My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  59. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  60. bool Stepper::abort_on_endstop_hit = false;
  61. #endif
  62. #if ENABLED(Z_DUAL_ENDSTOPS)
  63. bool Stepper::performing_homing = false;
  64. #endif
  65. // private:
  66. unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  67. unsigned int Stepper::cleaning_buffer_counter = 0;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. bool Stepper::locked_z_motor = false;
  70. bool Stepper::locked_z2_motor = false;
  71. #endif
  72. long Stepper::counter_X = 0,
  73. Stepper::counter_Y = 0,
  74. Stepper::counter_Z = 0,
  75. Stepper::counter_E = 0;
  76. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  78. unsigned char Stepper::old_OCR0A;
  79. volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
  80. #if ENABLED(LIN_ADVANCE)
  81. volatile long Stepper::e_steps[E_STEPPERS];
  82. int Stepper::extruder_advance_k = LIN_ADVANCE_K,
  83. Stepper::final_estep_rate,
  84. Stepper::current_estep_rate[E_STEPPERS],
  85. Stepper::current_adv_steps[E_STEPPERS];
  86. #else
  87. long Stepper::e_steps[E_STEPPERS],
  88. Stepper::final_advance = 0,
  89. Stepper::old_advance = 0,
  90. Stepper::advance_rate,
  91. Stepper::advance;
  92. #endif
  93. #endif
  94. long Stepper::acceleration_time, Stepper::deceleration_time;
  95. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  96. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  97. #if ENABLED(MIXING_EXTRUDER)
  98. long Stepper::counter_m[MIXING_STEPPERS];
  99. #endif
  100. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  101. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  102. unsigned short Stepper::OCR1A_nominal;
  103. volatile long Stepper::endstops_trigsteps[XYZ];
  104. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  105. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  106. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  107. #elif ENABLED(DUAL_X_CARRIAGE)
  108. #define X_APPLY_DIR(v,ALWAYS) \
  109. if (extruder_duplication_enabled || ALWAYS) { \
  110. X_DIR_WRITE(v); \
  111. X2_DIR_WRITE(v); \
  112. } \
  113. else { \
  114. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  115. }
  116. #define X_APPLY_STEP(v,ALWAYS) \
  117. if (extruder_duplication_enabled || ALWAYS) { \
  118. X_STEP_WRITE(v); \
  119. X2_STEP_WRITE(v); \
  120. } \
  121. else { \
  122. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  123. }
  124. #else
  125. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  126. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  127. #endif
  128. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  129. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  130. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  131. #else
  132. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  133. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  134. #endif
  135. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  136. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  137. #if ENABLED(Z_DUAL_ENDSTOPS)
  138. #define Z_APPLY_STEP(v,Q) \
  139. if (performing_homing) { \
  140. if (Z_HOME_DIR > 0) {\
  141. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  142. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  143. } \
  144. else { \
  145. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  146. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  147. } \
  148. } \
  149. else { \
  150. Z_STEP_WRITE(v); \
  151. Z2_STEP_WRITE(v); \
  152. }
  153. #else
  154. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  155. #endif
  156. #else
  157. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  158. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  159. #endif
  160. #if DISABLED(MIXING_EXTRUDER)
  161. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  162. #endif
  163. // intRes = longIn1 * longIn2 >> 24
  164. // uses:
  165. // r26 to store 0
  166. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  167. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  168. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  169. // B0 A0 are bits 24-39 and are the returned value
  170. // C1 B1 A1 is longIn1
  171. // D2 C2 B2 A2 is longIn2
  172. //
  173. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  174. asm volatile ( \
  175. "clr r26 \n\t" \
  176. "mul %A1, %B2 \n\t" \
  177. "mov r27, r1 \n\t" \
  178. "mul %B1, %C2 \n\t" \
  179. "movw %A0, r0 \n\t" \
  180. "mul %C1, %C2 \n\t" \
  181. "add %B0, r0 \n\t" \
  182. "mul %C1, %B2 \n\t" \
  183. "add %A0, r0 \n\t" \
  184. "adc %B0, r1 \n\t" \
  185. "mul %A1, %C2 \n\t" \
  186. "add r27, r0 \n\t" \
  187. "adc %A0, r1 \n\t" \
  188. "adc %B0, r26 \n\t" \
  189. "mul %B1, %B2 \n\t" \
  190. "add r27, r0 \n\t" \
  191. "adc %A0, r1 \n\t" \
  192. "adc %B0, r26 \n\t" \
  193. "mul %C1, %A2 \n\t" \
  194. "add r27, r0 \n\t" \
  195. "adc %A0, r1 \n\t" \
  196. "adc %B0, r26 \n\t" \
  197. "mul %B1, %A2 \n\t" \
  198. "add r27, r1 \n\t" \
  199. "adc %A0, r26 \n\t" \
  200. "adc %B0, r26 \n\t" \
  201. "lsr r27 \n\t" \
  202. "adc %A0, r26 \n\t" \
  203. "adc %B0, r26 \n\t" \
  204. "mul %D2, %A1 \n\t" \
  205. "add %A0, r0 \n\t" \
  206. "adc %B0, r1 \n\t" \
  207. "mul %D2, %B1 \n\t" \
  208. "add %B0, r0 \n\t" \
  209. "clr r1 \n\t" \
  210. : \
  211. "=&r" (intRes) \
  212. : \
  213. "d" (longIn1), \
  214. "d" (longIn2) \
  215. : \
  216. "r26" , "r27" \
  217. )
  218. // Some useful constants
  219. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  220. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  221. /**
  222. * __________________________
  223. * /| |\ _________________ ^
  224. * / | | \ /| |\ |
  225. * / | | \ / | | \ s
  226. * / | | | | | \ p
  227. * / | | | | | \ e
  228. * +-----+------------------------+---+--+---------------+----+ e
  229. * | BLOCK 1 | BLOCK 2 | d
  230. *
  231. * time ----->
  232. *
  233. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  234. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  235. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  236. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  237. */
  238. void Stepper::wake_up() {
  239. // TCNT1 = 0;
  240. ENABLE_STEPPER_DRIVER_INTERRUPT();
  241. }
  242. /**
  243. * Set the stepper direction of each axis
  244. *
  245. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  246. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  247. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  248. */
  249. void Stepper::set_directions() {
  250. #define SET_STEP_DIR(AXIS) \
  251. if (motor_direction(AXIS ##_AXIS)) { \
  252. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  253. count_direction[AXIS ##_AXIS] = -1; \
  254. } \
  255. else { \
  256. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  257. count_direction[AXIS ##_AXIS] = 1; \
  258. }
  259. #if HAS_X_DIR
  260. SET_STEP_DIR(X); // A
  261. #endif
  262. #if HAS_Y_DIR
  263. SET_STEP_DIR(Y); // B
  264. #endif
  265. #if HAS_Z_DIR
  266. SET_STEP_DIR(Z); // C
  267. #endif
  268. if (motor_direction(E_AXIS)) {
  269. REV_E_DIR();
  270. count_direction[E_AXIS] = -1;
  271. }
  272. else {
  273. NORM_E_DIR();
  274. count_direction[E_AXIS] = 1;
  275. }
  276. }
  277. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  278. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  279. ISR(TIMER1_COMPA_vect) { Stepper::isr(); }
  280. void Stepper::isr() {
  281. if (cleaning_buffer_counter) {
  282. current_block = NULL;
  283. planner.discard_current_block();
  284. #ifdef SD_FINISHED_RELEASECOMMAND
  285. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  286. #endif
  287. cleaning_buffer_counter--;
  288. OCR1A = 200;
  289. return;
  290. }
  291. // If there is no current block, attempt to pop one from the buffer
  292. if (!current_block) {
  293. // Anything in the buffer?
  294. current_block = planner.get_current_block();
  295. if (current_block) {
  296. current_block->busy = true;
  297. trapezoid_generator_reset();
  298. // Initialize Bresenham counters to 1/2 the ceiling
  299. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  300. #if ENABLED(MIXING_EXTRUDER)
  301. MIXING_STEPPERS_LOOP(i)
  302. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  303. #endif
  304. step_events_completed = 0;
  305. #if ENABLED(Z_LATE_ENABLE)
  306. if (current_block->steps[Z_AXIS] > 0) {
  307. enable_z();
  308. OCR1A = 2000; //1ms wait
  309. return;
  310. }
  311. #endif
  312. // #if ENABLED(ADVANCE)
  313. // e_steps[TOOL_E_INDEX] = 0;
  314. // #endif
  315. }
  316. else {
  317. OCR1A = 2000; // 1kHz.
  318. return;
  319. }
  320. }
  321. // Update endstops state, if enabled
  322. if (endstops.enabled
  323. #if HAS_BED_PROBE
  324. || endstops.z_probe_enabled
  325. #endif
  326. ) endstops.update();
  327. // Take multiple steps per interrupt (For high speed moves)
  328. bool all_steps_done = false;
  329. for (int8_t i = 0; i < step_loops; i++) {
  330. #ifndef USBCON
  331. customizedSerial.checkRx(); // Check for serial chars.
  332. #endif
  333. #if ENABLED(LIN_ADVANCE)
  334. counter_E += current_block->steps[E_AXIS];
  335. if (counter_E > 0) {
  336. counter_E -= current_block->step_event_count;
  337. #if DISABLED(MIXING_EXTRUDER)
  338. // Don't step E here for mixing extruder
  339. count_position[E_AXIS] += count_direction[E_AXIS];
  340. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  341. #endif
  342. }
  343. #if ENABLED(MIXING_EXTRUDER)
  344. // Step mixing steppers proportionally
  345. bool dir = motor_direction(E_AXIS);
  346. MIXING_STEPPERS_LOOP(j) {
  347. counter_m[j] += current_block->steps[E_AXIS];
  348. if (counter_m[j] > 0) {
  349. counter_m[j] -= current_block->mix_event_count[j];
  350. dir ? --e_steps[j] : ++e_steps[j];
  351. }
  352. }
  353. #endif
  354. if (current_block->use_advance_lead) {
  355. int delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[TOOL_E_INDEX]) >> 9) - current_adv_steps[TOOL_E_INDEX];
  356. #if ENABLED(MIXING_EXTRUDER)
  357. // Mixing extruders apply advance lead proportionally
  358. MIXING_STEPPERS_LOOP(j) {
  359. int steps = delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  360. e_steps[j] += steps;
  361. current_adv_steps[j] += steps;
  362. }
  363. #else
  364. // For most extruders, advance the single E stepper
  365. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  366. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  367. #endif
  368. }
  369. #elif ENABLED(ADVANCE)
  370. // Always count the unified E axis
  371. counter_E += current_block->steps[E_AXIS];
  372. if (counter_E > 0) {
  373. counter_E -= current_block->step_event_count;
  374. #if DISABLED(MIXING_EXTRUDER)
  375. // Don't step E here for mixing extruder
  376. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  377. #endif
  378. }
  379. #if ENABLED(MIXING_EXTRUDER)
  380. // Step mixing steppers proportionally
  381. bool dir = motor_direction(E_AXIS);
  382. MIXING_STEPPERS_LOOP(j) {
  383. counter_m[j] += current_block->steps[E_AXIS];
  384. if (counter_m[j] > 0) {
  385. counter_m[j] -= current_block->mix_event_count[j];
  386. dir ? --e_steps[j] : ++e_steps[j];
  387. }
  388. }
  389. #endif // MIXING_EXTRUDER
  390. #endif // ADVANCE or LIN_ADVANCE
  391. #define _COUNTER(AXIS) counter_## AXIS
  392. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  393. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  394. // Advance the Bresenham counter; start a pulse if the axis needs a step
  395. #define PULSE_START(AXIS) \
  396. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  397. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  398. // Stop an active pulse, reset the Bresenham counter, update the position
  399. #define PULSE_STOP(AXIS) \
  400. if (_COUNTER(AXIS) > 0) { \
  401. _COUNTER(AXIS) -= current_block->step_event_count; \
  402. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  403. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  404. }
  405. #define CYCLES_EATEN_BY_CODE 240
  406. // If a minimum pulse time was specified get the CPU clock
  407. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  408. static uint32_t pulse_start;
  409. pulse_start = TCNT0;
  410. #endif
  411. #if HAS_X_STEP
  412. PULSE_START(X);
  413. #endif
  414. #if HAS_Y_STEP
  415. PULSE_START(Y);
  416. #endif
  417. #if HAS_Z_STEP
  418. PULSE_START(Z);
  419. #endif
  420. // For non-advance use linear interpolation for E also
  421. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  422. #if ENABLED(MIXING_EXTRUDER)
  423. // Keep updating the single E axis
  424. counter_E += current_block->steps[E_AXIS];
  425. // Tick the counters used for this mix
  426. MIXING_STEPPERS_LOOP(j) {
  427. // Step mixing steppers (proportionally)
  428. counter_m[j] += current_block->steps[E_AXIS];
  429. // Step when the counter goes over zero
  430. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  431. }
  432. #else // !MIXING_EXTRUDER
  433. PULSE_START(E);
  434. #endif
  435. #endif // !ADVANCE && !LIN_ADVANCE
  436. // For a minimum pulse time wait before stopping pulses
  437. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  438. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_CODE) { /* nada */ }
  439. #endif
  440. #if HAS_X_STEP
  441. PULSE_STOP(X);
  442. #endif
  443. #if HAS_Y_STEP
  444. PULSE_STOP(Y);
  445. #endif
  446. #if HAS_Z_STEP
  447. PULSE_STOP(Z);
  448. #endif
  449. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  450. #if ENABLED(MIXING_EXTRUDER)
  451. // Always step the single E axis
  452. if (counter_E > 0) {
  453. counter_E -= current_block->step_event_count;
  454. count_position[E_AXIS] += count_direction[E_AXIS];
  455. }
  456. MIXING_STEPPERS_LOOP(j) {
  457. if (counter_m[j] > 0) {
  458. counter_m[j] -= current_block->mix_event_count[j];
  459. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  460. }
  461. }
  462. #else // !MIXING_EXTRUDER
  463. PULSE_STOP(E);
  464. #endif
  465. #endif // !ADVANCE && !LIN_ADVANCE
  466. if (++step_events_completed >= current_block->step_event_count) {
  467. all_steps_done = true;
  468. break;
  469. }
  470. }
  471. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  472. // If we have esteps to execute, fire the next advance_isr "now"
  473. if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
  474. #endif
  475. // Calculate new timer value
  476. uint16_t timer, step_rate;
  477. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  478. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  479. acc_step_rate += current_block->initial_rate;
  480. // upper limit
  481. NOMORE(acc_step_rate, current_block->nominal_rate);
  482. // step_rate to timer interval
  483. timer = calc_timer(acc_step_rate);
  484. OCR1A = timer;
  485. acceleration_time += timer;
  486. #if ENABLED(LIN_ADVANCE)
  487. if (current_block->use_advance_lead)
  488. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
  489. if (current_block->use_advance_lead) {
  490. #if ENABLED(MIXING_EXTRUDER)
  491. MIXING_STEPPERS_LOOP(j)
  492. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
  493. #else
  494. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
  495. #endif
  496. }
  497. #elif ENABLED(ADVANCE)
  498. advance += advance_rate * step_loops;
  499. //NOLESS(advance, current_block->advance);
  500. long advance_whole = advance >> 8,
  501. advance_factor = advance_whole - old_advance;
  502. // Do E steps + advance steps
  503. #if ENABLED(MIXING_EXTRUDER)
  504. // ...for mixing steppers proportionally
  505. MIXING_STEPPERS_LOOP(j)
  506. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  507. #else
  508. // ...for the active extruder
  509. e_steps[TOOL_E_INDEX] += advance_factor;
  510. #endif
  511. old_advance = advance_whole;
  512. #endif // ADVANCE or LIN_ADVANCE
  513. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  514. eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
  515. #endif
  516. }
  517. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  518. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  519. if (step_rate < acc_step_rate) { // Still decelerating?
  520. step_rate = acc_step_rate - step_rate;
  521. NOLESS(step_rate, current_block->final_rate);
  522. }
  523. else
  524. step_rate = current_block->final_rate;
  525. // step_rate to timer interval
  526. timer = calc_timer(step_rate);
  527. OCR1A = timer;
  528. deceleration_time += timer;
  529. #if ENABLED(LIN_ADVANCE)
  530. if (current_block->use_advance_lead) {
  531. #if ENABLED(MIXING_EXTRUDER)
  532. MIXING_STEPPERS_LOOP(j)
  533. current_estep_rate[j] = ((uint32_t)step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
  534. #else
  535. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->e_speed_multiplier8) >> 8;
  536. #endif
  537. }
  538. #elif ENABLED(ADVANCE)
  539. advance -= advance_rate * step_loops;
  540. NOLESS(advance, final_advance);
  541. // Do E steps + advance steps
  542. long advance_whole = advance >> 8,
  543. advance_factor = advance_whole - old_advance;
  544. #if ENABLED(MIXING_EXTRUDER)
  545. MIXING_STEPPERS_LOOP(j)
  546. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  547. #else
  548. e_steps[TOOL_E_INDEX] += advance_factor;
  549. #endif
  550. old_advance = advance_whole;
  551. #endif // ADVANCE or LIN_ADVANCE
  552. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  553. eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
  554. #endif
  555. }
  556. else {
  557. #if ENABLED(LIN_ADVANCE)
  558. if (current_block->use_advance_lead)
  559. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  560. eISR_Rate = (OCR1A_nominal >> 2) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
  561. #endif
  562. OCR1A = OCR1A_nominal;
  563. // ensure we're running at the correct step rate, even if we just came off an acceleration
  564. step_loops = step_loops_nominal;
  565. }
  566. NOLESS(OCR1A, TCNT1 + 16);
  567. // If current block is finished, reset pointer
  568. if (all_steps_done) {
  569. current_block = NULL;
  570. planner.discard_current_block();
  571. }
  572. }
  573. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  574. // Timer interrupt for E. e_steps is set in the main routine;
  575. // Timer 0 is shared with millies
  576. ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); }
  577. void Stepper::advance_isr() {
  578. old_OCR0A += eISR_Rate;
  579. OCR0A = old_OCR0A;
  580. #define START_E_PULSE(INDEX) \
  581. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  582. #define STOP_E_PULSE(INDEX) \
  583. if (e_steps[INDEX]) { \
  584. e_steps[INDEX] <= 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  585. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  586. }
  587. #define CYCLES_EATEN_BY_E 60
  588. // Step all E steppers that have steps
  589. for (uint8_t i = 0; i < step_loops; i++) {
  590. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  591. static uint32_t pulse_start;
  592. pulse_start = TCNT0;
  593. #endif
  594. START_E_PULSE(0);
  595. #if E_STEPPERS > 1
  596. START_E_PULSE(1);
  597. #if E_STEPPERS > 2
  598. START_E_PULSE(2);
  599. #if E_STEPPERS > 3
  600. START_E_PULSE(3);
  601. #endif
  602. #endif
  603. #endif
  604. // For a minimum pulse time wait before stopping pulses
  605. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  606. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_E) { /* nada */ }
  607. #endif
  608. STOP_E_PULSE(0);
  609. #if E_STEPPERS > 1
  610. STOP_E_PULSE(1);
  611. #if E_STEPPERS > 2
  612. STOP_E_PULSE(2);
  613. #if E_STEPPERS > 3
  614. STOP_E_PULSE(3);
  615. #endif
  616. #endif
  617. #endif
  618. }
  619. }
  620. #endif // ADVANCE or LIN_ADVANCE
  621. void Stepper::init() {
  622. // Init Digipot Motor Current
  623. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  624. digipot_init();
  625. #endif
  626. // Init Microstepping Pins
  627. #if HAS_MICROSTEPS
  628. microstep_init();
  629. #endif
  630. // Init TMC Steppers
  631. #if ENABLED(HAVE_TMCDRIVER)
  632. tmc_init();
  633. #endif
  634. // Init L6470 Steppers
  635. #if ENABLED(HAVE_L6470DRIVER)
  636. L6470_init();
  637. #endif
  638. // Init Dir Pins
  639. #if HAS_X_DIR
  640. X_DIR_INIT;
  641. #endif
  642. #if HAS_X2_DIR
  643. X2_DIR_INIT;
  644. #endif
  645. #if HAS_Y_DIR
  646. Y_DIR_INIT;
  647. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  648. Y2_DIR_INIT;
  649. #endif
  650. #endif
  651. #if HAS_Z_DIR
  652. Z_DIR_INIT;
  653. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  654. Z2_DIR_INIT;
  655. #endif
  656. #endif
  657. #if HAS_E0_DIR
  658. E0_DIR_INIT;
  659. #endif
  660. #if HAS_E1_DIR
  661. E1_DIR_INIT;
  662. #endif
  663. #if HAS_E2_DIR
  664. E2_DIR_INIT;
  665. #endif
  666. #if HAS_E3_DIR
  667. E3_DIR_INIT;
  668. #endif
  669. // Init Enable Pins - steppers default to disabled.
  670. #if HAS_X_ENABLE
  671. X_ENABLE_INIT;
  672. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  673. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  674. X2_ENABLE_INIT;
  675. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  676. #endif
  677. #endif
  678. #if HAS_Y_ENABLE
  679. Y_ENABLE_INIT;
  680. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  681. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  682. Y2_ENABLE_INIT;
  683. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  684. #endif
  685. #endif
  686. #if HAS_Z_ENABLE
  687. Z_ENABLE_INIT;
  688. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  689. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  690. Z2_ENABLE_INIT;
  691. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  692. #endif
  693. #endif
  694. #if HAS_E0_ENABLE
  695. E0_ENABLE_INIT;
  696. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  697. #endif
  698. #if HAS_E1_ENABLE
  699. E1_ENABLE_INIT;
  700. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  701. #endif
  702. #if HAS_E2_ENABLE
  703. E2_ENABLE_INIT;
  704. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  705. #endif
  706. #if HAS_E3_ENABLE
  707. E3_ENABLE_INIT;
  708. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  709. #endif
  710. // Init endstops and pullups
  711. endstops.init();
  712. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  713. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  714. #define _DISABLE(axis) disable_## axis()
  715. #define AXIS_INIT(axis, AXIS, PIN) \
  716. _STEP_INIT(AXIS); \
  717. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  718. _DISABLE(axis)
  719. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  720. // Init Step Pins
  721. #if HAS_X_STEP
  722. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  723. X2_STEP_INIT;
  724. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  725. #endif
  726. AXIS_INIT(x, X, X);
  727. #endif
  728. #if HAS_Y_STEP
  729. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  730. Y2_STEP_INIT;
  731. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  732. #endif
  733. AXIS_INIT(y, Y, Y);
  734. #endif
  735. #if HAS_Z_STEP
  736. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  737. Z2_STEP_INIT;
  738. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  739. #endif
  740. AXIS_INIT(z, Z, Z);
  741. #endif
  742. #if HAS_E0_STEP
  743. E_AXIS_INIT(0);
  744. #endif
  745. #if HAS_E1_STEP
  746. E_AXIS_INIT(1);
  747. #endif
  748. #if HAS_E2_STEP
  749. E_AXIS_INIT(2);
  750. #endif
  751. #if HAS_E3_STEP
  752. E_AXIS_INIT(3);
  753. #endif
  754. // waveform generation = 0100 = CTC
  755. CBI(TCCR1B, WGM13);
  756. SBI(TCCR1B, WGM12);
  757. CBI(TCCR1A, WGM11);
  758. CBI(TCCR1A, WGM10);
  759. // output mode = 00 (disconnected)
  760. TCCR1A &= ~(3 << COM1A0);
  761. TCCR1A &= ~(3 << COM1B0);
  762. // Set the timer pre-scaler
  763. // Generally we use a divider of 8, resulting in a 2MHz timer
  764. // frequency on a 16MHz MCU. If you are going to change this, be
  765. // sure to regenerate speed_lookuptable.h with
  766. // create_speed_lookuptable.py
  767. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  768. OCR1A = 0x4000;
  769. TCNT1 = 0;
  770. ENABLE_STEPPER_DRIVER_INTERRUPT();
  771. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  772. for (int i = 0; i < E_STEPPERS; i++) {
  773. e_steps[i] = 0;
  774. #if ENABLED(LIN_ADVANCE)
  775. current_adv_steps[i] = 0;
  776. #endif
  777. }
  778. #if defined(TCCR0A) && defined(WGM01)
  779. CBI(TCCR0A, WGM01);
  780. CBI(TCCR0A, WGM00);
  781. #endif
  782. SBI(TIMSK0, OCIE0A);
  783. #endif // ADVANCE or LIN_ADVANCE
  784. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  785. sei();
  786. set_directions(); // Init directions to last_direction_bits = 0
  787. }
  788. /**
  789. * Block until all buffered steps are executed
  790. */
  791. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  792. /**
  793. * Set the stepper positions directly in steps
  794. *
  795. * The input is based on the typical per-axis XYZ steps.
  796. * For CORE machines XYZ needs to be translated to ABC.
  797. *
  798. * This allows get_axis_position_mm to correctly
  799. * derive the current XYZ position later on.
  800. */
  801. void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
  802. synchronize(); // Bad to set stepper counts in the middle of a move
  803. CRITICAL_SECTION_START;
  804. #if ENABLED(COREXY)
  805. // corexy positioning
  806. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  807. count_position[A_AXIS] = x + y;
  808. count_position[B_AXIS] = x - y;
  809. count_position[Z_AXIS] = z;
  810. #elif ENABLED(COREXZ)
  811. // corexz planning
  812. count_position[A_AXIS] = x + z;
  813. count_position[Y_AXIS] = y;
  814. count_position[C_AXIS] = x - z;
  815. #elif ENABLED(COREYZ)
  816. // coreyz planning
  817. count_position[X_AXIS] = x;
  818. count_position[B_AXIS] = y + z;
  819. count_position[C_AXIS] = y - z;
  820. #else
  821. // default non-h-bot planning
  822. count_position[X_AXIS] = x;
  823. count_position[Y_AXIS] = y;
  824. count_position[Z_AXIS] = z;
  825. #endif
  826. count_position[E_AXIS] = e;
  827. CRITICAL_SECTION_END;
  828. }
  829. void Stepper::set_e_position(const long& e) {
  830. CRITICAL_SECTION_START;
  831. count_position[E_AXIS] = e;
  832. CRITICAL_SECTION_END;
  833. }
  834. /**
  835. * Get a stepper's position in steps.
  836. */
  837. long Stepper::position(AxisEnum axis) {
  838. CRITICAL_SECTION_START;
  839. long count_pos = count_position[axis];
  840. CRITICAL_SECTION_END;
  841. return count_pos;
  842. }
  843. /**
  844. * Get an axis position according to stepper position(s)
  845. * For CORE machines apply translation from ABC to XYZ.
  846. */
  847. float Stepper::get_axis_position_mm(AxisEnum axis) {
  848. float axis_steps;
  849. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  850. // Requesting one of the "core" axes?
  851. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  852. CRITICAL_SECTION_START;
  853. long pos1 = count_position[CORE_AXIS_1],
  854. pos2 = count_position[CORE_AXIS_2];
  855. CRITICAL_SECTION_END;
  856. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  857. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  858. axis_steps = (pos1 + ((axis == CORE_AXIS_1) ? pos2 : -pos2)) * 0.5f;
  859. }
  860. else
  861. axis_steps = position(axis);
  862. #else
  863. axis_steps = position(axis);
  864. #endif
  865. return axis_steps * planner.steps_to_mm[axis];
  866. }
  867. void Stepper::finish_and_disable() {
  868. synchronize();
  869. disable_all_steppers();
  870. }
  871. void Stepper::quick_stop() {
  872. cleaning_buffer_counter = 5000;
  873. DISABLE_STEPPER_DRIVER_INTERRUPT();
  874. while (planner.blocks_queued()) planner.discard_current_block();
  875. current_block = NULL;
  876. ENABLE_STEPPER_DRIVER_INTERRUPT();
  877. }
  878. void Stepper::endstop_triggered(AxisEnum axis) {
  879. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  880. float axis_pos = count_position[axis];
  881. if (axis == CORE_AXIS_1)
  882. axis_pos = (axis_pos + count_position[CORE_AXIS_2]) * 0.5;
  883. else if (axis == CORE_AXIS_2)
  884. axis_pos = (count_position[CORE_AXIS_1] - axis_pos) * 0.5;
  885. endstops_trigsteps[axis] = axis_pos;
  886. #else // !COREXY && !COREXZ && !COREYZ
  887. endstops_trigsteps[axis] = count_position[axis];
  888. #endif // !COREXY && !COREXZ && !COREYZ
  889. kill_current_block();
  890. }
  891. void Stepper::report_positions() {
  892. CRITICAL_SECTION_START;
  893. long xpos = count_position[X_AXIS],
  894. ypos = count_position[Y_AXIS],
  895. zpos = count_position[Z_AXIS];
  896. CRITICAL_SECTION_END;
  897. #if ENABLED(COREXY) || ENABLED(COREXZ) || IS_SCARA
  898. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  899. #else
  900. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  901. #endif
  902. SERIAL_PROTOCOL(xpos);
  903. #if ENABLED(COREXY) || ENABLED(COREYZ) || IS_SCARA
  904. SERIAL_PROTOCOLPGM(" B:");
  905. #else
  906. SERIAL_PROTOCOLPGM(" Y:");
  907. #endif
  908. SERIAL_PROTOCOL(ypos);
  909. #if ENABLED(COREXZ) || ENABLED(COREYZ)
  910. SERIAL_PROTOCOLPGM(" C:");
  911. #else
  912. SERIAL_PROTOCOLPGM(" Z:");
  913. #endif
  914. SERIAL_PROTOCOL(zpos);
  915. SERIAL_EOL;
  916. }
  917. #if ENABLED(BABYSTEPPING)
  918. // MUST ONLY BE CALLED BY AN ISR,
  919. // No other ISR should ever interrupt this!
  920. void Stepper::babystep(const uint8_t axis, const bool direction) {
  921. #define _ENABLE(axis) enable_## axis()
  922. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  923. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  924. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  925. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  926. _ENABLE(axis); \
  927. uint8_t old_pin = _READ_DIR(AXIS); \
  928. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  929. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  930. delayMicroseconds(2); \
  931. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  932. _APPLY_DIR(AXIS, old_pin); \
  933. }
  934. switch (axis) {
  935. case X_AXIS:
  936. BABYSTEP_AXIS(x, X, false);
  937. break;
  938. case Y_AXIS:
  939. BABYSTEP_AXIS(y, Y, false);
  940. break;
  941. case Z_AXIS: {
  942. #if DISABLED(DELTA)
  943. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  944. #else // DELTA
  945. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  946. enable_x();
  947. enable_y();
  948. enable_z();
  949. uint8_t old_x_dir_pin = X_DIR_READ,
  950. old_y_dir_pin = Y_DIR_READ,
  951. old_z_dir_pin = Z_DIR_READ;
  952. //setup new step
  953. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  954. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  955. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  956. //perform step
  957. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  958. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  959. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  960. delayMicroseconds(2);
  961. X_STEP_WRITE(INVERT_X_STEP_PIN);
  962. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  963. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  964. //get old pin state back.
  965. X_DIR_WRITE(old_x_dir_pin);
  966. Y_DIR_WRITE(old_y_dir_pin);
  967. Z_DIR_WRITE(old_z_dir_pin);
  968. #endif
  969. } break;
  970. default: break;
  971. }
  972. }
  973. #endif //BABYSTEPPING
  974. /**
  975. * Software-controlled Stepper Motor Current
  976. */
  977. #if HAS_DIGIPOTSS
  978. // From Arduino DigitalPotControl example
  979. void Stepper::digitalPotWrite(int address, int value) {
  980. WRITE(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  981. SPI.transfer(address); // send in the address and value via SPI:
  982. SPI.transfer(value);
  983. WRITE(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  984. //delay(10);
  985. }
  986. #endif //HAS_DIGIPOTSS
  987. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  988. void Stepper::digipot_init() {
  989. #if HAS_DIGIPOTSS
  990. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  991. SPI.begin();
  992. SET_OUTPUT(DIGIPOTSS_PIN);
  993. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  994. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  995. digipot_current(i, digipot_motor_current[i]);
  996. }
  997. #elif HAS_MOTOR_CURRENT_PWM
  998. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  999. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1000. digipot_current(0, motor_current_setting[0]);
  1001. #endif
  1002. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1003. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1004. digipot_current(1, motor_current_setting[1]);
  1005. #endif
  1006. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1007. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1008. digipot_current(2, motor_current_setting[2]);
  1009. #endif
  1010. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1011. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1012. #endif
  1013. }
  1014. void Stepper::digipot_current(uint8_t driver, int current) {
  1015. #if HAS_DIGIPOTSS
  1016. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1017. digitalPotWrite(digipot_ch[driver], current);
  1018. #elif HAS_MOTOR_CURRENT_PWM
  1019. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1020. switch (driver) {
  1021. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1022. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  1023. #endif
  1024. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1025. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  1026. #endif
  1027. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1028. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  1029. #endif
  1030. }
  1031. #endif
  1032. }
  1033. #endif
  1034. #if HAS_MICROSTEPS
  1035. /**
  1036. * Software-controlled Microstepping
  1037. */
  1038. void Stepper::microstep_init() {
  1039. SET_OUTPUT(X_MS1_PIN);
  1040. SET_OUTPUT(X_MS2_PIN);
  1041. #if HAS_MICROSTEPS_Y
  1042. SET_OUTPUT(Y_MS1_PIN);
  1043. SET_OUTPUT(Y_MS2_PIN);
  1044. #endif
  1045. #if HAS_MICROSTEPS_Z
  1046. SET_OUTPUT(Z_MS1_PIN);
  1047. SET_OUTPUT(Z_MS2_PIN);
  1048. #endif
  1049. #if HAS_MICROSTEPS_E0
  1050. SET_OUTPUT(E0_MS1_PIN);
  1051. SET_OUTPUT(E0_MS2_PIN);
  1052. #endif
  1053. #if HAS_MICROSTEPS_E1
  1054. SET_OUTPUT(E1_MS1_PIN);
  1055. SET_OUTPUT(E1_MS2_PIN);
  1056. #endif
  1057. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1058. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1059. microstep_mode(i, microstep_modes[i]);
  1060. }
  1061. void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1062. if (ms1 >= 0) switch (driver) {
  1063. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1064. #if HAS_MICROSTEPS_Y
  1065. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1066. #endif
  1067. #if HAS_MICROSTEPS_Z
  1068. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1069. #endif
  1070. #if HAS_MICROSTEPS_E0
  1071. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1072. #endif
  1073. #if HAS_MICROSTEPS_E1
  1074. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1075. #endif
  1076. }
  1077. if (ms2 >= 0) switch (driver) {
  1078. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1079. #if HAS_MICROSTEPS_Y
  1080. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1081. #endif
  1082. #if HAS_MICROSTEPS_Z
  1083. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1084. #endif
  1085. #if HAS_MICROSTEPS_E0
  1086. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1087. #endif
  1088. #if HAS_MICROSTEPS_E1
  1089. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1090. #endif
  1091. }
  1092. }
  1093. void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1094. switch (stepping_mode) {
  1095. case 1: microstep_ms(driver, MICROSTEP1); break;
  1096. case 2: microstep_ms(driver, MICROSTEP2); break;
  1097. case 4: microstep_ms(driver, MICROSTEP4); break;
  1098. case 8: microstep_ms(driver, MICROSTEP8); break;
  1099. case 16: microstep_ms(driver, MICROSTEP16); break;
  1100. }
  1101. }
  1102. void Stepper::microstep_readings() {
  1103. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1104. SERIAL_PROTOCOLPGM("X: ");
  1105. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1106. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1107. #if HAS_MICROSTEPS_Y
  1108. SERIAL_PROTOCOLPGM("Y: ");
  1109. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1110. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1111. #endif
  1112. #if HAS_MICROSTEPS_Z
  1113. SERIAL_PROTOCOLPGM("Z: ");
  1114. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1115. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1116. #endif
  1117. #if HAS_MICROSTEPS_E0
  1118. SERIAL_PROTOCOLPGM("E0: ");
  1119. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1120. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1121. #endif
  1122. #if HAS_MICROSTEPS_E1
  1123. SERIAL_PROTOCOLPGM("E1: ");
  1124. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1125. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1126. #endif
  1127. }
  1128. #endif // HAS_MICROSTEPS
  1129. #if ENABLED(LIN_ADVANCE)
  1130. void Stepper::advance_M905(const float &k) {
  1131. if (k >= 0) extruder_advance_k = k;
  1132. SERIAL_ECHO_START;
  1133. SERIAL_ECHOPAIR("Advance factor: ", extruder_advance_k);
  1134. SERIAL_EOL;
  1135. }
  1136. #endif // LIN_ADVANCE