My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

Marlin.pde 37KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210
  1. /*
  2. Reprap firmware based on Sprinter and grbl.
  3. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  4. This program is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 3 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <http://www.gnu.org/licenses/>.
  14. */
  15. /*
  16. This firmware is a mashup between Sprinter and grbl.
  17. (https://github.com/kliment/Sprinter)
  18. (https://github.com/simen/grbl/tree)
  19. It has preliminary support for Matthew Roberts advance algorithm
  20. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  21. */
  22. #include <math.h>
  23. #include <EEPROM.h>
  24. #include "EEPROMwrite.h"
  25. #include "fastio.h"
  26. #include "Configuration.h"
  27. #include "pins.h"
  28. #include "Marlin.h"
  29. #include "ultralcd.h"
  30. #include "planner.h"
  31. #include "stepper.h"
  32. #include "temperature.h"
  33. #include "motion_control.h"
  34. #include "cardreader.h"
  35. #include "watchdog.h"
  36. #include <stdio.h>
  37. #define VERSION_STRING "1.0.0 Beta 1"
  38. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  39. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  40. //Implemented Codes
  41. //-------------------
  42. // G0 -> G1
  43. // G1 - Coordinated Movement X Y Z E
  44. // G2 - CW ARC
  45. // G3 - CCW ARC
  46. // G4 - Dwell S<seconds> or P<milliseconds>
  47. // G28 - Home all Axis
  48. // G90 - Use Absolute Coordinates
  49. // G91 - Use Relative Coordinates
  50. // G92 - Set current position to cordinates given
  51. //RepRap M Codes
  52. // M104 - Set extruder target temp
  53. // M105 - Read current temp
  54. // M106 - Fan on
  55. // M107 - Fan off
  56. // M109 - Wait for extruder current temp to reach target temp.
  57. // M114 - Display current position
  58. //Custom M Codes
  59. // M17 - Enable/Power all stepper motors
  60. // M18 - Disable all stepper motors; same as M84
  61. // M20 - List SD card
  62. // M21 - Init SD card
  63. // M22 - Release SD card
  64. // M23 - Select SD file (M23 filename.g)
  65. // M24 - Start/resume SD print
  66. // M25 - Pause SD print
  67. // M26 - Set SD position in bytes (M26 S12345)
  68. // M27 - Report SD print status
  69. // M28 - Start SD write (M28 filename.g)
  70. // M29 - Stop SD write
  71. // M30 - Output time since last M109 or SD card start to serial
  72. // M42 - Change pin status via gcode
  73. // M80 - Turn on Power Supply
  74. // M81 - Turn off Power Supply
  75. // M82 - Set E codes absolute (default)
  76. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  77. // M84 - Disable steppers until next move,
  78. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  79. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  80. // M92 - Set axis_steps_per_unit - same syntax as G92
  81. // M114 - Output current position to serial port
  82. // M115 - Capabilities string
  83. // M117 - display message
  84. // M119 - Output Endstop status to serial port
  85. // M140 - Set bed target temp
  86. // M190 - Wait for bed current temp to reach target temp.
  87. // M200 - Set filament diameter
  88. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  89. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  90. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  91. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  92. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  93. // M206 - set additional homeing offset
  94. // M220 - set speed factor override percentage S:factor in percent
  95. // M301 - Set PID parameters P I and D
  96. // M400 - Finish all moves
  97. // M500 - stores paramters in EEPROM
  98. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  99. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  100. // M503 - print the current settings (from memory not from eeprom)
  101. //Stepper Movement Variables
  102. //===========================================================================
  103. //=============================imported variables============================
  104. //===========================================================================
  105. //===========================================================================
  106. //=============================public variables=============================
  107. //===========================================================================
  108. #ifdef SDSUPPORT
  109. CardReader card;
  110. #endif
  111. float homing_feedrate[] = HOMING_FEEDRATE;
  112. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  113. volatile int feedmultiply=100; //100->1 200->2
  114. int saved_feedmultiply;
  115. volatile bool feedmultiplychanged=false;
  116. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  117. float add_homeing[3]={0,0,0};
  118. uint8_t active_extruder = 0;
  119. //===========================================================================
  120. //=============================private variables=============================
  121. //===========================================================================
  122. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  123. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  124. static float offset[3] = {0.0, 0.0, 0.0};
  125. static bool home_all_axis = true;
  126. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  127. static long gcode_N, gcode_LastN;
  128. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  129. static bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
  130. static uint8_t fanpwm=0;
  131. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  132. static bool fromsd[BUFSIZE];
  133. static int bufindr = 0;
  134. static int bufindw = 0;
  135. static int buflen = 0;
  136. static int i = 0;
  137. static char serial_char;
  138. static int serial_count = 0;
  139. static boolean comment_mode = false;
  140. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  141. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  142. //static float tt = 0;
  143. //static float bt = 0;
  144. //Inactivity shutdown variables
  145. static unsigned long previous_millis_cmd = 0;
  146. static unsigned long max_inactive_time = 0;
  147. static unsigned long stepper_inactive_time = 0;
  148. static unsigned long starttime=0;
  149. static unsigned long stoptime=0;
  150. static uint8_t tmp_extruder;
  151. //===========================================================================
  152. //=============================ROUTINES=============================
  153. //===========================================================================
  154. void get_arc_coordinates();
  155. extern "C"{
  156. extern unsigned int __bss_end;
  157. extern unsigned int __heap_start;
  158. extern void *__brkval;
  159. int freeMemory() {
  160. int free_memory;
  161. if((int)__brkval == 0)
  162. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  163. else
  164. free_memory = ((int)&free_memory) - ((int)__brkval);
  165. return free_memory;
  166. }
  167. }
  168. //adds an command to the main command buffer
  169. //thats really done in a non-safe way.
  170. //needs overworking someday
  171. void enquecommand(const char *cmd)
  172. {
  173. if(buflen < BUFSIZE)
  174. {
  175. //this is dangerous if a mixing of serial and this happsens
  176. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  177. SERIAL_ECHO_START;
  178. SERIAL_ECHOPGM("enqueing \"");
  179. SERIAL_ECHO(cmdbuffer[bufindw]);
  180. SERIAL_ECHOLNPGM("\"");
  181. bufindw= (bufindw + 1)%BUFSIZE;
  182. buflen += 1;
  183. }
  184. }
  185. void setup()
  186. {
  187. MSerial.begin(BAUDRATE);
  188. SERIAL_ECHO_START;
  189. SERIAL_ECHOLNPGM(VERSION_STRING);
  190. SERIAL_PROTOCOLLNPGM("start");
  191. SERIAL_ECHO_START;
  192. SERIAL_ECHOPGM("Free Memory:");
  193. SERIAL_ECHOLN(freeMemory());
  194. for(int8_t i = 0; i < BUFSIZE; i++)
  195. {
  196. fromsd[i] = false;
  197. }
  198. EEPROM_RetrieveSettings(); // loads data from EEPROM if available
  199. for(int8_t i=0; i < NUM_AXIS; i++)
  200. {
  201. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  202. }
  203. tp_init(); // Initialize temperature loop
  204. plan_init(); // Initialize planner;
  205. st_init(); // Initialize stepper;
  206. wd_init();
  207. }
  208. void loop()
  209. {
  210. if(buflen<3)
  211. get_command();
  212. #ifdef SDSUPPORT
  213. card.checkautostart(false);
  214. #endif
  215. if(buflen)
  216. {
  217. #ifdef SDSUPPORT
  218. if(card.saving)
  219. {
  220. if(strstr(cmdbuffer[bufindr],"M29") == NULL)
  221. {
  222. card.write_command(cmdbuffer[bufindr]);
  223. SERIAL_PROTOCOLLNPGM("ok");
  224. }
  225. else
  226. {
  227. card.closefile();
  228. SERIAL_PROTOCOLLNPGM("Done saving file.");
  229. }
  230. }
  231. else
  232. {
  233. process_commands();
  234. }
  235. #else
  236. process_commands();
  237. #endif //SDSUPPORT
  238. buflen = (buflen-1);
  239. bufindr = (bufindr + 1)%BUFSIZE;
  240. }
  241. //check heater every n milliseconds
  242. manage_heater();
  243. manage_inactivity(1);
  244. checkHitEndstops();
  245. LCD_STATUS;
  246. }
  247. FORCE_INLINE void get_command()
  248. {
  249. while( MSerial.available() > 0 && buflen < BUFSIZE) {
  250. serial_char = MSerial.read();
  251. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
  252. {
  253. if(!serial_count) return; //if empty line
  254. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  255. if(!comment_mode){
  256. fromsd[bufindw] = false;
  257. if(strstr(cmdbuffer[bufindw], "N") != NULL)
  258. {
  259. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  260. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  261. if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
  262. SERIAL_ERROR_START;
  263. SERIAL_ERRORPGM("Line Number is not Last Line Number+1, Last Line:");
  264. SERIAL_ERRORLN(gcode_LastN);
  265. //Serial.println(gcode_N);
  266. FlushSerialRequestResend();
  267. serial_count = 0;
  268. return;
  269. }
  270. if(strstr(cmdbuffer[bufindw], "*") != NULL)
  271. {
  272. byte checksum = 0;
  273. byte count = 0;
  274. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  275. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  276. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  277. SERIAL_ERROR_START;
  278. SERIAL_ERRORPGM("checksum mismatch, Last Line:");
  279. SERIAL_ERRORLN(gcode_LastN);
  280. FlushSerialRequestResend();
  281. serial_count = 0;
  282. return;
  283. }
  284. //if no errors, continue parsing
  285. }
  286. else
  287. {
  288. SERIAL_ERROR_START;
  289. SERIAL_ERRORPGM("No Checksum with line number, Last Line:");
  290. SERIAL_ERRORLN(gcode_LastN);
  291. FlushSerialRequestResend();
  292. serial_count = 0;
  293. return;
  294. }
  295. gcode_LastN = gcode_N;
  296. //if no errors, continue parsing
  297. }
  298. else // if we don't receive 'N' but still see '*'
  299. {
  300. if((strstr(cmdbuffer[bufindw], "*") != NULL))
  301. {
  302. SERIAL_ERROR_START;
  303. SERIAL_ERRORPGM("No Line Number with checksum, Last Line:");
  304. SERIAL_ERRORLN(gcode_LastN);
  305. serial_count = 0;
  306. return;
  307. }
  308. }
  309. if((strstr(cmdbuffer[bufindw], "G") != NULL)){
  310. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  311. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  312. case 0:
  313. case 1:
  314. case 2:
  315. case 3:
  316. #ifdef SDSUPPORT
  317. if(card.saving)
  318. break;
  319. #endif //SDSUPPORT
  320. SERIAL_PROTOCOLLNPGM("ok");
  321. break;
  322. default:
  323. break;
  324. }
  325. }
  326. bufindw = (bufindw + 1)%BUFSIZE;
  327. buflen += 1;
  328. }
  329. comment_mode = false; //for new command
  330. serial_count = 0; //clear buffer
  331. }
  332. else
  333. {
  334. if(serial_char == ';') comment_mode = true;
  335. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  336. }
  337. }
  338. #ifdef SDSUPPORT
  339. if(!card.sdprinting || serial_count!=0){
  340. return;
  341. }
  342. while( !card.eof() && buflen < BUFSIZE) {
  343. int16_t n=card.get();
  344. serial_char = (char)n;
  345. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  346. {
  347. if(card.eof()){
  348. SERIAL_PROTOCOLLNPGM("Done printing file");
  349. stoptime=millis();
  350. char time[30];
  351. unsigned long t=(stoptime-starttime)/1000;
  352. int sec,min;
  353. min=t/60;
  354. sec=t%60;
  355. sprintf(time,"%i min, %i sec",min,sec);
  356. SERIAL_ECHO_START;
  357. SERIAL_ECHOLN(time);
  358. LCD_MESSAGE(time);
  359. card.printingHasFinished();
  360. card.checkautostart(true);
  361. }
  362. if(serial_char=='\n')
  363. comment_mode = false; //for new command
  364. if(!serial_count)
  365. {
  366. return; //if empty line
  367. }
  368. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  369. if(!comment_mode){
  370. fromsd[bufindw] = true;
  371. buflen += 1;
  372. bufindw = (bufindw + 1)%BUFSIZE;
  373. }
  374. serial_count = 0; //clear buffer
  375. }
  376. else
  377. {
  378. if(serial_char == ';') comment_mode = true;
  379. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  380. }
  381. }
  382. #endif //SDSUPPORT
  383. }
  384. FORCE_INLINE float code_value()
  385. {
  386. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  387. }
  388. FORCE_INLINE long code_value_long()
  389. {
  390. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  391. }
  392. FORCE_INLINE bool code_seen(char code_string[]) //Return True if the string was found
  393. {
  394. return (strstr(cmdbuffer[bufindr], code_string) != NULL);
  395. }
  396. FORCE_INLINE bool code_seen(char code)
  397. {
  398. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  399. return (strchr_pointer != NULL); //Return True if a character was found
  400. }
  401. #define HOMEAXIS(LETTER) \
  402. if ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))\
  403. { \
  404. current_position[LETTER##_AXIS] = 0; \
  405. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); \
  406. destination[LETTER##_AXIS] = 1.5 * LETTER##_MAX_LENGTH * LETTER##_HOME_DIR; \
  407. feedrate = homing_feedrate[LETTER##_AXIS]; \
  408. prepare_move(); \
  409. \
  410. current_position[LETTER##_AXIS] = 0;\
  411. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  412. destination[LETTER##_AXIS] = -LETTER##_HOME_RETRACT_MM * LETTER##_HOME_DIR;\
  413. prepare_move(); \
  414. \
  415. destination[LETTER##_AXIS] = 2*LETTER##_HOME_RETRACT_MM * LETTER##_HOME_DIR;\
  416. feedrate = homing_feedrate[LETTER##_AXIS]/2 ; \
  417. prepare_move(); \
  418. \
  419. current_position[LETTER##_AXIS] = (LETTER##_HOME_DIR == -1) ? 0 : LETTER##_MAX_LENGTH;\
  420. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  421. destination[LETTER##_AXIS] = current_position[LETTER##_AXIS];\
  422. feedrate = 0.0;\
  423. st_synchronize();\
  424. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  425. endstops_hit_on_purpose();\
  426. }
  427. FORCE_INLINE void process_commands()
  428. {
  429. unsigned long codenum; //throw away variable
  430. char *starpos = NULL;
  431. if(code_seen('G'))
  432. {
  433. switch((int)code_value())
  434. {
  435. case 0: // G0 -> G1
  436. case 1: // G1
  437. get_coordinates(); // For X Y Z E F
  438. prepare_move();
  439. previous_millis_cmd = millis();
  440. //ClearToSend();
  441. return;
  442. //break;
  443. case 2: // G2 - CW ARC
  444. get_arc_coordinates();
  445. prepare_arc_move(true);
  446. previous_millis_cmd = millis();
  447. return;
  448. case 3: // G3 - CCW ARC
  449. get_arc_coordinates();
  450. prepare_arc_move(false);
  451. previous_millis_cmd = millis();
  452. return;
  453. case 4: // G4 dwell
  454. LCD_MESSAGEPGM("DWELL...");
  455. codenum = 0;
  456. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  457. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  458. st_synchronize();
  459. codenum += millis(); // keep track of when we started waiting
  460. while(millis() < codenum ){
  461. manage_heater();
  462. }
  463. break;
  464. case 28: //G28 Home all Axis one at a time
  465. saved_feedrate = feedrate;
  466. saved_feedmultiply = feedmultiply;
  467. feedmultiply = 100;
  468. enable_endstops(true);
  469. for(int8_t i=0; i < NUM_AXIS; i++) {
  470. destination[i] = current_position[i];
  471. }
  472. feedrate = 0.0;
  473. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  474. #ifdef QUICK_HOME
  475. if( code_seen(axis_codes[0]) && code_seen(axis_codes[1]) ) //first diagonal move
  476. {
  477. current_position[X_AXIS] = 0; current_position[Y_AXIS] = 0;
  478. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  479. destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
  480. destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
  481. feedrate =homing_feedrate[X_AXIS];
  482. if(homing_feedrate[Y_AXIS]<feedrate)
  483. feedrate =homing_feedrate[Y_AXIS];
  484. prepare_move();
  485. current_position[X_AXIS] = 0; current_position[Y_AXIS] = 0;
  486. }
  487. #endif
  488. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  489. {
  490. HOMEAXIS(X);
  491. current_position[0]=code_value()+add_homeing[0];
  492. }
  493. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  494. HOMEAXIS(Y);
  495. current_position[1]=code_value()+add_homeing[1];
  496. }
  497. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  498. HOMEAXIS(Z);
  499. current_position[2]=code_value()+add_homeing[2];
  500. }
  501. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  502. enable_endstops(false);
  503. #endif
  504. feedrate = saved_feedrate;
  505. feedmultiply = saved_feedmultiply;
  506. previous_millis_cmd = millis();
  507. endstops_hit_on_purpose();
  508. break;
  509. case 90: // G90
  510. relative_mode = false;
  511. break;
  512. case 91: // G91
  513. relative_mode = true;
  514. break;
  515. case 92: // G92
  516. if(!code_seen(axis_codes[E_AXIS]))
  517. st_synchronize();
  518. for(int8_t i=0; i < NUM_AXIS; i++) {
  519. if(code_seen(axis_codes[i])) {
  520. current_position[i] = code_value()+add_homeing[i];
  521. if(i == E_AXIS) {
  522. plan_set_e_position(current_position[E_AXIS]);
  523. }
  524. else {
  525. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  526. }
  527. }
  528. }
  529. break;
  530. }
  531. }
  532. else if(code_seen('M'))
  533. {
  534. switch( (int)code_value() )
  535. {
  536. case 17:
  537. LCD_MESSAGEPGM("No move.");
  538. enable_x();
  539. enable_y();
  540. enable_z();
  541. enable_e0();
  542. enable_e1();
  543. enable_e2();
  544. break;
  545. #ifdef SDSUPPORT
  546. case 20: // M20 - list SD card
  547. SERIAL_PROTOCOLLNPGM("Begin file list");
  548. card.ls();
  549. SERIAL_PROTOCOLLNPGM("End file list");
  550. break;
  551. case 21: // M21 - init SD card
  552. card.initsd();
  553. break;
  554. case 22: //M22 - release SD card
  555. card.release();
  556. break;
  557. case 23: //M23 - Select file
  558. starpos = (strchr(strchr_pointer + 4,'*'));
  559. if(starpos!=NULL)
  560. *(starpos-1)='\0';
  561. card.openFile(strchr_pointer + 4,true);
  562. break;
  563. case 24: //M24 - Start SD print
  564. card.startFileprint();
  565. starttime=millis();
  566. break;
  567. case 25: //M25 - Pause SD print
  568. card.pauseSDPrint();
  569. break;
  570. case 26: //M26 - Set SD index
  571. if(card.cardOK && code_seen('S')) {
  572. card.setIndex(code_value_long());
  573. }
  574. break;
  575. case 27: //M27 - Get SD status
  576. card.getStatus();
  577. break;
  578. case 28: //M28 - Start SD write
  579. starpos = (strchr(strchr_pointer + 4,'*'));
  580. if(starpos != NULL){
  581. char* npos = strchr(cmdbuffer[bufindr], 'N');
  582. strchr_pointer = strchr(npos,' ') + 1;
  583. *(starpos-1) = '\0';
  584. }
  585. card.openFile(strchr_pointer+4,false);
  586. break;
  587. case 29: //M29 - Stop SD write
  588. //processed in write to file routine above
  589. //card,saving = false;
  590. break;
  591. #endif //SDSUPPORT
  592. case 30: //M30 take time since the start of the SD print or an M109 command
  593. {
  594. stoptime=millis();
  595. char time[30];
  596. unsigned long t=(stoptime-starttime)/1000;
  597. int sec,min;
  598. min=t/60;
  599. sec=t%60;
  600. sprintf(time,"%i min, %i sec",min,sec);
  601. SERIAL_ECHO_START;
  602. SERIAL_ECHOLN(time);
  603. LCD_MESSAGE(time);
  604. autotempShutdown();
  605. }
  606. break;
  607. case 42: //M42 -Change pin status via gcode
  608. if (code_seen('S'))
  609. {
  610. int pin_status = code_value();
  611. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  612. {
  613. int pin_number = code_value();
  614. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  615. {
  616. if (sensitive_pins[i] == pin_number)
  617. {
  618. pin_number = -1;
  619. break;
  620. }
  621. }
  622. if (pin_number > -1)
  623. {
  624. pinMode(pin_number, OUTPUT);
  625. digitalWrite(pin_number, pin_status);
  626. analogWrite(pin_number, pin_status);
  627. }
  628. }
  629. }
  630. break;
  631. case 104: // M104
  632. tmp_extruder = active_extruder;
  633. if(code_seen('T')) {
  634. tmp_extruder = code_value();
  635. if(tmp_extruder >= EXTRUDERS) {
  636. SERIAL_ECHO_START;
  637. SERIAL_ECHO("M104 Invalid extruder ");
  638. SERIAL_ECHOLN(tmp_extruder);
  639. break;
  640. }
  641. }
  642. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  643. setWatch();
  644. break;
  645. case 140: // M140 set bed temp
  646. if (code_seen('S')) setTargetBed(code_value());
  647. break;
  648. case 105 : // M105
  649. tmp_extruder = ACTIVE_EXTRUDER;
  650. if(code_seen('T')) {
  651. tmp_extruder = code_value();
  652. if(tmp_extruder >= EXTRUDERS) {
  653. SERIAL_ECHO_START;
  654. SERIAL_ECHO("M105 Invalid extruder ");
  655. SERIAL_ECHOLN(tmp_extruder);
  656. break;
  657. }
  658. }
  659. #if (TEMP_0_PIN > -1)
  660. SERIAL_PROTOCOLPGM("ok T:");
  661. SERIAL_PROTOCOL(degHotend(tmp_extruder));
  662. #if TEMP_BED_PIN > -1
  663. SERIAL_PROTOCOLPGM(" B:");
  664. SERIAL_PROTOCOL(degBed());
  665. #endif //TEMP_BED_PIN
  666. #else
  667. SERIAL_ERROR_START;
  668. SERIAL_ERRORLNPGM("No thermistors - no temp");
  669. #endif
  670. SERIAL_PROTOCOLLN("");
  671. return;
  672. break;
  673. case 109:
  674. {// M109 - Wait for extruder heater to reach target.
  675. tmp_extruder = active_extruder;
  676. if(code_seen('T')) {
  677. tmp_extruder = code_value();
  678. if(tmp_extruder >= EXTRUDERS) {
  679. SERIAL_ECHO_START;
  680. SERIAL_ECHO("M109 Invalid extruder ");
  681. SERIAL_ECHOLN(tmp_extruder);
  682. break;
  683. }
  684. }
  685. LCD_MESSAGEPGM("Heating...");
  686. #ifdef AUTOTEMP
  687. autotemp_enabled=false;
  688. #endif
  689. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  690. #ifdef AUTOTEMP
  691. if (code_seen('S')) autotemp_min=code_value();
  692. if (code_seen('G')) autotemp_max=code_value();
  693. if (code_seen('F'))
  694. {
  695. autotemp_factor=code_value();
  696. autotemp_enabled=true;
  697. }
  698. #endif
  699. setWatch();
  700. codenum = millis();
  701. /* See if we are heating up or cooling down */
  702. bool target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  703. #ifdef TEMP_RESIDENCY_TIME
  704. long residencyStart;
  705. residencyStart = -1;
  706. /* continue to loop until we have reached the target temp
  707. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  708. while((residencyStart == -1) ||
  709. (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
  710. #else
  711. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  712. #endif //TEMP_RESIDENCY_TIME
  713. if( (millis() - codenum) > 1000 )
  714. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  715. SERIAL_PROTOCOLPGM("T:");
  716. SERIAL_PROTOCOLLN( degHotend(tmp_extruder) );
  717. SERIAL_PROTOCOLPGM(" E:");
  718. SERIAL_PROTOCOLLN( (int)tmp_extruder );
  719. SERIAL_PROTOCOLPGM(" W:");
  720. if(residencyStart > -1)
  721. {
  722. codenum = TEMP_RESIDENCY_TIME - ((millis() - residencyStart) / 1000);
  723. SERIAL_PROTOCOLLN( codenum );
  724. }
  725. else
  726. {
  727. SERIAL_PROTOCOLLN( "?" );
  728. }
  729. codenum = millis();
  730. }
  731. manage_heater();
  732. LCD_STATUS;
  733. #ifdef TEMP_RESIDENCY_TIME
  734. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  735. or when current temp falls outside the hysteresis after target temp was reached */
  736. if ((residencyStart == -1 && target_direction && !isHeatingHotend(tmp_extruder)) ||
  737. (residencyStart == -1 && !target_direction && !isCoolingHotend(tmp_extruder)) ||
  738. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  739. {
  740. residencyStart = millis();
  741. }
  742. #endif //TEMP_RESIDENCY_TIME
  743. }
  744. LCD_MESSAGEPGM("Heating done.");
  745. starttime=millis();
  746. }
  747. break;
  748. case 190: // M190 - Wait for bed heater to reach target.
  749. #if TEMP_BED_PIN > -1
  750. LCD_MESSAGEPGM("Bed Heating.");
  751. if (code_seen('S')) setTargetBed(code_value());
  752. codenum = millis();
  753. while(isHeatingBed())
  754. {
  755. if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  756. {
  757. float tt=degHotend(ACTIVE_EXTRUDER);
  758. SERIAL_PROTOCOLPGM("T:");
  759. SERIAL_PROTOCOL(tt);
  760. SERIAL_PROTOCOLPGM(" E:");
  761. SERIAL_PROTOCOLLN( (int)tmp_extruder );
  762. SERIAL_PROTOCOLPGM(" B:");
  763. SERIAL_PROTOCOLLN(degBed());
  764. codenum = millis();
  765. }
  766. manage_heater();
  767. }
  768. LCD_MESSAGEPGM("Bed done.");
  769. #endif
  770. break;
  771. #if FAN_PIN > -1
  772. case 106: //M106 Fan On
  773. if (code_seen('S')){
  774. WRITE(FAN_PIN,HIGH);
  775. fanpwm=constrain(code_value(),0,255);
  776. analogWrite(FAN_PIN, fanpwm);
  777. }
  778. else {
  779. WRITE(FAN_PIN,HIGH);
  780. fanpwm=255;
  781. analogWrite(FAN_PIN, fanpwm);
  782. }
  783. break;
  784. case 107: //M107 Fan Off
  785. WRITE(FAN_PIN,LOW);
  786. analogWrite(FAN_PIN, 0);
  787. break;
  788. #endif //FAN_PIN
  789. #if (PS_ON_PIN > -1)
  790. case 80: // M80 - ATX Power On
  791. SET_OUTPUT(PS_ON_PIN); //GND
  792. break;
  793. case 81: // M81 - ATX Power Off
  794. SET_INPUT(PS_ON_PIN); //Floating
  795. break;
  796. #endif
  797. case 82:
  798. axis_relative_modes[3] = false;
  799. break;
  800. case 83:
  801. axis_relative_modes[3] = true;
  802. break;
  803. case 18: //compatibility
  804. case 84: // M84
  805. if(code_seen('S')){
  806. stepper_inactive_time = code_value() * 1000;
  807. }
  808. else
  809. {
  810. #if ((E_ENABLE_PIN != X_ENABLE_PIN) && (E_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  811. if(code_seen('E')) {
  812. st_synchronize();
  813. LCD_MESSAGEPGM("Free Move");
  814. disable_e0();
  815. disable_e1();
  816. disable_e2();
  817. }
  818. else {
  819. finishAndDisableSteppers();
  820. }
  821. #else
  822. finishAndDisableSteppers();
  823. #endif
  824. }
  825. break;
  826. case 85: // M85
  827. code_seen('S');
  828. max_inactive_time = code_value() * 1000;
  829. break;
  830. case 92: // M92
  831. for(int8_t i=0; i < NUM_AXIS; i++)
  832. {
  833. if(code_seen(axis_codes[i]))
  834. axis_steps_per_unit[i] = code_value();
  835. }
  836. break;
  837. case 115: // M115
  838. SerialprintPGM("FIRMWARE_NAME:Marlin; Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
  839. break;
  840. case 117: // M117 display message
  841. LCD_MESSAGE(cmdbuffer[bufindr]+5);
  842. break;
  843. case 114: // M114
  844. SERIAL_PROTOCOLPGM("X:");
  845. SERIAL_PROTOCOL(current_position[X_AXIS]);
  846. SERIAL_PROTOCOLPGM("Y:");
  847. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  848. SERIAL_PROTOCOLPGM("Z:");
  849. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  850. SERIAL_PROTOCOLPGM("E:");
  851. SERIAL_PROTOCOL(current_position[E_AXIS]);
  852. SERIAL_PROTOCOLPGM(" Count X:");
  853. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  854. SERIAL_PROTOCOLPGM("Y:");
  855. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  856. SERIAL_PROTOCOLPGM("Z:");
  857. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  858. SERIAL_PROTOCOLLN("");
  859. break;
  860. case 119: // M119
  861. #if (X_MIN_PIN > -1)
  862. SERIAL_PROTOCOLPGM("x_min:");
  863. SERIAL_PROTOCOL(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?"H ":"L "));
  864. #endif
  865. #if (X_MAX_PIN > -1)
  866. SERIAL_PROTOCOLPGM("x_max:");
  867. SERIAL_PROTOCOL(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?"H ":"L "));
  868. #endif
  869. #if (Y_MIN_PIN > -1)
  870. SERIAL_PROTOCOLPGM("y_min:");
  871. SERIAL_PROTOCOL(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?"H ":"L "));
  872. #endif
  873. #if (Y_MAX_PIN > -1)
  874. SERIAL_PROTOCOLPGM("y_max:");
  875. SERIAL_PROTOCOL(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?"H ":"L "));
  876. #endif
  877. #if (Z_MIN_PIN > -1)
  878. SERIAL_PROTOCOLPGM("z_min:");
  879. SERIAL_PROTOCOL(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?"H ":"L "));
  880. #endif
  881. #if (Z_MAX_PIN > -1)
  882. SERIAL_PROTOCOLPGM("z_max:");
  883. SERIAL_PROTOCOL(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?"H ":"L "));
  884. #endif
  885. SERIAL_PROTOCOLLN("");
  886. break;
  887. //TODO: update for all axis, use for loop
  888. case 201: // M201
  889. for(int8_t i=0; i < NUM_AXIS; i++)
  890. {
  891. if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  892. }
  893. break;
  894. #if 0 // Not used for Sprinter/grbl gen6
  895. case 202: // M202
  896. for(int8_t i=0; i < NUM_AXIS; i++) {
  897. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  898. }
  899. break;
  900. #endif
  901. case 203: // M203 max feedrate mm/sec
  902. for(int8_t i=0; i < NUM_AXIS; i++) {
  903. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  904. }
  905. break;
  906. case 204: // M204 acclereration S normal moves T filmanent only moves
  907. {
  908. if(code_seen('S')) acceleration = code_value() ;
  909. if(code_seen('T')) retract_acceleration = code_value() ;
  910. }
  911. break;
  912. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  913. {
  914. if(code_seen('S')) minimumfeedrate = code_value();
  915. if(code_seen('T')) mintravelfeedrate = code_value();
  916. if(code_seen('B')) minsegmenttime = code_value() ;
  917. if(code_seen('X')) max_xy_jerk = code_value() ;
  918. if(code_seen('Z')) max_z_jerk = code_value() ;
  919. }
  920. break;
  921. case 206: // M206 additional homeing offset
  922. for(int8_t i=0; i < 3; i++)
  923. {
  924. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  925. }
  926. break;
  927. case 220: // M220 S<factor in percent>- set speed factor override percentage
  928. {
  929. if(code_seen('S'))
  930. {
  931. feedmultiply = code_value() ;
  932. feedmultiplychanged=true;
  933. }
  934. }
  935. break;
  936. #ifdef PIDTEMP
  937. case 301: // M301
  938. {
  939. if(code_seen('P')) Kp = code_value();
  940. if(code_seen('I')) Ki = code_value()*PID_dT;
  941. if(code_seen('D')) Kd = code_value()/PID_dT;
  942. #ifdef PID_ADD_EXTRUSION_RATE
  943. if(code_seen('C')) Kc = code_value();
  944. #endif
  945. updatePID();
  946. SERIAL_PROTOCOL("ok p:");
  947. SERIAL_PROTOCOL(Kp);
  948. SERIAL_PROTOCOL(" i:");
  949. SERIAL_PROTOCOL(Ki/PID_dT);
  950. SERIAL_PROTOCOL(" d:");
  951. SERIAL_PROTOCOL(Kd*PID_dT);
  952. #ifdef PID_ADD_EXTRUSION_RATE
  953. SERIAL_PROTOCOL(" c:");
  954. SERIAL_PROTOCOL(Kc*PID_dT);
  955. #endif
  956. SERIAL_PROTOCOLLN("");
  957. }
  958. break;
  959. #endif //PIDTEMP
  960. case 400: // finish all moves
  961. {
  962. st_synchronize();
  963. }
  964. break;
  965. case 500: // Store settings in EEPROM
  966. {
  967. EEPROM_StoreSettings();
  968. }
  969. break;
  970. case 501: // Read settings from EEPROM
  971. {
  972. EEPROM_RetrieveSettings();
  973. }
  974. break;
  975. case 502: // Revert to default settings
  976. {
  977. EEPROM_RetrieveSettings(true);
  978. }
  979. break;
  980. case 503: // print settings currently in memory
  981. {
  982. EEPROM_printSettings();
  983. }
  984. break;
  985. }
  986. }
  987. else if(code_seen('T'))
  988. {
  989. tmp_extruder = code_value();
  990. if(tmp_extruder >= EXTRUDERS) {
  991. SERIAL_ECHO_START;
  992. SERIAL_ECHO("T");
  993. SERIAL_ECHO(tmp_extruder);
  994. SERIAL_ECHOLN("Invalid extruder");
  995. }
  996. else {
  997. active_extruder = tmp_extruder;
  998. SERIAL_ECHO_START;
  999. SERIAL_ECHO("Active Extruder: ");
  1000. SERIAL_PROTOCOLLN((int)active_extruder);
  1001. }
  1002. }
  1003. else
  1004. {
  1005. SERIAL_ECHO_START;
  1006. SERIAL_ECHOPGM("Unknown command:\"");
  1007. SERIAL_ECHO(cmdbuffer[bufindr]);
  1008. SERIAL_ECHOLNPGM("\"");
  1009. }
  1010. ClearToSend();
  1011. }
  1012. void FlushSerialRequestResend()
  1013. {
  1014. //char cmdbuffer[bufindr][100]="Resend:";
  1015. MSerial.flush();
  1016. SERIAL_PROTOCOLPGM("Resend:");
  1017. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  1018. ClearToSend();
  1019. }
  1020. void ClearToSend()
  1021. {
  1022. previous_millis_cmd = millis();
  1023. #ifdef SDSUPPORT
  1024. if(fromsd[bufindr])
  1025. return;
  1026. #endif //SDSUPPORT
  1027. SERIAL_PROTOCOLLNPGM("ok");
  1028. }
  1029. FORCE_INLINE void get_coordinates()
  1030. {
  1031. for(int8_t i=0; i < NUM_AXIS; i++) {
  1032. if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  1033. else destination[i] = current_position[i]; //Are these else lines really needed?
  1034. }
  1035. if(code_seen('F')) {
  1036. next_feedrate = code_value();
  1037. if(next_feedrate > 0.0) feedrate = next_feedrate;
  1038. }
  1039. }
  1040. FORCE_INLINE void get_arc_coordinates()
  1041. {
  1042. get_coordinates();
  1043. if(code_seen('I')) offset[0] = code_value();
  1044. if(code_seen('J')) offset[1] = code_value();
  1045. }
  1046. void prepare_move()
  1047. {
  1048. if (min_software_endstops) {
  1049. if (destination[X_AXIS] < 0) destination[X_AXIS] = 0.0;
  1050. if (destination[Y_AXIS] < 0) destination[Y_AXIS] = 0.0;
  1051. if (destination[Z_AXIS] < 0) destination[Z_AXIS] = 0.0;
  1052. }
  1053. if (max_software_endstops) {
  1054. if (destination[X_AXIS] > X_MAX_LENGTH) destination[X_AXIS] = X_MAX_LENGTH;
  1055. if (destination[Y_AXIS] > Y_MAX_LENGTH) destination[Y_AXIS] = Y_MAX_LENGTH;
  1056. if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH;
  1057. }
  1058. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  1059. for(int8_t i=0; i < NUM_AXIS; i++) {
  1060. current_position[i] = destination[i];
  1061. }
  1062. }
  1063. void prepare_arc_move(char isclockwise) {
  1064. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  1065. // Trace the arc
  1066. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  1067. // As far as the parser is concerned, the position is now == target. In reality the
  1068. // motion control system might still be processing the action and the real tool position
  1069. // in any intermediate location.
  1070. for(int8_t i=0; i < NUM_AXIS; i++) {
  1071. current_position[i] = destination[i];
  1072. }
  1073. }
  1074. void manage_inactivity(byte debug)
  1075. {
  1076. if( (millis()-previous_millis_cmd) > max_inactive_time )
  1077. if(max_inactive_time)
  1078. kill();
  1079. if( (millis()-previous_millis_cmd) > stepper_inactive_time )
  1080. if(stepper_inactive_time)
  1081. {
  1082. disable_x();
  1083. disable_y();
  1084. disable_z();
  1085. disable_e0();
  1086. disable_e1();
  1087. disable_e2();
  1088. }
  1089. check_axes_activity();
  1090. }
  1091. void kill()
  1092. {
  1093. disable_heater();
  1094. disable_x();
  1095. disable_y();
  1096. disable_z();
  1097. disable_e0();
  1098. disable_e1();
  1099. disable_e2();
  1100. if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  1101. SERIAL_ERROR_START;
  1102. SERIAL_ERRORLNPGM("Printer halted. kill() called !!");
  1103. LCD_MESSAGEPGM("KILLED. ");
  1104. while(1); // Wait for reset
  1105. }