My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 61KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V45"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V44 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM CRC16 (uint16_t)
  45. *
  46. * 106 E_STEPPERS (uint8_t)
  47. * 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x8)
  48. * 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x8)
  49. * 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x8)
  50. * 155 M204 P planner.acceleration (float)
  51. * 159 M204 R planner.retract_acceleration (float)
  52. * 163 M204 T planner.travel_acceleration (float)
  53. * 167 M205 S planner.min_feedrate_mm_s (float)
  54. * 171 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 175 M205 B planner.min_segment_time_us (ulong)
  56. * 179 M205 X planner.max_jerk[X_AXIS] (float)
  57. * 183 M205 Y planner.max_jerk[Y_AXIS] (float)
  58. * 187 M205 Z planner.max_jerk[Z_AXIS] (float)
  59. * 191 M205 E planner.max_jerk[E_AXIS] (float)
  60. * 195 M206 XYZ home_offset (float x3)
  61. * 207 M218 XYZ hotend_offset (float x3 per additional hotend)
  62. *
  63. * Global Leveling: 4 bytes
  64. * 219 z_fade_height (float)
  65. *
  66. * MESH_BED_LEVELING: 43 bytes
  67. * 223 M420 S planner.leveling_active (bool)
  68. * 224 mbl.z_offset (float)
  69. * 228 GRID_MAX_POINTS_X (uint8_t)
  70. * 229 GRID_MAX_POINTS_Y (uint8_t)
  71. * 230 G29 S3 XYZ z_values[][] (float x9, up to float x81) +288
  72. *
  73. * HAS_BED_PROBE: 4 bytes
  74. * 266 M851 zprobe_zoffset (float)
  75. *
  76. * ABL_PLANAR: 36 bytes
  77. * 270 planner.bed_level_matrix (matrix_3x3 = float x9)
  78. *
  79. * AUTO_BED_LEVELING_BILINEAR: 46 bytes
  80. * 306 GRID_MAX_POINTS_X (uint8_t)
  81. * 307 GRID_MAX_POINTS_Y (uint8_t)
  82. * 308 bilinear_grid_spacing (int x2)
  83. * 312 G29 L F bilinear_start (int x2)
  84. * 316 z_values[][] (float x9, up to float x256) +988
  85. *
  86. * AUTO_BED_LEVELING_UBL: 2 bytes
  87. * 324 G29 A planner.leveling_active (bool)
  88. * 325 G29 S ubl.storage_slot (int8_t)
  89. *
  90. * DELTA: 44 bytes
  91. * 352 M666 H delta_height (float)
  92. * 364 M666 XYZ delta_endstop_adj (float x3)
  93. * 368 M665 R delta_radius (float)
  94. * 372 M665 L delta_diagonal_rod (float)
  95. * 376 M665 S delta_segments_per_second (float)
  96. * 380 M665 B delta_calibration_radius (float)
  97. * 384 M665 X delta_tower_angle_trim[A] (float)
  98. * 388 M665 Y delta_tower_angle_trim[B] (float)
  99. * 392 M665 Z delta_tower_angle_trim[C] (float)
  100. *
  101. * [XYZ]_DUAL_ENDSTOPS: 12 bytes
  102. * 352 M666 X x_endstop_adj (float)
  103. * 356 M666 Y y_endstop_adj (float)
  104. * 360 M666 Z z_endstop_adj (float)
  105. *
  106. * ULTIPANEL: 6 bytes
  107. * 396 M145 S0 H lcd_preheat_hotend_temp (int x2)
  108. * 400 M145 S0 B lcd_preheat_bed_temp (int x2)
  109. * 404 M145 S0 F lcd_preheat_fan_speed (int x2)
  110. *
  111. * PIDTEMP: 82 bytes
  112. * 408 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  113. * 428 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  114. * 440 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  115. * 456 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  116. * 472 M301 E4 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  117. * 488 M301 L lpq_len (int)
  118. *
  119. * PIDTEMPBED: 12 bytes
  120. * 490 M304 PID thermalManager.bedKp, .bedKi, .bedKd (float x3)
  121. *
  122. * DOGLCD: 2 bytes
  123. * 502 M250 C lcd_contrast (uint16_t)
  124. *
  125. * FWRETRACT: 33 bytes
  126. * 504 M209 S autoretract_enabled (bool)
  127. * 505 M207 S retract_length (float)
  128. * 509 M207 F retract_feedrate_mm_s (float)
  129. * 513 M207 Z retract_zlift (float)
  130. * 517 M208 S retract_recover_length (float)
  131. * 521 M208 F retract_recover_feedrate_mm_s (float)
  132. * 525 M207 W swap_retract_length (float)
  133. * 529 M208 W swap_retract_recover_length (float)
  134. * 533 M208 R swap_retract_recover_feedrate_mm_s (float)
  135. *
  136. * Volumetric Extrusion: 21 bytes
  137. * 537 M200 D parser.volumetric_enabled (bool)
  138. * 538 M200 T D planner.filament_size (float x5) (T0..3)
  139. *
  140. * HAVE_TMC2130: 22 bytes
  141. * 558 M906 X Stepper X current (uint16_t)
  142. * 560 M906 Y Stepper Y current (uint16_t)
  143. * 562 M906 Z Stepper Z current (uint16_t)
  144. * 564 M906 X2 Stepper X2 current (uint16_t)
  145. * 566 M906 Y2 Stepper Y2 current (uint16_t)
  146. * 568 M906 Z2 Stepper Z2 current (uint16_t)
  147. * 570 M906 E0 Stepper E0 current (uint16_t)
  148. * 572 M906 E1 Stepper E1 current (uint16_t)
  149. * 574 M906 E2 Stepper E2 current (uint16_t)
  150. * 576 M906 E3 Stepper E3 current (uint16_t)
  151. * 578 M906 E4 Stepper E4 current (uint16_t)
  152. *
  153. * LIN_ADVANCE: 8 bytes
  154. * 580 M900 K extruder_advance_k (float)
  155. * 584 M900 WHD advance_ed_ratio (float)
  156. *
  157. * HAS_MOTOR_CURRENT_PWM:
  158. * 588 M907 X Stepper XY current (uint32_t)
  159. * 592 M907 Z Stepper Z current (uint32_t)
  160. * 596 M907 E Stepper E current (uint32_t)
  161. *
  162. * CNC_COORDINATE_SYSTEMS 108 bytes
  163. * 600 G54-G59.3 coordinate_system (float x 27)
  164. *
  165. * 708 Minimum end-point
  166. * 2025 (704 + 36 + 9 + 288 + 988) Maximum end-point
  167. *
  168. * ========================================================================
  169. * meshes_begin (between max and min end-point, directly above)
  170. * -- MESHES --
  171. * meshes_end
  172. * -- MAT (Mesh Allocation Table) -- 128 bytes (placeholder size)
  173. * mat_end = E2END (0xFFF)
  174. *
  175. */
  176. #include "configuration_store.h"
  177. MarlinSettings settings;
  178. #include "Marlin.h"
  179. #include "language.h"
  180. #include "endstops.h"
  181. #include "planner.h"
  182. #include "temperature.h"
  183. #include "ultralcd.h"
  184. #include "stepper.h"
  185. #include "gcode.h"
  186. #if ENABLED(MESH_BED_LEVELING)
  187. #include "mesh_bed_leveling.h"
  188. #endif
  189. #if ENABLED(HAVE_TMC2130)
  190. #include "stepper_indirection.h"
  191. #endif
  192. #if ENABLED(AUTO_BED_LEVELING_UBL)
  193. #include "ubl.h"
  194. #endif
  195. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  196. extern void refresh_bed_level();
  197. #endif
  198. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  199. float new_z_fade_height;
  200. #endif
  201. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  202. bool position_changed;
  203. #endif
  204. /**
  205. * Post-process after Retrieve or Reset
  206. */
  207. void MarlinSettings::postprocess() {
  208. // steps per s2 needs to be updated to agree with units per s2
  209. planner.reset_acceleration_rates();
  210. // Make sure delta kinematics are updated before refreshing the
  211. // planner position so the stepper counts will be set correctly.
  212. #if ENABLED(DELTA)
  213. recalc_delta_settings();
  214. #endif
  215. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  216. // and init stepper.count[], planner.position[] with current_position
  217. planner.refresh_positioning();
  218. #if ENABLED(PIDTEMP)
  219. thermalManager.updatePID();
  220. #endif
  221. planner.calculate_volumetric_multipliers();
  222. #if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  223. // Software endstops depend on home_offset
  224. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  225. #endif
  226. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  227. set_z_fade_height(new_z_fade_height);
  228. #endif
  229. #if HAS_BED_PROBE
  230. refresh_zprobe_zoffset();
  231. #endif
  232. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  233. refresh_bed_level();
  234. //set_bed_leveling_enabled(leveling_is_on);
  235. #endif
  236. #if HAS_MOTOR_CURRENT_PWM
  237. stepper.refresh_motor_power();
  238. #endif
  239. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  240. if (position_changed) {
  241. report_current_position();
  242. position_changed = false;
  243. }
  244. #endif
  245. }
  246. #if ENABLED(EEPROM_SETTINGS)
  247. #define DUMMY_PID_VALUE 3000.0f
  248. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  249. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  250. #define EEPROM_WRITE(VAR) write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  251. #define EEPROM_READ(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  252. #define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(ERR); eeprom_read_error = true; }while(0)
  253. const char version[4] = EEPROM_VERSION;
  254. bool MarlinSettings::eeprom_error;
  255. #if ENABLED(AUTO_BED_LEVELING_UBL)
  256. int MarlinSettings::meshes_begin;
  257. #endif
  258. void MarlinSettings::write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) {
  259. if (eeprom_error) return;
  260. while (size--) {
  261. uint8_t * const p = (uint8_t * const)pos;
  262. uint8_t v = *value;
  263. // EEPROM has only ~100,000 write cycles,
  264. // so only write bytes that have changed!
  265. if (v != eeprom_read_byte(p)) {
  266. eeprom_write_byte(p, v);
  267. if (eeprom_read_byte(p) != v) {
  268. SERIAL_ECHO_START();
  269. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  270. eeprom_error = true;
  271. return;
  272. }
  273. }
  274. crc16(crc, &v, 1);
  275. pos++;
  276. value++;
  277. };
  278. }
  279. void MarlinSettings::read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc) {
  280. if (eeprom_error) return;
  281. do {
  282. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  283. *value = c;
  284. crc16(crc, &c, 1);
  285. pos++;
  286. value++;
  287. } while (--size);
  288. }
  289. /**
  290. * M500 - Store Configuration
  291. */
  292. bool MarlinSettings::save() {
  293. float dummy = 0.0f;
  294. char ver[4] = "000";
  295. uint16_t working_crc = 0;
  296. EEPROM_START();
  297. eeprom_error = false;
  298. EEPROM_WRITE(ver); // invalidate data first
  299. EEPROM_SKIP(working_crc); // Skip the checksum slot
  300. working_crc = 0; // clear before first "real data"
  301. const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
  302. EEPROM_WRITE(esteppers);
  303. EEPROM_WRITE(planner.axis_steps_per_mm);
  304. EEPROM_WRITE(planner.max_feedrate_mm_s);
  305. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  306. EEPROM_WRITE(planner.acceleration);
  307. EEPROM_WRITE(planner.retract_acceleration);
  308. EEPROM_WRITE(planner.travel_acceleration);
  309. EEPROM_WRITE(planner.min_feedrate_mm_s);
  310. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  311. EEPROM_WRITE(planner.min_segment_time_us);
  312. EEPROM_WRITE(planner.max_jerk);
  313. #if !HAS_HOME_OFFSET
  314. const float home_offset[XYZ] = { 0 };
  315. #endif
  316. EEPROM_WRITE(home_offset);
  317. #if HOTENDS > 1
  318. // Skip hotend 0 which must be 0
  319. for (uint8_t e = 1; e < HOTENDS; e++)
  320. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  321. #endif
  322. //
  323. // Global Leveling
  324. //
  325. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  326. const float zfh = planner.z_fade_height;
  327. #else
  328. const float zfh = 10.0;
  329. #endif
  330. EEPROM_WRITE(zfh);
  331. //
  332. // Mesh Bed Leveling
  333. //
  334. #if ENABLED(MESH_BED_LEVELING)
  335. // Compile time test that sizeof(mbl.z_values) is as expected
  336. static_assert(
  337. sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]),
  338. "MBL Z array is the wrong size."
  339. );
  340. const bool leveling_is_on = mbl.has_mesh;
  341. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  342. EEPROM_WRITE(leveling_is_on);
  343. EEPROM_WRITE(mbl.z_offset);
  344. EEPROM_WRITE(mesh_num_x);
  345. EEPROM_WRITE(mesh_num_y);
  346. EEPROM_WRITE(mbl.z_values);
  347. #else // For disabled MBL write a default mesh
  348. const bool leveling_is_on = false;
  349. dummy = 0.0f;
  350. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  351. EEPROM_WRITE(leveling_is_on);
  352. EEPROM_WRITE(dummy); // z_offset
  353. EEPROM_WRITE(mesh_num_x);
  354. EEPROM_WRITE(mesh_num_y);
  355. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  356. #endif // MESH_BED_LEVELING
  357. #if !HAS_BED_PROBE
  358. const float zprobe_zoffset = 0;
  359. #endif
  360. EEPROM_WRITE(zprobe_zoffset);
  361. //
  362. // Planar Bed Leveling matrix
  363. //
  364. #if ABL_PLANAR
  365. EEPROM_WRITE(planner.bed_level_matrix);
  366. #else
  367. dummy = 0.0;
  368. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  369. #endif
  370. //
  371. // Bilinear Auto Bed Leveling
  372. //
  373. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  374. // Compile time test that sizeof(z_values) is as expected
  375. static_assert(
  376. sizeof(z_values) == GRID_MAX_POINTS * sizeof(z_values[0][0]),
  377. "Bilinear Z array is the wrong size."
  378. );
  379. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  380. EEPROM_WRITE(grid_max_x); // 1 byte
  381. EEPROM_WRITE(grid_max_y); // 1 byte
  382. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  383. EEPROM_WRITE(bilinear_start); // 2 ints
  384. EEPROM_WRITE(z_values); // 9-256 floats
  385. #else
  386. // For disabled Bilinear Grid write an empty 3x3 grid
  387. const uint8_t grid_max_x = 3, grid_max_y = 3;
  388. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  389. dummy = 0.0f;
  390. EEPROM_WRITE(grid_max_x);
  391. EEPROM_WRITE(grid_max_y);
  392. EEPROM_WRITE(bilinear_grid_spacing);
  393. EEPROM_WRITE(bilinear_start);
  394. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  395. #endif // AUTO_BED_LEVELING_BILINEAR
  396. #if ENABLED(AUTO_BED_LEVELING_UBL)
  397. EEPROM_WRITE(planner.leveling_active);
  398. EEPROM_WRITE(ubl.storage_slot);
  399. #else
  400. const bool ubl_active = false;
  401. const int8_t storage_slot = -1;
  402. EEPROM_WRITE(ubl_active);
  403. EEPROM_WRITE(storage_slot);
  404. #endif // AUTO_BED_LEVELING_UBL
  405. // 10 floats for DELTA / [XYZ]_DUAL_ENDSTOPS
  406. #if ENABLED(DELTA)
  407. EEPROM_WRITE(delta_height); // 1 float
  408. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  409. EEPROM_WRITE(delta_radius); // 1 float
  410. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  411. EEPROM_WRITE(delta_segments_per_second); // 1 float
  412. EEPROM_WRITE(delta_calibration_radius); // 1 float
  413. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  414. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  415. // Write dual endstops in X, Y, Z order. Unused = 0.0
  416. dummy = 0.0f;
  417. #if ENABLED(X_DUAL_ENDSTOPS)
  418. EEPROM_WRITE(x_endstop_adj); // 1 float
  419. #else
  420. EEPROM_WRITE(dummy);
  421. #endif
  422. #if ENABLED(Y_DUAL_ENDSTOPS)
  423. EEPROM_WRITE(y_endstop_adj); // 1 float
  424. #else
  425. EEPROM_WRITE(dummy);
  426. #endif
  427. #if ENABLED(Z_DUAL_ENDSTOPS)
  428. EEPROM_WRITE(z_endstop_adj); // 1 float
  429. #else
  430. EEPROM_WRITE(dummy);
  431. #endif
  432. for (uint8_t q = 7; q--;) EEPROM_WRITE(dummy);
  433. #else
  434. dummy = 0.0f;
  435. for (uint8_t q = 10; q--;) EEPROM_WRITE(dummy);
  436. #endif
  437. #if DISABLED(ULTIPANEL)
  438. constexpr int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  439. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  440. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  441. #endif
  442. EEPROM_WRITE(lcd_preheat_hotend_temp);
  443. EEPROM_WRITE(lcd_preheat_bed_temp);
  444. EEPROM_WRITE(lcd_preheat_fan_speed);
  445. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  446. #if ENABLED(PIDTEMP)
  447. if (e < HOTENDS) {
  448. EEPROM_WRITE(PID_PARAM(Kp, e));
  449. EEPROM_WRITE(PID_PARAM(Ki, e));
  450. EEPROM_WRITE(PID_PARAM(Kd, e));
  451. #if ENABLED(PID_EXTRUSION_SCALING)
  452. EEPROM_WRITE(PID_PARAM(Kc, e));
  453. #else
  454. dummy = 1.0f; // 1.0 = default kc
  455. EEPROM_WRITE(dummy);
  456. #endif
  457. }
  458. else
  459. #endif // !PIDTEMP
  460. {
  461. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  462. EEPROM_WRITE(dummy); // Kp
  463. dummy = 0.0f;
  464. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  465. }
  466. } // Hotends Loop
  467. #if DISABLED(PID_EXTRUSION_SCALING)
  468. int lpq_len = 20;
  469. #endif
  470. EEPROM_WRITE(lpq_len);
  471. #if DISABLED(PIDTEMPBED)
  472. dummy = DUMMY_PID_VALUE;
  473. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  474. #else
  475. EEPROM_WRITE(thermalManager.bedKp);
  476. EEPROM_WRITE(thermalManager.bedKi);
  477. EEPROM_WRITE(thermalManager.bedKd);
  478. #endif
  479. #if !HAS_LCD_CONTRAST
  480. const uint16_t lcd_contrast = 32;
  481. #endif
  482. EEPROM_WRITE(lcd_contrast);
  483. #if DISABLED(FWRETRACT)
  484. const bool autoretract_enabled = false;
  485. const float retract_length = 3,
  486. retract_feedrate_mm_s = 45,
  487. retract_zlift = 0,
  488. retract_recover_length = 0,
  489. retract_recover_feedrate_mm_s = 0,
  490. swap_retract_length = 13,
  491. swap_retract_recover_length = 0,
  492. swap_retract_recover_feedrate_mm_s = 8;
  493. #endif
  494. EEPROM_WRITE(autoretract_enabled);
  495. EEPROM_WRITE(retract_length);
  496. EEPROM_WRITE(retract_feedrate_mm_s);
  497. EEPROM_WRITE(retract_zlift);
  498. EEPROM_WRITE(retract_recover_length);
  499. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  500. EEPROM_WRITE(swap_retract_length);
  501. EEPROM_WRITE(swap_retract_recover_length);
  502. EEPROM_WRITE(swap_retract_recover_feedrate_mm_s);
  503. EEPROM_WRITE(parser.volumetric_enabled);
  504. // Save filament sizes
  505. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  506. if (q < COUNT(planner.filament_size)) dummy = planner.filament_size[q];
  507. EEPROM_WRITE(dummy);
  508. }
  509. // Save TMC2130 Configuration, and placeholder values
  510. uint16_t val;
  511. #if ENABLED(HAVE_TMC2130)
  512. #if ENABLED(X_IS_TMC2130)
  513. val = stepperX.getCurrent();
  514. #else
  515. val = 0;
  516. #endif
  517. EEPROM_WRITE(val);
  518. #if ENABLED(Y_IS_TMC2130)
  519. val = stepperY.getCurrent();
  520. #else
  521. val = 0;
  522. #endif
  523. EEPROM_WRITE(val);
  524. #if ENABLED(Z_IS_TMC2130)
  525. val = stepperZ.getCurrent();
  526. #else
  527. val = 0;
  528. #endif
  529. EEPROM_WRITE(val);
  530. #if ENABLED(X2_IS_TMC2130)
  531. val = stepperX2.getCurrent();
  532. #else
  533. val = 0;
  534. #endif
  535. EEPROM_WRITE(val);
  536. #if ENABLED(Y2_IS_TMC2130)
  537. val = stepperY2.getCurrent();
  538. #else
  539. val = 0;
  540. #endif
  541. EEPROM_WRITE(val);
  542. #if ENABLED(Z2_IS_TMC2130)
  543. val = stepperZ2.getCurrent();
  544. #else
  545. val = 0;
  546. #endif
  547. EEPROM_WRITE(val);
  548. #if ENABLED(E0_IS_TMC2130)
  549. val = stepperE0.getCurrent();
  550. #else
  551. val = 0;
  552. #endif
  553. EEPROM_WRITE(val);
  554. #if ENABLED(E1_IS_TMC2130)
  555. val = stepperE1.getCurrent();
  556. #else
  557. val = 0;
  558. #endif
  559. EEPROM_WRITE(val);
  560. #if ENABLED(E2_IS_TMC2130)
  561. val = stepperE2.getCurrent();
  562. #else
  563. val = 0;
  564. #endif
  565. EEPROM_WRITE(val);
  566. #if ENABLED(E3_IS_TMC2130)
  567. val = stepperE3.getCurrent();
  568. #else
  569. val = 0;
  570. #endif
  571. EEPROM_WRITE(val);
  572. #if ENABLED(E4_IS_TMC2130)
  573. val = stepperE4.getCurrent();
  574. #else
  575. val = 0;
  576. #endif
  577. EEPROM_WRITE(val);
  578. #else
  579. val = 0;
  580. for (uint8_t q = 11; q--;) EEPROM_WRITE(val);
  581. #endif
  582. //
  583. // Linear Advance
  584. //
  585. #if ENABLED(LIN_ADVANCE)
  586. EEPROM_WRITE(planner.extruder_advance_k);
  587. EEPROM_WRITE(planner.advance_ed_ratio);
  588. #else
  589. dummy = 0.0f;
  590. EEPROM_WRITE(dummy);
  591. EEPROM_WRITE(dummy);
  592. #endif
  593. #if HAS_MOTOR_CURRENT_PWM
  594. for (uint8_t q = 3; q--;) EEPROM_WRITE(stepper.motor_current_setting[q]);
  595. #else
  596. const uint32_t dummyui32 = 0;
  597. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummyui32);
  598. #endif
  599. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  600. EEPROM_WRITE(coordinate_system); // 27 floats
  601. #else
  602. dummy = 0.0f;
  603. for (uint8_t q = 27; q--;) EEPROM_WRITE(dummy);
  604. #endif
  605. if (!eeprom_error) {
  606. const int eeprom_size = eeprom_index;
  607. const uint16_t final_crc = working_crc;
  608. // Write the EEPROM header
  609. eeprom_index = EEPROM_OFFSET;
  610. EEPROM_WRITE(version);
  611. EEPROM_WRITE(final_crc);
  612. // Report storage size
  613. #if ENABLED(EEPROM_CHITCHAT)
  614. SERIAL_ECHO_START();
  615. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
  616. SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)final_crc);
  617. SERIAL_ECHOLNPGM(")");
  618. #endif
  619. }
  620. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  621. if (ubl.storage_slot >= 0)
  622. store_mesh(ubl.storage_slot);
  623. #endif
  624. return !eeprom_error;
  625. }
  626. /**
  627. * M501 - Retrieve Configuration
  628. */
  629. bool MarlinSettings::load() {
  630. uint16_t working_crc = 0;
  631. EEPROM_START();
  632. char stored_ver[4];
  633. EEPROM_READ(stored_ver);
  634. uint16_t stored_crc;
  635. EEPROM_READ(stored_crc);
  636. // Version has to match or defaults are used
  637. if (strncmp(version, stored_ver, 3) != 0) {
  638. if (stored_ver[0] != 'V') {
  639. stored_ver[0] = '?';
  640. stored_ver[1] = '\0';
  641. }
  642. #if ENABLED(EEPROM_CHITCHAT)
  643. SERIAL_ECHO_START();
  644. SERIAL_ECHOPGM("EEPROM version mismatch ");
  645. SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
  646. SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
  647. #endif
  648. reset();
  649. }
  650. else {
  651. float dummy = 0;
  652. bool dummyb;
  653. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  654. // Number of esteppers may change
  655. uint8_t esteppers;
  656. EEPROM_READ(esteppers);
  657. //
  658. // Planner Motion
  659. //
  660. // Get only the number of E stepper parameters previously stored
  661. // Any steppers added later are set to their defaults
  662. const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
  663. const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
  664. float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
  665. uint32_t tmp3[XYZ + esteppers];
  666. EEPROM_READ(tmp1);
  667. EEPROM_READ(tmp2);
  668. EEPROM_READ(tmp3);
  669. LOOP_XYZE_N(i) {
  670. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  671. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  672. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  673. }
  674. EEPROM_READ(planner.acceleration);
  675. EEPROM_READ(planner.retract_acceleration);
  676. EEPROM_READ(planner.travel_acceleration);
  677. EEPROM_READ(planner.min_feedrate_mm_s);
  678. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  679. EEPROM_READ(planner.min_segment_time_us);
  680. EEPROM_READ(planner.max_jerk);
  681. //
  682. // Home Offset (M206)
  683. //
  684. #if !HAS_HOME_OFFSET
  685. float home_offset[XYZ];
  686. #endif
  687. EEPROM_READ(home_offset);
  688. //
  689. // Hotend Offsets, if any
  690. //
  691. #if HOTENDS > 1
  692. // Skip hotend 0 which must be 0
  693. for (uint8_t e = 1; e < HOTENDS; e++)
  694. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  695. #endif
  696. //
  697. // Global Leveling
  698. //
  699. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  700. EEPROM_READ(new_z_fade_height);
  701. #else
  702. EEPROM_READ(dummy);
  703. #endif
  704. //
  705. // Mesh (Manual) Bed Leveling
  706. //
  707. bool leveling_is_on;
  708. uint8_t mesh_num_x, mesh_num_y;
  709. EEPROM_READ(leveling_is_on);
  710. EEPROM_READ(dummy);
  711. EEPROM_READ(mesh_num_x);
  712. EEPROM_READ(mesh_num_y);
  713. #if ENABLED(MESH_BED_LEVELING)
  714. mbl.has_mesh = leveling_is_on;
  715. mbl.z_offset = dummy;
  716. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  717. // EEPROM data fits the current mesh
  718. EEPROM_READ(mbl.z_values);
  719. }
  720. else {
  721. // EEPROM data is stale
  722. mbl.reset();
  723. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  724. }
  725. #else
  726. // MBL is disabled - skip the stored data
  727. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  728. #endif // MESH_BED_LEVELING
  729. #if !HAS_BED_PROBE
  730. float zprobe_zoffset;
  731. #endif
  732. EEPROM_READ(zprobe_zoffset);
  733. //
  734. // Planar Bed Leveling matrix
  735. //
  736. #if ABL_PLANAR
  737. EEPROM_READ(planner.bed_level_matrix);
  738. #else
  739. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  740. #endif
  741. //
  742. // Bilinear Auto Bed Leveling
  743. //
  744. uint8_t grid_max_x, grid_max_y;
  745. EEPROM_READ(grid_max_x); // 1 byte
  746. EEPROM_READ(grid_max_y); // 1 byte
  747. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  748. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  749. set_bed_leveling_enabled(false);
  750. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  751. EEPROM_READ(bilinear_start); // 2 ints
  752. EEPROM_READ(z_values); // 9 to 256 floats
  753. }
  754. else // EEPROM data is stale
  755. #endif // AUTO_BED_LEVELING_BILINEAR
  756. {
  757. // Skip past disabled (or stale) Bilinear Grid data
  758. int bgs[2], bs[2];
  759. EEPROM_READ(bgs);
  760. EEPROM_READ(bs);
  761. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  762. }
  763. //
  764. // Unified Bed Leveling active state
  765. //
  766. #if ENABLED(AUTO_BED_LEVELING_UBL)
  767. EEPROM_READ(planner.leveling_active);
  768. EEPROM_READ(ubl.storage_slot);
  769. #else
  770. uint8_t dummyui8;
  771. EEPROM_READ(dummyb);
  772. EEPROM_READ(dummyui8);
  773. #endif // AUTO_BED_LEVELING_UBL
  774. //
  775. // DELTA Geometry or Dual Endstops offsets
  776. //
  777. #if ENABLED(DELTA)
  778. EEPROM_READ(delta_height); // 1 float
  779. EEPROM_READ(delta_endstop_adj); // 3 floats
  780. EEPROM_READ(delta_radius); // 1 float
  781. EEPROM_READ(delta_diagonal_rod); // 1 float
  782. EEPROM_READ(delta_segments_per_second); // 1 float
  783. EEPROM_READ(delta_calibration_radius); // 1 float
  784. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  785. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  786. #if ENABLED(X_DUAL_ENDSTOPS)
  787. EEPROM_READ(x_endstop_adj); // 1 float
  788. #else
  789. EEPROM_READ(dummy);
  790. #endif
  791. #if ENABLED(Y_DUAL_ENDSTOPS)
  792. EEPROM_READ(y_endstop_adj); // 1 float
  793. #else
  794. EEPROM_READ(dummy);
  795. #endif
  796. #if ENABLED(Z_DUAL_ENDSTOPS)
  797. EEPROM_READ(z_endstop_adj); // 1 float
  798. #else
  799. EEPROM_READ(dummy);
  800. #endif
  801. for (uint8_t q=7; q--;) EEPROM_READ(dummy);
  802. #else
  803. for (uint8_t q=10; q--;) EEPROM_READ(dummy);
  804. #endif
  805. //
  806. // LCD Preheat settings
  807. //
  808. #if DISABLED(ULTIPANEL)
  809. int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  810. #endif
  811. EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats
  812. EEPROM_READ(lcd_preheat_bed_temp); // 2 floats
  813. EEPROM_READ(lcd_preheat_fan_speed); // 2 floats
  814. //EEPROM_ASSERT(
  815. // WITHIN(lcd_preheat_fan_speed, 0, 255),
  816. // "lcd_preheat_fan_speed out of range"
  817. //);
  818. //
  819. // Hotend PID
  820. //
  821. #if ENABLED(PIDTEMP)
  822. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  823. EEPROM_READ(dummy); // Kp
  824. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  825. // do not need to scale PID values as the values in EEPROM are already scaled
  826. PID_PARAM(Kp, e) = dummy;
  827. EEPROM_READ(PID_PARAM(Ki, e));
  828. EEPROM_READ(PID_PARAM(Kd, e));
  829. #if ENABLED(PID_EXTRUSION_SCALING)
  830. EEPROM_READ(PID_PARAM(Kc, e));
  831. #else
  832. EEPROM_READ(dummy);
  833. #endif
  834. }
  835. else {
  836. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  837. }
  838. }
  839. #else // !PIDTEMP
  840. // 4 x 4 = 16 slots for PID parameters
  841. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  842. #endif // !PIDTEMP
  843. //
  844. // PID Extrusion Scaling
  845. //
  846. #if DISABLED(PID_EXTRUSION_SCALING)
  847. int lpq_len;
  848. #endif
  849. EEPROM_READ(lpq_len);
  850. //
  851. // Heated Bed PID
  852. //
  853. #if ENABLED(PIDTEMPBED)
  854. EEPROM_READ(dummy); // bedKp
  855. if (dummy != DUMMY_PID_VALUE) {
  856. thermalManager.bedKp = dummy;
  857. EEPROM_READ(thermalManager.bedKi);
  858. EEPROM_READ(thermalManager.bedKd);
  859. }
  860. #else
  861. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  862. #endif
  863. //
  864. // LCD Contrast
  865. //
  866. #if !HAS_LCD_CONTRAST
  867. uint16_t lcd_contrast;
  868. #endif
  869. EEPROM_READ(lcd_contrast);
  870. //
  871. // Firmware Retraction
  872. //
  873. #if ENABLED(FWRETRACT)
  874. EEPROM_READ(autoretract_enabled);
  875. EEPROM_READ(retract_length);
  876. EEPROM_READ(retract_feedrate_mm_s);
  877. EEPROM_READ(retract_zlift);
  878. EEPROM_READ(retract_recover_length);
  879. EEPROM_READ(retract_recover_feedrate_mm_s);
  880. EEPROM_READ(swap_retract_length);
  881. EEPROM_READ(swap_retract_recover_length);
  882. EEPROM_READ(swap_retract_recover_feedrate_mm_s);
  883. #else
  884. EEPROM_READ(dummyb);
  885. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  886. #endif
  887. //
  888. // Volumetric & Filament Size
  889. //
  890. EEPROM_READ(parser.volumetric_enabled);
  891. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  892. EEPROM_READ(dummy);
  893. if (q < COUNT(planner.filament_size)) planner.filament_size[q] = dummy;
  894. }
  895. //
  896. // TMC2130 Stepper Current
  897. //
  898. uint16_t val;
  899. #if ENABLED(HAVE_TMC2130)
  900. EEPROM_READ(val);
  901. #if ENABLED(X_IS_TMC2130)
  902. stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  903. #endif
  904. EEPROM_READ(val);
  905. #if ENABLED(Y_IS_TMC2130)
  906. stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  907. #endif
  908. EEPROM_READ(val);
  909. #if ENABLED(Z_IS_TMC2130)
  910. stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  911. #endif
  912. EEPROM_READ(val);
  913. #if ENABLED(X2_IS_TMC2130)
  914. stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  915. #endif
  916. EEPROM_READ(val);
  917. #if ENABLED(Y2_IS_TMC2130)
  918. stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  919. #endif
  920. EEPROM_READ(val);
  921. #if ENABLED(Z2_IS_TMC2130)
  922. stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  923. #endif
  924. EEPROM_READ(val);
  925. #if ENABLED(E0_IS_TMC2130)
  926. stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  927. #endif
  928. EEPROM_READ(val);
  929. #if ENABLED(E1_IS_TMC2130)
  930. stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  931. #endif
  932. EEPROM_READ(val);
  933. #if ENABLED(E2_IS_TMC2130)
  934. stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  935. #endif
  936. EEPROM_READ(val);
  937. #if ENABLED(E3_IS_TMC2130)
  938. stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  939. #endif
  940. EEPROM_READ(val);
  941. #if ENABLED(E4_IS_TMC2130)
  942. stepperE4.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  943. #endif
  944. #else
  945. for (uint8_t q = 11; q--;) EEPROM_READ(val);
  946. #endif
  947. //
  948. // Linear Advance
  949. //
  950. #if ENABLED(LIN_ADVANCE)
  951. EEPROM_READ(planner.extruder_advance_k);
  952. EEPROM_READ(planner.advance_ed_ratio);
  953. #else
  954. EEPROM_READ(dummy);
  955. EEPROM_READ(dummy);
  956. #endif
  957. //
  958. // Motor Current PWM
  959. //
  960. #if HAS_MOTOR_CURRENT_PWM
  961. for (uint8_t q = 3; q--;) EEPROM_READ(stepper.motor_current_setting[q]);
  962. #else
  963. uint32_t dummyui32;
  964. for (uint8_t q = 3; q--;) EEPROM_READ(dummyui32);
  965. #endif
  966. //
  967. // CNC Coordinate System
  968. //
  969. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  970. position_changed = select_coordinate_system(-1); // Go back to machine space
  971. EEPROM_READ(coordinate_system); // 27 floats
  972. #else
  973. for (uint8_t q = 27; q--;) EEPROM_READ(dummy);
  974. #endif
  975. if (working_crc == stored_crc) {
  976. postprocess();
  977. #if ENABLED(EEPROM_CHITCHAT)
  978. SERIAL_ECHO_START();
  979. SERIAL_ECHO(version);
  980. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  981. SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)working_crc);
  982. SERIAL_ECHOLNPGM(")");
  983. #endif
  984. }
  985. else {
  986. #if ENABLED(EEPROM_CHITCHAT)
  987. SERIAL_ERROR_START();
  988. SERIAL_ERRORPGM("EEPROM CRC mismatch - (stored) ");
  989. SERIAL_ERROR(stored_crc);
  990. SERIAL_ERRORPGM(" != ");
  991. SERIAL_ERROR(working_crc);
  992. SERIAL_ERRORLNPGM(" (calculated)!");
  993. #endif
  994. reset();
  995. }
  996. #if ENABLED(AUTO_BED_LEVELING_UBL)
  997. meshes_begin = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
  998. // can float up or down a little bit without
  999. // disrupting the mesh data
  1000. ubl.report_state();
  1001. if (!ubl.sanity_check()) {
  1002. SERIAL_EOL();
  1003. #if ENABLED(EEPROM_CHITCHAT)
  1004. ubl.echo_name();
  1005. SERIAL_ECHOLNPGM(" initialized.\n");
  1006. #endif
  1007. }
  1008. else {
  1009. #if ENABLED(EEPROM_CHITCHAT)
  1010. SERIAL_PROTOCOLPGM("?Can't enable ");
  1011. ubl.echo_name();
  1012. SERIAL_PROTOCOLLNPGM(".");
  1013. #endif
  1014. ubl.reset();
  1015. }
  1016. if (ubl.storage_slot >= 0) {
  1017. load_mesh(ubl.storage_slot);
  1018. #if ENABLED(EEPROM_CHITCHAT)
  1019. SERIAL_ECHOPAIR("Mesh ", ubl.storage_slot);
  1020. SERIAL_ECHOLNPGM(" loaded from storage.");
  1021. #endif
  1022. }
  1023. else {
  1024. ubl.reset();
  1025. #if ENABLED(EEPROM_CHITCHAT)
  1026. SERIAL_ECHOLNPGM("UBL System reset()");
  1027. #endif
  1028. }
  1029. #endif
  1030. }
  1031. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1032. report();
  1033. #endif
  1034. return !eeprom_error;
  1035. }
  1036. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1037. #if ENABLED(EEPROM_CHITCHAT)
  1038. void ubl_invalid_slot(const int s) {
  1039. SERIAL_PROTOCOLLNPGM("?Invalid slot.");
  1040. SERIAL_PROTOCOL(s);
  1041. SERIAL_PROTOCOLLNPGM(" mesh slots available.");
  1042. }
  1043. #endif
  1044. int MarlinSettings::calc_num_meshes() {
  1045. //obviously this will get more sophisticated once we've added an actual MAT
  1046. if (meshes_begin <= 0) return 0;
  1047. return (meshes_end - meshes_begin) / sizeof(ubl.z_values);
  1048. }
  1049. void MarlinSettings::store_mesh(int8_t slot) {
  1050. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1051. const int a = calc_num_meshes();
  1052. if (!WITHIN(slot, 0, a - 1)) {
  1053. #if ENABLED(EEPROM_CHITCHAT)
  1054. ubl_invalid_slot(a);
  1055. SERIAL_PROTOCOLPAIR("E2END=", E2END);
  1056. SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
  1057. SERIAL_PROTOCOLLNPAIR(" slot=", slot);
  1058. SERIAL_EOL();
  1059. #endif
  1060. return;
  1061. }
  1062. uint16_t crc = 0;
  1063. int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1064. write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1065. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1066. #if ENABLED(EEPROM_CHITCHAT)
  1067. SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
  1068. #endif
  1069. #else
  1070. // Other mesh types
  1071. #endif
  1072. }
  1073. void MarlinSettings::load_mesh(int8_t slot, void *into /* = 0 */) {
  1074. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1075. const int16_t a = settings.calc_num_meshes();
  1076. if (!WITHIN(slot, 0, a - 1)) {
  1077. #if ENABLED(EEPROM_CHITCHAT)
  1078. ubl_invalid_slot(a);
  1079. #endif
  1080. return;
  1081. }
  1082. uint16_t crc = 0;
  1083. int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1084. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1085. read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1086. // Compare crc with crc from MAT, or read from end
  1087. #if ENABLED(EEPROM_CHITCHAT)
  1088. SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
  1089. #endif
  1090. #else
  1091. // Other mesh types
  1092. #endif
  1093. }
  1094. //void MarlinSettings::delete_mesh() { return; }
  1095. //void MarlinSettings::defrag_meshes() { return; }
  1096. #endif // AUTO_BED_LEVELING_UBL
  1097. #else // !EEPROM_SETTINGS
  1098. bool MarlinSettings::save() {
  1099. SERIAL_ERROR_START();
  1100. SERIAL_ERRORLNPGM("EEPROM disabled");
  1101. return false;
  1102. }
  1103. #endif // !EEPROM_SETTINGS
  1104. /**
  1105. * M502 - Reset Configuration
  1106. */
  1107. void MarlinSettings::reset() {
  1108. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1109. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1110. LOOP_XYZE_N(i) {
  1111. planner.axis_steps_per_mm[i] = pgm_read_float(&tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]);
  1112. planner.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]);
  1113. planner.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]);
  1114. }
  1115. planner.acceleration = DEFAULT_ACCELERATION;
  1116. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1117. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1118. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1119. planner.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  1120. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1121. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1122. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1123. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1124. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1125. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1126. new_z_fade_height = 10.0;
  1127. #endif
  1128. #if HAS_HOME_OFFSET
  1129. ZERO(home_offset);
  1130. #endif
  1131. #if HOTENDS > 1
  1132. constexpr float tmp4[XYZ][HOTENDS] = {
  1133. HOTEND_OFFSET_X,
  1134. HOTEND_OFFSET_Y
  1135. #ifdef HOTEND_OFFSET_Z
  1136. , HOTEND_OFFSET_Z
  1137. #else
  1138. , { 0 }
  1139. #endif
  1140. };
  1141. static_assert(
  1142. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  1143. "Offsets for the first hotend must be 0.0."
  1144. );
  1145. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  1146. #endif
  1147. // Applies to all MBL and ABL
  1148. #if HAS_LEVELING
  1149. reset_bed_level();
  1150. #endif
  1151. #if HAS_BED_PROBE
  1152. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1153. #endif
  1154. #if ENABLED(DELTA)
  1155. const float adj[ABC] = DELTA_ENDSTOP_ADJ,
  1156. dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1157. delta_height = DELTA_HEIGHT;
  1158. COPY(delta_endstop_adj, adj);
  1159. delta_radius = DELTA_RADIUS;
  1160. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1161. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1162. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1163. COPY(delta_tower_angle_trim, dta);
  1164. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  1165. #if ENABLED(X_DUAL_ENDSTOPS)
  1166. x_endstop_adj = (
  1167. #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
  1168. X_DUAL_ENDSTOPS_ADJUSTMENT
  1169. #else
  1170. 0
  1171. #endif
  1172. );
  1173. #endif
  1174. #if ENABLED(Y_DUAL_ENDSTOPS)
  1175. y_endstop_adj = (
  1176. #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
  1177. Y_DUAL_ENDSTOPS_ADJUSTMENT
  1178. #else
  1179. 0
  1180. #endif
  1181. );
  1182. #endif
  1183. #if ENABLED(Z_DUAL_ENDSTOPS)
  1184. z_endstop_adj = (
  1185. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1186. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1187. #else
  1188. 0
  1189. #endif
  1190. );
  1191. #endif
  1192. #endif
  1193. #if ENABLED(ULTIPANEL)
  1194. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1195. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1196. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1197. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1198. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1199. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1200. #endif
  1201. #if HAS_LCD_CONTRAST
  1202. lcd_contrast = DEFAULT_LCD_CONTRAST;
  1203. #endif
  1204. #if ENABLED(PIDTEMP)
  1205. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  1206. HOTEND_LOOP()
  1207. #endif
  1208. {
  1209. PID_PARAM(Kp, e) = DEFAULT_Kp;
  1210. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1211. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1212. #if ENABLED(PID_EXTRUSION_SCALING)
  1213. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1214. #endif
  1215. }
  1216. #if ENABLED(PID_EXTRUSION_SCALING)
  1217. lpq_len = 20; // default last-position-queue size
  1218. #endif
  1219. #endif // PIDTEMP
  1220. #if ENABLED(PIDTEMPBED)
  1221. thermalManager.bedKp = DEFAULT_bedKp;
  1222. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  1223. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  1224. #endif
  1225. #if ENABLED(FWRETRACT)
  1226. autoretract_enabled = false;
  1227. retract_length = RETRACT_LENGTH;
  1228. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  1229. retract_zlift = RETRACT_ZLIFT;
  1230. retract_recover_length = RETRACT_RECOVER_LENGTH;
  1231. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  1232. swap_retract_length = RETRACT_LENGTH_SWAP;
  1233. swap_retract_recover_length = RETRACT_RECOVER_LENGTH_SWAP;
  1234. swap_retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE_SWAP;
  1235. #endif // FWRETRACT
  1236. parser.volumetric_enabled =
  1237. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1238. true
  1239. #else
  1240. false
  1241. #endif
  1242. ;
  1243. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
  1244. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1245. endstops.enable_globally(
  1246. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1247. true
  1248. #else
  1249. false
  1250. #endif
  1251. );
  1252. #if ENABLED(HAVE_TMC2130)
  1253. #if ENABLED(X_IS_TMC2130)
  1254. stepperX.setCurrent(X_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1255. #endif
  1256. #if ENABLED(Y_IS_TMC2130)
  1257. stepperY.setCurrent(Y_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1258. #endif
  1259. #if ENABLED(Z_IS_TMC2130)
  1260. stepperZ.setCurrent(Z_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1261. #endif
  1262. #if ENABLED(X2_IS_TMC2130)
  1263. stepperX2.setCurrent(X2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1264. #endif
  1265. #if ENABLED(Y2_IS_TMC2130)
  1266. stepperY2.setCurrent(Y2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1267. #endif
  1268. #if ENABLED(Z2_IS_TMC2130)
  1269. stepperZ2.setCurrent(Z2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1270. #endif
  1271. #if ENABLED(E0_IS_TMC2130)
  1272. stepperE0.setCurrent(E0_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1273. #endif
  1274. #if ENABLED(E1_IS_TMC2130)
  1275. stepperE1.setCurrent(E1_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1276. #endif
  1277. #if ENABLED(E2_IS_TMC2130)
  1278. stepperE2.setCurrent(E2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1279. #endif
  1280. #if ENABLED(E3_IS_TMC2130)
  1281. stepperE3.setCurrent(E3_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1282. #endif
  1283. #endif
  1284. #if ENABLED(LIN_ADVANCE)
  1285. planner.extruder_advance_k = LIN_ADVANCE_K;
  1286. planner.advance_ed_ratio = LIN_ADVANCE_E_D_RATIO;
  1287. #endif
  1288. #if HAS_MOTOR_CURRENT_PWM
  1289. uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  1290. for (uint8_t q = 3; q--;)
  1291. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  1292. #endif
  1293. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1294. ubl.reset();
  1295. #endif
  1296. postprocess();
  1297. #if ENABLED(EEPROM_CHITCHAT)
  1298. SERIAL_ECHO_START();
  1299. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  1300. #endif
  1301. }
  1302. #if DISABLED(DISABLE_M503)
  1303. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  1304. /**
  1305. * M503 - Report current settings in RAM
  1306. *
  1307. * Unless specifically disabled, M503 is available even without EEPROM
  1308. */
  1309. void MarlinSettings::report(bool forReplay) {
  1310. /**
  1311. * Announce current units, in case inches are being displayed
  1312. */
  1313. CONFIG_ECHO_START;
  1314. #if ENABLED(INCH_MODE_SUPPORT)
  1315. #define LINEAR_UNIT(N) ((N) / parser.linear_unit_factor)
  1316. #define VOLUMETRIC_UNIT(N) ((N) / (parser.volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
  1317. SERIAL_ECHOPGM(" G2");
  1318. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  1319. SERIAL_ECHOPGM(" ; Units in ");
  1320. serialprintPGM(parser.linear_unit_factor == 1.0 ? PSTR("mm\n") : PSTR("inches\n"));
  1321. #else
  1322. #define LINEAR_UNIT(N) N
  1323. #define VOLUMETRIC_UNIT(N) N
  1324. SERIAL_ECHOLNPGM(" G21 ; Units in mm");
  1325. #endif
  1326. #if ENABLED(ULTIPANEL)
  1327. // Temperature units - for Ultipanel temperature options
  1328. CONFIG_ECHO_START;
  1329. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1330. #define TEMP_UNIT(N) parser.to_temp_units(N)
  1331. SERIAL_ECHOPGM(" M149 ");
  1332. SERIAL_CHAR(parser.temp_units_code());
  1333. SERIAL_ECHOPGM(" ; Units in ");
  1334. serialprintPGM(parser.temp_units_name());
  1335. #else
  1336. #define TEMP_UNIT(N) N
  1337. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  1338. #endif
  1339. #endif
  1340. SERIAL_EOL();
  1341. /**
  1342. * Volumetric extrusion M200
  1343. */
  1344. if (!forReplay) {
  1345. CONFIG_ECHO_START;
  1346. SERIAL_ECHOPGM("Filament settings:");
  1347. if (parser.volumetric_enabled)
  1348. SERIAL_EOL();
  1349. else
  1350. SERIAL_ECHOLNPGM(" Disabled");
  1351. }
  1352. CONFIG_ECHO_START;
  1353. SERIAL_ECHOPAIR(" M200 D", planner.filament_size[0]);
  1354. SERIAL_EOL();
  1355. #if EXTRUDERS > 1
  1356. CONFIG_ECHO_START;
  1357. SERIAL_ECHOPAIR(" M200 T1 D", planner.filament_size[1]);
  1358. SERIAL_EOL();
  1359. #if EXTRUDERS > 2
  1360. CONFIG_ECHO_START;
  1361. SERIAL_ECHOPAIR(" M200 T2 D", planner.filament_size[2]);
  1362. SERIAL_EOL();
  1363. #if EXTRUDERS > 3
  1364. CONFIG_ECHO_START;
  1365. SERIAL_ECHOPAIR(" M200 T3 D", planner.filament_size[3]);
  1366. SERIAL_EOL();
  1367. #if EXTRUDERS > 4
  1368. CONFIG_ECHO_START;
  1369. SERIAL_ECHOPAIR(" M200 T4 D", planner.filament_size[4]);
  1370. SERIAL_EOL();
  1371. #endif // EXTRUDERS > 4
  1372. #endif // EXTRUDERS > 3
  1373. #endif // EXTRUDERS > 2
  1374. #endif // EXTRUDERS > 1
  1375. if (!parser.volumetric_enabled) {
  1376. CONFIG_ECHO_START;
  1377. SERIAL_ECHOLNPGM(" M200 D0");
  1378. }
  1379. if (!forReplay) {
  1380. CONFIG_ECHO_START;
  1381. SERIAL_ECHOLNPGM("Steps per unit:");
  1382. }
  1383. CONFIG_ECHO_START;
  1384. SERIAL_ECHOPAIR(" M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
  1385. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
  1386. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
  1387. #if DISABLED(DISTINCT_E_FACTORS)
  1388. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
  1389. #endif
  1390. SERIAL_EOL();
  1391. #if ENABLED(DISTINCT_E_FACTORS)
  1392. CONFIG_ECHO_START;
  1393. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1394. SERIAL_ECHOPAIR(" M92 T", (int)i);
  1395. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
  1396. }
  1397. #endif
  1398. if (!forReplay) {
  1399. CONFIG_ECHO_START;
  1400. SERIAL_ECHOLNPGM("Maximum feedrates (units/s):");
  1401. }
  1402. CONFIG_ECHO_START;
  1403. SERIAL_ECHOPAIR(" M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
  1404. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
  1405. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
  1406. #if DISABLED(DISTINCT_E_FACTORS)
  1407. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
  1408. #endif
  1409. SERIAL_EOL();
  1410. #if ENABLED(DISTINCT_E_FACTORS)
  1411. CONFIG_ECHO_START;
  1412. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1413. SERIAL_ECHOPAIR(" M203 T", (int)i);
  1414. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
  1415. }
  1416. #endif
  1417. if (!forReplay) {
  1418. CONFIG_ECHO_START;
  1419. SERIAL_ECHOLNPGM("Maximum Acceleration (units/s2):");
  1420. }
  1421. CONFIG_ECHO_START;
  1422. SERIAL_ECHOPAIR(" M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
  1423. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
  1424. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
  1425. #if DISABLED(DISTINCT_E_FACTORS)
  1426. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
  1427. #endif
  1428. SERIAL_EOL();
  1429. #if ENABLED(DISTINCT_E_FACTORS)
  1430. CONFIG_ECHO_START;
  1431. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1432. SERIAL_ECHOPAIR(" M201 T", (int)i);
  1433. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
  1434. }
  1435. #endif
  1436. if (!forReplay) {
  1437. CONFIG_ECHO_START;
  1438. SERIAL_ECHOLNPGM("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  1439. }
  1440. CONFIG_ECHO_START;
  1441. SERIAL_ECHOPAIR(" M204 P", LINEAR_UNIT(planner.acceleration));
  1442. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(planner.retract_acceleration));
  1443. SERIAL_ECHOLNPAIR(" T", LINEAR_UNIT(planner.travel_acceleration));
  1444. if (!forReplay) {
  1445. CONFIG_ECHO_START;
  1446. SERIAL_ECHOLNPGM("Advanced: S<min_feedrate> T<min_travel_feedrate> B<min_segment_time_us> X<max_xy_jerk> Z<max_z_jerk> E<max_e_jerk>");
  1447. }
  1448. CONFIG_ECHO_START;
  1449. SERIAL_ECHOPAIR(" M205 S", LINEAR_UNIT(planner.min_feedrate_mm_s));
  1450. SERIAL_ECHOPAIR(" T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
  1451. SERIAL_ECHOPAIR(" B", planner.min_segment_time_us);
  1452. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
  1453. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
  1454. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
  1455. SERIAL_ECHOLNPAIR(" E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
  1456. #if HAS_M206_COMMAND
  1457. if (!forReplay) {
  1458. CONFIG_ECHO_START;
  1459. SERIAL_ECHOLNPGM("Home offset:");
  1460. }
  1461. CONFIG_ECHO_START;
  1462. SERIAL_ECHOPAIR(" M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
  1463. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(home_offset[Y_AXIS]));
  1464. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(home_offset[Z_AXIS]));
  1465. #endif
  1466. #if HOTENDS > 1
  1467. if (!forReplay) {
  1468. CONFIG_ECHO_START;
  1469. SERIAL_ECHOLNPGM("Hotend offsets:");
  1470. }
  1471. CONFIG_ECHO_START;
  1472. for (uint8_t e = 1; e < HOTENDS; e++) {
  1473. SERIAL_ECHOPAIR(" M218 T", (int)e);
  1474. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
  1475. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
  1476. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) ||ENABLED(PARKING_EXTRUDER)
  1477. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]));
  1478. #endif
  1479. SERIAL_EOL();
  1480. }
  1481. #endif
  1482. /**
  1483. * Bed Leveling
  1484. */
  1485. #if HAS_LEVELING
  1486. #if ENABLED(MESH_BED_LEVELING)
  1487. if (!forReplay) {
  1488. CONFIG_ECHO_START;
  1489. SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
  1490. }
  1491. CONFIG_ECHO_START;
  1492. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1493. if (!forReplay) {
  1494. CONFIG_ECHO_START;
  1495. ubl.echo_name();
  1496. SERIAL_ECHOLNPGM(":");
  1497. }
  1498. CONFIG_ECHO_START;
  1499. #elif HAS_ABL
  1500. if (!forReplay) {
  1501. CONFIG_ECHO_START;
  1502. SERIAL_ECHOLNPGM("Auto Bed Leveling:");
  1503. }
  1504. CONFIG_ECHO_START;
  1505. #endif
  1506. CONFIG_ECHO_START;
  1507. SERIAL_ECHOPAIR(" M420 S", planner.leveling_active ? 1 : 0);
  1508. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1509. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
  1510. #endif
  1511. SERIAL_EOL();
  1512. #if ENABLED(MESH_BED_LEVELING)
  1513. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  1514. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  1515. CONFIG_ECHO_START;
  1516. SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1);
  1517. SERIAL_ECHOPAIR(" Y", (int)py + 1);
  1518. SERIAL_ECHOPGM(" Z");
  1519. SERIAL_PROTOCOL_F(LINEAR_UNIT(mbl.z_values[px][py]), 5);
  1520. SERIAL_EOL();
  1521. }
  1522. }
  1523. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1524. if (!forReplay) {
  1525. SERIAL_EOL();
  1526. ubl.report_state();
  1527. SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.storage_slot);
  1528. SERIAL_ECHOPAIR("EEPROM can hold ", calc_num_meshes());
  1529. SERIAL_ECHOLNPGM(" meshes.\n");
  1530. }
  1531. #endif
  1532. #endif // HAS_LEVELING
  1533. #if ENABLED(DELTA)
  1534. if (!forReplay) {
  1535. CONFIG_ECHO_START;
  1536. SERIAL_ECHOLNPGM("Endstop adjustment:");
  1537. }
  1538. CONFIG_ECHO_START;
  1539. SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
  1540. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
  1541. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
  1542. if (!forReplay) {
  1543. CONFIG_ECHO_START;
  1544. SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  1545. }
  1546. CONFIG_ECHO_START;
  1547. SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod));
  1548. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius));
  1549. SERIAL_ECHOPAIR(" H", LINEAR_UNIT(delta_height));
  1550. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  1551. SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
  1552. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
  1553. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
  1554. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
  1555. SERIAL_EOL();
  1556. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  1557. if (!forReplay) {
  1558. CONFIG_ECHO_START;
  1559. SERIAL_ECHOLNPGM("Endstop adjustment:");
  1560. }
  1561. CONFIG_ECHO_START;
  1562. SERIAL_ECHOPGM(" M666");
  1563. #if ENABLED(X_DUAL_ENDSTOPS)
  1564. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(x_endstop_adj));
  1565. #endif
  1566. #if ENABLED(Y_DUAL_ENDSTOPS)
  1567. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(y_endstop_adj));
  1568. #endif
  1569. #if ENABLED(Z_DUAL_ENDSTOPS)
  1570. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(z_endstop_adj));
  1571. #endif
  1572. SERIAL_EOL();
  1573. #endif // DELTA
  1574. #if ENABLED(ULTIPANEL)
  1575. if (!forReplay) {
  1576. CONFIG_ECHO_START;
  1577. SERIAL_ECHOLNPGM("Material heatup parameters:");
  1578. }
  1579. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  1580. CONFIG_ECHO_START;
  1581. SERIAL_ECHOPAIR(" M145 S", (int)i);
  1582. SERIAL_ECHOPAIR(" H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
  1583. SERIAL_ECHOPAIR(" B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
  1584. SERIAL_ECHOLNPAIR(" F", lcd_preheat_fan_speed[i]);
  1585. }
  1586. #endif // ULTIPANEL
  1587. #if HAS_PID_HEATING
  1588. if (!forReplay) {
  1589. CONFIG_ECHO_START;
  1590. SERIAL_ECHOLNPGM("PID settings:");
  1591. }
  1592. #if ENABLED(PIDTEMP)
  1593. #if HOTENDS > 1
  1594. if (forReplay) {
  1595. HOTEND_LOOP() {
  1596. CONFIG_ECHO_START;
  1597. SERIAL_ECHOPAIR(" M301 E", e);
  1598. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  1599. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  1600. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  1601. #if ENABLED(PID_EXTRUSION_SCALING)
  1602. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  1603. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  1604. #endif
  1605. SERIAL_EOL();
  1606. }
  1607. }
  1608. else
  1609. #endif // HOTENDS > 1
  1610. // !forReplay || HOTENDS == 1
  1611. {
  1612. CONFIG_ECHO_START;
  1613. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  1614. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  1615. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  1616. #if ENABLED(PID_EXTRUSION_SCALING)
  1617. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  1618. SERIAL_ECHOPAIR(" L", lpq_len);
  1619. #endif
  1620. SERIAL_EOL();
  1621. }
  1622. #endif // PIDTEMP
  1623. #if ENABLED(PIDTEMPBED)
  1624. CONFIG_ECHO_START;
  1625. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  1626. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  1627. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  1628. SERIAL_EOL();
  1629. #endif
  1630. #endif // PIDTEMP || PIDTEMPBED
  1631. #if HAS_LCD_CONTRAST
  1632. if (!forReplay) {
  1633. CONFIG_ECHO_START;
  1634. SERIAL_ECHOLNPGM("LCD Contrast:");
  1635. }
  1636. CONFIG_ECHO_START;
  1637. SERIAL_ECHOLNPAIR(" M250 C", lcd_contrast);
  1638. #endif
  1639. #if ENABLED(FWRETRACT)
  1640. if (!forReplay) {
  1641. CONFIG_ECHO_START;
  1642. SERIAL_ECHOLNPGM("Retract: S<length> F<units/m> Z<lift>");
  1643. }
  1644. CONFIG_ECHO_START;
  1645. SERIAL_ECHOPAIR(" M207 S", LINEAR_UNIT(retract_length));
  1646. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(swap_retract_length));
  1647. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_feedrate_mm_s)));
  1648. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(retract_zlift));
  1649. if (!forReplay) {
  1650. CONFIG_ECHO_START;
  1651. SERIAL_ECHOLNPGM("Recover: S<length> F<units/m>");
  1652. }
  1653. CONFIG_ECHO_START;
  1654. SERIAL_ECHOPAIR(" M208 S", LINEAR_UNIT(retract_recover_length));
  1655. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(swap_retract_recover_length));
  1656. SERIAL_ECHOLNPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_recover_feedrate_mm_s)));
  1657. if (!forReplay) {
  1658. CONFIG_ECHO_START;
  1659. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  1660. }
  1661. CONFIG_ECHO_START;
  1662. SERIAL_ECHOLNPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  1663. #endif // FWRETRACT
  1664. /**
  1665. * Probe Offset
  1666. */
  1667. #if HAS_BED_PROBE
  1668. if (!forReplay) {
  1669. CONFIG_ECHO_START;
  1670. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  1671. }
  1672. CONFIG_ECHO_START;
  1673. SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
  1674. #endif
  1675. /**
  1676. * TMC2130 stepper driver current
  1677. */
  1678. #if ENABLED(HAVE_TMC2130)
  1679. if (!forReplay) {
  1680. CONFIG_ECHO_START;
  1681. SERIAL_ECHOLNPGM("Stepper driver current:");
  1682. }
  1683. CONFIG_ECHO_START;
  1684. SERIAL_ECHO(" M906");
  1685. #if ENABLED(X_IS_TMC2130)
  1686. SERIAL_ECHOPAIR(" X", stepperX.getCurrent());
  1687. #endif
  1688. #if ENABLED(Y_IS_TMC2130)
  1689. SERIAL_ECHOPAIR(" Y", stepperY.getCurrent());
  1690. #endif
  1691. #if ENABLED(Z_IS_TMC2130)
  1692. SERIAL_ECHOPAIR(" Z", stepperZ.getCurrent());
  1693. #endif
  1694. #if ENABLED(X2_IS_TMC2130)
  1695. SERIAL_ECHOPAIR(" X2", stepperX2.getCurrent());
  1696. #endif
  1697. #if ENABLED(Y2_IS_TMC2130)
  1698. SERIAL_ECHOPAIR(" Y2", stepperY2.getCurrent());
  1699. #endif
  1700. #if ENABLED(Z2_IS_TMC2130)
  1701. SERIAL_ECHOPAIR(" Z2", stepperZ2.getCurrent());
  1702. #endif
  1703. #if ENABLED(E0_IS_TMC2130)
  1704. SERIAL_ECHOPAIR(" E0", stepperE0.getCurrent());
  1705. #endif
  1706. #if ENABLED(E1_IS_TMC2130)
  1707. SERIAL_ECHOPAIR(" E1", stepperE1.getCurrent());
  1708. #endif
  1709. #if ENABLED(E2_IS_TMC2130)
  1710. SERIAL_ECHOPAIR(" E2", stepperE2.getCurrent());
  1711. #endif
  1712. #if ENABLED(E3_IS_TMC2130)
  1713. SERIAL_ECHOPAIR(" E3", stepperE3.getCurrent());
  1714. #endif
  1715. SERIAL_EOL();
  1716. #endif
  1717. /**
  1718. * Linear Advance
  1719. */
  1720. #if ENABLED(LIN_ADVANCE)
  1721. if (!forReplay) {
  1722. CONFIG_ECHO_START;
  1723. SERIAL_ECHOLNPGM("Linear Advance:");
  1724. }
  1725. CONFIG_ECHO_START;
  1726. SERIAL_ECHOPAIR(" M900 K", planner.extruder_advance_k);
  1727. SERIAL_ECHOLNPAIR(" R", planner.advance_ed_ratio);
  1728. #endif
  1729. #if HAS_MOTOR_CURRENT_PWM
  1730. CONFIG_ECHO_START;
  1731. if (!forReplay) {
  1732. SERIAL_ECHOLNPGM("Stepper motor currents:");
  1733. CONFIG_ECHO_START;
  1734. }
  1735. SERIAL_ECHOPAIR(" M907 X", stepper.motor_current_setting[0]);
  1736. SERIAL_ECHOPAIR(" Z", stepper.motor_current_setting[1]);
  1737. SERIAL_ECHOPAIR(" E", stepper.motor_current_setting[2]);
  1738. SERIAL_EOL();
  1739. #endif
  1740. }
  1741. #endif // !DISABLE_M503