My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

stepper.cpp 45KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  59. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  60. bool Stepper::abort_on_endstop_hit = false;
  61. #endif
  62. #if ENABLED(Z_DUAL_ENDSTOPS)
  63. bool Stepper::performing_homing = false;
  64. #endif
  65. // private:
  66. unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  67. unsigned int Stepper::cleaning_buffer_counter = 0;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. bool Stepper::locked_z_motor = false;
  70. bool Stepper::locked_z2_motor = false;
  71. #endif
  72. long Stepper::counter_X = 0,
  73. Stepper::counter_Y = 0,
  74. Stepper::counter_Z = 0,
  75. Stepper::counter_E = 0;
  76. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  78. constexpr uint16_t ADV_NEVER = 65535;
  79. uint16_t Stepper::nextMainISR = 0,
  80. Stepper::nextAdvanceISR = ADV_NEVER,
  81. Stepper::eISR_Rate = ADV_NEVER;
  82. #if ENABLED(LIN_ADVANCE)
  83. volatile int Stepper::e_steps[E_STEPPERS];
  84. int Stepper::final_estep_rate,
  85. Stepper::current_estep_rate[E_STEPPERS],
  86. Stepper::current_adv_steps[E_STEPPERS];
  87. #else
  88. long Stepper::e_steps[E_STEPPERS],
  89. Stepper::final_advance = 0,
  90. Stepper::old_advance = 0,
  91. Stepper::advance_rate,
  92. Stepper::advance;
  93. #endif
  94. #define ADV_RATE(T, L) (e_steps[TOOL_E_INDEX] ? (T) * (L) / abs(e_steps[TOOL_E_INDEX]) : ADV_NEVER)
  95. #endif
  96. long Stepper::acceleration_time, Stepper::deceleration_time;
  97. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  98. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  99. #if ENABLED(MIXING_EXTRUDER)
  100. long Stepper::counter_m[MIXING_STEPPERS];
  101. #endif
  102. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  103. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  104. unsigned short Stepper::OCR1A_nominal;
  105. volatile long Stepper::endstops_trigsteps[XYZ];
  106. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  107. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  108. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  109. #elif ENABLED(DUAL_X_CARRIAGE)
  110. #define X_APPLY_DIR(v,ALWAYS) \
  111. if (extruder_duplication_enabled || ALWAYS) { \
  112. X_DIR_WRITE(v); \
  113. X2_DIR_WRITE(v); \
  114. } \
  115. else { \
  116. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  117. }
  118. #define X_APPLY_STEP(v,ALWAYS) \
  119. if (extruder_duplication_enabled || ALWAYS) { \
  120. X_STEP_WRITE(v); \
  121. X2_STEP_WRITE(v); \
  122. } \
  123. else { \
  124. if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  125. }
  126. #else
  127. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  128. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  129. #endif
  130. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  131. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  132. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  133. #else
  134. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  135. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  136. #endif
  137. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  138. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  139. #if ENABLED(Z_DUAL_ENDSTOPS)
  140. #define Z_APPLY_STEP(v,Q) \
  141. if (performing_homing) { \
  142. if (Z_HOME_DIR < 0) { \
  143. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  144. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  145. } \
  146. else { \
  147. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  148. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  149. } \
  150. } \
  151. else { \
  152. Z_STEP_WRITE(v); \
  153. Z2_STEP_WRITE(v); \
  154. }
  155. #else
  156. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  157. #endif
  158. #else
  159. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  160. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  161. #endif
  162. #if DISABLED(MIXING_EXTRUDER)
  163. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  164. #endif
  165. // intRes = longIn1 * longIn2 >> 24
  166. // uses:
  167. // r26 to store 0
  168. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  169. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  170. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  171. // B0 A0 are bits 24-39 and are the returned value
  172. // C1 B1 A1 is longIn1
  173. // D2 C2 B2 A2 is longIn2
  174. //
  175. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  176. asm volatile ( \
  177. "clr r26 \n\t" \
  178. "mul %A1, %B2 \n\t" \
  179. "mov r27, r1 \n\t" \
  180. "mul %B1, %C2 \n\t" \
  181. "movw %A0, r0 \n\t" \
  182. "mul %C1, %C2 \n\t" \
  183. "add %B0, r0 \n\t" \
  184. "mul %C1, %B2 \n\t" \
  185. "add %A0, r0 \n\t" \
  186. "adc %B0, r1 \n\t" \
  187. "mul %A1, %C2 \n\t" \
  188. "add r27, r0 \n\t" \
  189. "adc %A0, r1 \n\t" \
  190. "adc %B0, r26 \n\t" \
  191. "mul %B1, %B2 \n\t" \
  192. "add r27, r0 \n\t" \
  193. "adc %A0, r1 \n\t" \
  194. "adc %B0, r26 \n\t" \
  195. "mul %C1, %A2 \n\t" \
  196. "add r27, r0 \n\t" \
  197. "adc %A0, r1 \n\t" \
  198. "adc %B0, r26 \n\t" \
  199. "mul %B1, %A2 \n\t" \
  200. "add r27, r1 \n\t" \
  201. "adc %A0, r26 \n\t" \
  202. "adc %B0, r26 \n\t" \
  203. "lsr r27 \n\t" \
  204. "adc %A0, r26 \n\t" \
  205. "adc %B0, r26 \n\t" \
  206. "mul %D2, %A1 \n\t" \
  207. "add %A0, r0 \n\t" \
  208. "adc %B0, r1 \n\t" \
  209. "mul %D2, %B1 \n\t" \
  210. "add %B0, r0 \n\t" \
  211. "clr r1 \n\t" \
  212. : \
  213. "=&r" (intRes) \
  214. : \
  215. "d" (longIn1), \
  216. "d" (longIn2) \
  217. : \
  218. "r26" , "r27" \
  219. )
  220. // Some useful constants
  221. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  222. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  223. /**
  224. * __________________________
  225. * /| |\ _________________ ^
  226. * / | | \ /| |\ |
  227. * / | | \ / | | \ s
  228. * / | | | | | \ p
  229. * / | | | | | \ e
  230. * +-----+------------------------+---+--+---------------+----+ e
  231. * | BLOCK 1 | BLOCK 2 | d
  232. *
  233. * time ----->
  234. *
  235. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  236. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  237. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  238. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  239. */
  240. void Stepper::wake_up() {
  241. // TCNT1 = 0;
  242. ENABLE_STEPPER_DRIVER_INTERRUPT();
  243. }
  244. /**
  245. * Set the stepper direction of each axis
  246. *
  247. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  248. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  249. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  250. */
  251. void Stepper::set_directions() {
  252. #define SET_STEP_DIR(AXIS) \
  253. if (motor_direction(AXIS ##_AXIS)) { \
  254. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  255. count_direction[AXIS ##_AXIS] = -1; \
  256. } \
  257. else { \
  258. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  259. count_direction[AXIS ##_AXIS] = 1; \
  260. }
  261. #if HAS_X_DIR
  262. SET_STEP_DIR(X); // A
  263. #endif
  264. #if HAS_Y_DIR
  265. SET_STEP_DIR(Y); // B
  266. #endif
  267. #if HAS_Z_DIR
  268. SET_STEP_DIR(Z); // C
  269. #endif
  270. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  271. if (motor_direction(E_AXIS)) {
  272. REV_E_DIR();
  273. count_direction[E_AXIS] = -1;
  274. }
  275. else {
  276. NORM_E_DIR();
  277. count_direction[E_AXIS] = 1;
  278. }
  279. #endif // !ADVANCE && !LIN_ADVANCE
  280. }
  281. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  282. extern volatile uint8_t e_hit;
  283. #endif
  284. /**
  285. * Stepper Driver Interrupt
  286. *
  287. * Directly pulses the stepper motors at high frequency.
  288. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  289. *
  290. * OCR1A Frequency
  291. * 1 2 MHz
  292. * 50 40 KHz
  293. * 100 20 KHz - capped max rate
  294. * 200 10 KHz - nominal max rate
  295. * 2000 1 KHz - sleep rate
  296. * 4000 500 Hz - init rate
  297. */
  298. ISR(TIMER1_COMPA_vect) {
  299. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  300. Stepper::advance_isr_scheduler();
  301. #else
  302. Stepper::isr();
  303. #endif
  304. }
  305. #define _ENABLE_ISRs() do { cli(); if (thermalManager.in_temp_isr) CBI(TIMSK0, OCIE0B); else SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0)
  306. void Stepper::isr() {
  307. uint16_t ocr_val;
  308. #define ENDSTOP_NOMINAL_OCR_VAL 3000 // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
  309. #define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
  310. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  311. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  312. CBI(TIMSK0, OCIE0B); // Temperature ISR
  313. DISABLE_STEPPER_DRIVER_INTERRUPT();
  314. sei();
  315. #endif
  316. #define _SPLIT(L) (ocr_val = (uint16_t)L)
  317. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  318. #define SPLIT(L) _SPLIT(L)
  319. #else // sample endstops in between step pulses
  320. static uint32_t step_remaining = 0;
  321. #define SPLIT(L) do { \
  322. _SPLIT(L); \
  323. if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \
  324. const uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
  325. ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
  326. step_remaining = (uint16_t)L - ocr_val; \
  327. } \
  328. } while(0)
  329. if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step
  330. endstops.update();
  331. if (step_remaining > ENDSTOP_NOMINAL_OCR_VAL) {
  332. step_remaining -= ENDSTOP_NOMINAL_OCR_VAL;
  333. ocr_val = ENDSTOP_NOMINAL_OCR_VAL;
  334. }
  335. else {
  336. ocr_val = step_remaining;
  337. step_remaining = 0; // last one before the ISR that does the step
  338. }
  339. _NEXT_ISR(ocr_val);
  340. NOLESS(OCR1A, TCNT1 + 16);
  341. _ENABLE_ISRs(); // re-enable ISRs
  342. return;
  343. }
  344. #endif
  345. if (cleaning_buffer_counter) {
  346. --cleaning_buffer_counter;
  347. current_block = NULL;
  348. planner.discard_current_block();
  349. #ifdef SD_FINISHED_RELEASECOMMAND
  350. if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  351. #endif
  352. _NEXT_ISR(200); // Run at max speed - 10 KHz
  353. _ENABLE_ISRs(); // re-enable ISRs
  354. return;
  355. }
  356. // If there is no current block, attempt to pop one from the buffer
  357. if (!current_block) {
  358. // Anything in the buffer?
  359. current_block = planner.get_current_block();
  360. if (current_block) {
  361. trapezoid_generator_reset();
  362. // Initialize Bresenham counters to 1/2 the ceiling
  363. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  364. #if ENABLED(MIXING_EXTRUDER)
  365. MIXING_STEPPERS_LOOP(i)
  366. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  367. #endif
  368. step_events_completed = 0;
  369. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  370. e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
  371. // No 'change' can be detected.
  372. #endif
  373. #if ENABLED(Z_LATE_ENABLE)
  374. if (current_block->steps[Z_AXIS] > 0) {
  375. enable_Z();
  376. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  377. _ENABLE_ISRs(); // re-enable ISRs
  378. return;
  379. }
  380. #endif
  381. // #if ENABLED(ADVANCE)
  382. // e_steps[TOOL_E_INDEX] = 0;
  383. // #endif
  384. }
  385. else {
  386. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  387. _ENABLE_ISRs(); // re-enable ISRs
  388. return;
  389. }
  390. }
  391. // Update endstops state, if enabled
  392. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  393. if (e_hit && ENDSTOPS_ENABLED) {
  394. endstops.update();
  395. e_hit--;
  396. }
  397. #else
  398. if (ENDSTOPS_ENABLED) endstops.update();
  399. #endif
  400. // Take multiple steps per interrupt (For high speed moves)
  401. bool all_steps_done = false;
  402. for (uint8_t i = step_loops; i--;) {
  403. #if ENABLED(LIN_ADVANCE)
  404. counter_E += current_block->steps[E_AXIS];
  405. if (counter_E > 0) {
  406. counter_E -= current_block->step_event_count;
  407. #if DISABLED(MIXING_EXTRUDER)
  408. // Don't step E here for mixing extruder
  409. count_position[E_AXIS] += count_direction[E_AXIS];
  410. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  411. #endif
  412. }
  413. #if ENABLED(MIXING_EXTRUDER)
  414. // Step mixing steppers proportionally
  415. const bool dir = motor_direction(E_AXIS);
  416. MIXING_STEPPERS_LOOP(j) {
  417. counter_m[j] += current_block->steps[E_AXIS];
  418. if (counter_m[j] > 0) {
  419. counter_m[j] -= current_block->mix_event_count[j];
  420. dir ? --e_steps[j] : ++e_steps[j];
  421. }
  422. }
  423. #endif
  424. #elif ENABLED(ADVANCE)
  425. // Always count the unified E axis
  426. counter_E += current_block->steps[E_AXIS];
  427. if (counter_E > 0) {
  428. counter_E -= current_block->step_event_count;
  429. #if DISABLED(MIXING_EXTRUDER)
  430. // Don't step E here for mixing extruder
  431. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  432. #endif
  433. }
  434. #if ENABLED(MIXING_EXTRUDER)
  435. // Step mixing steppers proportionally
  436. const bool dir = motor_direction(E_AXIS);
  437. MIXING_STEPPERS_LOOP(j) {
  438. counter_m[j] += current_block->steps[E_AXIS];
  439. if (counter_m[j] > 0) {
  440. counter_m[j] -= current_block->mix_event_count[j];
  441. dir ? --e_steps[j] : ++e_steps[j];
  442. }
  443. }
  444. #endif // MIXING_EXTRUDER
  445. #endif // ADVANCE or LIN_ADVANCE
  446. #define _COUNTER(AXIS) counter_## AXIS
  447. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  448. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  449. // Advance the Bresenham counter; start a pulse if the axis needs a step
  450. #define PULSE_START(AXIS) \
  451. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  452. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  453. // Stop an active pulse, reset the Bresenham counter, update the position
  454. #define PULSE_STOP(AXIS) \
  455. if (_COUNTER(AXIS) > 0) { \
  456. _COUNTER(AXIS) -= current_block->step_event_count; \
  457. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  458. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  459. }
  460. #if HAS_X_STEP
  461. #define _COUNT_STEPPERS_1 1
  462. #else
  463. #define _COUNT_STEPPERS_1 0
  464. #endif
  465. #if HAS_Y_STEP
  466. #define _COUNT_STEPPERS_2 _COUNT_STEPPERS_1 + 1
  467. #else
  468. #define _COUNT_STEPPERS_2 _COUNT_STEPPERS_1
  469. #endif
  470. #if HAS_Z_STEP
  471. #define _COUNT_STEPPERS_3 _COUNT_STEPPERS_2 + 1
  472. #else
  473. #define _COUNT_STEPPERS_3 _COUNT_STEPPERS_2
  474. #endif
  475. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  476. #define _COUNT_STEPPERS_4 _COUNT_STEPPERS_3 + 1
  477. #else
  478. #define _COUNT_STEPPERS_4 _COUNT_STEPPERS_3
  479. #endif
  480. #define CYCLES_EATEN_XYZE ((_COUNT_STEPPERS_4) * 5)
  481. #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
  482. // If a minimum pulse time was specified get the timer 0 value
  483. // which increments every 4µs on 16MHz and every 3.2µs on 20MHz.
  484. // Two or 3 counts of TCNT0 should be a sufficient delay.
  485. #if EXTRA_CYCLES_XYZE > 20
  486. uint32_t pulse_start = TCNT0;
  487. #endif
  488. #if HAS_X_STEP
  489. PULSE_START(X);
  490. #endif
  491. #if HAS_Y_STEP
  492. PULSE_START(Y);
  493. #endif
  494. #if HAS_Z_STEP
  495. PULSE_START(Z);
  496. #endif
  497. // For non-advance use linear interpolation for E also
  498. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  499. #if ENABLED(MIXING_EXTRUDER)
  500. // Keep updating the single E axis
  501. counter_E += current_block->steps[E_AXIS];
  502. // Tick the counters used for this mix
  503. MIXING_STEPPERS_LOOP(j) {
  504. // Step mixing steppers (proportionally)
  505. counter_m[j] += current_block->steps[E_AXIS];
  506. // Step when the counter goes over zero
  507. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  508. }
  509. #else // !MIXING_EXTRUDER
  510. PULSE_START(E);
  511. #endif
  512. #endif // !ADVANCE && !LIN_ADVANCE
  513. // For minimum pulse time wait before stopping pulses
  514. #if EXTRA_CYCLES_XYZE > 20
  515. while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  516. pulse_start = TCNT0;
  517. #elif EXTRA_CYCLES_XYZE > 0
  518. DELAY_NOPS(EXTRA_CYCLES_XYZE);
  519. #endif
  520. #if HAS_X_STEP
  521. PULSE_STOP(X);
  522. #endif
  523. #if HAS_Y_STEP
  524. PULSE_STOP(Y);
  525. #endif
  526. #if HAS_Z_STEP
  527. PULSE_STOP(Z);
  528. #endif
  529. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  530. #if ENABLED(MIXING_EXTRUDER)
  531. // Always step the single E axis
  532. if (counter_E > 0) {
  533. counter_E -= current_block->step_event_count;
  534. count_position[E_AXIS] += count_direction[E_AXIS];
  535. }
  536. MIXING_STEPPERS_LOOP(j) {
  537. if (counter_m[j] > 0) {
  538. counter_m[j] -= current_block->mix_event_count[j];
  539. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  540. }
  541. }
  542. #else // !MIXING_EXTRUDER
  543. PULSE_STOP(E);
  544. #endif
  545. #endif // !ADVANCE && !LIN_ADVANCE
  546. if (++step_events_completed >= current_block->step_event_count) {
  547. all_steps_done = true;
  548. break;
  549. }
  550. // For minimum pulse time wait before stopping pulses
  551. #if EXTRA_CYCLES_XYZE > 20
  552. if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  553. #elif EXTRA_CYCLES_XYZE > 0
  554. if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE);
  555. #endif
  556. } // steps_loop
  557. #if ENABLED(LIN_ADVANCE)
  558. if (current_block->use_advance_lead) {
  559. const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  560. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  561. #if ENABLED(MIXING_EXTRUDER)
  562. // Mixing extruders apply advance lead proportionally
  563. MIXING_STEPPERS_LOOP(j)
  564. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  565. #else
  566. // For most extruders, advance the single E stepper
  567. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  568. #endif
  569. }
  570. #endif
  571. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  572. // If we have esteps to execute, fire the next advance_isr "now"
  573. if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
  574. #endif
  575. // Calculate new timer value
  576. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  577. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  578. acc_step_rate += current_block->initial_rate;
  579. // upper limit
  580. NOMORE(acc_step_rate, current_block->nominal_rate);
  581. // step_rate to timer interval
  582. const uint16_t timer = calc_timer(acc_step_rate);
  583. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  584. _NEXT_ISR(ocr_val);
  585. acceleration_time += timer;
  586. #if ENABLED(LIN_ADVANCE)
  587. if (current_block->use_advance_lead) {
  588. #if ENABLED(MIXING_EXTRUDER)
  589. MIXING_STEPPERS_LOOP(j)
  590. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  591. #else
  592. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  593. #endif
  594. }
  595. #elif ENABLED(ADVANCE)
  596. advance += advance_rate * step_loops;
  597. //NOLESS(advance, current_block->advance);
  598. const long advance_whole = advance >> 8,
  599. advance_factor = advance_whole - old_advance;
  600. // Do E steps + advance steps
  601. #if ENABLED(MIXING_EXTRUDER)
  602. // ...for mixing steppers proportionally
  603. MIXING_STEPPERS_LOOP(j)
  604. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  605. #else
  606. // ...for the active extruder
  607. e_steps[TOOL_E_INDEX] += advance_factor;
  608. #endif
  609. old_advance = advance_whole;
  610. #endif // ADVANCE or LIN_ADVANCE
  611. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  612. eISR_Rate = ADV_RATE(timer, step_loops);
  613. #endif
  614. }
  615. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  616. uint16_t step_rate;
  617. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  618. if (step_rate < acc_step_rate) { // Still decelerating?
  619. step_rate = acc_step_rate - step_rate;
  620. NOLESS(step_rate, current_block->final_rate);
  621. }
  622. else
  623. step_rate = current_block->final_rate;
  624. // step_rate to timer interval
  625. const uint16_t timer = calc_timer(step_rate);
  626. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  627. _NEXT_ISR(ocr_val);
  628. deceleration_time += timer;
  629. #if ENABLED(LIN_ADVANCE)
  630. if (current_block->use_advance_lead) {
  631. #if ENABLED(MIXING_EXTRUDER)
  632. MIXING_STEPPERS_LOOP(j)
  633. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  634. #else
  635. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  636. #endif
  637. }
  638. #elif ENABLED(ADVANCE)
  639. advance -= advance_rate * step_loops;
  640. NOLESS(advance, final_advance);
  641. // Do E steps + advance steps
  642. const long advance_whole = advance >> 8,
  643. advance_factor = advance_whole - old_advance;
  644. #if ENABLED(MIXING_EXTRUDER)
  645. MIXING_STEPPERS_LOOP(j)
  646. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  647. #else
  648. e_steps[TOOL_E_INDEX] += advance_factor;
  649. #endif
  650. old_advance = advance_whole;
  651. #endif // ADVANCE or LIN_ADVANCE
  652. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  653. eISR_Rate = ADV_RATE(timer, step_loops);
  654. #endif
  655. }
  656. else {
  657. #if ENABLED(LIN_ADVANCE)
  658. if (current_block->use_advance_lead)
  659. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  660. eISR_Rate = ADV_RATE(OCR1A_nominal, step_loops_nominal);
  661. #endif
  662. SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  663. _NEXT_ISR(ocr_val);
  664. // ensure we're running at the correct step rate, even if we just came off an acceleration
  665. step_loops = step_loops_nominal;
  666. }
  667. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  668. NOLESS(OCR1A, TCNT1 + 16);
  669. #endif
  670. // If current block is finished, reset pointer
  671. if (all_steps_done) {
  672. current_block = NULL;
  673. planner.discard_current_block();
  674. }
  675. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  676. _ENABLE_ISRs(); // re-enable ISRs
  677. #endif
  678. }
  679. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  680. #define CYCLES_EATEN_E (E_STEPPERS * 5)
  681. #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
  682. // Timer interrupt for E. e_steps is set in the main routine;
  683. void Stepper::advance_isr() {
  684. nextAdvanceISR = eISR_Rate;
  685. #define SET_E_STEP_DIR(INDEX) \
  686. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  687. #define START_E_PULSE(INDEX) \
  688. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  689. #define STOP_E_PULSE(INDEX) \
  690. if (e_steps[INDEX]) { \
  691. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  692. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  693. }
  694. SET_E_STEP_DIR(0);
  695. #if E_STEPPERS > 1
  696. SET_E_STEP_DIR(1);
  697. #if E_STEPPERS > 2
  698. SET_E_STEP_DIR(2);
  699. #if E_STEPPERS > 3
  700. SET_E_STEP_DIR(3);
  701. #endif
  702. #endif
  703. #endif
  704. // Step all E steppers that have steps
  705. for (uint8_t i = step_loops; i--;) {
  706. #if EXTRA_CYCLES_E > 20
  707. uint32_t pulse_start = TCNT0;
  708. #endif
  709. START_E_PULSE(0);
  710. #if E_STEPPERS > 1
  711. START_E_PULSE(1);
  712. #if E_STEPPERS > 2
  713. START_E_PULSE(2);
  714. #if E_STEPPERS > 3
  715. START_E_PULSE(3);
  716. #endif
  717. #endif
  718. #endif
  719. // For minimum pulse time wait before stopping pulses
  720. #if EXTRA_CYCLES_E > 20
  721. while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  722. pulse_start = TCNT0;
  723. #elif EXTRA_CYCLES_E > 0
  724. DELAY_NOPS(EXTRA_CYCLES_E);
  725. #endif
  726. STOP_E_PULSE(0);
  727. #if E_STEPPERS > 1
  728. STOP_E_PULSE(1);
  729. #if E_STEPPERS > 2
  730. STOP_E_PULSE(2);
  731. #if E_STEPPERS > 3
  732. STOP_E_PULSE(3);
  733. #endif
  734. #endif
  735. #endif
  736. // For minimum pulse time wait before looping
  737. #if EXTRA_CYCLES_E > 20
  738. if (i) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  739. #elif EXTRA_CYCLES_E > 0
  740. if (i) DELAY_NOPS(EXTRA_CYCLES_E);
  741. #endif
  742. } // steps_loop
  743. }
  744. void Stepper::advance_isr_scheduler() {
  745. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  746. CBI(TIMSK0, OCIE0B); // Temperature ISR
  747. DISABLE_STEPPER_DRIVER_INTERRUPT();
  748. sei();
  749. // Run main stepping ISR if flagged
  750. if (!nextMainISR) isr();
  751. // Run Advance stepping ISR if flagged
  752. if (!nextAdvanceISR) advance_isr();
  753. // Is the next advance ISR scheduled before the next main ISR?
  754. if (nextAdvanceISR <= nextMainISR) {
  755. // Set up the next interrupt
  756. OCR1A = nextAdvanceISR;
  757. // New interval for the next main ISR
  758. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  759. // Will call Stepper::advance_isr on the next interrupt
  760. nextAdvanceISR = 0;
  761. }
  762. else {
  763. // The next main ISR comes first
  764. OCR1A = nextMainISR;
  765. // New interval for the next advance ISR, if any
  766. if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  767. nextAdvanceISR -= nextMainISR;
  768. // Will call Stepper::isr on the next interrupt
  769. nextMainISR = 0;
  770. }
  771. // Don't run the ISR faster than possible
  772. NOLESS(OCR1A, TCNT1 + 16);
  773. // Restore original ISR settings
  774. _ENABLE_ISRs();
  775. }
  776. #endif // ADVANCE or LIN_ADVANCE
  777. void Stepper::init() {
  778. // Init Digipot Motor Current
  779. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  780. digipot_init();
  781. #endif
  782. // Init Microstepping Pins
  783. #if HAS_MICROSTEPS
  784. microstep_init();
  785. #endif
  786. // Init TMC Steppers
  787. #if ENABLED(HAVE_TMCDRIVER)
  788. tmc_init();
  789. #endif
  790. // Init TMC2130 Steppers
  791. #if ENABLED(HAVE_TMC2130)
  792. tmc2130_init();
  793. #endif
  794. // Init L6470 Steppers
  795. #if ENABLED(HAVE_L6470DRIVER)
  796. L6470_init();
  797. #endif
  798. // Init Dir Pins
  799. #if HAS_X_DIR
  800. X_DIR_INIT;
  801. #endif
  802. #if HAS_X2_DIR
  803. X2_DIR_INIT;
  804. #endif
  805. #if HAS_Y_DIR
  806. Y_DIR_INIT;
  807. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  808. Y2_DIR_INIT;
  809. #endif
  810. #endif
  811. #if HAS_Z_DIR
  812. Z_DIR_INIT;
  813. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  814. Z2_DIR_INIT;
  815. #endif
  816. #endif
  817. #if HAS_E0_DIR
  818. E0_DIR_INIT;
  819. #endif
  820. #if HAS_E1_DIR
  821. E1_DIR_INIT;
  822. #endif
  823. #if HAS_E2_DIR
  824. E2_DIR_INIT;
  825. #endif
  826. #if HAS_E3_DIR
  827. E3_DIR_INIT;
  828. #endif
  829. #if HAS_E4_DIR
  830. E4_DIR_INIT;
  831. #endif
  832. // Init Enable Pins - steppers default to disabled.
  833. #if HAS_X_ENABLE
  834. X_ENABLE_INIT;
  835. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  836. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  837. X2_ENABLE_INIT;
  838. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  839. #endif
  840. #endif
  841. #if HAS_Y_ENABLE
  842. Y_ENABLE_INIT;
  843. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  844. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  845. Y2_ENABLE_INIT;
  846. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  847. #endif
  848. #endif
  849. #if HAS_Z_ENABLE
  850. Z_ENABLE_INIT;
  851. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  852. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  853. Z2_ENABLE_INIT;
  854. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  855. #endif
  856. #endif
  857. #if HAS_E0_ENABLE
  858. E0_ENABLE_INIT;
  859. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  860. #endif
  861. #if HAS_E1_ENABLE
  862. E1_ENABLE_INIT;
  863. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  864. #endif
  865. #if HAS_E2_ENABLE
  866. E2_ENABLE_INIT;
  867. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  868. #endif
  869. #if HAS_E3_ENABLE
  870. E3_ENABLE_INIT;
  871. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  872. #endif
  873. #if HAS_E4_ENABLE
  874. E4_ENABLE_INIT;
  875. if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
  876. #endif
  877. // Init endstops and pullups
  878. endstops.init();
  879. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  880. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  881. #define _DISABLE(AXIS) disable_## AXIS()
  882. #define AXIS_INIT(AXIS, PIN) \
  883. _STEP_INIT(AXIS); \
  884. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  885. _DISABLE(AXIS)
  886. #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
  887. // Init Step Pins
  888. #if HAS_X_STEP
  889. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  890. X2_STEP_INIT;
  891. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  892. #endif
  893. AXIS_INIT(X, X);
  894. #endif
  895. #if HAS_Y_STEP
  896. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  897. Y2_STEP_INIT;
  898. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  899. #endif
  900. AXIS_INIT(Y, Y);
  901. #endif
  902. #if HAS_Z_STEP
  903. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  904. Z2_STEP_INIT;
  905. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  906. #endif
  907. AXIS_INIT(Z, Z);
  908. #endif
  909. #if HAS_E0_STEP
  910. E_AXIS_INIT(0);
  911. #endif
  912. #if HAS_E1_STEP
  913. E_AXIS_INIT(1);
  914. #endif
  915. #if HAS_E2_STEP
  916. E_AXIS_INIT(2);
  917. #endif
  918. #if HAS_E3_STEP
  919. E_AXIS_INIT(3);
  920. #endif
  921. // waveform generation = 0100 = CTC
  922. CBI(TCCR1B, WGM13);
  923. SBI(TCCR1B, WGM12);
  924. CBI(TCCR1A, WGM11);
  925. CBI(TCCR1A, WGM10);
  926. // output mode = 00 (disconnected)
  927. TCCR1A &= ~(3 << COM1A0);
  928. TCCR1A &= ~(3 << COM1B0);
  929. // Set the timer pre-scaler
  930. // Generally we use a divider of 8, resulting in a 2MHz timer
  931. // frequency on a 16MHz MCU. If you are going to change this, be
  932. // sure to regenerate speed_lookuptable.h with
  933. // create_speed_lookuptable.py
  934. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  935. // Init Stepper ISR to 122 Hz for quick starting
  936. OCR1A = 0x4000;
  937. TCNT1 = 0;
  938. ENABLE_STEPPER_DRIVER_INTERRUPT();
  939. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  940. ZERO(e_steps);
  941. #if ENABLED(LIN_ADVANCE)
  942. ZERO(current_adv_steps);
  943. #endif
  944. #endif // ADVANCE || LIN_ADVANCE
  945. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  946. sei();
  947. set_directions(); // Init directions to last_direction_bits = 0
  948. }
  949. /**
  950. * Block until all buffered steps are executed
  951. */
  952. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  953. /**
  954. * Set the stepper positions directly in steps
  955. *
  956. * The input is based on the typical per-axis XYZ steps.
  957. * For CORE machines XYZ needs to be translated to ABC.
  958. *
  959. * This allows get_axis_position_mm to correctly
  960. * derive the current XYZ position later on.
  961. */
  962. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  963. synchronize(); // Bad to set stepper counts in the middle of a move
  964. CRITICAL_SECTION_START;
  965. #if CORE_IS_XY
  966. // corexy positioning
  967. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  968. count_position[A_AXIS] = a + b;
  969. count_position[B_AXIS] = CORESIGN(a - b);
  970. count_position[Z_AXIS] = c;
  971. #elif CORE_IS_XZ
  972. // corexz planning
  973. count_position[A_AXIS] = a + c;
  974. count_position[Y_AXIS] = b;
  975. count_position[C_AXIS] = CORESIGN(a - c);
  976. #elif CORE_IS_YZ
  977. // coreyz planning
  978. count_position[X_AXIS] = a;
  979. count_position[B_AXIS] = b + c;
  980. count_position[C_AXIS] = CORESIGN(b - c);
  981. #else
  982. // default non-h-bot planning
  983. count_position[X_AXIS] = a;
  984. count_position[Y_AXIS] = b;
  985. count_position[Z_AXIS] = c;
  986. #endif
  987. count_position[E_AXIS] = e;
  988. CRITICAL_SECTION_END;
  989. }
  990. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  991. CRITICAL_SECTION_START;
  992. count_position[axis] = v;
  993. CRITICAL_SECTION_END;
  994. }
  995. void Stepper::set_e_position(const long &e) {
  996. CRITICAL_SECTION_START;
  997. count_position[E_AXIS] = e;
  998. CRITICAL_SECTION_END;
  999. }
  1000. /**
  1001. * Get a stepper's position in steps.
  1002. */
  1003. long Stepper::position(AxisEnum axis) {
  1004. CRITICAL_SECTION_START;
  1005. const long count_pos = count_position[axis];
  1006. CRITICAL_SECTION_END;
  1007. return count_pos;
  1008. }
  1009. /**
  1010. * Get an axis position according to stepper position(s)
  1011. * For CORE machines apply translation from ABC to XYZ.
  1012. */
  1013. float Stepper::get_axis_position_mm(AxisEnum axis) {
  1014. float axis_steps;
  1015. #if IS_CORE
  1016. // Requesting one of the "core" axes?
  1017. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  1018. CRITICAL_SECTION_START;
  1019. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  1020. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  1021. axis_steps = 0.5f * (
  1022. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1023. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1024. );
  1025. CRITICAL_SECTION_END;
  1026. }
  1027. else
  1028. axis_steps = position(axis);
  1029. #else
  1030. axis_steps = position(axis);
  1031. #endif
  1032. return axis_steps * planner.steps_to_mm[axis];
  1033. }
  1034. void Stepper::finish_and_disable() {
  1035. synchronize();
  1036. disable_all_steppers();
  1037. }
  1038. void Stepper::quick_stop() {
  1039. cleaning_buffer_counter = 5000;
  1040. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1041. while (planner.blocks_queued()) planner.discard_current_block();
  1042. current_block = NULL;
  1043. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1044. #if ENABLED(ULTRA_LCD)
  1045. planner.clear_block_buffer_runtime();
  1046. #endif
  1047. }
  1048. void Stepper::endstop_triggered(AxisEnum axis) {
  1049. #if IS_CORE
  1050. endstops_trigsteps[axis] = 0.5f * (
  1051. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1052. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1053. );
  1054. #else // !COREXY && !COREXZ && !COREYZ
  1055. endstops_trigsteps[axis] = count_position[axis];
  1056. #endif // !COREXY && !COREXZ && !COREYZ
  1057. kill_current_block();
  1058. }
  1059. void Stepper::report_positions() {
  1060. CRITICAL_SECTION_START;
  1061. const long xpos = count_position[X_AXIS],
  1062. ypos = count_position[Y_AXIS],
  1063. zpos = count_position[Z_AXIS];
  1064. CRITICAL_SECTION_END;
  1065. #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
  1066. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  1067. #else
  1068. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1069. #endif
  1070. SERIAL_PROTOCOL(xpos);
  1071. #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
  1072. SERIAL_PROTOCOLPGM(" B:");
  1073. #else
  1074. SERIAL_PROTOCOLPGM(" Y:");
  1075. #endif
  1076. SERIAL_PROTOCOL(ypos);
  1077. #if CORE_IS_XZ || CORE_IS_YZ
  1078. SERIAL_PROTOCOLPGM(" C:");
  1079. #else
  1080. SERIAL_PROTOCOLPGM(" Z:");
  1081. #endif
  1082. SERIAL_PROTOCOL(zpos);
  1083. SERIAL_EOL;
  1084. }
  1085. #if ENABLED(BABYSTEPPING)
  1086. #if ENABLED(DELTA)
  1087. #define CYCLES_EATEN_BABYSTEP (2 * 15)
  1088. #else
  1089. #define CYCLES_EATEN_BABYSTEP 0
  1090. #endif
  1091. #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
  1092. #define _ENABLE(AXIS) enable_## AXIS()
  1093. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1094. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1095. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1096. #if EXTRA_CYCLES_BABYSTEP > 20
  1097. #define _SAVE_START const uint32_t pulse_start = TCNT0
  1098. #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  1099. #else
  1100. #define _SAVE_START NOOP
  1101. #if EXTRA_CYCLES_BABYSTEP > 0
  1102. #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
  1103. #elif STEP_PULSE_CYCLES > 0
  1104. #define _PULSE_WAIT NOOP
  1105. #elif ENABLED(DELTA)
  1106. #define _PULSE_WAIT delayMicroseconds(2);
  1107. #else
  1108. #define _PULSE_WAIT delayMicroseconds(4);
  1109. #endif
  1110. #endif
  1111. #define BABYSTEP_AXIS(AXIS, INVERT) { \
  1112. const uint8_t old_dir = _READ_DIR(AXIS); \
  1113. _ENABLE(AXIS); \
  1114. _SAVE_START; \
  1115. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1116. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1117. _PULSE_WAIT; \
  1118. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1119. _APPLY_DIR(AXIS, old_dir); \
  1120. }
  1121. // MUST ONLY BE CALLED BY AN ISR,
  1122. // No other ISR should ever interrupt this!
  1123. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  1124. cli();
  1125. uint8_t old_dir;
  1126. switch (axis) {
  1127. #if ENABLED(BABYSTEP_XY)
  1128. case X_AXIS:
  1129. BABYSTEP_AXIS(X, false);
  1130. break;
  1131. case Y_AXIS:
  1132. BABYSTEP_AXIS(Y, false);
  1133. break;
  1134. #endif
  1135. case Z_AXIS: {
  1136. #if DISABLED(DELTA)
  1137. BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z);
  1138. #else // DELTA
  1139. const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1140. enable_X();
  1141. enable_Y();
  1142. enable_Z();
  1143. const uint8_t old_x_dir_pin = X_DIR_READ,
  1144. old_y_dir_pin = Y_DIR_READ,
  1145. old_z_dir_pin = Z_DIR_READ;
  1146. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1147. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1148. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1149. _SAVE_START;
  1150. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1151. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1152. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1153. _PULSE_WAIT;
  1154. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1155. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1156. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1157. // Restore direction bits
  1158. X_DIR_WRITE(old_x_dir_pin);
  1159. Y_DIR_WRITE(old_y_dir_pin);
  1160. Z_DIR_WRITE(old_z_dir_pin);
  1161. #endif
  1162. } break;
  1163. default: break;
  1164. }
  1165. sei();
  1166. }
  1167. #endif // BABYSTEPPING
  1168. /**
  1169. * Software-controlled Stepper Motor Current
  1170. */
  1171. #if HAS_DIGIPOTSS
  1172. // From Arduino DigitalPotControl example
  1173. void Stepper::digitalPotWrite(int address, int value) {
  1174. WRITE(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  1175. SPI.transfer(address); // send in the address and value via SPI:
  1176. SPI.transfer(value);
  1177. WRITE(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  1178. //delay(10);
  1179. }
  1180. #endif //HAS_DIGIPOTSS
  1181. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1182. void Stepper::digipot_init() {
  1183. #if HAS_DIGIPOTSS
  1184. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1185. SPI.begin();
  1186. SET_OUTPUT(DIGIPOTSS_PIN);
  1187. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1188. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1189. digipot_current(i, digipot_motor_current[i]);
  1190. }
  1191. #elif HAS_MOTOR_CURRENT_PWM
  1192. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1193. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1194. digipot_current(0, motor_current_setting[0]);
  1195. #endif
  1196. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1197. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1198. digipot_current(1, motor_current_setting[1]);
  1199. #endif
  1200. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1201. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1202. digipot_current(2, motor_current_setting[2]);
  1203. #endif
  1204. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1205. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1206. #endif
  1207. }
  1208. void Stepper::digipot_current(uint8_t driver, int current) {
  1209. #if HAS_DIGIPOTSS
  1210. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1211. digitalPotWrite(digipot_ch[driver], current);
  1212. #elif HAS_MOTOR_CURRENT_PWM
  1213. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1214. switch (driver) {
  1215. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1216. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  1217. #endif
  1218. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1219. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  1220. #endif
  1221. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1222. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  1223. #endif
  1224. }
  1225. #endif
  1226. }
  1227. #endif
  1228. #if HAS_MICROSTEPS
  1229. /**
  1230. * Software-controlled Microstepping
  1231. */
  1232. void Stepper::microstep_init() {
  1233. SET_OUTPUT(X_MS1_PIN);
  1234. SET_OUTPUT(X_MS2_PIN);
  1235. #if HAS_MICROSTEPS_Y
  1236. SET_OUTPUT(Y_MS1_PIN);
  1237. SET_OUTPUT(Y_MS2_PIN);
  1238. #endif
  1239. #if HAS_MICROSTEPS_Z
  1240. SET_OUTPUT(Z_MS1_PIN);
  1241. SET_OUTPUT(Z_MS2_PIN);
  1242. #endif
  1243. #if HAS_MICROSTEPS_E0
  1244. SET_OUTPUT(E0_MS1_PIN);
  1245. SET_OUTPUT(E0_MS2_PIN);
  1246. #endif
  1247. #if HAS_MICROSTEPS_E1
  1248. SET_OUTPUT(E1_MS1_PIN);
  1249. SET_OUTPUT(E1_MS2_PIN);
  1250. #endif
  1251. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1252. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1253. microstep_mode(i, microstep_modes[i]);
  1254. }
  1255. void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1256. if (ms1 >= 0) switch (driver) {
  1257. case 0: WRITE(X_MS1_PIN, ms1); break;
  1258. #if HAS_MICROSTEPS_Y
  1259. case 1: WRITE(Y_MS1_PIN, ms1); break;
  1260. #endif
  1261. #if HAS_MICROSTEPS_Z
  1262. case 2: WRITE(Z_MS1_PIN, ms1); break;
  1263. #endif
  1264. #if HAS_MICROSTEPS_E0
  1265. case 3: WRITE(E0_MS1_PIN, ms1); break;
  1266. #endif
  1267. #if HAS_MICROSTEPS_E1
  1268. case 4: WRITE(E1_MS1_PIN, ms1); break;
  1269. #endif
  1270. }
  1271. if (ms2 >= 0) switch (driver) {
  1272. case 0: WRITE(X_MS2_PIN, ms2); break;
  1273. #if HAS_MICROSTEPS_Y
  1274. case 1: WRITE(Y_MS2_PIN, ms2); break;
  1275. #endif
  1276. #if HAS_MICROSTEPS_Z
  1277. case 2: WRITE(Z_MS2_PIN, ms2); break;
  1278. #endif
  1279. #if HAS_MICROSTEPS_E0
  1280. case 3: WRITE(E0_MS2_PIN, ms2); break;
  1281. #endif
  1282. #if HAS_MICROSTEPS_E1
  1283. case 4: WRITE(E1_MS2_PIN, ms2); break;
  1284. #endif
  1285. }
  1286. }
  1287. void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1288. switch (stepping_mode) {
  1289. case 1: microstep_ms(driver, MICROSTEP1); break;
  1290. case 2: microstep_ms(driver, MICROSTEP2); break;
  1291. case 4: microstep_ms(driver, MICROSTEP4); break;
  1292. case 8: microstep_ms(driver, MICROSTEP8); break;
  1293. case 16: microstep_ms(driver, MICROSTEP16); break;
  1294. }
  1295. }
  1296. void Stepper::microstep_readings() {
  1297. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1298. SERIAL_PROTOCOLPGM("X: ");
  1299. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1300. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1301. #if HAS_MICROSTEPS_Y
  1302. SERIAL_PROTOCOLPGM("Y: ");
  1303. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1304. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1305. #endif
  1306. #if HAS_MICROSTEPS_Z
  1307. SERIAL_PROTOCOLPGM("Z: ");
  1308. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1309. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1310. #endif
  1311. #if HAS_MICROSTEPS_E0
  1312. SERIAL_PROTOCOLPGM("E0: ");
  1313. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1314. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1315. #endif
  1316. #if HAS_MICROSTEPS_E1
  1317. SERIAL_PROTOCOLPGM("E1: ");
  1318. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1319. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1320. #endif
  1321. }
  1322. #endif // HAS_MICROSTEPS