My Marlin configs for Fabrikator Mini and CTC i3 Pro B

temperature.h 6.0KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208
  1. /*
  2. temperature.h - temperature controller
  3. Part of Marlin
  4. Copyright (c) 2011 Erik van der Zalm
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #ifndef temperature_h
  17. #define temperature_h
  18. #include "Marlin.h"
  19. #include "planner.h"
  20. #ifdef PID_ADD_EXTRUSION_RATE
  21. #include "stepper.h"
  22. #endif
  23. // public functions
  24. void tp_init(); //initialize the heating
  25. void manage_heater(); //it is critical that this is called periodically.
  26. #ifdef FILAMENT_SENSOR
  27. // For converting raw Filament Width to milimeters
  28. float analog2widthFil();
  29. // For converting raw Filament Width to an extrusion ratio
  30. int widthFil_to_size_ratio();
  31. #endif
  32. // low level conversion routines
  33. // do not use these routines and variables outside of temperature.cpp
  34. extern int target_temperature[EXTRUDERS];
  35. extern float current_temperature[EXTRUDERS];
  36. #ifdef SHOW_TEMP_ADC_VALUES
  37. extern int current_temperature_raw[EXTRUDERS];
  38. extern int current_temperature_bed_raw;
  39. #endif
  40. extern int target_temperature_bed;
  41. extern float current_temperature_bed;
  42. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  43. extern float redundant_temperature;
  44. #endif
  45. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  46. extern unsigned char soft_pwm_bed;
  47. #endif
  48. #ifdef PIDTEMP
  49. #ifdef PID_PARAMS_PER_EXTRUDER
  50. extern float Kp[EXTRUDERS], Ki[EXTRUDERS], Kd[EXTRUDERS], Kc[EXTRUDERS]; // one param per extruder
  51. #define PID_PARAM(param,e) param[e] // use macro to point to array value
  52. #else
  53. extern float Kp, Ki, Kd, Kc; // one param per extruder - saves 20 or 36 bytes of ram (inc array pointer)
  54. #define PID_PARAM(param, e) param // use macro to point directly to value
  55. #endif // PID_PARAMS_PER_EXTRUDER
  56. float scalePID_i(float i);
  57. float scalePID_d(float d);
  58. float unscalePID_i(float i);
  59. float unscalePID_d(float d);
  60. #endif
  61. #ifdef PIDTEMPBED
  62. extern float bedKp,bedKi,bedKd;
  63. #endif
  64. #ifdef BABYSTEPPING
  65. extern volatile int babystepsTodo[3];
  66. #endif
  67. //high level conversion routines, for use outside of temperature.cpp
  68. //inline so that there is no performance decrease.
  69. //deg=degreeCelsius
  70. FORCE_INLINE float degHotend(uint8_t extruder) {
  71. return current_temperature[extruder];
  72. };
  73. #ifdef SHOW_TEMP_ADC_VALUES
  74. FORCE_INLINE float rawHotendTemp(uint8_t extruder) {
  75. return current_temperature_raw[extruder];
  76. };
  77. FORCE_INLINE float rawBedTemp() {
  78. return current_temperature_bed_raw;
  79. };
  80. #endif
  81. FORCE_INLINE float degBed() {
  82. return current_temperature_bed;
  83. };
  84. FORCE_INLINE float degTargetHotend(uint8_t extruder) {
  85. return target_temperature[extruder];
  86. };
  87. FORCE_INLINE float degTargetBed() {
  88. return target_temperature_bed;
  89. };
  90. FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) {
  91. target_temperature[extruder] = celsius;
  92. };
  93. FORCE_INLINE void setTargetBed(const float &celsius) {
  94. target_temperature_bed = celsius;
  95. };
  96. FORCE_INLINE bool isHeatingHotend(uint8_t extruder){
  97. return target_temperature[extruder] > current_temperature[extruder];
  98. };
  99. FORCE_INLINE bool isHeatingBed() {
  100. return target_temperature_bed > current_temperature_bed;
  101. };
  102. FORCE_INLINE bool isCoolingHotend(uint8_t extruder) {
  103. return target_temperature[extruder] < current_temperature[extruder];
  104. };
  105. FORCE_INLINE bool isCoolingBed() {
  106. return target_temperature_bed < current_temperature_bed;
  107. };
  108. #define degHotend0() degHotend(0)
  109. #define degTargetHotend0() degTargetHotend(0)
  110. #define setTargetHotend0(_celsius) setTargetHotend((_celsius), 0)
  111. #define isHeatingHotend0() isHeatingHotend(0)
  112. #define isCoolingHotend0() isCoolingHotend(0)
  113. #if EXTRUDERS > 1
  114. #define degHotend1() degHotend(1)
  115. #define degTargetHotend1() degTargetHotend(1)
  116. #define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
  117. #define isHeatingHotend1() isHeatingHotend(1)
  118. #define isCoolingHotend1() isCoolingHotend(1)
  119. #else
  120. #define setTargetHotend1(_celsius) do{}while(0)
  121. #endif
  122. #if EXTRUDERS > 2
  123. #define degHotend2() degHotend(2)
  124. #define degTargetHotend2() degTargetHotend(2)
  125. #define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
  126. #define isHeatingHotend2() isHeatingHotend(2)
  127. #define isCoolingHotend2() isCoolingHotend(2)
  128. #else
  129. #define setTargetHotend2(_celsius) do{}while(0)
  130. #endif
  131. #if EXTRUDERS > 3
  132. #define degHotend3() degHotend(3)
  133. #define degTargetHotend3() degTargetHotend(3)
  134. #define setTargetHotend3(_celsius) setTargetHotend((_celsius), 3)
  135. #define isHeatingHotend3() isHeatingHotend(3)
  136. #define isCoolingHotend3() isCoolingHotend(3)
  137. #else
  138. #define setTargetHotend3(_celsius) do{}while(0)
  139. #endif
  140. #if EXTRUDERS > 4
  141. #error Invalid number of extruders
  142. #endif
  143. int getHeaterPower(int heater);
  144. void disable_heater();
  145. void setWatch();
  146. void updatePID();
  147. #if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
  148. void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
  149. static int thermal_runaway_state_machine[4]; // = {0,0,0,0};
  150. static unsigned long thermal_runaway_timer[4]; // = {0,0,0,0};
  151. static bool thermal_runaway = false;
  152. #if TEMP_SENSOR_BED != 0
  153. static int thermal_runaway_bed_state_machine;
  154. static unsigned long thermal_runaway_bed_timer;
  155. #endif
  156. #endif
  157. FORCE_INLINE void autotempShutdown(){
  158. #ifdef AUTOTEMP
  159. if(autotemp_enabled)
  160. {
  161. autotemp_enabled=false;
  162. if(degTargetHotend(active_extruder)>autotemp_min)
  163. setTargetHotend(0,active_extruder);
  164. }
  165. #endif
  166. }
  167. void PID_autotune(float temp, int extruder, int ncycles);
  168. void setExtruderAutoFanState(int pin, bool state);
  169. void checkExtruderAutoFans();
  170. #endif