Z_DUAL_STEPPER_DRIVERS
  106. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  107. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  108. #else
  109. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  110. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  111. #endif
  112. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  113. // intRes = intIn1 * intIn2 >> 16
  114. // uses:
  115. // r26 to store 0
  116. // r27 to store the byte 1 of the 24 bit result
  117. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  118. asm volatile ( \
  119. "clr r26 \n\t" \
  120. "mul %A1, %B2 \n\t" \
  121. "movw %A0, r0 \n\t" \
  122. "mul %A1, %A2 \n\t" \
  123. "add %A0, r1 \n\t" \
  124. "adc %B0, r26 \n\t" \
  125. "lsr r0 \n\t" \
  126. "adc %A0, r26 \n\t" \
  127. "adc %B0, r26 \n\t" \
  128. "clr r1 \n\t" \
  129. : \
  130. "=&r" (intRes) \
  131. : \
  132. "d" (charIn1), \
  133. "d" (intIn2) \
  134. : \
  135. "r26" \
  136. )
  137. // intRes = longIn1 * longIn2 >> 24
  138. // uses:
  139. // r26 to store 0
  140. // r27 to store the byte 1 of the 48bit result
  141. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  142. asm volatile ( \
  143. "clr r26 \n\t" \
  144. "mul %A1, %B2 \n\t" \
  145. "mov r27, r1 \n\t" \
  146. "mul %B1, %C2 \n\t" \
  147. "movw %A0, r0 \n\t" \
  148. "mul %C1, %C2 \n\t" \
  149. "add %B0, r0 \n\t" \
  150. "mul %C1, %B2 \n\t" \
  151. "add %A0, r0 \n\t" \
  152. "adc %B0, r1 \n\t" \
  153. "mul %A1, %C2 \n\t" \
  154. "add r27, r0 \n\t" \
  155. "adc %A0, r1 \n\t" \
  156. "adc %B0, r26 \n\t" \
  157. "mul %B1, %B2 \n\t" \
  158. "add r27, r0 \n\t" \
  159. "adc %A0, r1 \n\t" \
  160. "adc %B0, r26 \n\t" \
  161. "mul %C1, %A2 \n\t" \
  162. "add r27, r0 \n\t" \
  163. "adc %A0, r1 \n\t" \
  164. "adc %B0, r26 \n\t" \
  165. "mul %B1, %A2 \n\t" \
  166. "add r27, r1 \n\t" \
  167. "adc %A0, r26 \n\t" \
  168. "adc %B0, r26 \n\t" \
  169. "lsr r27 \n\t" \
  170. "adc %A0, r26 \n\t" \
  171. "adc %B0, r26 \n\t" \
  172. "clr r1 \n\t" \
  173. : \
  174. "=&r" (intRes) \
  175. : \
  176. "d" (longIn1), \
  177. "d" (longIn2) \
  178. : \
  179. "r26" , "r27" \
  180. )
  181. // Some useful constants
  182. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  183. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  184. void endstops_hit_on_purpose() {
  185. endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
  186. }
  187. void checkHitEndstops() {
  188. if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  189. SERIAL_ECHO_START;
  190. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  191. if (endstop_x_hit) {
  192. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  193. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  194. }
  195. if (endstop_y_hit) {
  196. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  197. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  198. }
  199. if (endstop_z_hit) {
  200. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  201. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  202. }
  203. SERIAL_EOL;
  204. endstops_hit_on_purpose();
  205. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  206. if (abort_on_endstop_hit) {
  207. card.sdprinting = false;
  208. card.closefile();
  209. quickStop();
  210. setTargetHotend0(0);
  211. setTargetHotend1(0);
  212. setTargetHotend2(0);
  213. setTargetHotend3(0);
  214. setTargetBed(0);
  215. }
  216. #endif
  217. }
  218. }
  219. void enable_endstops(bool check) { check_endstops = check; }
  220. // __________________________
  221. // /| |\ _________________ ^
  222. // / | | \ /| |\ |
  223. // / | | \ / | | \ s
  224. // / | | | | | \ p
  225. // / | | | | | \ e
  226. // +-----+------------------------+---+--+---------------+----+ e
  227. // | BLOCK 1 | BLOCK 2 | d
  228. //
  229. // time ----->
  230. //
  231. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  232. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  233. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  234. // The slope of acceleration is calculated with the leib ramp alghorithm.
  235. void st_wake_up() {
  236. // TCNT1 = 0;
  237. ENABLE_STEPPER_DRIVER_INTERRUPT();
  238. }
  239. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  240. unsigned short timer;
  241. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  242. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  243. step_rate = (step_rate >> 2) & 0x3fff;
  244. step_loops = 4;
  245. }
  246. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  247. step_rate = (step_rate >> 1) & 0x7fff;
  248. step_loops = 2;
  249. }
  250. else {
  251. step_loops = 1;
  252. }
  253. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  254. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  255. if (step_rate >= (8 * 256)) { // higher step rate
  256. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  257. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  258. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  259. MultiU16X8toH16(timer, tmp_step_rate, gain);
  260. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  261. }
  262. else { // lower step rates
  263. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  264. table_address += ((step_rate)>>1) & 0xfffc;
  265. timer = (unsigned short)pgm_read_word_near(table_address);
  266. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  267. }
  268. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  269. return timer;
  270. }
  271. // Initializes the trapezoid generator from the current block. Called whenever a new
  272. // block begins.
  273. FORCE_INLINE void trapezoid_generator_reset() {
  274. #ifdef ADVANCE
  275. advance = current_block->initial_advance;
  276. final_advance = current_block->final_advance;
  277. // Do E steps + advance steps
  278. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  279. old_advance = advance >>8;
  280. #endif
  281. deceleration_time = 0;
  282. // step_rate to timer interval
  283. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  284. // make a note of the number of step loops required at nominal speed
  285. step_loops_nominal = step_loops;
  286. acc_step_rate = current_block->initial_rate;
  287. acceleration_time = calc_timer(acc_step_rate);
  288. OCR1A = acceleration_time;
  289. // SERIAL_ECHO_START;
  290. // SERIAL_ECHOPGM("advance :");
  291. // SERIAL_ECHO(current_block->advance/256.0);
  292. // SERIAL_ECHOPGM("advance rate :");
  293. // SERIAL_ECHO(current_block->advance_rate/256.0);
  294. // SERIAL_ECHOPGM("initial advance :");
  295. // SERIAL_ECHO(current_block->initial_advance/256.0);
  296. // SERIAL_ECHOPGM("final advance :");
  297. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  298. }
  299. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  300. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  301. ISR(TIMER1_COMPA_vect) {
  302. if(cleaning_buffer_counter)
  303. {
  304. current_block = NULL;
  305. plan_discard_current_block();
  306. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  307. cleaning_buffer_counter--;
  308. OCR1A = 200;
  309. return;
  310. }
  311. // If there is no current block, attempt to pop one from the buffer
  312. if (!current_block) {
  313. // Anything in the buffer?
  314. current_block = plan_get_current_block();
  315. if (current_block) {
  316. current_block->busy = true;
  317. trapezoid_generator_reset();
  318. counter_x = -(current_block->step_event_count >> 1);
  319. counter_y = counter_z = counter_e = counter_x;
  320. step_events_completed = 0;
  321. #ifdef Z_LATE_ENABLE
  322. if (current_block->steps[Z_AXIS] > 0) {
  323. enable_z();
  324. OCR1A = 2000; //1ms wait
  325. return;
  326. }
  327. #endif
  328. // #ifdef ADVANCE
  329. // e_steps[current_block->active_extruder] = 0;
  330. // #endif
  331. }
  332. else {
  333. OCR1A = 2000; // 1kHz.
  334. }
  335. }
  336. if (current_block != NULL) {
  337. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  338. out_bits = current_block->direction_bits;
  339. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  340. if (TEST(out_bits, X_AXIS)) {
  341. X_APPLY_DIR(INVERT_X_DIR,0);
  342. count_direction[X_AXIS] = -1;
  343. }
  344. else {
  345. X_APPLY_DIR(!INVERT_X_DIR,0);
  346. count_direction[X_AXIS] = 1;
  347. }
  348. if (TEST(out_bits, Y_AXIS)) {
  349. Y_APPLY_DIR(INVERT_Y_DIR,0);
  350. count_direction[Y_AXIS] = -1;
  351. }
  352. else {
  353. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  354. count_direction[Y_AXIS] = 1;
  355. }
  356. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  357. bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
  358. if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps[AXIS ##_AXIS] > 0)) { \
  359. endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
  360. endstop_## axis ##_hit = true; \
  361. step_events_completed = current_block->step_event_count; \
  362. } \
  363. old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
  364. // Check X and Y endstops
  365. if (check_endstops) {
  366. #ifdef COREXY
  367. // Head direction in -X axis for CoreXY bots.
  368. // If DeltaX == -DeltaY, the movement is only in Y axis
  369. if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS)))
  370. if (TEST(out_bits, X_HEAD))
  371. #else
  372. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
  373. #endif
  374. { // -direction
  375. #ifdef DUAL_X_CARRIAGE
  376. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  377. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  378. #endif
  379. {
  380. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  381. UPDATE_ENDSTOP(x, X, min, MIN);
  382. #endif
  383. }
  384. }
  385. else { // +direction
  386. #ifdef DUAL_X_CARRIAGE
  387. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  388. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  389. #endif
  390. {
  391. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  392. UPDATE_ENDSTOP(x, X, max, MAX);
  393. #endif
  394. }
  395. }
  396. #ifdef COREXY
  397. // Head direction in -Y axis for CoreXY bots.
  398. // If DeltaX == DeltaY, the movement is only in X axis
  399. if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS)))
  400. if (TEST(out_bits, Y_HEAD))
  401. #else
  402. if (TEST(out_bits, Y_AXIS)) // -direction
  403. #endif
  404. { // -direction
  405. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  406. UPDATE_ENDSTOP(y, Y, min, MIN);
  407. #endif
  408. }
  409. else { // +direction
  410. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  411. UPDATE_ENDSTOP(y, Y, max, MAX);
  412. #endif
  413. }
  414. }
  415. if (TEST(out_bits, Z_AXIS)) { // -direction
  416. Z_DIR_WRITE(INVERT_Z_DIR);
  417. #ifdef Z_DUAL_STEPPER_DRIVERS
  418. Z2_DIR_WRITE(INVERT_Z_DIR);
  419. #endif
  420. count_direction[Z_AXIS] = -1;
  421. if (check_endstops) {
  422. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  423. UPDATE_ENDSTOP(z, Z, min, MIN);
  424. #endif
  425. }
  426. }
  427. else { // +direction
  428. Z_DIR_WRITE(!INVERT_Z_DIR);
  429. #ifdef Z_DUAL_STEPPER_DRIVERS
  430. Z2_DIR_WRITE(!INVERT_Z_DIR);
  431. #endif
  432. count_direction[Z_AXIS] = 1;
  433. if (check_endstops) {
  434. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  435. UPDATE_ENDSTOP(z, Z, max, MAX);
  436. #endif
  437. }
  438. }
  439. #ifndef ADVANCE
  440. if (TEST(out_bits, E_AXIS)) { // -direction
  441. REV_E_DIR();
  442. count_direction[E_AXIS]=-1;
  443. }
  444. else { // +direction
  445. NORM_E_DIR();
  446. count_direction[E_AXIS]=1;
  447. }
  448. #endif //!ADVANCE
  449. // Take multiple steps per interrupt (For high speed moves)
  450. for (int8_t i=0; i < step_loops; i++) {
  451. #ifndef AT90USB
  452. MSerial.checkRx(); // Check for serial chars.
  453. #endif
  454. #ifdef ADVANCE
  455. counter_e += current_block->steps[E_AXIS];
  456. if (counter_e > 0) {
  457. counter_e -= current_block->step_event_count;
  458. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  459. }
  460. #endif //ADVANCE
  461. #ifdef CONFIG_STEPPERS_TOSHIBA
  462. /**
  463. * The Toshiba stepper controller require much longer pulses.
  464. * So we 'stage' decompose the pulses between high and low
  465. * instead of doing each in turn. The extra tests add enough
  466. * lag to allow it work with without needing NOPs
  467. */
  468. #define STEP_ADD(axis, AXIS) \
  469. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  470. if (counter_## axis > 0) { AXIS ##_STEP_WRITE(HIGH); }
  471. STEP_ADD(x,X);
  472. STEP_ADD(y,Y);
  473. STEP_ADD(z,Z);
  474. #ifndef ADVANCE
  475. STEP_ADD(e,E);
  476. #endif
  477. #define STEP_IF_COUNTER(axis, AXIS) \
  478. if (counter_## axis > 0) { \
  479. counter_## axis -= current_block->step_event_count; \
  480. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  481. AXIS ##_STEP_WRITE(LOW); \
  482. }
  483. STEP_IF_COUNTER(x, X);
  484. STEP_IF_COUNTER(y, Y);
  485. STEP_IF_COUNTER(z, Z);
  486. #ifndef ADVANCE
  487. STEP_IF_COUNTER(e, E);
  488. #endif
  489. #else // !CONFIG_STEPPERS_TOSHIBA
  490. #define APPLY_MOVEMENT(axis, AXIS) \
  491. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  492. if (counter_## axis > 0) { \
  493. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
  494. counter_## axis -= current_block->step_event_count; \
  495. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  496. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
  497. }
  498. APPLY_MOVEMENT(x, X);
  499. APPLY_MOVEMENT(y, Y);
  500. APPLY_MOVEMENT(z, Z);
  501. #ifndef ADVANCE
  502. APPLY_MOVEMENT(e, E);
  503. #endif
  504. #endif // CONFIG_STEPPERS_TOSHIBA
  505. step_events_completed++;
  506. if (step_events_completed >= current_block->step_event_count) break;
  507. }
  508. // Calculare new timer value
  509. unsigned short timer;
  510. unsigned short step_rate;
  511. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  512. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  513. acc_step_rate += current_block->initial_rate;
  514. // upper limit
  515. if (acc_step_rate > current_block->nominal_rate)
  516. acc_step_rate = current_block->nominal_rate;
  517. // step_rate to timer interval
  518. timer = calc_timer(acc_step_rate);
  519. OCR1A = timer;
  520. acceleration_time += timer;
  521. #ifdef ADVANCE
  522. for(int8_t i=0; i < step_loops; i++) {
  523. advance += advance_rate;
  524. }
  525. //if (advance > current_block->advance) advance = current_block->advance;
  526. // Do E steps + advance steps
  527. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  528. old_advance = advance >>8;
  529. #endif
  530. }
  531. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  532. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  533. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  534. step_rate = current_block->final_rate;
  535. }
  536. else {
  537. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  538. }
  539. // lower limit
  540. if (step_rate < current_block->final_rate)
  541. step_rate = current_block->final_rate;
  542. // step_rate to timer interval
  543. timer = calc_timer(step_rate);
  544. OCR1A = timer;
  545. deceleration_time += timer;
  546. #ifdef ADVANCE
  547. for(int8_t i=0; i < step_loops; i++) {
  548. advance -= advance_rate;
  549. }
  550. if (advance < final_advance) advance = final_advance;
  551. // Do E steps + advance steps
  552. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  553. old_advance = advance >>8;
  554. #endif //ADVANCE
  555. }
  556. else {
  557. OCR1A = OCR1A_nominal;
  558. // ensure we're running at the correct step rate, even if we just came off an acceleration
  559. step_loops = step_loops_nominal;
  560. }
  561. // If current block is finished, reset pointer
  562. if (step_events_completed >= current_block->step_event_count) {
  563. current_block = NULL;
  564. plan_discard_current_block();
  565. }
  566. }
  567. }
  568. #ifdef ADVANCE
  569. unsigned char old_OCR0A;
  570. // Timer interrupt for E. e_steps is set in the main routine;
  571. // Timer 0 is shared with millies
  572. ISR(TIMER0_COMPA_vect)
  573. {
  574. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  575. OCR0A = old_OCR0A;
  576. // Set E direction (Depends on E direction + advance)
  577. for(unsigned char i=0; i<4;i++) {
  578. if (e_steps[0] != 0) {
  579. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  580. if (e_steps[0] < 0) {
  581. E0_DIR_WRITE(INVERT_E0_DIR);
  582. e_steps[0]++;
  583. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  584. }
  585. else if (e_steps[0] > 0) {
  586. E0_DIR_WRITE(!INVERT_E0_DIR);
  587. e_steps[0]--;
  588. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  589. }
  590. }
  591. #if EXTRUDERS > 1
  592. if (e_steps[1] != 0) {
  593. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  594. if (e_steps[1] < 0) {
  595. E1_DIR_WRITE(INVERT_E1_DIR);
  596. e_steps[1]++;
  597. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  598. }
  599. else if (e_steps[1] > 0) {
  600. E1_DIR_WRITE(!INVERT_E1_DIR);
  601. e_steps[1]--;
  602. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  603. }
  604. }
  605. #endif
  606. #if EXTRUDERS > 2
  607. if (e_steps[2] != 0) {
  608. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  609. if (e_steps[2] < 0) {
  610. E2_DIR_WRITE(INVERT_E2_DIR);
  611. e_steps[2]++;
  612. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  613. }
  614. else if (e_steps[2] > 0) {
  615. E2_DIR_WRITE(!INVERT_E2_DIR);
  616. e_steps[2]--;
  617. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  618. }
  619. }
  620. #endif
  621. #if EXTRUDERS > 3
  622. if (e_steps[3] != 0) {
  623. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  624. if (e_steps[3] < 0) {
  625. E3_DIR_WRITE(INVERT_E3_DIR);
  626. e_steps[3]++;
  627. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  628. }
  629. else if (e_steps[3] > 0) {
  630. E3_DIR_WRITE(!INVERT_E3_DIR);
  631. e_steps[3]--;
  632. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  633. }
  634. }
  635. #endif
  636. }
  637. }
  638. #endif // ADVANCE
  639. void st_init() {
  640. digipot_init(); //Initialize Digipot Motor Current
  641. microstep_init(); //Initialize Microstepping Pins
  642. // initialise TMC Steppers
  643. #ifdef HAVE_TMCDRIVER
  644. tmc_init();
  645. #endif
  646. // initialise L6470 Steppers
  647. #ifdef HAVE_L6470DRIVER
  648. L6470_init();
  649. #endif
  650. // Initialize Dir Pins
  651. #if defined(X_DIR_PIN) && X_DIR_PIN >= 0
  652. X_DIR_INIT;
  653. #endif
  654. #if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
  655. X2_DIR_INIT;
  656. #endif
  657. #if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
  658. Y_DIR_INIT;
  659. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
  660. Y2_DIR_INIT;
  661. #endif
  662. #endif
  663. #if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
  664. Z_DIR_INIT;
  665. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
  666. Z2_DIR_INIT;
  667. #endif
  668. #endif
  669. #if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
  670. E0_DIR_INIT;
  671. #endif
  672. #if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
  673. E1_DIR_INIT;
  674. #endif
  675. #if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
  676. E2_DIR_INIT;
  677. #endif
  678. #if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
  679. E3_DIR_INIT;
  680. #endif
  681. //Initialize Enable Pins - steppers default to disabled.
  682. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
  683. X_ENABLE_INIT;
  684. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  685. #endif
  686. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
  687. X2_ENABLE_INIT;
  688. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  689. #endif
  690. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
  691. Y_ENABLE_INIT;
  692. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  693. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
  694. Y2_ENABLE_INIT;
  695. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  696. #endif
  697. #endif
  698. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
  699. Z_ENABLE_INIT;
  700. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  701. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
  702. Z2_ENABLE_INIT;
  703. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  704. #endif
  705. #endif
  706. #if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
  707. E0_ENABLE_INIT;
  708. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  709. #endif
  710. #if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
  711. E1_ENABLE_INIT;
  712. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  713. #endif
  714. #if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
  715. E2_ENABLE_INIT;
  716. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  717. #endif
  718. #if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
  719. E3_ENABLE_INIT;
  720. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  721. #endif
  722. //endstops and pullups
  723. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  724. SET_INPUT(X_MIN_PIN);
  725. #ifdef ENDSTOPPULLUP_XMIN
  726. WRITE(X_MIN_PIN,HIGH);
  727. #endif
  728. #endif
  729. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  730. SET_INPUT(Y_MIN_PIN);
  731. #ifdef ENDSTOPPULLUP_YMIN
  732. WRITE(Y_MIN_PIN,HIGH);
  733. #endif
  734. #endif
  735. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  736. SET_INPUT(Z_MIN_PIN);
  737. #ifdef ENDSTOPPULLUP_ZMIN
  738. WRITE(Z_MIN_PIN,HIGH);
  739. #endif
  740. #endif
  741. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  742. SET_INPUT(X_MAX_PIN);
  743. #ifdef ENDSTOPPULLUP_XMAX
  744. WRITE(X_MAX_PIN,HIGH);
  745. #endif
  746. #endif
  747. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  748. SET_INPUT(Y_MAX_PIN);
  749. #ifdef ENDSTOPPULLUP_YMAX
  750. WRITE(Y_MAX_PIN,HIGH);
  751. #endif
  752. #endif
  753. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  754. SET_INPUT(Z_MAX_PIN);
  755. #ifdef ENDSTOPPULLUP_ZMAX
  756. WRITE(Z_MAX_PIN,HIGH);
  757. #endif
  758. #endif
  759. #define AXIS_INIT(axis, AXIS, PIN) \
  760. AXIS ##_STEP_INIT; \
  761. AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
  762. disable_## axis()
  763. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  764. // Initialize Step Pins
  765. #if defined(X_STEP_PIN) && X_STEP_PIN >= 0
  766. AXIS_INIT(x, X, X);
  767. #endif
  768. #if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
  769. AXIS_INIT(x, X2, X);
  770. #endif
  771. #if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
  772. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
  773. Y2_STEP_INIT;
  774. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  775. #endif
  776. AXIS_INIT(y, Y, Y);
  777. #endif
  778. #if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
  779. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
  780. Z2_STEP_INIT;
  781. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  782. #endif
  783. AXIS_INIT(z, Z, Z);
  784. #endif
  785. #if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
  786. E_AXIS_INIT(0);
  787. #endif
  788. #if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
  789. E_AXIS_INIT(1);
  790. #endif
  791. #if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
  792. E_AXIS_INIT(2);
  793. #endif
  794. #if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
  795. E_AXIS_INIT(3);
  796. #endif
  797. // waveform generation = 0100 = CTC
  798. TCCR1B &= ~BIT(WGM13);
  799. TCCR1B |= BIT(WGM12);
  800. TCCR1A &= ~BIT(WGM11);
  801. TCCR1A &= ~BIT(WGM10);
  802. // output mode = 00 (disconnected)
  803. TCCR1A &= ~(3<<COM1A0);
  804. TCCR1A &= ~(3<<COM1B0);
  805. // Set the timer pre-scaler
  806. // Generally we use a divider of 8, resulting in a 2MHz timer
  807. // frequency on a 16MHz MCU. If you are going to change this, be
  808. // sure to regenerate speed_lookuptable.h with
  809. // create_speed_lookuptable.py
  810. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  811. OCR1A = 0x4000;
  812. TCNT1 = 0;
  813. ENABLE_STEPPER_DRIVER_INTERRUPT();
  814. #ifdef ADVANCE
  815. #if defined(TCCR0A) && defined(WGM01)
  816. TCCR0A &= ~BIT(WGM01);
  817. TCCR0A &= ~BIT(WGM00);
  818. #endif
  819. e_steps[0] = 0;
  820. e_steps[1] = 0;
  821. e_steps[2] = 0;
  822. e_steps[3] = 0;
  823. TIMSK0 |= BIT(OCIE0A);
  824. #endif //ADVANCE
  825. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  826. sei();
  827. }
  828. // Block until all buffered steps are executed
  829. void st_synchronize() {
  830. while (blocks_queued()) {
  831. manage_heater();
  832. manage_inactivity();
  833. lcd_update();
  834. }
  835. }
  836. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  837. CRITICAL_SECTION_START;
  838. count_position[X_AXIS] = x;
  839. count_position[Y_AXIS] = y;
  840. count_position[Z_AXIS] = z;
  841. count_position[E_AXIS] = e;
  842. CRITICAL_SECTION_END;
  843. }
  844. void st_set_e_position(const long &e) {
  845. CRITICAL_SECTION_START;
  846. count_position[E_AXIS] = e;
  847. CRITICAL_SECTION_END;
  848. }
  849. long st_get_position(uint8_t axis) {
  850. long count_pos;
  851. CRITICAL_SECTION_START;
  852. count_pos = count_position[axis];
  853. CRITICAL_SECTION_END;
  854. return count_pos;
  855. }
  856. #ifdef ENABLE_AUTO_BED_LEVELING
  857. float st_get_position_mm(uint8_t axis) {
  858. float steper_position_in_steps = st_get_position(axis);
  859. return steper_position_in_steps / axis_steps_per_unit[axis];
  860. }
  861. #endif // ENABLE_AUTO_BED_LEVELING
  862. void finishAndDisableSteppers() {
  863. st_synchronize();
  864. disable_x();
  865. disable_y();
  866. disable_z();
  867. disable_e0();
  868. disable_e1();
  869. disable_e2();
  870. disable_e3();
  871. }
  872. void quickStop() {
  873. cleaning_buffer_counter = 5000;
  874. DISABLE_STEPPER_DRIVER_INTERRUPT();
  875. while (blocks_queued()) plan_discard_current_block();
  876. current_block = NULL;
  877. ENABLE_STEPPER_DRIVER_INTERRUPT();
  878. }
  879. #ifdef BABYSTEPPING
  880. // MUST ONLY BE CALLED BY AN ISR,
  881. // No other ISR should ever interrupt this!
  882. void babystep(const uint8_t axis, const bool direction) {
  883. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  884. enable_## axis(); \
  885. uint8_t old_pin = AXIS ##_DIR_READ; \
  886. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
  887. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
  888. _delay_us(1U); \
  889. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
  890. AXIS ##_APPLY_DIR(old_pin, true); \
  891. }
  892. switch(axis) {
  893. case X_AXIS:
  894. BABYSTEP_AXIS(x, X, false);
  895. break;
  896. case Y_AXIS:
  897. BABYSTEP_AXIS(y, Y, false);
  898. break;
  899. case Z_AXIS: {
  900. #ifndef DELTA
  901. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  902. #else // DELTA
  903. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  904. enable_x();
  905. enable_y();
  906. enable_z();
  907. uint8_t old_x_dir_pin = X_DIR_READ,
  908. old_y_dir_pin = Y_DIR_READ,
  909. old_z_dir_pin = Z_DIR_READ;
  910. //setup new step
  911. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  912. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  913. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  914. //perform step
  915. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  916. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  917. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  918. _delay_us(1U);
  919. X_STEP_WRITE(INVERT_X_STEP_PIN);
  920. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  921. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  922. //get old pin state back.
  923. X_DIR_WRITE(old_x_dir_pin);
  924. Y_DIR_WRITE(old_y_dir_pin);
  925. Z_DIR_WRITE(old_z_dir_pin);
  926. #endif
  927. } break;
  928. default: break;
  929. }
  930. }
  931. #endif //BABYSTEPPING
  932. // From Arduino DigitalPotControl example
  933. void digitalPotWrite(int address, int value) {
  934. #if HAS_DIGIPOTSS
  935. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  936. SPI.transfer(address); // send in the address and value via SPI:
  937. SPI.transfer(value);
  938. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  939. //delay(10);
  940. #endif
  941. }
  942. // Initialize Digipot Motor Current
  943. void digipot_init() {
  944. #if HAS_DIGIPOTSS
  945. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  946. SPI.begin();
  947. pinMode(DIGIPOTSS_PIN, OUTPUT);
  948. for (int i = 0; i <= 4; i++) {
  949. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  950. digipot_current(i,digipot_motor_current[i]);
  951. }
  952. #endif
  953. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  954. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  955. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  956. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  957. digipot_current(0, motor_current_setting[0]);
  958. digipot_current(1, motor_current_setting[1]);
  959. digipot_current(2, motor_current_setting[2]);
  960. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  961. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  962. #endif
  963. }
  964. void digipot_current(uint8_t driver, int current) {
  965. #if HAS_DIGIPOTSS
  966. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  967. digitalPotWrite(digipot_ch[driver], current);
  968. #endif
  969. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  970. switch(driver) {
  971. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  972. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  973. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  974. }
  975. #endif
  976. }
  977. void microstep_init() {
  978. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  979. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  980. pinMode(E1_MS1_PIN,OUTPUT);
  981. pinMode(E1_MS2_PIN,OUTPUT);
  982. #endif
  983. #if defined(X_MS1_PIN) && X_MS1_PIN >= 0
  984. pinMode(X_MS1_PIN,OUTPUT);
  985. pinMode(X_MS2_PIN,OUTPUT);
  986. pinMode(Y_MS1_PIN,OUTPUT);
  987. pinMode(Y_MS2_PIN,OUTPUT);
  988. pinMode(Z_MS1_PIN,OUTPUT);
  989. pinMode(Z_MS2_PIN,OUTPUT);
  990. pinMode(E0_MS1_PIN,OUTPUT);
  991. pinMode(E0_MS2_PIN,OUTPUT);
  992. for (int i = 0; i <= 4; i++) microstep_mode(i, microstep_modes[i]);
  993. #endif
  994. }
  995. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  996. if (ms1 >= 0) switch(driver) {
  997. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  998. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  999. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1000. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1001. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1002. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1003. #endif
  1004. }
  1005. if (ms2 >= 0) switch(driver) {
  1006. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1007. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1008. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1009. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1010. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1011. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1012. #endif
  1013. }
  1014. }
  1015. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1016. switch(stepping_mode) {
  1017. case 1: microstep_ms(driver,MICROSTEP1); break;
  1018. case 2: microstep_ms(driver,MICROSTEP2); break;
  1019. case 4: microstep_ms(driver,MICROSTEP4); break;
  1020. case 8: microstep_ms(driver,MICROSTEP8); break;
  1021. case 16: microstep_ms(driver,MICROSTEP16); break;
  1022. }
  1023. }
  1024. void microstep_readings() {
  1025. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1026. SERIAL_PROTOCOLPGM("X: ");
  1027. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1028. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1029. SERIAL_PROTOCOLPGM("Y: ");
  1030. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1031. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1032. SERIAL_PROTOCOLPGM("Z: ");
  1033. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1034. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1035. SERIAL_PROTOCOLPGM("E0: ");
  1036. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1037. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1038. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1039. SERIAL_PROTOCOLPGM("E1: ");
  1040. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1041. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1042. #endif
  1043. }