My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 70KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "planner.h"
  26. #include "stepper.h"
  27. #include "temperature.h"
  28. #include "motion_control.h"
  29. #include "cardreader.h"
  30. #include "watchdog.h"
  31. #include "ConfigurationStore.h"
  32. #include "language.h"
  33. #include "pins_arduino.h"
  34. #if NUM_SERVOS > 0
  35. #include "Servo.h"
  36. #endif
  37. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  38. #include <SPI.h>
  39. #endif
  40. #define VERSION_STRING "1.0.0"
  41. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  42. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  43. //Implemented Codes
  44. //-------------------
  45. // G0 -> G1
  46. // G1 - Coordinated Movement X Y Z E
  47. // G2 - CW ARC
  48. // G3 - CCW ARC
  49. // G4 - Dwell S<seconds> or P<milliseconds>
  50. // G10 - retract filament according to settings of M207
  51. // G11 - retract recover filament according to settings of M208
  52. // G28 - Home all Axis
  53. // G90 - Use Absolute Coordinates
  54. // G91 - Use Relative Coordinates
  55. // G92 - Set current position to cordinates given
  56. //RepRap M Codes
  57. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  58. // M1 - Same as M0
  59. // M104 - Set extruder target temp
  60. // M105 - Read current temp
  61. // M106 - Fan on
  62. // M107 - Fan off
  63. // M109 - Wait for extruder current temp to reach target temp.
  64. // M114 - Display current position
  65. //Custom M Codes
  66. // M17 - Enable/Power all stepper motors
  67. // M18 - Disable all stepper motors; same as M84
  68. // M20 - List SD card
  69. // M21 - Init SD card
  70. // M22 - Release SD card
  71. // M23 - Select SD file (M23 filename.g)
  72. // M24 - Start/resume SD print
  73. // M25 - Pause SD print
  74. // M26 - Set SD position in bytes (M26 S12345)
  75. // M27 - Report SD print status
  76. // M28 - Start SD write (M28 filename.g)
  77. // M29 - Stop SD write
  78. // M30 - Delete file from SD (M30 filename.g)
  79. // M31 - Output time since last M109 or SD card start to serial
  80. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  81. // M80 - Turn on Power Supply
  82. // M81 - Turn off Power Supply
  83. // M82 - Set E codes absolute (default)
  84. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  85. // M84 - Disable steppers until next move,
  86. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  87. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  88. // M92 - Set axis_steps_per_unit - same syntax as G92
  89. // M114 - Output current position to serial port
  90. // M115 - Capabilities string
  91. // M117 - display message
  92. // M119 - Output Endstop status to serial port
  93. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  94. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  95. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  96. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  97. // M140 - Set bed target temp
  98. // M190 - Wait for bed current temp to reach target temp.
  99. // M200 - Set filament diameter
  100. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  101. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  102. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  103. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  104. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  105. // M206 - set additional homeing offset
  106. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  107. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  108. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  109. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  110. // M220 S<factor in percent>- set speed factor override percentage
  111. // M221 S<factor in percent>- set extrude factor override percentage
  112. // M240 - Trigger a camera to take a photograph
  113. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  114. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  115. // M301 - Set PID parameters P I and D
  116. // M302 - Allow cold extrudes
  117. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  118. // M304 - Set bed PID parameters P I and D
  119. // M400 - Finish all moves
  120. // M500 - stores paramters in EEPROM
  121. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  122. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  123. // M503 - print the current settings (from memory not from eeprom)
  124. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  125. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  126. // M907 - Set digital trimpot motor current using axis codes.
  127. // M908 - Control digital trimpot directly.
  128. // M350 - Set microstepping mode.
  129. // M351 - Toggle MS1 MS2 pins directly.
  130. // M928 - Start SD logging (M928 filename.g) - ended by M29
  131. // M999 - Restart after being stopped by error
  132. //Stepper Movement Variables
  133. //===========================================================================
  134. //=============================imported variables============================
  135. //===========================================================================
  136. //===========================================================================
  137. //=============================public variables=============================
  138. //===========================================================================
  139. #ifdef SDSUPPORT
  140. CardReader card;
  141. #endif
  142. float homing_feedrate[] = HOMING_FEEDRATE;
  143. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  144. int feedmultiply=100; //100->1 200->2
  145. int saved_feedmultiply;
  146. int extrudemultiply=100; //100->1 200->2
  147. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  148. float add_homeing[3]={0,0,0};
  149. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  150. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  151. // Extruder offset, only in XY plane
  152. #if EXTRUDERS > 1
  153. float extruder_offset[2][EXTRUDERS] = {
  154. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  155. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  156. #endif
  157. };
  158. #endif
  159. uint8_t active_extruder = 0;
  160. int fanSpeed=0;
  161. #ifdef BARICUDA
  162. int ValvePressure=0;
  163. int EtoPPressure=0;
  164. #endif
  165. #ifdef FWRETRACT
  166. bool autoretract_enabled=true;
  167. bool retracted=false;
  168. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  169. float retract_recover_length=0, retract_recover_feedrate=8*60;
  170. #endif
  171. //===========================================================================
  172. //=============================private variables=============================
  173. //===========================================================================
  174. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  175. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  176. static float offset[3] = {0.0, 0.0, 0.0};
  177. static bool home_all_axis = true;
  178. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  179. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  180. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  181. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  182. static bool fromsd[BUFSIZE];
  183. static int bufindr = 0;
  184. static int bufindw = 0;
  185. static int buflen = 0;
  186. //static int i = 0;
  187. static char serial_char;
  188. static int serial_count = 0;
  189. static boolean comment_mode = false;
  190. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  191. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  192. //static float tt = 0;
  193. //static float bt = 0;
  194. //Inactivity shutdown variables
  195. static unsigned long previous_millis_cmd = 0;
  196. static unsigned long max_inactive_time = 0;
  197. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  198. unsigned long starttime=0;
  199. unsigned long stoptime=0;
  200. static uint8_t tmp_extruder;
  201. bool Stopped=false;
  202. #if NUM_SERVOS > 0
  203. Servo servos[NUM_SERVOS];
  204. #endif
  205. //===========================================================================
  206. //=============================ROUTINES=============================
  207. //===========================================================================
  208. void get_arc_coordinates();
  209. bool setTargetedHotend(int code);
  210. void serial_echopair_P(const char *s_P, float v)
  211. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  212. void serial_echopair_P(const char *s_P, double v)
  213. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  214. void serial_echopair_P(const char *s_P, unsigned long v)
  215. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  216. extern "C"{
  217. extern unsigned int __bss_end;
  218. extern unsigned int __heap_start;
  219. extern void *__brkval;
  220. int freeMemory() {
  221. int free_memory;
  222. if((int)__brkval == 0)
  223. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  224. else
  225. free_memory = ((int)&free_memory) - ((int)__brkval);
  226. return free_memory;
  227. }
  228. }
  229. //adds an command to the main command buffer
  230. //thats really done in a non-safe way.
  231. //needs overworking someday
  232. void enquecommand(const char *cmd)
  233. {
  234. if(buflen < BUFSIZE)
  235. {
  236. //this is dangerous if a mixing of serial and this happsens
  237. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  238. SERIAL_ECHO_START;
  239. SERIAL_ECHOPGM("enqueing \"");
  240. SERIAL_ECHO(cmdbuffer[bufindw]);
  241. SERIAL_ECHOLNPGM("\"");
  242. bufindw= (bufindw + 1)%BUFSIZE;
  243. buflen += 1;
  244. }
  245. }
  246. void enquecommand_P(const char *cmd)
  247. {
  248. if(buflen < BUFSIZE)
  249. {
  250. //this is dangerous if a mixing of serial and this happsens
  251. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  252. SERIAL_ECHO_START;
  253. SERIAL_ECHOPGM("enqueing \"");
  254. SERIAL_ECHO(cmdbuffer[bufindw]);
  255. SERIAL_ECHOLNPGM("\"");
  256. bufindw= (bufindw + 1)%BUFSIZE;
  257. buflen += 1;
  258. }
  259. }
  260. void setup_killpin()
  261. {
  262. #if defined(KILL_PIN) && KILL_PIN > -1
  263. pinMode(KILL_PIN,INPUT);
  264. WRITE(KILL_PIN,HIGH);
  265. #endif
  266. }
  267. void setup_photpin()
  268. {
  269. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  270. SET_OUTPUT(PHOTOGRAPH_PIN);
  271. WRITE(PHOTOGRAPH_PIN, LOW);
  272. #endif
  273. }
  274. void setup_powerhold()
  275. {
  276. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  277. SET_OUTPUT(SUICIDE_PIN);
  278. WRITE(SUICIDE_PIN, HIGH);
  279. #endif
  280. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  281. SET_OUTPUT(PS_ON_PIN);
  282. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  283. #endif
  284. }
  285. void suicide()
  286. {
  287. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  288. SET_OUTPUT(SUICIDE_PIN);
  289. WRITE(SUICIDE_PIN, LOW);
  290. #endif
  291. }
  292. void servo_init()
  293. {
  294. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  295. servos[0].attach(SERVO0_PIN);
  296. #endif
  297. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  298. servos[1].attach(SERVO1_PIN);
  299. #endif
  300. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  301. servos[2].attach(SERVO2_PIN);
  302. #endif
  303. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  304. servos[3].attach(SERVO3_PIN);
  305. #endif
  306. #if (NUM_SERVOS >= 5)
  307. #error "TODO: enter initalisation code for more servos"
  308. #endif
  309. }
  310. void setup()
  311. {
  312. setup_killpin();
  313. setup_powerhold();
  314. MYSERIAL.begin(BAUDRATE);
  315. SERIAL_PROTOCOLLNPGM("start");
  316. SERIAL_ECHO_START;
  317. // Check startup - does nothing if bootloader sets MCUSR to 0
  318. byte mcu = MCUSR;
  319. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  320. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  321. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  322. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  323. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  324. MCUSR=0;
  325. SERIAL_ECHOPGM(MSG_MARLIN);
  326. SERIAL_ECHOLNPGM(VERSION_STRING);
  327. #ifdef STRING_VERSION_CONFIG_H
  328. #ifdef STRING_CONFIG_H_AUTHOR
  329. SERIAL_ECHO_START;
  330. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  331. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  332. SERIAL_ECHOPGM(MSG_AUTHOR);
  333. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  334. SERIAL_ECHOPGM("Compiled: ");
  335. SERIAL_ECHOLNPGM(__DATE__);
  336. #endif
  337. #endif
  338. SERIAL_ECHO_START;
  339. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  340. SERIAL_ECHO(freeMemory());
  341. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  342. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  343. for(int8_t i = 0; i < BUFSIZE; i++)
  344. {
  345. fromsd[i] = false;
  346. }
  347. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  348. Config_RetrieveSettings();
  349. tp_init(); // Initialize temperature loop
  350. plan_init(); // Initialize planner;
  351. watchdog_init();
  352. st_init(); // Initialize stepper, this enables interrupts!
  353. setup_photpin();
  354. servo_init();
  355. lcd_init();
  356. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  357. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  358. #endif
  359. }
  360. void loop()
  361. {
  362. if(buflen < (BUFSIZE-1))
  363. get_command();
  364. #ifdef SDSUPPORT
  365. card.checkautostart(false);
  366. #endif
  367. if(buflen)
  368. {
  369. #ifdef SDSUPPORT
  370. if(card.saving)
  371. {
  372. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  373. {
  374. card.write_command(cmdbuffer[bufindr]);
  375. if(card.logging)
  376. {
  377. process_commands();
  378. }
  379. else
  380. {
  381. SERIAL_PROTOCOLLNPGM(MSG_OK);
  382. }
  383. }
  384. else
  385. {
  386. card.closefile();
  387. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  388. }
  389. }
  390. else
  391. {
  392. process_commands();
  393. }
  394. #else
  395. process_commands();
  396. #endif //SDSUPPORT
  397. buflen = (buflen-1);
  398. bufindr = (bufindr + 1)%BUFSIZE;
  399. }
  400. //check heater every n milliseconds
  401. manage_heater();
  402. manage_inactivity();
  403. checkHitEndstops();
  404. lcd_update();
  405. }
  406. void get_command()
  407. {
  408. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  409. serial_char = MYSERIAL.read();
  410. if(serial_char == '\n' ||
  411. serial_char == '\r' ||
  412. (serial_char == ':' && comment_mode == false) ||
  413. serial_count >= (MAX_CMD_SIZE - 1) )
  414. {
  415. if(!serial_count) { //if empty line
  416. comment_mode = false; //for new command
  417. return;
  418. }
  419. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  420. if(!comment_mode){
  421. comment_mode = false; //for new command
  422. fromsd[bufindw] = false;
  423. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  424. {
  425. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  426. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  427. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  428. SERIAL_ERROR_START;
  429. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  430. SERIAL_ERRORLN(gcode_LastN);
  431. //Serial.println(gcode_N);
  432. FlushSerialRequestResend();
  433. serial_count = 0;
  434. return;
  435. }
  436. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  437. {
  438. byte checksum = 0;
  439. byte count = 0;
  440. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  441. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  442. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  443. SERIAL_ERROR_START;
  444. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  445. SERIAL_ERRORLN(gcode_LastN);
  446. FlushSerialRequestResend();
  447. serial_count = 0;
  448. return;
  449. }
  450. //if no errors, continue parsing
  451. }
  452. else
  453. {
  454. SERIAL_ERROR_START;
  455. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  456. SERIAL_ERRORLN(gcode_LastN);
  457. FlushSerialRequestResend();
  458. serial_count = 0;
  459. return;
  460. }
  461. gcode_LastN = gcode_N;
  462. //if no errors, continue parsing
  463. }
  464. else // if we don't receive 'N' but still see '*'
  465. {
  466. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  467. {
  468. SERIAL_ERROR_START;
  469. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  470. SERIAL_ERRORLN(gcode_LastN);
  471. serial_count = 0;
  472. return;
  473. }
  474. }
  475. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  476. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  477. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  478. case 0:
  479. case 1:
  480. case 2:
  481. case 3:
  482. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  483. #ifdef SDSUPPORT
  484. if(card.saving)
  485. break;
  486. #endif //SDSUPPORT
  487. SERIAL_PROTOCOLLNPGM(MSG_OK);
  488. }
  489. else {
  490. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  491. LCD_MESSAGEPGM(MSG_STOPPED);
  492. }
  493. break;
  494. default:
  495. break;
  496. }
  497. }
  498. bufindw = (bufindw + 1)%BUFSIZE;
  499. buflen += 1;
  500. }
  501. serial_count = 0; //clear buffer
  502. }
  503. else
  504. {
  505. if(serial_char == ';') comment_mode = true;
  506. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  507. }
  508. }
  509. #ifdef SDSUPPORT
  510. if(!card.sdprinting || serial_count!=0){
  511. return;
  512. }
  513. while( !card.eof() && buflen < BUFSIZE) {
  514. int16_t n=card.get();
  515. serial_char = (char)n;
  516. if(serial_char == '\n' ||
  517. serial_char == '\r' ||
  518. (serial_char == ':' && comment_mode == false) ||
  519. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  520. {
  521. if(card.eof()){
  522. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  523. stoptime=millis();
  524. char time[30];
  525. unsigned long t=(stoptime-starttime)/1000;
  526. int hours, minutes;
  527. minutes=(t/60)%60;
  528. hours=t/60/60;
  529. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  530. SERIAL_ECHO_START;
  531. SERIAL_ECHOLN(time);
  532. lcd_setstatus(time);
  533. card.printingHasFinished();
  534. card.checkautostart(true);
  535. }
  536. if(!serial_count)
  537. {
  538. comment_mode = false; //for new command
  539. return; //if empty line
  540. }
  541. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  542. // if(!comment_mode){
  543. fromsd[bufindw] = true;
  544. buflen += 1;
  545. bufindw = (bufindw + 1)%BUFSIZE;
  546. // }
  547. comment_mode = false; //for new command
  548. serial_count = 0; //clear buffer
  549. }
  550. else
  551. {
  552. if(serial_char == ';') comment_mode = true;
  553. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  554. }
  555. }
  556. #endif //SDSUPPORT
  557. }
  558. float code_value()
  559. {
  560. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  561. }
  562. long code_value_long()
  563. {
  564. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  565. }
  566. bool code_seen(char code)
  567. {
  568. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  569. return (strchr_pointer != NULL); //Return True if a character was found
  570. }
  571. #define DEFINE_PGM_READ_ANY(type, reader) \
  572. static inline type pgm_read_any(const type *p) \
  573. { return pgm_read_##reader##_near(p); }
  574. DEFINE_PGM_READ_ANY(float, float);
  575. DEFINE_PGM_READ_ANY(signed char, byte);
  576. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  577. static const PROGMEM type array##_P[3] = \
  578. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  579. static inline type array(int axis) \
  580. { return pgm_read_any(&array##_P[axis]); }
  581. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  582. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  583. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  584. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  585. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  586. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  587. static void axis_is_at_home(int axis) {
  588. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  589. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  590. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  591. }
  592. static void homeaxis(int axis) {
  593. #define HOMEAXIS_DO(LETTER) \
  594. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  595. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  596. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  597. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  598. 0) {
  599. current_position[axis] = 0;
  600. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  601. destination[axis] = 1.5 * max_length(axis) * home_dir(axis);
  602. feedrate = homing_feedrate[axis];
  603. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  604. st_synchronize();
  605. current_position[axis] = 0;
  606. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  607. destination[axis] = -home_retract_mm(axis) * home_dir(axis);
  608. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  609. st_synchronize();
  610. destination[axis] = 2*home_retract_mm(axis) * home_dir(axis);
  611. feedrate = homing_feedrate[axis]/2 ;
  612. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  613. st_synchronize();
  614. axis_is_at_home(axis);
  615. destination[axis] = current_position[axis];
  616. feedrate = 0.0;
  617. endstops_hit_on_purpose();
  618. }
  619. }
  620. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  621. void process_commands()
  622. {
  623. unsigned long codenum; //throw away variable
  624. char *starpos = NULL;
  625. if(code_seen('G'))
  626. {
  627. switch((int)code_value())
  628. {
  629. case 0: // G0 -> G1
  630. case 1: // G1
  631. if(Stopped == false) {
  632. get_coordinates(); // For X Y Z E F
  633. prepare_move();
  634. //ClearToSend();
  635. return;
  636. }
  637. //break;
  638. case 2: // G2 - CW ARC
  639. if(Stopped == false) {
  640. get_arc_coordinates();
  641. prepare_arc_move(true);
  642. return;
  643. }
  644. case 3: // G3 - CCW ARC
  645. if(Stopped == false) {
  646. get_arc_coordinates();
  647. prepare_arc_move(false);
  648. return;
  649. }
  650. case 4: // G4 dwell
  651. LCD_MESSAGEPGM(MSG_DWELL);
  652. codenum = 0;
  653. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  654. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  655. st_synchronize();
  656. codenum += millis(); // keep track of when we started waiting
  657. previous_millis_cmd = millis();
  658. while(millis() < codenum ){
  659. manage_heater();
  660. manage_inactivity();
  661. lcd_update();
  662. }
  663. break;
  664. #ifdef FWRETRACT
  665. case 10: // G10 retract
  666. if(!retracted)
  667. {
  668. destination[X_AXIS]=current_position[X_AXIS];
  669. destination[Y_AXIS]=current_position[Y_AXIS];
  670. destination[Z_AXIS]=current_position[Z_AXIS];
  671. current_position[Z_AXIS]+=-retract_zlift;
  672. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  673. feedrate=retract_feedrate;
  674. retracted=true;
  675. prepare_move();
  676. }
  677. break;
  678. case 11: // G10 retract_recover
  679. if(!retracted)
  680. {
  681. destination[X_AXIS]=current_position[X_AXIS];
  682. destination[Y_AXIS]=current_position[Y_AXIS];
  683. destination[Z_AXIS]=current_position[Z_AXIS];
  684. current_position[Z_AXIS]+=retract_zlift;
  685. current_position[E_AXIS]+=-retract_recover_length;
  686. feedrate=retract_recover_feedrate;
  687. retracted=false;
  688. prepare_move();
  689. }
  690. break;
  691. #endif //FWRETRACT
  692. case 28: //G28 Home all Axis one at a time
  693. saved_feedrate = feedrate;
  694. saved_feedmultiply = feedmultiply;
  695. feedmultiply = 100;
  696. previous_millis_cmd = millis();
  697. enable_endstops(true);
  698. for(int8_t i=0; i < NUM_AXIS; i++) {
  699. destination[i] = current_position[i];
  700. }
  701. feedrate = 0.0;
  702. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  703. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  704. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  705. HOMEAXIS(Z);
  706. }
  707. #endif
  708. #ifdef QUICK_HOME
  709. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  710. {
  711. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  712. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  713. destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
  714. feedrate = homing_feedrate[X_AXIS];
  715. if(homing_feedrate[Y_AXIS]<feedrate)
  716. feedrate =homing_feedrate[Y_AXIS];
  717. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  718. st_synchronize();
  719. axis_is_at_home(X_AXIS);
  720. axis_is_at_home(Y_AXIS);
  721. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  722. destination[X_AXIS] = current_position[X_AXIS];
  723. destination[Y_AXIS] = current_position[Y_AXIS];
  724. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  725. feedrate = 0.0;
  726. st_synchronize();
  727. endstops_hit_on_purpose();
  728. }
  729. #endif
  730. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  731. {
  732. HOMEAXIS(X);
  733. }
  734. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  735. HOMEAXIS(Y);
  736. }
  737. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  738. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  739. HOMEAXIS(Z);
  740. }
  741. #endif
  742. if(code_seen(axis_codes[X_AXIS]))
  743. {
  744. if(code_value_long() != 0) {
  745. current_position[X_AXIS]=code_value()+add_homeing[0];
  746. }
  747. }
  748. if(code_seen(axis_codes[Y_AXIS])) {
  749. if(code_value_long() != 0) {
  750. current_position[Y_AXIS]=code_value()+add_homeing[1];
  751. }
  752. }
  753. if(code_seen(axis_codes[Z_AXIS])) {
  754. if(code_value_long() != 0) {
  755. current_position[Z_AXIS]=code_value()+add_homeing[2];
  756. }
  757. }
  758. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  759. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  760. enable_endstops(false);
  761. #endif
  762. feedrate = saved_feedrate;
  763. feedmultiply = saved_feedmultiply;
  764. previous_millis_cmd = millis();
  765. endstops_hit_on_purpose();
  766. break;
  767. case 90: // G90
  768. relative_mode = false;
  769. break;
  770. case 91: // G91
  771. relative_mode = true;
  772. break;
  773. case 92: // G92
  774. if(!code_seen(axis_codes[E_AXIS]))
  775. st_synchronize();
  776. for(int8_t i=0; i < NUM_AXIS; i++) {
  777. if(code_seen(axis_codes[i])) {
  778. if(i == E_AXIS) {
  779. current_position[i] = code_value();
  780. plan_set_e_position(current_position[E_AXIS]);
  781. }
  782. else {
  783. current_position[i] = code_value()+add_homeing[i];
  784. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  785. }
  786. }
  787. }
  788. break;
  789. }
  790. }
  791. else if(code_seen('M'))
  792. {
  793. switch( (int)code_value() )
  794. {
  795. #ifdef ULTIPANEL
  796. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  797. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  798. {
  799. LCD_MESSAGEPGM(MSG_USERWAIT);
  800. codenum = 0;
  801. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  802. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  803. st_synchronize();
  804. previous_millis_cmd = millis();
  805. if (codenum > 0){
  806. codenum += millis(); // keep track of when we started waiting
  807. while(millis() < codenum && !lcd_clicked()){
  808. manage_heater();
  809. manage_inactivity();
  810. lcd_update();
  811. }
  812. }else{
  813. while(!lcd_clicked()){
  814. manage_heater();
  815. manage_inactivity();
  816. lcd_update();
  817. }
  818. }
  819. LCD_MESSAGEPGM(MSG_RESUMING);
  820. }
  821. break;
  822. #endif
  823. case 17:
  824. LCD_MESSAGEPGM(MSG_NO_MOVE);
  825. enable_x();
  826. enable_y();
  827. enable_z();
  828. enable_e0();
  829. enable_e1();
  830. enable_e2();
  831. break;
  832. #ifdef SDSUPPORT
  833. case 20: // M20 - list SD card
  834. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  835. card.ls();
  836. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  837. break;
  838. case 21: // M21 - init SD card
  839. card.initsd();
  840. break;
  841. case 22: //M22 - release SD card
  842. card.release();
  843. break;
  844. case 23: //M23 - Select file
  845. starpos = (strchr(strchr_pointer + 4,'*'));
  846. if(starpos!=NULL)
  847. *(starpos-1)='\0';
  848. card.openFile(strchr_pointer + 4,true);
  849. break;
  850. case 24: //M24 - Start SD print
  851. card.startFileprint();
  852. starttime=millis();
  853. break;
  854. case 25: //M25 - Pause SD print
  855. card.pauseSDPrint();
  856. break;
  857. case 26: //M26 - Set SD index
  858. if(card.cardOK && code_seen('S')) {
  859. card.setIndex(code_value_long());
  860. }
  861. break;
  862. case 27: //M27 - Get SD status
  863. card.getStatus();
  864. break;
  865. case 28: //M28 - Start SD write
  866. starpos = (strchr(strchr_pointer + 4,'*'));
  867. if(starpos != NULL){
  868. char* npos = strchr(cmdbuffer[bufindr], 'N');
  869. strchr_pointer = strchr(npos,' ') + 1;
  870. *(starpos-1) = '\0';
  871. }
  872. card.openFile(strchr_pointer+4,false);
  873. break;
  874. case 29: //M29 - Stop SD write
  875. //processed in write to file routine above
  876. //card,saving = false;
  877. break;
  878. case 30: //M30 <filename> Delete File
  879. if (card.cardOK){
  880. card.closefile();
  881. starpos = (strchr(strchr_pointer + 4,'*'));
  882. if(starpos != NULL){
  883. char* npos = strchr(cmdbuffer[bufindr], 'N');
  884. strchr_pointer = strchr(npos,' ') + 1;
  885. *(starpos-1) = '\0';
  886. }
  887. card.removeFile(strchr_pointer + 4);
  888. }
  889. break;
  890. case 928: //M928 - Start SD write
  891. starpos = (strchr(strchr_pointer + 5,'*'));
  892. if(starpos != NULL){
  893. char* npos = strchr(cmdbuffer[bufindr], 'N');
  894. strchr_pointer = strchr(npos,' ') + 1;
  895. *(starpos-1) = '\0';
  896. }
  897. card.openLogFile(strchr_pointer+5);
  898. break;
  899. #endif //SDSUPPORT
  900. case 31: //M31 take time since the start of the SD print or an M109 command
  901. {
  902. stoptime=millis();
  903. char time[30];
  904. unsigned long t=(stoptime-starttime)/1000;
  905. int sec,min;
  906. min=t/60;
  907. sec=t%60;
  908. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  909. SERIAL_ECHO_START;
  910. SERIAL_ECHOLN(time);
  911. lcd_setstatus(time);
  912. autotempShutdown();
  913. }
  914. break;
  915. case 42: //M42 -Change pin status via gcode
  916. if (code_seen('S'))
  917. {
  918. int pin_status = code_value();
  919. int pin_number = LED_PIN;
  920. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  921. pin_number = code_value();
  922. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  923. {
  924. if (sensitive_pins[i] == pin_number)
  925. {
  926. pin_number = -1;
  927. break;
  928. }
  929. }
  930. #if defined(FAN_PIN) && FAN_PIN > -1
  931. if (pin_number == FAN_PIN)
  932. fanSpeed = pin_status;
  933. #endif
  934. if (pin_number > -1)
  935. {
  936. pinMode(pin_number, OUTPUT);
  937. digitalWrite(pin_number, pin_status);
  938. analogWrite(pin_number, pin_status);
  939. }
  940. }
  941. break;
  942. case 104: // M104
  943. if(setTargetedHotend(104)){
  944. break;
  945. }
  946. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  947. setWatch();
  948. break;
  949. case 140: // M140 set bed temp
  950. if (code_seen('S')) setTargetBed(code_value());
  951. break;
  952. case 105 : // M105
  953. if(setTargetedHotend(105)){
  954. break;
  955. }
  956. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  957. SERIAL_PROTOCOLPGM("ok T:");
  958. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  959. SERIAL_PROTOCOLPGM(" /");
  960. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  961. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  962. SERIAL_PROTOCOLPGM(" B:");
  963. SERIAL_PROTOCOL_F(degBed(),1);
  964. SERIAL_PROTOCOLPGM(" /");
  965. SERIAL_PROTOCOL_F(degTargetBed(),1);
  966. #endif //TEMP_BED_PIN
  967. #else
  968. SERIAL_ERROR_START;
  969. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  970. #endif
  971. SERIAL_PROTOCOLPGM(" @:");
  972. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  973. SERIAL_PROTOCOLPGM(" B@:");
  974. SERIAL_PROTOCOL(getHeaterPower(-1));
  975. SERIAL_PROTOCOLLN("");
  976. return;
  977. break;
  978. case 109:
  979. {// M109 - Wait for extruder heater to reach target.
  980. if(setTargetedHotend(109)){
  981. break;
  982. }
  983. LCD_MESSAGEPGM(MSG_HEATING);
  984. #ifdef AUTOTEMP
  985. autotemp_enabled=false;
  986. #endif
  987. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  988. #ifdef AUTOTEMP
  989. if (code_seen('S')) autotemp_min=code_value();
  990. if (code_seen('B')) autotemp_max=code_value();
  991. if (code_seen('F'))
  992. {
  993. autotemp_factor=code_value();
  994. autotemp_enabled=true;
  995. }
  996. #endif
  997. setWatch();
  998. codenum = millis();
  999. /* See if we are heating up or cooling down */
  1000. bool target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1001. #ifdef TEMP_RESIDENCY_TIME
  1002. long residencyStart;
  1003. residencyStart = -1;
  1004. /* continue to loop until we have reached the target temp
  1005. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1006. while((residencyStart == -1) ||
  1007. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1008. #else
  1009. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1010. #endif //TEMP_RESIDENCY_TIME
  1011. if( (millis() - codenum) > 1000UL )
  1012. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1013. SERIAL_PROTOCOLPGM("T:");
  1014. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1015. SERIAL_PROTOCOLPGM(" E:");
  1016. SERIAL_PROTOCOL((int)tmp_extruder);
  1017. #ifdef TEMP_RESIDENCY_TIME
  1018. SERIAL_PROTOCOLPGM(" W:");
  1019. if(residencyStart > -1)
  1020. {
  1021. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1022. SERIAL_PROTOCOLLN( codenum );
  1023. }
  1024. else
  1025. {
  1026. SERIAL_PROTOCOLLN( "?" );
  1027. }
  1028. #else
  1029. SERIAL_PROTOCOLLN("");
  1030. #endif
  1031. codenum = millis();
  1032. }
  1033. manage_heater();
  1034. manage_inactivity();
  1035. lcd_update();
  1036. #ifdef TEMP_RESIDENCY_TIME
  1037. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1038. or when current temp falls outside the hysteresis after target temp was reached */
  1039. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1040. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1041. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1042. {
  1043. residencyStart = millis();
  1044. }
  1045. #endif //TEMP_RESIDENCY_TIME
  1046. }
  1047. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1048. starttime=millis();
  1049. previous_millis_cmd = millis();
  1050. }
  1051. break;
  1052. case 190: // M190 - Wait for bed heater to reach target.
  1053. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1054. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1055. if (code_seen('S')) setTargetBed(code_value());
  1056. codenum = millis();
  1057. while(isHeatingBed())
  1058. {
  1059. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1060. {
  1061. float tt=degHotend(active_extruder);
  1062. SERIAL_PROTOCOLPGM("T:");
  1063. SERIAL_PROTOCOL(tt);
  1064. SERIAL_PROTOCOLPGM(" E:");
  1065. SERIAL_PROTOCOL((int)active_extruder);
  1066. SERIAL_PROTOCOLPGM(" B:");
  1067. SERIAL_PROTOCOL_F(degBed(),1);
  1068. SERIAL_PROTOCOLLN("");
  1069. codenum = millis();
  1070. }
  1071. manage_heater();
  1072. manage_inactivity();
  1073. lcd_update();
  1074. }
  1075. LCD_MESSAGEPGM(MSG_BED_DONE);
  1076. previous_millis_cmd = millis();
  1077. #endif
  1078. break;
  1079. #if defined(FAN_PIN) && FAN_PIN > -1
  1080. case 106: //M106 Fan On
  1081. if (code_seen('S')){
  1082. fanSpeed=constrain(code_value(),0,255);
  1083. }
  1084. else {
  1085. fanSpeed=255;
  1086. }
  1087. break;
  1088. case 107: //M107 Fan Off
  1089. fanSpeed = 0;
  1090. break;
  1091. #endif //FAN_PIN
  1092. #ifdef BARICUDA
  1093. // PWM for HEATER_1_PIN
  1094. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1095. case 126: //M126 valve open
  1096. if (code_seen('S')){
  1097. ValvePressure=constrain(code_value(),0,255);
  1098. }
  1099. else {
  1100. ValvePressure=255;
  1101. }
  1102. break;
  1103. case 127: //M127 valve closed
  1104. ValvePressure = 0;
  1105. break;
  1106. #endif //HEATER_1_PIN
  1107. // PWM for HEATER_2_PIN
  1108. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1109. case 128: //M128 valve open
  1110. if (code_seen('S')){
  1111. EtoPPressure=constrain(code_value(),0,255);
  1112. }
  1113. else {
  1114. EtoPPressure=255;
  1115. }
  1116. break;
  1117. case 129: //M129 valve closed
  1118. EtoPPressure = 0;
  1119. break;
  1120. #endif //HEATER_2_PIN
  1121. #endif
  1122. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1123. case 80: // M80 - ATX Power On
  1124. SET_OUTPUT(PS_ON_PIN); //GND
  1125. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1126. break;
  1127. #endif
  1128. case 81: // M81 - ATX Power Off
  1129. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1130. st_synchronize();
  1131. suicide();
  1132. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1133. SET_OUTPUT(PS_ON_PIN);
  1134. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1135. #endif
  1136. break;
  1137. case 82:
  1138. axis_relative_modes[3] = false;
  1139. break;
  1140. case 83:
  1141. axis_relative_modes[3] = true;
  1142. break;
  1143. case 18: //compatibility
  1144. case 84: // M84
  1145. if(code_seen('S')){
  1146. stepper_inactive_time = code_value() * 1000;
  1147. }
  1148. else
  1149. {
  1150. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1151. if(all_axis)
  1152. {
  1153. st_synchronize();
  1154. disable_e0();
  1155. disable_e1();
  1156. disable_e2();
  1157. finishAndDisableSteppers();
  1158. }
  1159. else
  1160. {
  1161. st_synchronize();
  1162. if(code_seen('X')) disable_x();
  1163. if(code_seen('Y')) disable_y();
  1164. if(code_seen('Z')) disable_z();
  1165. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1166. if(code_seen('E')) {
  1167. disable_e0();
  1168. disable_e1();
  1169. disable_e2();
  1170. }
  1171. #endif
  1172. }
  1173. }
  1174. break;
  1175. case 85: // M85
  1176. code_seen('S');
  1177. max_inactive_time = code_value() * 1000;
  1178. break;
  1179. case 92: // M92
  1180. for(int8_t i=0; i < NUM_AXIS; i++)
  1181. {
  1182. if(code_seen(axis_codes[i]))
  1183. {
  1184. if(i == 3) { // E
  1185. float value = code_value();
  1186. if(value < 20.0) {
  1187. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1188. max_e_jerk *= factor;
  1189. max_feedrate[i] *= factor;
  1190. axis_steps_per_sqr_second[i] *= factor;
  1191. }
  1192. axis_steps_per_unit[i] = value;
  1193. }
  1194. else {
  1195. axis_steps_per_unit[i] = code_value();
  1196. }
  1197. }
  1198. }
  1199. break;
  1200. case 115: // M115
  1201. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1202. break;
  1203. case 117: // M117 display message
  1204. starpos = (strchr(strchr_pointer + 5,'*'));
  1205. if(starpos!=NULL)
  1206. *(starpos-1)='\0';
  1207. lcd_setstatus(strchr_pointer + 5);
  1208. break;
  1209. case 114: // M114
  1210. SERIAL_PROTOCOLPGM("X:");
  1211. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1212. SERIAL_PROTOCOLPGM("Y:");
  1213. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1214. SERIAL_PROTOCOLPGM("Z:");
  1215. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1216. SERIAL_PROTOCOLPGM("E:");
  1217. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1218. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1219. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1220. SERIAL_PROTOCOLPGM("Y:");
  1221. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1222. SERIAL_PROTOCOLPGM("Z:");
  1223. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1224. SERIAL_PROTOCOLLN("");
  1225. break;
  1226. case 120: // M120
  1227. enable_endstops(false) ;
  1228. break;
  1229. case 121: // M121
  1230. enable_endstops(true) ;
  1231. break;
  1232. case 119: // M119
  1233. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1234. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1235. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1236. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1237. #endif
  1238. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1239. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1240. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1241. #endif
  1242. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1243. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1244. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1245. #endif
  1246. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1247. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1248. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1249. #endif
  1250. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1251. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1252. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1253. #endif
  1254. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1255. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1256. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1257. #endif
  1258. break;
  1259. //TODO: update for all axis, use for loop
  1260. case 201: // M201
  1261. for(int8_t i=0; i < NUM_AXIS; i++)
  1262. {
  1263. if(code_seen(axis_codes[i]))
  1264. {
  1265. max_acceleration_units_per_sq_second[i] = code_value();
  1266. }
  1267. }
  1268. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1269. reset_acceleration_rates();
  1270. break;
  1271. #if 0 // Not used for Sprinter/grbl gen6
  1272. case 202: // M202
  1273. for(int8_t i=0; i < NUM_AXIS; i++) {
  1274. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1275. }
  1276. break;
  1277. #endif
  1278. case 203: // M203 max feedrate mm/sec
  1279. for(int8_t i=0; i < NUM_AXIS; i++) {
  1280. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1281. }
  1282. break;
  1283. case 204: // M204 acclereration S normal moves T filmanent only moves
  1284. {
  1285. if(code_seen('S')) acceleration = code_value() ;
  1286. if(code_seen('T')) retract_acceleration = code_value() ;
  1287. }
  1288. break;
  1289. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1290. {
  1291. if(code_seen('S')) minimumfeedrate = code_value();
  1292. if(code_seen('T')) mintravelfeedrate = code_value();
  1293. if(code_seen('B')) minsegmenttime = code_value() ;
  1294. if(code_seen('X')) max_xy_jerk = code_value() ;
  1295. if(code_seen('Z')) max_z_jerk = code_value() ;
  1296. if(code_seen('E')) max_e_jerk = code_value() ;
  1297. }
  1298. break;
  1299. case 206: // M206 additional homeing offset
  1300. for(int8_t i=0; i < 3; i++)
  1301. {
  1302. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1303. }
  1304. break;
  1305. #ifdef FWRETRACT
  1306. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1307. {
  1308. if(code_seen('S'))
  1309. {
  1310. retract_length = code_value() ;
  1311. }
  1312. if(code_seen('F'))
  1313. {
  1314. retract_feedrate = code_value() ;
  1315. }
  1316. if(code_seen('Z'))
  1317. {
  1318. retract_zlift = code_value() ;
  1319. }
  1320. }break;
  1321. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1322. {
  1323. if(code_seen('S'))
  1324. {
  1325. retract_recover_length = code_value() ;
  1326. }
  1327. if(code_seen('F'))
  1328. {
  1329. retract_recover_feedrate = code_value() ;
  1330. }
  1331. }break;
  1332. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1333. {
  1334. if(code_seen('S'))
  1335. {
  1336. int t= code_value() ;
  1337. switch(t)
  1338. {
  1339. case 0: autoretract_enabled=false;retracted=false;break;
  1340. case 1: autoretract_enabled=true;retracted=false;break;
  1341. default:
  1342. SERIAL_ECHO_START;
  1343. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1344. SERIAL_ECHO(cmdbuffer[bufindr]);
  1345. SERIAL_ECHOLNPGM("\"");
  1346. }
  1347. }
  1348. }break;
  1349. #endif // FWRETRACT
  1350. #if EXTRUDERS > 1
  1351. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  1352. {
  1353. if(setTargetedHotend(218)){
  1354. break;
  1355. }
  1356. if(code_seen('X'))
  1357. {
  1358. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  1359. }
  1360. if(code_seen('Y'))
  1361. {
  1362. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  1363. }
  1364. SERIAL_ECHO_START;
  1365. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  1366. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  1367. {
  1368. SERIAL_ECHO(" ");
  1369. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  1370. SERIAL_ECHO(",");
  1371. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  1372. }
  1373. SERIAL_ECHOLN("");
  1374. }break;
  1375. #endif
  1376. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1377. {
  1378. if(code_seen('S'))
  1379. {
  1380. feedmultiply = code_value() ;
  1381. }
  1382. }
  1383. break;
  1384. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1385. {
  1386. if(code_seen('S'))
  1387. {
  1388. extrudemultiply = code_value() ;
  1389. }
  1390. }
  1391. break;
  1392. #if NUM_SERVOS > 0
  1393. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  1394. {
  1395. int servo_index = -1;
  1396. int servo_position = 0;
  1397. if (code_seen('P'))
  1398. servo_index = code_value();
  1399. if (code_seen('S')) {
  1400. servo_position = code_value();
  1401. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  1402. servos[servo_index].write(servo_position);
  1403. }
  1404. else {
  1405. SERIAL_ECHO_START;
  1406. SERIAL_ECHO("Servo ");
  1407. SERIAL_ECHO(servo_index);
  1408. SERIAL_ECHOLN(" out of range");
  1409. }
  1410. }
  1411. else if (servo_index >= 0) {
  1412. SERIAL_PROTOCOL(MSG_OK);
  1413. SERIAL_PROTOCOL(" Servo ");
  1414. SERIAL_PROTOCOL(servo_index);
  1415. SERIAL_PROTOCOL(": ");
  1416. SERIAL_PROTOCOL(servos[servo_index].read());
  1417. SERIAL_PROTOCOLLN("");
  1418. }
  1419. }
  1420. break;
  1421. #endif // NUM_SERVOS > 0
  1422. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  1423. case 300: // M300
  1424. {
  1425. int beepS = 400;
  1426. int beepP = 1000;
  1427. if(code_seen('S')) beepS = code_value();
  1428. if(code_seen('P')) beepP = code_value();
  1429. #if BEEPER > 0
  1430. tone(BEEPER, beepS);
  1431. delay(beepP);
  1432. noTone(BEEPER);
  1433. #elif defined(ULTRALCD)
  1434. lcd_buzz(beepS, beepP);
  1435. #endif
  1436. }
  1437. break;
  1438. #endif // M300
  1439. #ifdef PIDTEMP
  1440. case 301: // M301
  1441. {
  1442. if(code_seen('P')) Kp = code_value();
  1443. if(code_seen('I')) Ki = scalePID_i(code_value());
  1444. if(code_seen('D')) Kd = scalePID_d(code_value());
  1445. #ifdef PID_ADD_EXTRUSION_RATE
  1446. if(code_seen('C')) Kc = code_value();
  1447. #endif
  1448. updatePID();
  1449. SERIAL_PROTOCOL(MSG_OK);
  1450. SERIAL_PROTOCOL(" p:");
  1451. SERIAL_PROTOCOL(Kp);
  1452. SERIAL_PROTOCOL(" i:");
  1453. SERIAL_PROTOCOL(unscalePID_i(Ki));
  1454. SERIAL_PROTOCOL(" d:");
  1455. SERIAL_PROTOCOL(unscalePID_d(Kd));
  1456. #ifdef PID_ADD_EXTRUSION_RATE
  1457. SERIAL_PROTOCOL(" c:");
  1458. //Kc does not have scaling applied above, or in resetting defaults
  1459. SERIAL_PROTOCOL(Kc);
  1460. #endif
  1461. SERIAL_PROTOCOLLN("");
  1462. }
  1463. break;
  1464. #endif //PIDTEMP
  1465. #ifdef PIDTEMPBED
  1466. case 304: // M304
  1467. {
  1468. if(code_seen('P')) bedKp = code_value();
  1469. if(code_seen('I')) bedKi = scalePID_i(code_value());
  1470. if(code_seen('D')) bedKd = scalePID_d(code_value());
  1471. updatePID();
  1472. SERIAL_PROTOCOL(MSG_OK);
  1473. SERIAL_PROTOCOL(" p:");
  1474. SERIAL_PROTOCOL(bedKp);
  1475. SERIAL_PROTOCOL(" i:");
  1476. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  1477. SERIAL_PROTOCOL(" d:");
  1478. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  1479. SERIAL_PROTOCOLLN("");
  1480. }
  1481. break;
  1482. #endif //PIDTEMP
  1483. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  1484. {
  1485. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  1486. const uint8_t NUM_PULSES=16;
  1487. const float PULSE_LENGTH=0.01524;
  1488. for(int i=0; i < NUM_PULSES; i++) {
  1489. WRITE(PHOTOGRAPH_PIN, HIGH);
  1490. _delay_ms(PULSE_LENGTH);
  1491. WRITE(PHOTOGRAPH_PIN, LOW);
  1492. _delay_ms(PULSE_LENGTH);
  1493. }
  1494. delay(7.33);
  1495. for(int i=0; i < NUM_PULSES; i++) {
  1496. WRITE(PHOTOGRAPH_PIN, HIGH);
  1497. _delay_ms(PULSE_LENGTH);
  1498. WRITE(PHOTOGRAPH_PIN, LOW);
  1499. _delay_ms(PULSE_LENGTH);
  1500. }
  1501. #endif
  1502. }
  1503. break;
  1504. case 302: // allow cold extrudes
  1505. {
  1506. allow_cold_extrudes(true);
  1507. }
  1508. break;
  1509. case 303: // M303 PID autotune
  1510. {
  1511. float temp = 150.0;
  1512. int e=0;
  1513. int c=5;
  1514. if (code_seen('E')) e=code_value();
  1515. if (e<0)
  1516. temp=70;
  1517. if (code_seen('S')) temp=code_value();
  1518. if (code_seen('C')) c=code_value();
  1519. PID_autotune(temp, e, c);
  1520. }
  1521. break;
  1522. case 400: // M400 finish all moves
  1523. {
  1524. st_synchronize();
  1525. }
  1526. break;
  1527. case 500: // M500 Store settings in EEPROM
  1528. {
  1529. Config_StoreSettings();
  1530. }
  1531. break;
  1532. case 501: // M501 Read settings from EEPROM
  1533. {
  1534. Config_RetrieveSettings();
  1535. }
  1536. break;
  1537. case 502: // M502 Revert to default settings
  1538. {
  1539. Config_ResetDefault();
  1540. }
  1541. break;
  1542. case 503: // M503 print settings currently in memory
  1543. {
  1544. Config_PrintSettings();
  1545. }
  1546. break;
  1547. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  1548. case 540:
  1549. {
  1550. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  1551. }
  1552. break;
  1553. #endif
  1554. #ifdef FILAMENTCHANGEENABLE
  1555. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  1556. {
  1557. float target[4];
  1558. float lastpos[4];
  1559. target[X_AXIS]=current_position[X_AXIS];
  1560. target[Y_AXIS]=current_position[Y_AXIS];
  1561. target[Z_AXIS]=current_position[Z_AXIS];
  1562. target[E_AXIS]=current_position[E_AXIS];
  1563. lastpos[X_AXIS]=current_position[X_AXIS];
  1564. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1565. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1566. lastpos[E_AXIS]=current_position[E_AXIS];
  1567. //retract by E
  1568. if(code_seen('E'))
  1569. {
  1570. target[E_AXIS]+= code_value();
  1571. }
  1572. else
  1573. {
  1574. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  1575. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1576. #endif
  1577. }
  1578. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  1579. //lift Z
  1580. if(code_seen('Z'))
  1581. {
  1582. target[Z_AXIS]+= code_value();
  1583. }
  1584. else
  1585. {
  1586. #ifdef FILAMENTCHANGE_ZADD
  1587. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1588. #endif
  1589. }
  1590. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  1591. //move xy
  1592. if(code_seen('X'))
  1593. {
  1594. target[X_AXIS]+= code_value();
  1595. }
  1596. else
  1597. {
  1598. #ifdef FILAMENTCHANGE_XPOS
  1599. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1600. #endif
  1601. }
  1602. if(code_seen('Y'))
  1603. {
  1604. target[Y_AXIS]= code_value();
  1605. }
  1606. else
  1607. {
  1608. #ifdef FILAMENTCHANGE_YPOS
  1609. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1610. #endif
  1611. }
  1612. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  1613. if(code_seen('L'))
  1614. {
  1615. target[E_AXIS]+= code_value();
  1616. }
  1617. else
  1618. {
  1619. #ifdef FILAMENTCHANGE_FINALRETRACT
  1620. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1621. #endif
  1622. }
  1623. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  1624. //finish moves
  1625. st_synchronize();
  1626. //disable extruder steppers so filament can be removed
  1627. disable_e0();
  1628. disable_e1();
  1629. disable_e2();
  1630. delay(100);
  1631. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1632. uint8_t cnt=0;
  1633. while(!lcd_clicked()){
  1634. cnt++;
  1635. manage_heater();
  1636. manage_inactivity();
  1637. lcd_update();
  1638. if(cnt==0)
  1639. {
  1640. #if BEEPER > 0
  1641. SET_OUTPUT(BEEPER);
  1642. WRITE(BEEPER,HIGH);
  1643. delay(3);
  1644. WRITE(BEEPER,LOW);
  1645. delay(3);
  1646. #else
  1647. lcd_buzz(1000/6,100);
  1648. #endif
  1649. }
  1650. }
  1651. //return to normal
  1652. if(code_seen('L'))
  1653. {
  1654. target[E_AXIS]+= -code_value();
  1655. }
  1656. else
  1657. {
  1658. #ifdef FILAMENTCHANGE_FINALRETRACT
  1659. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  1660. #endif
  1661. }
  1662. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1663. plan_set_e_position(current_position[E_AXIS]);
  1664. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  1665. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  1666. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  1667. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  1668. }
  1669. break;
  1670. #endif //FILAMENTCHANGEENABLE
  1671. case 907: // M907 Set digital trimpot motor current using axis codes.
  1672. {
  1673. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1674. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  1675. if(code_seen('B')) digipot_current(4,code_value());
  1676. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  1677. #endif
  1678. }
  1679. break;
  1680. case 908: // M908 Control digital trimpot directly.
  1681. {
  1682. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1683. uint8_t channel,current;
  1684. if(code_seen('P')) channel=code_value();
  1685. if(code_seen('S')) current=code_value();
  1686. digitalPotWrite(channel, current);
  1687. #endif
  1688. }
  1689. break;
  1690. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  1691. {
  1692. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1693. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  1694. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  1695. if(code_seen('B')) microstep_mode(4,code_value());
  1696. microstep_readings();
  1697. #endif
  1698. }
  1699. break;
  1700. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  1701. {
  1702. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1703. if(code_seen('S')) switch((int)code_value())
  1704. {
  1705. case 1:
  1706. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  1707. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  1708. break;
  1709. case 2:
  1710. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  1711. if(code_seen('B')) microstep_ms(4,-1,code_value());
  1712. break;
  1713. }
  1714. microstep_readings();
  1715. #endif
  1716. }
  1717. break;
  1718. case 999: // M999: Restart after being stopped
  1719. Stopped = false;
  1720. lcd_reset_alert_level();
  1721. gcode_LastN = Stopped_gcode_LastN;
  1722. FlushSerialRequestResend();
  1723. break;
  1724. }
  1725. }
  1726. else if(code_seen('T'))
  1727. {
  1728. tmp_extruder = code_value();
  1729. if(tmp_extruder >= EXTRUDERS) {
  1730. SERIAL_ECHO_START;
  1731. SERIAL_ECHO("T");
  1732. SERIAL_ECHO(tmp_extruder);
  1733. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  1734. }
  1735. else {
  1736. boolean make_move = false;
  1737. if(code_seen('F')) {
  1738. make_move = true;
  1739. next_feedrate = code_value();
  1740. if(next_feedrate > 0.0) {
  1741. feedrate = next_feedrate;
  1742. }
  1743. }
  1744. #if EXTRUDERS > 1
  1745. if(tmp_extruder != active_extruder) {
  1746. // Save current position to return to after applying extruder offset
  1747. memcpy(destination, current_position, sizeof(destination));
  1748. // Offset extruder (only by XY)
  1749. int i;
  1750. for(i = 0; i < 2; i++) {
  1751. current_position[i] = current_position[i] -
  1752. extruder_offset[i][active_extruder] +
  1753. extruder_offset[i][tmp_extruder];
  1754. }
  1755. // Set the new active extruder and position
  1756. active_extruder = tmp_extruder;
  1757. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1758. // Move to the old position if 'F' was in the parameters
  1759. if(make_move && Stopped == false) {
  1760. prepare_move();
  1761. }
  1762. }
  1763. #endif
  1764. SERIAL_ECHO_START;
  1765. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  1766. SERIAL_PROTOCOLLN((int)active_extruder);
  1767. }
  1768. }
  1769. else
  1770. {
  1771. SERIAL_ECHO_START;
  1772. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1773. SERIAL_ECHO(cmdbuffer[bufindr]);
  1774. SERIAL_ECHOLNPGM("\"");
  1775. }
  1776. ClearToSend();
  1777. }
  1778. void FlushSerialRequestResend()
  1779. {
  1780. //char cmdbuffer[bufindr][100]="Resend:";
  1781. MYSERIAL.flush();
  1782. SERIAL_PROTOCOLPGM(MSG_RESEND);
  1783. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  1784. ClearToSend();
  1785. }
  1786. void ClearToSend()
  1787. {
  1788. previous_millis_cmd = millis();
  1789. #ifdef SDSUPPORT
  1790. if(fromsd[bufindr])
  1791. return;
  1792. #endif //SDSUPPORT
  1793. SERIAL_PROTOCOLLNPGM(MSG_OK);
  1794. }
  1795. void get_coordinates()
  1796. {
  1797. bool seen[4]={false,false,false,false};
  1798. for(int8_t i=0; i < NUM_AXIS; i++) {
  1799. if(code_seen(axis_codes[i]))
  1800. {
  1801. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  1802. seen[i]=true;
  1803. }
  1804. else destination[i] = current_position[i]; //Are these else lines really needed?
  1805. }
  1806. if(code_seen('F')) {
  1807. next_feedrate = code_value();
  1808. if(next_feedrate > 0.0) feedrate = next_feedrate;
  1809. }
  1810. #ifdef FWRETRACT
  1811. if(autoretract_enabled)
  1812. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  1813. {
  1814. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1815. if(echange<-MIN_RETRACT) //retract
  1816. {
  1817. if(!retracted)
  1818. {
  1819. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  1820. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  1821. float correctede=-echange-retract_length;
  1822. //to generate the additional steps, not the destination is changed, but inversely the current position
  1823. current_position[E_AXIS]+=-correctede;
  1824. feedrate=retract_feedrate;
  1825. retracted=true;
  1826. }
  1827. }
  1828. else
  1829. if(echange>MIN_RETRACT) //retract_recover
  1830. {
  1831. if(retracted)
  1832. {
  1833. //current_position[Z_AXIS]+=-retract_zlift;
  1834. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  1835. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  1836. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  1837. feedrate=retract_recover_feedrate;
  1838. retracted=false;
  1839. }
  1840. }
  1841. }
  1842. #endif //FWRETRACT
  1843. }
  1844. void get_arc_coordinates()
  1845. {
  1846. #ifdef SF_ARC_FIX
  1847. bool relative_mode_backup = relative_mode;
  1848. relative_mode = true;
  1849. #endif
  1850. get_coordinates();
  1851. #ifdef SF_ARC_FIX
  1852. relative_mode=relative_mode_backup;
  1853. #endif
  1854. if(code_seen('I')) {
  1855. offset[0] = code_value();
  1856. }
  1857. else {
  1858. offset[0] = 0.0;
  1859. }
  1860. if(code_seen('J')) {
  1861. offset[1] = code_value();
  1862. }
  1863. else {
  1864. offset[1] = 0.0;
  1865. }
  1866. }
  1867. void clamp_to_software_endstops(float target[3])
  1868. {
  1869. if (min_software_endstops) {
  1870. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  1871. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  1872. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  1873. }
  1874. if (max_software_endstops) {
  1875. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  1876. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  1877. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  1878. }
  1879. }
  1880. void prepare_move()
  1881. {
  1882. clamp_to_software_endstops(destination);
  1883. previous_millis_cmd = millis();
  1884. // Do not use feedmultiply for E or Z only moves
  1885. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  1886. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1887. }
  1888. else {
  1889. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  1890. }
  1891. for(int8_t i=0; i < NUM_AXIS; i++) {
  1892. current_position[i] = destination[i];
  1893. }
  1894. }
  1895. void prepare_arc_move(char isclockwise) {
  1896. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  1897. // Trace the arc
  1898. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  1899. // As far as the parser is concerned, the position is now == target. In reality the
  1900. // motion control system might still be processing the action and the real tool position
  1901. // in any intermediate location.
  1902. for(int8_t i=0; i < NUM_AXIS; i++) {
  1903. current_position[i] = destination[i];
  1904. }
  1905. previous_millis_cmd = millis();
  1906. }
  1907. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  1908. #if defined(FAN_PIN)
  1909. #if CONTROLLERFAN_PIN == FAN_PIN
  1910. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  1911. #endif
  1912. #endif
  1913. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  1914. unsigned long lastMotorCheck = 0;
  1915. void controllerFan()
  1916. {
  1917. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  1918. {
  1919. lastMotorCheck = millis();
  1920. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN)
  1921. #if EXTRUDERS > 2
  1922. || !READ(E2_ENABLE_PIN)
  1923. #endif
  1924. #if EXTRUDER > 1
  1925. || !READ(E1_ENABLE_PIN)
  1926. #endif
  1927. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  1928. {
  1929. lastMotor = millis(); //... set time to NOW so the fan will turn on
  1930. }
  1931. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  1932. {
  1933. digitalWrite(CONTROLLERFAN_PIN, 0);
  1934. analogWrite(CONTROLLERFAN_PIN, 0);
  1935. }
  1936. else
  1937. {
  1938. // allows digital or PWM fan output to be used (see M42 handling)
  1939. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  1940. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  1941. }
  1942. }
  1943. }
  1944. #endif
  1945. void manage_inactivity()
  1946. {
  1947. if( (millis() - previous_millis_cmd) > max_inactive_time )
  1948. if(max_inactive_time)
  1949. kill();
  1950. if(stepper_inactive_time) {
  1951. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  1952. {
  1953. if(blocks_queued() == false) {
  1954. disable_x();
  1955. disable_y();
  1956. disable_z();
  1957. disable_e0();
  1958. disable_e1();
  1959. disable_e2();
  1960. }
  1961. }
  1962. }
  1963. #if defined(KILL_PIN) && KILL_PIN > -1
  1964. if( 0 == READ(KILL_PIN) )
  1965. kill();
  1966. #endif
  1967. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  1968. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  1969. #endif
  1970. #ifdef EXTRUDER_RUNOUT_PREVENT
  1971. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  1972. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  1973. {
  1974. bool oldstatus=READ(E0_ENABLE_PIN);
  1975. enable_e0();
  1976. float oldepos=current_position[E_AXIS];
  1977. float oldedes=destination[E_AXIS];
  1978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  1979. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  1980. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  1981. current_position[E_AXIS]=oldepos;
  1982. destination[E_AXIS]=oldedes;
  1983. plan_set_e_position(oldepos);
  1984. previous_millis_cmd=millis();
  1985. st_synchronize();
  1986. WRITE(E0_ENABLE_PIN,oldstatus);
  1987. }
  1988. #endif
  1989. check_axes_activity();
  1990. }
  1991. void kill()
  1992. {
  1993. cli(); // Stop interrupts
  1994. disable_heater();
  1995. disable_x();
  1996. disable_y();
  1997. disable_z();
  1998. disable_e0();
  1999. disable_e1();
  2000. disable_e2();
  2001. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2002. pinMode(PS_ON_PIN,INPUT);
  2003. #endif
  2004. SERIAL_ERROR_START;
  2005. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  2006. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  2007. suicide();
  2008. while(1) { /* Intentionally left empty */ } // Wait for reset
  2009. }
  2010. void Stop()
  2011. {
  2012. disable_heater();
  2013. if(Stopped == false) {
  2014. Stopped = true;
  2015. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  2016. SERIAL_ERROR_START;
  2017. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  2018. LCD_MESSAGEPGM(MSG_STOPPED);
  2019. }
  2020. }
  2021. bool IsStopped() { return Stopped; };
  2022. #ifdef FAST_PWM_FAN
  2023. void setPwmFrequency(uint8_t pin, int val)
  2024. {
  2025. val &= 0x07;
  2026. switch(digitalPinToTimer(pin))
  2027. {
  2028. #if defined(TCCR0A)
  2029. case TIMER0A:
  2030. case TIMER0B:
  2031. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  2032. // TCCR0B |= val;
  2033. break;
  2034. #endif
  2035. #if defined(TCCR1A)
  2036. case TIMER1A:
  2037. case TIMER1B:
  2038. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2039. // TCCR1B |= val;
  2040. break;
  2041. #endif
  2042. #if defined(TCCR2)
  2043. case TIMER2:
  2044. case TIMER2:
  2045. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2046. TCCR2 |= val;
  2047. break;
  2048. #endif
  2049. #if defined(TCCR2A)
  2050. case TIMER2A:
  2051. case TIMER2B:
  2052. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  2053. TCCR2B |= val;
  2054. break;
  2055. #endif
  2056. #if defined(TCCR3A)
  2057. case TIMER3A:
  2058. case TIMER3B:
  2059. case TIMER3C:
  2060. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  2061. TCCR3B |= val;
  2062. break;
  2063. #endif
  2064. #if defined(TCCR4A)
  2065. case TIMER4A:
  2066. case TIMER4B:
  2067. case TIMER4C:
  2068. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  2069. TCCR4B |= val;
  2070. break;
  2071. #endif
  2072. #if defined(TCCR5A)
  2073. case TIMER5A:
  2074. case TIMER5B:
  2075. case TIMER5C:
  2076. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  2077. TCCR5B |= val;
  2078. break;
  2079. #endif
  2080. }
  2081. }
  2082. #endif //FAST_PWM_FAN
  2083. bool setTargetedHotend(int code){
  2084. tmp_extruder = active_extruder;
  2085. if(code_seen('T')) {
  2086. tmp_extruder = code_value();
  2087. if(tmp_extruder >= EXTRUDERS) {
  2088. SERIAL_ECHO_START;
  2089. switch(code){
  2090. case 104:
  2091. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  2092. break;
  2093. case 105:
  2094. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  2095. break;
  2096. case 109:
  2097. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  2098. break;
  2099. case 218:
  2100. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  2101. break;
  2102. }
  2103. SERIAL_ECHOLN(tmp_extruder);
  2104. return true;
  2105. }
  2106. }
  2107. return false;
  2108. }