12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- #include "MarlinConfig.h"
-
- #if ENABLED(AUTO_BED_LEVELING_UBL)
- //#include "vector_3.h"
- //#include "qr_solve.h"
-
- #include "ubl.h"
- #include "Marlin.h"
- #include "hex_print_routines.h"
- #include "configuration_store.h"
- #include "ultralcd.h"
-
- #include <math.h>
- #include "least_squares_fit.h"
-
- void lcd_return_to_status();
- bool lcd_clicked();
- void lcd_implementation_clear();
- void lcd_mesh_edit_setup(float initial);
- float lcd_mesh_edit();
- void lcd_z_offset_edit_setup(float);
- float lcd_z_offset_edit();
- extern float meshedit_done;
- extern long babysteps_done;
- extern float code_value_float();
- extern uint8_t code_value_byte();
- extern bool code_value_bool();
- extern bool code_has_value();
- extern float probe_pt(float x, float y, bool, int);
- extern bool set_probe_deployed(bool);
- void smart_fill_mesh();
-
- bool ProbeStay = true;
-
- #define SIZE_OF_LITTLE_RAISE 0
- #define BIG_RAISE_NOT_NEEDED 0
- extern void lcd_quick_feedback();
-
- /**
- * G29: Unified Bed Leveling by Roxy
- *
- * Parameters understood by this leveling system:
- *
- * A Activate Activate the Unified Bed Leveling system.
- *
- * B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
- * G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card
- * as a shim that the nozzle will pinch as it is lowered. The idea is that you
- * can easily feel the nozzle getting to the same height by the amount of resistance
- * the business card exhibits to movement. You should try to achieve the same amount
- * of resistance on each probed point to facilitate accurate and repeatable measurements.
- * You should be very careful not to drive the nozzle into the bussiness card with a
- * lot of force as it is very possible to cause damage to your printer if your are
- * careless. If you use the B option with G29 P2 B you can leave the number parameter off
- * on its first use to enable measurement of the business card thickness. Subsequent usage
- * of the B parameter can have the number previously measured supplied to the command.
- * Incidently, you are much better off using something like a Spark Gap feeler gauge than
- * something that compresses like a Business Card.
- *
- * C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
- * further refine the behaviour of several other commands. Issuing a G29 P1 C will
- * continue the generation of a partially constructed Mesh without invalidating what has
- * been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
- * location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
- * it indicates to use the current location instead of defaulting to the center of the print bed.
- *
- * D Disable Disable the Unified Bed Leveling system.
- *
- * E Stow_probe Stow the probe after each sampled point.
- *
- * F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the
- * specified height, no correction is applied and natural printer kenimatics take over. If no
- * number is specified for the command, 10mm is assumed to be reasonable.
- *
- * H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
- * default is 5mm.
- *
- * I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
- * the X and Y parameter are used. If no number is specified, only the closest Mesh
- * point to the location is invalidated. The M parameter is available as well to produce
- * a map after the operation. This command is useful to invalidate a portion of the
- * Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
- * attempting to invalidate an isolated bad point in the mesh, the M option will indicate
- * where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
- * the bed and use this feature to select the center of the area (or cell) you want to
- * invalidate.
- *
- * J # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
- *
- * j EEPROM Dump This function probably goes away after debug is complete.
- *
- * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
- * command literally performs a diff between two Meshes.
- *
- * L Load * Load Mesh from the previously activated location in the EEPROM.
- *
- * L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated
- * for subsequent Load and Store operations.
- *
- * O Map * Display the Mesh Map Topology.
- * The parameter can be specified alone (ie. G29 O) or in combination with many of the
- * other commands. The Mesh Map option works with all of the Phase
- * commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O) The Map parameter can also of a Map Type
- * specified. A map type of 0 is the default is user readable. A map type of 1 can
- * be specified and is suitable to Cut & Paste into Excel to allow graphing of the user's
- * mesh.
- *
- * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
- * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
- * each additional Phase that processes it.
- *
- * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
- * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
- * was turned on. Setting the entire Mesh to Zero is a special case that allows
- * a subsequent G or T leveling operation for backward compatibility.
- *
- * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
- * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
- * DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
- * generated. This will be handled in Phase 2. If the Phase 1 command is given the
- * C (Continue) parameter it does not invalidate the Mesh prior to automatically
- * probing needed locations. This allows you to invalidate portions of the Mesh but still
- * use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
- * parameter can be given to prioritize where the command should be trying to measure points.
- * If the X and Y parameters are not specified the current probe position is used. Phase 1
- * allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
- * Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
- * It will suspend generation of the Mesh if it sees the user request that. (This check is
- * only done between probe points. You will need to press and hold the switch until the
- * Phase 1 command can detect it.)
- *
- * P2 Phase 2 Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
- * parameter to control the height between Mesh points. The default height for movement
- * between Mesh points is 5mm. A smaller number can be used to make this part of the
- * calibration less time consuming. You will be running the nozzle down until it just barely
- * touches the glass. You should have the nozzle clean with no plastic obstructing your view.
- * Use caution and move slowly. It is possible to damage your printer if you are careless.
- * Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
- * nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
- *
- * The H parameter can be set negative if your Mesh dips in a large area. You can press
- * and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
- * can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
- * area you are manually probing. Note that the command tries to start you in a corner
- * of the bed where movement will be predictable. You can force the location to be used in
- * the distance calculations by using the X and Y parameters. You may find it is helpful to
- * print out a Mesh Map (G29 O) to understand where the mesh is invalidated and where
- * the nozzle will need to move in order to complete the command. The C parameter is
- * available on the Phase 2 command also and indicates the search for points to measure should
- * be done based on the current location of the nozzle.
- *
- * A B parameter is also available for this command and described up above. It places the
- * manual probe subsystem into Business Card mode where the thickness of a business care is
- * measured and then used to accurately set the nozzle height in all manual probing for the
- * duration of the command. (S for Shim mode would be a better parameter name, but S is needed
- * for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
- * better results if you use a flexible Shim that does not compress very much. That makes it
- * easier for you to get the nozzle to press with similar amounts of force against the shim so you
- * can get accurate measurements. As you are starting to touch the nozzle against the shim try
- * to get it to grasp the shim with the same force as when you measured the thickness of the
- * shim at the start of the command.
- *
- * Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression
- * of the Mesh being built.
- *
- * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths the
- * user can go down. If the user specifies the value using the C parameter, the closest invalid
- * mesh points to the nozzle will be filled. The user can specify a repeat count using the R
- * parameter with the C version of the command.
- *
- * A second version of the fill command is available if no C constant is specified. Not
- * specifying a C constant will invoke the 'Smart Fill' algorithm. The G29 P3 command will search
- * from the edges of the mesh inward looking for invalid mesh points. It will look at the next
- * several mesh points to determine if the print bed is sloped up or down. If the bed is sloped
- * upward from the invalid mesh point, it will be replaced with the value of the nearest mesh point.
- * If the bed is sloped downward from the invalid mesh point, it will be replaced with a value that
- * puts all three points in a line. The second version of the G29 P3 command is a quick, easy and
- * usually safe way to populate the unprobed regions of your mesh so you can continue to the G26
- * Mesh Validation Pattern phase. Please note that you are populating your mesh with unverified
- * numbers. You should use some scrutiny and caution.
- *
- * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of
- * an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
- * (More work and details on doing this later!)
- * The System will search for the closest Mesh Point to the nozzle. It will move the
- * nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
- * so it is just barely touching the bed. When the user clicks the control, the System
- * will lock in that height for that point in the Mesh Compensation System.
- *
- * Phase 4 has several additional parameters that the user may find helpful. Phase 4
- * can be started at a specific location by specifying an X and Y parameter. Phase 4
- * can be requested to continue the adjustment of Mesh Points by using the R(epeat)
- * parameter. If the Repetition count is not specified, it is assumed the user wishes
- * to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
- * The command can be terminated early (or after the area of interest has been edited) by
- * pressing and holding the encoder wheel until the system recognizes the exit request.
- * Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
- *
- * Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
- * information left on the printer's bed from the G26 command it is very straight forward
- * and easy to fine tune the Mesh. One concept that is important to remember and that
- * will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
- * If you have too little clearance and not much plastic was extruded in an area, you want to
- * LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
- * RAISE the Mesh Point at that location.
- *
- *
- * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
- * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
- * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
- * execute a G29 P6 C <mean height>.
- *
- * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
- * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
- * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
- * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
- * 0.000 at the Z Home location.
- *
- * Q Test * Load specified Test Pattern to assist in checking correct operation of system. This
- * command is not anticipated to be of much value to the typical user. It is intended
- * for developers to help them verify correct operation of the Unified Bed Leveling System.
- *
- * R # Repeat Repeat this command the specified number of times. If no number is specified the
- * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
- *
- * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
- * current state of the Unified Bed Leveling system in the EEPROM.
- *
- * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
- * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
- * extend to a limit related to the available EEPROM storage.
- *
- * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into the system
- * at a later date. The GCode output can be saved and later replayed by the host software
- * to reconstruct the current mesh on another machine.
- *
- * T 3-Point Perform a 3 Point Bed Leveling on the current Mesh
- *
- * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
- * Only used for G29 P1 O U It will speed up the probing of the edge of the bed. This
- * is useful when the entire bed does not need to be probed because it will be adjusted.
- *
- * W What? Display valuable data the Unified Bed Leveling System knows.
- *
- * X # * * X Location for this line of commands
- *
- * Y # * * Y Location for this line of commands
- *
- * Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered
- * by just doing a G29 Z
- *
- * Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference.
- * zprobe_zoffset is added to the calculation.
- *
- *
- * Release Notes:
- * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
- * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
- * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
- * respectively.)
- *
- * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
- * the Unified Bed Leveling probes points further and further away from the starting location. (The
- * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
- * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
- * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
- * perform a small print and check out your settings quicker. You do not need to populate the
- * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
- * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
- * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
- *
- * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
- * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
- * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
- * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
- * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
- * this is going to be helpful to the users!)
- *
- * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
- * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
- * we now have the functionality and features of all three systems combined.
- */
-
- #define USE_NOZZLE_AS_REFERENCE 0
- #define USE_PROBE_AS_REFERENCE 1
-
- // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
- static int g29_verbose_level, phase_value = -1, repetition_cnt,
- storage_slot = 0, map_type, grid_size;
- static bool repeat_flag, c_flag, x_flag, y_flag;
- static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0;
-
- extern void lcd_setstatus(const char* message, const bool persist);
- extern void lcd_setstatuspgm(const char* message, const uint8_t level);
-
- void __attribute__((optimize("O0"))) gcode_G29() {
-
- if (ubl.eeprom_start < 0) {
- SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
- SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
- return;
- }
-
- if (!code_seen('N') && axis_unhomed_error(true, true, true)) // Don't allow auto-leveling without homing first
- gcode_G28();
-
- if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
-
- // Invalidate Mesh Points. This command is a little bit asymetrical because
- // it directly specifies the repetition count and does not use the 'R' parameter.
- if (code_seen('I')) {
- uint8_t cnt = 0;
- repetition_cnt = code_has_value() ? code_value_int() : 1;
- while (repetition_cnt--) {
- if (cnt > 20) { cnt = 0; idle(); }
- const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
- if (location.x_index < 0) {
- SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
- break; // No more invalid Mesh Points to populate
- }
- ubl.z_values[location.x_index][location.y_index] = NAN;
- cnt++;
- }
- SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
- }
-
- if (code_seen('Q')) {
-
- const int test_pattern = code_has_value() ? code_value_int() : -1;
- if (!WITHIN(test_pattern, 0, 2)) {
- SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
- return;
- }
- SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
- switch (test_pattern) {
- case 0:
- for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
- for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
- const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x,
- p2 = 0.5 * (GRID_MAX_POINTS_Y) - y;
- ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2);
- }
- }
- break;
- case 1:
- for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
- ubl.z_values[x][x] += 9.999;
- ubl.z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
- }
- break;
- case 2:
- // Allow the user to specify the height because 10mm is a little extreme in some cases.
- for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
- for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
- ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
- break;
- }
- }
-
- if (code_seen('J')) {
- if (!WITHIN(grid_size, 2, 9)) {
- SERIAL_PROTOCOLLNPGM("ERROR - grid size must be between 2 and 9");
- return;
- }
- ubl.save_ubl_active_state_and_disable();
- ubl.tilt_mesh_based_on_probed_grid(code_seen('O') || code_seen('M'));
- ubl.restore_ubl_active_state_and_leave();
- }
-
- if (code_seen('P')) {
- phase_value = code_value_int();
- if (!WITHIN(phase_value, 0, 7)) {
- SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n");
- return;
- }
- switch (phase_value) {
- case 0:
- //
- // Zero Mesh Data
- //
- ubl.reset();
- SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
- break;
-
- case 1:
- //
- // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
- //
- if (!code_seen('C')) {
- ubl.invalidate();
- SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
- }
- if (g29_verbose_level > 1) {
- SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", x_pos);
- SERIAL_PROTOCOLCHAR(',');
- SERIAL_PROTOCOL(y_pos);
- SERIAL_PROTOCOLLNPGM(")\n");
- }
- ubl.probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
- code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U'));
- break;
-
- case 2: {
- //
- // Manually Probe Mesh in areas that can't be reached by the probe
- //
- SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
- do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
- if (!x_flag && !y_flag) { // use a good default location for the path
- // The flipped > and < operators on these two comparisons is
- // intentional. It should cause the probed points to follow a
- // nice path on Cartesian printers. It may make sense to
- // have Delta printers default to the center of the bed.
- // For now, until that is decided, it can be forced with the X
- // and Y parameters.
- x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS;
- y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS;
- }
-
- if (code_seen('C')) {
- x_pos = current_position[X_AXIS];
- y_pos = current_position[Y_AXIS];
- }
-
- const float height = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES;
-
- if (code_seen('B')) {
- card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height);
-
- if (fabs(card_thickness) > 1.5) {
- SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.\n");
- return;
- }
- }
- manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('O') || code_seen('M'));
-
- } break;
-
- case 3: {
- //
- // Populate invalid Mesh areas. Two choices are available to the user. The user can
- // specify the constant to be used with a C # paramter. Or the user can allow the G29 P3 command to
- // apply a 'reasonable' constant to the invalid mesh point. Some caution and scrutiny should be used
- // on either of these paths!
- //
- if (c_flag) {
- while (repetition_cnt--) {
- const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
- if (location.x_index < 0) break; // No more invalid Mesh Points to populate
- ubl.z_values[location.x_index][location.y_index] = ubl_constant;
- }
- break;
- } else // The user wants to do a 'Smart' fill where we use the surrounding known
- smart_fill_mesh(); // values to provide a good guess of what the unprobed mesh point should be
- break;
- }
-
- case 4:
- //
- // Fine Tune (i.e., Edit) the Mesh
- //
- fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M'));
- break;
- case 5:
- ubl.find_mean_mesh_height();
- break;
- case 6:
- ubl.shift_mesh_height();
- break;
-
- case 10:
- // [DEBUG] Pay no attention to this stuff. It can be removed soon.
- SERIAL_ECHO_START;
- SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
- KEEPALIVE_STATE(PAUSED_FOR_USER);
- ubl.has_control_of_lcd_panel = true;
- while (!ubl_lcd_clicked()) {
- safe_delay(250);
- if (ubl.encoder_diff) {
- SERIAL_ECHOLN((int)ubl.encoder_diff);
- ubl.encoder_diff = 0;
- }
- }
- SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
- ubl.has_control_of_lcd_panel = false;
- KEEPALIVE_STATE(IN_HANDLER);
- break;
-
- case 11:
- // [DEBUG] wait_for_user code. Pay no attention to this stuff. It can be removed soon.
- SERIAL_ECHO_START;
- SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
- KEEPALIVE_STATE(PAUSED_FOR_USER);
- wait_for_user = true;
- while (wait_for_user) {
- safe_delay(250);
- if (ubl.encoder_diff) {
- SERIAL_ECHOLN((int)ubl.encoder_diff);
- ubl.encoder_diff = 0;
- }
- }
- SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
- KEEPALIVE_STATE(IN_HANDLER);
- break;
- }
- }
-
- if (code_seen('T')) {
-
- float z1 = probe_pt( LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level),
- z2 = probe_pt( LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y), false, g29_verbose_level),
- z3 = probe_pt( LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y), true, g29_verbose_level);
-
- // We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
- // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
-
- ubl.save_ubl_active_state_and_disable();
- z1 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y)) /* + zprobe_zoffset */ ;
- z2 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y)) /* + zprobe_zoffset */ ;
- z3 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y)) /* + zprobe_zoffset */ ;
-
- do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
- ubl.tilt_mesh_based_on_3pts(z1, z2, z3);
- ubl.restore_ubl_active_state_and_leave();
- }
-
- //
- // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
- // good to have the extra information. Soon... we prune this to just a few items
- //
- if (code_seen('W')) g29_what_command();
-
- //
- // When we are fully debugged, the EEPROM dump command will get deleted also. But
- // right now, it is good to have the extra information. Soon... we prune this.
- //
- if (code_seen('j')) g29_eeprom_dump(); // EEPROM Dump
-
- //
- // When we are fully debugged, this may go away. But there are some valid
- // use cases for the users. So we can wait and see what to do with it.
- //
-
- if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
- g29_compare_current_mesh_to_stored_mesh();
-
- //
- // Load a Mesh from the EEPROM
- //
-
- if (code_seen('L')) { // Load Current Mesh Data
- storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
-
- const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
-
- if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
- SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
- return;
- }
- ubl.load_mesh(storage_slot);
- ubl.state.eeprom_storage_slot = storage_slot;
- SERIAL_PROTOCOLLNPGM("Done.\n");
- }
-
- //
- // Store a Mesh in the EEPROM
- //
-
- if (code_seen('S')) { // Store (or Save) Current Mesh Data
- storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
-
- if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
- SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
- for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
- for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
- if (!isnan(ubl.z_values[x][y])) {
- SERIAL_ECHOPAIR("M421 I ", x);
- SERIAL_ECHOPAIR(" J ", y);
- SERIAL_ECHOPGM(" Z ");
- SERIAL_ECHO_F(ubl.z_values[x][y], 6);
- SERIAL_EOL;
- }
- return;
- }
-
- const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
-
- if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
- SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
- SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
- goto LEAVE;
- }
- ubl.store_mesh(storage_slot);
- ubl.state.eeprom_storage_slot = storage_slot;
-
- SERIAL_PROTOCOLLNPGM("Done.\n");
- }
-
- if (code_seen('O') || code_seen('M'))
- ubl.display_map(code_has_value() ? code_value_int() : 0);
-
- if (code_seen('Z')) {
- if (code_has_value())
- ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
- else {
- ubl.save_ubl_active_state_and_disable();
- //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
-
- ubl.has_control_of_lcd_panel = true; // Grab the LCD Hardware
- measured_z = 1.5;
- do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
- // The user is not going to be locking in a new Z-Offset very often so
- // it won't be that painful to spin the Encoder Wheel for 1.5mm
- lcd_implementation_clear();
- lcd_z_offset_edit_setup(measured_z);
-
- KEEPALIVE_STATE(PAUSED_FOR_USER);
-
- do {
- measured_z = lcd_z_offset_edit();
- idle();
- do_blocking_move_to_z(measured_z);
- } while (!ubl_lcd_clicked());
-
- ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
- // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
- // or here. So, until we are done looking for a long Encoder Wheel Press,
- // we need to take control of the panel
-
- KEEPALIVE_STATE(IN_HANDLER);
-
- lcd_return_to_status();
-
- const millis_t nxt = millis() + 1500UL;
- while (ubl_lcd_clicked()) { // debounce and watch for abort
- idle();
- if (ELAPSED(millis(), nxt)) {
- SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
- do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
- LCD_MESSAGEPGM("Z-Offset Stopped");
- ubl.restore_ubl_active_state_and_leave();
- goto LEAVE;
- }
- }
- ubl.has_control_of_lcd_panel = false;
- safe_delay(20); // We don't want any switch noise.
-
- ubl.state.z_offset = measured_z;
-
- lcd_implementation_clear();
- ubl.restore_ubl_active_state_and_leave();
- }
- }
-
- LEAVE:
-
- lcd_reset_alert_level();
- LCD_MESSAGEPGM("");
- lcd_quick_feedback();
-
- ubl.has_control_of_lcd_panel = false;
- }
-
- void unified_bed_leveling::find_mean_mesh_height() {
- uint8_t x, y;
- int n;
- float sum, sum_of_diff_squared, sigma, difference, mean;
-
- sum = sum_of_diff_squared = 0.0;
- n = 0;
- for (x = 0; x < GRID_MAX_POINTS_X; x++)
- for (y = 0; y < GRID_MAX_POINTS_Y; y++)
- if (!isnan(ubl.z_values[x][y])) {
- sum += ubl.z_values[x][y];
- n++;
- }
-
- mean = sum / n;
-
- //
- // Now do the sumation of the squares of difference from mean
- //
- for (x = 0; x < GRID_MAX_POINTS_X; x++)
- for (y = 0; y < GRID_MAX_POINTS_Y; y++)
- if (!isnan(ubl.z_values[x][y])) {
- difference = (ubl.z_values[x][y] - mean);
- sum_of_diff_squared += difference * difference;
- }
-
- SERIAL_ECHOLNPAIR("# of samples: ", n);
- SERIAL_ECHOPGM("Mean Mesh Height: ");
- SERIAL_ECHO_F(mean, 6);
- SERIAL_EOL;
-
- sigma = sqrt(sum_of_diff_squared / (n + 1));
- SERIAL_ECHOPGM("Standard Deviation: ");
- SERIAL_ECHO_F(sigma, 6);
- SERIAL_EOL;
-
- if (c_flag)
- for (x = 0; x < GRID_MAX_POINTS_X; x++)
- for (y = 0; y < GRID_MAX_POINTS_Y; y++)
- if (!isnan(ubl.z_values[x][y]))
- ubl.z_values[x][y] -= mean + ubl_constant;
- }
-
- void unified_bed_leveling::shift_mesh_height() {
- for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
- for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
- if (!isnan(ubl.z_values[x][y]))
- ubl.z_values[x][y] += ubl_constant;
- }
-
- /**
- * Probe all invalidated locations of the mesh that can be reached by the probe.
- * This attempts to fill in locations closest to the nozzle's start location first.
- */
- void unified_bed_leveling::probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) {
- mesh_index_pair location;
-
- ubl.has_control_of_lcd_panel = true;
- ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
- DEPLOY_PROBE();
-
- do {
- if (ubl_lcd_clicked()) {
- SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
- lcd_quick_feedback();
- STOW_PROBE();
- while (ubl_lcd_clicked()) idle();
- ubl.has_control_of_lcd_panel = false;
- ubl.restore_ubl_active_state_and_leave();
- safe_delay(50); // Debounce the Encoder wheel
- return;
- }
-
- location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, do_furthest);
- if (location.x_index >= 0 && location.y_index >= 0) {
-
- const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])),
- rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index]));
-
- // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
- if (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) {
- SERIAL_ERROR_START;
- SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
- ubl.has_control_of_lcd_panel = false;
- goto LEAVE;
- }
- const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level);
- ubl.z_values[location.x_index][location.y_index] = measured_z;
- }
-
- if (do_ubl_mesh_map) ubl.display_map(map_type);
-
- } while (location.x_index >= 0 && location.y_index >= 0);
-
- LEAVE:
-
- STOW_PROBE();
- ubl.restore_ubl_active_state_and_leave();
-
- do_blocking_move_to_xy(
- constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), X_MIN_POS, X_MAX_POS),
- constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), Y_MIN_POS, Y_MAX_POS)
- );
- }
-
- void unified_bed_leveling::tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
- float d, t, inv_z;
- int i, j;
-
- matrix_3x3 rotation;
- vector_3 v1 = vector_3( (UBL_PROBE_PT_1_X - UBL_PROBE_PT_2_X),
- (UBL_PROBE_PT_1_Y - UBL_PROBE_PT_2_Y),
- (z1 - z2) ),
-
- v2 = vector_3( (UBL_PROBE_PT_3_X - UBL_PROBE_PT_2_X),
- (UBL_PROBE_PT_3_Y - UBL_PROBE_PT_2_Y),
- (z3 - z2) ),
-
- normal = vector_3::cross(v1, v2);
-
- normal = normal.get_normal();
-
- /**
- * This vector is normal to the tilted plane.
- * However, we don't know its direction. We need it to point up. So if
- * Z is negative, we need to invert the sign of all components of the vector
- */
- if ( normal.z < 0.0 ) {
- normal.x = -normal.x;
- normal.y = -normal.y;
- normal.z = -normal.z;
- }
-
- rotation = matrix_3x3::create_look_at( vector_3( normal.x, normal.y, 1));
-
- if (g29_verbose_level>2) {
- SERIAL_ECHOPGM("bed plane normal = [");
- SERIAL_PROTOCOL_F( normal.x, 7);
- SERIAL_ECHOPGM(",");
- SERIAL_PROTOCOL_F( normal.y, 7);
- SERIAL_ECHOPGM(",");
- SERIAL_PROTOCOL_F( normal.z, 7);
- SERIAL_ECHOPGM("]\n");
- rotation.debug("rotation matrix:");
- }
-
- //
- // All of 3 of these points should give us the same d constant
- //
-
- t = normal.x * UBL_PROBE_PT_1_X + normal.y * UBL_PROBE_PT_1_Y;
- d = t + normal.z * z1;
-
- if (g29_verbose_level>2) {
- SERIAL_ECHOPGM("D constant: ");
- SERIAL_PROTOCOL_F( d, 7);
- SERIAL_ECHOPGM(" \n");
- }
-
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(LEVELING)) {
- SERIAL_ECHOPGM("d from 1st point: ");
- SERIAL_ECHO_F(d, 6);
- SERIAL_EOL;
- t = normal.x * UBL_PROBE_PT_2_X + normal.y * UBL_PROBE_PT_2_Y;
- d = t + normal.z * z2;
- SERIAL_ECHOPGM("d from 2nd point: ");
- SERIAL_ECHO_F(d, 6);
- SERIAL_EOL;
- t = normal.x * UBL_PROBE_PT_3_X + normal.y * UBL_PROBE_PT_3_Y;
- d = t + normal.z * z3;
- SERIAL_ECHOPGM("d from 3rd point: ");
- SERIAL_ECHO_F(d, 6);
- SERIAL_EOL;
- }
- #endif
-
- for (i = 0; i < GRID_MAX_POINTS_X; i++) {
- for (j = 0; j < GRID_MAX_POINTS_Y; j++) {
- float x_tmp, y_tmp, z_tmp;
- x_tmp = pgm_read_float(ubl.mesh_index_to_xpos[i]);
- y_tmp = pgm_read_float(ubl.mesh_index_to_ypos[j]);
- z_tmp = ubl.z_values[i][j];
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(LEVELING)) {
- SERIAL_ECHOPGM("before rotation = [");
- SERIAL_PROTOCOL_F( x_tmp, 7);
- SERIAL_ECHOPGM(",");
- SERIAL_PROTOCOL_F( y_tmp, 7);
- SERIAL_ECHOPGM(",");
- SERIAL_PROTOCOL_F( z_tmp, 7);
- SERIAL_ECHOPGM("] ---> ");
- safe_delay(20);
- }
- #endif
- apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(LEVELING)) {
- SERIAL_ECHOPGM("after rotation = [");
- SERIAL_PROTOCOL_F( x_tmp, 7);
- SERIAL_ECHOPGM(",");
- SERIAL_PROTOCOL_F( y_tmp, 7);
- SERIAL_ECHOPGM(",");
- SERIAL_PROTOCOL_F( z_tmp, 7);
- SERIAL_ECHOPGM("]\n");
- safe_delay(55);
- }
- #endif
- ubl.z_values[i][j] += z_tmp - d;
- }
- }
- return;
- }
-
- float use_encoder_wheel_to_measure_point() {
- KEEPALIVE_STATE(PAUSED_FOR_USER);
- while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
- idle();
- if (ubl.encoder_diff) {
- do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff));
- ubl.encoder_diff = 0;
- }
- }
- KEEPALIVE_STATE(IN_HANDLER);
- return current_position[Z_AXIS];
- }
-
- float measure_business_card_thickness(const float &in_height) {
-
- ubl.has_control_of_lcd_panel = true;
- ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
-
- SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
- do_blocking_move_to_z(in_height);
- do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
- //, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
-
- const float z1 = use_encoder_wheel_to_measure_point();
- do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
- ubl.has_control_of_lcd_panel = false;
-
- SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
- const float z2 = use_encoder_wheel_to_measure_point();
- do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
-
- if (g29_verbose_level > 1) {
- SERIAL_PROTOCOLPGM("Business Card is: ");
- SERIAL_PROTOCOL_F(abs(z1 - z2), 6);
- SERIAL_PROTOCOLLNPGM("mm thick.");
- }
- ubl.restore_ubl_active_state_and_leave();
- return abs(z1 - z2);
- }
-
- void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
-
- ubl.has_control_of_lcd_panel = true;
- ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
- do_blocking_move_to_z(z_clearance);
- do_blocking_move_to_xy(lx, ly);
-
- float last_x = -9999.99, last_y = -9999.99;
- mesh_index_pair location;
- do {
- location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_NOZZLE_AS_REFERENCE, NULL, false);
- // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
- if (location.x_index < 0 && location.y_index < 0) continue;
-
- const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])),
- rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index]));
-
- // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
- if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) {
- SERIAL_ERROR_START;
- SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
- ubl.has_control_of_lcd_panel = false;
- goto LEAVE;
- }
-
- const float xProbe = LOGICAL_X_POSITION(rawx),
- yProbe = LOGICAL_Y_POSITION(rawy),
- dx = xProbe - last_x,
- dy = yProbe - last_y;
-
- if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED)
- do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
- else
- do_blocking_move_to_z(z_clearance);
-
- do_blocking_move_to_xy(xProbe, yProbe);
-
- last_x = xProbe;
- last_y = yProbe;
-
- KEEPALIVE_STATE(PAUSED_FOR_USER);
- ubl.has_control_of_lcd_panel = true;
-
- if (do_ubl_mesh_map) ubl.display_map(map_type); // show user where we're probing
-
- while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
- idle();
- if (ubl.encoder_diff) {
- do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0);
- ubl.encoder_diff = 0;
- }
- }
-
- const millis_t nxt = millis() + 1500L;
- while (ubl_lcd_clicked()) { // debounce and watch for abort
- idle();
- if (ELAPSED(millis(), nxt)) {
- SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
- do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
- lcd_quick_feedback();
- while (ubl_lcd_clicked()) idle();
- ubl.has_control_of_lcd_panel = false;
- KEEPALIVE_STATE(IN_HANDLER);
- ubl.restore_ubl_active_state_and_leave();
- return;
- }
- }
-
- ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
- if (g29_verbose_level > 2) {
- SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
- SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6);
- SERIAL_EOL;
- }
- } while (location.x_index >= 0 && location.y_index >= 0);
-
- if (do_ubl_mesh_map) ubl.display_map(map_type);
-
- LEAVE:
- ubl.restore_ubl_active_state_and_leave();
- KEEPALIVE_STATE(IN_HANDLER);
- do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
- do_blocking_move_to_xy(lx, ly);
- }
-
- bool g29_parameter_parsing() {
- bool err_flag = false;
-
- LCD_MESSAGEPGM("Doing G29 UBL!");
- ubl_constant = 0.0;
- repetition_cnt = 0;
- lcd_quick_feedback();
-
- x_flag = code_seen('X') && code_has_value();
- x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
-
- y_flag = code_seen('Y') && code_has_value();
- y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
-
- repeat_flag = code_seen('R');
- if (repeat_flag) {
- repetition_cnt = code_has_value() ? code_value_int() : (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y);
- if (repetition_cnt < 1) {
- SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
- return UBL_ERR;
- }
- }
-
- g29_verbose_level = code_seen('V') ? code_value_int() : 0;
- if (!WITHIN(g29_verbose_level, 0, 4)) {
- SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
- err_flag = true;
- }
-
- if (code_seen('J')) {
- grid_size = code_has_value() ? code_value_int() : 3;
- if (!WITHIN(grid_size, 2, 5)) {
- SERIAL_PROTOCOLLNPGM("Invalid grid probe points specified.\n");
- err_flag = true;
- }
- }
-
- if (x_flag != y_flag) {
- SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
- err_flag = true;
- }
-
- if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) {
- SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
- err_flag = true;
- }
-
- if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) {
- SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
- err_flag = true;
- }
-
- if (err_flag) return UBL_ERR;
-
- if (code_seen('A')) { // Activate the Unified Bed Leveling System
- ubl.state.active = 1;
- SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n");
- }
-
- c_flag = code_seen('C');
- if (c_flag)
- ubl_constant = code_value_float();
-
- if (code_seen('D')) { // Disable the Unified Bed Leveling System
- ubl.state.active = 0;
- SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n");
- }
-
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- if (code_seen('F') && code_has_value()) {
- const float fh = code_value_float();
- if (!WITHIN(fh, 0.0, 100.0)) {
- SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n");
- return UBL_ERR;
- }
- set_z_fade_height(fh);
- }
- #endif
-
-
- map_type = code_seen('O') && code_has_value() ? code_value_int() : 0;
- if (!WITHIN(map_type, 0, 1)) {
- SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
- return UBL_ERR;
- }
-
- if (code_seen('M')) { // Check if a map type was specified
- map_type = code_has_value() ? code_value_int() : 0;
- if (!WITHIN(map_type, 0, 1)) {
- SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
- return UBL_ERR;
- }
- }
-
- return UBL_OK;
- }
-
- /**
- * This function goes away after G29 debug is complete. But for right now, it is a handy
- * routine to dump binary data structures.
- */
- /*
- void dump(char * const str, const float &f) {
- char *ptr;
-
- SERIAL_PROTOCOL(str);
- SERIAL_PROTOCOL_F(f, 8);
- SERIAL_PROTOCOLPGM(" ");
- ptr = (char*)&f;
- for (uint8_t i = 0; i < 4; i++)
- SERIAL_PROTOCOLPAIR(" ", hex_byte(*ptr++));
- SERIAL_PROTOCOLPAIR(" isnan()=", isnan(f));
- SERIAL_PROTOCOLPAIR(" isinf()=", isinf(f));
-
- if (f == -INFINITY)
- SERIAL_PROTOCOLPGM(" Minus Infinity detected.");
-
- SERIAL_EOL;
- }
- */
-
- static int ubl_state_at_invocation = 0,
- ubl_state_recursion_chk = 0;
-
- void unified_bed_leveling::save_ubl_active_state_and_disable() {
- ubl_state_recursion_chk++;
- if (ubl_state_recursion_chk != 1) {
- SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
- LCD_MESSAGEPGM("save_UBL_active() error");
- lcd_quick_feedback();
- return;
- }
- ubl_state_at_invocation = ubl.state.active;
- ubl.state.active = 0;
- }
-
- void unified_bed_leveling::restore_ubl_active_state_and_leave() {
- if (--ubl_state_recursion_chk) {
- SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
- LCD_MESSAGEPGM("restore_UBL_active() error");
- lcd_quick_feedback();
- return;
- }
- ubl.state.active = ubl_state_at_invocation;
- }
-
-
- /**
- * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
- * good to have the extra information. Soon... we prune this to just a few items
- */
- void g29_what_command() {
- const uint16_t k = E2END - ubl.eeprom_start;
-
- SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version " UBL_VERSION " ");
- if (ubl.state.active)
- SERIAL_PROTOCOLCHAR('A');
- else
- SERIAL_PROTOCOLPGM("Ina");
- SERIAL_PROTOCOLLNPGM("ctive.\n");
- safe_delay(50);
-
- if (ubl.state.eeprom_storage_slot == -1)
- SERIAL_PROTOCOLPGM("No Mesh Loaded.");
- else {
- SERIAL_PROTOCOLPAIR("Mesh ", ubl.state.eeprom_storage_slot);
- SERIAL_PROTOCOLPGM(" Loaded.");
- }
- SERIAL_EOL;
- safe_delay(50);
-
- SERIAL_PROTOCOLLNPAIR("UBL object count: ", ubl_cnt);
-
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- SERIAL_PROTOCOLLNPAIR("planner.z_fade_height : ", planner.z_fade_height);
- #endif
- SERIAL_PROTOCOLPGM("zprobe_zoffset: ");
- SERIAL_PROTOCOL_F(zprobe_zoffset, 7);
- SERIAL_EOL;
-
- SERIAL_PROTOCOLPGM("z_offset: ");
- SERIAL_PROTOCOL_F(ubl.state.z_offset, 7);
- SERIAL_EOL;
- safe_delay(25);
-
- SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=0x", hex_word(ubl.eeprom_start));
-
- SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
- for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
- SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[i]))), 1);
- SERIAL_PROTOCOLPGM(" ");
- safe_delay(50);
- }
- SERIAL_EOL;
-
- SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
- for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
- SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[i]))), 1);
- SERIAL_PROTOCOLPGM(" ");
- safe_delay(50);
- }
- SERIAL_EOL;
-
- #if HAS_KILL
- SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
- SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
- #endif
- SERIAL_EOL;
- safe_delay(50);
-
- SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
- SERIAL_EOL;
- SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
- SERIAL_EOL;
- safe_delay(50);
- SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: ", hex_address((void*)ubl.eeprom_start));
-
- SERIAL_PROTOCOLLNPAIR("end of EEPROM : ", hex_address((void*)E2END));
- safe_delay(50);
-
- SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
- SERIAL_EOL;
- SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(ubl.z_values));
- SERIAL_EOL;
- safe_delay(50);
-
- SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)k));
- safe_delay(50);
-
- SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(ubl.z_values));
- SERIAL_PROTOCOLLNPGM(" meshes.\n");
- safe_delay(50);
-
- SERIAL_PROTOCOLPAIR("sizeof(ubl.state) : ", (int)sizeof(ubl.state));
-
- SERIAL_PROTOCOLPAIR("\nGRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
- SERIAL_PROTOCOLPAIR("\nGRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
- safe_delay(50);
- SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X);
- SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y);
- safe_delay(50);
- SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X);
- SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y);
- safe_delay(50);
- SERIAL_PROTOCOLPGM("\nMESH_X_DIST ");
- SERIAL_PROTOCOL_F(MESH_X_DIST, 6);
- SERIAL_PROTOCOLPGM("\nMESH_Y_DIST ");
- SERIAL_PROTOCOL_F(MESH_Y_DIST, 6);
- SERIAL_EOL;
- safe_delay(50);
-
- if (!ubl.sanity_check())
- SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed.");
- }
-
- /**
- * When we are fully debugged, the EEPROM dump command will get deleted also. But
- * right now, it is good to have the extra information. Soon... we prune this.
- */
- void g29_eeprom_dump() {
- unsigned char cccc;
- uint16_t kkkk;
-
- SERIAL_ECHO_START;
- SERIAL_ECHOLNPGM("EEPROM Dump:");
- for (uint16_t i = 0; i < E2END + 1; i += 16) {
- if (!(i & 0x3)) idle();
- print_hex_word(i);
- SERIAL_ECHOPGM(": ");
- for (uint16_t j = 0; j < 16; j++) {
- kkkk = i + j;
- eeprom_read_block(&cccc, (void *)kkkk, 1);
- print_hex_byte(cccc);
- SERIAL_ECHO(' ');
- }
- SERIAL_EOL;
- }
- SERIAL_EOL;
- }
-
- /**
- * When we are fully debugged, this may go away. But there are some valid
- * use cases for the users. So we can wait and see what to do with it.
- */
- void g29_compare_current_mesh_to_stored_mesh() {
- float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
-
- if (!code_has_value()) {
- SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
- return;
- }
- storage_slot = code_value_int();
-
- int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values);
-
- if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
- SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
- return;
- }
-
- j = UBL_LAST_EEPROM_INDEX - (storage_slot + 1) * sizeof(tmp_z_values);
- eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
-
- SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
- SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address ", hex_address((void*)j)); // Soon, we can remove the extra clutter of printing
- // the address in the EEPROM where the Mesh is stored.
-
- for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
- for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
- ubl.z_values[x][y] -= tmp_z_values[x][y];
- }
-
- mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) {
- float distance, closest = far_flag ? -99999.99 : 99999.99;
- mesh_index_pair return_val;
-
- return_val.x_index = return_val.y_index = -1;
-
- const float current_x = current_position[X_AXIS],
- current_y = current_position[Y_AXIS];
-
- // Get our reference position. Either the nozzle or probe location.
- const float px = lx - (probe_as_reference==USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
- py = ly - (probe_as_reference==USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
-
- for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
- for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
-
- if ( (type == INVALID && isnan(ubl.z_values[i][j])) // Check to see if this location holds the right thing
- || (type == REAL && !isnan(ubl.z_values[i][j]))
- || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
- ) {
-
- // We only get here if we found a Mesh Point of the specified type
-
- const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[i])), // Check if we can probe this mesh location
- rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[j]));
-
- // If using the probe as the reference there are some unreachable locations.
- // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
-
- if (probe_as_reference==USE_PROBE_AS_REFERENCE &&
- (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y))
- ) continue;
-
- // Unreachable. Check if it's the closest location to the nozzle.
- // Add in a weighting factor that considers the current location of the nozzle.
-
- const float mx = LOGICAL_X_POSITION(rawx), // Check if we can probe this mesh location
- my = LOGICAL_Y_POSITION(rawy);
-
- distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1;
-
- if (far_flag) { // If doing the far_flag action, we want to be as far as possible
- for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) { // from the starting point and from any other probed points. We
- for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) { // want the next point spread out and filling in any blank spaces
- if (!isnan(ubl.z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed
- distance += sq(i - k) * (MESH_X_DIST) * .05 // point we can find.
- + sq(j - l) * (MESH_Y_DIST) * .05;
- }
- }
- }
- }
-
- if (far_flag == (distance > closest) && distance != closest) { // if far_flag, look for farthest point
- closest = distance; // We found a closer/farther location with
- return_val.x_index = i; // the specified type of mesh value.
- return_val.y_index = j;
- return_val.distance = closest;
- }
- }
- } // for j
- } // for i
-
- return return_val;
- }
-
- void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
- if (!code_seen('R')) // fine_tune_mesh() is special. If no repetion count flag is specified
- repetition_cnt = 1; // we know to do exactly one mesh location. Otherwise we use what the parser decided.
-
- mesh_index_pair location;
- uint16_t not_done[16];
- int32_t round_off;
-
- ubl.save_ubl_active_state_and_disable();
- memset(not_done, 0xFF, sizeof(not_done));
-
- LCD_MESSAGEPGM("Fine Tuning Mesh");
-
- do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
- do_blocking_move_to_xy(lx, ly);
- do {
- location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
- // It doesn't matter if the probe can not reach this
- // location. This is a manual edit of the Mesh Point.
- if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
-
- bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
- // different location the next time through the loop
-
- const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])),
- rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index]));
-
- // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
- if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { // In theory, we don't need this check.
- SERIAL_ERROR_START;
- SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now
- ubl.has_control_of_lcd_panel = false;
- goto FINE_TUNE_EXIT;
- }
-
- do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
- do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
-
- float new_z = ubl.z_values[location.x_index][location.y_index];
-
- round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
- new_z = float(round_off) / 1000.0;
-
- KEEPALIVE_STATE(PAUSED_FOR_USER);
- ubl.has_control_of_lcd_panel = true;
-
- if (do_ubl_mesh_map) ubl.display_map(map_type); // show the user which point is being adjusted
-
- lcd_implementation_clear();
- lcd_mesh_edit_setup(new_z);
-
- do {
- new_z = lcd_mesh_edit();
- idle();
- } while (!ubl_lcd_clicked());
-
- lcd_return_to_status();
-
- ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
- // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
- // or here.
-
- const millis_t nxt = millis() + 1500UL;
- while (ubl_lcd_clicked()) { // debounce and watch for abort
- idle();
- if (ELAPSED(millis(), nxt)) {
- lcd_return_to_status();
- //SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
- do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
- LCD_MESSAGEPGM("Mesh Editing Stopped");
-
- while (ubl_lcd_clicked()) idle();
-
- goto FINE_TUNE_EXIT;
- }
- }
-
- safe_delay(20); // We don't want any switch noise.
-
- ubl.z_values[location.x_index][location.y_index] = new_z;
-
- lcd_implementation_clear();
-
- } while (location.x_index >= 0 && location.y_index >= 0 && (--repetition_cnt>0));
-
- FINE_TUNE_EXIT:
-
- ubl.has_control_of_lcd_panel = false;
- KEEPALIVE_STATE(IN_HANDLER);
-
- if (do_ubl_mesh_map) ubl.display_map(map_type);
- ubl.restore_ubl_active_state_and_leave();
- do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
-
- do_blocking_move_to_xy(lx, ly);
-
- LCD_MESSAGEPGM("Done Editing Mesh");
- SERIAL_ECHOLNPGM("Done Editing Mesh");
- }
-
- //
- // The routine provides the 'Smart Fill' capability. It scans from the
- // outward edges of the mesh towards the center. If it finds an invalid
- // location, it uses the next two points (assumming they are valid) to
- // calculate a 'reasonable' value for the unprobed mesh point.
- //
- void smart_fill_mesh() {
- float f, diff;
- for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Bottom of the mesh looking up
- for (uint8_t y = 0; y < GRID_MAX_POINTS_Y-2; y++) {
- if (isnan(ubl.z_values[x][y])) {
- if (isnan(ubl.z_values[x][y+1])) // we only deal with the first NAN next to a block of
- continue; // good numbers. we want 2 good numbers to extrapolate off of.
- if (isnan(ubl.z_values[x][y+2]))
- continue;
- if (ubl.z_values[x][y+1] < ubl.z_values[x][y+2]) // The bed is angled down near this edge. So to be safe, we
- ubl.z_values[x][y] = ubl.z_values[x][y+1]; // use the closest value, which is probably a little too high
- else {
- diff = ubl.z_values[x][y+1] - ubl.z_values[x][y+2]; // The bed is angled up near this edge. So we will use the closest
- ubl.z_values[x][y] = ubl.z_values[x][y+1] + diff; // height and add in the difference between that and the next point
- }
- break;
- }
- }
- }
- for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Top of the mesh looking down
- for (uint8_t y=GRID_MAX_POINTS_Y-1; y>=1; y--) {
- if (isnan(ubl.z_values[x][y])) {
- if (isnan(ubl.z_values[x][y-1])) // we only deal with the first NAN next to a block of
- continue; // good numbers. we want 2 good numbers to extrapolate off of.
- if (isnan(ubl.z_values[x][y-2]))
- continue;
- if (ubl.z_values[x][y-1] < ubl.z_values[x][y-2]) // The bed is angled down near this edge. So to be safe, we
- ubl.z_values[x][y] = ubl.z_values[x][y-1]; // use the closest value, which is probably a little too high
- else {
- diff = ubl.z_values[x][y-1] - ubl.z_values[x][y-2]; // The bed is angled up near this edge. So we will use the closest
- ubl.z_values[x][y] = ubl.z_values[x][y-1] + diff; // height and add in the difference between that and the next point
- }
- break;
- }
- }
- }
- for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) {
- for (uint8_t x = 0; x < GRID_MAX_POINTS_X-2; x++) { // Left side of the mesh looking right
- if (isnan(ubl.z_values[x][y])) {
- if (isnan(ubl.z_values[x+1][y])) // we only deal with the first NAN next to a block of
- continue; // good numbers. we want 2 good numbers to extrapolate off of.
- if (isnan(ubl.z_values[x+2][y]))
- continue;
- if (ubl.z_values[x+1][y] < ubl.z_values[x+2][y]) // The bed is angled down near this edge. So to be safe, we
- ubl.z_values[x][y] = ubl.z_values[x][y+1]; // use the closest value, which is probably a little too high
- else {
- diff = ubl.z_values[x+1][y] - ubl.z_values[x+2][y]; // The bed is angled up near this edge. So we will use the closest
- ubl.z_values[x][y] = ubl.z_values[x+1][y] + diff; // height and add in the difference between that and the next point
- }
- break;
- }
- }
- }
- for (uint8_t y=0; y < GRID_MAX_POINTS_Y; y++) {
- for (uint8_t x=GRID_MAX_POINTS_X-1; x>=1; x--) { // Right side of the mesh looking left
- if (isnan(ubl.z_values[x][y])) {
- if (isnan(ubl.z_values[x-1][y])) // we only deal with the first NAN next to a block of
- continue; // good numbers. we want 2 good numbers to extrapolate off of.
- if (isnan(ubl.z_values[x-2][y]))
- continue;
- if (ubl.z_values[x-1][y] < ubl.z_values[x-2][y]) // The bed is angled down near this edge. So to be safe, we
- ubl.z_values[x][y] = ubl.z_values[x-1][y]; // use the closest value, which is probably a little too high
- else {
- diff = ubl.z_values[x-1][y] - ubl.z_values[x-2][y]; // The bed is angled up near this edge. So we will use the closest
- ubl.z_values[x][y] = ubl.z_values[x-1][y] + diff; // height and add in the difference between that and the next point
- }
- break;
- }
- }
- }
- }
-
-
- void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) {
- int8_t i, j ,k, xCount, yCount, xi, yi; // counter variables
- int8_t ix, iy, zig_zag=0, status;
-
- float dx, dy, x, y, measured_z, inv_z;
- struct linear_fit_data lsf_results;
- matrix_3x3 rotation;
- vector_3 normal;
-
- int16_t x_min = max((MIN_PROBE_X),(UBL_MESH_MIN_X)),
- x_max = min((MAX_PROBE_X),(UBL_MESH_MAX_X)),
- y_min = max((MIN_PROBE_Y),(UBL_MESH_MIN_Y)),
- y_max = min((MAX_PROBE_Y),(UBL_MESH_MAX_Y));
-
- dx = ((float)(x_max-x_min)) / (grid_size-1.0);
- dy = ((float)(y_max-y_min)) / (grid_size-1.0);
-
- incremental_LSF_reset(&lsf_results);
- for(ix=0; ix<grid_size; ix++) {
- x = ((float)x_min) + ix*dx;
- for(iy=0; iy<grid_size; iy++) {
- if (zig_zag)
- y = ((float)y_min) + (grid_size-iy-1)*dy;
- else
- y = ((float)y_min) + iy*dy;
- measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), code_seen('E'), g29_verbose_level);
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(LEVELING)) {
- SERIAL_ECHOPGM("(");
- SERIAL_PROTOCOL_F( x, 7);
- SERIAL_ECHOPGM(",");
- SERIAL_PROTOCOL_F( y, 7);
- SERIAL_ECHOPGM(") logical: ");
- SERIAL_ECHOPGM("(");
- SERIAL_PROTOCOL_F( LOGICAL_X_POSITION(x), 7);
- SERIAL_ECHOPGM(",");
- SERIAL_PROTOCOL_F( LOGICAL_X_POSITION(y), 7);
- SERIAL_ECHOPGM(") measured: ");
- SERIAL_PROTOCOL_F( measured_z, 7);
- SERIAL_ECHOPGM(" correction: ");
- SERIAL_PROTOCOL_F( ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)), 7);
- }
- #endif
- measured_z -= ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)) /* + zprobe_zoffset */ ;
-
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(LEVELING)) {
- SERIAL_ECHOPGM(" final >>>---> ");
- SERIAL_PROTOCOL_F( measured_z, 7);
- SERIAL_ECHOPGM("\n");
- }
- #endif
- incremental_LSF(&lsf_results, x, y, measured_z);
- }
-
- zig_zag = !zig_zag;
- }
-
- status = finish_incremental_LSF(&lsf_results);
- if (g29_verbose_level>3) {
- SERIAL_ECHOPGM("LSF Results A=");
- SERIAL_PROTOCOL_F( lsf_results.A, 7);
- SERIAL_ECHOPGM(" B=");
- SERIAL_PROTOCOL_F( lsf_results.B, 7);
- SERIAL_ECHOPGM(" D=");
- SERIAL_PROTOCOL_F( lsf_results.D, 7);
- SERIAL_CHAR('\n');
- }
-
- normal = vector_3( lsf_results.A, lsf_results.B, 1.0000);
- normal = normal.get_normal();
-
- if (g29_verbose_level>2) {
- SERIAL_ECHOPGM("bed plane normal = [");
- SERIAL_PROTOCOL_F( normal.x, 7);
- SERIAL_ECHOPGM(",");
- SERIAL_PROTOCOL_F( normal.y, 7);
- SERIAL_ECHOPGM(",");
- SERIAL_PROTOCOL_F( normal.z, 7);
- SERIAL_ECHOPGM("]\n");
- }
-
- rotation = matrix_3x3::create_look_at( vector_3( lsf_results.A, lsf_results.B, 1));
-
- for (i = 0; i < GRID_MAX_POINTS_X; i++) {
- for (j = 0; j < GRID_MAX_POINTS_Y; j++) {
- float x_tmp, y_tmp, z_tmp;
- x_tmp = pgm_read_float(&(ubl.mesh_index_to_xpos[i]));
- y_tmp = pgm_read_float(&(ubl.mesh_index_to_ypos[j]));
- z_tmp = ubl.z_values[i][j];
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(LEVELING)) {
- SERIAL_ECHOPGM("before rotation = [");
- SERIAL_PROTOCOL_F( x_tmp, 7);
- SERIAL_ECHOPGM(",");
- SERIAL_PROTOCOL_F( y_tmp, 7);
- SERIAL_ECHOPGM(",");
- SERIAL_PROTOCOL_F( z_tmp, 7);
- SERIAL_ECHOPGM("] ---> ");
- safe_delay(20);
- }
- #endif
- apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(LEVELING)) {
- SERIAL_ECHOPGM("after rotation = [");
- SERIAL_PROTOCOL_F( x_tmp, 7);
- SERIAL_ECHOPGM(",");
- SERIAL_PROTOCOL_F( y_tmp, 7);
- SERIAL_ECHOPGM(",");
- SERIAL_PROTOCOL_F( z_tmp, 7);
- SERIAL_ECHOPGM("]\n");
- safe_delay(55);
- }
-
- #endif
-
- ubl.z_values[i][j] += z_tmp - lsf_results.D;
- }
- }
-
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(LEVELING)) {
- rotation.debug("rotation matrix:");
- SERIAL_ECHOPGM("LSF Results A=");
- SERIAL_PROTOCOL_F( lsf_results.A, 7);
- SERIAL_ECHOPGM(" B=");
- SERIAL_PROTOCOL_F( lsf_results.B, 7);
- SERIAL_ECHOPGM(" D=");
- SERIAL_PROTOCOL_F( lsf_results.D, 7);
- SERIAL_CHAR('\n');
- safe_delay(55);
-
- SERIAL_ECHOPGM("bed plane normal = [");
- SERIAL_PROTOCOL_F( normal.x, 7);
- SERIAL_ECHOPGM(",");
- SERIAL_PROTOCOL_F( normal.y, 7);
- SERIAL_ECHOPGM(",");
- SERIAL_PROTOCOL_F( normal.z, 7);
- SERIAL_ECHOPGM("]\n");
- SERIAL_CHAR('\n');
- }
- #endif
- return;
- }
-
- #endif // AUTO_BED_LEVELING_UBL
|