My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 185KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  31. #if defined(MESH_BED_LEVELING)
  32. #include "mesh_bed_leveling.h"
  33. #endif // MESH_BED_LEVELING
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home one or more axes
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Display measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. #ifdef ENABLE_AUTO_BED_LEVELING
  185. int xy_travel_speed = XY_TRAVEL_SPEED;
  186. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  187. #endif
  188. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  189. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  190. int feedmultiply = 100; //100->1 200->2
  191. int saved_feedmultiply;
  192. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  193. bool volumetric_enabled = false;
  194. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  195. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  196. float current_position[NUM_AXIS] = { 0.0 };
  197. float home_offset[3] = { 0 };
  198. #ifdef DELTA
  199. float endstop_adj[3] = { 0 };
  200. #elif defined(Z_DUAL_ENDSTOPS)
  201. float z_endstop_adj = 0;
  202. #endif
  203. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  204. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  205. bool axis_known_position[3] = { false };
  206. // Extruder offsets
  207. #if EXTRUDERS > 1
  208. #ifndef EXTRUDER_OFFSET_X
  209. #define EXTRUDER_OFFSET_X { 0 }
  210. #endif
  211. #ifndef EXTRUDER_OFFSET_Y
  212. #define EXTRUDER_OFFSET_Y { 0 }
  213. #endif
  214. float extruder_offset[][EXTRUDERS] = {
  215. EXTRUDER_OFFSET_X,
  216. EXTRUDER_OFFSET_Y
  217. #ifdef DUAL_X_CARRIAGE
  218. , { 0 } // supports offsets in XYZ plane
  219. #endif
  220. };
  221. #endif
  222. uint8_t active_extruder = 0;
  223. int fanSpeed = 0;
  224. #ifdef SERVO_ENDSTOPS
  225. int servo_endstops[] = SERVO_ENDSTOPS;
  226. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  227. #endif
  228. #ifdef BARICUDA
  229. int ValvePressure = 0;
  230. int EtoPPressure = 0;
  231. #endif
  232. #ifdef FWRETRACT
  233. bool autoretract_enabled = false;
  234. bool retracted[EXTRUDERS] = { false };
  235. bool retracted_swap[EXTRUDERS] = { false };
  236. float retract_length = RETRACT_LENGTH;
  237. float retract_length_swap = RETRACT_LENGTH_SWAP;
  238. float retract_feedrate = RETRACT_FEEDRATE;
  239. float retract_zlift = RETRACT_ZLIFT;
  240. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  241. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  242. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  243. #endif // FWRETRACT
  244. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  245. bool powersupply =
  246. #ifdef PS_DEFAULT_OFF
  247. false
  248. #else
  249. true
  250. #endif
  251. ;
  252. #endif
  253. #ifdef DELTA
  254. float delta[3] = { 0, 0, 0 };
  255. #define SIN_60 0.8660254037844386
  256. #define COS_60 0.5
  257. // these are the default values, can be overriden with M665
  258. float delta_radius = DELTA_RADIUS;
  259. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  260. float delta_tower1_y = -COS_60 * delta_radius;
  261. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  262. float delta_tower2_y = -COS_60 * delta_radius;
  263. float delta_tower3_x = 0; // back middle tower
  264. float delta_tower3_y = delta_radius;
  265. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  266. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  267. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  268. #ifdef ENABLE_AUTO_BED_LEVELING
  269. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  270. #endif
  271. #endif
  272. #ifdef SCARA
  273. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  274. static float delta[3] = { 0, 0, 0 };
  275. #endif
  276. bool cancel_heatup = false;
  277. #ifdef FILAMENT_SENSOR
  278. //Variables for Filament Sensor input
  279. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  280. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  281. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  282. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  283. int delay_index1 = 0; //index into ring buffer
  284. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  285. float delay_dist = 0; //delay distance counter
  286. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  287. #endif
  288. #ifdef FILAMENT_RUNOUT_SENSOR
  289. static bool filrunoutEnqued = false;
  290. #endif
  291. const char errormagic[] PROGMEM = "Error:";
  292. const char echomagic[] PROGMEM = "echo:";
  293. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  294. static float destination[NUM_AXIS] = { 0 };
  295. static float offset[3] = { 0 };
  296. #ifndef DELTA
  297. static bool home_all_axis = true;
  298. #endif
  299. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  300. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  301. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  302. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  303. #ifdef SDSUPPORT
  304. static bool fromsd[BUFSIZE];
  305. #endif
  306. static int bufindr = 0;
  307. static int bufindw = 0;
  308. static int buflen = 0;
  309. static char serial_char;
  310. static int serial_count = 0;
  311. static boolean comment_mode = false;
  312. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  313. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  314. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  315. // Inactivity shutdown
  316. static unsigned long previous_millis_cmd = 0;
  317. static unsigned long max_inactive_time = 0;
  318. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  319. unsigned long starttime = 0; ///< Print job start time
  320. unsigned long stoptime = 0; ///< Print job stop time
  321. static uint8_t tmp_extruder;
  322. bool Stopped = false;
  323. #if NUM_SERVOS > 0
  324. Servo servos[NUM_SERVOS];
  325. #endif
  326. bool CooldownNoWait = true;
  327. bool target_direction;
  328. #ifdef CHDK
  329. unsigned long chdkHigh = 0;
  330. boolean chdkActive = false;
  331. #endif
  332. //===========================================================================
  333. //=============================Routines======================================
  334. //===========================================================================
  335. void get_arc_coordinates();
  336. bool setTargetedHotend(int code);
  337. void serial_echopair_P(const char *s_P, float v)
  338. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  339. void serial_echopair_P(const char *s_P, double v)
  340. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  341. void serial_echopair_P(const char *s_P, unsigned long v)
  342. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  343. #ifdef SDSUPPORT
  344. #include "SdFatUtil.h"
  345. int freeMemory() { return SdFatUtil::FreeRam(); }
  346. #else
  347. extern "C" {
  348. extern unsigned int __bss_end;
  349. extern unsigned int __heap_start;
  350. extern void *__brkval;
  351. int freeMemory() {
  352. int free_memory;
  353. if ((int)__brkval == 0)
  354. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  355. else
  356. free_memory = ((int)&free_memory) - ((int)__brkval);
  357. return free_memory;
  358. }
  359. }
  360. #endif //!SDSUPPORT
  361. //Injects the next command from the pending sequence of commands, when possible
  362. //Return false if and only if no command was pending
  363. static bool drain_queued_commands_P()
  364. {
  365. char cmd[30];
  366. if(!queued_commands_P)
  367. return false;
  368. // Get the next 30 chars from the sequence of gcodes to run
  369. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  370. cmd[sizeof(cmd)-1]= 0;
  371. // Look for the end of line, or the end of sequence
  372. size_t i= 0;
  373. char c;
  374. while( (c= cmd[i]) && c!='\n' )
  375. ++i; // look for the end of this gcode command
  376. cmd[i]= 0;
  377. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  378. {
  379. if(c)
  380. queued_commands_P+= i+1; // move to next command
  381. else
  382. queued_commands_P= NULL; // will have no more commands in the sequence
  383. }
  384. return true;
  385. }
  386. //Record one or many commands to run from program memory.
  387. //Aborts the current queue, if any.
  388. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  389. void enquecommands_P(const char* pgcode)
  390. {
  391. queued_commands_P= pgcode;
  392. drain_queued_commands_P(); // first command exectuted asap (when possible)
  393. }
  394. //adds a single command to the main command buffer, from RAM
  395. //that is really done in a non-safe way.
  396. //needs overworking someday
  397. //Returns false if it failed to do so
  398. bool enquecommand(const char *cmd)
  399. {
  400. if(*cmd==';')
  401. return false;
  402. if(buflen >= BUFSIZE)
  403. return false;
  404. //this is dangerous if a mixing of serial and this happens
  405. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  406. SERIAL_ECHO_START;
  407. SERIAL_ECHOPGM(MSG_Enqueing);
  408. SERIAL_ECHO(cmdbuffer[bufindw]);
  409. SERIAL_ECHOLNPGM("\"");
  410. bufindw= (bufindw + 1)%BUFSIZE;
  411. buflen += 1;
  412. return true;
  413. }
  414. void setup_killpin()
  415. {
  416. #if defined(KILL_PIN) && KILL_PIN > -1
  417. SET_INPUT(KILL_PIN);
  418. WRITE(KILL_PIN,HIGH);
  419. #endif
  420. }
  421. void setup_filrunoutpin()
  422. {
  423. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  424. pinMode(FILRUNOUT_PIN,INPUT);
  425. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  426. WRITE(FILLRUNOUT_PIN,HIGH);
  427. #endif
  428. #endif
  429. }
  430. // Set home pin
  431. void setup_homepin(void)
  432. {
  433. #if defined(HOME_PIN) && HOME_PIN > -1
  434. SET_INPUT(HOME_PIN);
  435. WRITE(HOME_PIN,HIGH);
  436. #endif
  437. }
  438. void setup_photpin()
  439. {
  440. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  441. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  442. #endif
  443. }
  444. void setup_powerhold()
  445. {
  446. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  447. OUT_WRITE(SUICIDE_PIN, HIGH);
  448. #endif
  449. #if HAS_POWER_SWITCH
  450. #ifdef PS_DEFAULT_OFF
  451. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  452. #else
  453. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  454. #endif
  455. #endif
  456. }
  457. void suicide()
  458. {
  459. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  460. OUT_WRITE(SUICIDE_PIN, LOW);
  461. #endif
  462. }
  463. void servo_init()
  464. {
  465. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  466. servos[0].attach(SERVO0_PIN);
  467. #endif
  468. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  469. servos[1].attach(SERVO1_PIN);
  470. #endif
  471. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  472. servos[2].attach(SERVO2_PIN);
  473. #endif
  474. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  475. servos[3].attach(SERVO3_PIN);
  476. #endif
  477. #if (NUM_SERVOS >= 5)
  478. #error "TODO: enter initalisation code for more servos"
  479. #endif
  480. // Set position of Servo Endstops that are defined
  481. #ifdef SERVO_ENDSTOPS
  482. for(int8_t i = 0; i < 3; i++)
  483. {
  484. if(servo_endstops[i] > -1) {
  485. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  486. }
  487. }
  488. #endif
  489. #if SERVO_LEVELING
  490. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  491. servos[servo_endstops[Z_AXIS]].detach();
  492. #endif
  493. }
  494. void setup()
  495. {
  496. setup_killpin();
  497. setup_filrunoutpin();
  498. setup_powerhold();
  499. MYSERIAL.begin(BAUDRATE);
  500. SERIAL_PROTOCOLLNPGM("start");
  501. SERIAL_ECHO_START;
  502. // Check startup - does nothing if bootloader sets MCUSR to 0
  503. byte mcu = MCUSR;
  504. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  505. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  506. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  507. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  508. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  509. MCUSR=0;
  510. SERIAL_ECHOPGM(MSG_MARLIN);
  511. SERIAL_ECHOLNPGM(STRING_VERSION);
  512. #ifdef STRING_VERSION_CONFIG_H
  513. #ifdef STRING_CONFIG_H_AUTHOR
  514. SERIAL_ECHO_START;
  515. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  516. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  517. SERIAL_ECHOPGM(MSG_AUTHOR);
  518. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  519. SERIAL_ECHOPGM("Compiled: ");
  520. SERIAL_ECHOLNPGM(__DATE__);
  521. #endif // STRING_CONFIG_H_AUTHOR
  522. #endif // STRING_VERSION_CONFIG_H
  523. SERIAL_ECHO_START;
  524. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  525. SERIAL_ECHO(freeMemory());
  526. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  527. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  528. #ifdef SDSUPPORT
  529. for(int8_t i = 0; i < BUFSIZE; i++)
  530. {
  531. fromsd[i] = false;
  532. }
  533. #endif //!SDSUPPORT
  534. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  535. Config_RetrieveSettings();
  536. tp_init(); // Initialize temperature loop
  537. plan_init(); // Initialize planner;
  538. watchdog_init();
  539. st_init(); // Initialize stepper, this enables interrupts!
  540. setup_photpin();
  541. servo_init();
  542. lcd_init();
  543. _delay_ms(1000); // wait 1sec to display the splash screen
  544. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  545. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  546. #endif
  547. #ifdef DIGIPOT_I2C
  548. digipot_i2c_init();
  549. #endif
  550. #ifdef Z_PROBE_SLED
  551. pinMode(SERVO0_PIN, OUTPUT);
  552. digitalWrite(SERVO0_PIN, LOW); // turn it off
  553. #endif // Z_PROBE_SLED
  554. setup_homepin();
  555. #ifdef STAT_LED_RED
  556. pinMode(STAT_LED_RED, OUTPUT);
  557. digitalWrite(STAT_LED_RED, LOW); // turn it off
  558. #endif
  559. #ifdef STAT_LED_BLUE
  560. pinMode(STAT_LED_BLUE, OUTPUT);
  561. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  562. #endif
  563. }
  564. void loop()
  565. {
  566. if(buflen < (BUFSIZE-1))
  567. get_command();
  568. #ifdef SDSUPPORT
  569. card.checkautostart(false);
  570. #endif
  571. if(buflen)
  572. {
  573. #ifdef SDSUPPORT
  574. if(card.saving)
  575. {
  576. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  577. {
  578. card.write_command(cmdbuffer[bufindr]);
  579. if(card.logging)
  580. {
  581. process_commands();
  582. }
  583. else
  584. {
  585. SERIAL_PROTOCOLLNPGM(MSG_OK);
  586. }
  587. }
  588. else
  589. {
  590. card.closefile();
  591. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  592. }
  593. }
  594. else
  595. {
  596. process_commands();
  597. }
  598. #else
  599. process_commands();
  600. #endif //SDSUPPORT
  601. buflen = (buflen-1);
  602. bufindr = (bufindr + 1)%BUFSIZE;
  603. }
  604. //check heater every n milliseconds
  605. manage_heater();
  606. manage_inactivity();
  607. checkHitEndstops();
  608. lcd_update();
  609. }
  610. void get_command()
  611. {
  612. if(drain_queued_commands_P()) // priority is given to non-serial commands
  613. return;
  614. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  615. serial_char = MYSERIAL.read();
  616. if(serial_char == '\n' ||
  617. serial_char == '\r' ||
  618. serial_count >= (MAX_CMD_SIZE - 1) )
  619. {
  620. // end of line == end of comment
  621. comment_mode = false;
  622. if(!serial_count) {
  623. // short cut for empty lines
  624. return;
  625. }
  626. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  627. #ifdef SDSUPPORT
  628. fromsd[bufindw] = false;
  629. #endif //!SDSUPPORT
  630. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  631. {
  632. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  633. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  634. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  635. SERIAL_ERROR_START;
  636. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  637. SERIAL_ERRORLN(gcode_LastN);
  638. //Serial.println(gcode_N);
  639. FlushSerialRequestResend();
  640. serial_count = 0;
  641. return;
  642. }
  643. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  644. {
  645. byte checksum = 0;
  646. byte count = 0;
  647. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  648. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  649. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  650. SERIAL_ERROR_START;
  651. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  652. SERIAL_ERRORLN(gcode_LastN);
  653. FlushSerialRequestResend();
  654. serial_count = 0;
  655. return;
  656. }
  657. //if no errors, continue parsing
  658. }
  659. else
  660. {
  661. SERIAL_ERROR_START;
  662. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  663. SERIAL_ERRORLN(gcode_LastN);
  664. FlushSerialRequestResend();
  665. serial_count = 0;
  666. return;
  667. }
  668. gcode_LastN = gcode_N;
  669. //if no errors, continue parsing
  670. }
  671. else // if we don't receive 'N' but still see '*'
  672. {
  673. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  674. {
  675. SERIAL_ERROR_START;
  676. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  677. SERIAL_ERRORLN(gcode_LastN);
  678. serial_count = 0;
  679. return;
  680. }
  681. }
  682. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  683. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  684. switch(strtol(strchr_pointer + 1, NULL, 10)){
  685. case 0:
  686. case 1:
  687. case 2:
  688. case 3:
  689. if (Stopped == true) {
  690. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  691. LCD_MESSAGEPGM(MSG_STOPPED);
  692. }
  693. break;
  694. default:
  695. break;
  696. }
  697. }
  698. //If command was e-stop process now
  699. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  700. kill();
  701. bufindw = (bufindw + 1)%BUFSIZE;
  702. buflen += 1;
  703. serial_count = 0; //clear buffer
  704. }
  705. else if(serial_char == '\\') { //Handle escapes
  706. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  707. // if we have one more character, copy it over
  708. serial_char = MYSERIAL.read();
  709. cmdbuffer[bufindw][serial_count++] = serial_char;
  710. }
  711. //otherwise do nothing
  712. }
  713. else { // its not a newline, carriage return or escape char
  714. if(serial_char == ';') comment_mode = true;
  715. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  716. }
  717. }
  718. #ifdef SDSUPPORT
  719. if(!card.sdprinting || serial_count!=0){
  720. return;
  721. }
  722. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  723. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  724. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  725. static bool stop_buffering=false;
  726. if(buflen==0) stop_buffering=false;
  727. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  728. int16_t n=card.get();
  729. serial_char = (char)n;
  730. if(serial_char == '\n' ||
  731. serial_char == '\r' ||
  732. (serial_char == '#' && comment_mode == false) ||
  733. (serial_char == ':' && comment_mode == false) ||
  734. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  735. {
  736. if(card.eof()){
  737. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  738. stoptime=millis();
  739. char time[30];
  740. unsigned long t=(stoptime-starttime)/1000;
  741. int hours, minutes;
  742. minutes=(t/60)%60;
  743. hours=t/60/60;
  744. sprintf_P(time, PSTR("%i "MSG_END_HOUR" %i "MSG_END_MINUTE),hours, minutes);
  745. SERIAL_ECHO_START;
  746. SERIAL_ECHOLN(time);
  747. lcd_setstatus(time, true);
  748. card.printingHasFinished();
  749. card.checkautostart(true);
  750. }
  751. if(serial_char=='#')
  752. stop_buffering=true;
  753. if(!serial_count)
  754. {
  755. comment_mode = false; //for new command
  756. return; //if empty line
  757. }
  758. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  759. // if(!comment_mode){
  760. fromsd[bufindw] = true;
  761. buflen += 1;
  762. bufindw = (bufindw + 1)%BUFSIZE;
  763. // }
  764. comment_mode = false; //for new command
  765. serial_count = 0; //clear buffer
  766. }
  767. else
  768. {
  769. if(serial_char == ';') comment_mode = true;
  770. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  771. }
  772. }
  773. #endif //SDSUPPORT
  774. }
  775. float code_value() {
  776. float ret;
  777. char *e = strchr(strchr_pointer, 'E');
  778. if (e) {
  779. *e = 0;
  780. ret = strtod(strchr_pointer+1, NULL);
  781. *e = 'E';
  782. }
  783. else
  784. ret = strtod(strchr_pointer+1, NULL);
  785. return ret;
  786. }
  787. long code_value_long() { return (strtol(strchr_pointer + 1, NULL, 10)); }
  788. bool code_seen(char code) {
  789. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  790. return (strchr_pointer != NULL); //Return True if a character was found
  791. }
  792. #define DEFINE_PGM_READ_ANY(type, reader) \
  793. static inline type pgm_read_any(const type *p) \
  794. { return pgm_read_##reader##_near(p); }
  795. DEFINE_PGM_READ_ANY(float, float);
  796. DEFINE_PGM_READ_ANY(signed char, byte);
  797. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  798. static const PROGMEM type array##_P[3] = \
  799. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  800. static inline type array(int axis) \
  801. { return pgm_read_any(&array##_P[axis]); }
  802. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  803. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  804. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  805. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  806. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  807. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  808. #ifdef DUAL_X_CARRIAGE
  809. #define DXC_FULL_CONTROL_MODE 0
  810. #define DXC_AUTO_PARK_MODE 1
  811. #define DXC_DUPLICATION_MODE 2
  812. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  813. static float x_home_pos(int extruder) {
  814. if (extruder == 0)
  815. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  816. else
  817. // In dual carriage mode the extruder offset provides an override of the
  818. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  819. // This allow soft recalibration of the second extruder offset position without firmware reflash
  820. // (through the M218 command).
  821. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  822. }
  823. static int x_home_dir(int extruder) {
  824. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  825. }
  826. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  827. static bool active_extruder_parked = false; // used in mode 1 & 2
  828. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  829. static unsigned long delayed_move_time = 0; // used in mode 1
  830. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  831. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  832. bool extruder_duplication_enabled = false; // used in mode 2
  833. #endif //DUAL_X_CARRIAGE
  834. static void axis_is_at_home(int axis) {
  835. #ifdef DUAL_X_CARRIAGE
  836. if (axis == X_AXIS) {
  837. if (active_extruder != 0) {
  838. current_position[X_AXIS] = x_home_pos(active_extruder);
  839. min_pos[X_AXIS] = X2_MIN_POS;
  840. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  841. return;
  842. }
  843. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  844. float xoff = home_offset[X_AXIS];
  845. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  846. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  847. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  848. return;
  849. }
  850. }
  851. #endif
  852. #ifdef SCARA
  853. float homeposition[3];
  854. if (axis < 2) {
  855. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  856. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  857. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  858. // Works out real Homeposition angles using inverse kinematics,
  859. // and calculates homing offset using forward kinematics
  860. calculate_delta(homeposition);
  861. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  862. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  863. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  864. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  865. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  866. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  867. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  868. calculate_SCARA_forward_Transform(delta);
  869. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  870. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  871. current_position[axis] = delta[axis];
  872. // SCARA home positions are based on configuration since the actual limits are determined by the
  873. // inverse kinematic transform.
  874. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  875. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  876. }
  877. else {
  878. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  879. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  880. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  881. }
  882. #else
  883. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  884. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  885. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  886. #endif
  887. }
  888. /**
  889. * Some planner shorthand inline functions
  890. */
  891. inline void line_to_current_position() {
  892. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  893. }
  894. inline void line_to_z(float zPosition) {
  895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  896. }
  897. inline void line_to_destination() {
  898. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  899. }
  900. inline void sync_plan_position() {
  901. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  902. }
  903. #if defined(DELTA) || defined(SCARA)
  904. inline void sync_plan_position_delta() {
  905. calculate_delta(current_position);
  906. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  907. }
  908. #endif
  909. #ifdef ENABLE_AUTO_BED_LEVELING
  910. #ifdef AUTO_BED_LEVELING_GRID
  911. #ifndef DELTA
  912. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  913. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  914. planeNormal.debug("planeNormal");
  915. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  916. //bedLevel.debug("bedLevel");
  917. //plan_bed_level_matrix.debug("bed level before");
  918. //vector_3 uncorrected_position = plan_get_position_mm();
  919. //uncorrected_position.debug("position before");
  920. vector_3 corrected_position = plan_get_position();
  921. //corrected_position.debug("position after");
  922. current_position[X_AXIS] = corrected_position.x;
  923. current_position[Y_AXIS] = corrected_position.y;
  924. current_position[Z_AXIS] = corrected_position.z;
  925. sync_plan_position();
  926. }
  927. #endif // !DELTA
  928. #else // !AUTO_BED_LEVELING_GRID
  929. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  930. plan_bed_level_matrix.set_to_identity();
  931. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  932. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  933. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  934. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  935. if (planeNormal.z < 0) {
  936. planeNormal.x = -planeNormal.x;
  937. planeNormal.y = -planeNormal.y;
  938. planeNormal.z = -planeNormal.z;
  939. }
  940. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  941. vector_3 corrected_position = plan_get_position();
  942. current_position[X_AXIS] = corrected_position.x;
  943. current_position[Y_AXIS] = corrected_position.y;
  944. current_position[Z_AXIS] = corrected_position.z;
  945. sync_plan_position();
  946. }
  947. #endif // !AUTO_BED_LEVELING_GRID
  948. static void run_z_probe() {
  949. #ifdef DELTA
  950. float start_z = current_position[Z_AXIS];
  951. long start_steps = st_get_position(Z_AXIS);
  952. // move down slowly until you find the bed
  953. feedrate = homing_feedrate[Z_AXIS] / 4;
  954. destination[Z_AXIS] = -10;
  955. prepare_move_raw();
  956. st_synchronize();
  957. endstops_hit_on_purpose(); // clear endstop hit flags
  958. // we have to let the planner know where we are right now as it is not where we said to go.
  959. long stop_steps = st_get_position(Z_AXIS);
  960. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  961. current_position[Z_AXIS] = mm;
  962. sync_plan_position_delta();
  963. #else // !DELTA
  964. plan_bed_level_matrix.set_to_identity();
  965. feedrate = homing_feedrate[Z_AXIS];
  966. // move down until you find the bed
  967. float zPosition = -10;
  968. line_to_z(zPosition);
  969. st_synchronize();
  970. // we have to let the planner know where we are right now as it is not where we said to go.
  971. zPosition = st_get_position_mm(Z_AXIS);
  972. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  973. // move up the retract distance
  974. zPosition += home_retract_mm(Z_AXIS);
  975. line_to_z(zPosition);
  976. st_synchronize();
  977. endstops_hit_on_purpose(); // clear endstop hit flags
  978. // move back down slowly to find bed
  979. if (homing_bump_divisor[Z_AXIS] >= 1)
  980. feedrate = homing_feedrate[Z_AXIS] / homing_bump_divisor[Z_AXIS];
  981. else {
  982. feedrate = homing_feedrate[Z_AXIS] / 10;
  983. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  984. }
  985. zPosition -= home_retract_mm(Z_AXIS) * 2;
  986. line_to_z(zPosition);
  987. st_synchronize();
  988. endstops_hit_on_purpose(); // clear endstop hit flags
  989. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  990. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  991. sync_plan_position();
  992. #endif // !DELTA
  993. }
  994. static void do_blocking_move_to(float x, float y, float z) {
  995. float oldFeedRate = feedrate;
  996. #ifdef DELTA
  997. feedrate = XY_TRAVEL_SPEED;
  998. destination[X_AXIS] = x;
  999. destination[Y_AXIS] = y;
  1000. destination[Z_AXIS] = z;
  1001. prepare_move_raw();
  1002. st_synchronize();
  1003. #else
  1004. feedrate = homing_feedrate[Z_AXIS];
  1005. current_position[Z_AXIS] = z;
  1006. line_to_current_position();
  1007. st_synchronize();
  1008. feedrate = xy_travel_speed;
  1009. current_position[X_AXIS] = x;
  1010. current_position[Y_AXIS] = y;
  1011. line_to_current_position();
  1012. st_synchronize();
  1013. #endif
  1014. feedrate = oldFeedRate;
  1015. }
  1016. static void setup_for_endstop_move() {
  1017. saved_feedrate = feedrate;
  1018. saved_feedmultiply = feedmultiply;
  1019. feedmultiply = 100;
  1020. previous_millis_cmd = millis();
  1021. enable_endstops(true);
  1022. }
  1023. static void clean_up_after_endstop_move() {
  1024. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1025. enable_endstops(false);
  1026. #endif
  1027. feedrate = saved_feedrate;
  1028. feedmultiply = saved_feedmultiply;
  1029. previous_millis_cmd = millis();
  1030. }
  1031. static void engage_z_probe() {
  1032. #ifdef SERVO_ENDSTOPS
  1033. // Engage Z Servo endstop if enabled
  1034. if (servo_endstops[Z_AXIS] >= 0) {
  1035. #if SERVO_LEVELING
  1036. servos[servo_endstops[Z_AXIS]].attach(0);
  1037. #endif
  1038. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1039. #if SERVO_LEVELING
  1040. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1041. servos[servo_endstops[Z_AXIS]].detach();
  1042. #endif
  1043. }
  1044. #elif defined(Z_PROBE_ALLEN_KEY)
  1045. feedrate = homing_feedrate[X_AXIS];
  1046. // Move to the start position to initiate deployment
  1047. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1048. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1049. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1050. prepare_move_raw();
  1051. // Home X to touch the belt
  1052. feedrate = homing_feedrate[X_AXIS]/10;
  1053. destination[X_AXIS] = 0;
  1054. prepare_move_raw();
  1055. // Home Y for safety
  1056. feedrate = homing_feedrate[X_AXIS]/2;
  1057. destination[Y_AXIS] = 0;
  1058. prepare_move_raw();
  1059. st_synchronize();
  1060. #if defined(Z_PROBE_ENDSTOP)
  1061. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1062. if (z_probe_endstop) {
  1063. #else
  1064. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1065. if (z_min_endstop) {
  1066. #endif
  1067. if (!Stopped) {
  1068. SERIAL_ERROR_START;
  1069. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1070. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1071. }
  1072. Stop();
  1073. }
  1074. #endif // Z_PROBE_ALLEN_KEY
  1075. }
  1076. static void retract_z_probe() {
  1077. #ifdef SERVO_ENDSTOPS
  1078. // Retract Z Servo endstop if enabled
  1079. if (servo_endstops[Z_AXIS] >= 0) {
  1080. #if Z_RAISE_AFTER_PROBING > 0
  1081. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1082. st_synchronize();
  1083. #endif
  1084. #if SERVO_LEVELING
  1085. servos[servo_endstops[Z_AXIS]].attach(0);
  1086. #endif
  1087. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1088. #if SERVO_LEVELING
  1089. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1090. servos[servo_endstops[Z_AXIS]].detach();
  1091. #endif
  1092. }
  1093. #elif defined(Z_PROBE_ALLEN_KEY)
  1094. // Move up for safety
  1095. feedrate = homing_feedrate[X_AXIS];
  1096. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1097. prepare_move_raw();
  1098. // Move to the start position to initiate retraction
  1099. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1100. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1101. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1102. prepare_move_raw();
  1103. // Move the nozzle down to push the probe into retracted position
  1104. feedrate = homing_feedrate[Z_AXIS]/10;
  1105. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1106. prepare_move_raw();
  1107. // Move up for safety
  1108. feedrate = homing_feedrate[Z_AXIS]/2;
  1109. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1110. prepare_move_raw();
  1111. // Home XY for safety
  1112. feedrate = homing_feedrate[X_AXIS]/2;
  1113. destination[X_AXIS] = 0;
  1114. destination[Y_AXIS] = 0;
  1115. prepare_move_raw();
  1116. st_synchronize();
  1117. #if defined(Z_PROBE_ENDSTOP)
  1118. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1119. if (!z_probe_endstop) {
  1120. #else
  1121. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1122. if (!z_min_endstop) {
  1123. #endif
  1124. if (!Stopped) {
  1125. SERIAL_ERROR_START;
  1126. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1127. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1128. }
  1129. Stop();
  1130. }
  1131. #endif
  1132. }
  1133. enum ProbeAction {
  1134. ProbeStay = 0,
  1135. ProbeEngage = BIT(0),
  1136. ProbeRetract = BIT(1),
  1137. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
  1138. };
  1139. // Probe bed height at position (x,y), returns the measured z value
  1140. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1141. // move to right place
  1142. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1143. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1144. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1145. if (retract_action & ProbeEngage) engage_z_probe();
  1146. #endif
  1147. run_z_probe();
  1148. float measured_z = current_position[Z_AXIS];
  1149. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1150. if (retract_action == ProbeStay) {
  1151. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1152. st_synchronize();
  1153. }
  1154. #endif
  1155. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1156. if (retract_action & ProbeRetract) retract_z_probe();
  1157. #endif
  1158. if (verbose_level > 2) {
  1159. SERIAL_PROTOCOLPGM(MSG_BED);
  1160. SERIAL_PROTOCOLPGM(" X: ");
  1161. SERIAL_PROTOCOL_F(x, 3);
  1162. SERIAL_PROTOCOLPGM(" Y: ");
  1163. SERIAL_PROTOCOL_F(y, 3);
  1164. SERIAL_PROTOCOLPGM(" Z: ");
  1165. SERIAL_PROTOCOL_F(measured_z, 3);
  1166. SERIAL_EOL;
  1167. }
  1168. return measured_z;
  1169. }
  1170. #ifdef DELTA
  1171. /**
  1172. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1173. */
  1174. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1175. if (bed_level[x][y] != 0.0) {
  1176. return; // Don't overwrite good values.
  1177. }
  1178. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1179. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1180. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1181. float median = c; // Median is robust (ignores outliers).
  1182. if (a < b) {
  1183. if (b < c) median = b;
  1184. if (c < a) median = a;
  1185. } else { // b <= a
  1186. if (c < b) median = b;
  1187. if (a < c) median = a;
  1188. }
  1189. bed_level[x][y] = median;
  1190. }
  1191. // Fill in the unprobed points (corners of circular print surface)
  1192. // using linear extrapolation, away from the center.
  1193. static void extrapolate_unprobed_bed_level() {
  1194. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1195. for (int y = 0; y <= half; y++) {
  1196. for (int x = 0; x <= half; x++) {
  1197. if (x + y < 3) continue;
  1198. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1199. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1200. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1201. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1202. }
  1203. }
  1204. }
  1205. // Print calibration results for plotting or manual frame adjustment.
  1206. static void print_bed_level() {
  1207. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1208. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1209. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1210. SERIAL_PROTOCOLPGM(" ");
  1211. }
  1212. SERIAL_ECHOLN("");
  1213. }
  1214. }
  1215. // Reset calibration results to zero.
  1216. void reset_bed_level() {
  1217. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1218. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1219. bed_level[x][y] = 0.0;
  1220. }
  1221. }
  1222. }
  1223. #endif // DELTA
  1224. #endif // ENABLE_AUTO_BED_LEVELING
  1225. /**
  1226. * Home an individual axis
  1227. */
  1228. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1229. static void homeaxis(int axis) {
  1230. #define HOMEAXIS_DO(LETTER) \
  1231. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1232. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1233. int axis_home_dir;
  1234. #ifdef DUAL_X_CARRIAGE
  1235. if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
  1236. #else
  1237. axis_home_dir = home_dir(axis);
  1238. #endif
  1239. // Set the axis position as setup for the move
  1240. current_position[axis] = 0;
  1241. sync_plan_position();
  1242. // Engage Servo endstop if enabled
  1243. #ifdef SERVO_ENDSTOPS && !defined(Z_PROBE_SLED)
  1244. #if SERVO_LEVELING
  1245. if (axis == Z_AXIS) engage_z_probe(); else
  1246. #endif
  1247. {
  1248. if (servo_endstops[axis] > -1)
  1249. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1250. }
  1251. #endif // SERVO_ENDSTOPS && !Z_PROBE_SLED
  1252. #ifdef Z_DUAL_ENDSTOPS
  1253. if (axis == Z_AXIS) In_Homing_Process(true);
  1254. #endif
  1255. // Move towards the endstop until an endstop is triggered
  1256. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1257. feedrate = homing_feedrate[axis];
  1258. line_to_destination();
  1259. st_synchronize();
  1260. // Set the axis position as setup for the move
  1261. current_position[axis] = 0;
  1262. sync_plan_position();
  1263. // Move away from the endstop by the axis HOME_RETRACT_MM
  1264. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1265. line_to_destination();
  1266. st_synchronize();
  1267. // Slow down the feedrate for the next move
  1268. if (homing_bump_divisor[axis] >= 1)
  1269. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  1270. else {
  1271. feedrate = homing_feedrate[axis] / 10;
  1272. SERIAL_ECHOLNPGM("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  1273. }
  1274. // Move slowly towards the endstop until triggered
  1275. destination[axis] = 2 * home_retract_mm(axis) * axis_home_dir;
  1276. line_to_destination();
  1277. st_synchronize();
  1278. #ifdef Z_DUAL_ENDSTOPS
  1279. if (axis == Z_AXIS) {
  1280. float adj = fabs(z_endstop_adj);
  1281. bool lockZ1;
  1282. if (axis_home_dir > 0) {
  1283. adj = -adj;
  1284. lockZ1 = (z_endstop_adj > 0);
  1285. }
  1286. else
  1287. lockZ1 = (z_endstop_adj < 0);
  1288. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1289. sync_plan_position();
  1290. // Move to the adjusted endstop height
  1291. feedrate = homing_feedrate[axis];
  1292. destination[Z_AXIS] = adj;
  1293. line_to_destination();
  1294. st_synchronize();
  1295. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1296. In_Homing_Process(false);
  1297. } // Z_AXIS
  1298. #endif
  1299. #ifdef DELTA
  1300. // retrace by the amount specified in endstop_adj
  1301. if (endstop_adj[axis] * axis_home_dir < 0) {
  1302. sync_plan_position();
  1303. destination[axis] = endstop_adj[axis];
  1304. line_to_destination();
  1305. st_synchronize();
  1306. }
  1307. #endif
  1308. // Set the axis position to its home position (plus home offsets)
  1309. axis_is_at_home(axis);
  1310. destination[axis] = current_position[axis];
  1311. feedrate = 0.0;
  1312. endstops_hit_on_purpose(); // clear endstop hit flags
  1313. axis_known_position[axis] = true;
  1314. // Retract Servo endstop if enabled
  1315. #ifdef SERVO_ENDSTOPS
  1316. if (servo_endstops[axis] > -1)
  1317. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1318. #endif
  1319. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1320. if (axis == Z_AXIS) retract_z_probe();
  1321. #endif
  1322. }
  1323. }
  1324. void refresh_cmd_timeout(void) { previous_millis_cmd = millis(); }
  1325. #ifdef FWRETRACT
  1326. void retract(bool retracting, bool swapretract = false) {
  1327. if (retracting == retracted[active_extruder]) return;
  1328. float oldFeedrate = feedrate;
  1329. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i];
  1330. if (retracting) {
  1331. feedrate = retract_feedrate * 60;
  1332. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1333. plan_set_e_position(current_position[E_AXIS]);
  1334. prepare_move();
  1335. if (retract_zlift > 0.01) {
  1336. current_position[Z_AXIS] -= retract_zlift;
  1337. #ifdef DELTA
  1338. sync_plan_position_delta();
  1339. #else
  1340. sync_plan_position();
  1341. #endif
  1342. prepare_move();
  1343. }
  1344. }
  1345. else {
  1346. if (retract_zlift > 0.01) {
  1347. current_position[Z_AXIS] + =retract_zlift;
  1348. #ifdef DELTA
  1349. sync_plan_position_delta();
  1350. #else
  1351. sync_plan_position();
  1352. #endif
  1353. //prepare_move();
  1354. }
  1355. feedrate = retract_recover_feedrate * 60;
  1356. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1357. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1358. plan_set_e_position(current_position[E_AXIS]);
  1359. prepare_move();
  1360. }
  1361. feedrate = oldFeedrate;
  1362. retracted[active_extruder] = retract;
  1363. } // retract()
  1364. #endif // FWRETRACT
  1365. #ifdef Z_PROBE_SLED
  1366. #ifndef SLED_DOCKING_OFFSET
  1367. #define SLED_DOCKING_OFFSET 0
  1368. #endif
  1369. //
  1370. // Method to dock/undock a sled designed by Charles Bell.
  1371. //
  1372. // dock[in] If true, move to MAX_X and engage the electromagnet
  1373. // offset[in] The additional distance to move to adjust docking location
  1374. //
  1375. static void dock_sled(bool dock, int offset=0) {
  1376. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1377. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1378. SERIAL_ECHO_START;
  1379. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1380. return;
  1381. }
  1382. if (dock) {
  1383. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]);
  1384. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1385. } else {
  1386. float z_loc = current_position[Z_AXIS];
  1387. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1388. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1389. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1390. }
  1391. }
  1392. #endif // Z_PROBE_SLED
  1393. /**
  1394. *
  1395. * G-Code Handler functions
  1396. *
  1397. */
  1398. /**
  1399. * G0, G1: Coordinated movement of X Y Z E axes
  1400. */
  1401. inline void gcode_G0_G1() {
  1402. if (!Stopped) {
  1403. get_coordinates(); // For X Y Z E F
  1404. #ifdef FWRETRACT
  1405. if (autoretract_enabled)
  1406. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1407. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1408. // Is this move an attempt to retract or recover?
  1409. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1410. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1411. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1412. retract(!retracted[active_extruder]);
  1413. return;
  1414. }
  1415. }
  1416. #endif //FWRETRACT
  1417. prepare_move();
  1418. //ClearToSend();
  1419. }
  1420. }
  1421. /**
  1422. * G2: Clockwise Arc
  1423. * G3: Counterclockwise Arc
  1424. */
  1425. inline void gcode_G2_G3(bool clockwise) {
  1426. if (!Stopped) {
  1427. get_arc_coordinates();
  1428. prepare_arc_move(clockwise);
  1429. }
  1430. }
  1431. /**
  1432. * G4: Dwell S<seconds> or P<milliseconds>
  1433. */
  1434. inline void gcode_G4() {
  1435. unsigned long codenum=0;
  1436. LCD_MESSAGEPGM(MSG_DWELL);
  1437. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1438. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1439. st_synchronize();
  1440. previous_millis_cmd = millis();
  1441. codenum += previous_millis_cmd; // keep track of when we started waiting
  1442. while(millis() < codenum) {
  1443. manage_heater();
  1444. manage_inactivity();
  1445. lcd_update();
  1446. }
  1447. }
  1448. #ifdef FWRETRACT
  1449. /**
  1450. * G10 - Retract filament according to settings of M207
  1451. * G11 - Recover filament according to settings of M208
  1452. */
  1453. inline void gcode_G10_G11(bool doRetract=false) {
  1454. #if EXTRUDERS > 1
  1455. if (doRetract) {
  1456. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1457. }
  1458. #endif
  1459. retract(doRetract
  1460. #if EXTRUDERS > 1
  1461. , retracted_swap[active_extruder]
  1462. #endif
  1463. );
  1464. }
  1465. #endif //FWRETRACT
  1466. /**
  1467. * G28: Home all axes according to settings
  1468. *
  1469. * Parameters
  1470. *
  1471. * None Home to all axes with no parameters.
  1472. * With QUICK_HOME enabled XY will home together, then Z.
  1473. *
  1474. * Cartesian parameters
  1475. *
  1476. * X Home to the X endstop
  1477. * Y Home to the Y endstop
  1478. * Z Home to the Z endstop
  1479. *
  1480. * If numbers are included with XYZ set the position as with G92
  1481. * Currently adds the home_offset, which may be wrong and removed soon.
  1482. *
  1483. * Xn Home X, setting X to n + home_offset[X_AXIS]
  1484. * Yn Home Y, setting Y to n + home_offset[Y_AXIS]
  1485. * Zn Home Z, setting Z to n + home_offset[Z_AXIS]
  1486. */
  1487. inline void gcode_G28() {
  1488. #ifdef ENABLE_AUTO_BED_LEVELING
  1489. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1490. #ifdef DELTA
  1491. reset_bed_level();
  1492. #endif
  1493. #endif
  1494. #if defined(MESH_BED_LEVELING)
  1495. uint8_t mbl_was_active = mbl.active;
  1496. mbl.active = 0;
  1497. #endif
  1498. saved_feedrate = feedrate;
  1499. saved_feedmultiply = feedmultiply;
  1500. feedmultiply = 100;
  1501. previous_millis_cmd = millis();
  1502. enable_endstops(true);
  1503. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i]; // includes E_AXIS
  1504. feedrate = 0.0;
  1505. #ifdef DELTA
  1506. // A delta can only safely home all axis at the same time
  1507. // all axis have to home at the same time
  1508. // Move all carriages up together until the first endstop is hit.
  1509. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1510. sync_plan_position();
  1511. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1512. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1513. line_to_destination();
  1514. st_synchronize();
  1515. endstops_hit_on_purpose(); // clear endstop hit flags
  1516. // Destination reached
  1517. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1518. // take care of back off and rehome now we are all at the top
  1519. HOMEAXIS(X);
  1520. HOMEAXIS(Y);
  1521. HOMEAXIS(Z);
  1522. sync_plan_position_delta();
  1523. #else // NOT DELTA
  1524. bool homeX = code_seen(axis_codes[X_AXIS]),
  1525. homeY = code_seen(axis_codes[Y_AXIS]),
  1526. homeZ = code_seen(axis_codes[Z_AXIS]);
  1527. home_all_axis = !(homeX || homeY || homeZ) || (homeX && homeY && homeZ);
  1528. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1529. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1530. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1531. // Raise Z before homing any other axes
  1532. if (home_all_axis || homeZ) {
  1533. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1534. feedrate = max_feedrate[Z_AXIS];
  1535. line_to_destination();
  1536. st_synchronize();
  1537. }
  1538. #endif
  1539. #ifdef QUICK_HOME
  1540. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1541. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1542. #ifdef DUAL_X_CARRIAGE
  1543. int x_axis_home_dir = x_home_dir(active_extruder);
  1544. extruder_duplication_enabled = false;
  1545. #else
  1546. int x_axis_home_dir = home_dir(X_AXIS);
  1547. #endif
  1548. sync_plan_position();
  1549. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1550. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1551. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1552. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1553. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1554. line_to_destination();
  1555. st_synchronize();
  1556. axis_is_at_home(X_AXIS);
  1557. axis_is_at_home(Y_AXIS);
  1558. sync_plan_position();
  1559. destination[X_AXIS] = current_position[X_AXIS];
  1560. destination[Y_AXIS] = current_position[Y_AXIS];
  1561. line_to_destination();
  1562. feedrate = 0.0;
  1563. st_synchronize();
  1564. endstops_hit_on_purpose(); // clear endstop hit flags
  1565. current_position[X_AXIS] = destination[X_AXIS];
  1566. current_position[Y_AXIS] = destination[Y_AXIS];
  1567. #ifndef SCARA
  1568. current_position[Z_AXIS] = destination[Z_AXIS];
  1569. #endif
  1570. }
  1571. #endif // QUICK_HOME
  1572. // Home X
  1573. if (home_all_axis || homeX) {
  1574. #ifdef DUAL_X_CARRIAGE
  1575. int tmp_extruder = active_extruder;
  1576. extruder_duplication_enabled = false;
  1577. active_extruder = !active_extruder;
  1578. HOMEAXIS(X);
  1579. inactive_extruder_x_pos = current_position[X_AXIS];
  1580. active_extruder = tmp_extruder;
  1581. HOMEAXIS(X);
  1582. // reset state used by the different modes
  1583. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1584. delayed_move_time = 0;
  1585. active_extruder_parked = true;
  1586. #else
  1587. HOMEAXIS(X);
  1588. #endif
  1589. }
  1590. // Home Y
  1591. if (home_all_axis || homeY) HOMEAXIS(Y);
  1592. // Set the X position, if included
  1593. // Adds the home_offset as well, which may be wrong
  1594. if (code_seen(axis_codes[X_AXIS])) {
  1595. float v = code_value();
  1596. if (v) current_position[X_AXIS] = v
  1597. #ifndef SCARA
  1598. + home_offset[X_AXIS]
  1599. #endif
  1600. ;
  1601. }
  1602. // Set the Y position, if included
  1603. // Adds the home_offset as well, which may be wrong
  1604. if (code_seen(axis_codes[Y_AXIS])) {
  1605. float v = code_value();
  1606. if (v) current_position[Y_AXIS] = v
  1607. #ifndef SCARA
  1608. + home_offset[Y_AXIS]
  1609. #endif
  1610. ;
  1611. }
  1612. // Home Z last if homing towards the bed
  1613. #if Z_HOME_DIR < 0
  1614. #ifndef Z_SAFE_HOMING
  1615. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1616. #else // Z_SAFE_HOMING
  1617. if (home_all_axis) {
  1618. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1619. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1620. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1621. feedrate = XY_TRAVEL_SPEED;
  1622. current_position[Z_AXIS] = 0;
  1623. sync_plan_position();
  1624. line_to_destination();
  1625. st_synchronize();
  1626. current_position[X_AXIS] = destination[X_AXIS];
  1627. current_position[Y_AXIS] = destination[Y_AXIS];
  1628. HOMEAXIS(Z);
  1629. }
  1630. // Let's see if X and Y are homed and probe is inside bed area.
  1631. if (homeZ) {
  1632. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1633. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1634. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1635. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1636. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1637. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1638. current_position[Z_AXIS] = 0;
  1639. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]);
  1640. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1641. feedrate = max_feedrate[Z_AXIS];
  1642. line_to_destination();
  1643. st_synchronize();
  1644. HOMEAXIS(Z);
  1645. }
  1646. else {
  1647. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1648. SERIAL_ECHO_START;
  1649. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1650. }
  1651. }
  1652. else {
  1653. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1654. SERIAL_ECHO_START;
  1655. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1656. }
  1657. }
  1658. #endif // Z_SAFE_HOMING
  1659. #endif // Z_HOME_DIR < 0
  1660. // Set the Z position, if included
  1661. // Adds the home_offset as well, which may be wrong
  1662. if (code_seen(axis_codes[Z_AXIS])) {
  1663. float v = code_value();
  1664. if (v) current_position[Z_AXIS] = v + home_offset[Z_AXIS];
  1665. }
  1666. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1667. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1668. #endif
  1669. sync_plan_position();
  1670. #endif // else DELTA
  1671. #ifdef SCARA
  1672. sync_plan_position_delta();
  1673. #endif
  1674. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1675. enable_endstops(false);
  1676. #endif
  1677. #if defined(MESH_BED_LEVELING)
  1678. if (mbl_was_active) {
  1679. current_position[X_AXIS] = mbl.get_x(0);
  1680. current_position[Y_AXIS] = mbl.get_y(0);
  1681. destination[X_AXIS] = current_position[X_AXIS];
  1682. destination[Y_AXIS] = current_position[Y_AXIS];
  1683. destination[Z_AXIS] = current_position[Z_AXIS];
  1684. destination[E_AXIS] = current_position[E_AXIS];
  1685. feedrate = homing_feedrate[X_AXIS];
  1686. line_to_destination();
  1687. st_synchronize();
  1688. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1689. sync_plan_position();
  1690. mbl.active = 1;
  1691. }
  1692. #endif
  1693. feedrate = saved_feedrate;
  1694. feedmultiply = saved_feedmultiply;
  1695. previous_millis_cmd = millis();
  1696. endstops_hit_on_purpose(); // clear endstop hit flags
  1697. }
  1698. #if defined(MESH_BED_LEVELING) || defined(ENABLE_AUTO_BED_LEVELING)
  1699. // Check for known positions in X and Y
  1700. inline bool can_run_bed_leveling() {
  1701. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) return true;
  1702. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1703. SERIAL_ECHO_START;
  1704. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1705. return false;
  1706. }
  1707. #endif // MESH_BED_LEVELING || ENABLE_AUTO_BED_LEVELING
  1708. #ifdef MESH_BED_LEVELING
  1709. /**
  1710. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1711. * mesh to compensate for variable bed height
  1712. *
  1713. * Parameters With MESH_BED_LEVELING:
  1714. *
  1715. * S0 Produce a mesh report
  1716. * S1 Start probing mesh points
  1717. * S2 Probe the next mesh point
  1718. *
  1719. */
  1720. inline void gcode_G29() {
  1721. // Prevent leveling without first homing in X and Y
  1722. if (!can_run_bed_leveling()) return;
  1723. static int probe_point = -1;
  1724. int state = 0;
  1725. if (code_seen('S') || code_seen('s')) {
  1726. state = code_value_long();
  1727. if (state < 0 || state > 2) {
  1728. SERIAL_PROTOCOLPGM("S out of range (0-2).\n");
  1729. return;
  1730. }
  1731. }
  1732. if (state == 0) { // Dump mesh_bed_leveling
  1733. if (mbl.active) {
  1734. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1735. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1736. SERIAL_PROTOCOLPGM(",");
  1737. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1738. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1739. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1740. SERIAL_PROTOCOLPGM("\nMeasured points:\n");
  1741. for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
  1742. for (int x=0; x<MESH_NUM_X_POINTS; x++) {
  1743. SERIAL_PROTOCOLPGM(" ");
  1744. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1745. }
  1746. SERIAL_EOL;
  1747. }
  1748. } else {
  1749. SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n");
  1750. }
  1751. } else if (state == 1) { // Begin probing mesh points
  1752. mbl.reset();
  1753. probe_point = 0;
  1754. enquecommands_P(PSTR("G28"));
  1755. enquecommands_P(PSTR("G29 S2"));
  1756. } else if (state == 2) { // Goto next point
  1757. if (probe_point < 0) {
  1758. SERIAL_PROTOCOLPGM("Start mesh probing with \"G29 S1\" first.\n");
  1759. return;
  1760. }
  1761. int ix, iy;
  1762. if (probe_point == 0) {
  1763. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1764. sync_plan_position();
  1765. } else {
  1766. ix = (probe_point-1) % MESH_NUM_X_POINTS;
  1767. iy = (probe_point-1) / MESH_NUM_X_POINTS;
  1768. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1769. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1770. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1772. st_synchronize();
  1773. }
  1774. if (probe_point == MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1775. SERIAL_PROTOCOLPGM("Mesh probing done.\n");
  1776. probe_point = -1;
  1777. mbl.active = 1;
  1778. enquecommands_P(PSTR("G28"));
  1779. return;
  1780. }
  1781. ix = probe_point % MESH_NUM_X_POINTS;
  1782. iy = probe_point / MESH_NUM_X_POINTS;
  1783. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1784. current_position[X_AXIS] = mbl.get_x(ix);
  1785. current_position[Y_AXIS] = mbl.get_y(iy);
  1786. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1787. st_synchronize();
  1788. probe_point++;
  1789. }
  1790. }
  1791. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1792. /**
  1793. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1794. * Will fail if the printer has not been homed with G28.
  1795. *
  1796. * Enhanced G29 Auto Bed Leveling Probe Routine
  1797. *
  1798. * Parameters With AUTO_BED_LEVELING_GRID:
  1799. *
  1800. * P Set the size of the grid that will be probed (P x P points).
  1801. * Not supported by non-linear delta printer bed leveling.
  1802. * Example: "G29 P4"
  1803. *
  1804. * S Set the XY travel speed between probe points (in mm/min)
  1805. *
  1806. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1807. * or clean the rotation Matrix. Useful to check the topology
  1808. * after a first run of G29.
  1809. *
  1810. * V Set the verbose level (0-4). Example: "G29 V3"
  1811. *
  1812. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1813. * This is useful for manual bed leveling and finding flaws in the bed (to
  1814. * assist with part placement).
  1815. * Not supported by non-linear delta printer bed leveling.
  1816. *
  1817. * F Set the Front limit of the probing grid
  1818. * B Set the Back limit of the probing grid
  1819. * L Set the Left limit of the probing grid
  1820. * R Set the Right limit of the probing grid
  1821. *
  1822. * Global Parameters:
  1823. *
  1824. * E/e By default G29 will engages the probe, test the bed, then disengage.
  1825. * Include "E" to engage/disengage the probe for each sample.
  1826. * There's no extra effect if you have a fixed probe.
  1827. * Usage: "G29 E" or "G29 e"
  1828. *
  1829. */
  1830. inline void gcode_G29() {
  1831. // Prevent leveling without first homing in X and Y
  1832. if (!can_run_bed_leveling()) return;
  1833. int verbose_level = 1;
  1834. if (code_seen('V') || code_seen('v')) {
  1835. verbose_level = code_value_long();
  1836. if (verbose_level < 0 || verbose_level > 4) {
  1837. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1838. return;
  1839. }
  1840. }
  1841. bool dryrun = code_seen('D') || code_seen('d');
  1842. bool engage_probe_for_each_reading = code_seen('E') || code_seen('e');
  1843. #ifdef AUTO_BED_LEVELING_GRID
  1844. #ifndef DELTA
  1845. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1846. #endif
  1847. if (verbose_level > 0) {
  1848. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1849. if (dryrun) SERIAL_ECHOLN("Running in DRY-RUN mode");
  1850. }
  1851. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1852. #ifndef DELTA
  1853. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1854. if (auto_bed_leveling_grid_points < 2) {
  1855. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1856. return;
  1857. }
  1858. #endif
  1859. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1860. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1861. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1862. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1863. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1864. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1865. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1866. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1867. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1868. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1869. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1870. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1871. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1872. if (left_out || right_out || front_out || back_out) {
  1873. if (left_out) {
  1874. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1875. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1876. }
  1877. if (right_out) {
  1878. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1879. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1880. }
  1881. if (front_out) {
  1882. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1883. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1884. }
  1885. if (back_out) {
  1886. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1887. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1888. }
  1889. return;
  1890. }
  1891. #endif // AUTO_BED_LEVELING_GRID
  1892. #ifdef Z_PROBE_SLED
  1893. dock_sled(false); // engage (un-dock) the probe
  1894. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1895. engage_z_probe();
  1896. #endif
  1897. st_synchronize();
  1898. if (!dryrun) {
  1899. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1900. plan_bed_level_matrix.set_to_identity();
  1901. #ifdef DELTA
  1902. reset_bed_level();
  1903. #else //!DELTA
  1904. //vector_3 corrected_position = plan_get_position_mm();
  1905. //corrected_position.debug("position before G29");
  1906. vector_3 uncorrected_position = plan_get_position();
  1907. //uncorrected_position.debug("position during G29");
  1908. current_position[X_AXIS] = uncorrected_position.x;
  1909. current_position[Y_AXIS] = uncorrected_position.y;
  1910. current_position[Z_AXIS] = uncorrected_position.z;
  1911. sync_plan_position();
  1912. #endif // !DELTA
  1913. }
  1914. setup_for_endstop_move();
  1915. feedrate = homing_feedrate[Z_AXIS];
  1916. #ifdef AUTO_BED_LEVELING_GRID
  1917. // probe at the points of a lattice grid
  1918. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  1919. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1920. #ifdef DELTA
  1921. delta_grid_spacing[0] = xGridSpacing;
  1922. delta_grid_spacing[1] = yGridSpacing;
  1923. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1924. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1925. #else // !DELTA
  1926. // solve the plane equation ax + by + d = z
  1927. // A is the matrix with rows [x y 1] for all the probed points
  1928. // B is the vector of the Z positions
  1929. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1930. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1931. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1932. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1933. eqnBVector[abl2], // "B" vector of Z points
  1934. mean = 0.0;
  1935. #endif // !DELTA
  1936. int probePointCounter = 0;
  1937. bool zig = true;
  1938. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1939. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1940. int xStart, xStop, xInc;
  1941. if (zig) {
  1942. xStart = 0;
  1943. xStop = auto_bed_leveling_grid_points;
  1944. xInc = 1;
  1945. }
  1946. else {
  1947. xStart = auto_bed_leveling_grid_points - 1;
  1948. xStop = -1;
  1949. xInc = -1;
  1950. }
  1951. #ifndef DELTA
  1952. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1953. // This gets the probe points in more readable order.
  1954. if (!do_topography_map) zig = !zig;
  1955. #endif
  1956. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  1957. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1958. // raise extruder
  1959. float measured_z,
  1960. z_before = Z_RAISE_BETWEEN_PROBINGS + (probePointCounter ? current_position[Z_AXIS] : 0);
  1961. #ifdef DELTA
  1962. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1963. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1964. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  1965. #endif //DELTA
  1966. // Enhanced G29 - Do not retract servo between probes
  1967. ProbeAction act;
  1968. if (engage_probe_for_each_reading)
  1969. act = ProbeEngageAndRetract;
  1970. else if (yProbe == front_probe_bed_position && xCount == 0)
  1971. act = ProbeEngage;
  1972. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1973. act = ProbeRetract;
  1974. else
  1975. act = ProbeStay;
  1976. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1977. #ifndef DELTA
  1978. mean += measured_z;
  1979. eqnBVector[probePointCounter] = measured_z;
  1980. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1981. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1982. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1983. #else
  1984. bed_level[xCount][yCount] = measured_z + z_offset;
  1985. #endif
  1986. probePointCounter++;
  1987. manage_heater();
  1988. manage_inactivity();
  1989. lcd_update();
  1990. } //xProbe
  1991. } //yProbe
  1992. clean_up_after_endstop_move();
  1993. #ifdef DELTA
  1994. if (!dryrun) extrapolate_unprobed_bed_level();
  1995. print_bed_level();
  1996. #else // !DELTA
  1997. // solve lsq problem
  1998. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1999. mean /= abl2;
  2000. if (verbose_level) {
  2001. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2002. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2003. SERIAL_PROTOCOLPGM(" b: ");
  2004. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2005. SERIAL_PROTOCOLPGM(" d: ");
  2006. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2007. SERIAL_EOL;
  2008. if (verbose_level > 2) {
  2009. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2010. SERIAL_PROTOCOL_F(mean, 8);
  2011. SERIAL_EOL;
  2012. }
  2013. }
  2014. // Show the Topography map if enabled
  2015. if (do_topography_map) {
  2016. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2017. SERIAL_PROTOCOLPGM("+-----------+\n");
  2018. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2019. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2020. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2021. SERIAL_PROTOCOLPGM("+-----------+\n");
  2022. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2023. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2024. int ind = yy * auto_bed_leveling_grid_points + xx;
  2025. float diff = eqnBVector[ind] - mean;
  2026. if (diff >= 0.0)
  2027. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2028. else
  2029. SERIAL_PROTOCOLPGM(" ");
  2030. SERIAL_PROTOCOL_F(diff, 5);
  2031. } // xx
  2032. SERIAL_EOL;
  2033. } // yy
  2034. SERIAL_EOL;
  2035. } //do_topography_map
  2036. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2037. free(plane_equation_coefficients);
  2038. #endif //!DELTA
  2039. #else // !AUTO_BED_LEVELING_GRID
  2040. // Actions for each probe
  2041. ProbeAction p1, p2, p3;
  2042. if (engage_probe_for_each_reading)
  2043. p1 = p2 = p3 = ProbeEngageAndRetract;
  2044. else
  2045. p1 = ProbeEngage, p2 = ProbeStay, p3 = ProbeRetract;
  2046. // Probe at 3 arbitrary points
  2047. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2048. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2049. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2050. clean_up_after_endstop_move();
  2051. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2052. #endif // !AUTO_BED_LEVELING_GRID
  2053. #ifndef DELTA
  2054. if (verbose_level > 0)
  2055. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2056. if (!dryrun) {
  2057. // Correct the Z height difference from z-probe position and hotend tip position.
  2058. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2059. // When the bed is uneven, this height must be corrected.
  2060. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2061. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2062. z_tmp = current_position[Z_AXIS],
  2063. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2064. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2065. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2066. sync_plan_position();
  2067. }
  2068. #endif // !DELTA
  2069. #ifdef Z_PROBE_SLED
  2070. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2071. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2072. retract_z_probe();
  2073. #endif
  2074. #ifdef Z_PROBE_END_SCRIPT
  2075. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2076. st_synchronize();
  2077. #endif
  2078. }
  2079. #ifndef Z_PROBE_SLED
  2080. inline void gcode_G30() {
  2081. engage_z_probe(); // Engage Z Servo endstop if available
  2082. st_synchronize();
  2083. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2084. setup_for_endstop_move();
  2085. feedrate = homing_feedrate[Z_AXIS];
  2086. run_z_probe();
  2087. SERIAL_PROTOCOLPGM(MSG_BED);
  2088. SERIAL_PROTOCOLPGM(" X: ");
  2089. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2090. SERIAL_PROTOCOLPGM(" Y: ");
  2091. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2092. SERIAL_PROTOCOLPGM(" Z: ");
  2093. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2094. SERIAL_EOL;
  2095. clean_up_after_endstop_move();
  2096. retract_z_probe(); // Retract Z Servo endstop if available
  2097. }
  2098. #endif //!Z_PROBE_SLED
  2099. #endif //ENABLE_AUTO_BED_LEVELING
  2100. /**
  2101. * G92: Set current position to given X Y Z E
  2102. */
  2103. inline void gcode_G92() {
  2104. if (!code_seen(axis_codes[E_AXIS]))
  2105. st_synchronize();
  2106. bool didXYZ = false;
  2107. for (int i = 0; i < NUM_AXIS; i++) {
  2108. if (code_seen(axis_codes[i])) {
  2109. float v = current_position[i] = code_value();
  2110. if (i == E_AXIS)
  2111. plan_set_e_position(v);
  2112. else
  2113. didXYZ = true;
  2114. }
  2115. }
  2116. if (didXYZ) sync_plan_position();
  2117. }
  2118. #ifdef ULTIPANEL
  2119. /**
  2120. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2121. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2122. */
  2123. inline void gcode_M0_M1() {
  2124. char *src = strchr_pointer + 2;
  2125. unsigned long codenum = 0;
  2126. bool hasP = false, hasS = false;
  2127. if (code_seen('P')) {
  2128. codenum = code_value(); // milliseconds to wait
  2129. hasP = codenum > 0;
  2130. }
  2131. if (code_seen('S')) {
  2132. codenum = code_value() * 1000; // seconds to wait
  2133. hasS = codenum > 0;
  2134. }
  2135. char* starpos = strchr(src, '*');
  2136. if (starpos != NULL) *(starpos) = '\0';
  2137. while (*src == ' ') ++src;
  2138. if (!hasP && !hasS && *src != '\0')
  2139. lcd_setstatus(src, true);
  2140. else {
  2141. LCD_MESSAGEPGM(MSG_USERWAIT);
  2142. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2143. dontExpireStatus();
  2144. #endif
  2145. }
  2146. lcd_ignore_click();
  2147. st_synchronize();
  2148. previous_millis_cmd = millis();
  2149. if (codenum > 0) {
  2150. codenum += previous_millis_cmd; // keep track of when we started waiting
  2151. while(millis() < codenum && !lcd_clicked()) {
  2152. manage_heater();
  2153. manage_inactivity();
  2154. lcd_update();
  2155. }
  2156. lcd_ignore_click(false);
  2157. }
  2158. else {
  2159. if (!lcd_detected()) return;
  2160. while (!lcd_clicked()) {
  2161. manage_heater();
  2162. manage_inactivity();
  2163. lcd_update();
  2164. }
  2165. }
  2166. if (IS_SD_PRINTING)
  2167. LCD_MESSAGEPGM(MSG_RESUMING);
  2168. else
  2169. LCD_MESSAGEPGM(WELCOME_MSG);
  2170. }
  2171. #endif // ULTIPANEL
  2172. /**
  2173. * M17: Enable power on all stepper motors
  2174. */
  2175. inline void gcode_M17() {
  2176. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2177. enable_x();
  2178. enable_y();
  2179. enable_z();
  2180. enable_e0();
  2181. enable_e1();
  2182. enable_e2();
  2183. enable_e3();
  2184. }
  2185. #ifdef SDSUPPORT
  2186. /**
  2187. * M20: List SD card to serial output
  2188. */
  2189. inline void gcode_M20() {
  2190. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2191. card.ls();
  2192. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2193. }
  2194. /**
  2195. * M21: Init SD Card
  2196. */
  2197. inline void gcode_M21() {
  2198. card.initsd();
  2199. }
  2200. /**
  2201. * M22: Release SD Card
  2202. */
  2203. inline void gcode_M22() {
  2204. card.release();
  2205. }
  2206. /**
  2207. * M23: Select a file
  2208. */
  2209. inline void gcode_M23() {
  2210. char* codepos = strchr_pointer + 4;
  2211. char* starpos = strchr(codepos, '*');
  2212. if (starpos) *starpos = '\0';
  2213. card.openFile(codepos, true);
  2214. }
  2215. /**
  2216. * M24: Start SD Print
  2217. */
  2218. inline void gcode_M24() {
  2219. card.startFileprint();
  2220. starttime = millis();
  2221. }
  2222. /**
  2223. * M25: Pause SD Print
  2224. */
  2225. inline void gcode_M25() {
  2226. card.pauseSDPrint();
  2227. }
  2228. /**
  2229. * M26: Set SD Card file index
  2230. */
  2231. inline void gcode_M26() {
  2232. if (card.cardOK && code_seen('S'))
  2233. card.setIndex(code_value_long());
  2234. }
  2235. /**
  2236. * M27: Get SD Card status
  2237. */
  2238. inline void gcode_M27() {
  2239. card.getStatus();
  2240. }
  2241. /**
  2242. * M28: Start SD Write
  2243. */
  2244. inline void gcode_M28() {
  2245. char* codepos = strchr_pointer + 4;
  2246. char* starpos = strchr(codepos, '*');
  2247. if (starpos) {
  2248. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2249. strchr_pointer = strchr(npos, ' ') + 1;
  2250. *(starpos) = '\0';
  2251. }
  2252. card.openFile(codepos, false);
  2253. }
  2254. /**
  2255. * M29: Stop SD Write
  2256. * Processed in write to file routine above
  2257. */
  2258. inline void gcode_M29() {
  2259. // card.saving = false;
  2260. }
  2261. /**
  2262. * M30 <filename>: Delete SD Card file
  2263. */
  2264. inline void gcode_M30() {
  2265. if (card.cardOK) {
  2266. card.closefile();
  2267. char* starpos = strchr(strchr_pointer + 4, '*');
  2268. if (starpos) {
  2269. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2270. strchr_pointer = strchr(npos, ' ') + 1;
  2271. *(starpos) = '\0';
  2272. }
  2273. card.removeFile(strchr_pointer + 4);
  2274. }
  2275. }
  2276. #endif
  2277. /**
  2278. * M31: Get the time since the start of SD Print (or last M109)
  2279. */
  2280. inline void gcode_M31() {
  2281. stoptime = millis();
  2282. unsigned long t = (stoptime - starttime) / 1000;
  2283. int min = t / 60, sec = t % 60;
  2284. char time[30];
  2285. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2286. SERIAL_ECHO_START;
  2287. SERIAL_ECHOLN(time);
  2288. lcd_setstatus(time);
  2289. autotempShutdown();
  2290. }
  2291. #ifdef SDSUPPORT
  2292. /**
  2293. * M32: Select file and start SD Print
  2294. */
  2295. inline void gcode_M32() {
  2296. if (card.sdprinting)
  2297. st_synchronize();
  2298. char* codepos = strchr_pointer + 4;
  2299. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2300. if (! namestartpos)
  2301. namestartpos = codepos; //default name position, 4 letters after the M
  2302. else
  2303. namestartpos++; //to skip the '!'
  2304. char* starpos = strchr(codepos, '*');
  2305. if (starpos) *(starpos) = '\0';
  2306. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2307. if (card.cardOK) {
  2308. card.openFile(namestartpos, true, !call_procedure);
  2309. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2310. card.setIndex(code_value_long());
  2311. card.startFileprint();
  2312. if (!call_procedure)
  2313. starttime = millis(); //procedure calls count as normal print time.
  2314. }
  2315. }
  2316. /**
  2317. * M928: Start SD Write
  2318. */
  2319. inline void gcode_M928() {
  2320. char* starpos = strchr(strchr_pointer + 5, '*');
  2321. if (starpos) {
  2322. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2323. strchr_pointer = strchr(npos, ' ') + 1;
  2324. *(starpos) = '\0';
  2325. }
  2326. card.openLogFile(strchr_pointer + 5);
  2327. }
  2328. #endif // SDSUPPORT
  2329. /**
  2330. * M42: Change pin status via GCode
  2331. */
  2332. inline void gcode_M42() {
  2333. if (code_seen('S')) {
  2334. int pin_status = code_value(),
  2335. pin_number = LED_PIN;
  2336. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2337. pin_number = code_value();
  2338. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2339. if (sensitive_pins[i] == pin_number) {
  2340. pin_number = -1;
  2341. break;
  2342. }
  2343. }
  2344. #if defined(FAN_PIN) && FAN_PIN > -1
  2345. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2346. #endif
  2347. if (pin_number > -1) {
  2348. pinMode(pin_number, OUTPUT);
  2349. digitalWrite(pin_number, pin_status);
  2350. analogWrite(pin_number, pin_status);
  2351. }
  2352. } // code_seen('S')
  2353. }
  2354. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2355. // This is redudant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2356. #if defined (Z_PROBE_ENDSTOP)
  2357. #if (! defined (Z_PROBE_PIN) || Z_PROBE_PIN == -1)
  2358. #error "You must have a Z_PROBE_PIN defined in order to enable calculation of Z-Probe repeatability."
  2359. #endif
  2360. #else
  2361. #if (Z_MIN_PIN == -1)
  2362. #error "You must have a Z_MIN_PIN defined in order to enable calculation of Z-Probe repeatability."
  2363. #endif
  2364. #endif
  2365. /**
  2366. * M48: Z-Probe repeatability measurement function.
  2367. *
  2368. * Usage:
  2369. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2370. * P = Number of sampled points (4-50, default 10)
  2371. * X = Sample X position
  2372. * Y = Sample Y position
  2373. * V = Verbose level (0-4, default=1)
  2374. * E = Engage probe for each reading
  2375. * L = Number of legs of movement before probe
  2376. *
  2377. * This function assumes the bed has been homed. Specifically, that a G28 command
  2378. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2379. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2380. * regenerated.
  2381. *
  2382. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2383. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2384. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2385. */
  2386. inline void gcode_M48() {
  2387. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2388. int verbose_level = 1, n_samples = 10, n_legs = 0;
  2389. if (code_seen('V') || code_seen('v')) {
  2390. verbose_level = code_value();
  2391. if (verbose_level < 0 || verbose_level > 4 ) {
  2392. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2393. return;
  2394. }
  2395. }
  2396. if (verbose_level > 0)
  2397. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2398. if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
  2399. n_samples = code_value();
  2400. if (n_samples < 4 || n_samples > 50) {
  2401. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2402. return;
  2403. }
  2404. }
  2405. double X_probe_location, Y_probe_location,
  2406. X_current = X_probe_location = st_get_position_mm(X_AXIS),
  2407. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS),
  2408. Z_current = st_get_position_mm(Z_AXIS),
  2409. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING,
  2410. ext_position = st_get_position_mm(E_AXIS);
  2411. bool engage_probe_for_each_reading = code_seen('E') || code_seen('e');
  2412. if (code_seen('X') || code_seen('x')) {
  2413. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2414. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2415. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2416. return;
  2417. }
  2418. }
  2419. if (code_seen('Y') || code_seen('y')) {
  2420. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2421. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2422. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2423. return;
  2424. }
  2425. }
  2426. if (code_seen('L') || code_seen('l')) {
  2427. n_legs = code_value();
  2428. if (n_legs == 1) n_legs = 2;
  2429. if (n_legs < 0 || n_legs > 15) {
  2430. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2431. return;
  2432. }
  2433. }
  2434. //
  2435. // Do all the preliminary setup work. First raise the probe.
  2436. //
  2437. st_synchronize();
  2438. plan_bed_level_matrix.set_to_identity();
  2439. plan_buffer_line(X_current, Y_current, Z_start_location,
  2440. ext_position,
  2441. homing_feedrate[Z_AXIS] / 60,
  2442. active_extruder);
  2443. st_synchronize();
  2444. //
  2445. // Now get everything to the specified probe point So we can safely do a probe to
  2446. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2447. // use that as a starting point for each probe.
  2448. //
  2449. if (verbose_level > 2)
  2450. SERIAL_PROTOCOL("Positioning the probe...\n");
  2451. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2452. ext_position,
  2453. homing_feedrate[X_AXIS]/60,
  2454. active_extruder);
  2455. st_synchronize();
  2456. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2457. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2458. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2459. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2460. //
  2461. // OK, do the inital probe to get us close to the bed.
  2462. // Then retrace the right amount and use that in subsequent probes
  2463. //
  2464. engage_z_probe();
  2465. setup_for_endstop_move();
  2466. run_z_probe();
  2467. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2468. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2469. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2470. ext_position,
  2471. homing_feedrate[X_AXIS]/60,
  2472. active_extruder);
  2473. st_synchronize();
  2474. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2475. if (engage_probe_for_each_reading) retract_z_probe();
  2476. for (uint16_t n=0; n < n_samples; n++) {
  2477. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2478. if (n_legs) {
  2479. unsigned long ms = millis();
  2480. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2481. theta = RADIANS(ms % 360L);
  2482. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2483. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2484. //SERIAL_ECHOPAIR(" theta: ",theta);
  2485. //SERIAL_ECHOPAIR(" direction: ",dir);
  2486. //SERIAL_EOL;
  2487. for (int l = 0; l < n_legs - 1; l++) {
  2488. ms = millis();
  2489. theta += RADIANS(dir * (ms % 20L));
  2490. radius += (ms % 10L) - 5L;
  2491. if (radius < 0.0) radius = -radius;
  2492. X_current = X_probe_location + cos(theta) * radius;
  2493. Y_current = Y_probe_location + sin(theta) * radius;
  2494. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2495. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2496. if (verbose_level > 3) {
  2497. SERIAL_ECHOPAIR("x: ", X_current);
  2498. SERIAL_ECHOPAIR("y: ", Y_current);
  2499. SERIAL_EOL;
  2500. }
  2501. do_blocking_move_to(X_current, Y_current, Z_current);
  2502. } // n_legs loop
  2503. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2504. } // n_legs
  2505. if (engage_probe_for_each_reading) {
  2506. engage_z_probe();
  2507. delay(1000);
  2508. }
  2509. setup_for_endstop_move();
  2510. run_z_probe();
  2511. sample_set[n] = current_position[Z_AXIS];
  2512. //
  2513. // Get the current mean for the data points we have so far
  2514. //
  2515. sum = 0.0;
  2516. for (int j = 0; j <= n; j++) sum += sample_set[j];
  2517. mean = sum / (n + 1);
  2518. //
  2519. // Now, use that mean to calculate the standard deviation for the
  2520. // data points we have so far
  2521. //
  2522. sum = 0.0;
  2523. for (int j = 0; j <= n; j++) {
  2524. float ss = sample_set[j] - mean;
  2525. sum += ss * ss;
  2526. }
  2527. sigma = sqrt(sum / (n + 1));
  2528. if (verbose_level > 1) {
  2529. SERIAL_PROTOCOL(n+1);
  2530. SERIAL_PROTOCOLPGM(" of ");
  2531. SERIAL_PROTOCOL(n_samples);
  2532. SERIAL_PROTOCOLPGM(" z: ");
  2533. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2534. if (verbose_level > 2) {
  2535. SERIAL_PROTOCOLPGM(" mean: ");
  2536. SERIAL_PROTOCOL_F(mean,6);
  2537. SERIAL_PROTOCOLPGM(" sigma: ");
  2538. SERIAL_PROTOCOL_F(sigma,6);
  2539. }
  2540. }
  2541. if (verbose_level > 0) SERIAL_EOL;
  2542. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2543. st_synchronize();
  2544. if (engage_probe_for_each_reading) {
  2545. retract_z_probe();
  2546. delay(1000);
  2547. }
  2548. }
  2549. if (!engage_probe_for_each_reading) {
  2550. retract_z_probe();
  2551. delay(1000);
  2552. }
  2553. clean_up_after_endstop_move();
  2554. // enable_endstops(true);
  2555. if (verbose_level > 0) {
  2556. SERIAL_PROTOCOLPGM("Mean: ");
  2557. SERIAL_PROTOCOL_F(mean, 6);
  2558. SERIAL_EOL;
  2559. }
  2560. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2561. SERIAL_PROTOCOL_F(sigma, 6);
  2562. SERIAL_EOL; SERIAL_EOL;
  2563. }
  2564. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2565. /**
  2566. * M104: Set hot end temperature
  2567. */
  2568. inline void gcode_M104() {
  2569. if (setTargetedHotend(104)) return;
  2570. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2571. #ifdef DUAL_X_CARRIAGE
  2572. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2573. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2574. #endif
  2575. setWatch();
  2576. }
  2577. /**
  2578. * M105: Read hot end and bed temperature
  2579. */
  2580. inline void gcode_M105() {
  2581. if (setTargetedHotend(105)) return;
  2582. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2583. SERIAL_PROTOCOLPGM("ok T:");
  2584. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2585. SERIAL_PROTOCOLPGM(" /");
  2586. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2587. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2588. SERIAL_PROTOCOLPGM(" B:");
  2589. SERIAL_PROTOCOL_F(degBed(),1);
  2590. SERIAL_PROTOCOLPGM(" /");
  2591. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2592. #endif //TEMP_BED_PIN
  2593. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2594. SERIAL_PROTOCOLPGM(" T");
  2595. SERIAL_PROTOCOL(cur_extruder);
  2596. SERIAL_PROTOCOLPGM(":");
  2597. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2598. SERIAL_PROTOCOLPGM(" /");
  2599. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2600. }
  2601. #else
  2602. SERIAL_ERROR_START;
  2603. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2604. #endif
  2605. SERIAL_PROTOCOLPGM(" @:");
  2606. #ifdef EXTRUDER_WATTS
  2607. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2608. SERIAL_PROTOCOLPGM("W");
  2609. #else
  2610. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2611. #endif
  2612. SERIAL_PROTOCOLPGM(" B@:");
  2613. #ifdef BED_WATTS
  2614. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2615. SERIAL_PROTOCOLPGM("W");
  2616. #else
  2617. SERIAL_PROTOCOL(getHeaterPower(-1));
  2618. #endif
  2619. #ifdef SHOW_TEMP_ADC_VALUES
  2620. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2621. SERIAL_PROTOCOLPGM(" ADC B:");
  2622. SERIAL_PROTOCOL_F(degBed(),1);
  2623. SERIAL_PROTOCOLPGM("C->");
  2624. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2625. #endif
  2626. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2627. SERIAL_PROTOCOLPGM(" T");
  2628. SERIAL_PROTOCOL(cur_extruder);
  2629. SERIAL_PROTOCOLPGM(":");
  2630. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2631. SERIAL_PROTOCOLPGM("C->");
  2632. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2633. }
  2634. #endif
  2635. SERIAL_PROTOCOLLN("");
  2636. }
  2637. #if defined(FAN_PIN) && FAN_PIN > -1
  2638. /**
  2639. * M106: Set Fan Speed
  2640. */
  2641. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2642. /**
  2643. * M107: Fan Off
  2644. */
  2645. inline void gcode_M107() { fanSpeed = 0; }
  2646. #endif //FAN_PIN
  2647. /**
  2648. * M109: Wait for extruder(s) to reach temperature
  2649. */
  2650. inline void gcode_M109() {
  2651. if (setTargetedHotend(109)) return;
  2652. LCD_MESSAGEPGM(MSG_HEATING);
  2653. CooldownNoWait = code_seen('S');
  2654. if (CooldownNoWait || code_seen('R')) {
  2655. setTargetHotend(code_value(), tmp_extruder);
  2656. #ifdef DUAL_X_CARRIAGE
  2657. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2658. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2659. #endif
  2660. }
  2661. #ifdef AUTOTEMP
  2662. autotemp_enabled = code_seen('F');
  2663. if (autotemp_enabled) autotemp_factor = code_value();
  2664. if (code_seen('S')) autotemp_min = code_value();
  2665. if (code_seen('B')) autotemp_max = code_value();
  2666. #endif
  2667. setWatch();
  2668. unsigned long timetemp = millis();
  2669. /* See if we are heating up or cooling down */
  2670. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2671. cancel_heatup = false;
  2672. #ifdef TEMP_RESIDENCY_TIME
  2673. long residencyStart = -1;
  2674. /* continue to loop until we have reached the target temp
  2675. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2676. while((!cancel_heatup)&&((residencyStart == -1) ||
  2677. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2678. #else
  2679. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2680. #endif //TEMP_RESIDENCY_TIME
  2681. { // while loop
  2682. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2683. SERIAL_PROTOCOLPGM("T:");
  2684. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2685. SERIAL_PROTOCOLPGM(" E:");
  2686. SERIAL_PROTOCOL((int)tmp_extruder);
  2687. #ifdef TEMP_RESIDENCY_TIME
  2688. SERIAL_PROTOCOLPGM(" W:");
  2689. if (residencyStart > -1) {
  2690. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2691. SERIAL_PROTOCOLLN( timetemp );
  2692. }
  2693. else {
  2694. SERIAL_PROTOCOLLN( "?" );
  2695. }
  2696. #else
  2697. SERIAL_PROTOCOLLN("");
  2698. #endif
  2699. timetemp = millis();
  2700. }
  2701. manage_heater();
  2702. manage_inactivity();
  2703. lcd_update();
  2704. #ifdef TEMP_RESIDENCY_TIME
  2705. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2706. // or when current temp falls outside the hysteresis after target temp was reached
  2707. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2708. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2709. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2710. {
  2711. residencyStart = millis();
  2712. }
  2713. #endif //TEMP_RESIDENCY_TIME
  2714. }
  2715. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2716. starttime = previous_millis_cmd = millis();
  2717. }
  2718. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2719. /**
  2720. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2721. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2722. */
  2723. inline void gcode_M190() {
  2724. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2725. CooldownNoWait = code_seen('S');
  2726. if (CooldownNoWait || code_seen('R'))
  2727. setTargetBed(code_value());
  2728. unsigned long timetemp = millis();
  2729. cancel_heatup = false;
  2730. target_direction = isHeatingBed(); // true if heating, false if cooling
  2731. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2732. unsigned long ms = millis();
  2733. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2734. timetemp = ms;
  2735. float tt = degHotend(active_extruder);
  2736. SERIAL_PROTOCOLPGM("T:");
  2737. SERIAL_PROTOCOL(tt);
  2738. SERIAL_PROTOCOLPGM(" E:");
  2739. SERIAL_PROTOCOL((int)active_extruder);
  2740. SERIAL_PROTOCOLPGM(" B:");
  2741. SERIAL_PROTOCOL_F(degBed(), 1);
  2742. SERIAL_PROTOCOLLN("");
  2743. }
  2744. manage_heater();
  2745. manage_inactivity();
  2746. lcd_update();
  2747. }
  2748. LCD_MESSAGEPGM(MSG_BED_DONE);
  2749. previous_millis_cmd = millis();
  2750. }
  2751. #endif // TEMP_BED_PIN > -1
  2752. /**
  2753. * M112: Emergency Stop
  2754. */
  2755. inline void gcode_M112() {
  2756. kill();
  2757. }
  2758. #ifdef BARICUDA
  2759. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2760. /**
  2761. * M126: Heater 1 valve open
  2762. */
  2763. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2764. /**
  2765. * M127: Heater 1 valve close
  2766. */
  2767. inline void gcode_M127() { ValvePressure = 0; }
  2768. #endif
  2769. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2770. /**
  2771. * M128: Heater 2 valve open
  2772. */
  2773. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2774. /**
  2775. * M129: Heater 2 valve close
  2776. */
  2777. inline void gcode_M129() { EtoPPressure = 0; }
  2778. #endif
  2779. #endif //BARICUDA
  2780. /**
  2781. * M140: Set bed temperature
  2782. */
  2783. inline void gcode_M140() {
  2784. if (code_seen('S')) setTargetBed(code_value());
  2785. }
  2786. #if HAS_POWER_SWITCH
  2787. /**
  2788. * M80: Turn on Power Supply
  2789. */
  2790. inline void gcode_M80() {
  2791. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2792. // If you have a switch on suicide pin, this is useful
  2793. // if you want to start another print with suicide feature after
  2794. // a print without suicide...
  2795. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2796. OUT_WRITE(SUICIDE_PIN, HIGH);
  2797. #endif
  2798. #ifdef ULTIPANEL
  2799. powersupply = true;
  2800. LCD_MESSAGEPGM(WELCOME_MSG);
  2801. lcd_update();
  2802. #endif
  2803. }
  2804. #endif // HAS_POWER_SWITCH
  2805. /**
  2806. * M81: Turn off Power, including Power Supply, if there is one.
  2807. *
  2808. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2809. */
  2810. inline void gcode_M81() {
  2811. disable_heater();
  2812. st_synchronize();
  2813. disable_e0();
  2814. disable_e1();
  2815. disable_e2();
  2816. disable_e3();
  2817. finishAndDisableSteppers();
  2818. fanSpeed = 0;
  2819. delay(1000); // Wait 1 second before switching off
  2820. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2821. st_synchronize();
  2822. suicide();
  2823. #elif HAS_POWER_SWITCH
  2824. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2825. #endif
  2826. #ifdef ULTIPANEL
  2827. #if HAS_POWER_SWITCH
  2828. powersupply = false;
  2829. #endif
  2830. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2831. lcd_update();
  2832. #endif
  2833. }
  2834. /**
  2835. * M82: Set E codes absolute (default)
  2836. */
  2837. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2838. /**
  2839. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2840. */
  2841. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2842. /**
  2843. * M18, M84: Disable all stepper motors
  2844. */
  2845. inline void gcode_M18_M84() {
  2846. if (code_seen('S')) {
  2847. stepper_inactive_time = code_value() * 1000;
  2848. }
  2849. else {
  2850. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2851. if (all_axis) {
  2852. st_synchronize();
  2853. disable_e0();
  2854. disable_e1();
  2855. disable_e2();
  2856. disable_e3();
  2857. finishAndDisableSteppers();
  2858. }
  2859. else {
  2860. st_synchronize();
  2861. if (code_seen('X')) disable_x();
  2862. if (code_seen('Y')) disable_y();
  2863. if (code_seen('Z')) disable_z();
  2864. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2865. if (code_seen('E')) {
  2866. disable_e0();
  2867. disable_e1();
  2868. disable_e2();
  2869. disable_e3();
  2870. }
  2871. #endif
  2872. }
  2873. }
  2874. }
  2875. /**
  2876. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2877. */
  2878. inline void gcode_M85() {
  2879. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2880. }
  2881. /**
  2882. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2883. */
  2884. inline void gcode_M92() {
  2885. for(int8_t i=0; i < NUM_AXIS; i++) {
  2886. if (code_seen(axis_codes[i])) {
  2887. if (i == E_AXIS) {
  2888. float value = code_value();
  2889. if (value < 20.0) {
  2890. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2891. max_e_jerk *= factor;
  2892. max_feedrate[i] *= factor;
  2893. axis_steps_per_sqr_second[i] *= factor;
  2894. }
  2895. axis_steps_per_unit[i] = value;
  2896. }
  2897. else {
  2898. axis_steps_per_unit[i] = code_value();
  2899. }
  2900. }
  2901. }
  2902. }
  2903. /**
  2904. * M114: Output current position to serial port
  2905. */
  2906. inline void gcode_M114() {
  2907. SERIAL_PROTOCOLPGM("X:");
  2908. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2909. SERIAL_PROTOCOLPGM(" Y:");
  2910. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2911. SERIAL_PROTOCOLPGM(" Z:");
  2912. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2913. SERIAL_PROTOCOLPGM(" E:");
  2914. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2915. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2916. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2917. SERIAL_PROTOCOLPGM(" Y:");
  2918. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2919. SERIAL_PROTOCOLPGM(" Z:");
  2920. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2921. SERIAL_PROTOCOLLN("");
  2922. #ifdef SCARA
  2923. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2924. SERIAL_PROTOCOL(delta[X_AXIS]);
  2925. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2926. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2927. SERIAL_PROTOCOLLN("");
  2928. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2929. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2930. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2931. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2932. SERIAL_PROTOCOLLN("");
  2933. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2934. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2935. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2936. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2937. SERIAL_PROTOCOLLN("");
  2938. SERIAL_PROTOCOLLN("");
  2939. #endif
  2940. }
  2941. /**
  2942. * M115: Capabilities string
  2943. */
  2944. inline void gcode_M115() {
  2945. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2946. }
  2947. /**
  2948. * M117: Set LCD Status Message
  2949. */
  2950. inline void gcode_M117() {
  2951. char* codepos = strchr_pointer + 5;
  2952. char* starpos = strchr(codepos, '*');
  2953. if (starpos) *starpos = '\0';
  2954. lcd_setstatus(codepos);
  2955. }
  2956. /**
  2957. * M119: Output endstop states to serial output
  2958. */
  2959. inline void gcode_M119() {
  2960. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2961. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2962. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2963. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2964. #endif
  2965. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2966. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2967. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2968. #endif
  2969. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2970. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2971. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2972. #endif
  2973. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2974. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2975. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2976. #endif
  2977. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2978. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2979. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2980. #endif
  2981. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2982. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2983. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2984. #endif
  2985. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  2986. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  2987. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2988. #endif
  2989. #if defined(Z_PROBE_PIN) && Z_PROBE_PIN > -1
  2990. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  2991. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2992. #endif
  2993. }
  2994. /**
  2995. * M120: Enable endstops
  2996. */
  2997. inline void gcode_M120() { enable_endstops(false); }
  2998. /**
  2999. * M121: Disable endstops
  3000. */
  3001. inline void gcode_M121() { enable_endstops(true); }
  3002. #ifdef BLINKM
  3003. /**
  3004. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3005. */
  3006. inline void gcode_M150() {
  3007. SendColors(
  3008. code_seen('R') ? (byte)code_value() : 0,
  3009. code_seen('U') ? (byte)code_value() : 0,
  3010. code_seen('B') ? (byte)code_value() : 0
  3011. );
  3012. }
  3013. #endif // BLINKM
  3014. /**
  3015. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3016. * T<extruder>
  3017. * D<millimeters>
  3018. */
  3019. inline void gcode_M200() {
  3020. tmp_extruder = active_extruder;
  3021. if (code_seen('T')) {
  3022. tmp_extruder = code_value();
  3023. if (tmp_extruder >= EXTRUDERS) {
  3024. SERIAL_ECHO_START;
  3025. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3026. return;
  3027. }
  3028. }
  3029. if (code_seen('D')) {
  3030. float diameter = code_value();
  3031. // setting any extruder filament size disables volumetric on the assumption that
  3032. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3033. // for all extruders
  3034. volumetric_enabled = (diameter != 0.0);
  3035. if (volumetric_enabled) {
  3036. filament_size[tmp_extruder] = diameter;
  3037. // make sure all extruders have some sane value for the filament size
  3038. for (int i=0; i<EXTRUDERS; i++)
  3039. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3040. }
  3041. }
  3042. else {
  3043. //reserved for setting filament diameter via UFID or filament measuring device
  3044. return;
  3045. }
  3046. calculate_volumetric_multipliers();
  3047. }
  3048. /**
  3049. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3050. */
  3051. inline void gcode_M201() {
  3052. for (int8_t i=0; i < NUM_AXIS; i++) {
  3053. if (code_seen(axis_codes[i])) {
  3054. max_acceleration_units_per_sq_second[i] = code_value();
  3055. }
  3056. }
  3057. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3058. reset_acceleration_rates();
  3059. }
  3060. #if 0 // Not used for Sprinter/grbl gen6
  3061. inline void gcode_M202() {
  3062. for(int8_t i=0; i < NUM_AXIS; i++) {
  3063. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3064. }
  3065. }
  3066. #endif
  3067. /**
  3068. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3069. */
  3070. inline void gcode_M203() {
  3071. for (int8_t i=0; i < NUM_AXIS; i++) {
  3072. if (code_seen(axis_codes[i])) {
  3073. max_feedrate[i] = code_value();
  3074. }
  3075. }
  3076. }
  3077. /**
  3078. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3079. *
  3080. * P = Printing moves
  3081. * R = Retract only (no X, Y, Z) moves
  3082. * T = Travel (non printing) moves
  3083. *
  3084. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3085. */
  3086. inline void gcode_M204() {
  3087. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3088. {
  3089. acceleration = code_value();
  3090. travel_acceleration = acceleration;
  3091. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3092. SERIAL_EOL;
  3093. }
  3094. if (code_seen('P'))
  3095. {
  3096. acceleration = code_value();
  3097. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3098. SERIAL_EOL;
  3099. }
  3100. if (code_seen('R'))
  3101. {
  3102. retract_acceleration = code_value();
  3103. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3104. SERIAL_EOL;
  3105. }
  3106. if (code_seen('T'))
  3107. {
  3108. travel_acceleration = code_value();
  3109. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3110. SERIAL_EOL;
  3111. }
  3112. }
  3113. /**
  3114. * M205: Set Advanced Settings
  3115. *
  3116. * S = Min Feed Rate (mm/s)
  3117. * T = Min Travel Feed Rate (mm/s)
  3118. * B = Min Segment Time (µs)
  3119. * X = Max XY Jerk (mm/s/s)
  3120. * Z = Max Z Jerk (mm/s/s)
  3121. * E = Max E Jerk (mm/s/s)
  3122. */
  3123. inline void gcode_M205() {
  3124. if (code_seen('S')) minimumfeedrate = code_value();
  3125. if (code_seen('T')) mintravelfeedrate = code_value();
  3126. if (code_seen('B')) minsegmenttime = code_value();
  3127. if (code_seen('X')) max_xy_jerk = code_value();
  3128. if (code_seen('Z')) max_z_jerk = code_value();
  3129. if (code_seen('E')) max_e_jerk = code_value();
  3130. }
  3131. /**
  3132. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3133. */
  3134. inline void gcode_M206() {
  3135. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3136. if (code_seen(axis_codes[i])) {
  3137. home_offset[i] = code_value();
  3138. }
  3139. }
  3140. #ifdef SCARA
  3141. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3142. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3143. #endif
  3144. }
  3145. #ifdef DELTA
  3146. /**
  3147. * M665: Set delta configurations
  3148. *
  3149. * L = diagonal rod
  3150. * R = delta radius
  3151. * S = segments per second
  3152. */
  3153. inline void gcode_M665() {
  3154. if (code_seen('L')) delta_diagonal_rod = code_value();
  3155. if (code_seen('R')) delta_radius = code_value();
  3156. if (code_seen('S')) delta_segments_per_second = code_value();
  3157. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3158. }
  3159. /**
  3160. * M666: Set delta endstop adjustment
  3161. */
  3162. inline void gcode_M666() {
  3163. for (int8_t i = 0; i < 3; i++) {
  3164. if (code_seen(axis_codes[i])) {
  3165. endstop_adj[i] = code_value();
  3166. }
  3167. }
  3168. }
  3169. #elif defined(Z_DUAL_ENDSTOPS)
  3170. /**
  3171. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3172. */
  3173. inline void gcode_M666() {
  3174. if (code_seen('Z')) z_endstop_adj = code_value();
  3175. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3176. SERIAL_EOL;
  3177. }
  3178. #endif // DELTA
  3179. #ifdef FWRETRACT
  3180. /**
  3181. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3182. */
  3183. inline void gcode_M207() {
  3184. if (code_seen('S')) retract_length = code_value();
  3185. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3186. if (code_seen('Z')) retract_zlift = code_value();
  3187. }
  3188. /**
  3189. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3190. */
  3191. inline void gcode_M208() {
  3192. if (code_seen('S')) retract_recover_length = code_value();
  3193. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3194. }
  3195. /**
  3196. * M209: Enable automatic retract (M209 S1)
  3197. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3198. */
  3199. inline void gcode_M209() {
  3200. if (code_seen('S')) {
  3201. int t = code_value();
  3202. switch(t) {
  3203. case 0:
  3204. autoretract_enabled = false;
  3205. break;
  3206. case 1:
  3207. autoretract_enabled = true;
  3208. break;
  3209. default:
  3210. SERIAL_ECHO_START;
  3211. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3212. SERIAL_ECHO(cmdbuffer[bufindr]);
  3213. SERIAL_ECHOLNPGM("\"");
  3214. return;
  3215. }
  3216. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3217. }
  3218. }
  3219. #endif // FWRETRACT
  3220. #if EXTRUDERS > 1
  3221. /**
  3222. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3223. */
  3224. inline void gcode_M218() {
  3225. if (setTargetedHotend(218)) return;
  3226. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3227. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3228. #ifdef DUAL_X_CARRIAGE
  3229. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3230. #endif
  3231. SERIAL_ECHO_START;
  3232. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3233. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3234. SERIAL_ECHO(" ");
  3235. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3236. SERIAL_ECHO(",");
  3237. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3238. #ifdef DUAL_X_CARRIAGE
  3239. SERIAL_ECHO(",");
  3240. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3241. #endif
  3242. }
  3243. SERIAL_EOL;
  3244. }
  3245. #endif // EXTRUDERS > 1
  3246. /**
  3247. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3248. */
  3249. inline void gcode_M220() {
  3250. if (code_seen('S')) feedmultiply = code_value();
  3251. }
  3252. /**
  3253. * M221: Set extrusion percentage (M221 T0 S95)
  3254. */
  3255. inline void gcode_M221() {
  3256. if (code_seen('S')) {
  3257. int sval = code_value();
  3258. if (code_seen('T')) {
  3259. if (setTargetedHotend(221)) return;
  3260. extruder_multiply[tmp_extruder] = sval;
  3261. }
  3262. else {
  3263. extruder_multiply[active_extruder] = sval;
  3264. }
  3265. }
  3266. }
  3267. /**
  3268. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3269. */
  3270. inline void gcode_M226() {
  3271. if (code_seen('P')) {
  3272. int pin_number = code_value();
  3273. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3274. if (pin_state >= -1 && pin_state <= 1) {
  3275. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3276. if (sensitive_pins[i] == pin_number) {
  3277. pin_number = -1;
  3278. break;
  3279. }
  3280. }
  3281. if (pin_number > -1) {
  3282. int target = LOW;
  3283. st_synchronize();
  3284. pinMode(pin_number, INPUT);
  3285. switch(pin_state){
  3286. case 1:
  3287. target = HIGH;
  3288. break;
  3289. case 0:
  3290. target = LOW;
  3291. break;
  3292. case -1:
  3293. target = !digitalRead(pin_number);
  3294. break;
  3295. }
  3296. while(digitalRead(pin_number) != target) {
  3297. manage_heater();
  3298. manage_inactivity();
  3299. lcd_update();
  3300. }
  3301. } // pin_number > -1
  3302. } // pin_state -1 0 1
  3303. } // code_seen('P')
  3304. }
  3305. #if NUM_SERVOS > 0
  3306. /**
  3307. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3308. */
  3309. inline void gcode_M280() {
  3310. int servo_index = code_seen('P') ? code_value() : -1;
  3311. int servo_position = 0;
  3312. if (code_seen('S')) {
  3313. servo_position = code_value();
  3314. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3315. #if SERVO_LEVELING
  3316. servos[servo_index].attach(0);
  3317. #endif
  3318. servos[servo_index].write(servo_position);
  3319. #if SERVO_LEVELING
  3320. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3321. servos[servo_index].detach();
  3322. #endif
  3323. }
  3324. else {
  3325. SERIAL_ECHO_START;
  3326. SERIAL_ECHO("Servo ");
  3327. SERIAL_ECHO(servo_index);
  3328. SERIAL_ECHOLN(" out of range");
  3329. }
  3330. }
  3331. else if (servo_index >= 0) {
  3332. SERIAL_PROTOCOL(MSG_OK);
  3333. SERIAL_PROTOCOL(" Servo ");
  3334. SERIAL_PROTOCOL(servo_index);
  3335. SERIAL_PROTOCOL(": ");
  3336. SERIAL_PROTOCOL(servos[servo_index].read());
  3337. SERIAL_PROTOCOLLN("");
  3338. }
  3339. }
  3340. #endif // NUM_SERVOS > 0
  3341. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3342. /**
  3343. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3344. */
  3345. inline void gcode_M300() {
  3346. int beepS = code_seen('S') ? code_value() : 110;
  3347. int beepP = code_seen('P') ? code_value() : 1000;
  3348. if (beepS > 0) {
  3349. #if BEEPER > 0
  3350. tone(BEEPER, beepS);
  3351. delay(beepP);
  3352. noTone(BEEPER);
  3353. #elif defined(ULTRALCD)
  3354. lcd_buzz(beepS, beepP);
  3355. #elif defined(LCD_USE_I2C_BUZZER)
  3356. lcd_buzz(beepP, beepS);
  3357. #endif
  3358. }
  3359. else {
  3360. delay(beepP);
  3361. }
  3362. }
  3363. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3364. #ifdef PIDTEMP
  3365. /**
  3366. * M301: Set PID parameters P I D (and optionally C)
  3367. */
  3368. inline void gcode_M301() {
  3369. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3370. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3371. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3372. if (e < EXTRUDERS) { // catch bad input value
  3373. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3374. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3375. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3376. #ifdef PID_ADD_EXTRUSION_RATE
  3377. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3378. #endif
  3379. updatePID();
  3380. SERIAL_PROTOCOL(MSG_OK);
  3381. #ifdef PID_PARAMS_PER_EXTRUDER
  3382. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3383. SERIAL_PROTOCOL(e);
  3384. #endif // PID_PARAMS_PER_EXTRUDER
  3385. SERIAL_PROTOCOL(" p:");
  3386. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3387. SERIAL_PROTOCOL(" i:");
  3388. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3389. SERIAL_PROTOCOL(" d:");
  3390. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3391. #ifdef PID_ADD_EXTRUSION_RATE
  3392. SERIAL_PROTOCOL(" c:");
  3393. //Kc does not have scaling applied above, or in resetting defaults
  3394. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3395. #endif
  3396. SERIAL_PROTOCOLLN("");
  3397. }
  3398. else {
  3399. SERIAL_ECHO_START;
  3400. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3401. }
  3402. }
  3403. #endif // PIDTEMP
  3404. #ifdef PIDTEMPBED
  3405. inline void gcode_M304() {
  3406. if (code_seen('P')) bedKp = code_value();
  3407. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3408. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3409. updatePID();
  3410. SERIAL_PROTOCOL(MSG_OK);
  3411. SERIAL_PROTOCOL(" p:");
  3412. SERIAL_PROTOCOL(bedKp);
  3413. SERIAL_PROTOCOL(" i:");
  3414. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3415. SERIAL_PROTOCOL(" d:");
  3416. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3417. SERIAL_PROTOCOLLN("");
  3418. }
  3419. #endif // PIDTEMPBED
  3420. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3421. /**
  3422. * M240: Trigger a camera by emulating a Canon RC-1
  3423. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3424. */
  3425. inline void gcode_M240() {
  3426. #ifdef CHDK
  3427. OUT_WRITE(CHDK, HIGH);
  3428. chdkHigh = millis();
  3429. chdkActive = true;
  3430. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3431. const uint8_t NUM_PULSES = 16;
  3432. const float PULSE_LENGTH = 0.01524;
  3433. for (int i = 0; i < NUM_PULSES; i++) {
  3434. WRITE(PHOTOGRAPH_PIN, HIGH);
  3435. _delay_ms(PULSE_LENGTH);
  3436. WRITE(PHOTOGRAPH_PIN, LOW);
  3437. _delay_ms(PULSE_LENGTH);
  3438. }
  3439. delay(7.33);
  3440. for (int i = 0; i < NUM_PULSES; i++) {
  3441. WRITE(PHOTOGRAPH_PIN, HIGH);
  3442. _delay_ms(PULSE_LENGTH);
  3443. WRITE(PHOTOGRAPH_PIN, LOW);
  3444. _delay_ms(PULSE_LENGTH);
  3445. }
  3446. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3447. }
  3448. #endif // CHDK || PHOTOGRAPH_PIN
  3449. #ifdef DOGLCD
  3450. /**
  3451. * M250: Read and optionally set the LCD contrast
  3452. */
  3453. inline void gcode_M250() {
  3454. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3455. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3456. SERIAL_PROTOCOL(lcd_contrast);
  3457. SERIAL_PROTOCOLLN("");
  3458. }
  3459. #endif // DOGLCD
  3460. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3461. /**
  3462. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3463. */
  3464. inline void gcode_M302() {
  3465. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3466. }
  3467. #endif // PREVENT_DANGEROUS_EXTRUDE
  3468. /**
  3469. * M303: PID relay autotune
  3470. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3471. * E<extruder> (-1 for the bed)
  3472. * C<cycles>
  3473. */
  3474. inline void gcode_M303() {
  3475. int e = code_seen('E') ? code_value_long() : 0;
  3476. int c = code_seen('C') ? code_value_long() : 5;
  3477. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3478. PID_autotune(temp, e, c);
  3479. }
  3480. #ifdef SCARA
  3481. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3482. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3483. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3484. if (! Stopped) {
  3485. //get_coordinates(); // For X Y Z E F
  3486. delta[X_AXIS] = delta_x;
  3487. delta[Y_AXIS] = delta_y;
  3488. calculate_SCARA_forward_Transform(delta);
  3489. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3490. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3491. prepare_move();
  3492. //ClearToSend();
  3493. return true;
  3494. }
  3495. return false;
  3496. }
  3497. /**
  3498. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3499. */
  3500. inline bool gcode_M360() {
  3501. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3502. return SCARA_move_to_cal(0, 120);
  3503. }
  3504. /**
  3505. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3506. */
  3507. inline bool gcode_M361() {
  3508. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3509. return SCARA_move_to_cal(90, 130);
  3510. }
  3511. /**
  3512. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3513. */
  3514. inline bool gcode_M362() {
  3515. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3516. return SCARA_move_to_cal(60, 180);
  3517. }
  3518. /**
  3519. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3520. */
  3521. inline bool gcode_M363() {
  3522. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3523. return SCARA_move_to_cal(50, 90);
  3524. }
  3525. /**
  3526. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3527. */
  3528. inline bool gcode_M364() {
  3529. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3530. return SCARA_move_to_cal(45, 135);
  3531. }
  3532. /**
  3533. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3534. */
  3535. inline void gcode_M365() {
  3536. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3537. if (code_seen(axis_codes[i])) {
  3538. axis_scaling[i] = code_value();
  3539. }
  3540. }
  3541. }
  3542. #endif // SCARA
  3543. #ifdef EXT_SOLENOID
  3544. void enable_solenoid(uint8_t num) {
  3545. switch(num) {
  3546. case 0:
  3547. OUT_WRITE(SOL0_PIN, HIGH);
  3548. break;
  3549. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3550. case 1:
  3551. OUT_WRITE(SOL1_PIN, HIGH);
  3552. break;
  3553. #endif
  3554. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3555. case 2:
  3556. OUT_WRITE(SOL2_PIN, HIGH);
  3557. break;
  3558. #endif
  3559. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3560. case 3:
  3561. OUT_WRITE(SOL3_PIN, HIGH);
  3562. break;
  3563. #endif
  3564. default:
  3565. SERIAL_ECHO_START;
  3566. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3567. break;
  3568. }
  3569. }
  3570. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3571. void disable_all_solenoids() {
  3572. OUT_WRITE(SOL0_PIN, LOW);
  3573. OUT_WRITE(SOL1_PIN, LOW);
  3574. OUT_WRITE(SOL2_PIN, LOW);
  3575. OUT_WRITE(SOL3_PIN, LOW);
  3576. }
  3577. /**
  3578. * M380: Enable solenoid on the active extruder
  3579. */
  3580. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3581. /**
  3582. * M381: Disable all solenoids
  3583. */
  3584. inline void gcode_M381() { disable_all_solenoids(); }
  3585. #endif // EXT_SOLENOID
  3586. /**
  3587. * M400: Finish all moves
  3588. */
  3589. inline void gcode_M400() { st_synchronize(); }
  3590. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3591. /**
  3592. * M401: Engage Z Servo endstop if available
  3593. */
  3594. inline void gcode_M401() { engage_z_probe(); }
  3595. /**
  3596. * M402: Retract Z Servo endstop if enabled
  3597. */
  3598. inline void gcode_M402() { retract_z_probe(); }
  3599. #endif
  3600. #ifdef FILAMENT_SENSOR
  3601. /**
  3602. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3603. */
  3604. inline void gcode_M404() {
  3605. #if FILWIDTH_PIN > -1
  3606. if (code_seen('W')) {
  3607. filament_width_nominal = code_value();
  3608. }
  3609. else {
  3610. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3611. SERIAL_PROTOCOLLN(filament_width_nominal);
  3612. }
  3613. #endif
  3614. }
  3615. /**
  3616. * M405: Turn on filament sensor for control
  3617. */
  3618. inline void gcode_M405() {
  3619. if (code_seen('D')) meas_delay_cm = code_value();
  3620. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3621. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3622. int temp_ratio = widthFil_to_size_ratio();
  3623. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3624. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3625. delay_index1 = delay_index2 = 0;
  3626. }
  3627. filament_sensor = true;
  3628. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3629. //SERIAL_PROTOCOL(filament_width_meas);
  3630. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3631. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3632. }
  3633. /**
  3634. * M406: Turn off filament sensor for control
  3635. */
  3636. inline void gcode_M406() { filament_sensor = false; }
  3637. /**
  3638. * M407: Get measured filament diameter on serial output
  3639. */
  3640. inline void gcode_M407() {
  3641. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3642. SERIAL_PROTOCOLLN(filament_width_meas);
  3643. }
  3644. #endif // FILAMENT_SENSOR
  3645. /**
  3646. * M500: Store settings in EEPROM
  3647. */
  3648. inline void gcode_M500() {
  3649. Config_StoreSettings();
  3650. }
  3651. /**
  3652. * M501: Read settings from EEPROM
  3653. */
  3654. inline void gcode_M501() {
  3655. Config_RetrieveSettings();
  3656. }
  3657. /**
  3658. * M502: Revert to default settings
  3659. */
  3660. inline void gcode_M502() {
  3661. Config_ResetDefault();
  3662. }
  3663. /**
  3664. * M503: print settings currently in memory
  3665. */
  3666. inline void gcode_M503() {
  3667. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3668. }
  3669. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3670. /**
  3671. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3672. */
  3673. inline void gcode_M540() {
  3674. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3675. }
  3676. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3677. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3678. inline void gcode_SET_Z_PROBE_OFFSET() {
  3679. float value;
  3680. if (code_seen('Z')) {
  3681. value = code_value();
  3682. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3683. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3684. SERIAL_ECHO_START;
  3685. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3686. SERIAL_PROTOCOLLN("");
  3687. }
  3688. else {
  3689. SERIAL_ECHO_START;
  3690. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3691. SERIAL_ECHOPGM(MSG_Z_MIN);
  3692. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3693. SERIAL_ECHOPGM(MSG_Z_MAX);
  3694. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3695. SERIAL_PROTOCOLLN("");
  3696. }
  3697. }
  3698. else {
  3699. SERIAL_ECHO_START;
  3700. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3701. SERIAL_ECHO(-zprobe_zoffset);
  3702. SERIAL_PROTOCOLLN("");
  3703. }
  3704. }
  3705. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3706. #ifdef FILAMENTCHANGEENABLE
  3707. /**
  3708. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3709. */
  3710. inline void gcode_M600() {
  3711. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3712. for (int i=0; i<NUM_AXIS; i++)
  3713. target[i] = lastpos[i] = current_position[i];
  3714. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3715. #ifdef DELTA
  3716. #define RUNPLAN calculate_delta(target); BASICPLAN
  3717. #else
  3718. #define RUNPLAN BASICPLAN
  3719. #endif
  3720. //retract by E
  3721. if (code_seen('E')) target[E_AXIS] += code_value();
  3722. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3723. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3724. #endif
  3725. RUNPLAN;
  3726. //lift Z
  3727. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3728. #ifdef FILAMENTCHANGE_ZADD
  3729. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3730. #endif
  3731. RUNPLAN;
  3732. //move xy
  3733. if (code_seen('X')) target[X_AXIS] = code_value();
  3734. #ifdef FILAMENTCHANGE_XPOS
  3735. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3736. #endif
  3737. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3738. #ifdef FILAMENTCHANGE_YPOS
  3739. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3740. #endif
  3741. RUNPLAN;
  3742. if (code_seen('L')) target[E_AXIS] += code_value();
  3743. #ifdef FILAMENTCHANGE_FINALRETRACT
  3744. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3745. #endif
  3746. RUNPLAN;
  3747. //finish moves
  3748. st_synchronize();
  3749. //disable extruder steppers so filament can be removed
  3750. disable_e0();
  3751. disable_e1();
  3752. disable_e2();
  3753. disable_e3();
  3754. delay(100);
  3755. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3756. uint8_t cnt = 0;
  3757. while (!lcd_clicked()) {
  3758. cnt++;
  3759. manage_heater();
  3760. manage_inactivity(true);
  3761. lcd_update();
  3762. if (cnt == 0) {
  3763. #if BEEPER > 0
  3764. OUT_WRITE(BEEPER,HIGH);
  3765. delay(3);
  3766. WRITE(BEEPER,LOW);
  3767. delay(3);
  3768. #else
  3769. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3770. lcd_buzz(1000/6, 100);
  3771. #else
  3772. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3773. #endif
  3774. #endif
  3775. }
  3776. } // while(!lcd_clicked)
  3777. //return to normal
  3778. if (code_seen('L')) target[E_AXIS] -= code_value();
  3779. #ifdef FILAMENTCHANGE_FINALRETRACT
  3780. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3781. #endif
  3782. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3783. plan_set_e_position(current_position[E_AXIS]);
  3784. RUNPLAN; //should do nothing
  3785. lcd_reset_alert_level();
  3786. #ifdef DELTA
  3787. calculate_delta(lastpos);
  3788. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3789. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3790. #else
  3791. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3792. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3793. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3794. #endif
  3795. #ifdef FILAMENT_RUNOUT_SENSOR
  3796. filrunoutEnqued = false;
  3797. #endif
  3798. }
  3799. #endif // FILAMENTCHANGEENABLE
  3800. #ifdef DUAL_X_CARRIAGE
  3801. /**
  3802. * M605: Set dual x-carriage movement mode
  3803. *
  3804. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3805. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3806. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3807. * millimeters x-offset and an optional differential hotend temperature of
  3808. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3809. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3810. *
  3811. * Note: the X axis should be homed after changing dual x-carriage mode.
  3812. */
  3813. inline void gcode_M605() {
  3814. st_synchronize();
  3815. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3816. switch(dual_x_carriage_mode) {
  3817. case DXC_DUPLICATION_MODE:
  3818. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3819. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3820. SERIAL_ECHO_START;
  3821. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3822. SERIAL_ECHO(" ");
  3823. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3824. SERIAL_ECHO(",");
  3825. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3826. SERIAL_ECHO(" ");
  3827. SERIAL_ECHO(duplicate_extruder_x_offset);
  3828. SERIAL_ECHO(",");
  3829. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3830. break;
  3831. case DXC_FULL_CONTROL_MODE:
  3832. case DXC_AUTO_PARK_MODE:
  3833. break;
  3834. default:
  3835. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3836. break;
  3837. }
  3838. active_extruder_parked = false;
  3839. extruder_duplication_enabled = false;
  3840. delayed_move_time = 0;
  3841. }
  3842. #endif // DUAL_X_CARRIAGE
  3843. /**
  3844. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3845. */
  3846. inline void gcode_M907() {
  3847. #if HAS_DIGIPOTSS
  3848. for (int i=0;i<NUM_AXIS;i++)
  3849. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3850. if (code_seen('B')) digipot_current(4, code_value());
  3851. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3852. #endif
  3853. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3854. if (code_seen('X')) digipot_current(0, code_value());
  3855. #endif
  3856. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3857. if (code_seen('Z')) digipot_current(1, code_value());
  3858. #endif
  3859. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3860. if (code_seen('E')) digipot_current(2, code_value());
  3861. #endif
  3862. #ifdef DIGIPOT_I2C
  3863. // this one uses actual amps in floating point
  3864. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3865. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3866. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3867. #endif
  3868. }
  3869. #if HAS_DIGIPOTSS
  3870. /**
  3871. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3872. */
  3873. inline void gcode_M908() {
  3874. digitalPotWrite(
  3875. code_seen('P') ? code_value() : 0,
  3876. code_seen('S') ? code_value() : 0
  3877. );
  3878. }
  3879. #endif // HAS_DIGIPOTSS
  3880. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3881. inline void gcode_M350() {
  3882. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3883. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3884. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3885. if(code_seen('B')) microstep_mode(4,code_value());
  3886. microstep_readings();
  3887. #endif
  3888. }
  3889. /**
  3890. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3891. * S# determines MS1 or MS2, X# sets the pin high/low.
  3892. */
  3893. inline void gcode_M351() {
  3894. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3895. if (code_seen('S')) switch(code_value_long()) {
  3896. case 1:
  3897. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3898. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3899. break;
  3900. case 2:
  3901. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3902. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3903. break;
  3904. }
  3905. microstep_readings();
  3906. #endif
  3907. }
  3908. /**
  3909. * M999: Restart after being stopped
  3910. */
  3911. inline void gcode_M999() {
  3912. Stopped = false;
  3913. lcd_reset_alert_level();
  3914. gcode_LastN = Stopped_gcode_LastN;
  3915. FlushSerialRequestResend();
  3916. }
  3917. inline void gcode_T() {
  3918. tmp_extruder = code_value();
  3919. if (tmp_extruder >= EXTRUDERS) {
  3920. SERIAL_ECHO_START;
  3921. SERIAL_ECHO("T");
  3922. SERIAL_ECHO(tmp_extruder);
  3923. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3924. }
  3925. else {
  3926. #if EXTRUDERS > 1
  3927. bool make_move = false;
  3928. #endif
  3929. if (code_seen('F')) {
  3930. #if EXTRUDERS > 1
  3931. make_move = true;
  3932. #endif
  3933. next_feedrate = code_value();
  3934. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3935. }
  3936. #if EXTRUDERS > 1
  3937. if (tmp_extruder != active_extruder) {
  3938. // Save current position to return to after applying extruder offset
  3939. memcpy(destination, current_position, sizeof(destination));
  3940. #ifdef DUAL_X_CARRIAGE
  3941. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3942. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3943. // Park old head: 1) raise 2) move to park position 3) lower
  3944. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3945. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3946. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3947. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3948. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3949. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3950. st_synchronize();
  3951. }
  3952. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3953. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3954. extruder_offset[Y_AXIS][active_extruder] +
  3955. extruder_offset[Y_AXIS][tmp_extruder];
  3956. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3957. extruder_offset[Z_AXIS][active_extruder] +
  3958. extruder_offset[Z_AXIS][tmp_extruder];
  3959. active_extruder = tmp_extruder;
  3960. // This function resets the max/min values - the current position may be overwritten below.
  3961. axis_is_at_home(X_AXIS);
  3962. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3963. current_position[X_AXIS] = inactive_extruder_x_pos;
  3964. inactive_extruder_x_pos = destination[X_AXIS];
  3965. }
  3966. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3967. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3968. if (active_extruder == 0 || active_extruder_parked)
  3969. current_position[X_AXIS] = inactive_extruder_x_pos;
  3970. else
  3971. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3972. inactive_extruder_x_pos = destination[X_AXIS];
  3973. extruder_duplication_enabled = false;
  3974. }
  3975. else {
  3976. // record raised toolhead position for use by unpark
  3977. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3978. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3979. active_extruder_parked = true;
  3980. delayed_move_time = 0;
  3981. }
  3982. #else // !DUAL_X_CARRIAGE
  3983. // Offset extruder (only by XY)
  3984. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3985. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3986. // Set the new active extruder and position
  3987. active_extruder = tmp_extruder;
  3988. #endif // !DUAL_X_CARRIAGE
  3989. #ifdef DELTA
  3990. sync_plan_position_delta();
  3991. #else
  3992. sync_plan_position();
  3993. #endif
  3994. // Move to the old position if 'F' was in the parameters
  3995. if (make_move && !Stopped) prepare_move();
  3996. }
  3997. #ifdef EXT_SOLENOID
  3998. st_synchronize();
  3999. disable_all_solenoids();
  4000. enable_solenoid_on_active_extruder();
  4001. #endif // EXT_SOLENOID
  4002. #endif // EXTRUDERS > 1
  4003. SERIAL_ECHO_START;
  4004. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4005. SERIAL_PROTOCOLLN((int)active_extruder);
  4006. }
  4007. }
  4008. /**
  4009. * Process Commands and dispatch them to handlers
  4010. */
  4011. void process_commands() {
  4012. if (code_seen('G')) {
  4013. int gCode = code_value_long();
  4014. switch(gCode) {
  4015. // G0, G1
  4016. case 0:
  4017. case 1:
  4018. gcode_G0_G1();
  4019. break;
  4020. // G2, G3
  4021. #ifndef SCARA
  4022. case 2: // G2 - CW ARC
  4023. case 3: // G3 - CCW ARC
  4024. gcode_G2_G3(gCode == 2);
  4025. break;
  4026. #endif
  4027. // G4 Dwell
  4028. case 4:
  4029. gcode_G4();
  4030. break;
  4031. #ifdef FWRETRACT
  4032. case 10: // G10: retract
  4033. case 11: // G11: retract_recover
  4034. gcode_G10_G11(gCode == 10);
  4035. break;
  4036. #endif //FWRETRACT
  4037. case 28: // G28: Home all axes, one at a time
  4038. gcode_G28();
  4039. break;
  4040. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4041. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4042. gcode_G29();
  4043. break;
  4044. #endif
  4045. #ifdef ENABLE_AUTO_BED_LEVELING
  4046. #ifndef Z_PROBE_SLED
  4047. case 30: // G30 Single Z Probe
  4048. gcode_G30();
  4049. break;
  4050. #else // Z_PROBE_SLED
  4051. case 31: // G31: dock the sled
  4052. case 32: // G32: undock the sled
  4053. dock_sled(gCode == 31);
  4054. break;
  4055. #endif // Z_PROBE_SLED
  4056. #endif // ENABLE_AUTO_BED_LEVELING
  4057. case 90: // G90
  4058. relative_mode = false;
  4059. break;
  4060. case 91: // G91
  4061. relative_mode = true;
  4062. break;
  4063. case 92: // G92
  4064. gcode_G92();
  4065. break;
  4066. }
  4067. }
  4068. else if (code_seen('M')) {
  4069. switch( code_value_long() ) {
  4070. #ifdef ULTIPANEL
  4071. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4072. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4073. gcode_M0_M1();
  4074. break;
  4075. #endif // ULTIPANEL
  4076. case 17:
  4077. gcode_M17();
  4078. break;
  4079. #ifdef SDSUPPORT
  4080. case 20: // M20 - list SD card
  4081. gcode_M20(); break;
  4082. case 21: // M21 - init SD card
  4083. gcode_M21(); break;
  4084. case 22: //M22 - release SD card
  4085. gcode_M22(); break;
  4086. case 23: //M23 - Select file
  4087. gcode_M23(); break;
  4088. case 24: //M24 - Start SD print
  4089. gcode_M24(); break;
  4090. case 25: //M25 - Pause SD print
  4091. gcode_M25(); break;
  4092. case 26: //M26 - Set SD index
  4093. gcode_M26(); break;
  4094. case 27: //M27 - Get SD status
  4095. gcode_M27(); break;
  4096. case 28: //M28 - Start SD write
  4097. gcode_M28(); break;
  4098. case 29: //M29 - Stop SD write
  4099. gcode_M29(); break;
  4100. case 30: //M30 <filename> Delete File
  4101. gcode_M30(); break;
  4102. case 32: //M32 - Select file and start SD print
  4103. gcode_M32(); break;
  4104. case 928: //M928 - Start SD write
  4105. gcode_M928(); break;
  4106. #endif //SDSUPPORT
  4107. case 31: //M31 take time since the start of the SD print or an M109 command
  4108. gcode_M31();
  4109. break;
  4110. case 42: //M42 -Change pin status via gcode
  4111. gcode_M42();
  4112. break;
  4113. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4114. case 48: // M48 Z-Probe repeatability
  4115. gcode_M48();
  4116. break;
  4117. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4118. case 104: // M104
  4119. gcode_M104();
  4120. break;
  4121. case 112: // M112 Emergency Stop
  4122. gcode_M112();
  4123. break;
  4124. case 140: // M140 Set bed temp
  4125. gcode_M140();
  4126. break;
  4127. case 105: // M105 Read current temperature
  4128. gcode_M105();
  4129. return;
  4130. break;
  4131. case 109: // M109 Wait for temperature
  4132. gcode_M109();
  4133. break;
  4134. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4135. case 190: // M190 - Wait for bed heater to reach target.
  4136. gcode_M190();
  4137. break;
  4138. #endif //TEMP_BED_PIN
  4139. #if defined(FAN_PIN) && FAN_PIN > -1
  4140. case 106: //M106 Fan On
  4141. gcode_M106();
  4142. break;
  4143. case 107: //M107 Fan Off
  4144. gcode_M107();
  4145. break;
  4146. #endif //FAN_PIN
  4147. #ifdef BARICUDA
  4148. // PWM for HEATER_1_PIN
  4149. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4150. case 126: // M126 valve open
  4151. gcode_M126();
  4152. break;
  4153. case 127: // M127 valve closed
  4154. gcode_M127();
  4155. break;
  4156. #endif //HEATER_1_PIN
  4157. // PWM for HEATER_2_PIN
  4158. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4159. case 128: // M128 valve open
  4160. gcode_M128();
  4161. break;
  4162. case 129: // M129 valve closed
  4163. gcode_M129();
  4164. break;
  4165. #endif //HEATER_2_PIN
  4166. #endif //BARICUDA
  4167. #if HAS_POWER_SWITCH
  4168. case 80: // M80 - Turn on Power Supply
  4169. gcode_M80();
  4170. break;
  4171. #endif // HAS_POWER_SWITCH
  4172. case 81: // M81 - Turn off Power, including Power Supply, if possible
  4173. gcode_M81();
  4174. break;
  4175. case 82:
  4176. gcode_M82();
  4177. break;
  4178. case 83:
  4179. gcode_M83();
  4180. break;
  4181. case 18: //compatibility
  4182. case 84: // M84
  4183. gcode_M18_M84();
  4184. break;
  4185. case 85: // M85
  4186. gcode_M85();
  4187. break;
  4188. case 92: // M92
  4189. gcode_M92();
  4190. break;
  4191. case 115: // M115
  4192. gcode_M115();
  4193. break;
  4194. case 117: // M117 display message
  4195. gcode_M117();
  4196. break;
  4197. case 114: // M114
  4198. gcode_M114();
  4199. break;
  4200. case 120: // M120
  4201. gcode_M120();
  4202. break;
  4203. case 121: // M121
  4204. gcode_M121();
  4205. break;
  4206. case 119: // M119
  4207. gcode_M119();
  4208. break;
  4209. //TODO: update for all axis, use for loop
  4210. #ifdef BLINKM
  4211. case 150: // M150
  4212. gcode_M150();
  4213. break;
  4214. #endif //BLINKM
  4215. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4216. gcode_M200();
  4217. break;
  4218. case 201: // M201
  4219. gcode_M201();
  4220. break;
  4221. #if 0 // Not used for Sprinter/grbl gen6
  4222. case 202: // M202
  4223. gcode_M202();
  4224. break;
  4225. #endif
  4226. case 203: // M203 max feedrate mm/sec
  4227. gcode_M203();
  4228. break;
  4229. case 204: // M204 acclereration S normal moves T filmanent only moves
  4230. gcode_M204();
  4231. break;
  4232. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4233. gcode_M205();
  4234. break;
  4235. case 206: // M206 additional homing offset
  4236. gcode_M206();
  4237. break;
  4238. #ifdef DELTA
  4239. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4240. gcode_M665();
  4241. break;
  4242. #endif
  4243. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4244. case 666: // M666 set delta / dual endstop adjustment
  4245. gcode_M666();
  4246. break;
  4247. #endif
  4248. #ifdef FWRETRACT
  4249. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4250. gcode_M207();
  4251. break;
  4252. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4253. gcode_M208();
  4254. break;
  4255. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4256. gcode_M209();
  4257. break;
  4258. #endif // FWRETRACT
  4259. #if EXTRUDERS > 1
  4260. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4261. gcode_M218();
  4262. break;
  4263. #endif
  4264. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4265. gcode_M220();
  4266. break;
  4267. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4268. gcode_M221();
  4269. break;
  4270. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4271. gcode_M226();
  4272. break;
  4273. #if NUM_SERVOS > 0
  4274. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4275. gcode_M280();
  4276. break;
  4277. #endif // NUM_SERVOS > 0
  4278. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4279. case 300: // M300 - Play beep tone
  4280. gcode_M300();
  4281. break;
  4282. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4283. #ifdef PIDTEMP
  4284. case 301: // M301
  4285. gcode_M301();
  4286. break;
  4287. #endif // PIDTEMP
  4288. #ifdef PIDTEMPBED
  4289. case 304: // M304
  4290. gcode_M304();
  4291. break;
  4292. #endif // PIDTEMPBED
  4293. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4294. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4295. gcode_M240();
  4296. break;
  4297. #endif // CHDK || PHOTOGRAPH_PIN
  4298. #ifdef DOGLCD
  4299. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4300. gcode_M250();
  4301. break;
  4302. #endif // DOGLCD
  4303. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4304. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4305. gcode_M302();
  4306. break;
  4307. #endif // PREVENT_DANGEROUS_EXTRUDE
  4308. case 303: // M303 PID autotune
  4309. gcode_M303();
  4310. break;
  4311. #ifdef SCARA
  4312. case 360: // M360 SCARA Theta pos1
  4313. if (gcode_M360()) return;
  4314. break;
  4315. case 361: // M361 SCARA Theta pos2
  4316. if (gcode_M361()) return;
  4317. break;
  4318. case 362: // M362 SCARA Psi pos1
  4319. if (gcode_M362()) return;
  4320. break;
  4321. case 363: // M363 SCARA Psi pos2
  4322. if (gcode_M363()) return;
  4323. break;
  4324. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4325. if (gcode_M364()) return;
  4326. break;
  4327. case 365: // M365 Set SCARA scaling for X Y Z
  4328. gcode_M365();
  4329. break;
  4330. #endif // SCARA
  4331. case 400: // M400 finish all moves
  4332. gcode_M400();
  4333. break;
  4334. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4335. case 401:
  4336. gcode_M401();
  4337. break;
  4338. case 402:
  4339. gcode_M402();
  4340. break;
  4341. #endif
  4342. #ifdef FILAMENT_SENSOR
  4343. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4344. gcode_M404();
  4345. break;
  4346. case 405: //M405 Turn on filament sensor for control
  4347. gcode_M405();
  4348. break;
  4349. case 406: //M406 Turn off filament sensor for control
  4350. gcode_M406();
  4351. break;
  4352. case 407: //M407 Display measured filament diameter
  4353. gcode_M407();
  4354. break;
  4355. #endif // FILAMENT_SENSOR
  4356. case 500: // M500 Store settings in EEPROM
  4357. gcode_M500();
  4358. break;
  4359. case 501: // M501 Read settings from EEPROM
  4360. gcode_M501();
  4361. break;
  4362. case 502: // M502 Revert to default settings
  4363. gcode_M502();
  4364. break;
  4365. case 503: // M503 print settings currently in memory
  4366. gcode_M503();
  4367. break;
  4368. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4369. case 540:
  4370. gcode_M540();
  4371. break;
  4372. #endif
  4373. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4374. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4375. gcode_SET_Z_PROBE_OFFSET();
  4376. break;
  4377. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4378. #ifdef FILAMENTCHANGEENABLE
  4379. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4380. gcode_M600();
  4381. break;
  4382. #endif // FILAMENTCHANGEENABLE
  4383. #ifdef DUAL_X_CARRIAGE
  4384. case 605:
  4385. gcode_M605();
  4386. break;
  4387. #endif // DUAL_X_CARRIAGE
  4388. case 907: // M907 Set digital trimpot motor current using axis codes.
  4389. gcode_M907();
  4390. break;
  4391. #if HAS_DIGIPOTSS
  4392. case 908: // M908 Control digital trimpot directly.
  4393. gcode_M908();
  4394. break;
  4395. #endif // HAS_DIGIPOTSS
  4396. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4397. gcode_M350();
  4398. break;
  4399. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4400. gcode_M351();
  4401. break;
  4402. case 999: // M999: Restart after being Stopped
  4403. gcode_M999();
  4404. break;
  4405. }
  4406. }
  4407. else if (code_seen('T')) {
  4408. gcode_T();
  4409. }
  4410. else {
  4411. SERIAL_ECHO_START;
  4412. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4413. SERIAL_ECHO(cmdbuffer[bufindr]);
  4414. SERIAL_ECHOLNPGM("\"");
  4415. }
  4416. ClearToSend();
  4417. }
  4418. void FlushSerialRequestResend()
  4419. {
  4420. //char cmdbuffer[bufindr][100]="Resend:";
  4421. MYSERIAL.flush();
  4422. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4423. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4424. ClearToSend();
  4425. }
  4426. void ClearToSend()
  4427. {
  4428. previous_millis_cmd = millis();
  4429. #ifdef SDSUPPORT
  4430. if(fromsd[bufindr])
  4431. return;
  4432. #endif //SDSUPPORT
  4433. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4434. }
  4435. void get_coordinates() {
  4436. for (int i = 0; i < NUM_AXIS; i++) {
  4437. if (code_seen(axis_codes[i]))
  4438. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4439. else
  4440. destination[i] = current_position[i];
  4441. }
  4442. if (code_seen('F')) {
  4443. next_feedrate = code_value();
  4444. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4445. }
  4446. }
  4447. void get_arc_coordinates()
  4448. {
  4449. #ifdef SF_ARC_FIX
  4450. bool relative_mode_backup = relative_mode;
  4451. relative_mode = true;
  4452. #endif
  4453. get_coordinates();
  4454. #ifdef SF_ARC_FIX
  4455. relative_mode=relative_mode_backup;
  4456. #endif
  4457. if(code_seen('I')) {
  4458. offset[0] = code_value();
  4459. }
  4460. else {
  4461. offset[0] = 0.0;
  4462. }
  4463. if(code_seen('J')) {
  4464. offset[1] = code_value();
  4465. }
  4466. else {
  4467. offset[1] = 0.0;
  4468. }
  4469. }
  4470. void clamp_to_software_endstops(float target[3])
  4471. {
  4472. if (min_software_endstops) {
  4473. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4474. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4475. float negative_z_offset = 0;
  4476. #ifdef ENABLE_AUTO_BED_LEVELING
  4477. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4478. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4479. #endif
  4480. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4481. }
  4482. if (max_software_endstops) {
  4483. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4484. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4485. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4486. }
  4487. }
  4488. #ifdef DELTA
  4489. void recalc_delta_settings(float radius, float diagonal_rod) {
  4490. delta_tower1_x = -SIN_60 * radius; // front left tower
  4491. delta_tower1_y = -COS_60 * radius;
  4492. delta_tower2_x = SIN_60 * radius; // front right tower
  4493. delta_tower2_y = -COS_60 * radius;
  4494. delta_tower3_x = 0.0; // back middle tower
  4495. delta_tower3_y = radius;
  4496. delta_diagonal_rod_2 = sq(diagonal_rod);
  4497. }
  4498. void calculate_delta(float cartesian[3]) {
  4499. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4500. - sq(delta_tower1_x-cartesian[X_AXIS])
  4501. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4502. ) + cartesian[Z_AXIS];
  4503. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4504. - sq(delta_tower2_x-cartesian[X_AXIS])
  4505. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4506. ) + cartesian[Z_AXIS];
  4507. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4508. - sq(delta_tower3_x-cartesian[X_AXIS])
  4509. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4510. ) + cartesian[Z_AXIS];
  4511. /*
  4512. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4513. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4514. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4515. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4516. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4517. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4518. */
  4519. }
  4520. #ifdef ENABLE_AUTO_BED_LEVELING
  4521. // Adjust print surface height by linear interpolation over the bed_level array.
  4522. int delta_grid_spacing[2] = { 0, 0 };
  4523. void adjust_delta(float cartesian[3]) {
  4524. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4525. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4526. float h1 = 0.001 - half, h2 = half - 0.001,
  4527. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4528. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4529. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4530. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4531. z1 = bed_level[floor_x + half][floor_y + half],
  4532. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4533. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4534. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4535. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4536. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4537. offset = (1 - ratio_x) * left + ratio_x * right;
  4538. delta[X_AXIS] += offset;
  4539. delta[Y_AXIS] += offset;
  4540. delta[Z_AXIS] += offset;
  4541. /*
  4542. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4543. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4544. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4545. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4546. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4547. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4548. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4549. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4550. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4551. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4552. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4553. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4554. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4555. */
  4556. }
  4557. #endif // ENABLE_AUTO_BED_LEVELING
  4558. void prepare_move_raw() {
  4559. previous_millis_cmd = millis();
  4560. calculate_delta(destination);
  4561. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4562. for (int i = 0; i < NUM_AXIS; i++) current_position[i] = destination[i];
  4563. }
  4564. #endif // DELTA
  4565. #if defined(MESH_BED_LEVELING)
  4566. #if !defined(MIN)
  4567. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4568. #endif // ! MIN
  4569. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4570. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4571. {
  4572. if (!mbl.active) {
  4573. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4574. for(int8_t i=0; i < NUM_AXIS; i++) {
  4575. current_position[i] = destination[i];
  4576. }
  4577. return;
  4578. }
  4579. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4580. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4581. int ix = mbl.select_x_index(x);
  4582. int iy = mbl.select_y_index(y);
  4583. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4584. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4585. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4586. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4587. if (pix == ix && piy == iy) {
  4588. // Start and end on same mesh square
  4589. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4590. for(int8_t i=0; i < NUM_AXIS; i++) {
  4591. current_position[i] = destination[i];
  4592. }
  4593. return;
  4594. }
  4595. float nx, ny, ne, normalized_dist;
  4596. if (ix > pix && (x_splits) & BIT(ix)) {
  4597. nx = mbl.get_x(ix);
  4598. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4599. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4600. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4601. x_splits ^= BIT(ix);
  4602. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4603. nx = mbl.get_x(pix);
  4604. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4605. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4606. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4607. x_splits ^= BIT(pix);
  4608. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4609. ny = mbl.get_y(iy);
  4610. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4611. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4612. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4613. y_splits ^= BIT(iy);
  4614. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4615. ny = mbl.get_y(piy);
  4616. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4617. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4618. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4619. y_splits ^= BIT(piy);
  4620. } else {
  4621. // Already split on a border
  4622. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4623. for(int8_t i=0; i < NUM_AXIS; i++) {
  4624. current_position[i] = destination[i];
  4625. }
  4626. return;
  4627. }
  4628. // Do the split and look for more borders
  4629. destination[X_AXIS] = nx;
  4630. destination[Y_AXIS] = ny;
  4631. destination[E_AXIS] = ne;
  4632. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4633. destination[X_AXIS] = x;
  4634. destination[Y_AXIS] = y;
  4635. destination[E_AXIS] = e;
  4636. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4637. }
  4638. #endif // MESH_BED_LEVELING
  4639. void prepare_move() {
  4640. clamp_to_software_endstops(destination);
  4641. previous_millis_cmd = millis();
  4642. #ifdef SCARA //for now same as delta-code
  4643. float difference[NUM_AXIS];
  4644. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4645. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4646. sq(difference[Y_AXIS]) +
  4647. sq(difference[Z_AXIS]));
  4648. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4649. if (cartesian_mm < 0.000001) { return; }
  4650. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4651. int steps = max(1, int(scara_segments_per_second * seconds));
  4652. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4653. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4654. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4655. for (int s = 1; s <= steps; s++) {
  4656. float fraction = float(s) / float(steps);
  4657. for(int8_t i = 0; i < NUM_AXIS; i++) {
  4658. destination[i] = current_position[i] + difference[i] * fraction;
  4659. }
  4660. calculate_delta(destination);
  4661. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4662. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4663. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4664. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4665. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4666. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4667. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4668. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4669. active_extruder);
  4670. }
  4671. #endif // SCARA
  4672. #ifdef DELTA
  4673. float difference[NUM_AXIS];
  4674. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4675. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4676. sq(difference[Y_AXIS]) +
  4677. sq(difference[Z_AXIS]));
  4678. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4679. if (cartesian_mm < 0.000001) return;
  4680. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4681. int steps = max(1, int(delta_segments_per_second * seconds));
  4682. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4683. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4684. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4685. for (int s = 1; s <= steps; s++) {
  4686. float fraction = float(s) / float(steps);
  4687. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4688. calculate_delta(destination);
  4689. #ifdef ENABLE_AUTO_BED_LEVELING
  4690. adjust_delta(destination);
  4691. #endif
  4692. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4693. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4694. active_extruder);
  4695. }
  4696. #endif // DELTA
  4697. #ifdef DUAL_X_CARRIAGE
  4698. if (active_extruder_parked)
  4699. {
  4700. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4701. {
  4702. // move duplicate extruder into correct duplication position.
  4703. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4704. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4705. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4706. sync_plan_position();
  4707. st_synchronize();
  4708. extruder_duplication_enabled = true;
  4709. active_extruder_parked = false;
  4710. }
  4711. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4712. {
  4713. if (current_position[E_AXIS] == destination[E_AXIS])
  4714. {
  4715. // this is a travel move - skit it but keep track of current position (so that it can later
  4716. // be used as start of first non-travel move)
  4717. if (delayed_move_time != 0xFFFFFFFFUL)
  4718. {
  4719. memcpy(current_position, destination, sizeof(current_position));
  4720. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4721. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4722. delayed_move_time = millis();
  4723. return;
  4724. }
  4725. }
  4726. delayed_move_time = 0;
  4727. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4728. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4729. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4730. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4731. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4732. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4733. active_extruder_parked = false;
  4734. }
  4735. }
  4736. #endif //DUAL_X_CARRIAGE
  4737. #if !defined(DELTA) && !defined(SCARA)
  4738. // Do not use feedmultiply for E or Z only moves
  4739. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4740. line_to_destination();
  4741. } else {
  4742. #if defined(MESH_BED_LEVELING)
  4743. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4744. return;
  4745. #else
  4746. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4747. #endif // MESH_BED_LEVELING
  4748. }
  4749. #endif // !(DELTA || SCARA)
  4750. for(int8_t i=0; i < NUM_AXIS; i++) {
  4751. current_position[i] = destination[i];
  4752. }
  4753. }
  4754. void prepare_arc_move(char isclockwise) {
  4755. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4756. // Trace the arc
  4757. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4758. // As far as the parser is concerned, the position is now == target. In reality the
  4759. // motion control system might still be processing the action and the real tool position
  4760. // in any intermediate location.
  4761. for(int8_t i=0; i < NUM_AXIS; i++) {
  4762. current_position[i] = destination[i];
  4763. }
  4764. previous_millis_cmd = millis();
  4765. }
  4766. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4767. #if defined(FAN_PIN)
  4768. #if CONTROLLERFAN_PIN == FAN_PIN
  4769. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4770. #endif
  4771. #endif
  4772. unsigned long lastMotor = 0; // Last time a motor was turned on
  4773. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4774. void controllerFan() {
  4775. uint32_t ms = millis();
  4776. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4777. lastMotorCheck = ms;
  4778. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4779. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4780. #if EXTRUDERS > 1
  4781. || E1_ENABLE_READ == E_ENABLE_ON
  4782. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4783. || X2_ENABLE_READ == X_ENABLE_ON
  4784. #endif
  4785. #if EXTRUDERS > 2
  4786. || E2_ENABLE_READ == E_ENABLE_ON
  4787. #if EXTRUDERS > 3
  4788. || E3_ENABLE_READ == E_ENABLE_ON
  4789. #endif
  4790. #endif
  4791. #endif
  4792. ) {
  4793. lastMotor = ms; //... set time to NOW so the fan will turn on
  4794. }
  4795. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4796. // allows digital or PWM fan output to be used (see M42 handling)
  4797. digitalWrite(CONTROLLERFAN_PIN, speed);
  4798. analogWrite(CONTROLLERFAN_PIN, speed);
  4799. }
  4800. }
  4801. #endif
  4802. #ifdef SCARA
  4803. void calculate_SCARA_forward_Transform(float f_scara[3])
  4804. {
  4805. // Perform forward kinematics, and place results in delta[3]
  4806. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4807. float x_sin, x_cos, y_sin, y_cos;
  4808. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4809. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4810. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4811. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4812. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4813. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4814. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4815. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4816. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4817. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4818. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4819. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4820. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4821. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4822. }
  4823. void calculate_delta(float cartesian[3]){
  4824. //reverse kinematics.
  4825. // Perform reversed kinematics, and place results in delta[3]
  4826. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4827. float SCARA_pos[2];
  4828. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4829. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4830. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4831. #if (Linkage_1 == Linkage_2)
  4832. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4833. #else
  4834. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4835. #endif
  4836. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4837. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4838. SCARA_K2 = Linkage_2 * SCARA_S2;
  4839. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4840. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4841. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4842. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4843. delta[Z_AXIS] = cartesian[Z_AXIS];
  4844. /*
  4845. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4846. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4847. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4848. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4849. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4850. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4851. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4852. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4853. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4854. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4855. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4856. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4857. SERIAL_ECHOLN(" ");*/
  4858. }
  4859. #endif
  4860. #ifdef TEMP_STAT_LEDS
  4861. static bool blue_led = false;
  4862. static bool red_led = false;
  4863. static uint32_t stat_update = 0;
  4864. void handle_status_leds(void) {
  4865. float max_temp = 0.0;
  4866. if(millis() > stat_update) {
  4867. stat_update += 500; // Update every 0.5s
  4868. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4869. max_temp = max(max_temp, degHotend(cur_extruder));
  4870. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4871. }
  4872. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4873. max_temp = max(max_temp, degTargetBed());
  4874. max_temp = max(max_temp, degBed());
  4875. #endif
  4876. if((max_temp > 55.0) && (red_led == false)) {
  4877. digitalWrite(STAT_LED_RED, 1);
  4878. digitalWrite(STAT_LED_BLUE, 0);
  4879. red_led = true;
  4880. blue_led = false;
  4881. }
  4882. if((max_temp < 54.0) && (blue_led == false)) {
  4883. digitalWrite(STAT_LED_RED, 0);
  4884. digitalWrite(STAT_LED_BLUE, 1);
  4885. red_led = false;
  4886. blue_led = true;
  4887. }
  4888. }
  4889. }
  4890. #endif
  4891. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4892. {
  4893. #if defined(KILL_PIN) && KILL_PIN > -1
  4894. static int killCount = 0; // make the inactivity button a bit less responsive
  4895. const int KILL_DELAY = 750;
  4896. #endif
  4897. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4898. if(card.sdprinting) {
  4899. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4900. filrunout(); }
  4901. #endif
  4902. #if defined(HOME_PIN) && HOME_PIN > -1
  4903. static int homeDebounceCount = 0; // poor man's debouncing count
  4904. const int HOME_DEBOUNCE_DELAY = 750;
  4905. #endif
  4906. if(buflen < (BUFSIZE-1))
  4907. get_command();
  4908. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4909. if(max_inactive_time)
  4910. kill();
  4911. if(stepper_inactive_time) {
  4912. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4913. {
  4914. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4915. disable_x();
  4916. disable_y();
  4917. disable_z();
  4918. disable_e0();
  4919. disable_e1();
  4920. disable_e2();
  4921. disable_e3();
  4922. }
  4923. }
  4924. }
  4925. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4926. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4927. {
  4928. chdkActive = false;
  4929. WRITE(CHDK, LOW);
  4930. }
  4931. #endif
  4932. #if defined(KILL_PIN) && KILL_PIN > -1
  4933. // Check if the kill button was pressed and wait just in case it was an accidental
  4934. // key kill key press
  4935. // -------------------------------------------------------------------------------
  4936. if( 0 == READ(KILL_PIN) )
  4937. {
  4938. killCount++;
  4939. }
  4940. else if (killCount > 0)
  4941. {
  4942. killCount--;
  4943. }
  4944. // Exceeded threshold and we can confirm that it was not accidental
  4945. // KILL the machine
  4946. // ----------------------------------------------------------------
  4947. if ( killCount >= KILL_DELAY)
  4948. {
  4949. kill();
  4950. }
  4951. #endif
  4952. #if defined(HOME_PIN) && HOME_PIN > -1
  4953. // Check to see if we have to home, use poor man's debouncer
  4954. // ---------------------------------------------------------
  4955. if ( 0 == READ(HOME_PIN) )
  4956. {
  4957. if (homeDebounceCount == 0)
  4958. {
  4959. enquecommands_P((PSTR("G28")));
  4960. homeDebounceCount++;
  4961. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4962. }
  4963. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4964. {
  4965. homeDebounceCount++;
  4966. }
  4967. else
  4968. {
  4969. homeDebounceCount = 0;
  4970. }
  4971. }
  4972. #endif
  4973. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4974. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4975. #endif
  4976. #ifdef EXTRUDER_RUNOUT_PREVENT
  4977. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4978. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4979. {
  4980. bool oldstatus=E0_ENABLE_READ;
  4981. enable_e0();
  4982. float oldepos=current_position[E_AXIS];
  4983. float oldedes=destination[E_AXIS];
  4984. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4985. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4986. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4987. current_position[E_AXIS]=oldepos;
  4988. destination[E_AXIS]=oldedes;
  4989. plan_set_e_position(oldepos);
  4990. previous_millis_cmd=millis();
  4991. st_synchronize();
  4992. E0_ENABLE_WRITE(oldstatus);
  4993. }
  4994. #endif
  4995. #if defined(DUAL_X_CARRIAGE)
  4996. // handle delayed move timeout
  4997. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4998. {
  4999. // travel moves have been received so enact them
  5000. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5001. memcpy(destination,current_position,sizeof(destination));
  5002. prepare_move();
  5003. }
  5004. #endif
  5005. #ifdef TEMP_STAT_LEDS
  5006. handle_status_leds();
  5007. #endif
  5008. check_axes_activity();
  5009. }
  5010. void kill()
  5011. {
  5012. cli(); // Stop interrupts
  5013. disable_heater();
  5014. disable_x();
  5015. disable_y();
  5016. disable_z();
  5017. disable_e0();
  5018. disable_e1();
  5019. disable_e2();
  5020. disable_e3();
  5021. #if HAS_POWER_SWITCH
  5022. pinMode(PS_ON_PIN, INPUT);
  5023. #endif
  5024. SERIAL_ERROR_START;
  5025. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5026. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5027. // FMC small patch to update the LCD before ending
  5028. sei(); // enable interrupts
  5029. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5030. cli(); // disable interrupts
  5031. suicide();
  5032. while(1) { /* Intentionally left empty */ } // Wait for reset
  5033. }
  5034. #ifdef FILAMENT_RUNOUT_SENSOR
  5035. void filrunout()
  5036. {
  5037. if filrunoutEnqued == false {
  5038. filrunoutEnqued = true;
  5039. enquecommand("M600");
  5040. }
  5041. }
  5042. #endif
  5043. void Stop()
  5044. {
  5045. disable_heater();
  5046. if(Stopped == false) {
  5047. Stopped = true;
  5048. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5049. SERIAL_ERROR_START;
  5050. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5051. LCD_MESSAGEPGM(MSG_STOPPED);
  5052. }
  5053. }
  5054. bool IsStopped() { return Stopped; };
  5055. #ifdef FAST_PWM_FAN
  5056. void setPwmFrequency(uint8_t pin, int val)
  5057. {
  5058. val &= 0x07;
  5059. switch(digitalPinToTimer(pin))
  5060. {
  5061. #if defined(TCCR0A)
  5062. case TIMER0A:
  5063. case TIMER0B:
  5064. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5065. // TCCR0B |= val;
  5066. break;
  5067. #endif
  5068. #if defined(TCCR1A)
  5069. case TIMER1A:
  5070. case TIMER1B:
  5071. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5072. // TCCR1B |= val;
  5073. break;
  5074. #endif
  5075. #if defined(TCCR2)
  5076. case TIMER2:
  5077. case TIMER2:
  5078. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5079. TCCR2 |= val;
  5080. break;
  5081. #endif
  5082. #if defined(TCCR2A)
  5083. case TIMER2A:
  5084. case TIMER2B:
  5085. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5086. TCCR2B |= val;
  5087. break;
  5088. #endif
  5089. #if defined(TCCR3A)
  5090. case TIMER3A:
  5091. case TIMER3B:
  5092. case TIMER3C:
  5093. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5094. TCCR3B |= val;
  5095. break;
  5096. #endif
  5097. #if defined(TCCR4A)
  5098. case TIMER4A:
  5099. case TIMER4B:
  5100. case TIMER4C:
  5101. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5102. TCCR4B |= val;
  5103. break;
  5104. #endif
  5105. #if defined(TCCR5A)
  5106. case TIMER5A:
  5107. case TIMER5B:
  5108. case TIMER5C:
  5109. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5110. TCCR5B |= val;
  5111. break;
  5112. #endif
  5113. }
  5114. }
  5115. #endif //FAST_PWM_FAN
  5116. bool setTargetedHotend(int code){
  5117. tmp_extruder = active_extruder;
  5118. if(code_seen('T')) {
  5119. tmp_extruder = code_value();
  5120. if(tmp_extruder >= EXTRUDERS) {
  5121. SERIAL_ECHO_START;
  5122. switch(code){
  5123. case 104:
  5124. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5125. break;
  5126. case 105:
  5127. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5128. break;
  5129. case 109:
  5130. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5131. break;
  5132. case 218:
  5133. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5134. break;
  5135. case 221:
  5136. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5137. break;
  5138. }
  5139. SERIAL_ECHOLN(tmp_extruder);
  5140. return true;
  5141. }
  5142. }
  5143. return false;
  5144. }
  5145. float calculate_volumetric_multiplier(float diameter) {
  5146. if (!volumetric_enabled || diameter == 0) return 1.0;
  5147. float d2 = diameter * 0.5;
  5148. return 1.0 / (M_PI * d2 * d2);
  5149. }
  5150. void calculate_volumetric_multipliers() {
  5151. for (int i=0; i<EXTRUDERS; i++)
  5152. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5153. }