My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 391KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G33 - Delta '1-4-7-point' auto calibration : "G33 V<verbose> P<points> <A> <O> <T>" (Requires DELTA)
  63. * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
  64. * G90 - Use Absolute Coordinates
  65. * G91 - Use Relative Coordinates
  66. * G92 - Set current position to coordinates given
  67. *
  68. * "M" Codes
  69. *
  70. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. * M1 - Same as M0
  72. * M17 - Enable/Power all stepper motors
  73. * M18 - Disable all stepper motors; same as M84
  74. * M20 - List SD card. (Requires SDSUPPORT)
  75. * M21 - Init SD card. (Requires SDSUPPORT)
  76. * M22 - Release SD card. (Requires SDSUPPORT)
  77. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  78. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  79. * M25 - Pause SD print. (Requires SDSUPPORT)
  80. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  81. * M27 - Report SD print status. (Requires SDSUPPORT)
  82. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  83. * M29 - Stop SD write. (Requires SDSUPPORT)
  84. * M30 - Delete file from SD: "M30 /path/file.gco"
  85. * M31 - Report time since last M109 or SD card start to serial.
  86. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  87. * Use P to run other files as sub-programs: "M32 P !filename#"
  88. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  89. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  90. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  91. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  92. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  93. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  94. * M75 - Start the print job timer.
  95. * M76 - Pause the print job timer.
  96. * M77 - Stop the print job timer.
  97. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  98. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  99. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  100. * M82 - Set E codes absolute (default).
  101. * M83 - Set E codes relative while in Absolute (G90) mode.
  102. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  103. * duration after which steppers should turn off. S0 disables the timeout.
  104. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  105. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  106. * M104 - Set extruder target temp.
  107. * M105 - Report current temperatures.
  108. * M106 - Fan on.
  109. * M107 - Fan off.
  110. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  111. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  112. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  113. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  114. * M110 - Set the current line number. (Used by host printing)
  115. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  116. * M112 - Emergency stop.
  117. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  118. * M114 - Report current position.
  119. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  120. * M117 - Display a message on the controller screen. (Requires an LCD)
  121. * M119 - Report endstops status.
  122. * M120 - Enable endstops detection.
  123. * M121 - Disable endstops detection.
  124. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  125. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  126. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  127. * M128 - EtoP Open. (Requires BARICUDA)
  128. * M129 - EtoP Closed. (Requires BARICUDA)
  129. * M140 - Set bed target temp. S<temp>
  130. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  131. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  132. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  133. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  134. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  135. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  136. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  137. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  138. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  139. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  140. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  141. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  142. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  143. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  144. * M205 - Set advanced settings. Current units apply:
  145. S<print> T<travel> minimum speeds
  146. B<minimum segment time>
  147. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  148. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  149. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  150. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  151. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  152. Every normal extrude-only move will be classified as retract depending on the direction.
  153. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  154. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  155. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  156. * M221 - Set Flow Percentage: "M221 S<percent>"
  157. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  158. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  159. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  160. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  162. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  163. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  164. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  165. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  166. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  167. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  168. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  169. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  170. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  171. * M400 - Finish all moves.
  172. * M401 - Lower Z probe. (Requires a probe)
  173. * M402 - Raise Z probe. (Requires a probe)
  174. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  176. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  178. * M410 - Quickstop. Abort all planned moves.
  179. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  180. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  181. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  182. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  183. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  184. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  185. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  186. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  187. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  188. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  189. * M666 - Set delta endstop adjustment. (Requires DELTA)
  190. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  191. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  192. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  193. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  194. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  195. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  196. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  197. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  198. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  199. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  200. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  201. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  202. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  203. *
  204. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  205. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  206. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  207. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  208. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  209. *
  210. * ************ Custom codes - This can change to suit future G-code regulations
  211. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  212. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  213. * M999 - Restart after being stopped by error
  214. *
  215. * "T" Codes
  216. *
  217. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  218. *
  219. */
  220. #include "Marlin.h"
  221. #include "ultralcd.h"
  222. #include "planner.h"
  223. #include "stepper.h"
  224. #include "endstops.h"
  225. #include "temperature.h"
  226. #include "cardreader.h"
  227. #include "configuration_store.h"
  228. #include "language.h"
  229. #include "pins_arduino.h"
  230. #include "math.h"
  231. #include "nozzle.h"
  232. #include "duration_t.h"
  233. #include "types.h"
  234. #if HAS_ABL
  235. #include "vector_3.h"
  236. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  237. #include "qr_solve.h"
  238. #endif
  239. #elif ENABLED(MESH_BED_LEVELING)
  240. #include "mesh_bed_leveling.h"
  241. #endif
  242. #if ENABLED(BEZIER_CURVE_SUPPORT)
  243. #include "planner_bezier.h"
  244. #endif
  245. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  246. #include "buzzer.h"
  247. #endif
  248. #if ENABLED(USE_WATCHDOG)
  249. #include "watchdog.h"
  250. #endif
  251. #if ENABLED(BLINKM)
  252. #include "blinkm.h"
  253. #include "Wire.h"
  254. #endif
  255. #if HAS_SERVOS
  256. #include "servo.h"
  257. #endif
  258. #if HAS_DIGIPOTSS
  259. #include <SPI.h>
  260. #endif
  261. #if ENABLED(DAC_STEPPER_CURRENT)
  262. #include "stepper_dac.h"
  263. #endif
  264. #if ENABLED(EXPERIMENTAL_I2CBUS)
  265. #include "twibus.h"
  266. #endif
  267. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  268. #include "endstop_interrupts.h"
  269. #endif
  270. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  271. void gcode_M100();
  272. void M100_dump_routine(const char * const title, const char *start, const char *end);
  273. #endif
  274. #if ENABLED(SDSUPPORT)
  275. CardReader card;
  276. #endif
  277. #if ENABLED(EXPERIMENTAL_I2CBUS)
  278. TWIBus i2c;
  279. #endif
  280. #if ENABLED(G38_PROBE_TARGET)
  281. bool G38_move = false,
  282. G38_endstop_hit = false;
  283. #endif
  284. #if ENABLED(AUTO_BED_LEVELING_UBL)
  285. #include "ubl.h"
  286. unified_bed_leveling ubl;
  287. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  288. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  289. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  290. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  291. || isnan(ubl.z_values[0][0]))
  292. #endif
  293. bool Running = true;
  294. uint8_t marlin_debug_flags = DEBUG_NONE;
  295. /**
  296. * Cartesian Current Position
  297. * Used to track the logical position as moves are queued.
  298. * Used by 'line_to_current_position' to do a move after changing it.
  299. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  300. */
  301. float current_position[XYZE] = { 0.0 };
  302. /**
  303. * Cartesian Destination
  304. * A temporary position, usually applied to 'current_position'.
  305. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  306. * 'line_to_destination' sets 'current_position' to 'destination'.
  307. */
  308. float destination[XYZE] = { 0.0 };
  309. /**
  310. * axis_homed
  311. * Flags that each linear axis was homed.
  312. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  313. *
  314. * axis_known_position
  315. * Flags that the position is known in each linear axis. Set when homed.
  316. * Cleared whenever a stepper powers off, potentially losing its position.
  317. */
  318. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  319. /**
  320. * GCode line number handling. Hosts may opt to include line numbers when
  321. * sending commands to Marlin, and lines will be checked for sequentiality.
  322. * M110 N<int> sets the current line number.
  323. */
  324. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  325. /**
  326. * GCode Command Queue
  327. * A simple ring buffer of BUFSIZE command strings.
  328. *
  329. * Commands are copied into this buffer by the command injectors
  330. * (immediate, serial, sd card) and they are processed sequentially by
  331. * the main loop. The process_next_command function parses the next
  332. * command and hands off execution to individual handler functions.
  333. */
  334. uint8_t commands_in_queue = 0; // Count of commands in the queue
  335. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  336. cmd_queue_index_w = 0; // Ring buffer write position
  337. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  338. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  339. #else // This can be collapsed back to the way it was soon.
  340. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  341. #endif
  342. /**
  343. * Current GCode Command
  344. * When a GCode handler is running, these will be set
  345. */
  346. static char *current_command, // The command currently being executed
  347. *current_command_args, // The address where arguments begin
  348. *seen_pointer; // Set by code_seen(), used by the code_value functions
  349. /**
  350. * Next Injected Command pointer. NULL if no commands are being injected.
  351. * Used by Marlin internally to ensure that commands initiated from within
  352. * are enqueued ahead of any pending serial or sd card commands.
  353. */
  354. static const char *injected_commands_P = NULL;
  355. #if ENABLED(INCH_MODE_SUPPORT)
  356. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  357. #endif
  358. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  359. TempUnit input_temp_units = TEMPUNIT_C;
  360. #endif
  361. /**
  362. * Feed rates are often configured with mm/m
  363. * but the planner and stepper like mm/s units.
  364. */
  365. float constexpr homing_feedrate_mm_s[] = {
  366. #if ENABLED(DELTA)
  367. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  368. #else
  369. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  370. #endif
  371. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  372. };
  373. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  374. int feedrate_percentage = 100, saved_feedrate_percentage,
  375. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  376. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  377. volumetric_enabled =
  378. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  379. true
  380. #else
  381. false
  382. #endif
  383. ;
  384. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  385. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  386. #if HAS_WORKSPACE_OFFSET
  387. #if HAS_POSITION_SHIFT
  388. // The distance that XYZ has been offset by G92. Reset by G28.
  389. float position_shift[XYZ] = { 0 };
  390. #endif
  391. #if HAS_HOME_OFFSET
  392. // This offset is added to the configured home position.
  393. // Set by M206, M428, or menu item. Saved to EEPROM.
  394. float home_offset[XYZ] = { 0 };
  395. #endif
  396. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  397. // The above two are combined to save on computes
  398. float workspace_offset[XYZ] = { 0 };
  399. #endif
  400. #endif
  401. // Software Endstops are based on the configured limits.
  402. #if HAS_SOFTWARE_ENDSTOPS
  403. bool soft_endstops_enabled = true;
  404. #endif
  405. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  406. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  407. #if FAN_COUNT > 0
  408. int fanSpeeds[FAN_COUNT] = { 0 };
  409. #endif
  410. // The active extruder (tool). Set with T<extruder> command.
  411. uint8_t active_extruder = 0;
  412. // Relative Mode. Enable with G91, disable with G90.
  413. static bool relative_mode = false;
  414. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  415. volatile bool wait_for_heatup = true;
  416. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  417. #if HAS_RESUME_CONTINUE
  418. volatile bool wait_for_user = false;
  419. #endif
  420. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  421. // Number of characters read in the current line of serial input
  422. static int serial_count = 0;
  423. // Inactivity shutdown
  424. millis_t previous_cmd_ms = 0;
  425. static millis_t max_inactive_time = 0;
  426. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  427. // Print Job Timer
  428. #if ENABLED(PRINTCOUNTER)
  429. PrintCounter print_job_timer = PrintCounter();
  430. #else
  431. Stopwatch print_job_timer = Stopwatch();
  432. #endif
  433. // Buzzer - I2C on the LCD or a BEEPER_PIN
  434. #if ENABLED(LCD_USE_I2C_BUZZER)
  435. #define BUZZ(d,f) lcd_buzz(d, f)
  436. #elif PIN_EXISTS(BEEPER)
  437. Buzzer buzzer;
  438. #define BUZZ(d,f) buzzer.tone(d, f)
  439. #else
  440. #define BUZZ(d,f) NOOP
  441. #endif
  442. static uint8_t target_extruder;
  443. #if HAS_BED_PROBE
  444. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  445. #endif
  446. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  447. #if HAS_ABL
  448. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  449. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  450. #elif defined(XY_PROBE_SPEED)
  451. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  452. #else
  453. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  454. #endif
  455. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  456. #if ENABLED(DELTA)
  457. #define ADJUST_DELTA(V) \
  458. if (planner.abl_enabled) { \
  459. const float zadj = bilinear_z_offset(V); \
  460. delta[A_AXIS] += zadj; \
  461. delta[B_AXIS] += zadj; \
  462. delta[C_AXIS] += zadj; \
  463. }
  464. #else
  465. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  466. #endif
  467. #elif IS_KINEMATIC
  468. #define ADJUST_DELTA(V) NOOP
  469. #endif
  470. #if ENABLED(Z_DUAL_ENDSTOPS)
  471. float z_endstop_adj =
  472. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  473. Z_DUAL_ENDSTOPS_ADJUSTMENT
  474. #else
  475. 0
  476. #endif
  477. ;
  478. #endif
  479. // Extruder offsets
  480. #if HOTENDS > 1
  481. float hotend_offset[XYZ][HOTENDS];
  482. #endif
  483. #if HAS_Z_SERVO_ENDSTOP
  484. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  485. #endif
  486. #if ENABLED(BARICUDA)
  487. int baricuda_valve_pressure = 0;
  488. int baricuda_e_to_p_pressure = 0;
  489. #endif
  490. #if ENABLED(FWRETRACT)
  491. bool autoretract_enabled = false;
  492. bool retracted[EXTRUDERS] = { false };
  493. bool retracted_swap[EXTRUDERS] = { false };
  494. float retract_length = RETRACT_LENGTH;
  495. float retract_length_swap = RETRACT_LENGTH_SWAP;
  496. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  497. float retract_zlift = RETRACT_ZLIFT;
  498. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  499. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  500. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  501. #endif // FWRETRACT
  502. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  503. bool powersupply =
  504. #if ENABLED(PS_DEFAULT_OFF)
  505. false
  506. #else
  507. true
  508. #endif
  509. ;
  510. #endif
  511. #if HAS_CASE_LIGHT
  512. bool case_light_on =
  513. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  514. true
  515. #else
  516. false
  517. #endif
  518. ;
  519. #endif
  520. #if ENABLED(DELTA)
  521. float delta[ABC],
  522. endstop_adj[ABC] = { 0 };
  523. // These values are loaded or reset at boot time when setup() calls
  524. // settings.load(), which calls recalc_delta_settings().
  525. float delta_radius,
  526. delta_tower_angle_trim[2],
  527. delta_tower[ABC][2],
  528. delta_diagonal_rod,
  529. delta_calibration_radius,
  530. delta_diagonal_rod_2_tower[ABC],
  531. delta_segments_per_second,
  532. delta_clip_start_height = Z_MAX_POS;
  533. float delta_safe_distance_from_top();
  534. #endif
  535. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  536. int bilinear_grid_spacing[2], bilinear_start[2];
  537. float bilinear_grid_factor[2],
  538. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  539. #endif
  540. #if IS_SCARA
  541. // Float constants for SCARA calculations
  542. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  543. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  544. L2_2 = sq(float(L2));
  545. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  546. delta[ABC];
  547. #endif
  548. float cartes[XYZ] = { 0 };
  549. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  550. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  551. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  552. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  553. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  554. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  555. int meas_delay_cm = MEASUREMENT_DELAY_CM; // Distance delay setting
  556. #endif
  557. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  558. static bool filament_ran_out = false;
  559. #endif
  560. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  561. FilamentChangeMenuResponse filament_change_menu_response;
  562. #endif
  563. #if ENABLED(MIXING_EXTRUDER)
  564. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  565. #if MIXING_VIRTUAL_TOOLS > 1
  566. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  567. #endif
  568. #endif
  569. static bool send_ok[BUFSIZE];
  570. #if HAS_SERVOS
  571. Servo servo[NUM_SERVOS];
  572. #define MOVE_SERVO(I, P) servo[I].move(P)
  573. #if HAS_Z_SERVO_ENDSTOP
  574. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  575. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  576. #endif
  577. #endif
  578. #ifdef CHDK
  579. millis_t chdkHigh = 0;
  580. bool chdkActive = false;
  581. #endif
  582. #ifdef AUTOMATIC_CURRENT_CONTROL
  583. bool auto_current_control = 0;
  584. #endif
  585. #if ENABLED(PID_EXTRUSION_SCALING)
  586. int lpq_len = 20;
  587. #endif
  588. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  589. MarlinBusyState busy_state = NOT_BUSY;
  590. static millis_t next_busy_signal_ms = 0;
  591. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  592. #else
  593. #define host_keepalive() NOOP
  594. #endif
  595. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  596. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  597. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  598. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  599. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  600. typedef void __void_##CONFIG##__
  601. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  602. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  603. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  604. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  605. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  606. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  607. /**
  608. * ***************************************************************************
  609. * ******************************** FUNCTIONS ********************************
  610. * ***************************************************************************
  611. */
  612. void stop();
  613. void get_available_commands();
  614. void process_next_command();
  615. void prepare_move_to_destination();
  616. void get_cartesian_from_steppers();
  617. void set_current_from_steppers_for_axis(const AxisEnum axis);
  618. #if ENABLED(ARC_SUPPORT)
  619. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  620. #endif
  621. #if ENABLED(BEZIER_CURVE_SUPPORT)
  622. void plan_cubic_move(const float offset[4]);
  623. #endif
  624. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  625. static void report_current_position();
  626. #if ENABLED(DEBUG_LEVELING_FEATURE)
  627. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  628. serialprintPGM(prefix);
  629. SERIAL_CHAR('(');
  630. SERIAL_ECHO(x);
  631. SERIAL_ECHOPAIR(", ", y);
  632. SERIAL_ECHOPAIR(", ", z);
  633. SERIAL_CHAR(')');
  634. suffix ? serialprintPGM(suffix) : SERIAL_EOL;
  635. }
  636. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  637. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  638. }
  639. #if HAS_ABL
  640. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  641. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  642. }
  643. #endif
  644. #define DEBUG_POS(SUFFIX,VAR) do { \
  645. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  646. #endif
  647. /**
  648. * sync_plan_position
  649. *
  650. * Set the planner/stepper positions directly from current_position with
  651. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  652. */
  653. inline void sync_plan_position() {
  654. #if ENABLED(DEBUG_LEVELING_FEATURE)
  655. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  656. #endif
  657. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  658. }
  659. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  660. #if IS_KINEMATIC
  661. inline void sync_plan_position_kinematic() {
  662. #if ENABLED(DEBUG_LEVELING_FEATURE)
  663. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  664. #endif
  665. planner.set_position_mm_kinematic(current_position);
  666. }
  667. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  668. #else
  669. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  670. #endif
  671. #if ENABLED(SDSUPPORT)
  672. #include "SdFatUtil.h"
  673. int freeMemory() { return SdFatUtil::FreeRam(); }
  674. #else
  675. extern "C" {
  676. extern char __bss_end;
  677. extern char __heap_start;
  678. extern void* __brkval;
  679. int freeMemory() {
  680. int free_memory;
  681. if ((int)__brkval == 0)
  682. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  683. else
  684. free_memory = ((int)&free_memory) - ((int)__brkval);
  685. return free_memory;
  686. }
  687. }
  688. #endif //!SDSUPPORT
  689. #if ENABLED(DIGIPOT_I2C)
  690. extern void digipot_i2c_set_current(int channel, float current);
  691. extern void digipot_i2c_init();
  692. #endif
  693. /**
  694. * Inject the next "immediate" command, when possible, onto the front of the queue.
  695. * Return true if any immediate commands remain to inject.
  696. */
  697. static bool drain_injected_commands_P() {
  698. if (injected_commands_P != NULL) {
  699. size_t i = 0;
  700. char c, cmd[30];
  701. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  702. cmd[sizeof(cmd) - 1] = '\0';
  703. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  704. cmd[i] = '\0';
  705. if (enqueue_and_echo_command(cmd)) // success?
  706. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  707. }
  708. return (injected_commands_P != NULL); // return whether any more remain
  709. }
  710. /**
  711. * Record one or many commands to run from program memory.
  712. * Aborts the current queue, if any.
  713. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  714. */
  715. void enqueue_and_echo_commands_P(const char* pgcode) {
  716. injected_commands_P = pgcode;
  717. drain_injected_commands_P(); // first command executed asap (when possible)
  718. }
  719. /**
  720. * Clear the Marlin command queue
  721. */
  722. void clear_command_queue() {
  723. cmd_queue_index_r = cmd_queue_index_w;
  724. commands_in_queue = 0;
  725. }
  726. /**
  727. * Once a new command is in the ring buffer, call this to commit it
  728. */
  729. inline void _commit_command(bool say_ok) {
  730. send_ok[cmd_queue_index_w] = say_ok;
  731. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  732. commands_in_queue++;
  733. }
  734. /**
  735. * Copy a command from RAM into the main command buffer.
  736. * Return true if the command was successfully added.
  737. * Return false for a full buffer, or if the 'command' is a comment.
  738. */
  739. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  740. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  741. strcpy(command_queue[cmd_queue_index_w], cmd);
  742. _commit_command(say_ok);
  743. return true;
  744. }
  745. /**
  746. * Enqueue with Serial Echo
  747. */
  748. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  749. if (_enqueuecommand(cmd, say_ok)) {
  750. SERIAL_ECHO_START;
  751. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  752. SERIAL_CHAR('"');
  753. SERIAL_EOL;
  754. return true;
  755. }
  756. return false;
  757. }
  758. void setup_killpin() {
  759. #if HAS_KILL
  760. SET_INPUT_PULLUP(KILL_PIN);
  761. #endif
  762. }
  763. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  764. void setup_filrunoutpin() {
  765. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  766. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  767. #else
  768. SET_INPUT(FIL_RUNOUT_PIN);
  769. #endif
  770. }
  771. #endif
  772. void setup_homepin(void) {
  773. #if HAS_HOME
  774. SET_INPUT_PULLUP(HOME_PIN);
  775. #endif
  776. }
  777. void setup_powerhold() {
  778. #if HAS_SUICIDE
  779. OUT_WRITE(SUICIDE_PIN, HIGH);
  780. #endif
  781. #if HAS_POWER_SWITCH
  782. #if ENABLED(PS_DEFAULT_OFF)
  783. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  784. #else
  785. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  786. #endif
  787. #endif
  788. }
  789. void suicide() {
  790. #if HAS_SUICIDE
  791. OUT_WRITE(SUICIDE_PIN, LOW);
  792. #endif
  793. }
  794. void servo_init() {
  795. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  796. servo[0].attach(SERVO0_PIN);
  797. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  798. #endif
  799. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  800. servo[1].attach(SERVO1_PIN);
  801. servo[1].detach();
  802. #endif
  803. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  804. servo[2].attach(SERVO2_PIN);
  805. servo[2].detach();
  806. #endif
  807. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  808. servo[3].attach(SERVO3_PIN);
  809. servo[3].detach();
  810. #endif
  811. #if HAS_Z_SERVO_ENDSTOP
  812. /**
  813. * Set position of Z Servo Endstop
  814. *
  815. * The servo might be deployed and positioned too low to stow
  816. * when starting up the machine or rebooting the board.
  817. * There's no way to know where the nozzle is positioned until
  818. * homing has been done - no homing with z-probe without init!
  819. *
  820. */
  821. STOW_Z_SERVO();
  822. #endif
  823. }
  824. /**
  825. * Stepper Reset (RigidBoard, et.al.)
  826. */
  827. #if HAS_STEPPER_RESET
  828. void disableStepperDrivers() {
  829. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  830. }
  831. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  832. #endif
  833. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  834. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  835. i2c.receive(bytes);
  836. }
  837. void i2c_on_request() { // just send dummy data for now
  838. i2c.reply("Hello World!\n");
  839. }
  840. #endif
  841. #if HAS_COLOR_LEDS
  842. void set_led_color(
  843. const uint8_t r, const uint8_t g, const uint8_t b
  844. #if ENABLED(RGBW_LED)
  845. , const uint8_t w=0
  846. #endif
  847. ) {
  848. #if ENABLED(BLINKM)
  849. // This variant uses i2c to send the RGB components to the device.
  850. SendColors(r, g, b);
  851. #else
  852. // This variant uses 3 separate pins for the RGB components.
  853. // If the pins can do PWM then their intensity will be set.
  854. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  855. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  856. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  857. analogWrite(RGB_LED_R_PIN, r);
  858. analogWrite(RGB_LED_G_PIN, g);
  859. analogWrite(RGB_LED_B_PIN, b);
  860. #if ENABLED(RGBW_LED)
  861. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  862. analogWrite(RGB_LED_W_PIN, w);
  863. #endif
  864. #endif
  865. }
  866. #endif // HAS_COLOR_LEDS
  867. void gcode_line_error(const char* err, bool doFlush = true) {
  868. SERIAL_ERROR_START;
  869. serialprintPGM(err);
  870. SERIAL_ERRORLN(gcode_LastN);
  871. //Serial.println(gcode_N);
  872. if (doFlush) FlushSerialRequestResend();
  873. serial_count = 0;
  874. }
  875. /**
  876. * Get all commands waiting on the serial port and queue them.
  877. * Exit when the buffer is full or when no more characters are
  878. * left on the serial port.
  879. */
  880. inline void get_serial_commands() {
  881. static char serial_line_buffer[MAX_CMD_SIZE];
  882. static bool serial_comment_mode = false;
  883. // If the command buffer is empty for too long,
  884. // send "wait" to indicate Marlin is still waiting.
  885. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  886. static millis_t last_command_time = 0;
  887. const millis_t ms = millis();
  888. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  889. SERIAL_ECHOLNPGM(MSG_WAIT);
  890. last_command_time = ms;
  891. }
  892. #endif
  893. /**
  894. * Loop while serial characters are incoming and the queue is not full
  895. */
  896. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  897. char serial_char = MYSERIAL.read();
  898. /**
  899. * If the character ends the line
  900. */
  901. if (serial_char == '\n' || serial_char == '\r') {
  902. serial_comment_mode = false; // end of line == end of comment
  903. if (!serial_count) continue; // skip empty lines
  904. serial_line_buffer[serial_count] = 0; // terminate string
  905. serial_count = 0; //reset buffer
  906. char* command = serial_line_buffer;
  907. while (*command == ' ') command++; // skip any leading spaces
  908. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  909. char* apos = strchr(command, '*');
  910. if (npos) {
  911. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  912. if (M110) {
  913. char* n2pos = strchr(command + 4, 'N');
  914. if (n2pos) npos = n2pos;
  915. }
  916. gcode_N = strtol(npos + 1, NULL, 10);
  917. if (gcode_N != gcode_LastN + 1 && !M110) {
  918. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  919. return;
  920. }
  921. if (apos) {
  922. byte checksum = 0, count = 0;
  923. while (command[count] != '*') checksum ^= command[count++];
  924. if (strtol(apos + 1, NULL, 10) != checksum) {
  925. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  926. return;
  927. }
  928. // if no errors, continue parsing
  929. }
  930. else {
  931. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  932. return;
  933. }
  934. gcode_LastN = gcode_N;
  935. // if no errors, continue parsing
  936. }
  937. else if (apos) { // No '*' without 'N'
  938. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  939. return;
  940. }
  941. // Movement commands alert when stopped
  942. if (IsStopped()) {
  943. char* gpos = strchr(command, 'G');
  944. if (gpos) {
  945. const int codenum = strtol(gpos + 1, NULL, 10);
  946. switch (codenum) {
  947. case 0:
  948. case 1:
  949. case 2:
  950. case 3:
  951. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  952. LCD_MESSAGEPGM(MSG_STOPPED);
  953. break;
  954. }
  955. }
  956. }
  957. #if DISABLED(EMERGENCY_PARSER)
  958. // If command was e-stop process now
  959. if (strcmp(command, "M108") == 0) {
  960. wait_for_heatup = false;
  961. #if ENABLED(ULTIPANEL)
  962. wait_for_user = false;
  963. #endif
  964. }
  965. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  966. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  967. #endif
  968. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  969. last_command_time = ms;
  970. #endif
  971. // Add the command to the queue
  972. _enqueuecommand(serial_line_buffer, true);
  973. }
  974. else if (serial_count >= MAX_CMD_SIZE - 1) {
  975. // Keep fetching, but ignore normal characters beyond the max length
  976. // The command will be injected when EOL is reached
  977. }
  978. else if (serial_char == '\\') { // Handle escapes
  979. if (MYSERIAL.available() > 0) {
  980. // if we have one more character, copy it over
  981. serial_char = MYSERIAL.read();
  982. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  983. }
  984. // otherwise do nothing
  985. }
  986. else { // it's not a newline, carriage return or escape char
  987. if (serial_char == ';') serial_comment_mode = true;
  988. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  989. }
  990. } // queue has space, serial has data
  991. }
  992. #if ENABLED(SDSUPPORT)
  993. /**
  994. * Get commands from the SD Card until the command buffer is full
  995. * or until the end of the file is reached. The special character '#'
  996. * can also interrupt buffering.
  997. */
  998. inline void get_sdcard_commands() {
  999. static bool stop_buffering = false,
  1000. sd_comment_mode = false;
  1001. if (!card.sdprinting) return;
  1002. /**
  1003. * '#' stops reading from SD to the buffer prematurely, so procedural
  1004. * macro calls are possible. If it occurs, stop_buffering is triggered
  1005. * and the buffer is run dry; this character _can_ occur in serial com
  1006. * due to checksums, however, no checksums are used in SD printing.
  1007. */
  1008. if (commands_in_queue == 0) stop_buffering = false;
  1009. uint16_t sd_count = 0;
  1010. bool card_eof = card.eof();
  1011. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1012. const int16_t n = card.get();
  1013. char sd_char = (char)n;
  1014. card_eof = card.eof();
  1015. if (card_eof || n == -1
  1016. || sd_char == '\n' || sd_char == '\r'
  1017. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1018. ) {
  1019. if (card_eof) {
  1020. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1021. card.printingHasFinished();
  1022. #if ENABLED(PRINTER_EVENT_LEDS)
  1023. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1024. set_led_color(0, 255, 0); // Green
  1025. #if HAS_RESUME_CONTINUE
  1026. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1027. wait_for_user = true;
  1028. while (wait_for_user) idle();
  1029. KEEPALIVE_STATE(IN_HANDLER);
  1030. #else
  1031. safe_delay(1000);
  1032. #endif
  1033. set_led_color(0, 0, 0); // OFF
  1034. #endif
  1035. card.checkautostart(true);
  1036. }
  1037. else if (n == -1) {
  1038. SERIAL_ERROR_START;
  1039. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1040. }
  1041. if (sd_char == '#') stop_buffering = true;
  1042. sd_comment_mode = false; // for new command
  1043. if (!sd_count) continue; // skip empty lines (and comment lines)
  1044. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1045. sd_count = 0; // clear sd line buffer
  1046. _commit_command(false);
  1047. }
  1048. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1049. /**
  1050. * Keep fetching, but ignore normal characters beyond the max length
  1051. * The command will be injected when EOL is reached
  1052. */
  1053. }
  1054. else {
  1055. if (sd_char == ';') sd_comment_mode = true;
  1056. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1057. }
  1058. }
  1059. }
  1060. #endif // SDSUPPORT
  1061. /**
  1062. * Add to the circular command queue the next command from:
  1063. * - The command-injection queue (injected_commands_P)
  1064. * - The active serial input (usually USB)
  1065. * - The SD card file being actively printed
  1066. */
  1067. void get_available_commands() {
  1068. // if any immediate commands remain, don't get other commands yet
  1069. if (drain_injected_commands_P()) return;
  1070. get_serial_commands();
  1071. #if ENABLED(SDSUPPORT)
  1072. get_sdcard_commands();
  1073. #endif
  1074. }
  1075. inline bool code_has_value() {
  1076. int i = 1;
  1077. char c = seen_pointer[i];
  1078. while (c == ' ') c = seen_pointer[++i];
  1079. if (c == '-' || c == '+') c = seen_pointer[++i];
  1080. if (c == '.') c = seen_pointer[++i];
  1081. return NUMERIC(c);
  1082. }
  1083. inline float code_value_float() {
  1084. char* e = strchr(seen_pointer, 'E');
  1085. if (!e) return strtod(seen_pointer + 1, NULL);
  1086. *e = 0;
  1087. float ret = strtod(seen_pointer + 1, NULL);
  1088. *e = 'E';
  1089. return ret;
  1090. }
  1091. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1092. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1093. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1094. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1095. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1096. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1097. #if ENABLED(INCH_MODE_SUPPORT)
  1098. inline void set_input_linear_units(LinearUnit units) {
  1099. switch (units) {
  1100. case LINEARUNIT_INCH:
  1101. linear_unit_factor = 25.4;
  1102. break;
  1103. case LINEARUNIT_MM:
  1104. default:
  1105. linear_unit_factor = 1.0;
  1106. break;
  1107. }
  1108. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1109. }
  1110. inline float axis_unit_factor(const AxisEnum axis) {
  1111. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1112. }
  1113. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1114. inline float code_value_axis_units(const AxisEnum axis) { return code_value_float() * axis_unit_factor(axis); }
  1115. inline float code_value_per_axis_unit(const AxisEnum axis) { return code_value_float() / axis_unit_factor(axis); }
  1116. #else
  1117. #define code_value_linear_units() code_value_float()
  1118. #define code_value_axis_units(A) code_value_float()
  1119. #define code_value_per_axis_unit(A) code_value_float()
  1120. #endif
  1121. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1122. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1123. float code_value_temp_abs() {
  1124. switch (input_temp_units) {
  1125. case TEMPUNIT_C:
  1126. return code_value_float();
  1127. case TEMPUNIT_F:
  1128. return (code_value_float() - 32) * 0.5555555556;
  1129. case TEMPUNIT_K:
  1130. return code_value_float() - 273.15;
  1131. default:
  1132. return code_value_float();
  1133. }
  1134. }
  1135. float code_value_temp_diff() {
  1136. switch (input_temp_units) {
  1137. case TEMPUNIT_C:
  1138. case TEMPUNIT_K:
  1139. return code_value_float();
  1140. case TEMPUNIT_F:
  1141. return code_value_float() * 0.5555555556;
  1142. default:
  1143. return code_value_float();
  1144. }
  1145. }
  1146. #else
  1147. float code_value_temp_abs() { return code_value_float(); }
  1148. float code_value_temp_diff() { return code_value_float(); }
  1149. #endif
  1150. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1151. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1152. bool code_seen(char code) {
  1153. seen_pointer = strchr(current_command_args, code);
  1154. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1155. }
  1156. /**
  1157. * Set target_extruder from the T parameter or the active_extruder
  1158. *
  1159. * Returns TRUE if the target is invalid
  1160. */
  1161. bool get_target_extruder_from_command(int code) {
  1162. if (code_seen('T')) {
  1163. if (code_value_byte() >= EXTRUDERS) {
  1164. SERIAL_ECHO_START;
  1165. SERIAL_CHAR('M');
  1166. SERIAL_ECHO(code);
  1167. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1168. return true;
  1169. }
  1170. target_extruder = code_value_byte();
  1171. }
  1172. else
  1173. target_extruder = active_extruder;
  1174. return false;
  1175. }
  1176. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1177. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1178. #endif
  1179. #if ENABLED(DUAL_X_CARRIAGE)
  1180. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1181. static float x_home_pos(const int extruder) {
  1182. if (extruder == 0)
  1183. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1184. else
  1185. /**
  1186. * In dual carriage mode the extruder offset provides an override of the
  1187. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1188. * This allows soft recalibration of the second extruder home position
  1189. * without firmware reflash (through the M218 command).
  1190. */
  1191. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1192. }
  1193. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1194. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1195. static bool active_extruder_parked = false; // used in mode 1 & 2
  1196. static float raised_parked_position[XYZE]; // used in mode 1
  1197. static millis_t delayed_move_time = 0; // used in mode 1
  1198. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1199. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1200. #endif // DUAL_X_CARRIAGE
  1201. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1202. /**
  1203. * Software endstops can be used to monitor the open end of
  1204. * an axis that has a hardware endstop on the other end. Or
  1205. * they can prevent axes from moving past endstops and grinding.
  1206. *
  1207. * To keep doing their job as the coordinate system changes,
  1208. * the software endstop positions must be refreshed to remain
  1209. * at the same positions relative to the machine.
  1210. */
  1211. void update_software_endstops(const AxisEnum axis) {
  1212. const float offs = 0.0
  1213. #if HAS_HOME_OFFSET
  1214. + home_offset[axis]
  1215. #endif
  1216. #if HAS_POSITION_SHIFT
  1217. + position_shift[axis]
  1218. #endif
  1219. ;
  1220. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1221. workspace_offset[axis] = offs;
  1222. #endif
  1223. #if ENABLED(DUAL_X_CARRIAGE)
  1224. if (axis == X_AXIS) {
  1225. // In Dual X mode hotend_offset[X] is T1's home position
  1226. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1227. if (active_extruder != 0) {
  1228. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1229. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1230. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1231. }
  1232. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1233. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1234. // but not so far to the right that T1 would move past the end
  1235. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1236. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1237. }
  1238. else {
  1239. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1240. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1241. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1242. }
  1243. }
  1244. #else
  1245. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1246. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1247. #endif
  1248. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1249. if (DEBUGGING(LEVELING)) {
  1250. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1251. #if HAS_HOME_OFFSET
  1252. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1253. #endif
  1254. #if HAS_POSITION_SHIFT
  1255. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1256. #endif
  1257. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1258. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1259. }
  1260. #endif
  1261. #if ENABLED(DELTA)
  1262. if (axis == Z_AXIS)
  1263. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1264. #endif
  1265. }
  1266. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1267. #if HAS_M206_COMMAND
  1268. /**
  1269. * Change the home offset for an axis, update the current
  1270. * position and the software endstops to retain the same
  1271. * relative distance to the new home.
  1272. *
  1273. * Since this changes the current_position, code should
  1274. * call sync_plan_position soon after this.
  1275. */
  1276. static void set_home_offset(const AxisEnum axis, const float v) {
  1277. current_position[axis] += v - home_offset[axis];
  1278. home_offset[axis] = v;
  1279. update_software_endstops(axis);
  1280. }
  1281. #endif // HAS_M206_COMMAND
  1282. /**
  1283. * Set an axis' current position to its home position (after homing).
  1284. *
  1285. * For Core and Cartesian robots this applies one-to-one when an
  1286. * individual axis has been homed.
  1287. *
  1288. * DELTA should wait until all homing is done before setting the XYZ
  1289. * current_position to home, because homing is a single operation.
  1290. * In the case where the axis positions are already known and previously
  1291. * homed, DELTA could home to X or Y individually by moving either one
  1292. * to the center. However, homing Z always homes XY and Z.
  1293. *
  1294. * SCARA should wait until all XY homing is done before setting the XY
  1295. * current_position to home, because neither X nor Y is at home until
  1296. * both are at home. Z can however be homed individually.
  1297. *
  1298. * Callers must sync the planner position after calling this!
  1299. */
  1300. static void set_axis_is_at_home(AxisEnum axis) {
  1301. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1302. if (DEBUGGING(LEVELING)) {
  1303. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1304. SERIAL_CHAR(')');
  1305. SERIAL_EOL;
  1306. }
  1307. #endif
  1308. axis_known_position[axis] = axis_homed[axis] = true;
  1309. #if HAS_POSITION_SHIFT
  1310. position_shift[axis] = 0;
  1311. update_software_endstops(axis);
  1312. #endif
  1313. #if ENABLED(DUAL_X_CARRIAGE)
  1314. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1315. current_position[X_AXIS] = x_home_pos(active_extruder);
  1316. return;
  1317. }
  1318. #endif
  1319. #if ENABLED(MORGAN_SCARA)
  1320. /**
  1321. * Morgan SCARA homes XY at the same time
  1322. */
  1323. if (axis == X_AXIS || axis == Y_AXIS) {
  1324. float homeposition[XYZ];
  1325. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1326. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1327. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1328. /**
  1329. * Get Home position SCARA arm angles using inverse kinematics,
  1330. * and calculate homing offset using forward kinematics
  1331. */
  1332. inverse_kinematics(homeposition);
  1333. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1334. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1335. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1336. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1337. /**
  1338. * SCARA home positions are based on configuration since the actual
  1339. * limits are determined by the inverse kinematic transform.
  1340. */
  1341. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1342. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1343. }
  1344. else
  1345. #endif
  1346. {
  1347. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1348. }
  1349. /**
  1350. * Z Probe Z Homing? Account for the probe's Z offset.
  1351. */
  1352. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1353. if (axis == Z_AXIS) {
  1354. #if HOMING_Z_WITH_PROBE
  1355. current_position[Z_AXIS] -= zprobe_zoffset;
  1356. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1357. if (DEBUGGING(LEVELING)) {
  1358. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1359. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1360. }
  1361. #endif
  1362. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1363. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1364. #endif
  1365. }
  1366. #endif
  1367. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1368. if (DEBUGGING(LEVELING)) {
  1369. #if HAS_HOME_OFFSET
  1370. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1371. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1372. #endif
  1373. DEBUG_POS("", current_position);
  1374. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1375. SERIAL_CHAR(')');
  1376. SERIAL_EOL;
  1377. }
  1378. #endif
  1379. }
  1380. /**
  1381. * Some planner shorthand inline functions
  1382. */
  1383. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1384. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1385. int hbd = homing_bump_divisor[axis];
  1386. if (hbd < 1) {
  1387. hbd = 10;
  1388. SERIAL_ECHO_START;
  1389. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1390. }
  1391. return homing_feedrate_mm_s[axis] / hbd;
  1392. }
  1393. //
  1394. // line_to_current_position
  1395. // Move the planner to the current position from wherever it last moved
  1396. // (or from wherever it has been told it is located).
  1397. //
  1398. inline void line_to_current_position() {
  1399. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1400. }
  1401. //
  1402. // line_to_destination
  1403. // Move the planner, not necessarily synced with current_position
  1404. //
  1405. inline void line_to_destination(float fr_mm_s) {
  1406. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1407. }
  1408. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1409. inline void set_current_to_destination() { COPY(current_position, destination); }
  1410. inline void set_destination_to_current() { COPY(destination, current_position); }
  1411. #if IS_KINEMATIC
  1412. /**
  1413. * Calculate delta, start a line, and set current_position to destination
  1414. */
  1415. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1416. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1417. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1418. #endif
  1419. if ( current_position[X_AXIS] == destination[X_AXIS]
  1420. && current_position[Y_AXIS] == destination[Y_AXIS]
  1421. && current_position[Z_AXIS] == destination[Z_AXIS]
  1422. && current_position[E_AXIS] == destination[E_AXIS]
  1423. ) return;
  1424. refresh_cmd_timeout();
  1425. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1426. set_current_to_destination();
  1427. }
  1428. #endif // IS_KINEMATIC
  1429. /**
  1430. * Plan a move to (X, Y, Z) and set the current_position
  1431. * The final current_position may not be the one that was requested
  1432. */
  1433. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1434. const float old_feedrate_mm_s = feedrate_mm_s;
  1435. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1436. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1437. #endif
  1438. #if ENABLED(DELTA)
  1439. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1440. set_destination_to_current(); // sync destination at the start
  1441. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1442. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1443. #endif
  1444. // when in the danger zone
  1445. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1446. if (z > delta_clip_start_height) { // staying in the danger zone
  1447. destination[X_AXIS] = x; // move directly (uninterpolated)
  1448. destination[Y_AXIS] = y;
  1449. destination[Z_AXIS] = z;
  1450. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1451. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1452. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1453. #endif
  1454. return;
  1455. }
  1456. else {
  1457. destination[Z_AXIS] = delta_clip_start_height;
  1458. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1459. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1460. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1461. #endif
  1462. }
  1463. }
  1464. if (z > current_position[Z_AXIS]) { // raising?
  1465. destination[Z_AXIS] = z;
  1466. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1467. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1468. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1469. #endif
  1470. }
  1471. destination[X_AXIS] = x;
  1472. destination[Y_AXIS] = y;
  1473. prepare_move_to_destination(); // set_current_to_destination
  1474. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1475. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1476. #endif
  1477. if (z < current_position[Z_AXIS]) { // lowering?
  1478. destination[Z_AXIS] = z;
  1479. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1481. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1482. #endif
  1483. }
  1484. #elif IS_SCARA
  1485. set_destination_to_current();
  1486. // If Z needs to raise, do it before moving XY
  1487. if (destination[Z_AXIS] < z) {
  1488. destination[Z_AXIS] = z;
  1489. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1490. }
  1491. destination[X_AXIS] = x;
  1492. destination[Y_AXIS] = y;
  1493. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1494. // If Z needs to lower, do it after moving XY
  1495. if (destination[Z_AXIS] > z) {
  1496. destination[Z_AXIS] = z;
  1497. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1498. }
  1499. #else
  1500. // If Z needs to raise, do it before moving XY
  1501. if (current_position[Z_AXIS] < z) {
  1502. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1503. current_position[Z_AXIS] = z;
  1504. line_to_current_position();
  1505. }
  1506. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1507. current_position[X_AXIS] = x;
  1508. current_position[Y_AXIS] = y;
  1509. line_to_current_position();
  1510. // If Z needs to lower, do it after moving XY
  1511. if (current_position[Z_AXIS] > z) {
  1512. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1513. current_position[Z_AXIS] = z;
  1514. line_to_current_position();
  1515. }
  1516. #endif
  1517. stepper.synchronize();
  1518. feedrate_mm_s = old_feedrate_mm_s;
  1519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1520. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1521. #endif
  1522. }
  1523. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1524. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1525. }
  1526. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1527. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1528. }
  1529. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1530. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1531. }
  1532. //
  1533. // Prepare to do endstop or probe moves
  1534. // with custom feedrates.
  1535. //
  1536. // - Save current feedrates
  1537. // - Reset the rate multiplier
  1538. // - Reset the command timeout
  1539. // - Enable the endstops (for endstop moves)
  1540. //
  1541. static void setup_for_endstop_or_probe_move() {
  1542. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1543. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1544. #endif
  1545. saved_feedrate_mm_s = feedrate_mm_s;
  1546. saved_feedrate_percentage = feedrate_percentage;
  1547. feedrate_percentage = 100;
  1548. refresh_cmd_timeout();
  1549. }
  1550. static void clean_up_after_endstop_or_probe_move() {
  1551. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1552. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1553. #endif
  1554. feedrate_mm_s = saved_feedrate_mm_s;
  1555. feedrate_percentage = saved_feedrate_percentage;
  1556. refresh_cmd_timeout();
  1557. }
  1558. #if HAS_BED_PROBE
  1559. /**
  1560. * Raise Z to a minimum height to make room for a probe to move
  1561. */
  1562. inline void do_probe_raise(float z_raise) {
  1563. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1564. if (DEBUGGING(LEVELING)) {
  1565. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1566. SERIAL_CHAR(')');
  1567. SERIAL_EOL;
  1568. }
  1569. #endif
  1570. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1571. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1572. #if ENABLED(DELTA)
  1573. z_dest -= home_offset[Z_AXIS];
  1574. #endif
  1575. if (z_dest > current_position[Z_AXIS])
  1576. do_blocking_move_to_z(z_dest);
  1577. }
  1578. #endif //HAS_BED_PROBE
  1579. #if HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION)
  1580. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1581. const bool xx = x && !axis_homed[X_AXIS],
  1582. yy = y && !axis_homed[Y_AXIS],
  1583. zz = z && !axis_homed[Z_AXIS];
  1584. if (xx || yy || zz) {
  1585. SERIAL_ECHO_START;
  1586. SERIAL_ECHOPGM(MSG_HOME " ");
  1587. if (xx) SERIAL_ECHOPGM(MSG_X);
  1588. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1589. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1590. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1591. #if ENABLED(ULTRA_LCD)
  1592. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1593. #endif
  1594. return true;
  1595. }
  1596. return false;
  1597. }
  1598. #endif
  1599. #if ENABLED(Z_PROBE_SLED)
  1600. #ifndef SLED_DOCKING_OFFSET
  1601. #define SLED_DOCKING_OFFSET 0
  1602. #endif
  1603. /**
  1604. * Method to dock/undock a sled designed by Charles Bell.
  1605. *
  1606. * stow[in] If false, move to MAX_X and engage the solenoid
  1607. * If true, move to MAX_X and release the solenoid
  1608. */
  1609. static void dock_sled(bool stow) {
  1610. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1611. if (DEBUGGING(LEVELING)) {
  1612. SERIAL_ECHOPAIR("dock_sled(", stow);
  1613. SERIAL_CHAR(')');
  1614. SERIAL_EOL;
  1615. }
  1616. #endif
  1617. // Dock sled a bit closer to ensure proper capturing
  1618. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1619. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1620. WRITE(SOL1_PIN, !stow); // switch solenoid
  1621. #endif
  1622. }
  1623. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1624. void run_deploy_moves_script() {
  1625. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1626. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1627. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1628. #endif
  1629. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1630. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1631. #endif
  1632. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1633. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1634. #endif
  1635. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1636. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1637. #endif
  1638. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1639. #endif
  1640. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1641. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1642. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1643. #endif
  1644. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1645. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1646. #endif
  1647. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1648. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1649. #endif
  1650. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1651. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1652. #endif
  1653. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1654. #endif
  1655. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1656. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1657. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1658. #endif
  1659. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1660. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1661. #endif
  1662. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1663. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1664. #endif
  1665. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1666. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1667. #endif
  1668. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1669. #endif
  1670. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1671. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1672. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1673. #endif
  1674. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1675. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1676. #endif
  1677. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1678. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1679. #endif
  1680. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1681. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1682. #endif
  1683. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1684. #endif
  1685. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1686. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1687. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1688. #endif
  1689. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1690. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1691. #endif
  1692. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1693. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1694. #endif
  1695. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1696. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1697. #endif
  1698. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1699. #endif
  1700. }
  1701. void run_stow_moves_script() {
  1702. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1703. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1704. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1705. #endif
  1706. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1707. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1708. #endif
  1709. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1710. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1711. #endif
  1712. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1713. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1714. #endif
  1715. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1716. #endif
  1717. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1718. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1719. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1720. #endif
  1721. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1722. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1723. #endif
  1724. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1725. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1726. #endif
  1727. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1728. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1729. #endif
  1730. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1731. #endif
  1732. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1733. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1734. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1735. #endif
  1736. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1737. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1738. #endif
  1739. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1740. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1741. #endif
  1742. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1743. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1744. #endif
  1745. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1746. #endif
  1747. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1748. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1749. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1750. #endif
  1751. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1752. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1753. #endif
  1754. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1755. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1756. #endif
  1757. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1758. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1759. #endif
  1760. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1761. #endif
  1762. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1763. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1764. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1765. #endif
  1766. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1767. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1768. #endif
  1769. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1770. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1771. #endif
  1772. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1773. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1774. #endif
  1775. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1776. #endif
  1777. }
  1778. #endif
  1779. #if HAS_BED_PROBE
  1780. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1781. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1782. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1783. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1784. #else
  1785. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1786. #endif
  1787. #endif
  1788. #if ENABLED(BLTOUCH)
  1789. void bltouch_command(int angle) {
  1790. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1791. safe_delay(BLTOUCH_DELAY);
  1792. }
  1793. /**
  1794. * BLTouch probes have a Hall effect sensor. The high currents switching
  1795. * on and off cause a magnetic field that can affect the repeatability of the
  1796. * sensor. So for BLTouch probes, heaters are turned off during the probe,
  1797. * then quickly turned back on after the point is sampled.
  1798. */
  1799. #if ENABLED(BLTOUCH_HEATERS_OFF)
  1800. void set_heaters_for_bltouch(const bool deploy) {
  1801. static bool heaters_were_disabled = false;
  1802. static millis_t next_emi_protection;
  1803. static float temps_at_entry[HOTENDS];
  1804. #if HAS_TEMP_BED
  1805. static float bed_temp_at_entry;
  1806. #endif
  1807. // If called out of order or far apart something is seriously wrong
  1808. if (deploy == heaters_were_disabled
  1809. || (next_emi_protection && ELAPSED(millis(), next_emi_protection)))
  1810. kill(PSTR(MSG_KILLED));
  1811. if (deploy) {
  1812. next_emi_protection = millis() + 20 * 1000UL;
  1813. HOTEND_LOOP() {
  1814. temps_at_entry[e] = thermalManager.degTargetHotend(e);
  1815. thermalManager.setTargetHotend(0, e);
  1816. }
  1817. #if HAS_TEMP_BED
  1818. bed_temp_at_entry = thermalManager.degTargetBed();
  1819. thermalManager.setTargetBed(0);
  1820. #endif
  1821. }
  1822. else {
  1823. HOTEND_LOOP() thermalManager.setTargetHotend(temps_at_entry[e], e);
  1824. #if HAS_TEMP_BED
  1825. thermalManager.setTargetBed(bed_temp_at_entry);
  1826. #endif
  1827. }
  1828. }
  1829. #endif // BLTOUCH_HEATERS_OFF
  1830. void set_bltouch_deployed(const bool deploy) {
  1831. #if ENABLED(BLTOUCH_HEATERS_OFF)
  1832. set_heaters_for_bltouch(deploy);
  1833. #endif
  1834. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1835. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1836. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1837. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1838. safe_delay(1500); // Wait for internal self-test to complete.
  1839. // (Measured completion time was 0.65 seconds
  1840. // after reset, deploy, and stow sequence)
  1841. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1842. SERIAL_ERROR_START;
  1843. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1844. stop(); // punt!
  1845. }
  1846. }
  1847. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1848. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1849. if (DEBUGGING(LEVELING)) {
  1850. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1851. SERIAL_CHAR(')');
  1852. SERIAL_EOL;
  1853. }
  1854. #endif
  1855. }
  1856. #endif // BLTOUCH
  1857. // returns false for ok and true for failure
  1858. bool set_probe_deployed(bool deploy) {
  1859. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1860. if (DEBUGGING(LEVELING)) {
  1861. DEBUG_POS("set_probe_deployed", current_position);
  1862. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1863. }
  1864. #endif
  1865. #if ENABLED(BLTOUCH) && ENABLED(BLTOUCH_HEATERS_OFF)
  1866. set_heaters_for_bltouch(deploy);
  1867. #endif
  1868. if (endstops.z_probe_enabled == deploy) return false;
  1869. // Make room for probe
  1870. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1871. // When deploying make sure BLTOUCH is not already triggered
  1872. #if ENABLED(BLTOUCH)
  1873. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1874. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1875. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1876. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1877. safe_delay(1500); // wait for internal self test to complete
  1878. // measured completion time was 0.65 seconds
  1879. // after reset, deploy & stow sequence
  1880. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1881. SERIAL_ERROR_START;
  1882. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1883. stop(); // punt!
  1884. return true;
  1885. }
  1886. }
  1887. #elif ENABLED(Z_PROBE_SLED)
  1888. if (axis_unhomed_error(true, false, false)) {
  1889. SERIAL_ERROR_START;
  1890. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1891. stop();
  1892. return true;
  1893. }
  1894. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1895. if (axis_unhomed_error(true, true, true )) {
  1896. SERIAL_ERROR_START;
  1897. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1898. stop();
  1899. return true;
  1900. }
  1901. #endif
  1902. const float oldXpos = current_position[X_AXIS],
  1903. oldYpos = current_position[Y_AXIS];
  1904. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1905. // If endstop is already false, the Z probe is deployed
  1906. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1907. // Would a goto be less ugly?
  1908. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1909. // for a triggered when stowed manual probe.
  1910. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1911. // otherwise an Allen-Key probe can't be stowed.
  1912. #endif
  1913. #if ENABLED(SOLENOID_PROBE)
  1914. #if HAS_SOLENOID_1
  1915. WRITE(SOL1_PIN, deploy);
  1916. #endif
  1917. #elif ENABLED(Z_PROBE_SLED)
  1918. dock_sled(!deploy);
  1919. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1920. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1921. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1922. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1923. #endif
  1924. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1925. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1926. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1927. if (IsRunning()) {
  1928. SERIAL_ERROR_START;
  1929. SERIAL_ERRORLNPGM("Z-Probe failed");
  1930. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1931. }
  1932. stop();
  1933. return true;
  1934. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1935. #endif
  1936. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1937. endstops.enable_z_probe(deploy);
  1938. return false;
  1939. }
  1940. static void do_probe_move(float z, float fr_mm_m) {
  1941. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1942. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1943. #endif
  1944. // Deploy BLTouch at the start of any probe
  1945. #if ENABLED(BLTOUCH)
  1946. set_bltouch_deployed(true);
  1947. #endif
  1948. // Move down until probe triggered
  1949. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1950. // Retract BLTouch immediately after a probe
  1951. #if ENABLED(BLTOUCH)
  1952. set_bltouch_deployed(false);
  1953. #endif
  1954. // Clear endstop flags
  1955. endstops.hit_on_purpose();
  1956. // Get Z where the steppers were interrupted
  1957. set_current_from_steppers_for_axis(Z_AXIS);
  1958. // Tell the planner where we actually are
  1959. SYNC_PLAN_POSITION_KINEMATIC();
  1960. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1961. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1962. #endif
  1963. }
  1964. // Do a single Z probe and return with current_position[Z_AXIS]
  1965. // at the height where the probe triggered.
  1966. static float run_z_probe() {
  1967. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1968. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1969. #endif
  1970. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1971. refresh_cmd_timeout();
  1972. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1973. // Do a first probe at the fast speed
  1974. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1975. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1976. float first_probe_z = current_position[Z_AXIS];
  1977. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1978. #endif
  1979. // move up by the bump distance
  1980. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1981. #else
  1982. // If the nozzle is above the travel height then
  1983. // move down quickly before doing the slow probe
  1984. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1985. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1986. #if ENABLED(DELTA)
  1987. z -= home_offset[Z_AXIS];
  1988. #endif
  1989. if (z < current_position[Z_AXIS])
  1990. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1991. #endif
  1992. // move down slowly to find bed
  1993. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1994. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1995. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1996. #endif
  1997. // Debug: compare probe heights
  1998. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1999. if (DEBUGGING(LEVELING)) {
  2000. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  2001. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  2002. }
  2003. #endif
  2004. return current_position[Z_AXIS] + zprobe_zoffset;
  2005. }
  2006. /**
  2007. * - Move to the given XY
  2008. * - Deploy the probe, if not already deployed
  2009. * - Probe the bed, get the Z position
  2010. * - Depending on the 'stow' flag
  2011. * - Stow the probe, or
  2012. * - Raise to the BETWEEN height
  2013. * - Return the probed Z position
  2014. */
  2015. float probe_pt(const float x, const float y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
  2016. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2017. if (DEBUGGING(LEVELING)) {
  2018. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  2019. SERIAL_ECHOPAIR(", ", y);
  2020. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  2021. SERIAL_ECHOLNPGM("stow)");
  2022. DEBUG_POS("", current_position);
  2023. }
  2024. #endif
  2025. const float old_feedrate_mm_s = feedrate_mm_s;
  2026. #if ENABLED(DELTA)
  2027. if (current_position[Z_AXIS] > delta_clip_start_height)
  2028. do_blocking_move_to_z(delta_clip_start_height);
  2029. #endif
  2030. // Ensure a minimum height before moving the probe
  2031. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2032. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2033. // Move the probe to the given XY
  2034. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2035. if (DEPLOY_PROBE()) return NAN;
  2036. const float measured_z = run_z_probe();
  2037. if (!stow)
  2038. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2039. else
  2040. if (STOW_PROBE()) return NAN;
  2041. if (verbose_level > 2) {
  2042. SERIAL_PROTOCOLPGM("Bed X: ");
  2043. SERIAL_PROTOCOL_F(x, 3);
  2044. SERIAL_PROTOCOLPGM(" Y: ");
  2045. SERIAL_PROTOCOL_F(y, 3);
  2046. SERIAL_PROTOCOLPGM(" Z: ");
  2047. SERIAL_PROTOCOL_F(measured_z, 3);
  2048. SERIAL_EOL;
  2049. }
  2050. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2051. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2052. #endif
  2053. feedrate_mm_s = old_feedrate_mm_s;
  2054. return measured_z;
  2055. }
  2056. #endif // HAS_BED_PROBE
  2057. #if PLANNER_LEVELING
  2058. /**
  2059. * Turn bed leveling on or off, fixing the current
  2060. * position as-needed.
  2061. *
  2062. * Disable: Current position = physical position
  2063. * Enable: Current position = "unleveled" physical position
  2064. */
  2065. void set_bed_leveling_enabled(bool enable/*=true*/) {
  2066. #if ENABLED(MESH_BED_LEVELING)
  2067. if (enable != mbl.active()) {
  2068. if (!enable)
  2069. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2070. mbl.set_active(enable && mbl.has_mesh());
  2071. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  2072. }
  2073. #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
  2074. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2075. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  2076. #else
  2077. constexpr bool can_change = true;
  2078. #endif
  2079. if (can_change && enable != planner.abl_enabled) {
  2080. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2081. // Force bilinear_z_offset to re-calculate next time
  2082. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2083. (void)bilinear_z_offset(reset);
  2084. #endif
  2085. planner.abl_enabled = enable;
  2086. if (!enable)
  2087. set_current_from_steppers_for_axis(
  2088. #if ABL_PLANAR
  2089. ALL_AXES
  2090. #else
  2091. Z_AXIS
  2092. #endif
  2093. );
  2094. else
  2095. planner.unapply_leveling(current_position);
  2096. }
  2097. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2098. ubl.state.active = enable;
  2099. //set_current_from_steppers_for_axis(Z_AXIS);
  2100. #endif
  2101. }
  2102. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2103. void set_z_fade_height(const float zfh) {
  2104. planner.z_fade_height = zfh;
  2105. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2106. if (
  2107. #if ENABLED(MESH_BED_LEVELING)
  2108. mbl.active()
  2109. #else
  2110. planner.abl_enabled
  2111. #endif
  2112. ) {
  2113. set_current_from_steppers_for_axis(
  2114. #if ABL_PLANAR
  2115. ALL_AXES
  2116. #else
  2117. Z_AXIS
  2118. #endif
  2119. );
  2120. }
  2121. }
  2122. #endif // LEVELING_FADE_HEIGHT
  2123. /**
  2124. * Reset calibration results to zero.
  2125. */
  2126. void reset_bed_level() {
  2127. set_bed_leveling_enabled(false);
  2128. #if ENABLED(MESH_BED_LEVELING)
  2129. if (mbl.has_mesh()) {
  2130. mbl.reset();
  2131. mbl.set_has_mesh(false);
  2132. }
  2133. #else
  2134. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2135. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2136. #endif
  2137. #if ABL_PLANAR
  2138. planner.bed_level_matrix.set_to_identity();
  2139. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2140. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2141. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2142. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2143. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2144. z_values[x][y] = NAN;
  2145. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2146. ubl.reset();
  2147. #endif
  2148. #endif
  2149. }
  2150. #endif // PLANNER_LEVELING
  2151. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2152. /**
  2153. * Enable to produce output in JSON format suitable
  2154. * for SCAD or JavaScript mesh visualizers.
  2155. *
  2156. * Visualize meshes in OpenSCAD using the included script.
  2157. *
  2158. * buildroot/shared/scripts/MarlinMesh.scad
  2159. */
  2160. //#define SCAD_MESH_OUTPUT
  2161. /**
  2162. * Print calibration results for plotting or manual frame adjustment.
  2163. */
  2164. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2165. #ifndef SCAD_MESH_OUTPUT
  2166. for (uint8_t x = 0; x < sx; x++) {
  2167. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2168. SERIAL_PROTOCOLCHAR(' ');
  2169. SERIAL_PROTOCOL((int)x);
  2170. }
  2171. SERIAL_EOL;
  2172. #endif
  2173. #ifdef SCAD_MESH_OUTPUT
  2174. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2175. #endif
  2176. for (uint8_t y = 0; y < sy; y++) {
  2177. #ifdef SCAD_MESH_OUTPUT
  2178. SERIAL_PROTOCOLLNPGM(" ["); // open sub-array
  2179. #else
  2180. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2181. SERIAL_PROTOCOL((int)y);
  2182. #endif
  2183. for (uint8_t x = 0; x < sx; x++) {
  2184. SERIAL_PROTOCOLCHAR(' ');
  2185. const float offset = fn(x, y);
  2186. if (!isnan(offset)) {
  2187. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2188. SERIAL_PROTOCOL_F(offset, precision);
  2189. }
  2190. else {
  2191. #ifdef SCAD_MESH_OUTPUT
  2192. for (uint8_t i = 3; i < precision + 3; i++)
  2193. SERIAL_PROTOCOLCHAR(' ');
  2194. SERIAL_PROTOCOLPGM("NAN");
  2195. #else
  2196. for (uint8_t i = 0; i < precision + 3; i++)
  2197. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2198. #endif
  2199. }
  2200. #ifdef SCAD_MESH_OUTPUT
  2201. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2202. #endif
  2203. }
  2204. #ifdef SCAD_MESH_OUTPUT
  2205. SERIAL_PROTOCOLCHAR(' ');
  2206. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2207. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2208. #endif
  2209. SERIAL_EOL;
  2210. }
  2211. #ifdef SCAD_MESH_OUTPUT
  2212. SERIAL_PROTOCOLPGM("\n];"); // close 2D array
  2213. #endif
  2214. SERIAL_EOL;
  2215. }
  2216. #endif
  2217. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2218. /**
  2219. * Extrapolate a single point from its neighbors
  2220. */
  2221. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2222. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2223. if (DEBUGGING(LEVELING)) {
  2224. SERIAL_ECHOPGM("Extrapolate [");
  2225. if (x < 10) SERIAL_CHAR(' ');
  2226. SERIAL_ECHO((int)x);
  2227. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2228. SERIAL_CHAR(' ');
  2229. if (y < 10) SERIAL_CHAR(' ');
  2230. SERIAL_ECHO((int)y);
  2231. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2232. SERIAL_CHAR(']');
  2233. }
  2234. #endif
  2235. if (!isnan(z_values[x][y])) {
  2236. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2237. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2238. #endif
  2239. return; // Don't overwrite good values.
  2240. }
  2241. SERIAL_EOL;
  2242. // Get X neighbors, Y neighbors, and XY neighbors
  2243. float a1 = z_values[x + xdir][y], a2 = z_values[x + xdir * 2][y],
  2244. b1 = z_values[x][y + ydir], b2 = z_values[x][y + ydir * 2],
  2245. c1 = z_values[x + xdir][y + ydir], c2 = z_values[x + xdir * 2][y + ydir * 2];
  2246. // Treat far unprobed points as zero, near as equal to far
  2247. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2248. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2249. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2250. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2251. // Take the average instead of the median
  2252. z_values[x][y] = (a + b + c) / 3.0;
  2253. // Median is robust (ignores outliers).
  2254. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2255. // : ((c < b) ? b : (a < c) ? a : c);
  2256. }
  2257. //Enable this if your SCARA uses 180° of total area
  2258. //#define EXTRAPOLATE_FROM_EDGE
  2259. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2260. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2261. #define HALF_IN_X
  2262. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2263. #define HALF_IN_Y
  2264. #endif
  2265. #endif
  2266. /**
  2267. * Fill in the unprobed points (corners of circular print surface)
  2268. * using linear extrapolation, away from the center.
  2269. */
  2270. static void extrapolate_unprobed_bed_level() {
  2271. #ifdef HALF_IN_X
  2272. const uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2273. #else
  2274. const uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2275. ctrx2 = GRID_MAX_POINTS_X / 2, // right-of-center
  2276. xlen = ctrx1;
  2277. #endif
  2278. #ifdef HALF_IN_Y
  2279. const uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2280. #else
  2281. const uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2282. ctry2 = GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2283. ylen = ctry1;
  2284. #endif
  2285. for (uint8_t xo = 0; xo <= xlen; xo++)
  2286. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2287. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2288. #ifndef HALF_IN_X
  2289. const uint8_t x1 = ctrx1 - xo;
  2290. #endif
  2291. #ifndef HALF_IN_Y
  2292. const uint8_t y1 = ctry1 - yo;
  2293. #ifndef HALF_IN_X
  2294. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2295. #endif
  2296. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2297. #endif
  2298. #ifndef HALF_IN_X
  2299. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2300. #endif
  2301. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2302. }
  2303. }
  2304. static void print_bilinear_leveling_grid() {
  2305. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2306. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2307. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2308. );
  2309. }
  2310. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2311. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2312. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2313. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2314. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2315. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2316. int bilinear_grid_spacing_virt[2] = { 0 };
  2317. float bilinear_grid_factor_virt[2] = { 0 };
  2318. static void bed_level_virt_print() {
  2319. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2320. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2321. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2322. );
  2323. }
  2324. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2325. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2326. uint8_t ep = 0, ip = 1;
  2327. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2328. if (x) {
  2329. ep = GRID_MAX_POINTS_X - 1;
  2330. ip = GRID_MAX_POINTS_X - 2;
  2331. }
  2332. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2333. return LINEAR_EXTRAPOLATION(
  2334. z_values[ep][y - 1],
  2335. z_values[ip][y - 1]
  2336. );
  2337. else
  2338. return LINEAR_EXTRAPOLATION(
  2339. bed_level_virt_coord(ep + 1, y),
  2340. bed_level_virt_coord(ip + 1, y)
  2341. );
  2342. }
  2343. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2344. if (y) {
  2345. ep = GRID_MAX_POINTS_Y - 1;
  2346. ip = GRID_MAX_POINTS_Y - 2;
  2347. }
  2348. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2349. return LINEAR_EXTRAPOLATION(
  2350. z_values[x - 1][ep],
  2351. z_values[x - 1][ip]
  2352. );
  2353. else
  2354. return LINEAR_EXTRAPOLATION(
  2355. bed_level_virt_coord(x, ep + 1),
  2356. bed_level_virt_coord(x, ip + 1)
  2357. );
  2358. }
  2359. return z_values[x - 1][y - 1];
  2360. }
  2361. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2362. return (
  2363. p[i-1] * -t * sq(1 - t)
  2364. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2365. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2366. - p[i+2] * sq(t) * (1 - t)
  2367. ) * 0.5;
  2368. }
  2369. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2370. float row[4], column[4];
  2371. for (uint8_t i = 0; i < 4; i++) {
  2372. for (uint8_t j = 0; j < 4; j++) {
  2373. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2374. }
  2375. row[i] = bed_level_virt_cmr(column, 1, ty);
  2376. }
  2377. return bed_level_virt_cmr(row, 1, tx);
  2378. }
  2379. void bed_level_virt_interpolate() {
  2380. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2381. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2382. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2383. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2384. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2385. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2386. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2387. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2388. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2389. continue;
  2390. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2391. bed_level_virt_2cmr(
  2392. x + 1,
  2393. y + 1,
  2394. (float)tx / (BILINEAR_SUBDIVISIONS),
  2395. (float)ty / (BILINEAR_SUBDIVISIONS)
  2396. );
  2397. }
  2398. }
  2399. #endif // ABL_BILINEAR_SUBDIVISION
  2400. // Refresh after other values have been updated
  2401. void refresh_bed_level() {
  2402. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2403. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2404. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2405. bed_level_virt_interpolate();
  2406. #endif
  2407. }
  2408. #endif // AUTO_BED_LEVELING_BILINEAR
  2409. /**
  2410. * Home an individual linear axis
  2411. */
  2412. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2413. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2414. if (DEBUGGING(LEVELING)) {
  2415. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2416. SERIAL_ECHOPAIR(", ", distance);
  2417. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2418. SERIAL_CHAR(')');
  2419. SERIAL_EOL;
  2420. }
  2421. #endif
  2422. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2423. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2424. if (deploy_bltouch) set_bltouch_deployed(true);
  2425. #endif
  2426. // Tell the planner we're at Z=0
  2427. current_position[axis] = 0;
  2428. #if IS_SCARA
  2429. SYNC_PLAN_POSITION_KINEMATIC();
  2430. current_position[axis] = distance;
  2431. inverse_kinematics(current_position);
  2432. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2433. #else
  2434. sync_plan_position();
  2435. current_position[axis] = distance;
  2436. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2437. #endif
  2438. stepper.synchronize();
  2439. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2440. if (deploy_bltouch) set_bltouch_deployed(false);
  2441. #endif
  2442. endstops.hit_on_purpose();
  2443. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2444. if (DEBUGGING(LEVELING)) {
  2445. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2446. SERIAL_CHAR(')');
  2447. SERIAL_EOL;
  2448. }
  2449. #endif
  2450. }
  2451. /**
  2452. * TMC2130 specific sensorless homing using stallGuard2.
  2453. * stallGuard2 only works when in spreadCycle mode.
  2454. * spreadCycle and stealthChop are mutually exclusive.
  2455. */
  2456. #if ENABLED(SENSORLESS_HOMING)
  2457. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2458. #if ENABLED(STEALTHCHOP)
  2459. if (enable) {
  2460. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2461. st.stealthChop(0);
  2462. }
  2463. else {
  2464. st.coolstep_min_speed(0);
  2465. st.stealthChop(1);
  2466. }
  2467. #endif
  2468. st.diag1_stall(enable ? 1 : 0);
  2469. }
  2470. #endif
  2471. /**
  2472. * Home an individual "raw axis" to its endstop.
  2473. * This applies to XYZ on Cartesian and Core robots, and
  2474. * to the individual ABC steppers on DELTA and SCARA.
  2475. *
  2476. * At the end of the procedure the axis is marked as
  2477. * homed and the current position of that axis is updated.
  2478. * Kinematic robots should wait till all axes are homed
  2479. * before updating the current position.
  2480. */
  2481. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2482. static void homeaxis(const AxisEnum axis) {
  2483. #if IS_SCARA
  2484. // Only Z homing (with probe) is permitted
  2485. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2486. #else
  2487. #define CAN_HOME(A) \
  2488. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2489. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2490. #endif
  2491. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2492. if (DEBUGGING(LEVELING)) {
  2493. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2494. SERIAL_CHAR(')');
  2495. SERIAL_EOL;
  2496. }
  2497. #endif
  2498. const int axis_home_dir =
  2499. #if ENABLED(DUAL_X_CARRIAGE)
  2500. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2501. #endif
  2502. home_dir(axis);
  2503. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2504. #if HOMING_Z_WITH_PROBE
  2505. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2506. #endif
  2507. // Set a flag for Z motor locking
  2508. #if ENABLED(Z_DUAL_ENDSTOPS)
  2509. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2510. #endif
  2511. // Disable stealthChop if used. Enable diag1 pin on driver.
  2512. #if ENABLED(SENSORLESS_HOMING)
  2513. #if ENABLED(X_IS_TMC2130)
  2514. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2515. #endif
  2516. #if ENABLED(Y_IS_TMC2130)
  2517. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2518. #endif
  2519. #endif
  2520. // Fast move towards endstop until triggered
  2521. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2522. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2523. #endif
  2524. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2525. // When homing Z with probe respect probe clearance
  2526. const float bump = axis_home_dir * (
  2527. #if HOMING_Z_WITH_PROBE
  2528. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2529. #endif
  2530. home_bump_mm(axis)
  2531. );
  2532. // If a second homing move is configured...
  2533. if (bump) {
  2534. // Move away from the endstop by the axis HOME_BUMP_MM
  2535. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2536. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2537. #endif
  2538. do_homing_move(axis, -bump);
  2539. // Slow move towards endstop until triggered
  2540. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2541. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2542. #endif
  2543. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2544. }
  2545. #if ENABLED(Z_DUAL_ENDSTOPS)
  2546. if (axis == Z_AXIS) {
  2547. float adj = fabs(z_endstop_adj);
  2548. bool lockZ1;
  2549. if (axis_home_dir > 0) {
  2550. adj = -adj;
  2551. lockZ1 = (z_endstop_adj > 0);
  2552. }
  2553. else
  2554. lockZ1 = (z_endstop_adj < 0);
  2555. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2556. // Move to the adjusted endstop height
  2557. do_homing_move(axis, adj);
  2558. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2559. stepper.set_homing_flag(false);
  2560. } // Z_AXIS
  2561. #endif
  2562. #if IS_SCARA
  2563. set_axis_is_at_home(axis);
  2564. SYNC_PLAN_POSITION_KINEMATIC();
  2565. #elif ENABLED(DELTA)
  2566. // Delta has already moved all three towers up in G28
  2567. // so here it re-homes each tower in turn.
  2568. // Delta homing treats the axes as normal linear axes.
  2569. // retrace by the amount specified in endstop_adj
  2570. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2571. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2572. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2573. #endif
  2574. do_homing_move(axis, endstop_adj[axis]);
  2575. }
  2576. #else
  2577. // For cartesian/core machines,
  2578. // set the axis to its home position
  2579. set_axis_is_at_home(axis);
  2580. sync_plan_position();
  2581. destination[axis] = current_position[axis];
  2582. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2583. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2584. #endif
  2585. #endif
  2586. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2587. #if ENABLED(SENSORLESS_HOMING)
  2588. #if ENABLED(X_IS_TMC2130)
  2589. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2590. #endif
  2591. #if ENABLED(Y_IS_TMC2130)
  2592. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2593. #endif
  2594. #endif
  2595. // Put away the Z probe
  2596. #if HOMING_Z_WITH_PROBE
  2597. if (axis == Z_AXIS && STOW_PROBE()) return;
  2598. #endif
  2599. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2600. if (DEBUGGING(LEVELING)) {
  2601. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2602. SERIAL_CHAR(')');
  2603. SERIAL_EOL;
  2604. }
  2605. #endif
  2606. } // homeaxis()
  2607. #if ENABLED(FWRETRACT)
  2608. void retract(const bool retracting, const bool swapping = false) {
  2609. static float hop_height;
  2610. if (retracting == retracted[active_extruder]) return;
  2611. const float old_feedrate_mm_s = feedrate_mm_s;
  2612. set_destination_to_current();
  2613. if (retracting) {
  2614. feedrate_mm_s = retract_feedrate_mm_s;
  2615. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2616. sync_plan_position_e();
  2617. prepare_move_to_destination();
  2618. if (retract_zlift > 0.01) {
  2619. hop_height = current_position[Z_AXIS];
  2620. // Pretend current position is lower
  2621. current_position[Z_AXIS] -= retract_zlift;
  2622. SYNC_PLAN_POSITION_KINEMATIC();
  2623. // Raise up to the old current_position
  2624. prepare_move_to_destination();
  2625. }
  2626. }
  2627. else {
  2628. // If the height hasn't been altered, undo the Z hop
  2629. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2630. // Pretend current position is higher. Z will lower on the next move
  2631. current_position[Z_AXIS] += retract_zlift;
  2632. SYNC_PLAN_POSITION_KINEMATIC();
  2633. }
  2634. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2635. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2636. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2637. sync_plan_position_e();
  2638. // Lower Z and recover E
  2639. prepare_move_to_destination();
  2640. }
  2641. feedrate_mm_s = old_feedrate_mm_s;
  2642. retracted[active_extruder] = retracting;
  2643. } // retract()
  2644. #endif // FWRETRACT
  2645. #if ENABLED(MIXING_EXTRUDER)
  2646. void normalize_mix() {
  2647. float mix_total = 0.0;
  2648. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2649. // Scale all values if they don't add up to ~1.0
  2650. if (!NEAR(mix_total, 1.0)) {
  2651. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2652. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2653. }
  2654. }
  2655. #if ENABLED(DIRECT_MIXING_IN_G1)
  2656. // Get mixing parameters from the GCode
  2657. // The total "must" be 1.0 (but it will be normalized)
  2658. // If no mix factors are given, the old mix is preserved
  2659. void gcode_get_mix() {
  2660. const char* mixing_codes = "ABCDHI";
  2661. byte mix_bits = 0;
  2662. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2663. if (code_seen(mixing_codes[i])) {
  2664. SBI(mix_bits, i);
  2665. float v = code_value_float();
  2666. NOLESS(v, 0.0);
  2667. mixing_factor[i] = RECIPROCAL(v);
  2668. }
  2669. }
  2670. // If any mixing factors were included, clear the rest
  2671. // If none were included, preserve the last mix
  2672. if (mix_bits) {
  2673. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2674. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2675. normalize_mix();
  2676. }
  2677. }
  2678. #endif
  2679. #endif
  2680. /**
  2681. * ***************************************************************************
  2682. * ***************************** G-CODE HANDLING *****************************
  2683. * ***************************************************************************
  2684. */
  2685. /**
  2686. * Set XYZE destination and feedrate from the current GCode command
  2687. *
  2688. * - Set destination from included axis codes
  2689. * - Set to current for missing axis codes
  2690. * - Set the feedrate, if included
  2691. */
  2692. void gcode_get_destination() {
  2693. LOOP_XYZE(i) {
  2694. if (code_seen(axis_codes[i]))
  2695. destination[i] = code_value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2696. else
  2697. destination[i] = current_position[i];
  2698. }
  2699. if (code_seen('F') && code_value_linear_units() > 0.0)
  2700. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2701. #if ENABLED(PRINTCOUNTER)
  2702. if (!DEBUGGING(DRYRUN))
  2703. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2704. #endif
  2705. // Get ABCDHI mixing factors
  2706. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2707. gcode_get_mix();
  2708. #endif
  2709. }
  2710. void unknown_command_error() {
  2711. SERIAL_ECHO_START;
  2712. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2713. SERIAL_CHAR('"');
  2714. SERIAL_EOL;
  2715. }
  2716. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2717. /**
  2718. * Output a "busy" message at regular intervals
  2719. * while the machine is not accepting commands.
  2720. */
  2721. void host_keepalive() {
  2722. const millis_t ms = millis();
  2723. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2724. if (PENDING(ms, next_busy_signal_ms)) return;
  2725. switch (busy_state) {
  2726. case IN_HANDLER:
  2727. case IN_PROCESS:
  2728. SERIAL_ECHO_START;
  2729. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2730. break;
  2731. case PAUSED_FOR_USER:
  2732. SERIAL_ECHO_START;
  2733. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2734. break;
  2735. case PAUSED_FOR_INPUT:
  2736. SERIAL_ECHO_START;
  2737. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2738. break;
  2739. default:
  2740. break;
  2741. }
  2742. }
  2743. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2744. }
  2745. #endif //HOST_KEEPALIVE_FEATURE
  2746. bool position_is_reachable(const float target[XYZ]
  2747. #if HAS_BED_PROBE
  2748. , bool by_probe=false
  2749. #endif
  2750. ) {
  2751. float dx = RAW_X_POSITION(target[X_AXIS]),
  2752. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2753. #if HAS_BED_PROBE
  2754. if (by_probe) {
  2755. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2756. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2757. }
  2758. #endif
  2759. #if IS_SCARA
  2760. #if MIDDLE_DEAD_ZONE_R > 0
  2761. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2762. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2763. #else
  2764. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2765. #endif
  2766. #elif ENABLED(DELTA)
  2767. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2768. #else
  2769. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2770. return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
  2771. && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
  2772. && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
  2773. #endif
  2774. }
  2775. /**************************************************
  2776. ***************** GCode Handlers *****************
  2777. **************************************************/
  2778. /**
  2779. * G0, G1: Coordinated movement of X Y Z E axes
  2780. */
  2781. inline void gcode_G0_G1(
  2782. #if IS_SCARA
  2783. bool fast_move=false
  2784. #endif
  2785. ) {
  2786. if (IsRunning()) {
  2787. gcode_get_destination(); // For X Y Z E F
  2788. #if ENABLED(FWRETRACT)
  2789. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2790. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2791. // Is this move an attempt to retract or recover?
  2792. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2793. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2794. sync_plan_position_e(); // AND from the planner
  2795. retract(!retracted[active_extruder]);
  2796. return;
  2797. }
  2798. }
  2799. #endif //FWRETRACT
  2800. #if IS_SCARA
  2801. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2802. #else
  2803. prepare_move_to_destination();
  2804. #endif
  2805. }
  2806. }
  2807. /**
  2808. * G2: Clockwise Arc
  2809. * G3: Counterclockwise Arc
  2810. *
  2811. * This command has two forms: IJ-form and R-form.
  2812. *
  2813. * - I specifies an X offset. J specifies a Y offset.
  2814. * At least one of the IJ parameters is required.
  2815. * X and Y can be omitted to do a complete circle.
  2816. * The given XY is not error-checked. The arc ends
  2817. * based on the angle of the destination.
  2818. * Mixing I or J with R will throw an error.
  2819. *
  2820. * - R specifies the radius. X or Y is required.
  2821. * Omitting both X and Y will throw an error.
  2822. * X or Y must differ from the current XY.
  2823. * Mixing R with I or J will throw an error.
  2824. *
  2825. * Examples:
  2826. *
  2827. * G2 I10 ; CW circle centered at X+10
  2828. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2829. */
  2830. #if ENABLED(ARC_SUPPORT)
  2831. inline void gcode_G2_G3(bool clockwise) {
  2832. if (IsRunning()) {
  2833. #if ENABLED(SF_ARC_FIX)
  2834. const bool relative_mode_backup = relative_mode;
  2835. relative_mode = true;
  2836. #endif
  2837. gcode_get_destination();
  2838. #if ENABLED(SF_ARC_FIX)
  2839. relative_mode = relative_mode_backup;
  2840. #endif
  2841. float arc_offset[2] = { 0.0, 0.0 };
  2842. if (code_seen('R')) {
  2843. const float r = code_value_linear_units(),
  2844. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2845. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2846. if (r && (x2 != x1 || y2 != y1)) {
  2847. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2848. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2849. d = HYPOT(dx, dy), // Linear distance between the points
  2850. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2851. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2852. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2853. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2854. arc_offset[X_AXIS] = cx - x1;
  2855. arc_offset[Y_AXIS] = cy - y1;
  2856. }
  2857. }
  2858. else {
  2859. if (code_seen('I')) arc_offset[X_AXIS] = code_value_linear_units();
  2860. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_linear_units();
  2861. }
  2862. if (arc_offset[0] || arc_offset[1]) {
  2863. // Send an arc to the planner
  2864. plan_arc(destination, arc_offset, clockwise);
  2865. refresh_cmd_timeout();
  2866. }
  2867. else {
  2868. // Bad arguments
  2869. SERIAL_ERROR_START;
  2870. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2871. }
  2872. }
  2873. }
  2874. #endif
  2875. /**
  2876. * G4: Dwell S<seconds> or P<milliseconds>
  2877. */
  2878. inline void gcode_G4() {
  2879. millis_t dwell_ms = 0;
  2880. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2881. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2882. stepper.synchronize();
  2883. refresh_cmd_timeout();
  2884. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2885. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2886. while (PENDING(millis(), dwell_ms)) idle();
  2887. }
  2888. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2889. /**
  2890. * Parameters interpreted according to:
  2891. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2892. * However I, J omission is not supported at this point; all
  2893. * parameters can be omitted and default to zero.
  2894. */
  2895. /**
  2896. * G5: Cubic B-spline
  2897. */
  2898. inline void gcode_G5() {
  2899. if (IsRunning()) {
  2900. gcode_get_destination();
  2901. const float offset[] = {
  2902. code_seen('I') ? code_value_linear_units() : 0.0,
  2903. code_seen('J') ? code_value_linear_units() : 0.0,
  2904. code_seen('P') ? code_value_linear_units() : 0.0,
  2905. code_seen('Q') ? code_value_linear_units() : 0.0
  2906. };
  2907. plan_cubic_move(offset);
  2908. }
  2909. }
  2910. #endif // BEZIER_CURVE_SUPPORT
  2911. #if ENABLED(FWRETRACT)
  2912. /**
  2913. * G10 - Retract filament according to settings of M207
  2914. * G11 - Recover filament according to settings of M208
  2915. */
  2916. inline void gcode_G10_G11(bool doRetract=false) {
  2917. #if EXTRUDERS > 1
  2918. if (doRetract) {
  2919. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2920. }
  2921. #endif
  2922. retract(doRetract
  2923. #if EXTRUDERS > 1
  2924. , retracted_swap[active_extruder]
  2925. #endif
  2926. );
  2927. }
  2928. #endif //FWRETRACT
  2929. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2930. /**
  2931. * G12: Clean the nozzle
  2932. */
  2933. inline void gcode_G12() {
  2934. // Don't allow nozzle cleaning without homing first
  2935. if (axis_unhomed_error(true, true, true)) return;
  2936. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2937. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2938. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2939. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2940. Nozzle::clean(pattern, strokes, radius, objects);
  2941. }
  2942. #endif
  2943. #if ENABLED(INCH_MODE_SUPPORT)
  2944. /**
  2945. * G20: Set input mode to inches
  2946. */
  2947. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2948. /**
  2949. * G21: Set input mode to millimeters
  2950. */
  2951. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2952. #endif
  2953. #if ENABLED(NOZZLE_PARK_FEATURE)
  2954. /**
  2955. * G27: Park the nozzle
  2956. */
  2957. inline void gcode_G27() {
  2958. // Don't allow nozzle parking without homing first
  2959. if (axis_unhomed_error(true, true, true)) return;
  2960. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2961. }
  2962. #endif // NOZZLE_PARK_FEATURE
  2963. #if ENABLED(QUICK_HOME)
  2964. static void quick_home_xy() {
  2965. // Pretend the current position is 0,0
  2966. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2967. sync_plan_position();
  2968. const int x_axis_home_dir =
  2969. #if ENABLED(DUAL_X_CARRIAGE)
  2970. x_home_dir(active_extruder)
  2971. #else
  2972. home_dir(X_AXIS)
  2973. #endif
  2974. ;
  2975. const float mlx = max_length(X_AXIS),
  2976. mly = max_length(Y_AXIS),
  2977. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2978. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2979. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2980. endstops.hit_on_purpose(); // clear endstop hit flags
  2981. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2982. }
  2983. #endif // QUICK_HOME
  2984. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2985. void log_machine_info() {
  2986. SERIAL_ECHOPGM("Machine Type: ");
  2987. #if ENABLED(DELTA)
  2988. SERIAL_ECHOLNPGM("Delta");
  2989. #elif IS_SCARA
  2990. SERIAL_ECHOLNPGM("SCARA");
  2991. #elif IS_CORE
  2992. SERIAL_ECHOLNPGM("Core");
  2993. #else
  2994. SERIAL_ECHOLNPGM("Cartesian");
  2995. #endif
  2996. SERIAL_ECHOPGM("Probe: ");
  2997. #if ENABLED(PROBE_MANUALLY)
  2998. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  2999. #elif ENABLED(FIX_MOUNTED_PROBE)
  3000. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  3001. #elif ENABLED(BLTOUCH)
  3002. SERIAL_ECHOLNPGM("BLTOUCH");
  3003. #elif HAS_Z_SERVO_ENDSTOP
  3004. SERIAL_ECHOLNPGM("SERVO PROBE");
  3005. #elif ENABLED(Z_PROBE_SLED)
  3006. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3007. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3008. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3009. #else
  3010. SERIAL_ECHOLNPGM("NONE");
  3011. #endif
  3012. #if HAS_BED_PROBE
  3013. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3014. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3015. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3016. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  3017. SERIAL_ECHOPGM(" (Right");
  3018. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  3019. SERIAL_ECHOPGM(" (Left");
  3020. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  3021. SERIAL_ECHOPGM(" (Middle");
  3022. #else
  3023. SERIAL_ECHOPGM(" (Aligned With");
  3024. #endif
  3025. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  3026. SERIAL_ECHOPGM("-Back");
  3027. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  3028. SERIAL_ECHOPGM("-Front");
  3029. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  3030. SERIAL_ECHOPGM("-Center");
  3031. #endif
  3032. if (zprobe_zoffset < 0)
  3033. SERIAL_ECHOPGM(" & Below");
  3034. else if (zprobe_zoffset > 0)
  3035. SERIAL_ECHOPGM(" & Above");
  3036. else
  3037. SERIAL_ECHOPGM(" & Same Z as");
  3038. SERIAL_ECHOLNPGM(" Nozzle)");
  3039. #endif
  3040. #if HAS_ABL
  3041. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3042. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3043. SERIAL_ECHOPGM("LINEAR");
  3044. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3045. SERIAL_ECHOPGM("BILINEAR");
  3046. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3047. SERIAL_ECHOPGM("3POINT");
  3048. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3049. SERIAL_ECHOPGM("UBL");
  3050. #endif
  3051. if (planner.abl_enabled) {
  3052. SERIAL_ECHOLNPGM(" (enabled)");
  3053. #if ABL_PLANAR
  3054. float diff[XYZ] = {
  3055. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3056. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3057. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3058. };
  3059. SERIAL_ECHOPGM("ABL Adjustment X");
  3060. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3061. SERIAL_ECHO(diff[X_AXIS]);
  3062. SERIAL_ECHOPGM(" Y");
  3063. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3064. SERIAL_ECHO(diff[Y_AXIS]);
  3065. SERIAL_ECHOPGM(" Z");
  3066. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3067. SERIAL_ECHO(diff[Z_AXIS]);
  3068. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3069. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3070. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3071. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3072. #endif
  3073. }
  3074. else
  3075. SERIAL_ECHOLNPGM(" (disabled)");
  3076. SERIAL_EOL;
  3077. #elif ENABLED(MESH_BED_LEVELING)
  3078. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3079. if (mbl.active()) {
  3080. float lz = current_position[Z_AXIS];
  3081. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3082. SERIAL_ECHOLNPGM(" (enabled)");
  3083. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3084. }
  3085. else
  3086. SERIAL_ECHOPGM(" (disabled)");
  3087. SERIAL_EOL;
  3088. #endif // MESH_BED_LEVELING
  3089. }
  3090. #endif // DEBUG_LEVELING_FEATURE
  3091. #if ENABLED(DELTA)
  3092. /**
  3093. * A delta can only safely home all axes at the same time
  3094. * This is like quick_home_xy() but for 3 towers.
  3095. */
  3096. inline void home_delta() {
  3097. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3098. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3099. #endif
  3100. // Init the current position of all carriages to 0,0,0
  3101. ZERO(current_position);
  3102. sync_plan_position();
  3103. // Move all carriages together linearly until an endstop is hit.
  3104. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  3105. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  3106. line_to_current_position();
  3107. stepper.synchronize();
  3108. endstops.hit_on_purpose(); // clear endstop hit flags
  3109. // At least one carriage has reached the top.
  3110. // Now re-home each carriage separately.
  3111. HOMEAXIS(A);
  3112. HOMEAXIS(B);
  3113. HOMEAXIS(C);
  3114. // Set all carriages to their home positions
  3115. // Do this here all at once for Delta, because
  3116. // XYZ isn't ABC. Applying this per-tower would
  3117. // give the impression that they are the same.
  3118. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3119. SYNC_PLAN_POSITION_KINEMATIC();
  3120. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3121. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3122. #endif
  3123. }
  3124. #endif // DELTA
  3125. #if ENABLED(Z_SAFE_HOMING)
  3126. inline void home_z_safely() {
  3127. // Disallow Z homing if X or Y are unknown
  3128. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3129. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3130. SERIAL_ECHO_START;
  3131. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3132. return;
  3133. }
  3134. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3135. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3136. #endif
  3137. SYNC_PLAN_POSITION_KINEMATIC();
  3138. /**
  3139. * Move the Z probe (or just the nozzle) to the safe homing point
  3140. */
  3141. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3142. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3143. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3144. if (position_is_reachable(
  3145. destination
  3146. #if HOMING_Z_WITH_PROBE
  3147. , true
  3148. #endif
  3149. )
  3150. ) {
  3151. #if HOMING_Z_WITH_PROBE
  3152. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3153. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3154. #endif
  3155. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3156. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3157. #endif
  3158. // This causes the carriage on Dual X to unpark
  3159. #if ENABLED(DUAL_X_CARRIAGE)
  3160. active_extruder_parked = false;
  3161. #endif
  3162. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3163. HOMEAXIS(Z);
  3164. }
  3165. else {
  3166. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3167. SERIAL_ECHO_START;
  3168. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3169. }
  3170. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3171. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3172. #endif
  3173. }
  3174. #endif // Z_SAFE_HOMING
  3175. #if ENABLED(PROBE_MANUALLY)
  3176. bool g29_in_progress = false;
  3177. #else
  3178. constexpr bool g29_in_progress = false;
  3179. #endif
  3180. /**
  3181. * G28: Home all axes according to settings
  3182. *
  3183. * Parameters
  3184. *
  3185. * None Home to all axes with no parameters.
  3186. * With QUICK_HOME enabled XY will home together, then Z.
  3187. *
  3188. * Cartesian parameters
  3189. *
  3190. * X Home to the X endstop
  3191. * Y Home to the Y endstop
  3192. * Z Home to the Z endstop
  3193. *
  3194. */
  3195. inline void gcode_G28() {
  3196. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3197. if (DEBUGGING(LEVELING)) {
  3198. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3199. log_machine_info();
  3200. }
  3201. #endif
  3202. // Wait for planner moves to finish!
  3203. stepper.synchronize();
  3204. // Cancel the active G29 session
  3205. #if ENABLED(PROBE_MANUALLY)
  3206. g29_in_progress = false;
  3207. #endif
  3208. // Disable the leveling matrix before homing
  3209. #if PLANNER_LEVELING
  3210. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3211. const bool bed_leveling_state_at_entry = ubl.state.active;
  3212. #endif
  3213. set_bed_leveling_enabled(false);
  3214. #endif
  3215. // Always home with tool 0 active
  3216. #if HOTENDS > 1
  3217. const uint8_t old_tool_index = active_extruder;
  3218. tool_change(0, 0, true);
  3219. #endif
  3220. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3221. extruder_duplication_enabled = false;
  3222. #endif
  3223. setup_for_endstop_or_probe_move();
  3224. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3225. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3226. #endif
  3227. endstops.enable(true); // Enable endstops for next homing move
  3228. #if ENABLED(DELTA)
  3229. home_delta();
  3230. #else // NOT DELTA
  3231. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3232. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3233. set_destination_to_current();
  3234. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3235. if (home_all_axis || homeZ) {
  3236. HOMEAXIS(Z);
  3237. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3238. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3239. #endif
  3240. }
  3241. #else
  3242. if (home_all_axis || homeX || homeY) {
  3243. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3244. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3245. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3246. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3247. if (DEBUGGING(LEVELING))
  3248. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3249. #endif
  3250. do_blocking_move_to_z(destination[Z_AXIS]);
  3251. }
  3252. }
  3253. #endif
  3254. #if ENABLED(QUICK_HOME)
  3255. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3256. #endif
  3257. #if ENABLED(HOME_Y_BEFORE_X)
  3258. // Home Y
  3259. if (home_all_axis || homeY) {
  3260. HOMEAXIS(Y);
  3261. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3262. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3263. #endif
  3264. }
  3265. #endif
  3266. // Home X
  3267. if (home_all_axis || homeX) {
  3268. #if ENABLED(DUAL_X_CARRIAGE)
  3269. // Always home the 2nd (right) extruder first
  3270. active_extruder = 1;
  3271. HOMEAXIS(X);
  3272. // Remember this extruder's position for later tool change
  3273. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3274. // Home the 1st (left) extruder
  3275. active_extruder = 0;
  3276. HOMEAXIS(X);
  3277. // Consider the active extruder to be parked
  3278. COPY(raised_parked_position, current_position);
  3279. delayed_move_time = 0;
  3280. active_extruder_parked = true;
  3281. #else
  3282. HOMEAXIS(X);
  3283. #endif
  3284. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3285. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3286. #endif
  3287. }
  3288. #if DISABLED(HOME_Y_BEFORE_X)
  3289. // Home Y
  3290. if (home_all_axis || homeY) {
  3291. HOMEAXIS(Y);
  3292. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3293. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3294. #endif
  3295. }
  3296. #endif
  3297. // Home Z last if homing towards the bed
  3298. #if Z_HOME_DIR < 0
  3299. if (home_all_axis || homeZ) {
  3300. #if ENABLED(Z_SAFE_HOMING)
  3301. home_z_safely();
  3302. #else
  3303. HOMEAXIS(Z);
  3304. #endif
  3305. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3306. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3307. #endif
  3308. } // home_all_axis || homeZ
  3309. #endif // Z_HOME_DIR < 0
  3310. SYNC_PLAN_POSITION_KINEMATIC();
  3311. #endif // !DELTA (gcode_G28)
  3312. endstops.not_homing();
  3313. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3314. // move to a height where we can use the full xy-area
  3315. do_blocking_move_to_z(delta_clip_start_height);
  3316. #endif
  3317. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3318. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  3319. #endif
  3320. // Enable mesh leveling again
  3321. #if ENABLED(MESH_BED_LEVELING)
  3322. if (mbl.reactivate()) {
  3323. set_bed_leveling_enabled(true);
  3324. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3325. #if ENABLED(MESH_G28_REST_ORIGIN)
  3326. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3327. set_destination_to_current();
  3328. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3329. stepper.synchronize();
  3330. #endif
  3331. }
  3332. }
  3333. #endif
  3334. clean_up_after_endstop_or_probe_move();
  3335. // Restore the active tool after homing
  3336. #if HOTENDS > 1
  3337. tool_change(old_tool_index, 0, true);
  3338. #endif
  3339. report_current_position();
  3340. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3341. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3342. #endif
  3343. }
  3344. #if HAS_PROBING_PROCEDURE
  3345. void out_of_range_error(const char* p_edge) {
  3346. SERIAL_PROTOCOLPGM("?Probe ");
  3347. serialprintPGM(p_edge);
  3348. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3349. }
  3350. #endif
  3351. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3352. inline void _manual_goto_xy(const float &x, const float &y) {
  3353. const float old_feedrate_mm_s = feedrate_mm_s;
  3354. #if MANUAL_PROBE_HEIGHT > 0
  3355. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3356. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3357. line_to_current_position();
  3358. #endif
  3359. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3360. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3361. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3362. line_to_current_position();
  3363. #if MANUAL_PROBE_HEIGHT > 0
  3364. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3365. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3366. line_to_current_position();
  3367. #endif
  3368. feedrate_mm_s = old_feedrate_mm_s;
  3369. stepper.synchronize();
  3370. }
  3371. #endif
  3372. #if ENABLED(MESH_BED_LEVELING)
  3373. // Save 130 bytes with non-duplication of PSTR
  3374. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3375. void mbl_mesh_report() {
  3376. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3377. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3378. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3379. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3380. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3381. );
  3382. }
  3383. /**
  3384. * G29: Mesh-based Z probe, probes a grid and produces a
  3385. * mesh to compensate for variable bed height
  3386. *
  3387. * Parameters With MESH_BED_LEVELING:
  3388. *
  3389. * S0 Produce a mesh report
  3390. * S1 Start probing mesh points
  3391. * S2 Probe the next mesh point
  3392. * S3 Xn Yn Zn.nn Manually modify a single point
  3393. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3394. * S5 Reset and disable mesh
  3395. *
  3396. * The S0 report the points as below
  3397. *
  3398. * +----> X-axis 1-n
  3399. * |
  3400. * |
  3401. * v Y-axis 1-n
  3402. *
  3403. */
  3404. inline void gcode_G29() {
  3405. static int mbl_probe_index = -1;
  3406. #if HAS_SOFTWARE_ENDSTOPS
  3407. static bool enable_soft_endstops;
  3408. #endif
  3409. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3410. if (!WITHIN(state, 0, 5)) {
  3411. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3412. return;
  3413. }
  3414. int8_t px, py;
  3415. switch (state) {
  3416. case MeshReport:
  3417. if (mbl.has_mesh()) {
  3418. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3419. mbl_mesh_report();
  3420. }
  3421. else
  3422. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3423. break;
  3424. case MeshStart:
  3425. mbl.reset();
  3426. mbl_probe_index = 0;
  3427. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3428. break;
  3429. case MeshNext:
  3430. if (mbl_probe_index < 0) {
  3431. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3432. return;
  3433. }
  3434. // For each G29 S2...
  3435. if (mbl_probe_index == 0) {
  3436. #if HAS_SOFTWARE_ENDSTOPS
  3437. // For the initial G29 S2 save software endstop state
  3438. enable_soft_endstops = soft_endstops_enabled;
  3439. #endif
  3440. }
  3441. else {
  3442. // For G29 S2 after adjusting Z.
  3443. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3444. #if HAS_SOFTWARE_ENDSTOPS
  3445. soft_endstops_enabled = enable_soft_endstops;
  3446. #endif
  3447. }
  3448. // If there's another point to sample, move there with optional lift.
  3449. if (mbl_probe_index < (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)) {
  3450. mbl.zigzag(mbl_probe_index, px, py);
  3451. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3452. #if HAS_SOFTWARE_ENDSTOPS
  3453. // Disable software endstops to allow manual adjustment
  3454. // If G29 is not completed, they will not be re-enabled
  3455. soft_endstops_enabled = false;
  3456. #endif
  3457. mbl_probe_index++;
  3458. }
  3459. else {
  3460. // One last "return to the bed" (as originally coded) at completion
  3461. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3462. line_to_current_position();
  3463. stepper.synchronize();
  3464. // After recording the last point, activate the mbl and home
  3465. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3466. mbl_probe_index = -1;
  3467. mbl.set_has_mesh(true);
  3468. mbl.set_reactivate(true);
  3469. enqueue_and_echo_commands_P(PSTR("G28"));
  3470. BUZZ(100, 659);
  3471. BUZZ(100, 698);
  3472. }
  3473. break;
  3474. case MeshSet:
  3475. if (code_seen('X')) {
  3476. px = code_value_int() - 1;
  3477. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3478. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3479. return;
  3480. }
  3481. }
  3482. else {
  3483. SERIAL_CHAR('X'); say_not_entered();
  3484. return;
  3485. }
  3486. if (code_seen('Y')) {
  3487. py = code_value_int() - 1;
  3488. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3489. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3490. return;
  3491. }
  3492. }
  3493. else {
  3494. SERIAL_CHAR('Y'); say_not_entered();
  3495. return;
  3496. }
  3497. if (code_seen('Z')) {
  3498. mbl.z_values[px][py] = code_value_linear_units();
  3499. }
  3500. else {
  3501. SERIAL_CHAR('Z'); say_not_entered();
  3502. return;
  3503. }
  3504. break;
  3505. case MeshSetZOffset:
  3506. if (code_seen('Z')) {
  3507. mbl.z_offset = code_value_linear_units();
  3508. }
  3509. else {
  3510. SERIAL_CHAR('Z'); say_not_entered();
  3511. return;
  3512. }
  3513. break;
  3514. case MeshReset:
  3515. reset_bed_level();
  3516. break;
  3517. } // switch(state)
  3518. report_current_position();
  3519. }
  3520. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3521. #if ABL_GRID
  3522. #if ENABLED(PROBE_Y_FIRST)
  3523. #define PR_OUTER_VAR xCount
  3524. #define PR_OUTER_END abl_grid_points_x
  3525. #define PR_INNER_VAR yCount
  3526. #define PR_INNER_END abl_grid_points_y
  3527. #else
  3528. #define PR_OUTER_VAR yCount
  3529. #define PR_OUTER_END abl_grid_points_y
  3530. #define PR_INNER_VAR xCount
  3531. #define PR_INNER_END abl_grid_points_x
  3532. #endif
  3533. #endif
  3534. /**
  3535. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3536. * Will fail if the printer has not been homed with G28.
  3537. *
  3538. * Enhanced G29 Auto Bed Leveling Probe Routine
  3539. *
  3540. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3541. * or alter the bed level data. Useful to check the topology
  3542. * after a first run of G29.
  3543. *
  3544. * J Jettison current bed leveling data
  3545. *
  3546. * V Set the verbose level (0-4). Example: "G29 V3"
  3547. *
  3548. * Parameters With LINEAR leveling only:
  3549. *
  3550. * P Set the size of the grid that will be probed (P x P points).
  3551. * Example: "G29 P4"
  3552. *
  3553. * X Set the X size of the grid that will be probed (X x Y points).
  3554. * Example: "G29 X7 Y5"
  3555. *
  3556. * Y Set the Y size of the grid that will be probed (X x Y points).
  3557. *
  3558. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3559. * This is useful for manual bed leveling and finding flaws in the bed (to
  3560. * assist with part placement).
  3561. * Not supported by non-linear delta printer bed leveling.
  3562. *
  3563. * Parameters With LINEAR and BILINEAR leveling only:
  3564. *
  3565. * S Set the XY travel speed between probe points (in units/min)
  3566. *
  3567. * F Set the Front limit of the probing grid
  3568. * B Set the Back limit of the probing grid
  3569. * L Set the Left limit of the probing grid
  3570. * R Set the Right limit of the probing grid
  3571. *
  3572. * Parameters with DEBUG_LEVELING_FEATURE only:
  3573. *
  3574. * C Make a totally fake grid with no actual probing.
  3575. * For use in testing when no probing is possible.
  3576. *
  3577. * Parameters with BILINEAR leveling only:
  3578. *
  3579. * Z Supply an additional Z probe offset
  3580. *
  3581. * Extra parameters with PROBE_MANUALLY:
  3582. *
  3583. * To do manual probing simply repeat G29 until the procedure is complete.
  3584. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3585. *
  3586. * Q Query leveling and G29 state
  3587. *
  3588. * A Abort current leveling procedure
  3589. *
  3590. * W Write a mesh point. (Ignored during leveling.)
  3591. * X Required X for mesh point
  3592. * Y Required Y for mesh point
  3593. * Z Required Z for mesh point
  3594. *
  3595. * Without PROBE_MANUALLY:
  3596. *
  3597. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3598. * Include "E" to engage/disengage the Z probe for each sample.
  3599. * There's no extra effect if you have a fixed Z probe.
  3600. *
  3601. */
  3602. inline void gcode_G29() {
  3603. // G29 Q is also available if debugging
  3604. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3605. const bool query = code_seen('Q');
  3606. const uint8_t old_debug_flags = marlin_debug_flags;
  3607. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3608. if (DEBUGGING(LEVELING)) {
  3609. DEBUG_POS(">>> gcode_G29", current_position);
  3610. log_machine_info();
  3611. }
  3612. marlin_debug_flags = old_debug_flags;
  3613. #if DISABLED(PROBE_MANUALLY)
  3614. if (query) return;
  3615. #endif
  3616. #endif
  3617. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3618. const bool faux = code_seen('C') && code_value_bool();
  3619. #else
  3620. bool constexpr faux = false;
  3621. #endif
  3622. // Don't allow auto-leveling without homing first
  3623. if (axis_unhomed_error(true, true, true)) return;
  3624. // Define local vars 'static' for manual probing, 'auto' otherwise
  3625. #if ENABLED(PROBE_MANUALLY)
  3626. #define ABL_VAR static
  3627. #else
  3628. #define ABL_VAR
  3629. #endif
  3630. ABL_VAR int verbose_level;
  3631. ABL_VAR float xProbe, yProbe, measured_z;
  3632. ABL_VAR bool dryrun, abl_should_enable;
  3633. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3634. ABL_VAR int abl_probe_index;
  3635. #endif
  3636. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3637. ABL_VAR bool enable_soft_endstops = true;
  3638. #endif
  3639. #if ABL_GRID
  3640. #if ENABLED(PROBE_MANUALLY)
  3641. ABL_VAR uint8_t PR_OUTER_VAR;
  3642. ABL_VAR int8_t PR_INNER_VAR;
  3643. #endif
  3644. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3645. ABL_VAR float xGridSpacing, yGridSpacing;
  3646. #define ABL_GRID_MAX (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)
  3647. #if ABL_PLANAR
  3648. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3649. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3650. ABL_VAR bool do_topography_map;
  3651. #else // 3-point
  3652. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3653. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3654. #endif
  3655. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3656. #if ABL_PLANAR
  3657. ABL_VAR int abl2;
  3658. #else // 3-point
  3659. int constexpr abl2 = ABL_GRID_MAX;
  3660. #endif
  3661. #endif
  3662. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3663. ABL_VAR float zoffset;
  3664. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3665. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3666. ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
  3667. eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
  3668. mean;
  3669. #endif
  3670. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3671. // Probe at 3 arbitrary points
  3672. ABL_VAR vector_3 points[3] = {
  3673. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3674. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3675. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3676. };
  3677. #endif // AUTO_BED_LEVELING_3POINT
  3678. /**
  3679. * On the initial G29 fetch command parameters.
  3680. */
  3681. if (!g29_in_progress) {
  3682. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3683. abl_probe_index = 0;
  3684. #endif
  3685. abl_should_enable = planner.abl_enabled;
  3686. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3687. if (code_seen('W')) {
  3688. if (!bilinear_grid_spacing[X_AXIS]) {
  3689. SERIAL_ERROR_START;
  3690. SERIAL_ERRORLNPGM("No bilinear grid");
  3691. return;
  3692. }
  3693. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3694. if (!WITHIN(z, -10, 10)) {
  3695. SERIAL_ERROR_START;
  3696. SERIAL_ERRORLNPGM("Bad Z value");
  3697. return;
  3698. }
  3699. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3700. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3701. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3702. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3703. if (x < 99998 && y < 99998) {
  3704. // Get nearest i / j from x / y
  3705. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3706. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3707. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3708. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3709. }
  3710. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3711. set_bed_leveling_enabled(false);
  3712. z_values[i][j] = z;
  3713. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3714. bed_level_virt_interpolate();
  3715. #endif
  3716. set_bed_leveling_enabled(abl_should_enable);
  3717. }
  3718. return;
  3719. } // code_seen('W')
  3720. #endif
  3721. #if PLANNER_LEVELING
  3722. // Jettison bed leveling data
  3723. if (code_seen('J')) {
  3724. reset_bed_level();
  3725. return;
  3726. }
  3727. #endif
  3728. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3729. if (!WITHIN(verbose_level, 0, 4)) {
  3730. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3731. return;
  3732. }
  3733. dryrun = code_seen('D') && code_value_bool();
  3734. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3735. do_topography_map = verbose_level > 2 || code_seen('T');
  3736. // X and Y specify points in each direction, overriding the default
  3737. // These values may be saved with the completed mesh
  3738. abl_grid_points_x = code_seen('X') ? code_value_int() : GRID_MAX_POINTS_X;
  3739. abl_grid_points_y = code_seen('Y') ? code_value_int() : GRID_MAX_POINTS_Y;
  3740. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3741. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3742. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3743. return;
  3744. }
  3745. abl2 = abl_grid_points_x * abl_grid_points_y;
  3746. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3747. zoffset = code_seen('Z') ? code_value_linear_units() : 0;
  3748. #endif
  3749. #if ABL_GRID
  3750. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3751. left_probe_bed_position = code_seen('L') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3752. right_probe_bed_position = code_seen('R') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3753. front_probe_bed_position = code_seen('F') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3754. back_probe_bed_position = code_seen('B') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3755. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3756. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3757. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3758. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3759. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3760. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3761. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3762. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3763. if (left_out || right_out || front_out || back_out) {
  3764. if (left_out) {
  3765. out_of_range_error(PSTR("(L)eft"));
  3766. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3767. }
  3768. if (right_out) {
  3769. out_of_range_error(PSTR("(R)ight"));
  3770. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3771. }
  3772. if (front_out) {
  3773. out_of_range_error(PSTR("(F)ront"));
  3774. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3775. }
  3776. if (back_out) {
  3777. out_of_range_error(PSTR("(B)ack"));
  3778. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3779. }
  3780. return;
  3781. }
  3782. // probe at the points of a lattice grid
  3783. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3784. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3785. #endif // ABL_GRID
  3786. if (verbose_level > 0) {
  3787. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3788. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3789. }
  3790. stepper.synchronize();
  3791. // Disable auto bed leveling during G29
  3792. planner.abl_enabled = false;
  3793. if (!dryrun) {
  3794. // Re-orient the current position without leveling
  3795. // based on where the steppers are positioned.
  3796. set_current_from_steppers_for_axis(ALL_AXES);
  3797. // Sync the planner to where the steppers stopped
  3798. SYNC_PLAN_POSITION_KINEMATIC();
  3799. }
  3800. if (!faux) setup_for_endstop_or_probe_move();
  3801. //xProbe = yProbe = measured_z = 0;
  3802. #if HAS_BED_PROBE
  3803. // Deploy the probe. Probe will raise if needed.
  3804. if (DEPLOY_PROBE()) {
  3805. planner.abl_enabled = abl_should_enable;
  3806. return;
  3807. }
  3808. #endif
  3809. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3810. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3811. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3812. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3813. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3814. ) {
  3815. if (dryrun) {
  3816. // Before reset bed level, re-enable to correct the position
  3817. planner.abl_enabled = abl_should_enable;
  3818. }
  3819. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3820. reset_bed_level();
  3821. // Initialize a grid with the given dimensions
  3822. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3823. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3824. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3825. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3826. // Can't re-enable (on error) until the new grid is written
  3827. abl_should_enable = false;
  3828. }
  3829. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3830. mean = 0.0;
  3831. #endif // AUTO_BED_LEVELING_LINEAR
  3832. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3833. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3834. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3835. #endif
  3836. // Probe at 3 arbitrary points
  3837. points[0].z = points[1].z = points[2].z = 0;
  3838. #endif // AUTO_BED_LEVELING_3POINT
  3839. } // !g29_in_progress
  3840. #if ENABLED(PROBE_MANUALLY)
  3841. // Abort current G29 procedure, go back to ABLStart
  3842. if (code_seen('A') && g29_in_progress) {
  3843. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3844. #if HAS_SOFTWARE_ENDSTOPS
  3845. soft_endstops_enabled = enable_soft_endstops;
  3846. #endif
  3847. planner.abl_enabled = abl_should_enable;
  3848. g29_in_progress = false;
  3849. }
  3850. // Query G29 status
  3851. if (code_seen('Q')) {
  3852. if (!g29_in_progress)
  3853. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3854. else {
  3855. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3856. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3857. }
  3858. }
  3859. if (code_seen('A') || code_seen('Q')) return;
  3860. // Fall through to probe the first point
  3861. g29_in_progress = true;
  3862. if (abl_probe_index == 0) {
  3863. // For the initial G29 save software endstop state
  3864. #if HAS_SOFTWARE_ENDSTOPS
  3865. enable_soft_endstops = soft_endstops_enabled;
  3866. #endif
  3867. }
  3868. else {
  3869. // For G29 after adjusting Z.
  3870. // Save the previous Z before going to the next point
  3871. measured_z = current_position[Z_AXIS];
  3872. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3873. mean += measured_z;
  3874. eqnBVector[abl_probe_index] = measured_z;
  3875. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3876. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3877. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3878. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3879. z_values[xCount][yCount] = measured_z + zoffset;
  3880. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3881. points[i].z = measured_z;
  3882. #endif
  3883. }
  3884. //
  3885. // If there's another point to sample, move there with optional lift.
  3886. //
  3887. #if ABL_GRID
  3888. // Find a next point to probe
  3889. // On the first G29 this will be the first probe point
  3890. while (abl_probe_index < abl2) {
  3891. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3892. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3893. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3894. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3895. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3896. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3897. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3898. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3899. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3900. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3901. indexIntoAB[xCount][yCount] = abl_probe_index;
  3902. #endif
  3903. float pos[XYZ] = { xProbe, yProbe, 0 };
  3904. if (position_is_reachable(pos)) break;
  3905. ++abl_probe_index;
  3906. }
  3907. // Is there a next point to move to?
  3908. if (abl_probe_index < abl2) {
  3909. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3910. ++abl_probe_index;
  3911. #if HAS_SOFTWARE_ENDSTOPS
  3912. // Disable software endstops to allow manual adjustment
  3913. // If G29 is not completed, they will not be re-enabled
  3914. soft_endstops_enabled = false;
  3915. #endif
  3916. return;
  3917. }
  3918. else {
  3919. // Then leveling is done!
  3920. // G29 finishing code goes here
  3921. // After recording the last point, activate abl
  3922. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3923. g29_in_progress = false;
  3924. // Re-enable software endstops, if needed
  3925. #if HAS_SOFTWARE_ENDSTOPS
  3926. soft_endstops_enabled = enable_soft_endstops;
  3927. #endif
  3928. }
  3929. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3930. // Probe at 3 arbitrary points
  3931. if (abl_probe_index < 3) {
  3932. xProbe = LOGICAL_X_POSITION(points[i].x);
  3933. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3934. ++abl_probe_index;
  3935. #if HAS_SOFTWARE_ENDSTOPS
  3936. // Disable software endstops to allow manual adjustment
  3937. // If G29 is not completed, they will not be re-enabled
  3938. soft_endstops_enabled = false;
  3939. #endif
  3940. return;
  3941. }
  3942. else {
  3943. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3944. g29_in_progress = false;
  3945. // Re-enable software endstops, if needed
  3946. #if HAS_SOFTWARE_ENDSTOPS
  3947. soft_endstops_enabled = enable_soft_endstops;
  3948. #endif
  3949. if (!dryrun) {
  3950. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3951. if (planeNormal.z < 0) {
  3952. planeNormal.x *= -1;
  3953. planeNormal.y *= -1;
  3954. planeNormal.z *= -1;
  3955. }
  3956. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3957. // Can't re-enable (on error) until the new grid is written
  3958. abl_should_enable = false;
  3959. }
  3960. }
  3961. #endif // AUTO_BED_LEVELING_3POINT
  3962. #else // !PROBE_MANUALLY
  3963. bool stow_probe_after_each = code_seen('E');
  3964. #if ABL_GRID
  3965. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3966. // Outer loop is Y with PROBE_Y_FIRST disabled
  3967. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3968. int8_t inStart, inStop, inInc;
  3969. if (zig) { // away from origin
  3970. inStart = 0;
  3971. inStop = PR_INNER_END;
  3972. inInc = 1;
  3973. }
  3974. else { // towards origin
  3975. inStart = PR_INNER_END - 1;
  3976. inStop = -1;
  3977. inInc = -1;
  3978. }
  3979. zig ^= true; // zag
  3980. // Inner loop is Y with PROBE_Y_FIRST enabled
  3981. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3982. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3983. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3984. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3985. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3986. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3987. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  3988. #endif
  3989. #if IS_KINEMATIC
  3990. // Avoid probing outside the round or hexagonal area
  3991. const float pos[XYZ] = { xProbe, yProbe, 0 };
  3992. if (!position_is_reachable(pos, true)) continue;
  3993. #endif
  3994. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3995. if (isnan(measured_z)) {
  3996. planner.abl_enabled = abl_should_enable;
  3997. return;
  3998. }
  3999. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4000. mean += measured_z;
  4001. eqnBVector[abl_probe_index] = measured_z;
  4002. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4003. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4004. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4005. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4006. z_values[xCount][yCount] = measured_z + zoffset;
  4007. #endif
  4008. abl_should_enable = false;
  4009. idle();
  4010. } // inner
  4011. } // outer
  4012. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4013. // Probe at 3 arbitrary points
  4014. for (uint8_t i = 0; i < 3; ++i) {
  4015. // Retain the last probe position
  4016. xProbe = LOGICAL_X_POSITION(points[i].x);
  4017. yProbe = LOGICAL_Y_POSITION(points[i].y);
  4018. measured_z = points[i].z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4019. }
  4020. if (isnan(measured_z)) {
  4021. planner.abl_enabled = abl_should_enable;
  4022. return;
  4023. }
  4024. if (!dryrun) {
  4025. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4026. if (planeNormal.z < 0) {
  4027. planeNormal.x *= -1;
  4028. planeNormal.y *= -1;
  4029. planeNormal.z *= -1;
  4030. }
  4031. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4032. // Can't re-enable (on error) until the new grid is written
  4033. abl_should_enable = false;
  4034. }
  4035. #endif // AUTO_BED_LEVELING_3POINT
  4036. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4037. if (STOW_PROBE()) {
  4038. planner.abl_enabled = abl_should_enable;
  4039. return;
  4040. }
  4041. #endif // !PROBE_MANUALLY
  4042. //
  4043. // G29 Finishing Code
  4044. //
  4045. // Unless this is a dry run, auto bed leveling will
  4046. // definitely be enabled after this point
  4047. //
  4048. // Restore state after probing
  4049. if (!faux) clean_up_after_endstop_or_probe_move();
  4050. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4051. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4052. #endif
  4053. // Calculate leveling, print reports, correct the position
  4054. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4055. if (!dryrun) extrapolate_unprobed_bed_level();
  4056. print_bilinear_leveling_grid();
  4057. refresh_bed_level();
  4058. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4059. bed_level_virt_print();
  4060. #endif
  4061. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4062. // For LINEAR leveling calculate matrix, print reports, correct the position
  4063. /**
  4064. * solve the plane equation ax + by + d = z
  4065. * A is the matrix with rows [x y 1] for all the probed points
  4066. * B is the vector of the Z positions
  4067. * the normal vector to the plane is formed by the coefficients of the
  4068. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4069. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4070. */
  4071. float plane_equation_coefficients[3];
  4072. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  4073. mean /= abl2;
  4074. if (verbose_level) {
  4075. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4076. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4077. SERIAL_PROTOCOLPGM(" b: ");
  4078. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4079. SERIAL_PROTOCOLPGM(" d: ");
  4080. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4081. SERIAL_EOL;
  4082. if (verbose_level > 2) {
  4083. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4084. SERIAL_PROTOCOL_F(mean, 8);
  4085. SERIAL_EOL;
  4086. }
  4087. }
  4088. // Create the matrix but don't correct the position yet
  4089. if (!dryrun) {
  4090. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4091. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  4092. );
  4093. }
  4094. // Show the Topography map if enabled
  4095. if (do_topography_map) {
  4096. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4097. " +--- BACK --+\n"
  4098. " | |\n"
  4099. " L | (+) | R\n"
  4100. " E | | I\n"
  4101. " F | (-) N (+) | G\n"
  4102. " T | | H\n"
  4103. " | (-) | T\n"
  4104. " | |\n"
  4105. " O-- FRONT --+\n"
  4106. " (0,0)");
  4107. float min_diff = 999;
  4108. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4109. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4110. int ind = indexIntoAB[xx][yy];
  4111. float diff = eqnBVector[ind] - mean,
  4112. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4113. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4114. z_tmp = 0;
  4115. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4116. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4117. if (diff >= 0.0)
  4118. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4119. else
  4120. SERIAL_PROTOCOLCHAR(' ');
  4121. SERIAL_PROTOCOL_F(diff, 5);
  4122. } // xx
  4123. SERIAL_EOL;
  4124. } // yy
  4125. SERIAL_EOL;
  4126. if (verbose_level > 3) {
  4127. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4128. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4129. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4130. int ind = indexIntoAB[xx][yy];
  4131. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4132. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4133. z_tmp = 0;
  4134. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4135. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4136. if (diff >= 0.0)
  4137. SERIAL_PROTOCOLPGM(" +");
  4138. // Include + for column alignment
  4139. else
  4140. SERIAL_PROTOCOLCHAR(' ');
  4141. SERIAL_PROTOCOL_F(diff, 5);
  4142. } // xx
  4143. SERIAL_EOL;
  4144. } // yy
  4145. SERIAL_EOL;
  4146. }
  4147. } //do_topography_map
  4148. #endif // AUTO_BED_LEVELING_LINEAR
  4149. #if ABL_PLANAR
  4150. // For LINEAR and 3POINT leveling correct the current position
  4151. if (verbose_level > 0)
  4152. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  4153. if (!dryrun) {
  4154. //
  4155. // Correct the current XYZ position based on the tilted plane.
  4156. //
  4157. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4158. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4159. #endif
  4160. float converted[XYZ];
  4161. COPY(converted, current_position);
  4162. planner.abl_enabled = true;
  4163. planner.unapply_leveling(converted); // use conversion machinery
  4164. planner.abl_enabled = false;
  4165. // Use the last measured distance to the bed, if possible
  4166. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4167. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4168. ) {
  4169. float simple_z = current_position[Z_AXIS] - measured_z;
  4170. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4171. if (DEBUGGING(LEVELING)) {
  4172. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4173. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4174. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4175. }
  4176. #endif
  4177. converted[Z_AXIS] = simple_z;
  4178. }
  4179. // The rotated XY and corrected Z are now current_position
  4180. COPY(current_position, converted);
  4181. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4182. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4183. #endif
  4184. }
  4185. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4186. if (!dryrun) {
  4187. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4188. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4189. #endif
  4190. // Unapply the offset because it is going to be immediately applied
  4191. // and cause compensation movement in Z
  4192. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4193. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4194. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4195. #endif
  4196. }
  4197. #endif // ABL_PLANAR
  4198. #ifdef Z_PROBE_END_SCRIPT
  4199. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4200. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4201. #endif
  4202. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4203. stepper.synchronize();
  4204. #endif
  4205. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4206. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4207. #endif
  4208. report_current_position();
  4209. KEEPALIVE_STATE(IN_HANDLER);
  4210. // Auto Bed Leveling is complete! Enable if possible.
  4211. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4212. if (planner.abl_enabled)
  4213. SYNC_PLAN_POSITION_KINEMATIC();
  4214. }
  4215. #endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  4216. #if HAS_BED_PROBE
  4217. /**
  4218. * G30: Do a single Z probe at the current XY
  4219. *
  4220. * Parameters:
  4221. *
  4222. * X Probe X position (default current X)
  4223. * Y Probe Y position (default current Y)
  4224. * S0 Leave the probe deployed
  4225. */
  4226. inline void gcode_G30() {
  4227. const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  4228. ypos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  4229. pos[XYZ] = { xpos, ypos, LOGICAL_Z_POSITION(0) };
  4230. if (!position_is_reachable(pos, true)) return;
  4231. // Disable leveling so the planner won't mess with us
  4232. #if PLANNER_LEVELING
  4233. set_bed_leveling_enabled(false);
  4234. #endif
  4235. setup_for_endstop_or_probe_move();
  4236. const float measured_z = probe_pt(xpos, ypos, !code_seen('S') || code_value_bool(), 1);
  4237. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4238. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4239. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4240. clean_up_after_endstop_or_probe_move();
  4241. report_current_position();
  4242. }
  4243. #if ENABLED(Z_PROBE_SLED)
  4244. /**
  4245. * G31: Deploy the Z probe
  4246. */
  4247. inline void gcode_G31() { DEPLOY_PROBE(); }
  4248. /**
  4249. * G32: Stow the Z probe
  4250. */
  4251. inline void gcode_G32() { STOW_PROBE(); }
  4252. #endif // Z_PROBE_SLED
  4253. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4254. /**
  4255. * G33 - Delta '1-4-7-point' auto calibration (Requires DELTA)
  4256. *
  4257. * Usage:
  4258. * G33 <Vn> <Pn> <A> <O> <T>
  4259. *
  4260. * Vn = verbose level (n=0-2 default 1)
  4261. * n=0 dry-run mode: setting + probe results / no calibration
  4262. * n=1 settings
  4263. * n=2 setting + probe results
  4264. * Pn = n=-7 -> +7 : n*n probe points
  4265. * calibrates height ('1 point'), endstops, and delta radius ('4 points')
  4266. * and tower angles with n > 2 ('7+ points')
  4267. * n=1 probes center / sets height only
  4268. * n=2 probes center and towers / sets height, endstops and delta radius
  4269. * n=3 probes all points: center, towers and opposite towers / sets all
  4270. * n>3 probes all points multiple times and averages
  4271. * A = abort 1 point delta height calibration after 1 probe
  4272. * O = use oposite tower points instead of tower points with 4 point calibration
  4273. * T = do not calibrate tower angles with 7+ point calibration
  4274. */
  4275. inline void gcode_G33() {
  4276. stepper.synchronize();
  4277. #if PLANNER_LEVELING
  4278. set_bed_leveling_enabled(false);
  4279. #endif
  4280. int8_t pp = (code_seen('P') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS),
  4281. probe_mode = (WITHIN(pp, 1, 7) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS);
  4282. probe_mode = (code_seen('A') && probe_mode == 1 ? -probe_mode : probe_mode);
  4283. probe_mode = (code_seen('O') && probe_mode == 2 ? -probe_mode : probe_mode);
  4284. probe_mode = (code_seen('T') && probe_mode > 2 ? -probe_mode : probe_mode);
  4285. int8_t verbose_level = (code_seen('V') ? code_value_byte() : 1);
  4286. if (!WITHIN(verbose_level, 0, 2)) verbose_level = 1;
  4287. gcode_G28();
  4288. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4289. float test_precision,
  4290. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4291. e_old[XYZ] = {
  4292. endstop_adj[A_AXIS],
  4293. endstop_adj[B_AXIS],
  4294. endstop_adj[C_AXIS]
  4295. },
  4296. dr_old = delta_radius,
  4297. zh_old = home_offset[Z_AXIS],
  4298. alpha_old = delta_tower_angle_trim[A_AXIS],
  4299. beta_old = delta_tower_angle_trim[B_AXIS];
  4300. int8_t iterations = 0,
  4301. probe_points = abs(probe_mode);
  4302. const bool pp_equals_1 = (probe_points == 1),
  4303. pp_equals_2 = (probe_points == 2),
  4304. pp_equals_3 = (probe_points == 3),
  4305. pp_equals_4 = (probe_points == 4),
  4306. pp_equals_5 = (probe_points == 5),
  4307. pp_equals_6 = (probe_points == 6),
  4308. pp_equals_7 = (probe_points == 7),
  4309. pp_greather_2 = (probe_points > 2),
  4310. pp_greather_3 = (probe_points > 3),
  4311. pp_greather_4 = (probe_points > 4),
  4312. pp_greather_5 = (probe_points > 5);
  4313. // print settings
  4314. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4315. SERIAL_PROTOCOLPGM("Checking... AC");
  4316. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4317. SERIAL_EOL;
  4318. LCD_MESSAGEPGM("Checking... AC");
  4319. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4320. if (!pp_equals_1) {
  4321. SERIAL_PROTOCOLPGM(" Ex:");
  4322. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4323. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4324. SERIAL_PROTOCOLPGM(" Ey:");
  4325. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4326. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4327. SERIAL_PROTOCOLPGM(" Ez:");
  4328. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4329. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4330. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4331. }
  4332. SERIAL_EOL;
  4333. if (probe_mode > 2) { // negative disables tower angles
  4334. SERIAL_PROTOCOLPGM(".Tower angle : Tx:");
  4335. if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
  4336. SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
  4337. SERIAL_PROTOCOLPGM(" Ty:");
  4338. if (delta_tower_angle_trim[B_AXIS] >= 0) SERIAL_CHAR('+');
  4339. SERIAL_PROTOCOL_F(delta_tower_angle_trim[B_AXIS], 2);
  4340. SERIAL_PROTOCOLPGM(" Tz:+0.00");
  4341. SERIAL_EOL;
  4342. }
  4343. #if ENABLED(Z_PROBE_SLED)
  4344. DEPLOY_PROBE();
  4345. #endif
  4346. do {
  4347. float z_at_pt[13] = { 0 },
  4348. S1 = 0.0,
  4349. S2 = 0.0;
  4350. int16_t N = 0;
  4351. test_precision = zero_std_dev;
  4352. iterations++;
  4353. // probe the points
  4354. if (!pp_equals_3 && !pp_equals_6) { // probe the centre
  4355. setup_for_endstop_or_probe_move();
  4356. z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);
  4357. clean_up_after_endstop_or_probe_move();
  4358. }
  4359. if (pp_greather_2) { // probe extra centre points
  4360. for (int8_t axis = (pp_greather_4 ? 11 : 9); axis > 0; axis -= (pp_greather_4 ? 2 : 4)) {
  4361. setup_for_endstop_or_probe_move();
  4362. z_at_pt[0] += probe_pt(
  4363. cos(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius),
  4364. sin(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), true, 1);
  4365. clean_up_after_endstop_or_probe_move();
  4366. }
  4367. z_at_pt[0] /= (pp_equals_5 ? 7 : probe_points);
  4368. }
  4369. if (!pp_equals_1) { // probe the radius
  4370. float start_circles = (pp_equals_7 ? -1.5 : pp_equals_6 || pp_equals_5 ? -1 : 0),
  4371. end_circles = -start_circles;
  4372. bool zig_zag = true;
  4373. for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13;
  4374. axis += (pp_equals_2 ? 4 : pp_equals_3 || pp_equals_5 ? 2 : 1)) {
  4375. for (float circles = start_circles ; circles <= end_circles; circles++) {
  4376. setup_for_endstop_or_probe_move();
  4377. z_at_pt[axis] += probe_pt(
  4378. cos(RADIANS(180 + 30 * axis)) *
  4379. (1 + circles * 0.1 * (zig_zag ? 1 : -1)) * delta_calibration_radius,
  4380. sin(RADIANS(180 + 30 * axis)) *
  4381. (1 + circles * 0.1 * (zig_zag ? 1 : -1)) * delta_calibration_radius, true, 1);
  4382. clean_up_after_endstop_or_probe_move();
  4383. }
  4384. start_circles += (pp_greather_5 ? (zig_zag ? 0.5 : -0.5) : 0);
  4385. end_circles = -start_circles;
  4386. zig_zag = !zig_zag;
  4387. z_at_pt[axis] /= (pp_equals_7 ? (zig_zag ? 4.0 : 3.0) :
  4388. pp_equals_6 ? (zig_zag ? 3.0 : 2.0) : pp_equals_5 ? 3 : 1);
  4389. }
  4390. }
  4391. if (pp_greather_3 && !pp_equals_5) // average intermediates to tower and opposites
  4392. for (uint8_t axis = 1; axis < 13; axis += 2)
  4393. z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
  4394. S1 += z_at_pt[0];
  4395. S2 += sq(z_at_pt[0]);
  4396. N++;
  4397. if (!pp_equals_1) // std dev from zero plane
  4398. for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13; axis += (pp_equals_2 ? 4 : 2)) {
  4399. S1 += z_at_pt[axis];
  4400. S2 += sq(z_at_pt[axis]);
  4401. N++;
  4402. }
  4403. zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4404. // Solve matrices
  4405. if (zero_std_dev < test_precision) {
  4406. COPY(e_old, endstop_adj);
  4407. dr_old = delta_radius;
  4408. zh_old = home_offset[Z_AXIS];
  4409. alpha_old = delta_tower_angle_trim[A_AXIS];
  4410. beta_old = delta_tower_angle_trim[B_AXIS];
  4411. float e_delta[XYZ] = { 0.0 }, r_delta = 0.0,
  4412. t_alpha = 0.0, t_beta = 0.0;
  4413. const float r_diff = delta_radius - delta_calibration_radius,
  4414. h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
  4415. r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
  4416. a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm
  4417. #define ZP(N,I) ((N) * z_at_pt[I])
  4418. #define Z1000(I) ZP(1.00, I)
  4419. #define Z1050(I) ZP(h_factor, I)
  4420. #define Z0700(I) ZP(h_factor * 2.0 / 3.00, I)
  4421. #define Z0350(I) ZP(h_factor / 3.00, I)
  4422. #define Z0175(I) ZP(h_factor / 6.00, I)
  4423. #define Z2250(I) ZP(r_factor, I)
  4424. #define Z0750(I) ZP(r_factor / 3.00, I)
  4425. #define Z0375(I) ZP(r_factor / 6.00, I)
  4426. #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
  4427. #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
  4428. switch (probe_mode) {
  4429. case -1:
  4430. test_precision = 0.00;
  4431. case 1:
  4432. LOOP_XYZ(i) e_delta[i] = Z1000(0);
  4433. break;
  4434. case 2:
  4435. e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
  4436. e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
  4437. e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
  4438. r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
  4439. break;
  4440. case -2:
  4441. e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
  4442. e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
  4443. e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
  4444. r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
  4445. break;
  4446. default:
  4447. e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
  4448. e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
  4449. e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
  4450. r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
  4451. if (probe_mode > 0) { // negative disables tower angles
  4452. t_alpha = + Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
  4453. t_beta = - Z0888(1) + Z0444(5) + Z0444(9) - Z0888(7) + Z0444(11) + Z0444(3);
  4454. }
  4455. break;
  4456. }
  4457. LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
  4458. delta_radius += r_delta;
  4459. delta_tower_angle_trim[A_AXIS] += t_alpha;
  4460. delta_tower_angle_trim[B_AXIS] -= t_beta;
  4461. // adjust delta_height and endstops by the max amount
  4462. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  4463. home_offset[Z_AXIS] -= z_temp;
  4464. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  4465. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4466. }
  4467. else { // step one back
  4468. COPY(endstop_adj, e_old);
  4469. delta_radius = dr_old;
  4470. home_offset[Z_AXIS] = zh_old;
  4471. delta_tower_angle_trim[A_AXIS] = alpha_old;
  4472. delta_tower_angle_trim[B_AXIS] = beta_old;
  4473. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4474. }
  4475. // print report
  4476. if (verbose_level != 1) {
  4477. SERIAL_PROTOCOLPGM(". c:");
  4478. if (z_at_pt[0] > 0) SERIAL_CHAR('+');
  4479. SERIAL_PROTOCOL_F(z_at_pt[0], 2);
  4480. if (probe_mode == 2 || pp_greather_2) {
  4481. SERIAL_PROTOCOLPGM(" x:");
  4482. if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
  4483. SERIAL_PROTOCOL_F(z_at_pt[1], 2);
  4484. SERIAL_PROTOCOLPGM(" y:");
  4485. if (z_at_pt[5] >= 0) SERIAL_CHAR('+');
  4486. SERIAL_PROTOCOL_F(z_at_pt[5], 2);
  4487. SERIAL_PROTOCOLPGM(" z:");
  4488. if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
  4489. SERIAL_PROTOCOL_F(z_at_pt[9], 2);
  4490. }
  4491. if (probe_mode != -2) SERIAL_EOL;
  4492. if (probe_mode == -2 || pp_greather_2) {
  4493. if (pp_greather_2) {
  4494. SERIAL_CHAR('.');
  4495. SERIAL_PROTOCOL_SP(13);
  4496. }
  4497. SERIAL_PROTOCOLPGM(" yz:");
  4498. if (z_at_pt[7] >= 0) SERIAL_CHAR('+');
  4499. SERIAL_PROTOCOL_F(z_at_pt[7], 2);
  4500. SERIAL_PROTOCOLPGM(" zx:");
  4501. if (z_at_pt[11] >= 0) SERIAL_CHAR('+');
  4502. SERIAL_PROTOCOL_F(z_at_pt[11], 2);
  4503. SERIAL_PROTOCOLPGM(" xy:");
  4504. if (z_at_pt[3] >= 0) SERIAL_CHAR('+');
  4505. SERIAL_PROTOCOL_F(z_at_pt[3], 2);
  4506. SERIAL_EOL;
  4507. }
  4508. }
  4509. if (test_precision != 0.0) { // !forced end
  4510. if (zero_std_dev >= test_precision) { // end iterations
  4511. SERIAL_PROTOCOLPGM("Calibration OK");
  4512. SERIAL_PROTOCOL_SP(36);
  4513. SERIAL_PROTOCOLPGM("rolling back.");
  4514. SERIAL_EOL;
  4515. LCD_MESSAGEPGM("Calibration OK");
  4516. }
  4517. else { // !end iterations
  4518. char mess[15] = "No convergence";
  4519. if (iterations < 31)
  4520. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  4521. SERIAL_PROTOCOL(mess);
  4522. SERIAL_PROTOCOL_SP(36);
  4523. SERIAL_PROTOCOLPGM("std dev:");
  4524. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4525. SERIAL_EOL;
  4526. lcd_setstatus(mess);
  4527. }
  4528. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4529. if (!pp_equals_1) {
  4530. SERIAL_PROTOCOLPGM(" Ex:");
  4531. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4532. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4533. SERIAL_PROTOCOLPGM(" Ey:");
  4534. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4535. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4536. SERIAL_PROTOCOLPGM(" Ez:");
  4537. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4538. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4539. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4540. }
  4541. SERIAL_EOL;
  4542. if (probe_mode > 2) { // negative disables tower angles
  4543. SERIAL_PROTOCOLPGM(".Tower angle : Tx:");
  4544. if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
  4545. SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
  4546. SERIAL_PROTOCOLPGM(" Ty:");
  4547. if (delta_tower_angle_trim[B_AXIS] >= 0) SERIAL_CHAR('+');
  4548. SERIAL_PROTOCOL_F(delta_tower_angle_trim[B_AXIS], 2);
  4549. SERIAL_PROTOCOLPGM(" Tz:+0.00");
  4550. SERIAL_EOL;
  4551. }
  4552. if (zero_std_dev >= test_precision)
  4553. serialprintPGM(save_message);
  4554. SERIAL_EOL;
  4555. }
  4556. else { // forced end
  4557. if (verbose_level == 0) {
  4558. SERIAL_PROTOCOLPGM("End DRY-RUN");
  4559. SERIAL_PROTOCOL_SP(39);
  4560. SERIAL_PROTOCOLPGM("std dev:");
  4561. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4562. SERIAL_EOL;
  4563. }
  4564. else {
  4565. SERIAL_PROTOCOLLNPGM("Calibration OK");
  4566. LCD_MESSAGEPGM("Calibration OK");
  4567. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4568. SERIAL_EOL;
  4569. serialprintPGM(save_message);
  4570. SERIAL_EOL;
  4571. }
  4572. }
  4573. stepper.synchronize();
  4574. gcode_G28();
  4575. } while (zero_std_dev < test_precision && iterations < 31);
  4576. #if ENABLED(Z_PROBE_SLED)
  4577. RETRACT_PROBE();
  4578. #endif
  4579. }
  4580. #endif // DELTA_AUTO_CALIBRATION
  4581. #endif // HAS_BED_PROBE
  4582. #if ENABLED(G38_PROBE_TARGET)
  4583. static bool G38_run_probe() {
  4584. bool G38_pass_fail = false;
  4585. // Get direction of move and retract
  4586. float retract_mm[XYZ];
  4587. LOOP_XYZ(i) {
  4588. float dist = destination[i] - current_position[i];
  4589. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4590. }
  4591. stepper.synchronize(); // wait until the machine is idle
  4592. // Move until destination reached or target hit
  4593. endstops.enable(true);
  4594. G38_move = true;
  4595. G38_endstop_hit = false;
  4596. prepare_move_to_destination();
  4597. stepper.synchronize();
  4598. G38_move = false;
  4599. endstops.hit_on_purpose();
  4600. set_current_from_steppers_for_axis(ALL_AXES);
  4601. SYNC_PLAN_POSITION_KINEMATIC();
  4602. if (G38_endstop_hit) {
  4603. G38_pass_fail = true;
  4604. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4605. // Move away by the retract distance
  4606. set_destination_to_current();
  4607. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4608. endstops.enable(false);
  4609. prepare_move_to_destination();
  4610. stepper.synchronize();
  4611. feedrate_mm_s /= 4;
  4612. // Bump the target more slowly
  4613. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4614. endstops.enable(true);
  4615. G38_move = true;
  4616. prepare_move_to_destination();
  4617. stepper.synchronize();
  4618. G38_move = false;
  4619. set_current_from_steppers_for_axis(ALL_AXES);
  4620. SYNC_PLAN_POSITION_KINEMATIC();
  4621. #endif
  4622. }
  4623. endstops.hit_on_purpose();
  4624. endstops.not_homing();
  4625. return G38_pass_fail;
  4626. }
  4627. /**
  4628. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4629. * G38.3 - probe toward workpiece, stop on contact
  4630. *
  4631. * Like G28 except uses Z min probe for all axes
  4632. */
  4633. inline void gcode_G38(bool is_38_2) {
  4634. // Get X Y Z E F
  4635. gcode_get_destination();
  4636. setup_for_endstop_or_probe_move();
  4637. // If any axis has enough movement, do the move
  4638. LOOP_XYZ(i)
  4639. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4640. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4641. // If G38.2 fails throw an error
  4642. if (!G38_run_probe() && is_38_2) {
  4643. SERIAL_ERROR_START;
  4644. SERIAL_ERRORLNPGM("Failed to reach target");
  4645. }
  4646. break;
  4647. }
  4648. clean_up_after_endstop_or_probe_move();
  4649. }
  4650. #endif // G38_PROBE_TARGET
  4651. /**
  4652. * G92: Set current position to given X Y Z E
  4653. */
  4654. inline void gcode_G92() {
  4655. bool didXYZ = false,
  4656. didE = code_seen('E');
  4657. if (!didE) stepper.synchronize();
  4658. LOOP_XYZE(i) {
  4659. if (code_seen(axis_codes[i])) {
  4660. #if IS_SCARA
  4661. current_position[i] = code_value_axis_units((AxisEnum)i);
  4662. if (i != E_AXIS) didXYZ = true;
  4663. #else
  4664. #if HAS_POSITION_SHIFT
  4665. const float p = current_position[i];
  4666. #endif
  4667. float v = code_value_axis_units((AxisEnum)i);
  4668. current_position[i] = v;
  4669. if (i != E_AXIS) {
  4670. didXYZ = true;
  4671. #if HAS_POSITION_SHIFT
  4672. position_shift[i] += v - p; // Offset the coordinate space
  4673. update_software_endstops((AxisEnum)i);
  4674. #endif
  4675. }
  4676. #endif
  4677. }
  4678. }
  4679. if (didXYZ)
  4680. SYNC_PLAN_POSITION_KINEMATIC();
  4681. else if (didE)
  4682. sync_plan_position_e();
  4683. report_current_position();
  4684. }
  4685. #if HAS_RESUME_CONTINUE
  4686. /**
  4687. * M0: Unconditional stop - Wait for user button press on LCD
  4688. * M1: Conditional stop - Wait for user button press on LCD
  4689. */
  4690. inline void gcode_M0_M1() {
  4691. const char * const args = current_command_args;
  4692. millis_t codenum = 0;
  4693. bool hasP = false, hasS = false;
  4694. if (code_seen('P')) {
  4695. codenum = code_value_millis(); // milliseconds to wait
  4696. hasP = codenum > 0;
  4697. }
  4698. if (code_seen('S')) {
  4699. codenum = code_value_millis_from_seconds(); // seconds to wait
  4700. hasS = codenum > 0;
  4701. }
  4702. #if ENABLED(ULTIPANEL)
  4703. if (!hasP && !hasS && *args != '\0')
  4704. lcd_setstatus(args, true);
  4705. else {
  4706. LCD_MESSAGEPGM(MSG_USERWAIT);
  4707. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4708. dontExpireStatus();
  4709. #endif
  4710. }
  4711. #else
  4712. if (!hasP && !hasS && *args != '\0') {
  4713. SERIAL_ECHO_START;
  4714. SERIAL_ECHOLN(args);
  4715. }
  4716. #endif
  4717. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4718. wait_for_user = true;
  4719. stepper.synchronize();
  4720. refresh_cmd_timeout();
  4721. if (codenum > 0) {
  4722. codenum += previous_cmd_ms; // wait until this time for a click
  4723. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4724. }
  4725. else {
  4726. #if ENABLED(ULTIPANEL)
  4727. if (lcd_detected()) {
  4728. while (wait_for_user) idle();
  4729. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4730. }
  4731. #else
  4732. while (wait_for_user) idle();
  4733. #endif
  4734. }
  4735. wait_for_user = false;
  4736. KEEPALIVE_STATE(IN_HANDLER);
  4737. }
  4738. #endif // HAS_RESUME_CONTINUE
  4739. /**
  4740. * M17: Enable power on all stepper motors
  4741. */
  4742. inline void gcode_M17() {
  4743. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4744. enable_all_steppers();
  4745. }
  4746. #if IS_KINEMATIC
  4747. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4748. #else
  4749. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4750. #endif
  4751. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4752. float resume_position[XYZE];
  4753. bool move_away_flag = false;
  4754. inline void move_back_on_resume() {
  4755. if (!move_away_flag) return;
  4756. move_away_flag = false;
  4757. // Set extruder to saved position
  4758. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4759. planner.set_e_position_mm(current_position[E_AXIS]);
  4760. #if IS_KINEMATIC
  4761. // Move XYZ to starting position
  4762. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4763. #else
  4764. // Move XY to starting position, then Z
  4765. destination[X_AXIS] = resume_position[X_AXIS];
  4766. destination[Y_AXIS] = resume_position[Y_AXIS];
  4767. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4768. destination[Z_AXIS] = resume_position[Z_AXIS];
  4769. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4770. #endif
  4771. stepper.synchronize();
  4772. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4773. filament_ran_out = false;
  4774. #endif
  4775. set_current_to_destination();
  4776. }
  4777. #endif // PARK_HEAD_ON_PAUSE
  4778. #if ENABLED(SDSUPPORT)
  4779. /**
  4780. * M20: List SD card to serial output
  4781. */
  4782. inline void gcode_M20() {
  4783. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4784. card.ls();
  4785. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4786. }
  4787. /**
  4788. * M21: Init SD Card
  4789. */
  4790. inline void gcode_M21() { card.initsd(); }
  4791. /**
  4792. * M22: Release SD Card
  4793. */
  4794. inline void gcode_M22() { card.release(); }
  4795. /**
  4796. * M23: Open a file
  4797. */
  4798. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4799. /**
  4800. * M24: Start or Resume SD Print
  4801. */
  4802. inline void gcode_M24() {
  4803. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4804. move_back_on_resume();
  4805. #endif
  4806. card.startFileprint();
  4807. print_job_timer.start();
  4808. }
  4809. /**
  4810. * M25: Pause SD Print
  4811. */
  4812. inline void gcode_M25() {
  4813. card.pauseSDPrint();
  4814. print_job_timer.pause();
  4815. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4816. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4817. #endif
  4818. }
  4819. /**
  4820. * M26: Set SD Card file index
  4821. */
  4822. inline void gcode_M26() {
  4823. if (card.cardOK && code_seen('S'))
  4824. card.setIndex(code_value_long());
  4825. }
  4826. /**
  4827. * M27: Get SD Card status
  4828. */
  4829. inline void gcode_M27() { card.getStatus(); }
  4830. /**
  4831. * M28: Start SD Write
  4832. */
  4833. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4834. /**
  4835. * M29: Stop SD Write
  4836. * Processed in write to file routine above
  4837. */
  4838. inline void gcode_M29() {
  4839. // card.saving = false;
  4840. }
  4841. /**
  4842. * M30 <filename>: Delete SD Card file
  4843. */
  4844. inline void gcode_M30() {
  4845. if (card.cardOK) {
  4846. card.closefile();
  4847. card.removeFile(current_command_args);
  4848. }
  4849. }
  4850. #endif // SDSUPPORT
  4851. /**
  4852. * M31: Get the time since the start of SD Print (or last M109)
  4853. */
  4854. inline void gcode_M31() {
  4855. char buffer[21];
  4856. duration_t elapsed = print_job_timer.duration();
  4857. elapsed.toString(buffer);
  4858. lcd_setstatus(buffer);
  4859. SERIAL_ECHO_START;
  4860. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4861. #if ENABLED(AUTOTEMP)
  4862. thermalManager.autotempShutdown();
  4863. #endif
  4864. }
  4865. #if ENABLED(SDSUPPORT)
  4866. /**
  4867. * M32: Select file and start SD Print
  4868. */
  4869. inline void gcode_M32() {
  4870. if (card.sdprinting)
  4871. stepper.synchronize();
  4872. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4873. if (!namestartpos)
  4874. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4875. else
  4876. namestartpos++; //to skip the '!'
  4877. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4878. if (card.cardOK) {
  4879. card.openFile(namestartpos, true, call_procedure);
  4880. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4881. card.setIndex(code_value_long());
  4882. card.startFileprint();
  4883. // Procedure calls count as normal print time.
  4884. if (!call_procedure) print_job_timer.start();
  4885. }
  4886. }
  4887. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4888. /**
  4889. * M33: Get the long full path of a file or folder
  4890. *
  4891. * Parameters:
  4892. * <dospath> Case-insensitive DOS-style path to a file or folder
  4893. *
  4894. * Example:
  4895. * M33 miscel~1/armchair/armcha~1.gco
  4896. *
  4897. * Output:
  4898. * /Miscellaneous/Armchair/Armchair.gcode
  4899. */
  4900. inline void gcode_M33() {
  4901. card.printLongPath(current_command_args);
  4902. }
  4903. #endif
  4904. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4905. /**
  4906. * M34: Set SD Card Sorting Options
  4907. */
  4908. inline void gcode_M34() {
  4909. if (code_seen('S')) card.setSortOn(code_value_bool());
  4910. if (code_seen('F')) {
  4911. int v = code_value_long();
  4912. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4913. }
  4914. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4915. }
  4916. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4917. /**
  4918. * M928: Start SD Write
  4919. */
  4920. inline void gcode_M928() {
  4921. card.openLogFile(current_command_args);
  4922. }
  4923. #endif // SDSUPPORT
  4924. /**
  4925. * Sensitive pin test for M42, M226
  4926. */
  4927. static bool pin_is_protected(uint8_t pin) {
  4928. static const int sensitive_pins[] = SENSITIVE_PINS;
  4929. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4930. if (sensitive_pins[i] == pin) return true;
  4931. return false;
  4932. }
  4933. /**
  4934. * M42: Change pin status via GCode
  4935. *
  4936. * P<pin> Pin number (LED if omitted)
  4937. * S<byte> Pin status from 0 - 255
  4938. */
  4939. inline void gcode_M42() {
  4940. if (!code_seen('S')) return;
  4941. int pin_status = code_value_int();
  4942. if (!WITHIN(pin_status, 0, 255)) return;
  4943. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4944. if (pin_number < 0) return;
  4945. if (pin_is_protected(pin_number)) {
  4946. SERIAL_ERROR_START;
  4947. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4948. return;
  4949. }
  4950. pinMode(pin_number, OUTPUT);
  4951. digitalWrite(pin_number, pin_status);
  4952. analogWrite(pin_number, pin_status);
  4953. #if FAN_COUNT > 0
  4954. switch (pin_number) {
  4955. #if HAS_FAN0
  4956. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4957. #endif
  4958. #if HAS_FAN1
  4959. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4960. #endif
  4961. #if HAS_FAN2
  4962. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4963. #endif
  4964. }
  4965. #endif
  4966. }
  4967. #if ENABLED(PINS_DEBUGGING)
  4968. #include "pinsDebug.h"
  4969. inline void toggle_pins() {
  4970. const bool I_flag = code_seen('I') && code_value_bool();
  4971. const int repeat = code_seen('R') ? code_value_int() : 1,
  4972. start = code_seen('S') ? code_value_int() : 0,
  4973. end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1,
  4974. wait = code_seen('W') ? code_value_int() : 500;
  4975. for (uint8_t pin = start; pin <= end; pin++) {
  4976. if (!I_flag && pin_is_protected(pin)) {
  4977. SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
  4978. SERIAL_ECHOLNPGM(" untouched.");
  4979. }
  4980. else {
  4981. SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
  4982. pinMode(pin, OUTPUT);
  4983. for (int16_t j = 0; j < repeat; j++) {
  4984. digitalWrite(pin, 0);
  4985. safe_delay(wait);
  4986. digitalWrite(pin, 1);
  4987. safe_delay(wait);
  4988. digitalWrite(pin, 0);
  4989. safe_delay(wait);
  4990. }
  4991. }
  4992. SERIAL_CHAR('\n');
  4993. }
  4994. SERIAL_ECHOLNPGM("Done.");
  4995. } // toggle_pins
  4996. inline void servo_probe_test() {
  4997. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  4998. SERIAL_ERROR_START;
  4999. SERIAL_ERRORLNPGM("SERVO not setup");
  5000. #elif !HAS_Z_SERVO_ENDSTOP
  5001. SERIAL_ERROR_START;
  5002. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  5003. #else
  5004. const uint8_t probe_index = code_seen('P') ? code_value_byte() : Z_ENDSTOP_SERVO_NR;
  5005. SERIAL_PROTOCOLLNPGM("Servo probe test");
  5006. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  5007. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  5008. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  5009. bool probe_inverting;
  5010. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  5011. #define PROBE_TEST_PIN Z_MIN_PIN
  5012. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  5013. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  5014. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  5015. #if Z_MIN_ENDSTOP_INVERTING
  5016. SERIAL_PROTOCOLLNPGM("true");
  5017. #else
  5018. SERIAL_PROTOCOLLNPGM("false");
  5019. #endif
  5020. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  5021. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  5022. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  5023. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  5024. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  5025. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  5026. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  5027. SERIAL_PROTOCOLLNPGM("true");
  5028. #else
  5029. SERIAL_PROTOCOLLNPGM("false");
  5030. #endif
  5031. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5032. #endif
  5033. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5034. pinMode(PROBE_TEST_PIN, INPUT_PULLUP);
  5035. bool deploy_state;
  5036. bool stow_state;
  5037. for (uint8_t i = 0; i < 4; i++) {
  5038. servo[probe_index].move(z_servo_angle[0]); //deploy
  5039. safe_delay(500);
  5040. deploy_state = digitalRead(PROBE_TEST_PIN);
  5041. servo[probe_index].move(z_servo_angle[1]); //stow
  5042. safe_delay(500);
  5043. stow_state = digitalRead(PROBE_TEST_PIN);
  5044. }
  5045. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5046. refresh_cmd_timeout();
  5047. if (deploy_state != stow_state) {
  5048. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5049. if (deploy_state) {
  5050. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5051. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5052. }
  5053. else {
  5054. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5055. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5056. }
  5057. #if ENABLED(BLTOUCH)
  5058. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5059. #endif
  5060. }
  5061. else { // measure active signal length
  5062. servo[probe_index].move(z_servo_angle[0]); // deploy
  5063. safe_delay(500);
  5064. SERIAL_PROTOCOLLNPGM("please trigger probe");
  5065. uint16_t probe_counter = 0;
  5066. // Allow 30 seconds max for operator to trigger probe
  5067. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  5068. safe_delay(2);
  5069. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  5070. refresh_cmd_timeout();
  5071. if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
  5072. for (probe_counter = 1; probe_counter < 50 && deploy_state != digitalRead(PROBE_TEST_PIN); ++probe_counter)
  5073. safe_delay(2);
  5074. if (probe_counter == 50)
  5075. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  5076. else if (probe_counter >= 2)
  5077. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  5078. else
  5079. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  5080. servo[probe_index].move(z_servo_angle[1]); //stow
  5081. } // pulse detected
  5082. } // for loop waiting for trigger
  5083. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  5084. } // measure active signal length
  5085. #endif
  5086. } // servo_probe_test
  5087. /**
  5088. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  5089. *
  5090. * M43 - report name and state of pin(s)
  5091. * P<pin> Pin to read or watch. If omitted, reads all pins.
  5092. * I Flag to ignore Marlin's pin protection.
  5093. *
  5094. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  5095. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  5096. * I Flag to ignore Marlin's pin protection.
  5097. *
  5098. * M43 E<bool> - Enable / disable background endstop monitoring
  5099. * - Machine continues to operate
  5100. * - Reports changes to endstops
  5101. * - Toggles LED when an endstop changes
  5102. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  5103. *
  5104. * M43 T - Toggle pin(s) and report which pin is being toggled
  5105. * S<pin> - Start Pin number. If not given, will default to 0
  5106. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  5107. * I - Flag to ignore Marlin's pin protection. Use with caution!!!!
  5108. * R - Repeat pulses on each pin this number of times before continueing to next pin
  5109. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  5110. *
  5111. * M43 S - Servo probe test
  5112. * P<index> - Probe index (optional - defaults to 0
  5113. */
  5114. inline void gcode_M43() {
  5115. if (code_seen('T')) { // must be first ot else it's "S" and "E" parameters will execute endstop or servo test
  5116. toggle_pins();
  5117. return;
  5118. }
  5119. // Enable or disable endstop monitoring
  5120. if (code_seen('E')) {
  5121. endstop_monitor_flag = code_value_bool();
  5122. SERIAL_PROTOCOLPGM("endstop monitor ");
  5123. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  5124. SERIAL_PROTOCOLLNPGM("abled");
  5125. return;
  5126. }
  5127. if (code_seen('S')) {
  5128. servo_probe_test();
  5129. return;
  5130. }
  5131. // Get the range of pins to test or watch
  5132. const uint8_t first_pin = code_seen('P') ? code_value_byte() : 0,
  5133. last_pin = code_seen('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  5134. if (first_pin > last_pin) return;
  5135. const bool ignore_protection = code_seen('I') && code_value_bool();
  5136. // Watch until click, M108, or reset
  5137. if (code_seen('W') && code_value_bool()) {
  5138. SERIAL_PROTOCOLLNPGM("Watching pins");
  5139. byte pin_state[last_pin - first_pin + 1];
  5140. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5141. if (pin_is_protected(pin) && !ignore_protection) continue;
  5142. pinMode(pin, INPUT_PULLUP);
  5143. /*
  5144. if (IS_ANALOG(pin))
  5145. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  5146. else
  5147. //*/
  5148. pin_state[pin - first_pin] = digitalRead(pin);
  5149. }
  5150. #if HAS_RESUME_CONTINUE
  5151. wait_for_user = true;
  5152. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5153. #endif
  5154. for (;;) {
  5155. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5156. if (pin_is_protected(pin)) continue;
  5157. const byte val =
  5158. /*
  5159. IS_ANALOG(pin)
  5160. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  5161. :
  5162. //*/
  5163. digitalRead(pin);
  5164. if (val != pin_state[pin - first_pin]) {
  5165. report_pin_state(pin);
  5166. pin_state[pin - first_pin] = val;
  5167. }
  5168. }
  5169. #if HAS_RESUME_CONTINUE
  5170. if (!wait_for_user) {
  5171. KEEPALIVE_STATE(IN_HANDLER);
  5172. break;
  5173. }
  5174. #endif
  5175. safe_delay(500);
  5176. }
  5177. return;
  5178. }
  5179. // Report current state of selected pin(s)
  5180. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  5181. report_pin_state_extended(pin, ignore_protection);
  5182. }
  5183. #endif // PINS_DEBUGGING
  5184. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5185. /**
  5186. * M48: Z probe repeatability measurement function.
  5187. *
  5188. * Usage:
  5189. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  5190. * P = Number of sampled points (4-50, default 10)
  5191. * X = Sample X position
  5192. * Y = Sample Y position
  5193. * V = Verbose level (0-4, default=1)
  5194. * E = Engage Z probe for each reading
  5195. * L = Number of legs of movement before probe
  5196. * S = Schizoid (Or Star if you prefer)
  5197. *
  5198. * This function assumes the bed has been homed. Specifically, that a G28 command
  5199. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  5200. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  5201. * regenerated.
  5202. */
  5203. inline void gcode_M48() {
  5204. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5205. bool bed_leveling_state_at_entry=0;
  5206. bed_leveling_state_at_entry = ubl.state.active;
  5207. #endif
  5208. if (axis_unhomed_error(true, true, true)) return;
  5209. const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  5210. if (!WITHIN(verbose_level, 0, 4)) {
  5211. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  5212. return;
  5213. }
  5214. if (verbose_level > 0)
  5215. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  5216. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  5217. if (!WITHIN(n_samples, 4, 50)) {
  5218. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  5219. return;
  5220. }
  5221. float X_current = current_position[X_AXIS],
  5222. Y_current = current_position[Y_AXIS];
  5223. bool stow_probe_after_each = code_seen('E');
  5224. float X_probe_location = code_seen('X') ? code_value_linear_units() : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  5225. #if DISABLED(DELTA)
  5226. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  5227. out_of_range_error(PSTR("X"));
  5228. return;
  5229. }
  5230. #endif
  5231. float Y_probe_location = code_seen('Y') ? code_value_linear_units() : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  5232. #if DISABLED(DELTA)
  5233. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  5234. out_of_range_error(PSTR("Y"));
  5235. return;
  5236. }
  5237. #else
  5238. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  5239. if (!position_is_reachable(pos, true)) {
  5240. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  5241. return;
  5242. }
  5243. #endif
  5244. bool seen_L = code_seen('L');
  5245. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  5246. if (n_legs > 15) {
  5247. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  5248. return;
  5249. }
  5250. if (n_legs == 1) n_legs = 2;
  5251. bool schizoid_flag = code_seen('S');
  5252. if (schizoid_flag && !seen_L) n_legs = 7;
  5253. /**
  5254. * Now get everything to the specified probe point So we can safely do a
  5255. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  5256. * we don't want to use that as a starting point for each probe.
  5257. */
  5258. if (verbose_level > 2)
  5259. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  5260. // Disable bed level correction in M48 because we want the raw data when we probe
  5261. #if HAS_ABL
  5262. const bool abl_was_enabled = planner.abl_enabled;
  5263. set_bed_leveling_enabled(false);
  5264. #endif
  5265. setup_for_endstop_or_probe_move();
  5266. // Move to the first point, deploy, and probe
  5267. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  5268. randomSeed(millis());
  5269. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  5270. for (uint8_t n = 0; n < n_samples; n++) {
  5271. if (n_legs) {
  5272. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  5273. float angle = random(0.0, 360.0),
  5274. radius = random(
  5275. #if ENABLED(DELTA)
  5276. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  5277. #else
  5278. 5, X_MAX_LENGTH / 8
  5279. #endif
  5280. );
  5281. if (verbose_level > 3) {
  5282. SERIAL_ECHOPAIR("Starting radius: ", radius);
  5283. SERIAL_ECHOPAIR(" angle: ", angle);
  5284. SERIAL_ECHOPGM(" Direction: ");
  5285. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  5286. SERIAL_ECHOLNPGM("Clockwise");
  5287. }
  5288. for (uint8_t l = 0; l < n_legs - 1; l++) {
  5289. double delta_angle;
  5290. if (schizoid_flag)
  5291. // The points of a 5 point star are 72 degrees apart. We need to
  5292. // skip a point and go to the next one on the star.
  5293. delta_angle = dir * 2.0 * 72.0;
  5294. else
  5295. // If we do this line, we are just trying to move further
  5296. // around the circle.
  5297. delta_angle = dir * (float) random(25, 45);
  5298. angle += delta_angle;
  5299. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  5300. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  5301. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  5302. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  5303. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  5304. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  5305. #if DISABLED(DELTA)
  5306. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  5307. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  5308. #else
  5309. // If we have gone out too far, we can do a simple fix and scale the numbers
  5310. // back in closer to the origin.
  5311. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  5312. X_current *= 0.8;
  5313. Y_current *= 0.8;
  5314. if (verbose_level > 3) {
  5315. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  5316. SERIAL_ECHOLNPAIR(", ", Y_current);
  5317. }
  5318. }
  5319. #endif
  5320. if (verbose_level > 3) {
  5321. SERIAL_PROTOCOLPGM("Going to:");
  5322. SERIAL_ECHOPAIR(" X", X_current);
  5323. SERIAL_ECHOPAIR(" Y", Y_current);
  5324. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  5325. }
  5326. do_blocking_move_to_xy(X_current, Y_current);
  5327. } // n_legs loop
  5328. } // n_legs
  5329. // Probe a single point
  5330. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  5331. /**
  5332. * Get the current mean for the data points we have so far
  5333. */
  5334. double sum = 0.0;
  5335. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  5336. mean = sum / (n + 1);
  5337. NOMORE(min, sample_set[n]);
  5338. NOLESS(max, sample_set[n]);
  5339. /**
  5340. * Now, use that mean to calculate the standard deviation for the
  5341. * data points we have so far
  5342. */
  5343. sum = 0.0;
  5344. for (uint8_t j = 0; j <= n; j++)
  5345. sum += sq(sample_set[j] - mean);
  5346. sigma = sqrt(sum / (n + 1));
  5347. if (verbose_level > 0) {
  5348. if (verbose_level > 1) {
  5349. SERIAL_PROTOCOL(n + 1);
  5350. SERIAL_PROTOCOLPGM(" of ");
  5351. SERIAL_PROTOCOL((int)n_samples);
  5352. SERIAL_PROTOCOLPGM(": z: ");
  5353. SERIAL_PROTOCOL_F(sample_set[n], 3);
  5354. if (verbose_level > 2) {
  5355. SERIAL_PROTOCOLPGM(" mean: ");
  5356. SERIAL_PROTOCOL_F(mean, 4);
  5357. SERIAL_PROTOCOLPGM(" sigma: ");
  5358. SERIAL_PROTOCOL_F(sigma, 6);
  5359. SERIAL_PROTOCOLPGM(" min: ");
  5360. SERIAL_PROTOCOL_F(min, 3);
  5361. SERIAL_PROTOCOLPGM(" max: ");
  5362. SERIAL_PROTOCOL_F(max, 3);
  5363. SERIAL_PROTOCOLPGM(" range: ");
  5364. SERIAL_PROTOCOL_F(max-min, 3);
  5365. }
  5366. SERIAL_EOL;
  5367. }
  5368. }
  5369. } // End of probe loop
  5370. if (STOW_PROBE()) return;
  5371. SERIAL_PROTOCOLPGM("Finished!");
  5372. SERIAL_EOL;
  5373. if (verbose_level > 0) {
  5374. SERIAL_PROTOCOLPGM("Mean: ");
  5375. SERIAL_PROTOCOL_F(mean, 6);
  5376. SERIAL_PROTOCOLPGM(" Min: ");
  5377. SERIAL_PROTOCOL_F(min, 3);
  5378. SERIAL_PROTOCOLPGM(" Max: ");
  5379. SERIAL_PROTOCOL_F(max, 3);
  5380. SERIAL_PROTOCOLPGM(" Range: ");
  5381. SERIAL_PROTOCOL_F(max-min, 3);
  5382. SERIAL_EOL;
  5383. }
  5384. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5385. SERIAL_PROTOCOL_F(sigma, 6);
  5386. SERIAL_EOL;
  5387. SERIAL_EOL;
  5388. clean_up_after_endstop_or_probe_move();
  5389. // Re-enable bed level correction if it has been on
  5390. #if HAS_ABL
  5391. set_bed_leveling_enabled(abl_was_enabled);
  5392. #endif
  5393. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5394. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  5395. ubl.state.active = bed_leveling_state_at_entry;
  5396. #endif
  5397. report_current_position();
  5398. }
  5399. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5400. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  5401. inline void gcode_M49() {
  5402. ubl.g26_debug_flag ^= true;
  5403. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  5404. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  5405. }
  5406. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  5407. /**
  5408. * M75: Start print timer
  5409. */
  5410. inline void gcode_M75() { print_job_timer.start(); }
  5411. /**
  5412. * M76: Pause print timer
  5413. */
  5414. inline void gcode_M76() { print_job_timer.pause(); }
  5415. /**
  5416. * M77: Stop print timer
  5417. */
  5418. inline void gcode_M77() { print_job_timer.stop(); }
  5419. #if ENABLED(PRINTCOUNTER)
  5420. /**
  5421. * M78: Show print statistics
  5422. */
  5423. inline void gcode_M78() {
  5424. // "M78 S78" will reset the statistics
  5425. if (code_seen('S') && code_value_int() == 78)
  5426. print_job_timer.initStats();
  5427. else
  5428. print_job_timer.showStats();
  5429. }
  5430. #endif
  5431. /**
  5432. * M104: Set hot end temperature
  5433. */
  5434. inline void gcode_M104() {
  5435. if (get_target_extruder_from_command(104)) return;
  5436. if (DEBUGGING(DRYRUN)) return;
  5437. #if ENABLED(SINGLENOZZLE)
  5438. if (target_extruder != active_extruder) return;
  5439. #endif
  5440. if (code_seen('S')) {
  5441. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5442. #if ENABLED(DUAL_X_CARRIAGE)
  5443. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5444. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5445. #endif
  5446. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5447. /**
  5448. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  5449. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  5450. * standby mode, for instance in a dual extruder setup, without affecting
  5451. * the running print timer.
  5452. */
  5453. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  5454. print_job_timer.stop();
  5455. LCD_MESSAGEPGM(WELCOME_MSG);
  5456. }
  5457. #endif
  5458. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5459. }
  5460. #if ENABLED(AUTOTEMP)
  5461. planner.autotemp_M104_M109();
  5462. #endif
  5463. }
  5464. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5465. void print_heaterstates() {
  5466. #if HAS_TEMP_HOTEND
  5467. SERIAL_PROTOCOLPGM(" T:");
  5468. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  5469. SERIAL_PROTOCOLPGM(" /");
  5470. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  5471. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5472. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  5473. SERIAL_PROTOCOLCHAR(')');
  5474. #endif
  5475. #endif
  5476. #if HAS_TEMP_BED
  5477. SERIAL_PROTOCOLPGM(" B:");
  5478. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  5479. SERIAL_PROTOCOLPGM(" /");
  5480. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  5481. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5482. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  5483. SERIAL_PROTOCOLCHAR(')');
  5484. #endif
  5485. #endif
  5486. #if HOTENDS > 1
  5487. HOTEND_LOOP() {
  5488. SERIAL_PROTOCOLPAIR(" T", e);
  5489. SERIAL_PROTOCOLCHAR(':');
  5490. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  5491. SERIAL_PROTOCOLPGM(" /");
  5492. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  5493. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5494. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  5495. SERIAL_PROTOCOLCHAR(')');
  5496. #endif
  5497. }
  5498. #endif
  5499. SERIAL_PROTOCOLPGM(" @:");
  5500. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  5501. #if HAS_TEMP_BED
  5502. SERIAL_PROTOCOLPGM(" B@:");
  5503. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  5504. #endif
  5505. #if HOTENDS > 1
  5506. HOTEND_LOOP() {
  5507. SERIAL_PROTOCOLPAIR(" @", e);
  5508. SERIAL_PROTOCOLCHAR(':');
  5509. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  5510. }
  5511. #endif
  5512. }
  5513. #endif
  5514. /**
  5515. * M105: Read hot end and bed temperature
  5516. */
  5517. inline void gcode_M105() {
  5518. if (get_target_extruder_from_command(105)) return;
  5519. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5520. SERIAL_PROTOCOLPGM(MSG_OK);
  5521. print_heaterstates();
  5522. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  5523. SERIAL_ERROR_START;
  5524. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  5525. #endif
  5526. SERIAL_EOL;
  5527. }
  5528. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  5529. static uint8_t auto_report_temp_interval;
  5530. static millis_t next_temp_report_ms;
  5531. /**
  5532. * M155: Set temperature auto-report interval. M155 S<seconds>
  5533. */
  5534. inline void gcode_M155() {
  5535. if (code_seen('S')) {
  5536. auto_report_temp_interval = code_value_byte();
  5537. NOMORE(auto_report_temp_interval, 60);
  5538. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5539. }
  5540. }
  5541. inline void auto_report_temperatures() {
  5542. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  5543. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5544. print_heaterstates();
  5545. SERIAL_EOL;
  5546. }
  5547. }
  5548. #endif // AUTO_REPORT_TEMPERATURES
  5549. #if FAN_COUNT > 0
  5550. /**
  5551. * M106: Set Fan Speed
  5552. *
  5553. * S<int> Speed between 0-255
  5554. * P<index> Fan index, if more than one fan
  5555. */
  5556. inline void gcode_M106() {
  5557. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  5558. p = code_seen('P') ? code_value_ushort() : 0;
  5559. NOMORE(s, 255);
  5560. if (p < FAN_COUNT) fanSpeeds[p] = s;
  5561. }
  5562. /**
  5563. * M107: Fan Off
  5564. */
  5565. inline void gcode_M107() {
  5566. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  5567. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  5568. }
  5569. #endif // FAN_COUNT > 0
  5570. #if DISABLED(EMERGENCY_PARSER)
  5571. /**
  5572. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  5573. */
  5574. inline void gcode_M108() { wait_for_heatup = false; }
  5575. /**
  5576. * M112: Emergency Stop
  5577. */
  5578. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  5579. /**
  5580. * M410: Quickstop - Abort all planned moves
  5581. *
  5582. * This will stop the carriages mid-move, so most likely they
  5583. * will be out of sync with the stepper position after this.
  5584. */
  5585. inline void gcode_M410() { quickstop_stepper(); }
  5586. #endif
  5587. /**
  5588. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  5589. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  5590. */
  5591. #ifndef MIN_COOLING_SLOPE_DEG
  5592. #define MIN_COOLING_SLOPE_DEG 1.50
  5593. #endif
  5594. #ifndef MIN_COOLING_SLOPE_TIME
  5595. #define MIN_COOLING_SLOPE_TIME 60
  5596. #endif
  5597. inline void gcode_M109() {
  5598. if (get_target_extruder_from_command(109)) return;
  5599. if (DEBUGGING(DRYRUN)) return;
  5600. #if ENABLED(SINGLENOZZLE)
  5601. if (target_extruder != active_extruder) return;
  5602. #endif
  5603. const bool no_wait_for_cooling = code_seen('S');
  5604. if (no_wait_for_cooling || code_seen('R')) {
  5605. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5606. #if ENABLED(DUAL_X_CARRIAGE)
  5607. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5608. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5609. #endif
  5610. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5611. /**
  5612. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  5613. * standby mode, (e.g., in a dual extruder setup) without affecting
  5614. * the running print timer.
  5615. */
  5616. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP) / 2) {
  5617. print_job_timer.stop();
  5618. LCD_MESSAGEPGM(WELCOME_MSG);
  5619. }
  5620. else
  5621. print_job_timer.start();
  5622. #endif
  5623. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5624. }
  5625. else return;
  5626. #if ENABLED(AUTOTEMP)
  5627. planner.autotemp_M104_M109();
  5628. #endif
  5629. #if TEMP_RESIDENCY_TIME > 0
  5630. millis_t residency_start_ms = 0;
  5631. // Loop until the temperature has stabilized
  5632. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  5633. #else
  5634. // Loop until the temperature is very close target
  5635. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  5636. #endif
  5637. float target_temp = -1.0, old_temp = 9999.0;
  5638. bool wants_to_cool = false;
  5639. wait_for_heatup = true;
  5640. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5641. KEEPALIVE_STATE(NOT_BUSY);
  5642. #if ENABLED(PRINTER_EVENT_LEDS)
  5643. const float start_temp = thermalManager.degHotend(target_extruder);
  5644. uint8_t old_blue = 0;
  5645. #endif
  5646. do {
  5647. // Target temperature might be changed during the loop
  5648. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  5649. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  5650. target_temp = thermalManager.degTargetHotend(target_extruder);
  5651. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5652. if (no_wait_for_cooling && wants_to_cool) break;
  5653. }
  5654. now = millis();
  5655. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  5656. next_temp_ms = now + 1000UL;
  5657. print_heaterstates();
  5658. #if TEMP_RESIDENCY_TIME > 0
  5659. SERIAL_PROTOCOLPGM(" W:");
  5660. if (residency_start_ms) {
  5661. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5662. SERIAL_PROTOCOLLN(rem);
  5663. }
  5664. else {
  5665. SERIAL_PROTOCOLLNPGM("?");
  5666. }
  5667. #else
  5668. SERIAL_EOL;
  5669. #endif
  5670. }
  5671. idle();
  5672. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5673. const float temp = thermalManager.degHotend(target_extruder);
  5674. #if ENABLED(PRINTER_EVENT_LEDS)
  5675. // Gradually change LED strip from violet to red as nozzle heats up
  5676. if (!wants_to_cool) {
  5677. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  5678. if (blue != old_blue) set_led_color(255, 0, (old_blue = blue));
  5679. }
  5680. #endif
  5681. #if TEMP_RESIDENCY_TIME > 0
  5682. const float temp_diff = fabs(target_temp - temp);
  5683. if (!residency_start_ms) {
  5684. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  5685. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  5686. }
  5687. else if (temp_diff > TEMP_HYSTERESIS) {
  5688. // Restart the timer whenever the temperature falls outside the hysteresis.
  5689. residency_start_ms = now;
  5690. }
  5691. #endif
  5692. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  5693. if (wants_to_cool) {
  5694. // break after MIN_COOLING_SLOPE_TIME seconds
  5695. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  5696. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5697. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  5698. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  5699. old_temp = temp;
  5700. }
  5701. }
  5702. } while (wait_for_heatup && TEMP_CONDITIONS);
  5703. if (wait_for_heatup) {
  5704. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  5705. #if ENABLED(PRINTER_EVENT_LEDS)
  5706. #if ENABLED(RGBW_LED)
  5707. set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
  5708. #else
  5709. set_led_color(255, 255, 255); // Set LEDs All On
  5710. #endif
  5711. #endif
  5712. }
  5713. KEEPALIVE_STATE(IN_HANDLER);
  5714. }
  5715. #if HAS_TEMP_BED
  5716. #ifndef MIN_COOLING_SLOPE_DEG_BED
  5717. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  5718. #endif
  5719. #ifndef MIN_COOLING_SLOPE_TIME_BED
  5720. #define MIN_COOLING_SLOPE_TIME_BED 60
  5721. #endif
  5722. /**
  5723. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  5724. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  5725. */
  5726. inline void gcode_M190() {
  5727. if (DEBUGGING(DRYRUN)) return;
  5728. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5729. const bool no_wait_for_cooling = code_seen('S');
  5730. if (no_wait_for_cooling || code_seen('R')) {
  5731. thermalManager.setTargetBed(code_value_temp_abs());
  5732. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5733. if (code_value_temp_abs() > BED_MINTEMP)
  5734. print_job_timer.start();
  5735. #endif
  5736. }
  5737. else return;
  5738. #if TEMP_BED_RESIDENCY_TIME > 0
  5739. millis_t residency_start_ms = 0;
  5740. // Loop until the temperature has stabilized
  5741. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5742. #else
  5743. // Loop until the temperature is very close target
  5744. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5745. #endif
  5746. float target_temp = -1.0, old_temp = 9999.0;
  5747. bool wants_to_cool = false;
  5748. wait_for_heatup = true;
  5749. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5750. KEEPALIVE_STATE(NOT_BUSY);
  5751. target_extruder = active_extruder; // for print_heaterstates
  5752. #if ENABLED(PRINTER_EVENT_LEDS)
  5753. const float start_temp = thermalManager.degBed();
  5754. uint8_t old_red = 255;
  5755. #endif
  5756. do {
  5757. // Target temperature might be changed during the loop
  5758. if (target_temp != thermalManager.degTargetBed()) {
  5759. wants_to_cool = thermalManager.isCoolingBed();
  5760. target_temp = thermalManager.degTargetBed();
  5761. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5762. if (no_wait_for_cooling && wants_to_cool) break;
  5763. }
  5764. now = millis();
  5765. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5766. next_temp_ms = now + 1000UL;
  5767. print_heaterstates();
  5768. #if TEMP_BED_RESIDENCY_TIME > 0
  5769. SERIAL_PROTOCOLPGM(" W:");
  5770. if (residency_start_ms) {
  5771. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5772. SERIAL_PROTOCOLLN(rem);
  5773. }
  5774. else {
  5775. SERIAL_PROTOCOLLNPGM("?");
  5776. }
  5777. #else
  5778. SERIAL_EOL;
  5779. #endif
  5780. }
  5781. idle();
  5782. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5783. const float temp = thermalManager.degBed();
  5784. #if ENABLED(PRINTER_EVENT_LEDS)
  5785. // Gradually change LED strip from blue to violet as bed heats up
  5786. if (!wants_to_cool) {
  5787. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  5788. if (red != old_red) set_led_color((old_red = red), 0, 255);
  5789. }
  5790. }
  5791. #endif
  5792. #if TEMP_BED_RESIDENCY_TIME > 0
  5793. const float temp_diff = fabs(target_temp - temp);
  5794. if (!residency_start_ms) {
  5795. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5796. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5797. }
  5798. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5799. // Restart the timer whenever the temperature falls outside the hysteresis.
  5800. residency_start_ms = now;
  5801. }
  5802. #endif // TEMP_BED_RESIDENCY_TIME > 0
  5803. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5804. if (wants_to_cool) {
  5805. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  5806. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5807. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5808. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5809. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5810. old_temp = temp;
  5811. }
  5812. }
  5813. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5814. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5815. KEEPALIVE_STATE(IN_HANDLER);
  5816. }
  5817. #endif // HAS_TEMP_BED
  5818. /**
  5819. * M110: Set Current Line Number
  5820. */
  5821. inline void gcode_M110() {
  5822. if (code_seen('N')) gcode_LastN = code_value_long();
  5823. }
  5824. /**
  5825. * M111: Set the debug level
  5826. */
  5827. inline void gcode_M111() {
  5828. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t)DEBUG_NONE;
  5829. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5830. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5831. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5832. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5833. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5834. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5835. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5836. #endif
  5837. const static char* const debug_strings[] PROGMEM = {
  5838. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5839. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5840. str_debug_32
  5841. #endif
  5842. };
  5843. SERIAL_ECHO_START;
  5844. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  5845. if (marlin_debug_flags) {
  5846. uint8_t comma = 0;
  5847. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  5848. if (TEST(marlin_debug_flags, i)) {
  5849. if (comma++) SERIAL_CHAR(',');
  5850. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  5851. }
  5852. }
  5853. }
  5854. else {
  5855. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  5856. }
  5857. SERIAL_EOL;
  5858. }
  5859. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5860. /**
  5861. * M113: Get or set Host Keepalive interval (0 to disable)
  5862. *
  5863. * S<seconds> Optional. Set the keepalive interval.
  5864. */
  5865. inline void gcode_M113() {
  5866. if (code_seen('S')) {
  5867. host_keepalive_interval = code_value_byte();
  5868. NOMORE(host_keepalive_interval, 60);
  5869. }
  5870. else {
  5871. SERIAL_ECHO_START;
  5872. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5873. }
  5874. }
  5875. #endif
  5876. #if ENABLED(BARICUDA)
  5877. #if HAS_HEATER_1
  5878. /**
  5879. * M126: Heater 1 valve open
  5880. */
  5881. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  5882. /**
  5883. * M127: Heater 1 valve close
  5884. */
  5885. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  5886. #endif
  5887. #if HAS_HEATER_2
  5888. /**
  5889. * M128: Heater 2 valve open
  5890. */
  5891. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  5892. /**
  5893. * M129: Heater 2 valve close
  5894. */
  5895. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  5896. #endif
  5897. #endif //BARICUDA
  5898. /**
  5899. * M140: Set bed temperature
  5900. */
  5901. inline void gcode_M140() {
  5902. if (DEBUGGING(DRYRUN)) return;
  5903. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  5904. }
  5905. #if ENABLED(ULTIPANEL)
  5906. /**
  5907. * M145: Set the heatup state for a material in the LCD menu
  5908. *
  5909. * S<material> (0=PLA, 1=ABS)
  5910. * H<hotend temp>
  5911. * B<bed temp>
  5912. * F<fan speed>
  5913. */
  5914. inline void gcode_M145() {
  5915. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  5916. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  5917. SERIAL_ERROR_START;
  5918. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  5919. }
  5920. else {
  5921. int v;
  5922. if (code_seen('H')) {
  5923. v = code_value_int();
  5924. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  5925. }
  5926. if (code_seen('F')) {
  5927. v = code_value_int();
  5928. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  5929. }
  5930. #if TEMP_SENSOR_BED != 0
  5931. if (code_seen('B')) {
  5932. v = code_value_int();
  5933. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5934. }
  5935. #endif
  5936. }
  5937. }
  5938. #endif // ULTIPANEL
  5939. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5940. /**
  5941. * M149: Set temperature units
  5942. */
  5943. inline void gcode_M149() {
  5944. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5945. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5946. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5947. }
  5948. #endif
  5949. #if HAS_POWER_SWITCH
  5950. /**
  5951. * M80: Turn on Power Supply
  5952. */
  5953. inline void gcode_M80() {
  5954. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5955. /**
  5956. * If you have a switch on suicide pin, this is useful
  5957. * if you want to start another print with suicide feature after
  5958. * a print without suicide...
  5959. */
  5960. #if HAS_SUICIDE
  5961. OUT_WRITE(SUICIDE_PIN, HIGH);
  5962. #endif
  5963. #if ENABLED(HAVE_TMC2130)
  5964. delay(100);
  5965. tmc2130_init(); // Settings only stick when the driver has power
  5966. #endif
  5967. #if ENABLED(ULTIPANEL)
  5968. powersupply = true;
  5969. LCD_MESSAGEPGM(WELCOME_MSG);
  5970. #endif
  5971. }
  5972. #endif // HAS_POWER_SWITCH
  5973. /**
  5974. * M81: Turn off Power, including Power Supply, if there is one.
  5975. *
  5976. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5977. */
  5978. inline void gcode_M81() {
  5979. thermalManager.disable_all_heaters();
  5980. stepper.finish_and_disable();
  5981. #if FAN_COUNT > 0
  5982. #if FAN_COUNT > 1
  5983. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5984. #else
  5985. fanSpeeds[0] = 0;
  5986. #endif
  5987. #endif
  5988. safe_delay(1000); // Wait 1 second before switching off
  5989. #if HAS_SUICIDE
  5990. stepper.synchronize();
  5991. suicide();
  5992. #elif HAS_POWER_SWITCH
  5993. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5994. #endif
  5995. #if ENABLED(ULTIPANEL)
  5996. #if HAS_POWER_SWITCH
  5997. powersupply = false;
  5998. #endif
  5999. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  6000. #endif
  6001. }
  6002. /**
  6003. * M82: Set E codes absolute (default)
  6004. */
  6005. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  6006. /**
  6007. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  6008. */
  6009. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  6010. /**
  6011. * M18, M84: Disable all stepper motors
  6012. */
  6013. inline void gcode_M18_M84() {
  6014. if (code_seen('S')) {
  6015. stepper_inactive_time = code_value_millis_from_seconds();
  6016. }
  6017. else {
  6018. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  6019. if (all_axis) {
  6020. stepper.finish_and_disable();
  6021. }
  6022. else {
  6023. stepper.synchronize();
  6024. if (code_seen('X')) disable_X();
  6025. if (code_seen('Y')) disable_Y();
  6026. if (code_seen('Z')) disable_Z();
  6027. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  6028. if (code_seen('E')) disable_e_steppers();
  6029. #endif
  6030. }
  6031. }
  6032. }
  6033. /**
  6034. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  6035. */
  6036. inline void gcode_M85() {
  6037. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  6038. }
  6039. /**
  6040. * Multi-stepper support for M92, M201, M203
  6041. */
  6042. #if ENABLED(DISTINCT_E_FACTORS)
  6043. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  6044. #define TARGET_EXTRUDER target_extruder
  6045. #else
  6046. #define GET_TARGET_EXTRUDER(CMD) NOOP
  6047. #define TARGET_EXTRUDER 0
  6048. #endif
  6049. /**
  6050. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  6051. * (Follows the same syntax as G92)
  6052. *
  6053. * With multiple extruders use T to specify which one.
  6054. */
  6055. inline void gcode_M92() {
  6056. GET_TARGET_EXTRUDER(92);
  6057. LOOP_XYZE(i) {
  6058. if (code_seen(axis_codes[i])) {
  6059. if (i == E_AXIS) {
  6060. const float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  6061. if (value < 20.0) {
  6062. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  6063. planner.max_jerk[E_AXIS] *= factor;
  6064. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  6065. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  6066. }
  6067. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  6068. }
  6069. else {
  6070. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  6071. }
  6072. }
  6073. }
  6074. planner.refresh_positioning();
  6075. }
  6076. /**
  6077. * Output the current position to serial
  6078. */
  6079. static void report_current_position() {
  6080. SERIAL_PROTOCOLPGM("X:");
  6081. SERIAL_PROTOCOL(current_position[X_AXIS]);
  6082. SERIAL_PROTOCOLPGM(" Y:");
  6083. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  6084. SERIAL_PROTOCOLPGM(" Z:");
  6085. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  6086. SERIAL_PROTOCOLPGM(" E:");
  6087. SERIAL_PROTOCOL(current_position[E_AXIS]);
  6088. stepper.report_positions();
  6089. #if IS_SCARA
  6090. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  6091. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  6092. SERIAL_EOL;
  6093. #endif
  6094. }
  6095. /**
  6096. * M114: Output current position to serial port
  6097. */
  6098. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  6099. /**
  6100. * M115: Capabilities string
  6101. */
  6102. inline void gcode_M115() {
  6103. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  6104. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  6105. // EEPROM (M500, M501)
  6106. #if ENABLED(EEPROM_SETTINGS)
  6107. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  6108. #else
  6109. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  6110. #endif
  6111. // AUTOREPORT_TEMP (M155)
  6112. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  6113. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  6114. #else
  6115. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  6116. #endif
  6117. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  6118. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  6119. // AUTOLEVEL (G29)
  6120. #if HAS_ABL
  6121. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  6122. #else
  6123. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  6124. #endif
  6125. // Z_PROBE (G30)
  6126. #if HAS_BED_PROBE
  6127. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  6128. #else
  6129. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  6130. #endif
  6131. // MESH_REPORT (M420 V)
  6132. #if PLANNER_LEVELING
  6133. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  6134. #else
  6135. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  6136. #endif
  6137. // SOFTWARE_POWER (G30)
  6138. #if HAS_POWER_SWITCH
  6139. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  6140. #else
  6141. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  6142. #endif
  6143. // TOGGLE_LIGHTS (M355)
  6144. #if HAS_CASE_LIGHT
  6145. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  6146. #else
  6147. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  6148. #endif
  6149. // EMERGENCY_PARSER (M108, M112, M410)
  6150. #if ENABLED(EMERGENCY_PARSER)
  6151. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  6152. #else
  6153. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  6154. #endif
  6155. #endif // EXTENDED_CAPABILITIES_REPORT
  6156. }
  6157. /**
  6158. * M117: Set LCD Status Message
  6159. */
  6160. inline void gcode_M117() {
  6161. lcd_setstatus(current_command_args);
  6162. }
  6163. /**
  6164. * M119: Output endstop states to serial output
  6165. */
  6166. inline void gcode_M119() { endstops.M119(); }
  6167. /**
  6168. * M120: Enable endstops and set non-homing endstop state to "enabled"
  6169. */
  6170. inline void gcode_M120() { endstops.enable_globally(true); }
  6171. /**
  6172. * M121: Disable endstops and set non-homing endstop state to "disabled"
  6173. */
  6174. inline void gcode_M121() { endstops.enable_globally(false); }
  6175. #if ENABLED(PARK_HEAD_ON_PAUSE)
  6176. /**
  6177. * M125: Store current position and move to filament change position.
  6178. * Called on pause (by M25) to prevent material leaking onto the
  6179. * object. On resume (M24) the head will be moved back and the
  6180. * print will resume.
  6181. *
  6182. * If Marlin is compiled without SD Card support, M125 can be
  6183. * used directly to pause the print and move to park position,
  6184. * resuming with a button click or M108.
  6185. *
  6186. * L = override retract length
  6187. * X = override X
  6188. * Y = override Y
  6189. * Z = override Z raise
  6190. */
  6191. inline void gcode_M125() {
  6192. if (move_away_flag) return; // already paused
  6193. const bool job_running = print_job_timer.isRunning();
  6194. // there are blocks after this one, or sd printing
  6195. move_away_flag = job_running || planner.blocks_queued()
  6196. #if ENABLED(SDSUPPORT)
  6197. || card.sdprinting
  6198. #endif
  6199. ;
  6200. if (!move_away_flag) return; // nothing to pause
  6201. // M125 can be used to pause a print too
  6202. #if ENABLED(SDSUPPORT)
  6203. card.pauseSDPrint();
  6204. #endif
  6205. print_job_timer.pause();
  6206. // Save current position
  6207. COPY(resume_position, current_position);
  6208. set_destination_to_current();
  6209. // Initial retract before move to filament change position
  6210. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6211. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6212. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6213. #endif
  6214. ;
  6215. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6216. // Lift Z axis
  6217. const float z_lift = code_seen('Z') ? code_value_linear_units() :
  6218. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6219. FILAMENT_CHANGE_Z_ADD
  6220. #else
  6221. 0
  6222. #endif
  6223. ;
  6224. if (z_lift > 0) {
  6225. destination[Z_AXIS] += z_lift;
  6226. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6227. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6228. }
  6229. // Move XY axes to filament change position or given position
  6230. destination[X_AXIS] = code_seen('X') ? code_value_linear_units() : 0
  6231. #ifdef FILAMENT_CHANGE_X_POS
  6232. + FILAMENT_CHANGE_X_POS
  6233. #endif
  6234. ;
  6235. destination[Y_AXIS] = code_seen('Y') ? code_value_linear_units() : 0
  6236. #ifdef FILAMENT_CHANGE_Y_POS
  6237. + FILAMENT_CHANGE_Y_POS
  6238. #endif
  6239. ;
  6240. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6241. if (active_extruder > 0) {
  6242. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  6243. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  6244. }
  6245. #endif
  6246. clamp_to_software_endstops(destination);
  6247. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6248. set_current_to_destination();
  6249. stepper.synchronize();
  6250. disable_e_steppers();
  6251. #if DISABLED(SDSUPPORT)
  6252. // Wait for lcd click or M108
  6253. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6254. wait_for_user = true;
  6255. while (wait_for_user) idle();
  6256. KEEPALIVE_STATE(IN_HANDLER);
  6257. // Return to print position and continue
  6258. move_back_on_resume();
  6259. if (job_running) print_job_timer.start();
  6260. move_away_flag = false;
  6261. #endif
  6262. }
  6263. #endif // PARK_HEAD_ON_PAUSE
  6264. #if HAS_COLOR_LEDS
  6265. /**
  6266. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  6267. *
  6268. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  6269. *
  6270. * Examples:
  6271. *
  6272. * M150 R255 ; Turn LED red
  6273. * M150 R255 U127 ; Turn LED orange (PWM only)
  6274. * M150 ; Turn LED off
  6275. * M150 R U B ; Turn LED white
  6276. * M150 W ; Turn LED white using a white LED
  6277. *
  6278. */
  6279. inline void gcode_M150() {
  6280. set_led_color(
  6281. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6282. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6283. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  6284. #if ENABLED(RGBW_LED)
  6285. , code_seen('W') ? (code_has_value() ? code_value_byte() : 255) : 0
  6286. #endif
  6287. );
  6288. }
  6289. #endif // BLINKM || RGB_LED
  6290. /**
  6291. * M200: Set filament diameter and set E axis units to cubic units
  6292. *
  6293. * T<extruder> - Optional extruder number. Current extruder if omitted.
  6294. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  6295. */
  6296. inline void gcode_M200() {
  6297. if (get_target_extruder_from_command(200)) return;
  6298. if (code_seen('D')) {
  6299. // setting any extruder filament size disables volumetric on the assumption that
  6300. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6301. // for all extruders
  6302. volumetric_enabled = (code_value_linear_units() != 0.0);
  6303. if (volumetric_enabled) {
  6304. filament_size[target_extruder] = code_value_linear_units();
  6305. // make sure all extruders have some sane value for the filament size
  6306. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  6307. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  6308. }
  6309. }
  6310. calculate_volumetric_multipliers();
  6311. }
  6312. /**
  6313. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  6314. *
  6315. * With multiple extruders use T to specify which one.
  6316. */
  6317. inline void gcode_M201() {
  6318. GET_TARGET_EXTRUDER(201);
  6319. LOOP_XYZE(i) {
  6320. if (code_seen(axis_codes[i])) {
  6321. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6322. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units((AxisEnum)a);
  6323. }
  6324. }
  6325. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6326. planner.reset_acceleration_rates();
  6327. }
  6328. #if 0 // Not used for Sprinter/grbl gen6
  6329. inline void gcode_M202() {
  6330. LOOP_XYZE(i) {
  6331. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  6332. }
  6333. }
  6334. #endif
  6335. /**
  6336. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  6337. *
  6338. * With multiple extruders use T to specify which one.
  6339. */
  6340. inline void gcode_M203() {
  6341. GET_TARGET_EXTRUDER(203);
  6342. LOOP_XYZE(i)
  6343. if (code_seen(axis_codes[i])) {
  6344. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6345. planner.max_feedrate_mm_s[a] = code_value_axis_units((AxisEnum)a);
  6346. }
  6347. }
  6348. /**
  6349. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  6350. *
  6351. * P = Printing moves
  6352. * R = Retract only (no X, Y, Z) moves
  6353. * T = Travel (non printing) moves
  6354. *
  6355. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  6356. */
  6357. inline void gcode_M204() {
  6358. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  6359. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  6360. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  6361. }
  6362. if (code_seen('P')) {
  6363. planner.acceleration = code_value_linear_units();
  6364. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  6365. }
  6366. if (code_seen('R')) {
  6367. planner.retract_acceleration = code_value_linear_units();
  6368. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  6369. }
  6370. if (code_seen('T')) {
  6371. planner.travel_acceleration = code_value_linear_units();
  6372. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  6373. }
  6374. }
  6375. /**
  6376. * M205: Set Advanced Settings
  6377. *
  6378. * S = Min Feed Rate (units/s)
  6379. * T = Min Travel Feed Rate (units/s)
  6380. * B = Min Segment Time (µs)
  6381. * X = Max X Jerk (units/sec^2)
  6382. * Y = Max Y Jerk (units/sec^2)
  6383. * Z = Max Z Jerk (units/sec^2)
  6384. * E = Max E Jerk (units/sec^2)
  6385. */
  6386. inline void gcode_M205() {
  6387. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  6388. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  6389. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  6390. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_linear_units();
  6391. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_linear_units();
  6392. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_linear_units();
  6393. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_linear_units();
  6394. }
  6395. #if HAS_M206_COMMAND
  6396. /**
  6397. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  6398. */
  6399. inline void gcode_M206() {
  6400. LOOP_XYZ(i)
  6401. if (code_seen(axis_codes[i]))
  6402. set_home_offset((AxisEnum)i, code_value_linear_units());
  6403. #if ENABLED(MORGAN_SCARA)
  6404. if (code_seen('T')) set_home_offset(A_AXIS, code_value_linear_units()); // Theta
  6405. if (code_seen('P')) set_home_offset(B_AXIS, code_value_linear_units()); // Psi
  6406. #endif
  6407. SYNC_PLAN_POSITION_KINEMATIC();
  6408. report_current_position();
  6409. }
  6410. #endif // HAS_M206_COMMAND
  6411. #if ENABLED(DELTA)
  6412. /**
  6413. * M665: Set delta configurations
  6414. *
  6415. * H = diagonal rod // AC-version
  6416. * L = diagonal rod
  6417. * R = delta radius
  6418. * S = segments per second
  6419. * A = Alpha (Tower 1) diagonal rod trim
  6420. * B = Beta (Tower 2) diagonal rod trim
  6421. * C = Gamma (Tower 3) diagonal rod trim
  6422. */
  6423. inline void gcode_M665() {
  6424. if (code_seen('H')) {
  6425. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6426. current_position[Z_AXIS] += code_value_linear_units() - DELTA_HEIGHT - home_offset[Z_AXIS];
  6427. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6428. update_software_endstops(Z_AXIS);
  6429. }
  6430. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  6431. if (code_seen('R')) delta_radius = code_value_linear_units();
  6432. if (code_seen('S')) delta_segments_per_second = code_value_float();
  6433. if (code_seen('B')) delta_calibration_radius = code_value_float();
  6434. if (code_seen('X')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  6435. if (code_seen('Y')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  6436. if (code_seen('Z')) { // rotate all 3 axis for Z = 0
  6437. delta_tower_angle_trim[A_AXIS] -= code_value_linear_units();
  6438. delta_tower_angle_trim[B_AXIS] -= code_value_linear_units();
  6439. }
  6440. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  6441. }
  6442. /**
  6443. * M666: Set delta endstop adjustment
  6444. */
  6445. inline void gcode_M666() {
  6446. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6447. if (DEBUGGING(LEVELING)) {
  6448. SERIAL_ECHOLNPGM(">>> gcode_M666");
  6449. }
  6450. #endif
  6451. LOOP_XYZ(i) {
  6452. if (code_seen(axis_codes[i])) {
  6453. endstop_adj[i] = code_value_linear_units();
  6454. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6455. if (DEBUGGING(LEVELING)) {
  6456. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  6457. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  6458. }
  6459. #endif
  6460. }
  6461. }
  6462. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6463. if (DEBUGGING(LEVELING)) {
  6464. SERIAL_ECHOLNPGM("<<< gcode_M666");
  6465. }
  6466. #endif
  6467. // normalize endstops so all are <=0; set the residue to delta height
  6468. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  6469. home_offset[Z_AXIS] -= z_temp;
  6470. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  6471. }
  6472. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  6473. /**
  6474. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  6475. */
  6476. inline void gcode_M666() {
  6477. if (code_seen('Z')) z_endstop_adj = code_value_linear_units();
  6478. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  6479. }
  6480. #endif // !DELTA && Z_DUAL_ENDSTOPS
  6481. #if ENABLED(FWRETRACT)
  6482. /**
  6483. * M207: Set firmware retraction values
  6484. *
  6485. * S[+units] retract_length
  6486. * W[+units] retract_length_swap (multi-extruder)
  6487. * F[units/min] retract_feedrate_mm_s
  6488. * Z[units] retract_zlift
  6489. */
  6490. inline void gcode_M207() {
  6491. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  6492. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6493. if (code_seen('Z')) retract_zlift = code_value_linear_units();
  6494. #if EXTRUDERS > 1
  6495. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  6496. #endif
  6497. }
  6498. /**
  6499. * M208: Set firmware un-retraction values
  6500. *
  6501. * S[+units] retract_recover_length (in addition to M207 S*)
  6502. * W[+units] retract_recover_length_swap (multi-extruder)
  6503. * F[units/min] retract_recover_feedrate_mm_s
  6504. */
  6505. inline void gcode_M208() {
  6506. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  6507. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6508. #if EXTRUDERS > 1
  6509. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  6510. #endif
  6511. }
  6512. /**
  6513. * M209: Enable automatic retract (M209 S1)
  6514. * For slicers that don't support G10/11, reversed extrude-only
  6515. * moves will be classified as retraction.
  6516. */
  6517. inline void gcode_M209() {
  6518. if (code_seen('S')) {
  6519. autoretract_enabled = code_value_bool();
  6520. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  6521. }
  6522. }
  6523. #endif // FWRETRACT
  6524. /**
  6525. * M211: Enable, Disable, and/or Report software endstops
  6526. *
  6527. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  6528. */
  6529. inline void gcode_M211() {
  6530. SERIAL_ECHO_START;
  6531. #if HAS_SOFTWARE_ENDSTOPS
  6532. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  6533. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6534. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  6535. #else
  6536. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6537. SERIAL_ECHOPGM(MSG_OFF);
  6538. #endif
  6539. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  6540. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  6541. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  6542. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  6543. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  6544. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  6545. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  6546. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  6547. }
  6548. #if HOTENDS > 1
  6549. /**
  6550. * M218 - set hotend offset (in linear units)
  6551. *
  6552. * T<tool>
  6553. * X<xoffset>
  6554. * Y<yoffset>
  6555. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  6556. */
  6557. inline void gcode_M218() {
  6558. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  6559. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_linear_units();
  6560. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_linear_units();
  6561. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6562. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_linear_units();
  6563. #endif
  6564. SERIAL_ECHO_START;
  6565. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6566. HOTEND_LOOP() {
  6567. SERIAL_CHAR(' ');
  6568. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  6569. SERIAL_CHAR(',');
  6570. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  6571. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6572. SERIAL_CHAR(',');
  6573. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  6574. #endif
  6575. }
  6576. SERIAL_EOL;
  6577. }
  6578. #endif // HOTENDS > 1
  6579. /**
  6580. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  6581. */
  6582. inline void gcode_M220() {
  6583. if (code_seen('S')) feedrate_percentage = code_value_int();
  6584. }
  6585. /**
  6586. * M221: Set extrusion percentage (M221 T0 S95)
  6587. */
  6588. inline void gcode_M221() {
  6589. if (get_target_extruder_from_command(221)) return;
  6590. if (code_seen('S'))
  6591. flow_percentage[target_extruder] = code_value_int();
  6592. }
  6593. /**
  6594. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  6595. */
  6596. inline void gcode_M226() {
  6597. if (code_seen('P')) {
  6598. int pin_number = code_value_int(),
  6599. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  6600. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  6601. int target = LOW;
  6602. stepper.synchronize();
  6603. pinMode(pin_number, INPUT);
  6604. switch (pin_state) {
  6605. case 1:
  6606. target = HIGH;
  6607. break;
  6608. case 0:
  6609. target = LOW;
  6610. break;
  6611. case -1:
  6612. target = !digitalRead(pin_number);
  6613. break;
  6614. }
  6615. while (digitalRead(pin_number) != target) idle();
  6616. } // pin_state -1 0 1 && pin_number > -1
  6617. } // code_seen('P')
  6618. }
  6619. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6620. /**
  6621. * M260: Send data to a I2C slave device
  6622. *
  6623. * This is a PoC, the formating and arguments for the GCODE will
  6624. * change to be more compatible, the current proposal is:
  6625. *
  6626. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  6627. *
  6628. * M260 B<byte-1 value in base 10>
  6629. * M260 B<byte-2 value in base 10>
  6630. * M260 B<byte-3 value in base 10>
  6631. *
  6632. * M260 S1 ; Send the buffered data and reset the buffer
  6633. * M260 R1 ; Reset the buffer without sending data
  6634. *
  6635. */
  6636. inline void gcode_M260() {
  6637. // Set the target address
  6638. if (code_seen('A')) i2c.address(code_value_byte());
  6639. // Add a new byte to the buffer
  6640. if (code_seen('B')) i2c.addbyte(code_value_byte());
  6641. // Flush the buffer to the bus
  6642. if (code_seen('S')) i2c.send();
  6643. // Reset and rewind the buffer
  6644. else if (code_seen('R')) i2c.reset();
  6645. }
  6646. /**
  6647. * M261: Request X bytes from I2C slave device
  6648. *
  6649. * Usage: M261 A<slave device address base 10> B<number of bytes>
  6650. */
  6651. inline void gcode_M261() {
  6652. if (code_seen('A')) i2c.address(code_value_byte());
  6653. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  6654. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  6655. i2c.relay(bytes);
  6656. }
  6657. else {
  6658. SERIAL_ERROR_START;
  6659. SERIAL_ERRORLN("Bad i2c request");
  6660. }
  6661. }
  6662. #endif // EXPERIMENTAL_I2CBUS
  6663. #if HAS_SERVOS
  6664. /**
  6665. * M280: Get or set servo position. P<index> [S<angle>]
  6666. */
  6667. inline void gcode_M280() {
  6668. if (!code_seen('P')) return;
  6669. int servo_index = code_value_int();
  6670. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  6671. if (code_seen('S'))
  6672. MOVE_SERVO(servo_index, code_value_int());
  6673. else {
  6674. SERIAL_ECHO_START;
  6675. SERIAL_ECHOPAIR(" Servo ", servo_index);
  6676. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  6677. }
  6678. }
  6679. else {
  6680. SERIAL_ERROR_START;
  6681. SERIAL_ECHOPAIR("Servo ", servo_index);
  6682. SERIAL_ECHOLNPGM(" out of range");
  6683. }
  6684. }
  6685. #endif // HAS_SERVOS
  6686. #if HAS_BUZZER
  6687. /**
  6688. * M300: Play beep sound S<frequency Hz> P<duration ms>
  6689. */
  6690. inline void gcode_M300() {
  6691. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  6692. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  6693. // Limits the tone duration to 0-5 seconds.
  6694. NOMORE(duration, 5000);
  6695. BUZZ(duration, frequency);
  6696. }
  6697. #endif // HAS_BUZZER
  6698. #if ENABLED(PIDTEMP)
  6699. /**
  6700. * M301: Set PID parameters P I D (and optionally C, L)
  6701. *
  6702. * P[float] Kp term
  6703. * I[float] Ki term (unscaled)
  6704. * D[float] Kd term (unscaled)
  6705. *
  6706. * With PID_EXTRUSION_SCALING:
  6707. *
  6708. * C[float] Kc term
  6709. * L[float] LPQ length
  6710. */
  6711. inline void gcode_M301() {
  6712. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  6713. // default behaviour (omitting E parameter) is to update for extruder 0 only
  6714. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  6715. if (e < HOTENDS) { // catch bad input value
  6716. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  6717. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  6718. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  6719. #if ENABLED(PID_EXTRUSION_SCALING)
  6720. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  6721. if (code_seen('L')) lpq_len = code_value_float();
  6722. NOMORE(lpq_len, LPQ_MAX_LEN);
  6723. #endif
  6724. thermalManager.updatePID();
  6725. SERIAL_ECHO_START;
  6726. #if ENABLED(PID_PARAMS_PER_HOTEND)
  6727. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  6728. #endif // PID_PARAMS_PER_HOTEND
  6729. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  6730. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  6731. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  6732. #if ENABLED(PID_EXTRUSION_SCALING)
  6733. //Kc does not have scaling applied above, or in resetting defaults
  6734. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6735. #endif
  6736. SERIAL_EOL;
  6737. }
  6738. else {
  6739. SERIAL_ERROR_START;
  6740. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6741. }
  6742. }
  6743. #endif // PIDTEMP
  6744. #if ENABLED(PIDTEMPBED)
  6745. inline void gcode_M304() {
  6746. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6747. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6748. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6749. thermalManager.updatePID();
  6750. SERIAL_ECHO_START;
  6751. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6752. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6753. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6754. }
  6755. #endif // PIDTEMPBED
  6756. #if defined(CHDK) || HAS_PHOTOGRAPH
  6757. /**
  6758. * M240: Trigger a camera by emulating a Canon RC-1
  6759. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6760. */
  6761. inline void gcode_M240() {
  6762. #ifdef CHDK
  6763. OUT_WRITE(CHDK, HIGH);
  6764. chdkHigh = millis();
  6765. chdkActive = true;
  6766. #elif HAS_PHOTOGRAPH
  6767. const uint8_t NUM_PULSES = 16;
  6768. const float PULSE_LENGTH = 0.01524;
  6769. for (int i = 0; i < NUM_PULSES; i++) {
  6770. WRITE(PHOTOGRAPH_PIN, HIGH);
  6771. _delay_ms(PULSE_LENGTH);
  6772. WRITE(PHOTOGRAPH_PIN, LOW);
  6773. _delay_ms(PULSE_LENGTH);
  6774. }
  6775. delay(7.33);
  6776. for (int i = 0; i < NUM_PULSES; i++) {
  6777. WRITE(PHOTOGRAPH_PIN, HIGH);
  6778. _delay_ms(PULSE_LENGTH);
  6779. WRITE(PHOTOGRAPH_PIN, LOW);
  6780. _delay_ms(PULSE_LENGTH);
  6781. }
  6782. #endif // !CHDK && HAS_PHOTOGRAPH
  6783. }
  6784. #endif // CHDK || PHOTOGRAPH_PIN
  6785. #if HAS_LCD_CONTRAST
  6786. /**
  6787. * M250: Read and optionally set the LCD contrast
  6788. */
  6789. inline void gcode_M250() {
  6790. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6791. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6792. SERIAL_PROTOCOL(lcd_contrast);
  6793. SERIAL_EOL;
  6794. }
  6795. #endif // HAS_LCD_CONTRAST
  6796. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6797. /**
  6798. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6799. *
  6800. * S<temperature> sets the minimum extrude temperature
  6801. * P<bool> enables (1) or disables (0) cold extrusion
  6802. *
  6803. * Examples:
  6804. *
  6805. * M302 ; report current cold extrusion state
  6806. * M302 P0 ; enable cold extrusion checking
  6807. * M302 P1 ; disables cold extrusion checking
  6808. * M302 S0 ; always allow extrusion (disables checking)
  6809. * M302 S170 ; only allow extrusion above 170
  6810. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6811. */
  6812. inline void gcode_M302() {
  6813. bool seen_S = code_seen('S');
  6814. if (seen_S) {
  6815. thermalManager.extrude_min_temp = code_value_temp_abs();
  6816. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6817. }
  6818. if (code_seen('P'))
  6819. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6820. else if (!seen_S) {
  6821. // Report current state
  6822. SERIAL_ECHO_START;
  6823. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6824. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  6825. SERIAL_ECHOLNPGM("C)");
  6826. }
  6827. }
  6828. #endif // PREVENT_COLD_EXTRUSION
  6829. /**
  6830. * M303: PID relay autotune
  6831. *
  6832. * S<temperature> sets the target temperature. (default 150C)
  6833. * E<extruder> (-1 for the bed) (default 0)
  6834. * C<cycles>
  6835. * U<bool> with a non-zero value will apply the result to current settings
  6836. */
  6837. inline void gcode_M303() {
  6838. #if HAS_PID_HEATING
  6839. int e = code_seen('E') ? code_value_int() : 0;
  6840. int c = code_seen('C') ? code_value_int() : 5;
  6841. bool u = code_seen('U') && code_value_bool();
  6842. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  6843. if (WITHIN(e, 0, HOTENDS - 1))
  6844. target_extruder = e;
  6845. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  6846. thermalManager.PID_autotune(temp, e, c, u);
  6847. KEEPALIVE_STATE(IN_HANDLER);
  6848. #else
  6849. SERIAL_ERROR_START;
  6850. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  6851. #endif
  6852. }
  6853. #if ENABLED(MORGAN_SCARA)
  6854. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  6855. if (IsRunning()) {
  6856. forward_kinematics_SCARA(delta_a, delta_b);
  6857. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  6858. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  6859. destination[Z_AXIS] = current_position[Z_AXIS];
  6860. prepare_move_to_destination();
  6861. return true;
  6862. }
  6863. return false;
  6864. }
  6865. /**
  6866. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  6867. */
  6868. inline bool gcode_M360() {
  6869. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  6870. return SCARA_move_to_cal(0, 120);
  6871. }
  6872. /**
  6873. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  6874. */
  6875. inline bool gcode_M361() {
  6876. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  6877. return SCARA_move_to_cal(90, 130);
  6878. }
  6879. /**
  6880. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  6881. */
  6882. inline bool gcode_M362() {
  6883. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  6884. return SCARA_move_to_cal(60, 180);
  6885. }
  6886. /**
  6887. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  6888. */
  6889. inline bool gcode_M363() {
  6890. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  6891. return SCARA_move_to_cal(50, 90);
  6892. }
  6893. /**
  6894. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  6895. */
  6896. inline bool gcode_M364() {
  6897. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  6898. return SCARA_move_to_cal(45, 135);
  6899. }
  6900. #endif // SCARA
  6901. #if ENABLED(EXT_SOLENOID)
  6902. void enable_solenoid(const uint8_t num) {
  6903. switch (num) {
  6904. case 0:
  6905. OUT_WRITE(SOL0_PIN, HIGH);
  6906. break;
  6907. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6908. case 1:
  6909. OUT_WRITE(SOL1_PIN, HIGH);
  6910. break;
  6911. #endif
  6912. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6913. case 2:
  6914. OUT_WRITE(SOL2_PIN, HIGH);
  6915. break;
  6916. #endif
  6917. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6918. case 3:
  6919. OUT_WRITE(SOL3_PIN, HIGH);
  6920. break;
  6921. #endif
  6922. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6923. case 4:
  6924. OUT_WRITE(SOL4_PIN, HIGH);
  6925. break;
  6926. #endif
  6927. default:
  6928. SERIAL_ECHO_START;
  6929. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  6930. break;
  6931. }
  6932. }
  6933. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  6934. void disable_all_solenoids() {
  6935. OUT_WRITE(SOL0_PIN, LOW);
  6936. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6937. OUT_WRITE(SOL1_PIN, LOW);
  6938. #endif
  6939. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6940. OUT_WRITE(SOL2_PIN, LOW);
  6941. #endif
  6942. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6943. OUT_WRITE(SOL3_PIN, LOW);
  6944. #endif
  6945. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6946. OUT_WRITE(SOL4_PIN, LOW);
  6947. #endif
  6948. }
  6949. /**
  6950. * M380: Enable solenoid on the active extruder
  6951. */
  6952. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6953. /**
  6954. * M381: Disable all solenoids
  6955. */
  6956. inline void gcode_M381() { disable_all_solenoids(); }
  6957. #endif // EXT_SOLENOID
  6958. /**
  6959. * M400: Finish all moves
  6960. */
  6961. inline void gcode_M400() { stepper.synchronize(); }
  6962. #if HAS_BED_PROBE
  6963. /**
  6964. * M401: Engage Z Servo endstop if available
  6965. */
  6966. inline void gcode_M401() { DEPLOY_PROBE(); }
  6967. /**
  6968. * M402: Retract Z Servo endstop if enabled
  6969. */
  6970. inline void gcode_M402() { STOW_PROBE(); }
  6971. #endif // HAS_BED_PROBE
  6972. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6973. /**
  6974. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6975. */
  6976. inline void gcode_M404() {
  6977. if (code_seen('W')) {
  6978. filament_width_nominal = code_value_linear_units();
  6979. }
  6980. else {
  6981. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6982. SERIAL_PROTOCOLLN(filament_width_nominal);
  6983. }
  6984. }
  6985. /**
  6986. * M405: Turn on filament sensor for control
  6987. */
  6988. inline void gcode_M405() {
  6989. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6990. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6991. if (code_seen('D')) meas_delay_cm = code_value_int();
  6992. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6993. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6994. const int temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  6995. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6996. measurement_delay[i] = temp_ratio;
  6997. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  6998. }
  6999. filament_sensor = true;
  7000. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7001. //SERIAL_PROTOCOL(filament_width_meas);
  7002. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  7003. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  7004. }
  7005. /**
  7006. * M406: Turn off filament sensor for control
  7007. */
  7008. inline void gcode_M406() { filament_sensor = false; }
  7009. /**
  7010. * M407: Get measured filament diameter on serial output
  7011. */
  7012. inline void gcode_M407() {
  7013. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7014. SERIAL_PROTOCOLLN(filament_width_meas);
  7015. }
  7016. #endif // FILAMENT_WIDTH_SENSOR
  7017. void quickstop_stepper() {
  7018. stepper.quick_stop();
  7019. stepper.synchronize();
  7020. set_current_from_steppers_for_axis(ALL_AXES);
  7021. SYNC_PLAN_POSITION_KINEMATIC();
  7022. }
  7023. #if PLANNER_LEVELING
  7024. /**
  7025. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  7026. *
  7027. * S[bool] Turns leveling on or off
  7028. * Z[height] Sets the Z fade height (0 or none to disable)
  7029. * V[bool] Verbose - Print the leveling grid
  7030. *
  7031. * With AUTO_BED_LEVELING_UBL only:
  7032. *
  7033. * L[index] Load UBL mesh from index (0 is default)
  7034. */
  7035. inline void gcode_M420() {
  7036. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7037. // L to load a mesh from the EEPROM
  7038. if (code_seen('L')) {
  7039. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  7040. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  7041. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  7042. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  7043. return;
  7044. }
  7045. ubl.load_mesh(storage_slot);
  7046. ubl.state.eeprom_storage_slot = storage_slot;
  7047. }
  7048. #endif // AUTO_BED_LEVELING_UBL
  7049. // V to print the matrix or mesh
  7050. if (code_seen('V')) {
  7051. #if ABL_PLANAR
  7052. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  7053. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7054. if (bilinear_grid_spacing[X_AXIS]) {
  7055. print_bilinear_leveling_grid();
  7056. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7057. bed_level_virt_print();
  7058. #endif
  7059. }
  7060. #elif ENABLED(MESH_BED_LEVELING)
  7061. if (mbl.has_mesh()) {
  7062. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  7063. mbl_mesh_report();
  7064. }
  7065. #endif
  7066. }
  7067. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7068. // L to load a mesh from the EEPROM
  7069. if (code_seen('L') || code_seen('V')) {
  7070. ubl.display_map(0); // Currently only supports one map type
  7071. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  7072. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  7073. }
  7074. #endif
  7075. bool to_enable = false;
  7076. if (code_seen('S')) {
  7077. to_enable = code_value_bool();
  7078. set_bed_leveling_enabled(to_enable);
  7079. }
  7080. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7081. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  7082. #endif
  7083. const bool new_status =
  7084. #if ENABLED(MESH_BED_LEVELING)
  7085. mbl.active()
  7086. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  7087. ubl.state.active
  7088. #else
  7089. planner.abl_enabled
  7090. #endif
  7091. ;
  7092. if (to_enable && !new_status) {
  7093. SERIAL_ERROR_START;
  7094. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  7095. }
  7096. SERIAL_ECHO_START;
  7097. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  7098. }
  7099. #endif
  7100. #if ENABLED(MESH_BED_LEVELING)
  7101. /**
  7102. * M421: Set a single Mesh Bed Leveling Z coordinate
  7103. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  7104. */
  7105. inline void gcode_M421() {
  7106. int8_t px = 0, py = 0;
  7107. float z = 0;
  7108. bool hasX, hasY, hasZ, hasI, hasJ;
  7109. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_linear_units());
  7110. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_linear_units());
  7111. if ((hasI = code_seen('I'))) px = code_value_linear_units();
  7112. if ((hasJ = code_seen('J'))) py = code_value_linear_units();
  7113. if ((hasZ = code_seen('Z'))) z = code_value_linear_units();
  7114. if (hasX && hasY && hasZ) {
  7115. if (px >= 0 && py >= 0)
  7116. mbl.set_z(px, py, z);
  7117. else {
  7118. SERIAL_ERROR_START;
  7119. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7120. }
  7121. }
  7122. else if (hasI && hasJ && hasZ) {
  7123. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_Y - 1))
  7124. mbl.set_z(px, py, z);
  7125. else {
  7126. SERIAL_ERROR_START;
  7127. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7128. }
  7129. }
  7130. else {
  7131. SERIAL_ERROR_START;
  7132. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7133. }
  7134. }
  7135. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
  7136. /**
  7137. * M421: Set a single Mesh Bed Leveling Z coordinate
  7138. *
  7139. * M421 I<xindex> J<yindex> Z<linear>
  7140. */
  7141. inline void gcode_M421() {
  7142. int8_t px = 0, py = 0;
  7143. float z = 0;
  7144. bool hasI, hasJ, hasZ;
  7145. if ((hasI = code_seen('I'))) px = code_value_linear_units();
  7146. if ((hasJ = code_seen('J'))) py = code_value_linear_units();
  7147. if ((hasZ = code_seen('Z'))) z = code_value_linear_units();
  7148. if (hasI && hasJ && hasZ) {
  7149. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_X - 1)) {
  7150. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7151. ubl.z_values[px][py] = z;
  7152. #else
  7153. z_values[px][py] = z;
  7154. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7155. bed_level_virt_interpolate();
  7156. #endif
  7157. #endif
  7158. }
  7159. else {
  7160. SERIAL_ERROR_START;
  7161. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7162. }
  7163. }
  7164. else {
  7165. SERIAL_ERROR_START;
  7166. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7167. }
  7168. }
  7169. #endif
  7170. #if HAS_M206_COMMAND
  7171. /**
  7172. * M428: Set home_offset based on the distance between the
  7173. * current_position and the nearest "reference point."
  7174. * If an axis is past center its endstop position
  7175. * is the reference-point. Otherwise it uses 0. This allows
  7176. * the Z offset to be set near the bed when using a max endstop.
  7177. *
  7178. * M428 can't be used more than 2cm away from 0 or an endstop.
  7179. *
  7180. * Use M206 to set these values directly.
  7181. */
  7182. inline void gcode_M428() {
  7183. bool err = false;
  7184. LOOP_XYZ(i) {
  7185. if (axis_homed[i]) {
  7186. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  7187. diff = current_position[i] - LOGICAL_POSITION(base, i);
  7188. if (WITHIN(diff, -20, 20)) {
  7189. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  7190. }
  7191. else {
  7192. SERIAL_ERROR_START;
  7193. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  7194. LCD_ALERTMESSAGEPGM("Err: Too far!");
  7195. BUZZ(200, 40);
  7196. err = true;
  7197. break;
  7198. }
  7199. }
  7200. }
  7201. if (!err) {
  7202. SYNC_PLAN_POSITION_KINEMATIC();
  7203. report_current_position();
  7204. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  7205. BUZZ(100, 659);
  7206. BUZZ(100, 698);
  7207. }
  7208. }
  7209. #endif // HAS_M206_COMMAND
  7210. /**
  7211. * M500: Store settings in EEPROM
  7212. */
  7213. inline void gcode_M500() {
  7214. (void)settings.save();
  7215. }
  7216. /**
  7217. * M501: Read settings from EEPROM
  7218. */
  7219. inline void gcode_M501() {
  7220. (void)settings.load();
  7221. }
  7222. /**
  7223. * M502: Revert to default settings
  7224. */
  7225. inline void gcode_M502() {
  7226. (void)settings.reset();
  7227. }
  7228. /**
  7229. * M503: print settings currently in memory
  7230. */
  7231. inline void gcode_M503() {
  7232. (void)settings.report(code_seen('S') && !code_value_bool());
  7233. }
  7234. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7235. /**
  7236. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  7237. */
  7238. inline void gcode_M540() {
  7239. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  7240. }
  7241. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  7242. #if HAS_BED_PROBE
  7243. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  7244. static float last_zoffset = NAN;
  7245. if (!isnan(last_zoffset)) {
  7246. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
  7247. const float diff = zprobe_zoffset - last_zoffset;
  7248. #endif
  7249. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7250. // Correct bilinear grid for new probe offset
  7251. if (diff) {
  7252. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  7253. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  7254. z_values[x][y] -= diff;
  7255. }
  7256. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7257. bed_level_virt_interpolate();
  7258. #endif
  7259. #endif
  7260. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7261. if (!no_babystep && planner.abl_enabled)
  7262. thermalManager.babystep_axis(Z_AXIS, -lround(diff * planner.axis_steps_per_mm[Z_AXIS]));
  7263. #else
  7264. UNUSED(no_babystep);
  7265. #endif
  7266. #if ENABLED(DELTA) // correct the delta_height
  7267. home_offset[Z_AXIS] -= diff;
  7268. #endif
  7269. }
  7270. last_zoffset = zprobe_zoffset;
  7271. }
  7272. inline void gcode_M851() {
  7273. SERIAL_ECHO_START;
  7274. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  7275. if (code_seen('Z')) {
  7276. const float value = code_value_linear_units();
  7277. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  7278. zprobe_zoffset = value;
  7279. refresh_zprobe_zoffset();
  7280. SERIAL_ECHO(zprobe_zoffset);
  7281. }
  7282. else
  7283. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  7284. }
  7285. else
  7286. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  7287. SERIAL_EOL;
  7288. }
  7289. #endif // HAS_BED_PROBE
  7290. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7291. void filament_change_beep(const bool init=false) {
  7292. static millis_t next_buzz = 0;
  7293. static uint16_t runout_beep = 0;
  7294. if (init) next_buzz = runout_beep = 0;
  7295. const millis_t ms = millis();
  7296. if (ELAPSED(ms, next_buzz)) {
  7297. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  7298. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  7299. BUZZ(300, 2000);
  7300. runout_beep++;
  7301. }
  7302. }
  7303. }
  7304. static bool busy_doing_M600 = false;
  7305. /**
  7306. * M600: Pause for filament change
  7307. *
  7308. * E[distance] - Retract the filament this far (negative value)
  7309. * Z[distance] - Move the Z axis by this distance
  7310. * X[position] - Move to this X position, with Y
  7311. * Y[position] - Move to this Y position, with X
  7312. * L[distance] - Retract distance for removal (manual reload)
  7313. *
  7314. * Default values are used for omitted arguments.
  7315. *
  7316. */
  7317. inline void gcode_M600() {
  7318. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  7319. SERIAL_ERROR_START;
  7320. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  7321. return;
  7322. }
  7323. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  7324. // Pause the print job timer
  7325. const bool job_running = print_job_timer.isRunning();
  7326. print_job_timer.pause();
  7327. // Show initial message and wait for synchronize steppers
  7328. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  7329. stepper.synchronize();
  7330. // Save current position of all axes
  7331. float lastpos[XYZE];
  7332. COPY(lastpos, current_position);
  7333. set_destination_to_current();
  7334. // Initial retract before move to filament change position
  7335. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  7336. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  7337. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  7338. #endif
  7339. ;
  7340. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  7341. // Lift Z axis
  7342. float z_lift = code_seen('Z') ? code_value_linear_units() :
  7343. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  7344. FILAMENT_CHANGE_Z_ADD
  7345. #else
  7346. 0
  7347. #endif
  7348. ;
  7349. if (z_lift > 0) {
  7350. destination[Z_AXIS] += z_lift;
  7351. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  7352. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7353. }
  7354. // Move XY axes to filament exchange position
  7355. if (code_seen('X')) destination[X_AXIS] = code_value_linear_units();
  7356. #ifdef FILAMENT_CHANGE_X_POS
  7357. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  7358. #endif
  7359. if (code_seen('Y')) destination[Y_AXIS] = code_value_linear_units();
  7360. #ifdef FILAMENT_CHANGE_Y_POS
  7361. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  7362. #endif
  7363. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7364. stepper.synchronize();
  7365. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  7366. idle();
  7367. // Unload filament
  7368. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  7369. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  7370. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  7371. #endif
  7372. ;
  7373. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  7374. // Synchronize steppers and then disable extruders steppers for manual filament changing
  7375. stepper.synchronize();
  7376. disable_e_steppers();
  7377. safe_delay(100);
  7378. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  7379. bool nozzle_timed_out = false;
  7380. float temps[4];
  7381. // Wait for filament insert by user and press button
  7382. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7383. #if HAS_BUZZER
  7384. filament_change_beep(true);
  7385. #endif
  7386. idle();
  7387. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  7388. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7389. wait_for_user = true; // LCD click or M108 will clear this
  7390. while (wait_for_user) {
  7391. if (nozzle_timed_out)
  7392. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7393. #if HAS_BUZZER
  7394. filament_change_beep();
  7395. #endif
  7396. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  7397. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  7398. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  7399. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7400. }
  7401. idle(true);
  7402. }
  7403. KEEPALIVE_STATE(IN_HANDLER);
  7404. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  7405. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  7406. // Show "wait for heating"
  7407. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  7408. wait_for_heatup = true;
  7409. while (wait_for_heatup) {
  7410. idle();
  7411. wait_for_heatup = false;
  7412. HOTEND_LOOP() {
  7413. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  7414. wait_for_heatup = true;
  7415. break;
  7416. }
  7417. }
  7418. }
  7419. // Show "insert filament"
  7420. if (nozzle_timed_out)
  7421. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7422. #if HAS_BUZZER
  7423. filament_change_beep(true);
  7424. #endif
  7425. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7426. wait_for_user = true; // LCD click or M108 will clear this
  7427. while (wait_for_user && nozzle_timed_out) {
  7428. #if HAS_BUZZER
  7429. filament_change_beep();
  7430. #endif
  7431. idle(true);
  7432. }
  7433. KEEPALIVE_STATE(IN_HANDLER);
  7434. // Show "load" message
  7435. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  7436. // Load filament
  7437. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  7438. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  7439. + FILAMENT_CHANGE_LOAD_LENGTH
  7440. #endif
  7441. ;
  7442. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  7443. stepper.synchronize();
  7444. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  7445. do {
  7446. // "Wait for filament extrude"
  7447. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  7448. // Extrude filament to get into hotend
  7449. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  7450. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  7451. stepper.synchronize();
  7452. // Show "Extrude More" / "Resume" menu and wait for reply
  7453. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7454. wait_for_user = false;
  7455. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  7456. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  7457. KEEPALIVE_STATE(IN_HANDLER);
  7458. // Keep looping if "Extrude More" was selected
  7459. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  7460. #endif
  7461. // "Wait for print to resume"
  7462. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  7463. // Set extruder to saved position
  7464. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  7465. planner.set_e_position_mm(current_position[E_AXIS]);
  7466. #if IS_KINEMATIC
  7467. // Move XYZ to starting position
  7468. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  7469. #else
  7470. // Move XY to starting position, then Z
  7471. destination[X_AXIS] = lastpos[X_AXIS];
  7472. destination[Y_AXIS] = lastpos[Y_AXIS];
  7473. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7474. destination[Z_AXIS] = lastpos[Z_AXIS];
  7475. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7476. #endif
  7477. stepper.synchronize();
  7478. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7479. filament_ran_out = false;
  7480. #endif
  7481. // Show status screen
  7482. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  7483. // Resume the print job timer if it was running
  7484. if (job_running) print_job_timer.start();
  7485. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  7486. }
  7487. #endif // FILAMENT_CHANGE_FEATURE
  7488. #if ENABLED(DUAL_X_CARRIAGE)
  7489. /**
  7490. * M605: Set dual x-carriage movement mode
  7491. *
  7492. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  7493. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  7494. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  7495. * units x-offset and an optional differential hotend temperature of
  7496. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  7497. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  7498. *
  7499. * Note: the X axis should be homed after changing dual x-carriage mode.
  7500. */
  7501. inline void gcode_M605() {
  7502. stepper.synchronize();
  7503. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  7504. switch (dual_x_carriage_mode) {
  7505. case DXC_FULL_CONTROL_MODE:
  7506. case DXC_AUTO_PARK_MODE:
  7507. break;
  7508. case DXC_DUPLICATION_MODE:
  7509. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_linear_units(), X2_MIN_POS - x_home_pos(0));
  7510. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  7511. SERIAL_ECHO_START;
  7512. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7513. SERIAL_CHAR(' ');
  7514. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  7515. SERIAL_CHAR(',');
  7516. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  7517. SERIAL_CHAR(' ');
  7518. SERIAL_ECHO(duplicate_extruder_x_offset);
  7519. SERIAL_CHAR(',');
  7520. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  7521. break;
  7522. default:
  7523. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  7524. break;
  7525. }
  7526. active_extruder_parked = false;
  7527. extruder_duplication_enabled = false;
  7528. delayed_move_time = 0;
  7529. }
  7530. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  7531. inline void gcode_M605() {
  7532. stepper.synchronize();
  7533. extruder_duplication_enabled = code_seen('S') && code_value_int() == (int)DXC_DUPLICATION_MODE;
  7534. SERIAL_ECHO_START;
  7535. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  7536. }
  7537. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  7538. #if ENABLED(LIN_ADVANCE)
  7539. /**
  7540. * M900: Set and/or Get advance K factor and WH/D ratio
  7541. *
  7542. * K<factor> Set advance K factor
  7543. * R<ratio> Set ratio directly (overrides WH/D)
  7544. * W<width> H<height> D<diam> Set ratio from WH/D
  7545. */
  7546. inline void gcode_M900() {
  7547. stepper.synchronize();
  7548. const float newK = code_seen('K') ? code_value_float() : -1;
  7549. if (newK >= 0) planner.extruder_advance_k = newK;
  7550. float newR = code_seen('R') ? code_value_float() : -1;
  7551. if (newR < 0) {
  7552. const float newD = code_seen('D') ? code_value_float() : -1,
  7553. newW = code_seen('W') ? code_value_float() : -1,
  7554. newH = code_seen('H') ? code_value_float() : -1;
  7555. if (newD >= 0 && newW >= 0 && newH >= 0)
  7556. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  7557. }
  7558. if (newR >= 0) planner.advance_ed_ratio = newR;
  7559. SERIAL_ECHO_START;
  7560. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  7561. SERIAL_ECHOPGM(" E/D=");
  7562. const float ratio = planner.advance_ed_ratio;
  7563. ratio ? SERIAL_ECHO(ratio) : SERIAL_ECHOPGM("Auto");
  7564. SERIAL_EOL;
  7565. }
  7566. #endif // LIN_ADVANCE
  7567. #if ENABLED(HAVE_TMC2130)
  7568. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  7569. SERIAL_CHAR(name);
  7570. SERIAL_ECHOPGM(" axis driver current: ");
  7571. SERIAL_ECHOLN(st.getCurrent());
  7572. }
  7573. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  7574. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  7575. tmc2130_get_current(st, name);
  7576. }
  7577. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  7578. SERIAL_CHAR(name);
  7579. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  7580. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  7581. SERIAL_EOL;
  7582. }
  7583. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  7584. st.clear_otpw();
  7585. SERIAL_CHAR(name);
  7586. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  7587. }
  7588. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  7589. SERIAL_CHAR(name);
  7590. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  7591. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  7592. }
  7593. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  7594. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  7595. tmc2130_get_pwmthrs(st, name, spmm);
  7596. }
  7597. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  7598. SERIAL_CHAR(name);
  7599. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  7600. SERIAL_ECHOLN(st.sgt());
  7601. }
  7602. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  7603. st.sgt(sgt_val);
  7604. tmc2130_get_sgt(st, name);
  7605. }
  7606. /**
  7607. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7608. * Report driver currents when no axis specified
  7609. *
  7610. * S1: Enable automatic current control
  7611. * S0: Disable
  7612. */
  7613. inline void gcode_M906() {
  7614. uint16_t values[XYZE];
  7615. LOOP_XYZE(i)
  7616. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7617. #if ENABLED(X_IS_TMC2130)
  7618. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  7619. else tmc2130_get_current(stepperX, 'X');
  7620. #endif
  7621. #if ENABLED(Y_IS_TMC2130)
  7622. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  7623. else tmc2130_get_current(stepperY, 'Y');
  7624. #endif
  7625. #if ENABLED(Z_IS_TMC2130)
  7626. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  7627. else tmc2130_get_current(stepperZ, 'Z');
  7628. #endif
  7629. #if ENABLED(E0_IS_TMC2130)
  7630. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  7631. else tmc2130_get_current(stepperE0, 'E');
  7632. #endif
  7633. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  7634. if (code_seen('S')) auto_current_control = code_value_bool();
  7635. #endif
  7636. }
  7637. /**
  7638. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  7639. * The flag is held by the library and persist until manually cleared by M912
  7640. */
  7641. inline void gcode_M911() {
  7642. const bool reportX = code_seen('X'), reportY = code_seen('Y'), reportZ = code_seen('Z'), reportE = code_seen('E'),
  7643. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  7644. #if ENABLED(X_IS_TMC2130)
  7645. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  7646. #endif
  7647. #if ENABLED(Y_IS_TMC2130)
  7648. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  7649. #endif
  7650. #if ENABLED(Z_IS_TMC2130)
  7651. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  7652. #endif
  7653. #if ENABLED(E0_IS_TMC2130)
  7654. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  7655. #endif
  7656. }
  7657. /**
  7658. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  7659. */
  7660. inline void gcode_M912() {
  7661. const bool clearX = code_seen('X'), clearY = code_seen('Y'), clearZ = code_seen('Z'), clearE = code_seen('E'),
  7662. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  7663. #if ENABLED(X_IS_TMC2130)
  7664. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  7665. #endif
  7666. #if ENABLED(Y_IS_TMC2130)
  7667. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  7668. #endif
  7669. #if ENABLED(Z_IS_TMC2130)
  7670. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  7671. #endif
  7672. #if ENABLED(E0_IS_TMC2130)
  7673. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  7674. #endif
  7675. }
  7676. /**
  7677. * M913: Set HYBRID_THRESHOLD speed.
  7678. */
  7679. #if ENABLED(HYBRID_THRESHOLD)
  7680. inline void gcode_M913() {
  7681. uint16_t values[XYZE];
  7682. LOOP_XYZE(i)
  7683. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7684. #if ENABLED(X_IS_TMC2130)
  7685. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  7686. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  7687. #endif
  7688. #if ENABLED(Y_IS_TMC2130)
  7689. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  7690. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  7691. #endif
  7692. #if ENABLED(Z_IS_TMC2130)
  7693. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  7694. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  7695. #endif
  7696. #if ENABLED(E0_IS_TMC2130)
  7697. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  7698. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  7699. #endif
  7700. }
  7701. #endif // HYBRID_THRESHOLD
  7702. /**
  7703. * M914: Set SENSORLESS_HOMING sensitivity.
  7704. */
  7705. #if ENABLED(SENSORLESS_HOMING)
  7706. inline void gcode_M914() {
  7707. #if ENABLED(X_IS_TMC2130)
  7708. if (code_seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', code_value_int());
  7709. else tmc2130_get_sgt(stepperX, 'X');
  7710. #endif
  7711. #if ENABLED(Y_IS_TMC2130)
  7712. if (code_seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', code_value_int());
  7713. else tmc2130_get_sgt(stepperY, 'Y');
  7714. #endif
  7715. }
  7716. #endif // SENSORLESS_HOMING
  7717. #endif // HAVE_TMC2130
  7718. /**
  7719. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  7720. */
  7721. inline void gcode_M907() {
  7722. #if HAS_DIGIPOTSS
  7723. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  7724. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  7725. if (code_seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  7726. #elif HAS_MOTOR_CURRENT_PWM
  7727. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  7728. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  7729. #endif
  7730. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  7731. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  7732. #endif
  7733. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  7734. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  7735. #endif
  7736. #endif
  7737. #if ENABLED(DIGIPOT_I2C)
  7738. // this one uses actual amps in floating point
  7739. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  7740. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  7741. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  7742. #endif
  7743. #if ENABLED(DAC_STEPPER_CURRENT)
  7744. if (code_seen('S')) {
  7745. const float dac_percent = code_value_float();
  7746. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  7747. }
  7748. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  7749. #endif
  7750. }
  7751. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7752. /**
  7753. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  7754. */
  7755. inline void gcode_M908() {
  7756. #if HAS_DIGIPOTSS
  7757. stepper.digitalPotWrite(
  7758. code_seen('P') ? code_value_int() : 0,
  7759. code_seen('S') ? code_value_int() : 0
  7760. );
  7761. #endif
  7762. #ifdef DAC_STEPPER_CURRENT
  7763. dac_current_raw(
  7764. code_seen('P') ? code_value_byte() : -1,
  7765. code_seen('S') ? code_value_ushort() : 0
  7766. );
  7767. #endif
  7768. }
  7769. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7770. inline void gcode_M909() { dac_print_values(); }
  7771. inline void gcode_M910() { dac_commit_eeprom(); }
  7772. #endif
  7773. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7774. #if HAS_MICROSTEPS
  7775. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7776. inline void gcode_M350() {
  7777. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  7778. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  7779. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  7780. stepper.microstep_readings();
  7781. }
  7782. /**
  7783. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  7784. * S# determines MS1 or MS2, X# sets the pin high/low.
  7785. */
  7786. inline void gcode_M351() {
  7787. if (code_seen('S')) switch (code_value_byte()) {
  7788. case 1:
  7789. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  7790. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  7791. break;
  7792. case 2:
  7793. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  7794. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  7795. break;
  7796. }
  7797. stepper.microstep_readings();
  7798. }
  7799. #endif // HAS_MICROSTEPS
  7800. #if HAS_CASE_LIGHT
  7801. uint8_t case_light_brightness = 255;
  7802. void update_case_light() {
  7803. WRITE(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  7804. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  7805. }
  7806. #endif // HAS_CASE_LIGHT
  7807. /**
  7808. * M355: Turn case lights on/off and set brightness
  7809. *
  7810. * S<bool> Turn case light on or off
  7811. * P<byte> Set case light brightness (PWM pin required)
  7812. */
  7813. inline void gcode_M355() {
  7814. #if HAS_CASE_LIGHT
  7815. if (code_seen('P')) case_light_brightness = code_value_byte();
  7816. if (code_seen('S')) case_light_on = code_value_bool();
  7817. update_case_light();
  7818. SERIAL_ECHO_START;
  7819. SERIAL_ECHOPGM("Case lights ");
  7820. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  7821. #else
  7822. SERIAL_ERROR_START;
  7823. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  7824. #endif // HAS_CASE_LIGHT
  7825. }
  7826. #if ENABLED(MIXING_EXTRUDER)
  7827. /**
  7828. * M163: Set a single mix factor for a mixing extruder
  7829. * This is called "weight" by some systems.
  7830. *
  7831. * S[index] The channel index to set
  7832. * P[float] The mix value
  7833. *
  7834. */
  7835. inline void gcode_M163() {
  7836. const int mix_index = code_seen('S') ? code_value_int() : 0;
  7837. if (mix_index < MIXING_STEPPERS) {
  7838. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  7839. NOLESS(mix_value, 0.0);
  7840. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  7841. }
  7842. }
  7843. #if MIXING_VIRTUAL_TOOLS > 1
  7844. /**
  7845. * M164: Store the current mix factors as a virtual tool.
  7846. *
  7847. * S[index] The virtual tool to store
  7848. *
  7849. */
  7850. inline void gcode_M164() {
  7851. const int tool_index = code_seen('S') ? code_value_int() : 0;
  7852. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  7853. normalize_mix();
  7854. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7855. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  7856. }
  7857. }
  7858. #endif
  7859. #if ENABLED(DIRECT_MIXING_IN_G1)
  7860. /**
  7861. * M165: Set multiple mix factors for a mixing extruder.
  7862. * Factors that are left out will be set to 0.
  7863. * All factors together must add up to 1.0.
  7864. *
  7865. * A[factor] Mix factor for extruder stepper 1
  7866. * B[factor] Mix factor for extruder stepper 2
  7867. * C[factor] Mix factor for extruder stepper 3
  7868. * D[factor] Mix factor for extruder stepper 4
  7869. * H[factor] Mix factor for extruder stepper 5
  7870. * I[factor] Mix factor for extruder stepper 6
  7871. *
  7872. */
  7873. inline void gcode_M165() { gcode_get_mix(); }
  7874. #endif
  7875. #endif // MIXING_EXTRUDER
  7876. /**
  7877. * M999: Restart after being stopped
  7878. *
  7879. * Default behaviour is to flush the serial buffer and request
  7880. * a resend to the host starting on the last N line received.
  7881. *
  7882. * Sending "M999 S1" will resume printing without flushing the
  7883. * existing command buffer.
  7884. *
  7885. */
  7886. inline void gcode_M999() {
  7887. Running = true;
  7888. lcd_reset_alert_level();
  7889. if (code_seen('S') && code_value_bool()) return;
  7890. // gcode_LastN = Stopped_gcode_LastN;
  7891. FlushSerialRequestResend();
  7892. }
  7893. #if ENABLED(SWITCHING_EXTRUDER)
  7894. inline void move_extruder_servo(uint8_t e) {
  7895. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  7896. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  7897. safe_delay(500);
  7898. }
  7899. #endif
  7900. inline void invalid_extruder_error(const uint8_t &e) {
  7901. SERIAL_ECHO_START;
  7902. SERIAL_CHAR('T');
  7903. SERIAL_ECHO_F(e, DEC);
  7904. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  7905. }
  7906. /**
  7907. * Perform a tool-change, which may result in moving the
  7908. * previous tool out of the way and the new tool into place.
  7909. */
  7910. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  7911. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7912. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  7913. return invalid_extruder_error(tmp_extruder);
  7914. // T0-Tnnn: Switch virtual tool by changing the mix
  7915. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  7916. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  7917. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7918. #if HOTENDS > 1
  7919. if (tmp_extruder >= EXTRUDERS)
  7920. return invalid_extruder_error(tmp_extruder);
  7921. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  7922. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  7923. if (tmp_extruder != active_extruder) {
  7924. if (!no_move && axis_unhomed_error(true, true, true)) {
  7925. SERIAL_ECHOLNPGM("No move on toolchange");
  7926. no_move = true;
  7927. }
  7928. // Save current position to destination, for use later
  7929. set_destination_to_current();
  7930. #if ENABLED(DUAL_X_CARRIAGE)
  7931. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7932. if (DEBUGGING(LEVELING)) {
  7933. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  7934. switch (dual_x_carriage_mode) {
  7935. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  7936. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  7937. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  7938. }
  7939. }
  7940. #endif
  7941. const float xhome = x_home_pos(active_extruder);
  7942. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  7943. && IsRunning()
  7944. && (delayed_move_time || current_position[X_AXIS] != xhome)
  7945. ) {
  7946. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  7947. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7948. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  7949. #endif
  7950. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7951. if (DEBUGGING(LEVELING)) {
  7952. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  7953. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  7954. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  7955. }
  7956. #endif
  7957. // Park old head: 1) raise 2) move to park position 3) lower
  7958. for (uint8_t i = 0; i < 3; i++)
  7959. planner.buffer_line(
  7960. i == 0 ? current_position[X_AXIS] : xhome,
  7961. current_position[Y_AXIS],
  7962. i == 2 ? current_position[Z_AXIS] : raised_z,
  7963. current_position[E_AXIS],
  7964. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  7965. active_extruder
  7966. );
  7967. stepper.synchronize();
  7968. }
  7969. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  7970. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  7971. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  7972. // Activate the new extruder
  7973. active_extruder = tmp_extruder;
  7974. // This function resets the max/min values - the current position may be overwritten below.
  7975. set_axis_is_at_home(X_AXIS);
  7976. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7977. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  7978. #endif
  7979. // Only when auto-parking are carriages safe to move
  7980. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  7981. switch (dual_x_carriage_mode) {
  7982. case DXC_FULL_CONTROL_MODE:
  7983. // New current position is the position of the activated extruder
  7984. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7985. // Save the inactive extruder's position (from the old current_position)
  7986. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7987. break;
  7988. case DXC_AUTO_PARK_MODE:
  7989. // record raised toolhead position for use by unpark
  7990. COPY(raised_parked_position, current_position);
  7991. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  7992. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7993. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7994. #endif
  7995. active_extruder_parked = true;
  7996. delayed_move_time = 0;
  7997. break;
  7998. case DXC_DUPLICATION_MODE:
  7999. // If the new extruder is the left one, set it "parked"
  8000. // This triggers the second extruder to move into the duplication position
  8001. active_extruder_parked = (active_extruder == 0);
  8002. if (active_extruder_parked)
  8003. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8004. else
  8005. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  8006. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8007. extruder_duplication_enabled = false;
  8008. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8009. if (DEBUGGING(LEVELING)) {
  8010. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  8011. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  8012. }
  8013. #endif
  8014. break;
  8015. }
  8016. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8017. if (DEBUGGING(LEVELING)) {
  8018. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  8019. DEBUG_POS("New extruder (parked)", current_position);
  8020. }
  8021. #endif
  8022. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  8023. #else // !DUAL_X_CARRIAGE
  8024. #if ENABLED(SWITCHING_EXTRUDER)
  8025. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  8026. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  8027. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  8028. // Always raise by some amount (destination copied from current_position earlier)
  8029. current_position[Z_AXIS] += z_raise;
  8030. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  8031. stepper.synchronize();
  8032. move_extruder_servo(active_extruder);
  8033. #endif
  8034. /**
  8035. * Set current_position to the position of the new nozzle.
  8036. * Offsets are based on linear distance, so we need to get
  8037. * the resulting position in coordinate space.
  8038. *
  8039. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  8040. * - With mesh leveling, update Z for the new position
  8041. * - Otherwise, just use the raw linear distance
  8042. *
  8043. * Software endstops are altered here too. Consider a case where:
  8044. * E0 at X=0 ... E1 at X=10
  8045. * When we switch to E1 now X=10, but E1 can't move left.
  8046. * To express this we apply the change in XY to the software endstops.
  8047. * E1 can move farther right than E0, so the right limit is extended.
  8048. *
  8049. * Note that we don't adjust the Z software endstops. Why not?
  8050. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  8051. * because the bed is 1mm lower at the new position. As long as
  8052. * the first nozzle is out of the way, the carriage should be
  8053. * allowed to move 1mm lower. This technically "breaks" the
  8054. * Z software endstop. But this is technically correct (and
  8055. * there is no viable alternative).
  8056. */
  8057. #if ABL_PLANAR
  8058. // Offset extruder, make sure to apply the bed level rotation matrix
  8059. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  8060. hotend_offset[Y_AXIS][tmp_extruder],
  8061. 0),
  8062. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  8063. hotend_offset[Y_AXIS][active_extruder],
  8064. 0),
  8065. offset_vec = tmp_offset_vec - act_offset_vec;
  8066. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8067. if (DEBUGGING(LEVELING)) {
  8068. tmp_offset_vec.debug("tmp_offset_vec");
  8069. act_offset_vec.debug("act_offset_vec");
  8070. offset_vec.debug("offset_vec (BEFORE)");
  8071. }
  8072. #endif
  8073. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  8074. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8075. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  8076. #endif
  8077. // Adjustments to the current position
  8078. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  8079. current_position[Z_AXIS] += offset_vec.z;
  8080. #else // !ABL_PLANAR
  8081. const float xydiff[2] = {
  8082. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  8083. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  8084. };
  8085. #if ENABLED(MESH_BED_LEVELING)
  8086. if (mbl.active()) {
  8087. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8088. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  8089. #endif
  8090. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  8091. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  8092. z1 = current_position[Z_AXIS], z2 = z1;
  8093. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  8094. planner.apply_leveling(x2, y2, z2);
  8095. current_position[Z_AXIS] += z2 - z1;
  8096. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8097. if (DEBUGGING(LEVELING))
  8098. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  8099. #endif
  8100. }
  8101. #endif // MESH_BED_LEVELING
  8102. #endif // !HAS_ABL
  8103. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8104. if (DEBUGGING(LEVELING)) {
  8105. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  8106. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  8107. SERIAL_ECHOLNPGM(" }");
  8108. }
  8109. #endif
  8110. // The newly-selected extruder XY is actually at...
  8111. current_position[X_AXIS] += xydiff[X_AXIS];
  8112. current_position[Y_AXIS] += xydiff[Y_AXIS];
  8113. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  8114. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  8115. #if HAS_POSITION_SHIFT
  8116. position_shift[i] += xydiff[i];
  8117. #endif
  8118. update_software_endstops((AxisEnum)i);
  8119. }
  8120. #endif
  8121. // Set the new active extruder
  8122. active_extruder = tmp_extruder;
  8123. #endif // !DUAL_X_CARRIAGE
  8124. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8125. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  8126. #endif
  8127. // Tell the planner the new "current position"
  8128. SYNC_PLAN_POSITION_KINEMATIC();
  8129. // Move to the "old position" (move the extruder into place)
  8130. if (!no_move && IsRunning()) {
  8131. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8132. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  8133. #endif
  8134. prepare_move_to_destination();
  8135. }
  8136. #if ENABLED(SWITCHING_EXTRUDER)
  8137. // Move back down, if needed. (Including when the new tool is higher.)
  8138. if (z_raise != z_diff) {
  8139. destination[Z_AXIS] += z_diff;
  8140. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  8141. prepare_move_to_destination();
  8142. }
  8143. #endif
  8144. } // (tmp_extruder != active_extruder)
  8145. stepper.synchronize();
  8146. #if ENABLED(EXT_SOLENOID)
  8147. disable_all_solenoids();
  8148. enable_solenoid_on_active_extruder();
  8149. #endif // EXT_SOLENOID
  8150. feedrate_mm_s = old_feedrate_mm_s;
  8151. #else // HOTENDS <= 1
  8152. // Set the new active extruder
  8153. active_extruder = tmp_extruder;
  8154. UNUSED(fr_mm_s);
  8155. UNUSED(no_move);
  8156. #endif // HOTENDS <= 1
  8157. SERIAL_ECHO_START;
  8158. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  8159. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8160. }
  8161. /**
  8162. * T0-T3: Switch tool, usually switching extruders
  8163. *
  8164. * F[units/min] Set the movement feedrate
  8165. * S1 Don't move the tool in XY after change
  8166. */
  8167. inline void gcode_T(uint8_t tmp_extruder) {
  8168. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8169. if (DEBUGGING(LEVELING)) {
  8170. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  8171. SERIAL_CHAR(')');
  8172. SERIAL_EOL;
  8173. DEBUG_POS("BEFORE", current_position);
  8174. }
  8175. #endif
  8176. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  8177. tool_change(tmp_extruder);
  8178. #elif HOTENDS > 1
  8179. tool_change(
  8180. tmp_extruder,
  8181. code_seen('F') ? MMM_TO_MMS(code_value_linear_units()) : 0.0,
  8182. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  8183. );
  8184. #endif
  8185. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8186. if (DEBUGGING(LEVELING)) {
  8187. DEBUG_POS("AFTER", current_position);
  8188. SERIAL_ECHOLNPGM("<<< gcode_T");
  8189. }
  8190. #endif
  8191. }
  8192. /**
  8193. * Process a single command and dispatch it to its handler
  8194. * This is called from the main loop()
  8195. */
  8196. void process_next_command() {
  8197. current_command = command_queue[cmd_queue_index_r];
  8198. if (DEBUGGING(ECHO)) {
  8199. SERIAL_ECHO_START;
  8200. SERIAL_ECHOLN(current_command);
  8201. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8202. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  8203. M100_dump_routine(" Command Queue:", &command_queue[0][0], &command_queue[BUFSIZE][MAX_CMD_SIZE]);
  8204. #endif
  8205. }
  8206. // Sanitize the current command:
  8207. // - Skip leading spaces
  8208. // - Bypass N[-0-9][0-9]*[ ]*
  8209. // - Overwrite * with nul to mark the end
  8210. while (*current_command == ' ') ++current_command;
  8211. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  8212. current_command += 2; // skip N[-0-9]
  8213. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  8214. while (*current_command == ' ') ++current_command; // skip [ ]*
  8215. }
  8216. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  8217. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  8218. char *cmd_ptr = current_command;
  8219. // Get the command code, which must be G, M, or T
  8220. char command_code = *cmd_ptr++;
  8221. // Skip spaces to get the numeric part
  8222. while (*cmd_ptr == ' ') cmd_ptr++;
  8223. // Allow for decimal point in command
  8224. #if ENABLED(G38_PROBE_TARGET)
  8225. uint8_t subcode = 0;
  8226. #endif
  8227. uint16_t codenum = 0; // define ahead of goto
  8228. // Bail early if there's no code
  8229. bool code_is_good = NUMERIC(*cmd_ptr);
  8230. if (!code_is_good) goto ExitUnknownCommand;
  8231. // Get and skip the code number
  8232. do {
  8233. codenum = (codenum * 10) + (*cmd_ptr - '0');
  8234. cmd_ptr++;
  8235. } while (NUMERIC(*cmd_ptr));
  8236. // Allow for decimal point in command
  8237. #if ENABLED(G38_PROBE_TARGET)
  8238. if (*cmd_ptr == '.') {
  8239. cmd_ptr++;
  8240. while (NUMERIC(*cmd_ptr))
  8241. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  8242. }
  8243. #endif
  8244. // Skip all spaces to get to the first argument, or nul
  8245. while (*cmd_ptr == ' ') cmd_ptr++;
  8246. // The command's arguments (if any) start here, for sure!
  8247. current_command_args = cmd_ptr;
  8248. KEEPALIVE_STATE(IN_HANDLER);
  8249. // Handle a known G, M, or T
  8250. switch (command_code) {
  8251. case 'G': switch (codenum) {
  8252. // G0, G1
  8253. case 0:
  8254. case 1:
  8255. #if IS_SCARA
  8256. gcode_G0_G1(codenum == 0);
  8257. #else
  8258. gcode_G0_G1();
  8259. #endif
  8260. break;
  8261. // G2, G3
  8262. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  8263. case 2: // G2 - CW ARC
  8264. case 3: // G3 - CCW ARC
  8265. gcode_G2_G3(codenum == 2);
  8266. break;
  8267. #endif
  8268. // G4 Dwell
  8269. case 4:
  8270. gcode_G4();
  8271. break;
  8272. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8273. // G5
  8274. case 5: // G5 - Cubic B_spline
  8275. gcode_G5();
  8276. break;
  8277. #endif // BEZIER_CURVE_SUPPORT
  8278. #if ENABLED(FWRETRACT)
  8279. case 10: // G10: retract
  8280. case 11: // G11: retract_recover
  8281. gcode_G10_G11(codenum == 10);
  8282. break;
  8283. #endif // FWRETRACT
  8284. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  8285. case 12:
  8286. gcode_G12(); // G12: Nozzle Clean
  8287. break;
  8288. #endif // NOZZLE_CLEAN_FEATURE
  8289. #if ENABLED(INCH_MODE_SUPPORT)
  8290. case 20: //G20: Inch Mode
  8291. gcode_G20();
  8292. break;
  8293. case 21: //G21: MM Mode
  8294. gcode_G21();
  8295. break;
  8296. #endif // INCH_MODE_SUPPORT
  8297. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8298. case 26: // G26: Mesh Validation Pattern generation
  8299. gcode_G26();
  8300. break;
  8301. #endif // AUTO_BED_LEVELING_UBL
  8302. #if ENABLED(NOZZLE_PARK_FEATURE)
  8303. case 27: // G27: Nozzle Park
  8304. gcode_G27();
  8305. break;
  8306. #endif // NOZZLE_PARK_FEATURE
  8307. case 28: // G28: Home all axes, one at a time
  8308. gcode_G28();
  8309. break;
  8310. #if PLANNER_LEVELING || ENABLED(AUTO_BED_LEVELING_UBL)
  8311. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  8312. // or provides access to the UBL System if enabled.
  8313. gcode_G29();
  8314. break;
  8315. #endif // PLANNER_LEVELING
  8316. #if HAS_BED_PROBE
  8317. case 30: // G30 Single Z probe
  8318. gcode_G30();
  8319. break;
  8320. #if ENABLED(Z_PROBE_SLED)
  8321. case 31: // G31: dock the sled
  8322. gcode_G31();
  8323. break;
  8324. case 32: // G32: undock the sled
  8325. gcode_G32();
  8326. break;
  8327. #endif // Z_PROBE_SLED
  8328. #if ENABLED(DELTA_AUTO_CALIBRATION)
  8329. case 33: // G33: Delta Auto Calibrate
  8330. gcode_G33();
  8331. break;
  8332. #endif // DELTA_AUTO_CALIBRATION
  8333. #endif // HAS_BED_PROBE
  8334. #if ENABLED(G38_PROBE_TARGET)
  8335. case 38: // G38.2 & G38.3
  8336. if (subcode == 2 || subcode == 3)
  8337. gcode_G38(subcode == 2);
  8338. break;
  8339. #endif
  8340. case 90: // G90
  8341. relative_mode = false;
  8342. break;
  8343. case 91: // G91
  8344. relative_mode = true;
  8345. break;
  8346. case 92: // G92
  8347. gcode_G92();
  8348. break;
  8349. }
  8350. break;
  8351. case 'M': switch (codenum) {
  8352. #if HAS_RESUME_CONTINUE
  8353. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  8354. case 1: // M1: Conditional stop - Wait for user button press on LCD
  8355. gcode_M0_M1();
  8356. break;
  8357. #endif // ULTIPANEL
  8358. case 17: // M17: Enable all stepper motors
  8359. gcode_M17();
  8360. break;
  8361. #if ENABLED(SDSUPPORT)
  8362. case 20: // M20: list SD card
  8363. gcode_M20(); break;
  8364. case 21: // M21: init SD card
  8365. gcode_M21(); break;
  8366. case 22: // M22: release SD card
  8367. gcode_M22(); break;
  8368. case 23: // M23: Select file
  8369. gcode_M23(); break;
  8370. case 24: // M24: Start SD print
  8371. gcode_M24(); break;
  8372. case 25: // M25: Pause SD print
  8373. gcode_M25(); break;
  8374. case 26: // M26: Set SD index
  8375. gcode_M26(); break;
  8376. case 27: // M27: Get SD status
  8377. gcode_M27(); break;
  8378. case 28: // M28: Start SD write
  8379. gcode_M28(); break;
  8380. case 29: // M29: Stop SD write
  8381. gcode_M29(); break;
  8382. case 30: // M30 <filename> Delete File
  8383. gcode_M30(); break;
  8384. case 32: // M32: Select file and start SD print
  8385. gcode_M32(); break;
  8386. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  8387. case 33: // M33: Get the long full path to a file or folder
  8388. gcode_M33(); break;
  8389. #endif
  8390. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  8391. case 34: //M34 - Set SD card sorting options
  8392. gcode_M34(); break;
  8393. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  8394. case 928: // M928: Start SD write
  8395. gcode_M928(); break;
  8396. #endif //SDSUPPORT
  8397. case 31: // M31: Report time since the start of SD print or last M109
  8398. gcode_M31(); break;
  8399. case 42: // M42: Change pin state
  8400. gcode_M42(); break;
  8401. #if ENABLED(PINS_DEBUGGING)
  8402. case 43: // M43: Read pin state
  8403. gcode_M43(); break;
  8404. #endif
  8405. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  8406. case 48: // M48: Z probe repeatability test
  8407. gcode_M48();
  8408. break;
  8409. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  8410. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8411. case 49: // M49: Turn on or off G26 debug flag for verbose output
  8412. gcode_M49();
  8413. break;
  8414. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  8415. case 75: // M75: Start print timer
  8416. gcode_M75(); break;
  8417. case 76: // M76: Pause print timer
  8418. gcode_M76(); break;
  8419. case 77: // M77: Stop print timer
  8420. gcode_M77(); break;
  8421. #if ENABLED(PRINTCOUNTER)
  8422. case 78: // M78: Show print statistics
  8423. gcode_M78(); break;
  8424. #endif
  8425. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8426. case 100: // M100: Free Memory Report
  8427. gcode_M100();
  8428. break;
  8429. #endif
  8430. case 104: // M104: Set hot end temperature
  8431. gcode_M104();
  8432. break;
  8433. case 110: // M110: Set Current Line Number
  8434. gcode_M110();
  8435. break;
  8436. case 111: // M111: Set debug level
  8437. gcode_M111();
  8438. break;
  8439. #if DISABLED(EMERGENCY_PARSER)
  8440. case 108: // M108: Cancel Waiting
  8441. gcode_M108();
  8442. break;
  8443. case 112: // M112: Emergency Stop
  8444. gcode_M112();
  8445. break;
  8446. case 410: // M410 quickstop - Abort all the planned moves.
  8447. gcode_M410();
  8448. break;
  8449. #endif
  8450. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  8451. case 113: // M113: Set Host Keepalive interval
  8452. gcode_M113();
  8453. break;
  8454. #endif
  8455. case 140: // M140: Set bed temperature
  8456. gcode_M140();
  8457. break;
  8458. case 105: // M105: Report current temperature
  8459. gcode_M105();
  8460. KEEPALIVE_STATE(NOT_BUSY);
  8461. return; // "ok" already printed
  8462. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8463. case 155: // M155: Set temperature auto-report interval
  8464. gcode_M155();
  8465. break;
  8466. #endif
  8467. case 109: // M109: Wait for hotend temperature to reach target
  8468. gcode_M109();
  8469. break;
  8470. #if HAS_TEMP_BED
  8471. case 190: // M190: Wait for bed temperature to reach target
  8472. gcode_M190();
  8473. break;
  8474. #endif // HAS_TEMP_BED
  8475. #if FAN_COUNT > 0
  8476. case 106: // M106: Fan On
  8477. gcode_M106();
  8478. break;
  8479. case 107: // M107: Fan Off
  8480. gcode_M107();
  8481. break;
  8482. #endif // FAN_COUNT > 0
  8483. #if ENABLED(PARK_HEAD_ON_PAUSE)
  8484. case 125: // M125: Store current position and move to filament change position
  8485. gcode_M125(); break;
  8486. #endif
  8487. #if ENABLED(BARICUDA)
  8488. // PWM for HEATER_1_PIN
  8489. #if HAS_HEATER_1
  8490. case 126: // M126: valve open
  8491. gcode_M126();
  8492. break;
  8493. case 127: // M127: valve closed
  8494. gcode_M127();
  8495. break;
  8496. #endif // HAS_HEATER_1
  8497. // PWM for HEATER_2_PIN
  8498. #if HAS_HEATER_2
  8499. case 128: // M128: valve open
  8500. gcode_M128();
  8501. break;
  8502. case 129: // M129: valve closed
  8503. gcode_M129();
  8504. break;
  8505. #endif // HAS_HEATER_2
  8506. #endif // BARICUDA
  8507. #if HAS_POWER_SWITCH
  8508. case 80: // M80: Turn on Power Supply
  8509. gcode_M80();
  8510. break;
  8511. #endif // HAS_POWER_SWITCH
  8512. case 81: // M81: Turn off Power, including Power Supply, if possible
  8513. gcode_M81();
  8514. break;
  8515. case 82: // M83: Set E axis normal mode (same as other axes)
  8516. gcode_M82();
  8517. break;
  8518. case 83: // M83: Set E axis relative mode
  8519. gcode_M83();
  8520. break;
  8521. case 18: // M18 => M84
  8522. case 84: // M84: Disable all steppers or set timeout
  8523. gcode_M18_M84();
  8524. break;
  8525. case 85: // M85: Set inactivity stepper shutdown timeout
  8526. gcode_M85();
  8527. break;
  8528. case 92: // M92: Set the steps-per-unit for one or more axes
  8529. gcode_M92();
  8530. break;
  8531. case 114: // M114: Report current position
  8532. gcode_M114();
  8533. break;
  8534. case 115: // M115: Report capabilities
  8535. gcode_M115();
  8536. break;
  8537. case 117: // M117: Set LCD message text, if possible
  8538. gcode_M117();
  8539. break;
  8540. case 119: // M119: Report endstop states
  8541. gcode_M119();
  8542. break;
  8543. case 120: // M120: Enable endstops
  8544. gcode_M120();
  8545. break;
  8546. case 121: // M121: Disable endstops
  8547. gcode_M121();
  8548. break;
  8549. #if ENABLED(ULTIPANEL)
  8550. case 145: // M145: Set material heatup parameters
  8551. gcode_M145();
  8552. break;
  8553. #endif
  8554. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  8555. case 149: // M149: Set temperature units
  8556. gcode_M149();
  8557. break;
  8558. #endif
  8559. #if HAS_COLOR_LEDS
  8560. case 150: // M150: Set Status LED Color
  8561. gcode_M150();
  8562. break;
  8563. #endif // BLINKM
  8564. #if ENABLED(MIXING_EXTRUDER)
  8565. case 163: // M163: Set a component weight for mixing extruder
  8566. gcode_M163();
  8567. break;
  8568. #if MIXING_VIRTUAL_TOOLS > 1
  8569. case 164: // M164: Save current mix as a virtual extruder
  8570. gcode_M164();
  8571. break;
  8572. #endif
  8573. #if ENABLED(DIRECT_MIXING_IN_G1)
  8574. case 165: // M165: Set multiple mix weights
  8575. gcode_M165();
  8576. break;
  8577. #endif
  8578. #endif
  8579. case 200: // M200: Set filament diameter, E to cubic units
  8580. gcode_M200();
  8581. break;
  8582. case 201: // M201: Set max acceleration for print moves (units/s^2)
  8583. gcode_M201();
  8584. break;
  8585. #if 0 // Not used for Sprinter/grbl gen6
  8586. case 202: // M202
  8587. gcode_M202();
  8588. break;
  8589. #endif
  8590. case 203: // M203: Set max feedrate (units/sec)
  8591. gcode_M203();
  8592. break;
  8593. case 204: // M204: Set acceleration
  8594. gcode_M204();
  8595. break;
  8596. case 205: //M205: Set advanced settings
  8597. gcode_M205();
  8598. break;
  8599. #if HAS_M206_COMMAND
  8600. case 206: // M206: Set home offsets
  8601. gcode_M206();
  8602. break;
  8603. #endif
  8604. #if ENABLED(DELTA)
  8605. case 665: // M665: Set delta configurations
  8606. gcode_M665();
  8607. break;
  8608. #endif
  8609. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  8610. case 666: // M666: Set delta or dual endstop adjustment
  8611. gcode_M666();
  8612. break;
  8613. #endif
  8614. #if ENABLED(FWRETRACT)
  8615. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  8616. gcode_M207();
  8617. break;
  8618. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  8619. gcode_M208();
  8620. break;
  8621. case 209: // M209: Turn Automatic Retract Detection on/off
  8622. gcode_M209();
  8623. break;
  8624. #endif // FWRETRACT
  8625. case 211: // M211: Enable, Disable, and/or Report software endstops
  8626. gcode_M211();
  8627. break;
  8628. #if HOTENDS > 1
  8629. case 218: // M218: Set a tool offset
  8630. gcode_M218();
  8631. break;
  8632. #endif
  8633. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  8634. gcode_M220();
  8635. break;
  8636. case 221: // M221: Set Flow Percentage
  8637. gcode_M221();
  8638. break;
  8639. case 226: // M226: Wait until a pin reaches a state
  8640. gcode_M226();
  8641. break;
  8642. #if HAS_SERVOS
  8643. case 280: // M280: Set servo position absolute
  8644. gcode_M280();
  8645. break;
  8646. #endif // HAS_SERVOS
  8647. #if HAS_BUZZER
  8648. case 300: // M300: Play beep tone
  8649. gcode_M300();
  8650. break;
  8651. #endif // HAS_BUZZER
  8652. #if ENABLED(PIDTEMP)
  8653. case 301: // M301: Set hotend PID parameters
  8654. gcode_M301();
  8655. break;
  8656. #endif // PIDTEMP
  8657. #if ENABLED(PIDTEMPBED)
  8658. case 304: // M304: Set bed PID parameters
  8659. gcode_M304();
  8660. break;
  8661. #endif // PIDTEMPBED
  8662. #if defined(CHDK) || HAS_PHOTOGRAPH
  8663. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  8664. gcode_M240();
  8665. break;
  8666. #endif // CHDK || PHOTOGRAPH_PIN
  8667. #if HAS_LCD_CONTRAST
  8668. case 250: // M250: Set LCD contrast
  8669. gcode_M250();
  8670. break;
  8671. #endif // HAS_LCD_CONTRAST
  8672. #if ENABLED(EXPERIMENTAL_I2CBUS)
  8673. case 260: // M260: Send data to an i2c slave
  8674. gcode_M260();
  8675. break;
  8676. case 261: // M261: Request data from an i2c slave
  8677. gcode_M261();
  8678. break;
  8679. #endif // EXPERIMENTAL_I2CBUS
  8680. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8681. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  8682. gcode_M302();
  8683. break;
  8684. #endif // PREVENT_COLD_EXTRUSION
  8685. case 303: // M303: PID autotune
  8686. gcode_M303();
  8687. break;
  8688. #if ENABLED(MORGAN_SCARA)
  8689. case 360: // M360: SCARA Theta pos1
  8690. if (gcode_M360()) return;
  8691. break;
  8692. case 361: // M361: SCARA Theta pos2
  8693. if (gcode_M361()) return;
  8694. break;
  8695. case 362: // M362: SCARA Psi pos1
  8696. if (gcode_M362()) return;
  8697. break;
  8698. case 363: // M363: SCARA Psi pos2
  8699. if (gcode_M363()) return;
  8700. break;
  8701. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  8702. if (gcode_M364()) return;
  8703. break;
  8704. #endif // SCARA
  8705. case 400: // M400: Finish all moves
  8706. gcode_M400();
  8707. break;
  8708. #if HAS_BED_PROBE
  8709. case 401: // M401: Deploy probe
  8710. gcode_M401();
  8711. break;
  8712. case 402: // M402: Stow probe
  8713. gcode_M402();
  8714. break;
  8715. #endif // HAS_BED_PROBE
  8716. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8717. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  8718. gcode_M404();
  8719. break;
  8720. case 405: // M405: Turn on filament sensor for control
  8721. gcode_M405();
  8722. break;
  8723. case 406: // M406: Turn off filament sensor for control
  8724. gcode_M406();
  8725. break;
  8726. case 407: // M407: Display measured filament diameter
  8727. gcode_M407();
  8728. break;
  8729. #endif // FILAMENT_WIDTH_SENSOR
  8730. #if PLANNER_LEVELING
  8731. case 420: // M420: Enable/Disable Bed Leveling
  8732. gcode_M420();
  8733. break;
  8734. #endif
  8735. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8736. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  8737. gcode_M421();
  8738. break;
  8739. #endif
  8740. #if HAS_M206_COMMAND
  8741. case 428: // M428: Apply current_position to home_offset
  8742. gcode_M428();
  8743. break;
  8744. #endif
  8745. case 500: // M500: Store settings in EEPROM
  8746. gcode_M500();
  8747. break;
  8748. case 501: // M501: Read settings from EEPROM
  8749. gcode_M501();
  8750. break;
  8751. case 502: // M502: Revert to default settings
  8752. gcode_M502();
  8753. break;
  8754. case 503: // M503: print settings currently in memory
  8755. gcode_M503();
  8756. break;
  8757. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8758. case 540: // M540: Set abort on endstop hit for SD printing
  8759. gcode_M540();
  8760. break;
  8761. #endif
  8762. #if HAS_BED_PROBE
  8763. case 851: // M851: Set Z Probe Z Offset
  8764. gcode_M851();
  8765. break;
  8766. #endif // HAS_BED_PROBE
  8767. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8768. case 600: // M600: Pause for filament change
  8769. gcode_M600();
  8770. break;
  8771. #endif // FILAMENT_CHANGE_FEATURE
  8772. #if ENABLED(DUAL_X_CARRIAGE)
  8773. case 605: // M605: Set Dual X Carriage movement mode
  8774. gcode_M605();
  8775. break;
  8776. #endif // DUAL_X_CARRIAGE
  8777. #if ENABLED(LIN_ADVANCE)
  8778. case 900: // M900: Set advance K factor.
  8779. gcode_M900();
  8780. break;
  8781. #endif
  8782. #if ENABLED(HAVE_TMC2130)
  8783. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8784. gcode_M906();
  8785. break;
  8786. #endif
  8787. case 907: // M907: Set digital trimpot motor current using axis codes.
  8788. gcode_M907();
  8789. break;
  8790. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8791. case 908: // M908: Control digital trimpot directly.
  8792. gcode_M908();
  8793. break;
  8794. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8795. case 909: // M909: Print digipot/DAC current value
  8796. gcode_M909();
  8797. break;
  8798. case 910: // M910: Commit digipot/DAC value to external EEPROM
  8799. gcode_M910();
  8800. break;
  8801. #endif
  8802. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8803. #if ENABLED(HAVE_TMC2130)
  8804. case 911: // M911: Report TMC2130 prewarn triggered flags
  8805. gcode_M911();
  8806. break;
  8807. case 912: // M911: Clear TMC2130 prewarn triggered flags
  8808. gcode_M912();
  8809. break;
  8810. #if ENABLED(HYBRID_THRESHOLD)
  8811. case 913: // M913: Set HYBRID_THRESHOLD speed.
  8812. gcode_M913();
  8813. break;
  8814. #endif
  8815. #if ENABLED(SENSORLESS_HOMING)
  8816. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  8817. gcode_M914();
  8818. break;
  8819. #endif
  8820. #endif
  8821. #if HAS_MICROSTEPS
  8822. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8823. gcode_M350();
  8824. break;
  8825. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  8826. gcode_M351();
  8827. break;
  8828. #endif // HAS_MICROSTEPS
  8829. case 355: // M355 Turn case lights on/off
  8830. gcode_M355();
  8831. break;
  8832. case 999: // M999: Restart after being Stopped
  8833. gcode_M999();
  8834. break;
  8835. }
  8836. break;
  8837. case 'T':
  8838. gcode_T(codenum);
  8839. break;
  8840. default: code_is_good = false;
  8841. }
  8842. KEEPALIVE_STATE(NOT_BUSY);
  8843. ExitUnknownCommand:
  8844. // Still unknown command? Throw an error
  8845. if (!code_is_good) unknown_command_error();
  8846. ok_to_send();
  8847. }
  8848. /**
  8849. * Send a "Resend: nnn" message to the host to
  8850. * indicate that a command needs to be re-sent.
  8851. */
  8852. void FlushSerialRequestResend() {
  8853. //char command_queue[cmd_queue_index_r][100]="Resend:";
  8854. MYSERIAL.flush();
  8855. SERIAL_PROTOCOLPGM(MSG_RESEND);
  8856. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  8857. ok_to_send();
  8858. }
  8859. /**
  8860. * Send an "ok" message to the host, indicating
  8861. * that a command was successfully processed.
  8862. *
  8863. * If ADVANCED_OK is enabled also include:
  8864. * N<int> Line number of the command, if any
  8865. * P<int> Planner space remaining
  8866. * B<int> Block queue space remaining
  8867. */
  8868. void ok_to_send() {
  8869. refresh_cmd_timeout();
  8870. if (!send_ok[cmd_queue_index_r]) return;
  8871. SERIAL_PROTOCOLPGM(MSG_OK);
  8872. #if ENABLED(ADVANCED_OK)
  8873. char* p = command_queue[cmd_queue_index_r];
  8874. if (*p == 'N') {
  8875. SERIAL_PROTOCOL(' ');
  8876. SERIAL_ECHO(*p++);
  8877. while (NUMERIC_SIGNED(*p))
  8878. SERIAL_ECHO(*p++);
  8879. }
  8880. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  8881. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  8882. #endif
  8883. SERIAL_EOL;
  8884. }
  8885. #if HAS_SOFTWARE_ENDSTOPS
  8886. /**
  8887. * Constrain the given coordinates to the software endstops.
  8888. */
  8889. void clamp_to_software_endstops(float target[XYZ]) {
  8890. if (!soft_endstops_enabled) return;
  8891. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  8892. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  8893. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  8894. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  8895. #endif
  8896. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8897. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  8898. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  8899. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8900. #endif
  8901. }
  8902. #endif
  8903. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8904. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8905. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  8906. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  8907. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  8908. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  8909. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  8910. #else
  8911. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  8912. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  8913. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  8914. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  8915. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  8916. #endif
  8917. // Get the Z adjustment for non-linear bed leveling
  8918. float bilinear_z_offset(const float logical[XYZ]) {
  8919. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  8920. last_x = -999.999, last_y = -999.999;
  8921. // Whole units for the grid line indices. Constrained within bounds.
  8922. static int8_t gridx, gridy, nextx, nexty,
  8923. last_gridx = -99, last_gridy = -99;
  8924. // XY relative to the probed area
  8925. const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
  8926. y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
  8927. if (last_x != x) {
  8928. last_x = x;
  8929. ratio_x = x * ABL_BG_FACTOR(X_AXIS);
  8930. const float gx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1);
  8931. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  8932. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  8933. gridx = gx;
  8934. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  8935. }
  8936. if (last_y != y || last_gridx != gridx) {
  8937. if (last_y != y) {
  8938. last_y = y;
  8939. ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
  8940. const float gy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1);
  8941. ratio_y -= gy;
  8942. NOLESS(ratio_y, 0);
  8943. gridy = gy;
  8944. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  8945. }
  8946. if (last_gridx != gridx || last_gridy != gridy) {
  8947. last_gridx = gridx;
  8948. last_gridy = gridy;
  8949. // Z at the box corners
  8950. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  8951. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  8952. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  8953. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  8954. }
  8955. // Bilinear interpolate. Needed since y or gridx has changed.
  8956. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  8957. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  8958. D = R - L;
  8959. }
  8960. const float offset = L + ratio_x * D; // the offset almost always changes
  8961. /*
  8962. static float last_offset = 0;
  8963. if (fabs(last_offset - offset) > 0.2) {
  8964. SERIAL_ECHOPGM("Sudden Shift at ");
  8965. SERIAL_ECHOPAIR("x=", x);
  8966. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  8967. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  8968. SERIAL_ECHOPAIR(" y=", y);
  8969. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  8970. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  8971. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  8972. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  8973. SERIAL_ECHOPAIR(" z1=", z1);
  8974. SERIAL_ECHOPAIR(" z2=", z2);
  8975. SERIAL_ECHOPAIR(" z3=", z3);
  8976. SERIAL_ECHOLNPAIR(" z4=", z4);
  8977. SERIAL_ECHOPAIR(" L=", L);
  8978. SERIAL_ECHOPAIR(" R=", R);
  8979. SERIAL_ECHOLNPAIR(" offset=", offset);
  8980. }
  8981. last_offset = offset;
  8982. //*/
  8983. return offset;
  8984. }
  8985. #endif // AUTO_BED_LEVELING_BILINEAR
  8986. #if ENABLED(DELTA)
  8987. /**
  8988. * Recalculate factors used for delta kinematics whenever
  8989. * settings have been changed (e.g., by M665).
  8990. */
  8991. void recalc_delta_settings(float radius, float diagonal_rod) {
  8992. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  8993. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  8994. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
  8995. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
  8996. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
  8997. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
  8998. delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
  8999. delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
  9000. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
  9001. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
  9002. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
  9003. }
  9004. #if ENABLED(DELTA_FAST_SQRT)
  9005. /**
  9006. * Fast inverse sqrt from Quake III Arena
  9007. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  9008. */
  9009. float Q_rsqrt(float number) {
  9010. long i;
  9011. float x2, y;
  9012. const float threehalfs = 1.5f;
  9013. x2 = number * 0.5f;
  9014. y = number;
  9015. i = * ( long * ) &y; // evil floating point bit level hacking
  9016. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  9017. y = * ( float * ) &i;
  9018. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  9019. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  9020. return y;
  9021. }
  9022. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  9023. #else
  9024. #define _SQRT(n) sqrt(n)
  9025. #endif
  9026. /**
  9027. * Delta Inverse Kinematics
  9028. *
  9029. * Calculate the tower positions for a given logical
  9030. * position, storing the result in the delta[] array.
  9031. *
  9032. * This is an expensive calculation, requiring 3 square
  9033. * roots per segmented linear move, and strains the limits
  9034. * of a Mega2560 with a Graphical Display.
  9035. *
  9036. * Suggested optimizations include:
  9037. *
  9038. * - Disable the home_offset (M206) and/or position_shift (G92)
  9039. * features to remove up to 12 float additions.
  9040. *
  9041. * - Use a fast-inverse-sqrt function and add the reciprocal.
  9042. * (see above)
  9043. */
  9044. // Macro to obtain the Z position of an individual tower
  9045. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  9046. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  9047. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  9048. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  9049. ) \
  9050. )
  9051. #define DELTA_RAW_IK() do { \
  9052. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  9053. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  9054. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  9055. } while(0)
  9056. #define DELTA_LOGICAL_IK() do { \
  9057. const float raw[XYZ] = { \
  9058. RAW_X_POSITION(logical[X_AXIS]), \
  9059. RAW_Y_POSITION(logical[Y_AXIS]), \
  9060. RAW_Z_POSITION(logical[Z_AXIS]) \
  9061. }; \
  9062. DELTA_RAW_IK(); \
  9063. } while(0)
  9064. #define DELTA_DEBUG() do { \
  9065. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  9066. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  9067. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  9068. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  9069. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  9070. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  9071. } while(0)
  9072. void inverse_kinematics(const float logical[XYZ]) {
  9073. DELTA_LOGICAL_IK();
  9074. // DELTA_DEBUG();
  9075. }
  9076. /**
  9077. * Calculate the highest Z position where the
  9078. * effector has the full range of XY motion.
  9079. */
  9080. float delta_safe_distance_from_top() {
  9081. float cartesian[XYZ] = {
  9082. LOGICAL_X_POSITION(0),
  9083. LOGICAL_Y_POSITION(0),
  9084. LOGICAL_Z_POSITION(0)
  9085. };
  9086. inverse_kinematics(cartesian);
  9087. float distance = delta[A_AXIS];
  9088. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  9089. inverse_kinematics(cartesian);
  9090. return abs(distance - delta[A_AXIS]);
  9091. }
  9092. /**
  9093. * Delta Forward Kinematics
  9094. *
  9095. * See the Wikipedia article "Trilateration"
  9096. * https://en.wikipedia.org/wiki/Trilateration
  9097. *
  9098. * Establish a new coordinate system in the plane of the
  9099. * three carriage points. This system has its origin at
  9100. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  9101. * plane with a Z component of zero.
  9102. * We will define unit vectors in this coordinate system
  9103. * in our original coordinate system. Then when we calculate
  9104. * the Xnew, Ynew and Znew values, we can translate back into
  9105. * the original system by moving along those unit vectors
  9106. * by the corresponding values.
  9107. *
  9108. * Variable names matched to Marlin, c-version, and avoid the
  9109. * use of any vector library.
  9110. *
  9111. * by Andreas Hardtung 2016-06-07
  9112. * based on a Java function from "Delta Robot Kinematics V3"
  9113. * by Steve Graves
  9114. *
  9115. * The result is stored in the cartes[] array.
  9116. */
  9117. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  9118. // Create a vector in old coordinates along x axis of new coordinate
  9119. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  9120. // Get the Magnitude of vector.
  9121. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  9122. // Create unit vector by dividing by magnitude.
  9123. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  9124. // Get the vector from the origin of the new system to the third point.
  9125. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  9126. // Use the dot product to find the component of this vector on the X axis.
  9127. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  9128. // Create a vector along the x axis that represents the x component of p13.
  9129. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  9130. // Subtract the X component from the original vector leaving only Y. We use the
  9131. // variable that will be the unit vector after we scale it.
  9132. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  9133. // The magnitude of Y component
  9134. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  9135. // Convert to a unit vector
  9136. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  9137. // The cross product of the unit x and y is the unit z
  9138. // float[] ez = vectorCrossProd(ex, ey);
  9139. float ez[3] = {
  9140. ex[1] * ey[2] - ex[2] * ey[1],
  9141. ex[2] * ey[0] - ex[0] * ey[2],
  9142. ex[0] * ey[1] - ex[1] * ey[0]
  9143. };
  9144. // We now have the d, i and j values defined in Wikipedia.
  9145. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  9146. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  9147. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  9148. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  9149. // Start from the origin of the old coordinates and add vectors in the
  9150. // old coords that represent the Xnew, Ynew and Znew to find the point
  9151. // in the old system.
  9152. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  9153. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  9154. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  9155. }
  9156. void forward_kinematics_DELTA(float point[ABC]) {
  9157. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  9158. }
  9159. #endif // DELTA
  9160. /**
  9161. * Get the stepper positions in the cartes[] array.
  9162. * Forward kinematics are applied for DELTA and SCARA.
  9163. *
  9164. * The result is in the current coordinate space with
  9165. * leveling applied. The coordinates need to be run through
  9166. * unapply_leveling to obtain the "ideal" coordinates
  9167. * suitable for current_position, etc.
  9168. */
  9169. void get_cartesian_from_steppers() {
  9170. #if ENABLED(DELTA)
  9171. forward_kinematics_DELTA(
  9172. stepper.get_axis_position_mm(A_AXIS),
  9173. stepper.get_axis_position_mm(B_AXIS),
  9174. stepper.get_axis_position_mm(C_AXIS)
  9175. );
  9176. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9177. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9178. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  9179. #elif IS_SCARA
  9180. forward_kinematics_SCARA(
  9181. stepper.get_axis_position_degrees(A_AXIS),
  9182. stepper.get_axis_position_degrees(B_AXIS)
  9183. );
  9184. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9185. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9186. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9187. #else
  9188. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  9189. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  9190. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9191. #endif
  9192. }
  9193. /**
  9194. * Set the current_position for an axis based on
  9195. * the stepper positions, removing any leveling that
  9196. * may have been applied.
  9197. */
  9198. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  9199. get_cartesian_from_steppers();
  9200. #if PLANNER_LEVELING && DISABLED(AUTO_BED_LEVELING_UBL)
  9201. planner.unapply_leveling(cartes);
  9202. #endif
  9203. if (axis == ALL_AXES)
  9204. COPY(current_position, cartes);
  9205. else
  9206. current_position[axis] = cartes[axis];
  9207. }
  9208. #if ENABLED(MESH_BED_LEVELING)
  9209. /**
  9210. * Prepare a mesh-leveled linear move in a Cartesian setup,
  9211. * splitting the move where it crosses mesh borders.
  9212. */
  9213. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  9214. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  9215. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  9216. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  9217. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  9218. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  9219. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  9220. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  9221. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  9222. if (cx1 == cx2 && cy1 == cy2) {
  9223. // Start and end on same mesh square
  9224. line_to_destination(fr_mm_s);
  9225. set_current_to_destination();
  9226. return;
  9227. }
  9228. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9229. float normalized_dist, end[XYZE];
  9230. // Split at the left/front border of the right/top square
  9231. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9232. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9233. COPY(end, destination);
  9234. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  9235. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9236. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  9237. CBI(x_splits, gcx);
  9238. }
  9239. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9240. COPY(end, destination);
  9241. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  9242. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9243. destination[X_AXIS] = MBL_SEGMENT_END(X);
  9244. CBI(y_splits, gcy);
  9245. }
  9246. else {
  9247. // Already split on a border
  9248. line_to_destination(fr_mm_s);
  9249. set_current_to_destination();
  9250. return;
  9251. }
  9252. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  9253. destination[E_AXIS] = MBL_SEGMENT_END(E);
  9254. // Do the split and look for more borders
  9255. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9256. // Restore destination from stack
  9257. COPY(destination, end);
  9258. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9259. }
  9260. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  9261. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  9262. /**
  9263. * Prepare a bilinear-leveled linear move on Cartesian,
  9264. * splitting the move where it crosses grid borders.
  9265. */
  9266. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  9267. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  9268. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  9269. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  9270. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  9271. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  9272. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  9273. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  9274. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  9275. if (cx1 == cx2 && cy1 == cy2) {
  9276. // Start and end on same mesh square
  9277. line_to_destination(fr_mm_s);
  9278. set_current_to_destination();
  9279. return;
  9280. }
  9281. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9282. float normalized_dist, end[XYZE];
  9283. // Split at the left/front border of the right/top square
  9284. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9285. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9286. COPY(end, destination);
  9287. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  9288. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9289. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  9290. CBI(x_splits, gcx);
  9291. }
  9292. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9293. COPY(end, destination);
  9294. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  9295. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9296. destination[X_AXIS] = LINE_SEGMENT_END(X);
  9297. CBI(y_splits, gcy);
  9298. }
  9299. else {
  9300. // Already split on a border
  9301. line_to_destination(fr_mm_s);
  9302. set_current_to_destination();
  9303. return;
  9304. }
  9305. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  9306. destination[E_AXIS] = LINE_SEGMENT_END(E);
  9307. // Do the split and look for more borders
  9308. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9309. // Restore destination from stack
  9310. COPY(destination, end);
  9311. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9312. }
  9313. #endif // AUTO_BED_LEVELING_BILINEAR
  9314. #if IS_KINEMATIC
  9315. /**
  9316. * Prepare a linear move in a DELTA or SCARA setup.
  9317. *
  9318. * This calls planner.buffer_line several times, adding
  9319. * small incremental moves for DELTA or SCARA.
  9320. */
  9321. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  9322. // Get the top feedrate of the move in the XY plane
  9323. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  9324. // If the move is only in Z/E don't split up the move
  9325. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  9326. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9327. return false;
  9328. }
  9329. // Get the cartesian distances moved in XYZE
  9330. float difference[XYZE];
  9331. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  9332. // Get the linear distance in XYZ
  9333. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  9334. // If the move is very short, check the E move distance
  9335. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  9336. // No E move either? Game over.
  9337. if (UNEAR_ZERO(cartesian_mm)) return true;
  9338. // Minimum number of seconds to move the given distance
  9339. float seconds = cartesian_mm / _feedrate_mm_s;
  9340. // The number of segments-per-second times the duration
  9341. // gives the number of segments
  9342. uint16_t segments = delta_segments_per_second * seconds;
  9343. // For SCARA minimum segment size is 0.25mm
  9344. #if IS_SCARA
  9345. NOMORE(segments, cartesian_mm * 4);
  9346. #endif
  9347. // At least one segment is required
  9348. NOLESS(segments, 1);
  9349. // The approximate length of each segment
  9350. const float inv_segments = 1.0 / float(segments),
  9351. segment_distance[XYZE] = {
  9352. difference[X_AXIS] * inv_segments,
  9353. difference[Y_AXIS] * inv_segments,
  9354. difference[Z_AXIS] * inv_segments,
  9355. difference[E_AXIS] * inv_segments
  9356. };
  9357. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  9358. // SERIAL_ECHOPAIR(" seconds=", seconds);
  9359. // SERIAL_ECHOLNPAIR(" segments=", segments);
  9360. #if IS_SCARA
  9361. // SCARA needs to scale the feed rate from mm/s to degrees/s
  9362. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  9363. feed_factor = inv_segment_length * _feedrate_mm_s;
  9364. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  9365. oldB = stepper.get_axis_position_degrees(B_AXIS);
  9366. #endif
  9367. // Get the logical current position as starting point
  9368. float logical[XYZE];
  9369. COPY(logical, current_position);
  9370. // Drop one segment so the last move is to the exact target.
  9371. // If there's only 1 segment, loops will be skipped entirely.
  9372. --segments;
  9373. // Calculate and execute the segments
  9374. for (uint16_t s = segments + 1; --s;) {
  9375. LOOP_XYZE(i) logical[i] += segment_distance[i];
  9376. #if ENABLED(DELTA)
  9377. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  9378. #else
  9379. inverse_kinematics(logical);
  9380. #endif
  9381. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  9382. #if IS_SCARA
  9383. // For SCARA scale the feed rate from mm/s to degrees/s
  9384. // Use ratio between the length of the move and the larger angle change
  9385. const float adiff = abs(delta[A_AXIS] - oldA),
  9386. bdiff = abs(delta[B_AXIS] - oldB);
  9387. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9388. oldA = delta[A_AXIS];
  9389. oldB = delta[B_AXIS];
  9390. #else
  9391. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  9392. #endif
  9393. }
  9394. // Since segment_distance is only approximate,
  9395. // the final move must be to the exact destination.
  9396. #if IS_SCARA
  9397. // For SCARA scale the feed rate from mm/s to degrees/s
  9398. // With segments > 1 length is 1 segment, otherwise total length
  9399. inverse_kinematics(ltarget);
  9400. ADJUST_DELTA(logical);
  9401. const float adiff = abs(delta[A_AXIS] - oldA),
  9402. bdiff = abs(delta[B_AXIS] - oldB);
  9403. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9404. #else
  9405. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9406. #endif
  9407. return false;
  9408. }
  9409. #else // !IS_KINEMATIC
  9410. /**
  9411. * Prepare a linear move in a Cartesian setup.
  9412. * If Mesh Bed Leveling is enabled, perform a mesh move.
  9413. *
  9414. * Returns true if the caller didn't update current_position.
  9415. */
  9416. inline bool prepare_move_to_destination_cartesian() {
  9417. // Do not use feedrate_percentage for E or Z only moves
  9418. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  9419. line_to_destination();
  9420. }
  9421. else {
  9422. #if ENABLED(MESH_BED_LEVELING)
  9423. if (mbl.active()) {
  9424. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9425. return true;
  9426. }
  9427. else
  9428. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  9429. if (ubl.state.active) {
  9430. ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
  9431. return true;
  9432. }
  9433. else
  9434. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9435. if (planner.abl_enabled) {
  9436. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9437. return true;
  9438. }
  9439. else
  9440. #endif
  9441. line_to_destination(MMS_SCALED(feedrate_mm_s));
  9442. }
  9443. return false;
  9444. }
  9445. #endif // !IS_KINEMATIC
  9446. #if ENABLED(DUAL_X_CARRIAGE)
  9447. /**
  9448. * Prepare a linear move in a dual X axis setup
  9449. */
  9450. inline bool prepare_move_to_destination_dualx() {
  9451. if (active_extruder_parked) {
  9452. switch (dual_x_carriage_mode) {
  9453. case DXC_FULL_CONTROL_MODE:
  9454. break;
  9455. case DXC_AUTO_PARK_MODE:
  9456. if (current_position[E_AXIS] == destination[E_AXIS]) {
  9457. // This is a travel move (with no extrusion)
  9458. // Skip it, but keep track of the current position
  9459. // (so it can be used as the start of the next non-travel move)
  9460. if (delayed_move_time != 0xFFFFFFFFUL) {
  9461. set_current_to_destination();
  9462. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  9463. delayed_move_time = millis();
  9464. return true;
  9465. }
  9466. }
  9467. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  9468. for (uint8_t i = 0; i < 3; i++)
  9469. planner.buffer_line(
  9470. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  9471. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  9472. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  9473. current_position[E_AXIS],
  9474. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  9475. active_extruder
  9476. );
  9477. delayed_move_time = 0;
  9478. active_extruder_parked = false;
  9479. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9480. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  9481. #endif
  9482. break;
  9483. case DXC_DUPLICATION_MODE:
  9484. if (active_extruder == 0) {
  9485. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9486. if (DEBUGGING(LEVELING)) {
  9487. SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
  9488. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  9489. }
  9490. #endif
  9491. // move duplicate extruder into correct duplication position.
  9492. planner.set_position_mm(
  9493. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  9494. current_position[Y_AXIS],
  9495. current_position[Z_AXIS],
  9496. current_position[E_AXIS]
  9497. );
  9498. planner.buffer_line(
  9499. current_position[X_AXIS] + duplicate_extruder_x_offset,
  9500. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  9501. planner.max_feedrate_mm_s[X_AXIS], 1
  9502. );
  9503. SYNC_PLAN_POSITION_KINEMATIC();
  9504. stepper.synchronize();
  9505. extruder_duplication_enabled = true;
  9506. active_extruder_parked = false;
  9507. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9508. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  9509. #endif
  9510. }
  9511. else {
  9512. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9513. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  9514. #endif
  9515. }
  9516. break;
  9517. }
  9518. }
  9519. return false;
  9520. }
  9521. #endif // DUAL_X_CARRIAGE
  9522. /**
  9523. * Prepare a single move and get ready for the next one
  9524. *
  9525. * This may result in several calls to planner.buffer_line to
  9526. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  9527. */
  9528. void prepare_move_to_destination() {
  9529. clamp_to_software_endstops(destination);
  9530. refresh_cmd_timeout();
  9531. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9532. if (!DEBUGGING(DRYRUN)) {
  9533. if (destination[E_AXIS] != current_position[E_AXIS]) {
  9534. if (thermalManager.tooColdToExtrude(active_extruder)) {
  9535. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9536. SERIAL_ECHO_START;
  9537. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  9538. }
  9539. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  9540. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  9541. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9542. SERIAL_ECHO_START;
  9543. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  9544. }
  9545. #endif
  9546. }
  9547. }
  9548. #endif
  9549. #if IS_KINEMATIC
  9550. if (prepare_kinematic_move_to(destination)) return;
  9551. #else
  9552. #if ENABLED(DUAL_X_CARRIAGE)
  9553. if (prepare_move_to_destination_dualx()) return;
  9554. #endif
  9555. if (prepare_move_to_destination_cartesian()) return;
  9556. #endif
  9557. set_current_to_destination();
  9558. }
  9559. #if ENABLED(ARC_SUPPORT)
  9560. /**
  9561. * Plan an arc in 2 dimensions
  9562. *
  9563. * The arc is approximated by generating many small linear segments.
  9564. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  9565. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  9566. * larger segments will tend to be more efficient. Your slicer should have
  9567. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  9568. */
  9569. void plan_arc(
  9570. float logical[XYZE], // Destination position
  9571. float *offset, // Center of rotation relative to current_position
  9572. uint8_t clockwise // Clockwise?
  9573. ) {
  9574. float r_X = -offset[X_AXIS], // Radius vector from center to current location
  9575. r_Y = -offset[Y_AXIS];
  9576. const float radius = HYPOT(r_X, r_Y),
  9577. center_X = current_position[X_AXIS] - r_X,
  9578. center_Y = current_position[Y_AXIS] - r_Y,
  9579. rt_X = logical[X_AXIS] - center_X,
  9580. rt_Y = logical[Y_AXIS] - center_Y,
  9581. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  9582. extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
  9583. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  9584. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  9585. if (angular_travel < 0) angular_travel += RADIANS(360);
  9586. if (clockwise) angular_travel -= RADIANS(360);
  9587. // Make a circle if the angular rotation is 0
  9588. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  9589. angular_travel += RADIANS(360);
  9590. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  9591. if (mm_of_travel < 0.001) return;
  9592. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  9593. if (segments == 0) segments = 1;
  9594. /**
  9595. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  9596. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  9597. * r_T = [cos(phi) -sin(phi);
  9598. * sin(phi) cos(phi)] * r ;
  9599. *
  9600. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  9601. * defined from the circle center to the initial position. Each line segment is formed by successive
  9602. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  9603. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  9604. * all double numbers are single precision on the Arduino. (True double precision will not have
  9605. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  9606. * tool precision in some cases. Therefore, arc path correction is implemented.
  9607. *
  9608. * Small angle approximation may be used to reduce computation overhead further. This approximation
  9609. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  9610. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  9611. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  9612. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  9613. * issue for CNC machines with the single precision Arduino calculations.
  9614. *
  9615. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  9616. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  9617. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  9618. * This is important when there are successive arc motions.
  9619. */
  9620. // Vector rotation matrix values
  9621. float arc_target[XYZE];
  9622. const float theta_per_segment = angular_travel / segments,
  9623. linear_per_segment = linear_travel / segments,
  9624. extruder_per_segment = extruder_travel / segments,
  9625. sin_T = theta_per_segment,
  9626. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  9627. // Initialize the linear axis
  9628. arc_target[Z_AXIS] = current_position[Z_AXIS];
  9629. // Initialize the extruder axis
  9630. arc_target[E_AXIS] = current_position[E_AXIS];
  9631. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  9632. millis_t next_idle_ms = millis() + 200UL;
  9633. int8_t count = 0;
  9634. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  9635. thermalManager.manage_heater();
  9636. if (ELAPSED(millis(), next_idle_ms)) {
  9637. next_idle_ms = millis() + 200UL;
  9638. idle();
  9639. }
  9640. if (++count < N_ARC_CORRECTION) {
  9641. // Apply vector rotation matrix to previous r_X / 1
  9642. const float r_new_Y = r_X * sin_T + r_Y * cos_T;
  9643. r_X = r_X * cos_T - r_Y * sin_T;
  9644. r_Y = r_new_Y;
  9645. }
  9646. else {
  9647. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  9648. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  9649. // To reduce stuttering, the sin and cos could be computed at different times.
  9650. // For now, compute both at the same time.
  9651. const float cos_Ti = cos(i * theta_per_segment),
  9652. sin_Ti = sin(i * theta_per_segment);
  9653. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  9654. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  9655. count = 0;
  9656. }
  9657. // Update arc_target location
  9658. arc_target[X_AXIS] = center_X + r_X;
  9659. arc_target[Y_AXIS] = center_Y + r_Y;
  9660. arc_target[Z_AXIS] += linear_per_segment;
  9661. arc_target[E_AXIS] += extruder_per_segment;
  9662. clamp_to_software_endstops(arc_target);
  9663. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  9664. }
  9665. // Ensure last segment arrives at target location.
  9666. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  9667. // As far as the parser is concerned, the position is now == target. In reality the
  9668. // motion control system might still be processing the action and the real tool position
  9669. // in any intermediate location.
  9670. set_current_to_destination();
  9671. }
  9672. #endif
  9673. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9674. void plan_cubic_move(const float offset[4]) {
  9675. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  9676. // As far as the parser is concerned, the position is now == destination. In reality the
  9677. // motion control system might still be processing the action and the real tool position
  9678. // in any intermediate location.
  9679. set_current_to_destination();
  9680. }
  9681. #endif // BEZIER_CURVE_SUPPORT
  9682. #if HAS_CONTROLLERFAN
  9683. void controllerFan() {
  9684. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  9685. nextMotorCheck = 0; // Last time the state was checked
  9686. const millis_t ms = millis();
  9687. if (ELAPSED(ms, nextMotorCheck)) {
  9688. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  9689. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  9690. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  9691. #if E_STEPPERS > 1
  9692. || E1_ENABLE_READ == E_ENABLE_ON
  9693. #if HAS_X2_ENABLE
  9694. || X2_ENABLE_READ == X_ENABLE_ON
  9695. #endif
  9696. #if E_STEPPERS > 2
  9697. || E2_ENABLE_READ == E_ENABLE_ON
  9698. #if E_STEPPERS > 3
  9699. || E3_ENABLE_READ == E_ENABLE_ON
  9700. #if E_STEPPERS > 4
  9701. || E4_ENABLE_READ == E_ENABLE_ON
  9702. #endif // E_STEPPERS > 4
  9703. #endif // E_STEPPERS > 3
  9704. #endif // E_STEPPERS > 2
  9705. #endif // E_STEPPERS > 1
  9706. ) {
  9707. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  9708. }
  9709. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  9710. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  9711. // allows digital or PWM fan output to be used (see M42 handling)
  9712. WRITE(CONTROLLERFAN_PIN, speed);
  9713. analogWrite(CONTROLLERFAN_PIN, speed);
  9714. }
  9715. }
  9716. #endif // HAS_CONTROLLERFAN
  9717. #if ENABLED(MORGAN_SCARA)
  9718. /**
  9719. * Morgan SCARA Forward Kinematics. Results in cartes[].
  9720. * Maths and first version by QHARLEY.
  9721. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9722. */
  9723. void forward_kinematics_SCARA(const float &a, const float &b) {
  9724. float a_sin = sin(RADIANS(a)) * L1,
  9725. a_cos = cos(RADIANS(a)) * L1,
  9726. b_sin = sin(RADIANS(b)) * L2,
  9727. b_cos = cos(RADIANS(b)) * L2;
  9728. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  9729. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  9730. /*
  9731. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  9732. SERIAL_ECHOPAIR(" b=", b);
  9733. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  9734. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  9735. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  9736. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  9737. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  9738. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  9739. //*/
  9740. }
  9741. /**
  9742. * Morgan SCARA Inverse Kinematics. Results in delta[].
  9743. *
  9744. * See http://forums.reprap.org/read.php?185,283327
  9745. *
  9746. * Maths and first version by QHARLEY.
  9747. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9748. */
  9749. void inverse_kinematics(const float logical[XYZ]) {
  9750. static float C2, S2, SK1, SK2, THETA, PSI;
  9751. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  9752. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  9753. if (L1 == L2)
  9754. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  9755. else
  9756. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  9757. S2 = sqrt(sq(C2) - 1);
  9758. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  9759. SK1 = L1 + L2 * C2;
  9760. // Rotated Arm2 gives the distance from Arm1 to Arm2
  9761. SK2 = L2 * S2;
  9762. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  9763. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  9764. // Angle of Arm2
  9765. PSI = atan2(S2, C2);
  9766. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  9767. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  9768. delta[C_AXIS] = logical[Z_AXIS];
  9769. /*
  9770. DEBUG_POS("SCARA IK", logical);
  9771. DEBUG_POS("SCARA IK", delta);
  9772. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  9773. SERIAL_ECHOPAIR(",", sy);
  9774. SERIAL_ECHOPAIR(" C2=", C2);
  9775. SERIAL_ECHOPAIR(" S2=", S2);
  9776. SERIAL_ECHOPAIR(" Theta=", THETA);
  9777. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  9778. //*/
  9779. }
  9780. #endif // MORGAN_SCARA
  9781. #if ENABLED(TEMP_STAT_LEDS)
  9782. static bool red_led = false;
  9783. static millis_t next_status_led_update_ms = 0;
  9784. void handle_status_leds(void) {
  9785. if (ELAPSED(millis(), next_status_led_update_ms)) {
  9786. next_status_led_update_ms += 500; // Update every 0.5s
  9787. float max_temp = 0.0;
  9788. #if HAS_TEMP_BED
  9789. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  9790. #endif
  9791. HOTEND_LOOP() {
  9792. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  9793. }
  9794. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  9795. if (new_led != red_led) {
  9796. red_led = new_led;
  9797. #if PIN_EXISTS(STAT_LED_RED)
  9798. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  9799. #if PIN_EXISTS(STAT_LED_BLUE)
  9800. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  9801. #endif
  9802. #else
  9803. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  9804. #endif
  9805. }
  9806. }
  9807. }
  9808. #endif
  9809. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9810. void handle_filament_runout() {
  9811. if (!filament_ran_out) {
  9812. filament_ran_out = true;
  9813. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  9814. stepper.synchronize();
  9815. }
  9816. }
  9817. #endif // FILAMENT_RUNOUT_SENSOR
  9818. #if ENABLED(FAST_PWM_FAN)
  9819. void setPwmFrequency(uint8_t pin, int val) {
  9820. val &= 0x07;
  9821. switch (digitalPinToTimer(pin)) {
  9822. #ifdef TCCR0A
  9823. case TIMER0A:
  9824. case TIMER0B:
  9825. //_SET_CS(0, val);
  9826. break;
  9827. #endif
  9828. #ifdef TCCR1A
  9829. case TIMER1A:
  9830. case TIMER1B:
  9831. //_SET_CS(1, val);
  9832. break;
  9833. #endif
  9834. #ifdef TCCR2
  9835. case TIMER2:
  9836. case TIMER2:
  9837. _SET_CS(2, val);
  9838. break;
  9839. #endif
  9840. #ifdef TCCR2A
  9841. case TIMER2A:
  9842. case TIMER2B:
  9843. _SET_CS(2, val);
  9844. break;
  9845. #endif
  9846. #ifdef TCCR3A
  9847. case TIMER3A:
  9848. case TIMER3B:
  9849. case TIMER3C:
  9850. _SET_CS(3, val);
  9851. break;
  9852. #endif
  9853. #ifdef TCCR4A
  9854. case TIMER4A:
  9855. case TIMER4B:
  9856. case TIMER4C:
  9857. _SET_CS(4, val);
  9858. break;
  9859. #endif
  9860. #ifdef TCCR5A
  9861. case TIMER5A:
  9862. case TIMER5B:
  9863. case TIMER5C:
  9864. _SET_CS(5, val);
  9865. break;
  9866. #endif
  9867. }
  9868. }
  9869. #endif // FAST_PWM_FAN
  9870. float calculate_volumetric_multiplier(float diameter) {
  9871. if (!volumetric_enabled || diameter == 0) return 1.0;
  9872. return 1.0 / (M_PI * sq(diameter * 0.5));
  9873. }
  9874. void calculate_volumetric_multipliers() {
  9875. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  9876. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  9877. }
  9878. void enable_all_steppers() {
  9879. enable_X();
  9880. enable_Y();
  9881. enable_Z();
  9882. enable_E0();
  9883. enable_E1();
  9884. enable_E2();
  9885. enable_E3();
  9886. enable_E4();
  9887. }
  9888. void disable_e_steppers() {
  9889. disable_E0();
  9890. disable_E1();
  9891. disable_E2();
  9892. disable_E3();
  9893. disable_E4();
  9894. }
  9895. void disable_all_steppers() {
  9896. disable_X();
  9897. disable_Y();
  9898. disable_Z();
  9899. disable_e_steppers();
  9900. }
  9901. #if ENABLED(HAVE_TMC2130)
  9902. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  9903. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  9904. const bool is_otpw = st.checkOT();
  9905. // Report if a warning was triggered
  9906. static bool previous_otpw = false;
  9907. if (is_otpw && !previous_otpw) {
  9908. char timestamp[10];
  9909. duration_t elapsed = print_job_timer.duration();
  9910. const bool has_days = (elapsed.value > 60*60*24L);
  9911. (void)elapsed.toDigital(timestamp, has_days);
  9912. SERIAL_ECHO(timestamp);
  9913. SERIAL_ECHO(": ");
  9914. SERIAL_ECHO(axisID);
  9915. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  9916. }
  9917. previous_otpw = is_otpw;
  9918. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9919. // Return if user has not enabled current control start with M906 S1.
  9920. if (!auto_current_control) return;
  9921. /**
  9922. * Decrease current if is_otpw is true.
  9923. * Bail out if driver is disabled.
  9924. * Increase current if OTPW has not been triggered yet.
  9925. */
  9926. uint16_t current = st.getCurrent();
  9927. if (is_otpw) {
  9928. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  9929. #if ENABLED(REPORT_CURRENT_CHANGE)
  9930. SERIAL_ECHO(axisID);
  9931. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  9932. #endif
  9933. }
  9934. else if (!st.isEnabled())
  9935. return;
  9936. else if (!is_otpw && !st.getOTPW()) {
  9937. current += CURRENT_STEP;
  9938. if (current <= AUTO_ADJUST_MAX) {
  9939. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  9940. #if ENABLED(REPORT_CURRENT_CHANGE)
  9941. SERIAL_ECHO(axisID);
  9942. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  9943. #endif
  9944. }
  9945. }
  9946. SERIAL_EOL;
  9947. #endif
  9948. }
  9949. void checkOverTemp() {
  9950. static millis_t next_cOT = 0;
  9951. if (ELAPSED(millis(), next_cOT)) {
  9952. next_cOT = millis() + 5000;
  9953. #if ENABLED(X_IS_TMC2130)
  9954. automatic_current_control(stepperX, "X");
  9955. #endif
  9956. #if ENABLED(Y_IS_TMC2130)
  9957. automatic_current_control(stepperY, "Y");
  9958. #endif
  9959. #if ENABLED(Z_IS_TMC2130)
  9960. automatic_current_control(stepperZ, "Z");
  9961. #endif
  9962. #if ENABLED(X2_IS_TMC2130)
  9963. automatic_current_control(stepperX2, "X2");
  9964. #endif
  9965. #if ENABLED(Y2_IS_TMC2130)
  9966. automatic_current_control(stepperY2, "Y2");
  9967. #endif
  9968. #if ENABLED(Z2_IS_TMC2130)
  9969. automatic_current_control(stepperZ2, "Z2");
  9970. #endif
  9971. #if ENABLED(E0_IS_TMC2130)
  9972. automatic_current_control(stepperE0, "E0");
  9973. #endif
  9974. #if ENABLED(E1_IS_TMC2130)
  9975. automatic_current_control(stepperE1, "E1");
  9976. #endif
  9977. #if ENABLED(E2_IS_TMC2130)
  9978. automatic_current_control(stepperE2, "E2");
  9979. #endif
  9980. #if ENABLED(E3_IS_TMC2130)
  9981. automatic_current_control(stepperE3, "E3");
  9982. #endif
  9983. #if ENABLED(E4_IS_TMC2130)
  9984. automatic_current_control(stepperE4, "E4");
  9985. #endif
  9986. #if ENABLED(E4_IS_TMC2130)
  9987. automatic_current_control(stepperE4);
  9988. #endif
  9989. }
  9990. }
  9991. #endif // HAVE_TMC2130
  9992. /**
  9993. * Manage several activities:
  9994. * - Check for Filament Runout
  9995. * - Keep the command buffer full
  9996. * - Check for maximum inactive time between commands
  9997. * - Check for maximum inactive time between stepper commands
  9998. * - Check if pin CHDK needs to go LOW
  9999. * - Check for KILL button held down
  10000. * - Check for HOME button held down
  10001. * - Check if cooling fan needs to be switched on
  10002. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  10003. */
  10004. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  10005. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10006. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  10007. handle_filament_runout();
  10008. #endif
  10009. if (commands_in_queue < BUFSIZE) get_available_commands();
  10010. const millis_t ms = millis();
  10011. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  10012. SERIAL_ERROR_START;
  10013. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  10014. kill(PSTR(MSG_KILLED));
  10015. }
  10016. // Prevent steppers timing-out in the middle of M600
  10017. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  10018. #define M600_TEST !busy_doing_M600
  10019. #else
  10020. #define M600_TEST true
  10021. #endif
  10022. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  10023. && !ignore_stepper_queue && !planner.blocks_queued()) {
  10024. #if ENABLED(DISABLE_INACTIVE_X)
  10025. disable_X();
  10026. #endif
  10027. #if ENABLED(DISABLE_INACTIVE_Y)
  10028. disable_Y();
  10029. #endif
  10030. #if ENABLED(DISABLE_INACTIVE_Z)
  10031. disable_Z();
  10032. #endif
  10033. #if ENABLED(DISABLE_INACTIVE_E)
  10034. disable_e_steppers();
  10035. #endif
  10036. }
  10037. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  10038. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  10039. chdkActive = false;
  10040. WRITE(CHDK, LOW);
  10041. }
  10042. #endif
  10043. #if HAS_KILL
  10044. // Check if the kill button was pressed and wait just in case it was an accidental
  10045. // key kill key press
  10046. // -------------------------------------------------------------------------------
  10047. static int killCount = 0; // make the inactivity button a bit less responsive
  10048. const int KILL_DELAY = 750;
  10049. if (!READ(KILL_PIN))
  10050. killCount++;
  10051. else if (killCount > 0)
  10052. killCount--;
  10053. // Exceeded threshold and we can confirm that it was not accidental
  10054. // KILL the machine
  10055. // ----------------------------------------------------------------
  10056. if (killCount >= KILL_DELAY) {
  10057. SERIAL_ERROR_START;
  10058. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  10059. kill(PSTR(MSG_KILLED));
  10060. }
  10061. #endif
  10062. #if HAS_HOME
  10063. // Check to see if we have to home, use poor man's debouncer
  10064. // ---------------------------------------------------------
  10065. static int homeDebounceCount = 0; // poor man's debouncing count
  10066. const int HOME_DEBOUNCE_DELAY = 2500;
  10067. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  10068. if (!homeDebounceCount) {
  10069. enqueue_and_echo_commands_P(PSTR("G28"));
  10070. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  10071. }
  10072. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  10073. homeDebounceCount++;
  10074. else
  10075. homeDebounceCount = 0;
  10076. }
  10077. #endif
  10078. #if HAS_CONTROLLERFAN
  10079. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  10080. #endif
  10081. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  10082. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  10083. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  10084. bool oldstatus;
  10085. #if ENABLED(SWITCHING_EXTRUDER)
  10086. oldstatus = E0_ENABLE_READ;
  10087. enable_E0();
  10088. #else // !SWITCHING_EXTRUDER
  10089. switch (active_extruder) {
  10090. case 0: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  10091. #if E_STEPPERS > 1
  10092. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  10093. #if E_STEPPERS > 2
  10094. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  10095. #if E_STEPPERS > 3
  10096. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  10097. #if E_STEPPERS > 4
  10098. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  10099. #endif // E_STEPPERS > 4
  10100. #endif // E_STEPPERS > 3
  10101. #endif // E_STEPPERS > 2
  10102. #endif // E_STEPPERS > 1
  10103. }
  10104. #endif // !SWITCHING_EXTRUDER
  10105. previous_cmd_ms = ms; // refresh_cmd_timeout()
  10106. const float olde = current_position[E_AXIS];
  10107. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  10108. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  10109. current_position[E_AXIS] = olde;
  10110. planner.set_e_position_mm(olde);
  10111. stepper.synchronize();
  10112. #if ENABLED(SWITCHING_EXTRUDER)
  10113. E0_ENABLE_WRITE(oldstatus);
  10114. #else
  10115. switch (active_extruder) {
  10116. case 0: E0_ENABLE_WRITE(oldstatus); break;
  10117. #if E_STEPPERS > 1
  10118. case 1: E1_ENABLE_WRITE(oldstatus); break;
  10119. #if E_STEPPERS > 2
  10120. case 2: E2_ENABLE_WRITE(oldstatus); break;
  10121. #if E_STEPPERS > 3
  10122. case 3: E3_ENABLE_WRITE(oldstatus); break;
  10123. #if E_STEPPERS > 4
  10124. case 4: E4_ENABLE_WRITE(oldstatus); break;
  10125. #endif // E_STEPPERS > 4
  10126. #endif // E_STEPPERS > 3
  10127. #endif // E_STEPPERS > 2
  10128. #endif // E_STEPPERS > 1
  10129. }
  10130. #endif // !SWITCHING_EXTRUDER
  10131. }
  10132. #endif // EXTRUDER_RUNOUT_PREVENT
  10133. #if ENABLED(DUAL_X_CARRIAGE)
  10134. // handle delayed move timeout
  10135. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  10136. // travel moves have been received so enact them
  10137. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  10138. set_destination_to_current();
  10139. prepare_move_to_destination();
  10140. }
  10141. #endif
  10142. #if ENABLED(TEMP_STAT_LEDS)
  10143. handle_status_leds();
  10144. #endif
  10145. #if ENABLED(HAVE_TMC2130)
  10146. checkOverTemp();
  10147. #endif
  10148. planner.check_axes_activity();
  10149. }
  10150. /**
  10151. * Standard idle routine keeps the machine alive
  10152. */
  10153. void idle(
  10154. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10155. bool no_stepper_sleep/*=false*/
  10156. #endif
  10157. ) {
  10158. lcd_update();
  10159. host_keepalive();
  10160. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  10161. auto_report_temperatures();
  10162. #endif
  10163. manage_inactivity(
  10164. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10165. no_stepper_sleep
  10166. #endif
  10167. );
  10168. thermalManager.manage_heater();
  10169. #if ENABLED(PRINTCOUNTER)
  10170. print_job_timer.tick();
  10171. #endif
  10172. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  10173. buzzer.tick();
  10174. #endif
  10175. }
  10176. /**
  10177. * Kill all activity and lock the machine.
  10178. * After this the machine will need to be reset.
  10179. */
  10180. void kill(const char* lcd_msg) {
  10181. SERIAL_ERROR_START;
  10182. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  10183. thermalManager.disable_all_heaters();
  10184. disable_all_steppers();
  10185. #if ENABLED(ULTRA_LCD)
  10186. kill_screen(lcd_msg);
  10187. #else
  10188. UNUSED(lcd_msg);
  10189. #endif
  10190. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  10191. cli(); // Stop interrupts
  10192. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  10193. thermalManager.disable_all_heaters(); //turn off heaters again
  10194. #if HAS_POWER_SWITCH
  10195. SET_INPUT(PS_ON_PIN);
  10196. #endif
  10197. suicide();
  10198. while (1) {
  10199. #if ENABLED(USE_WATCHDOG)
  10200. watchdog_reset();
  10201. #endif
  10202. } // Wait for reset
  10203. }
  10204. /**
  10205. * Turn off heaters and stop the print in progress
  10206. * After a stop the machine may be resumed with M999
  10207. */
  10208. void stop() {
  10209. thermalManager.disable_all_heaters();
  10210. if (IsRunning()) {
  10211. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  10212. SERIAL_ERROR_START;
  10213. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  10214. LCD_MESSAGEPGM(MSG_STOPPED);
  10215. safe_delay(350); // allow enough time for messages to get out before stopping
  10216. Running = false;
  10217. }
  10218. }
  10219. /**
  10220. * Marlin entry-point: Set up before the program loop
  10221. * - Set up the kill pin, filament runout, power hold
  10222. * - Start the serial port
  10223. * - Print startup messages and diagnostics
  10224. * - Get EEPROM or default settings
  10225. * - Initialize managers for:
  10226. * • temperature
  10227. * • planner
  10228. * • watchdog
  10229. * • stepper
  10230. * • photo pin
  10231. * • servos
  10232. * • LCD controller
  10233. * • Digipot I2C
  10234. * • Z probe sled
  10235. * • status LEDs
  10236. */
  10237. void setup() {
  10238. #ifdef DISABLE_JTAG
  10239. // Disable JTAG on AT90USB chips to free up pins for IO
  10240. MCUCR = 0x80;
  10241. MCUCR = 0x80;
  10242. #endif
  10243. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10244. setup_filrunoutpin();
  10245. #endif
  10246. setup_killpin();
  10247. setup_powerhold();
  10248. #if HAS_STEPPER_RESET
  10249. disableStepperDrivers();
  10250. #endif
  10251. MYSERIAL.begin(BAUDRATE);
  10252. SERIAL_PROTOCOLLNPGM("start");
  10253. SERIAL_ECHO_START;
  10254. // Check startup - does nothing if bootloader sets MCUSR to 0
  10255. byte mcu = MCUSR;
  10256. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  10257. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  10258. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  10259. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  10260. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  10261. MCUSR = 0;
  10262. SERIAL_ECHOPGM(MSG_MARLIN);
  10263. SERIAL_CHAR(' ');
  10264. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  10265. SERIAL_EOL;
  10266. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  10267. SERIAL_ECHO_START;
  10268. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  10269. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  10270. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  10271. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  10272. #endif
  10273. SERIAL_ECHO_START;
  10274. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  10275. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  10276. // Send "ok" after commands by default
  10277. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  10278. // Load data from EEPROM if available (or use defaults)
  10279. // This also updates variables in the planner, elsewhere
  10280. (void)settings.load();
  10281. #if HAS_M206_COMMAND
  10282. // Initialize current position based on home_offset
  10283. COPY(current_position, home_offset);
  10284. #else
  10285. ZERO(current_position);
  10286. #endif
  10287. // Vital to init stepper/planner equivalent for current_position
  10288. SYNC_PLAN_POSITION_KINEMATIC();
  10289. thermalManager.init(); // Initialize temperature loop
  10290. #if ENABLED(USE_WATCHDOG)
  10291. watchdog_init();
  10292. #endif
  10293. stepper.init(); // Initialize stepper, this enables interrupts!
  10294. servo_init();
  10295. #if HAS_PHOTOGRAPH
  10296. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  10297. #endif
  10298. #if HAS_CASE_LIGHT
  10299. update_case_light();
  10300. #endif
  10301. #if HAS_BED_PROBE
  10302. endstops.enable_z_probe(false);
  10303. #endif
  10304. #if HAS_CONTROLLERFAN
  10305. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  10306. #endif
  10307. #if HAS_STEPPER_RESET
  10308. enableStepperDrivers();
  10309. #endif
  10310. #if ENABLED(DIGIPOT_I2C)
  10311. digipot_i2c_init();
  10312. #endif
  10313. #if ENABLED(DAC_STEPPER_CURRENT)
  10314. dac_init();
  10315. #endif
  10316. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  10317. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  10318. #endif
  10319. setup_homepin();
  10320. #if PIN_EXISTS(STAT_LED_RED)
  10321. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  10322. #endif
  10323. #if PIN_EXISTS(STAT_LED_BLUE)
  10324. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  10325. #endif
  10326. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  10327. SET_OUTPUT(RGB_LED_R_PIN);
  10328. SET_OUTPUT(RGB_LED_G_PIN);
  10329. SET_OUTPUT(RGB_LED_B_PIN);
  10330. #if ENABLED(RGBW_LED)
  10331. SET_OUTPUT(RGB_LED_W_PIN);
  10332. #endif
  10333. #endif
  10334. lcd_init();
  10335. #if ENABLED(SHOW_BOOTSCREEN)
  10336. #if ENABLED(DOGLCD)
  10337. safe_delay(BOOTSCREEN_TIMEOUT);
  10338. #elif ENABLED(ULTRA_LCD)
  10339. bootscreen();
  10340. #if DISABLED(SDSUPPORT)
  10341. lcd_init();
  10342. #endif
  10343. #endif
  10344. #endif
  10345. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  10346. // Initialize mixing to 100% color 1
  10347. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10348. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  10349. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  10350. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10351. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  10352. #endif
  10353. #if ENABLED(BLTOUCH)
  10354. bltouch_command(BLTOUCH_RESET); // Just in case the BLTouch is in the error state, try to
  10355. set_bltouch_deployed(true); // reset it. Also needs to deploy and stow to clear the
  10356. set_bltouch_deployed(false); // error condition.
  10357. #endif
  10358. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  10359. i2c.onReceive(i2c_on_receive);
  10360. i2c.onRequest(i2c_on_request);
  10361. #endif
  10362. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  10363. setup_endstop_interrupts();
  10364. #endif
  10365. }
  10366. /**
  10367. * The main Marlin program loop
  10368. *
  10369. * - Save or log commands to SD
  10370. * - Process available commands (if not saving)
  10371. * - Call heater manager
  10372. * - Call inactivity manager
  10373. * - Call endstop manager
  10374. * - Call LCD update
  10375. */
  10376. void loop() {
  10377. if (commands_in_queue < BUFSIZE) get_available_commands();
  10378. #if ENABLED(SDSUPPORT)
  10379. card.checkautostart(false);
  10380. #endif
  10381. if (commands_in_queue) {
  10382. #if ENABLED(SDSUPPORT)
  10383. if (card.saving) {
  10384. char* command = command_queue[cmd_queue_index_r];
  10385. if (strstr_P(command, PSTR("M29"))) {
  10386. // M29 closes the file
  10387. card.closefile();
  10388. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  10389. ok_to_send();
  10390. }
  10391. else {
  10392. // Write the string from the read buffer to SD
  10393. card.write_command(command);
  10394. if (card.logging)
  10395. process_next_command(); // The card is saving because it's logging
  10396. else
  10397. ok_to_send();
  10398. }
  10399. }
  10400. else
  10401. process_next_command();
  10402. #else
  10403. process_next_command();
  10404. #endif // SDSUPPORT
  10405. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  10406. if (commands_in_queue) {
  10407. --commands_in_queue;
  10408. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  10409. }
  10410. }
  10411. endstops.report_state();
  10412. idle();
  10413. }