My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 254KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #include "buzzer.h"
  57. #if ENABLED(USE_WATCHDOG)
  58. #include "watchdog.h"
  59. #endif
  60. #if ENABLED(BLINKM)
  61. #include "blinkm.h"
  62. #include "Wire.h"
  63. #endif
  64. #if HAS_SERVOS
  65. #include "servo.h"
  66. #endif
  67. #if HAS_DIGIPOTSS
  68. #include <SPI.h>
  69. #endif
  70. #if ENABLED(DAC_STEPPER_CURRENT)
  71. #include "stepper_dac.h"
  72. #endif
  73. #if ENABLED(EXPERIMENTAL_I2CBUS)
  74. #include "twibus.h"
  75. #endif
  76. /**
  77. * Look here for descriptions of G-codes:
  78. * - http://linuxcnc.org/handbook/gcode/g-code.html
  79. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  80. *
  81. * Help us document these G-codes online:
  82. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  83. * - http://reprap.org/wiki/G-code
  84. *
  85. * -----------------
  86. * Implemented Codes
  87. * -----------------
  88. *
  89. * "G" Codes
  90. *
  91. * G0 -> G1
  92. * G1 - Coordinated Movement X Y Z E
  93. * G2 - CW ARC
  94. * G3 - CCW ARC
  95. * G4 - Dwell S<seconds> or P<milliseconds>
  96. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  97. * G10 - retract filament according to settings of M207
  98. * G11 - retract recover filament according to settings of M208
  99. * G28 - Home one or more axes
  100. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  101. * G30 - Single Z probe, probes bed at current XY location.
  102. * G31 - Dock sled (Z_PROBE_SLED only)
  103. * G32 - Undock sled (Z_PROBE_SLED only)
  104. * G90 - Use Absolute Coordinates
  105. * G91 - Use Relative Coordinates
  106. * G92 - Set current position to coordinates given
  107. *
  108. * "M" Codes
  109. *
  110. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  111. * M1 - Same as M0
  112. * M17 - Enable/Power all stepper motors
  113. * M18 - Disable all stepper motors; same as M84
  114. * M20 - List SD card
  115. * M21 - Init SD card
  116. * M22 - Release SD card
  117. * M23 - Select SD file (M23 filename.g)
  118. * M24 - Start/resume SD print
  119. * M25 - Pause SD print
  120. * M26 - Set SD position in bytes (M26 S12345)
  121. * M27 - Report SD print status
  122. * M28 - Start SD write (M28 filename.g)
  123. * M29 - Stop SD write
  124. * M30 - Delete file from SD (M30 filename.g)
  125. * M31 - Output time since last M109 or SD card start to serial
  126. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  127. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  128. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  129. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  130. * M33 - Get the longname version of a path
  131. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  132. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  133. * M75 - Start the print job timer
  134. * M76 - Pause the print job timer
  135. * M77 - Stop the print job timer
  136. * M78 - Show statistical information about the print jobs
  137. * M80 - Turn on Power Supply
  138. * M81 - Turn off Power Supply
  139. * M82 - Set E codes absolute (default)
  140. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  141. * M84 - Disable steppers until next move,
  142. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  143. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  144. * M92 - Set planner.axis_steps_per_unit - same syntax as G92
  145. * M104 - Set extruder target temp
  146. * M105 - Read current temp
  147. * M106 - Fan on
  148. * M107 - Fan off
  149. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  150. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  151. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  152. * M110 - Set the current line number
  153. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  154. * M112 - Emergency stop
  155. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  156. * M114 - Output current position to serial port
  157. * M115 - Capabilities string
  158. * M117 - Display a message on the controller screen
  159. * M119 - Output Endstop status to serial port
  160. * M120 - Enable endstop detection
  161. * M121 - Disable endstop detection
  162. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  163. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  164. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  165. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  166. * M140 - Set bed target temp
  167. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  168. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  169. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  170. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  171. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  172. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  173. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  174. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  175. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  176. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  177. * M206 - Set additional homing offset
  178. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  179. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  180. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  181. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  182. * M220 - Set speed factor override percentage: S<factor in percent>
  183. * M221 - Set extrude factor override percentage: S<factor in percent>
  184. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  185. * M240 - Trigger a camera to take a photograph
  186. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  187. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  188. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  189. * M301 - Set PID parameters P I and D
  190. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  191. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  192. * M304 - Set bed PID parameters P I and D
  193. * M380 - Activate solenoid on active extruder
  194. * M381 - Disable all solenoids
  195. * M400 - Finish all moves
  196. * M401 - Lower Z probe if present
  197. * M402 - Raise Z probe if present
  198. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  199. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  200. * M406 - Turn off Filament Sensor extrusion control
  201. * M407 - Display measured filament diameter
  202. * M410 - Quickstop. Abort all the planned moves
  203. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  204. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  205. * M428 - Set the home_offset logically based on the current_position
  206. * M500 - Store parameters in EEPROM
  207. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  208. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  209. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  210. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  211. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  212. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  213. * M666 - Set delta endstop adjustment
  214. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  215. * M907 - Set digital trimpot motor current using axis codes.
  216. * M908 - Control digital trimpot directly.
  217. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  218. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  219. * M350 - Set microstepping mode.
  220. * M351 - Toggle MS1 MS2 pins directly.
  221. *
  222. * ************ SCARA Specific - This can change to suit future G-code regulations
  223. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  224. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  225. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  226. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  227. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  228. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  229. * ************* SCARA End ***************
  230. *
  231. * ************ Custom codes - This can change to suit future G-code regulations
  232. * M100 - Watch Free Memory (For Debugging Only)
  233. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  234. * M928 - Start SD logging (M928 filename.g) - ended by M29
  235. * M999 - Restart after being stopped by error
  236. *
  237. * "T" Codes
  238. *
  239. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  240. *
  241. */
  242. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  243. void gcode_M100();
  244. #endif
  245. #if ENABLED(SDSUPPORT)
  246. CardReader card;
  247. #endif
  248. #if ENABLED(EXPERIMENTAL_I2CBUS)
  249. TWIBus i2c;
  250. #endif
  251. bool Running = true;
  252. uint8_t marlin_debug_flags = DEBUG_NONE;
  253. static float feedrate = 1500.0, saved_feedrate;
  254. float current_position[NUM_AXIS] = { 0.0 };
  255. static float destination[NUM_AXIS] = { 0.0 };
  256. bool axis_known_position[3] = { false };
  257. bool axis_homed[3] = { false };
  258. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  259. static char* current_command, *current_command_args;
  260. static int cmd_queue_index_r = 0;
  261. static int cmd_queue_index_w = 0;
  262. static int commands_in_queue = 0;
  263. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  264. const float homing_feedrate[] = HOMING_FEEDRATE;
  265. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  266. int feedrate_multiplier = 100; //100->1 200->2
  267. int saved_feedrate_multiplier;
  268. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  271. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  272. // The distance that XYZ has been offset by G92. Reset by G28.
  273. float position_shift[3] = { 0 };
  274. // This offset is added to the configured home position.
  275. // Set by M206, M428, or menu item. Saved to EEPROM.
  276. float home_offset[3] = { 0 };
  277. // Software Endstops. Default to configured limits.
  278. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  279. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  280. #if FAN_COUNT > 0
  281. int fanSpeeds[FAN_COUNT] = { 0 };
  282. #endif
  283. // The active extruder (tool). Set with T<extruder> command.
  284. uint8_t active_extruder = 0;
  285. // Relative Mode. Enable with G91, disable with G90.
  286. static bool relative_mode = false;
  287. bool cancel_heatup = false;
  288. const char errormagic[] PROGMEM = "Error:";
  289. const char echomagic[] PROGMEM = "echo:";
  290. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  291. static int serial_count = 0;
  292. // GCode parameter pointer used by code_seen(), code_value(), etc.
  293. static char* seen_pointer;
  294. // Next Immediate GCode Command pointer. NULL if none.
  295. const char* queued_commands_P = NULL;
  296. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  297. // Inactivity shutdown
  298. millis_t previous_cmd_ms = 0;
  299. static millis_t max_inactive_time = 0;
  300. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  301. // Print Job Timer
  302. #if ENABLED(PRINTCOUNTER)
  303. PrintCounter print_job_timer = PrintCounter();
  304. #else
  305. Stopwatch print_job_timer = Stopwatch();
  306. #endif
  307. static uint8_t target_extruder;
  308. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  309. int xy_travel_speed = XY_TRAVEL_SPEED;
  310. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  311. bool bed_leveling_in_progress = false;
  312. #endif
  313. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  314. float z_endstop_adj = 0;
  315. #endif
  316. // Extruder offsets
  317. #if EXTRUDERS > 1
  318. #ifndef EXTRUDER_OFFSET_X
  319. #define EXTRUDER_OFFSET_X { 0 } // X offsets for each extruder
  320. #endif
  321. #ifndef EXTRUDER_OFFSET_Y
  322. #define EXTRUDER_OFFSET_Y { 0 } // Y offsets for each extruder
  323. #endif
  324. float extruder_offset[][EXTRUDERS] = {
  325. EXTRUDER_OFFSET_X,
  326. EXTRUDER_OFFSET_Y
  327. #if ENABLED(DUAL_X_CARRIAGE)
  328. , { 0 } // Z offsets for each extruder
  329. #endif
  330. };
  331. #endif
  332. #if HAS_SERVO_ENDSTOPS
  333. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  334. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  335. #endif
  336. #if ENABLED(BARICUDA)
  337. int baricuda_valve_pressure = 0;
  338. int baricuda_e_to_p_pressure = 0;
  339. #endif
  340. #if ENABLED(FWRETRACT)
  341. bool autoretract_enabled = false;
  342. bool retracted[EXTRUDERS] = { false };
  343. bool retracted_swap[EXTRUDERS] = { false };
  344. float retract_length = RETRACT_LENGTH;
  345. float retract_length_swap = RETRACT_LENGTH_SWAP;
  346. float retract_feedrate = RETRACT_FEEDRATE;
  347. float retract_zlift = RETRACT_ZLIFT;
  348. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  349. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  350. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  351. #endif // FWRETRACT
  352. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  353. bool powersupply =
  354. #if ENABLED(PS_DEFAULT_OFF)
  355. false
  356. #else
  357. true
  358. #endif
  359. ;
  360. #endif
  361. #if ENABLED(DELTA)
  362. #define TOWER_1 X_AXIS
  363. #define TOWER_2 Y_AXIS
  364. #define TOWER_3 Z_AXIS
  365. float delta[3] = { 0 };
  366. #define SIN_60 0.8660254037844386
  367. #define COS_60 0.5
  368. float endstop_adj[3] = { 0 };
  369. // these are the default values, can be overriden with M665
  370. float delta_radius = DELTA_RADIUS;
  371. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  372. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  373. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  374. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  375. float delta_tower3_x = 0; // back middle tower
  376. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  377. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  378. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  379. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  380. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  381. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  382. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  383. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  384. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  385. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  386. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  387. int delta_grid_spacing[2] = { 0, 0 };
  388. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  389. #endif
  390. #else
  391. static bool home_all_axis = true;
  392. #endif
  393. #if ENABLED(SCARA)
  394. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  395. static float delta[3] = { 0 };
  396. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  397. #endif
  398. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  399. //Variables for Filament Sensor input
  400. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  401. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  402. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  403. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  404. int filwidth_delay_index1 = 0; //index into ring buffer
  405. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  406. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  407. #endif
  408. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  409. static bool filament_ran_out = false;
  410. #endif
  411. static bool send_ok[BUFSIZE];
  412. #if HAS_SERVOS
  413. Servo servo[NUM_SERVOS];
  414. #endif
  415. #ifdef CHDK
  416. millis_t chdkHigh = 0;
  417. boolean chdkActive = false;
  418. #endif
  419. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  420. int lpq_len = 20;
  421. #endif
  422. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  423. // States for managing Marlin and host communication
  424. // Marlin sends messages if blocked or busy
  425. enum MarlinBusyState {
  426. NOT_BUSY, // Not in a handler
  427. IN_HANDLER, // Processing a GCode
  428. IN_PROCESS, // Known to be blocking command input (as in G29)
  429. PAUSED_FOR_USER, // Blocking pending any input
  430. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  431. };
  432. static MarlinBusyState busy_state = NOT_BUSY;
  433. static millis_t next_busy_signal_ms = 0;
  434. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  435. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  436. #else
  437. #define host_keepalive() ;
  438. #define KEEPALIVE_STATE(n) ;
  439. #endif // HOST_KEEPALIVE_FEATURE
  440. /**
  441. * ***************************************************************************
  442. * ******************************** FUNCTIONS ********************************
  443. * ***************************************************************************
  444. */
  445. void stop();
  446. void get_available_commands();
  447. void process_next_command();
  448. #if ENABLED(ARC_SUPPORT)
  449. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  450. #endif
  451. #if ENABLED(BEZIER_CURVE_SUPPORT)
  452. void plan_cubic_move(const float offset[4]);
  453. #endif
  454. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  455. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  456. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  457. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  458. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  459. static void report_current_position();
  460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  461. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  462. SERIAL_ECHO(prefix);
  463. SERIAL_ECHOPAIR(": (", x);
  464. SERIAL_ECHOPAIR(", ", y);
  465. SERIAL_ECHOPAIR(", ", z);
  466. SERIAL_ECHOLNPGM(")");
  467. }
  468. void print_xyz(const char* prefix, const float xyz[]) {
  469. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  470. }
  471. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  472. void print_xyz(const char* prefix, const vector_3 &xyz) {
  473. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  474. }
  475. #endif
  476. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  477. #endif
  478. #if ENABLED(DELTA) || ENABLED(SCARA)
  479. inline void sync_plan_position_delta() {
  480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  481. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  482. #endif
  483. calculate_delta(current_position);
  484. planner.set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  485. }
  486. #endif
  487. #if ENABLED(SDSUPPORT)
  488. #include "SdFatUtil.h"
  489. int freeMemory() { return SdFatUtil::FreeRam(); }
  490. #else
  491. extern "C" {
  492. extern unsigned int __bss_end;
  493. extern unsigned int __heap_start;
  494. extern void* __brkval;
  495. int freeMemory() {
  496. int free_memory;
  497. if ((int)__brkval == 0)
  498. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  499. else
  500. free_memory = ((int)&free_memory) - ((int)__brkval);
  501. return free_memory;
  502. }
  503. }
  504. #endif //!SDSUPPORT
  505. #if ENABLED(DIGIPOT_I2C)
  506. extern void digipot_i2c_set_current(int channel, float current);
  507. extern void digipot_i2c_init();
  508. #endif
  509. /**
  510. * Inject the next "immediate" command, when possible.
  511. * Return true if any immediate commands remain to inject.
  512. */
  513. static bool drain_queued_commands_P() {
  514. if (queued_commands_P != NULL) {
  515. size_t i = 0;
  516. char c, cmd[30];
  517. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  518. cmd[sizeof(cmd) - 1] = '\0';
  519. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  520. cmd[i] = '\0';
  521. if (enqueue_and_echo_command(cmd)) { // success?
  522. if (c) // newline char?
  523. queued_commands_P += i + 1; // advance to the next command
  524. else
  525. queued_commands_P = NULL; // nul char? no more commands
  526. }
  527. }
  528. return (queued_commands_P != NULL); // return whether any more remain
  529. }
  530. /**
  531. * Record one or many commands to run from program memory.
  532. * Aborts the current queue, if any.
  533. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  534. */
  535. void enqueue_and_echo_commands_P(const char* pgcode) {
  536. queued_commands_P = pgcode;
  537. drain_queued_commands_P(); // first command executed asap (when possible)
  538. }
  539. /**
  540. * Once a new command is in the ring buffer, call this to commit it
  541. */
  542. inline void _commit_command(bool say_ok) {
  543. send_ok[cmd_queue_index_w] = say_ok;
  544. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  545. commands_in_queue++;
  546. }
  547. /**
  548. * Copy a command directly into the main command buffer, from RAM.
  549. * Returns true if successfully adds the command
  550. */
  551. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  552. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  553. strcpy(command_queue[cmd_queue_index_w], cmd);
  554. _commit_command(say_ok);
  555. return true;
  556. }
  557. void enqueue_and_echo_command_now(const char* cmd) {
  558. while (!enqueue_and_echo_command(cmd)) idle();
  559. }
  560. /**
  561. * Enqueue with Serial Echo
  562. */
  563. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  564. if (_enqueuecommand(cmd, say_ok)) {
  565. SERIAL_ECHO_START;
  566. SERIAL_ECHOPGM(MSG_Enqueueing);
  567. SERIAL_ECHO(cmd);
  568. SERIAL_ECHOLNPGM("\"");
  569. return true;
  570. }
  571. return false;
  572. }
  573. void setup_killpin() {
  574. #if HAS_KILL
  575. SET_INPUT(KILL_PIN);
  576. WRITE(KILL_PIN, HIGH);
  577. #endif
  578. }
  579. void setup_filrunoutpin() {
  580. #if HAS_FILRUNOUT
  581. pinMode(FILRUNOUT_PIN, INPUT);
  582. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  583. WRITE(FILRUNOUT_PIN, HIGH);
  584. #endif
  585. #endif
  586. }
  587. // Set home pin
  588. void setup_homepin(void) {
  589. #if HAS_HOME
  590. SET_INPUT(HOME_PIN);
  591. WRITE(HOME_PIN, HIGH);
  592. #endif
  593. }
  594. void setup_photpin() {
  595. #if HAS_PHOTOGRAPH
  596. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  597. #endif
  598. }
  599. void setup_powerhold() {
  600. #if HAS_SUICIDE
  601. OUT_WRITE(SUICIDE_PIN, HIGH);
  602. #endif
  603. #if HAS_POWER_SWITCH
  604. #if ENABLED(PS_DEFAULT_OFF)
  605. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  606. #else
  607. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  608. #endif
  609. #endif
  610. }
  611. void suicide() {
  612. #if HAS_SUICIDE
  613. OUT_WRITE(SUICIDE_PIN, LOW);
  614. #endif
  615. }
  616. void servo_init() {
  617. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  618. servo[0].attach(SERVO0_PIN);
  619. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  620. #endif
  621. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  622. servo[1].attach(SERVO1_PIN);
  623. servo[1].detach();
  624. #endif
  625. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  626. servo[2].attach(SERVO2_PIN);
  627. servo[2].detach();
  628. #endif
  629. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  630. servo[3].attach(SERVO3_PIN);
  631. servo[3].detach();
  632. #endif
  633. #if HAS_SERVO_ENDSTOPS
  634. endstops.enable_z_probe(false);
  635. /**
  636. * Set position of all defined Servo Endstops
  637. *
  638. * ** UNSAFE! - NEEDS UPDATE! **
  639. *
  640. * The servo might be deployed and positioned too low to stow
  641. * when starting up the machine or rebooting the board.
  642. * There's no way to know where the nozzle is positioned until
  643. * homing has been done - no homing with z-probe without init!
  644. *
  645. */
  646. for (int i = 0; i < 3; i++)
  647. if (servo_endstop_id[i] >= 0)
  648. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  649. #endif // HAS_SERVO_ENDSTOPS
  650. }
  651. /**
  652. * Stepper Reset (RigidBoard, et.al.)
  653. */
  654. #if HAS_STEPPER_RESET
  655. void disableStepperDrivers() {
  656. pinMode(STEPPER_RESET_PIN, OUTPUT);
  657. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  658. }
  659. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  660. #endif
  661. /**
  662. * Marlin entry-point: Set up before the program loop
  663. * - Set up the kill pin, filament runout, power hold
  664. * - Start the serial port
  665. * - Print startup messages and diagnostics
  666. * - Get EEPROM or default settings
  667. * - Initialize managers for:
  668. * • temperature
  669. * • planner
  670. * • watchdog
  671. * • stepper
  672. * • photo pin
  673. * • servos
  674. * • LCD controller
  675. * • Digipot I2C
  676. * • Z probe sled
  677. * • status LEDs
  678. */
  679. void setup() {
  680. #ifdef DISABLE_JTAG
  681. // Disable JTAG on AT90USB chips to free up pins for IO
  682. MCUCR = 0x80;
  683. MCUCR = 0x80;
  684. #endif
  685. setup_killpin();
  686. setup_filrunoutpin();
  687. setup_powerhold();
  688. #if HAS_STEPPER_RESET
  689. disableStepperDrivers();
  690. #endif
  691. MYSERIAL.begin(BAUDRATE);
  692. SERIAL_PROTOCOLLNPGM("start");
  693. SERIAL_ECHO_START;
  694. // Check startup - does nothing if bootloader sets MCUSR to 0
  695. byte mcu = MCUSR;
  696. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  697. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  698. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  699. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  700. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  701. MCUSR = 0;
  702. SERIAL_ECHOPGM(MSG_MARLIN);
  703. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  704. #ifdef STRING_DISTRIBUTION_DATE
  705. #ifdef STRING_CONFIG_H_AUTHOR
  706. SERIAL_ECHO_START;
  707. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  708. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  709. SERIAL_ECHOPGM(MSG_AUTHOR);
  710. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  711. SERIAL_ECHOPGM("Compiled: ");
  712. SERIAL_ECHOLNPGM(__DATE__);
  713. #endif // STRING_CONFIG_H_AUTHOR
  714. #endif // STRING_DISTRIBUTION_DATE
  715. SERIAL_ECHO_START;
  716. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  717. SERIAL_ECHO(freeMemory());
  718. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  719. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  720. // Send "ok" after commands by default
  721. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  722. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  723. Config_RetrieveSettings();
  724. lcd_init();
  725. thermalManager.init(); // Initialize temperature loop
  726. #if ENABLED(DELTA) || ENABLED(SCARA)
  727. // Vital to init kinematic equivalent for X0 Y0 Z0
  728. sync_plan_position_delta();
  729. #endif
  730. #if ENABLED(USE_WATCHDOG)
  731. watchdog_init();
  732. #endif
  733. stepper.init(); // Initialize stepper, this enables interrupts!
  734. setup_photpin();
  735. servo_init();
  736. #if HAS_CONTROLLERFAN
  737. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  738. #endif
  739. #if HAS_STEPPER_RESET
  740. enableStepperDrivers();
  741. #endif
  742. #if ENABLED(DIGIPOT_I2C)
  743. digipot_i2c_init();
  744. #endif
  745. #if ENABLED(DAC_STEPPER_CURRENT)
  746. dac_init();
  747. #endif
  748. #if ENABLED(Z_PROBE_SLED)
  749. pinMode(SLED_PIN, OUTPUT);
  750. digitalWrite(SLED_PIN, LOW); // turn it off
  751. #endif // Z_PROBE_SLED
  752. setup_homepin();
  753. #ifdef STAT_LED_RED
  754. pinMode(STAT_LED_RED, OUTPUT);
  755. digitalWrite(STAT_LED_RED, LOW); // turn it off
  756. #endif
  757. #ifdef STAT_LED_BLUE
  758. pinMode(STAT_LED_BLUE, OUTPUT);
  759. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  760. #endif
  761. }
  762. /**
  763. * The main Marlin program loop
  764. *
  765. * - Save or log commands to SD
  766. * - Process available commands (if not saving)
  767. * - Call heater manager
  768. * - Call inactivity manager
  769. * - Call endstop manager
  770. * - Call LCD update
  771. */
  772. void loop() {
  773. if (commands_in_queue < BUFSIZE) get_available_commands();
  774. #if ENABLED(SDSUPPORT)
  775. card.checkautostart(false);
  776. #endif
  777. if (commands_in_queue) {
  778. #if ENABLED(SDSUPPORT)
  779. if (card.saving) {
  780. char* command = command_queue[cmd_queue_index_r];
  781. if (strstr_P(command, PSTR("M29"))) {
  782. // M29 closes the file
  783. card.closefile();
  784. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  785. ok_to_send();
  786. }
  787. else {
  788. // Write the string from the read buffer to SD
  789. card.write_command(command);
  790. if (card.logging)
  791. process_next_command(); // The card is saving because it's logging
  792. else
  793. ok_to_send();
  794. }
  795. }
  796. else
  797. process_next_command();
  798. #else
  799. process_next_command();
  800. #endif // SDSUPPORT
  801. commands_in_queue--;
  802. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  803. }
  804. endstops.report_state();
  805. idle();
  806. }
  807. void gcode_line_error(const char* err, bool doFlush = true) {
  808. SERIAL_ERROR_START;
  809. serialprintPGM(err);
  810. SERIAL_ERRORLN(gcode_LastN);
  811. //Serial.println(gcode_N);
  812. if (doFlush) FlushSerialRequestResend();
  813. serial_count = 0;
  814. }
  815. inline void get_serial_commands() {
  816. static char serial_line_buffer[MAX_CMD_SIZE];
  817. static boolean serial_comment_mode = false;
  818. // If the command buffer is empty for too long,
  819. // send "wait" to indicate Marlin is still waiting.
  820. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  821. static millis_t last_command_time = 0;
  822. millis_t ms = millis();
  823. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  824. SERIAL_ECHOLNPGM(MSG_WAIT);
  825. last_command_time = ms;
  826. }
  827. #endif
  828. /**
  829. * Loop while serial characters are incoming and the queue is not full
  830. */
  831. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  832. char serial_char = MYSERIAL.read();
  833. /**
  834. * If the character ends the line
  835. */
  836. if (serial_char == '\n' || serial_char == '\r') {
  837. serial_comment_mode = false; // end of line == end of comment
  838. if (!serial_count) continue; // skip empty lines
  839. serial_line_buffer[serial_count] = 0; // terminate string
  840. serial_count = 0; //reset buffer
  841. char* command = serial_line_buffer;
  842. while (*command == ' ') command++; // skip any leading spaces
  843. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  844. char* apos = strchr(command, '*');
  845. if (npos) {
  846. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  847. if (M110) {
  848. char* n2pos = strchr(command + 4, 'N');
  849. if (n2pos) npos = n2pos;
  850. }
  851. gcode_N = strtol(npos + 1, NULL, 10);
  852. if (gcode_N != gcode_LastN + 1 && !M110) {
  853. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  854. return;
  855. }
  856. if (apos) {
  857. byte checksum = 0, count = 0;
  858. while (command[count] != '*') checksum ^= command[count++];
  859. if (strtol(apos + 1, NULL, 10) != checksum) {
  860. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  861. return;
  862. }
  863. // if no errors, continue parsing
  864. }
  865. else {
  866. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  867. return;
  868. }
  869. gcode_LastN = gcode_N;
  870. // if no errors, continue parsing
  871. }
  872. else if (apos) { // No '*' without 'N'
  873. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  874. return;
  875. }
  876. // Movement commands alert when stopped
  877. if (IsStopped()) {
  878. char* gpos = strchr(command, 'G');
  879. if (gpos) {
  880. int codenum = strtol(gpos + 1, NULL, 10);
  881. switch (codenum) {
  882. case 0:
  883. case 1:
  884. case 2:
  885. case 3:
  886. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  887. LCD_MESSAGEPGM(MSG_STOPPED);
  888. break;
  889. }
  890. }
  891. }
  892. // If command was e-stop process now
  893. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  894. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  895. last_command_time = ms;
  896. #endif
  897. // Add the command to the queue
  898. _enqueuecommand(serial_line_buffer, true);
  899. }
  900. else if (serial_count >= MAX_CMD_SIZE - 1) {
  901. // Keep fetching, but ignore normal characters beyond the max length
  902. // The command will be injected when EOL is reached
  903. }
  904. else if (serial_char == '\\') { // Handle escapes
  905. if (MYSERIAL.available() > 0) {
  906. // if we have one more character, copy it over
  907. serial_char = MYSERIAL.read();
  908. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  909. }
  910. // otherwise do nothing
  911. }
  912. else { // it's not a newline, carriage return or escape char
  913. if (serial_char == ';') serial_comment_mode = true;
  914. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  915. }
  916. } // queue has space, serial has data
  917. }
  918. #if ENABLED(SDSUPPORT)
  919. inline void get_sdcard_commands() {
  920. static bool stop_buffering = false,
  921. sd_comment_mode = false;
  922. if (!card.sdprinting) return;
  923. /**
  924. * '#' stops reading from SD to the buffer prematurely, so procedural
  925. * macro calls are possible. If it occurs, stop_buffering is triggered
  926. * and the buffer is run dry; this character _can_ occur in serial com
  927. * due to checksums, however, no checksums are used in SD printing.
  928. */
  929. if (commands_in_queue == 0) stop_buffering = false;
  930. uint16_t sd_count = 0;
  931. bool card_eof = card.eof();
  932. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  933. int16_t n = card.get();
  934. char sd_char = (char)n;
  935. card_eof = card.eof();
  936. if (card_eof || n == -1
  937. || sd_char == '\n' || sd_char == '\r'
  938. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  939. ) {
  940. if (card_eof) {
  941. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  942. print_job_timer.stop();
  943. char time[30];
  944. millis_t t = print_job_timer.duration();
  945. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  946. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  947. SERIAL_ECHO_START;
  948. SERIAL_ECHOLN(time);
  949. lcd_setstatus(time, true);
  950. card.printingHasFinished();
  951. card.checkautostart(true);
  952. }
  953. if (sd_char == '#') stop_buffering = true;
  954. sd_comment_mode = false; //for new command
  955. if (!sd_count) continue; //skip empty lines
  956. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  957. sd_count = 0; //clear buffer
  958. _commit_command(false);
  959. }
  960. else if (sd_count >= MAX_CMD_SIZE - 1) {
  961. /**
  962. * Keep fetching, but ignore normal characters beyond the max length
  963. * The command will be injected when EOL is reached
  964. */
  965. }
  966. else {
  967. if (sd_char == ';') sd_comment_mode = true;
  968. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  969. }
  970. }
  971. }
  972. #endif // SDSUPPORT
  973. /**
  974. * Add to the circular command queue the next command from:
  975. * - The command-injection queue (queued_commands_P)
  976. * - The active serial input (usually USB)
  977. * - The SD card file being actively printed
  978. */
  979. void get_available_commands() {
  980. // if any immediate commands remain, don't get other commands yet
  981. if (drain_queued_commands_P()) return;
  982. get_serial_commands();
  983. #if ENABLED(SDSUPPORT)
  984. get_sdcard_commands();
  985. #endif
  986. }
  987. bool code_has_value() {
  988. int i = 1;
  989. char c = seen_pointer[i];
  990. while (c == ' ') c = seen_pointer[++i];
  991. if (c == '-' || c == '+') c = seen_pointer[++i];
  992. if (c == '.') c = seen_pointer[++i];
  993. return NUMERIC(c);
  994. }
  995. float code_value() {
  996. float ret;
  997. char* e = strchr(seen_pointer, 'E');
  998. if (e) {
  999. *e = 0;
  1000. ret = strtod(seen_pointer + 1, NULL);
  1001. *e = 'E';
  1002. }
  1003. else
  1004. ret = strtod(seen_pointer + 1, NULL);
  1005. return ret;
  1006. }
  1007. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1008. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  1009. bool code_seen(char code) {
  1010. seen_pointer = strchr(current_command_args, code);
  1011. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1012. }
  1013. /**
  1014. * Set target_extruder from the T parameter or the active_extruder
  1015. *
  1016. * Returns TRUE if the target is invalid
  1017. */
  1018. bool get_target_extruder_from_command(int code) {
  1019. if (code_seen('T')) {
  1020. short t = code_value_short();
  1021. if (t >= EXTRUDERS) {
  1022. SERIAL_ECHO_START;
  1023. SERIAL_CHAR('M');
  1024. SERIAL_ECHO(code);
  1025. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
  1026. SERIAL_EOL;
  1027. return true;
  1028. }
  1029. target_extruder = t;
  1030. }
  1031. else
  1032. target_extruder = active_extruder;
  1033. return false;
  1034. }
  1035. #define DEFINE_PGM_READ_ANY(type, reader) \
  1036. static inline type pgm_read_any(const type *p) \
  1037. { return pgm_read_##reader##_near(p); }
  1038. DEFINE_PGM_READ_ANY(float, float);
  1039. DEFINE_PGM_READ_ANY(signed char, byte);
  1040. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1041. static const PROGMEM type array##_P[3] = \
  1042. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1043. static inline type array(int axis) \
  1044. { return pgm_read_any(&array##_P[axis]); }
  1045. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1046. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1047. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1048. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1049. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1050. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1051. #if ENABLED(DUAL_X_CARRIAGE)
  1052. #define DXC_FULL_CONTROL_MODE 0
  1053. #define DXC_AUTO_PARK_MODE 1
  1054. #define DXC_DUPLICATION_MODE 2
  1055. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1056. static float x_home_pos(int extruder) {
  1057. if (extruder == 0)
  1058. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1059. else
  1060. /**
  1061. * In dual carriage mode the extruder offset provides an override of the
  1062. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1063. * This allow soft recalibration of the second extruder offset position
  1064. * without firmware reflash (through the M218 command).
  1065. */
  1066. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  1067. }
  1068. static int x_home_dir(int extruder) {
  1069. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1070. }
  1071. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1072. static bool active_extruder_parked = false; // used in mode 1 & 2
  1073. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1074. static millis_t delayed_move_time = 0; // used in mode 1
  1075. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1076. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1077. bool extruder_duplication_enabled = false; // used in mode 2
  1078. #endif //DUAL_X_CARRIAGE
  1079. /**
  1080. * Software endstops can be used to monitor the open end of
  1081. * an axis that has a hardware endstop on the other end. Or
  1082. * they can prevent axes from moving past endstops and grinding.
  1083. *
  1084. * To keep doing their job as the coordinate system changes,
  1085. * the software endstop positions must be refreshed to remain
  1086. * at the same positions relative to the machine.
  1087. */
  1088. static void update_software_endstops(AxisEnum axis) {
  1089. float offs = home_offset[axis] + position_shift[axis];
  1090. #if ENABLED(DUAL_X_CARRIAGE)
  1091. if (axis == X_AXIS) {
  1092. float dual_max_x = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1093. if (active_extruder != 0) {
  1094. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1095. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1096. return;
  1097. }
  1098. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1099. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1100. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1101. return;
  1102. }
  1103. }
  1104. else
  1105. #endif
  1106. {
  1107. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1108. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1109. }
  1110. }
  1111. /**
  1112. * Change the home offset for an axis, update the current
  1113. * position and the software endstops to retain the same
  1114. * relative distance to the new home.
  1115. *
  1116. * Since this changes the current_position, code should
  1117. * call sync_plan_position soon after this.
  1118. */
  1119. static void set_home_offset(AxisEnum axis, float v) {
  1120. current_position[axis] += v - home_offset[axis];
  1121. home_offset[axis] = v;
  1122. update_software_endstops(axis);
  1123. }
  1124. static void set_axis_is_at_home(AxisEnum axis) {
  1125. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1126. if (DEBUGGING(LEVELING)) {
  1127. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1128. SERIAL_ECHOLNPGM(") >>>");
  1129. }
  1130. #endif
  1131. position_shift[axis] = 0;
  1132. #if ENABLED(DUAL_X_CARRIAGE)
  1133. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1134. if (active_extruder != 0)
  1135. current_position[X_AXIS] = x_home_pos(active_extruder);
  1136. else
  1137. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1138. update_software_endstops(X_AXIS);
  1139. return;
  1140. }
  1141. #endif
  1142. #if ENABLED(SCARA)
  1143. if (axis == X_AXIS || axis == Y_AXIS) {
  1144. float homeposition[3];
  1145. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1146. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1147. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1148. /**
  1149. * Works out real Homeposition angles using inverse kinematics,
  1150. * and calculates homing offset using forward kinematics
  1151. */
  1152. calculate_delta(homeposition);
  1153. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1154. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1155. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1156. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1157. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1158. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1159. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1160. calculate_SCARA_forward_Transform(delta);
  1161. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1162. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1163. current_position[axis] = delta[axis];
  1164. /**
  1165. * SCARA home positions are based on configuration since the actual
  1166. * limits are determined by the inverse kinematic transform.
  1167. */
  1168. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1169. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1170. }
  1171. else
  1172. #endif
  1173. {
  1174. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1175. update_software_endstops(axis);
  1176. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1177. if (axis == Z_AXIS) {
  1178. current_position[Z_AXIS] -= zprobe_zoffset;
  1179. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1180. if (DEBUGGING(LEVELING)) {
  1181. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1182. SERIAL_EOL;
  1183. }
  1184. #endif
  1185. }
  1186. #endif
  1187. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1188. if (DEBUGGING(LEVELING)) {
  1189. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1190. DEBUG_POS("", current_position);
  1191. }
  1192. #endif
  1193. }
  1194. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1195. if (DEBUGGING(LEVELING)) {
  1196. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1197. SERIAL_ECHOLNPGM(")");
  1198. }
  1199. #endif
  1200. }
  1201. /**
  1202. * Some planner shorthand inline functions
  1203. */
  1204. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1205. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1206. int hbd = homing_bump_divisor[axis];
  1207. if (hbd < 1) {
  1208. hbd = 10;
  1209. SERIAL_ECHO_START;
  1210. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1211. }
  1212. feedrate = homing_feedrate[axis] / hbd;
  1213. }
  1214. //
  1215. // line_to_current_position
  1216. // Move the planner to the current position from wherever it last moved
  1217. // (or from wherever it has been told it is located).
  1218. //
  1219. inline void line_to_current_position() {
  1220. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1221. }
  1222. inline void line_to_z(float zPosition) {
  1223. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1224. }
  1225. //
  1226. // line_to_destination
  1227. // Move the planner, not necessarily synced with current_position
  1228. //
  1229. inline void line_to_destination(float mm_m) {
  1230. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1231. }
  1232. inline void line_to_destination() {
  1233. line_to_destination(feedrate);
  1234. }
  1235. /**
  1236. * sync_plan_position
  1237. * Set planner / stepper positions to the cartesian current_position.
  1238. * The stepper code translates these coordinates into step units.
  1239. * Allows translation between steps and units (mm) for cartesian & core robots
  1240. */
  1241. inline void sync_plan_position() {
  1242. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1243. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1244. #endif
  1245. planner.set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1246. }
  1247. inline void sync_plan_position_e() { planner.set_e_position(current_position[E_AXIS]); }
  1248. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1249. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1250. static void setup_for_endstop_move() {
  1251. saved_feedrate = feedrate;
  1252. saved_feedrate_multiplier = feedrate_multiplier;
  1253. feedrate_multiplier = 100;
  1254. refresh_cmd_timeout();
  1255. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1256. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > endstops.enable()");
  1257. #endif
  1258. endstops.enable();
  1259. }
  1260. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1261. #if ENABLED(DELTA)
  1262. /**
  1263. * Calculate delta, start a line, and set current_position to destination
  1264. */
  1265. void prepare_move_raw() {
  1266. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1267. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1268. #endif
  1269. refresh_cmd_timeout();
  1270. calculate_delta(destination);
  1271. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1272. set_current_to_destination();
  1273. }
  1274. #endif
  1275. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1276. #if DISABLED(DELTA)
  1277. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1278. //planner.bed_level_matrix.debug("bed level before");
  1279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1280. planner.bed_level_matrix.set_to_identity();
  1281. if (DEBUGGING(LEVELING)) {
  1282. vector_3 uncorrected_position = planner.adjusted_position();
  1283. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1284. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1285. }
  1286. #endif
  1287. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1288. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1289. vector_3 corrected_position = planner.adjusted_position();
  1290. current_position[X_AXIS] = corrected_position.x;
  1291. current_position[Y_AXIS] = corrected_position.y;
  1292. current_position[Z_AXIS] = corrected_position.z;
  1293. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1294. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1295. #endif
  1296. sync_plan_position();
  1297. }
  1298. #endif // !DELTA
  1299. #else // !AUTO_BED_LEVELING_GRID
  1300. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1301. planner.bed_level_matrix.set_to_identity();
  1302. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1303. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1304. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1305. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1306. if (planeNormal.z < 0) {
  1307. planeNormal.x = -planeNormal.x;
  1308. planeNormal.y = -planeNormal.y;
  1309. planeNormal.z = -planeNormal.z;
  1310. }
  1311. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1312. vector_3 corrected_position = planner.adjusted_position();
  1313. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1314. if (DEBUGGING(LEVELING)) {
  1315. vector_3 uncorrected_position = corrected_position;
  1316. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1317. }
  1318. #endif
  1319. current_position[X_AXIS] = corrected_position.x;
  1320. current_position[Y_AXIS] = corrected_position.y;
  1321. current_position[Z_AXIS] = corrected_position.z;
  1322. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1323. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1324. #endif
  1325. sync_plan_position();
  1326. }
  1327. #endif // !AUTO_BED_LEVELING_GRID
  1328. static void run_z_probe() {
  1329. /**
  1330. * To prevent stepper_inactive_time from running out and
  1331. * EXTRUDER_RUNOUT_PREVENT from extruding
  1332. */
  1333. refresh_cmd_timeout();
  1334. #if ENABLED(DELTA)
  1335. float start_z = current_position[Z_AXIS];
  1336. long start_steps = stepper.position(Z_AXIS);
  1337. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1338. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1339. #endif
  1340. // move down slowly until you find the bed
  1341. feedrate = homing_feedrate[Z_AXIS] / 4;
  1342. destination[Z_AXIS] = -10;
  1343. prepare_move_raw(); // this will also set_current_to_destination
  1344. stepper.synchronize();
  1345. endstops.hit_on_purpose(); // clear endstop hit flags
  1346. /**
  1347. * We have to let the planner know where we are right now as it
  1348. * is not where we said to go.
  1349. */
  1350. long stop_steps = stepper.position(Z_AXIS);
  1351. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_unit[Z_AXIS];
  1352. current_position[Z_AXIS] = mm;
  1353. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1354. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1355. #endif
  1356. sync_plan_position_delta();
  1357. #else // !DELTA
  1358. planner.bed_level_matrix.set_to_identity();
  1359. feedrate = homing_feedrate[Z_AXIS];
  1360. // Move down until the Z probe (or endstop?) is triggered
  1361. float zPosition = -(Z_MAX_LENGTH + 10);
  1362. line_to_z(zPosition);
  1363. stepper.synchronize();
  1364. // Tell the planner where we ended up - Get this from the stepper handler
  1365. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1366. planner.set_position(
  1367. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1368. current_position[E_AXIS]
  1369. );
  1370. // move up the retract distance
  1371. zPosition += home_bump_mm(Z_AXIS);
  1372. line_to_z(zPosition);
  1373. stepper.synchronize();
  1374. endstops.hit_on_purpose(); // clear endstop hit flags
  1375. // move back down slowly to find bed
  1376. set_homing_bump_feedrate(Z_AXIS);
  1377. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1378. line_to_z(zPosition);
  1379. stepper.synchronize();
  1380. endstops.hit_on_purpose(); // clear endstop hit flags
  1381. // Get the current stepper position after bumping an endstop
  1382. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1383. sync_plan_position();
  1384. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1385. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1386. #endif
  1387. #endif // !DELTA
  1388. }
  1389. /**
  1390. * Plan a move to (X, Y, Z) and set the current_position
  1391. * The final current_position may not be the one that was requested
  1392. */
  1393. static void do_blocking_move_to(float x, float y, float z) {
  1394. float oldFeedRate = feedrate;
  1395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1396. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1397. #endif
  1398. #if ENABLED(DELTA)
  1399. feedrate = XY_TRAVEL_SPEED;
  1400. destination[X_AXIS] = x;
  1401. destination[Y_AXIS] = y;
  1402. destination[Z_AXIS] = z;
  1403. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1404. prepare_move_raw(); // this will also set_current_to_destination
  1405. else
  1406. prepare_move(); // this will also set_current_to_destination
  1407. stepper.synchronize();
  1408. #else
  1409. feedrate = homing_feedrate[Z_AXIS];
  1410. current_position[Z_AXIS] = z;
  1411. line_to_current_position();
  1412. stepper.synchronize();
  1413. feedrate = xy_travel_speed;
  1414. current_position[X_AXIS] = x;
  1415. current_position[Y_AXIS] = y;
  1416. line_to_current_position();
  1417. stepper.synchronize();
  1418. #endif
  1419. feedrate = oldFeedRate;
  1420. }
  1421. inline void do_blocking_move_to_xy(float x, float y) {
  1422. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1423. }
  1424. inline void do_blocking_move_to_x(float x) {
  1425. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1426. }
  1427. inline void do_blocking_move_to_z(float z) {
  1428. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1429. }
  1430. inline void raise_z_after_probing() {
  1431. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1432. }
  1433. static void clean_up_after_endstop_move() {
  1434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1435. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops.not_homing()");
  1436. #endif
  1437. endstops.not_homing();
  1438. feedrate = saved_feedrate;
  1439. feedrate_multiplier = saved_feedrate_multiplier;
  1440. refresh_cmd_timeout();
  1441. }
  1442. #if HAS_BED_PROBE
  1443. static void deploy_z_probe() {
  1444. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1445. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1446. #endif
  1447. if (endstops.z_probe_enabled) return;
  1448. #if HAS_SERVO_ENDSTOPS
  1449. // Engage Z Servo endstop if enabled
  1450. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1451. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1452. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1453. // If endstop is already false, the Z probe is deployed
  1454. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1455. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1456. if (z_probe_endstop)
  1457. #else
  1458. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1459. if (z_min_endstop)
  1460. #endif
  1461. {
  1462. // Move to the start position to initiate deployment
  1463. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1464. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1465. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1466. prepare_move_raw(); // this will also set_current_to_destination
  1467. // Move to engage deployment
  1468. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1469. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1470. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1471. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1472. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1473. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1474. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1475. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1476. prepare_move_raw();
  1477. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1478. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1479. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1480. // Move to trigger deployment
  1481. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1482. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1483. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1484. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1485. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1486. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1487. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1488. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1489. prepare_move_raw();
  1490. #endif
  1491. }
  1492. // Partially Home X,Y for safety
  1493. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1494. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1495. prepare_move_raw(); // this will also set_current_to_destination
  1496. stepper.synchronize();
  1497. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1498. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1499. if (z_probe_endstop)
  1500. #else
  1501. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1502. if (z_min_endstop)
  1503. #endif
  1504. {
  1505. if (IsRunning()) {
  1506. SERIAL_ERROR_START;
  1507. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1508. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1509. }
  1510. stop();
  1511. }
  1512. #endif // Z_PROBE_ALLEN_KEY
  1513. #if ENABLED(FIX_MOUNTED_PROBE)
  1514. // Noting to be done. Just set endstops.z_probe_enabled
  1515. #endif
  1516. endstops.enable_z_probe();
  1517. }
  1518. static void stow_z_probe(bool doRaise = true) {
  1519. #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
  1520. UNUSED(doRaise);
  1521. #endif
  1522. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1523. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1524. #endif
  1525. if (!endstops.z_probe_enabled) return;
  1526. #if HAS_SERVO_ENDSTOPS
  1527. // Retract Z Servo endstop if enabled
  1528. if (servo_endstop_id[Z_AXIS] >= 0) {
  1529. #if Z_RAISE_AFTER_PROBING > 0
  1530. if (doRaise) {
  1531. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1532. if (DEBUGGING(LEVELING)) {
  1533. SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  1534. SERIAL_EOL;
  1535. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1536. SERIAL_EOL;
  1537. }
  1538. #endif
  1539. raise_z_after_probing(); // this also updates current_position
  1540. stepper.synchronize();
  1541. }
  1542. #endif
  1543. // Change the Z servo angle
  1544. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1545. }
  1546. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1547. // Move up for safety
  1548. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1549. #if Z_RAISE_AFTER_PROBING > 0
  1550. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1551. prepare_move_raw(); // this will also set_current_to_destination
  1552. #endif
  1553. // Move to the start position to initiate retraction
  1554. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1555. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1556. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1557. prepare_move_raw();
  1558. // Move the nozzle down to push the Z probe into retracted position
  1559. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1560. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1561. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1562. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1563. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1564. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1565. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1566. prepare_move_raw();
  1567. // Move up for safety
  1568. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1569. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1570. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1571. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1572. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1573. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1574. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1575. prepare_move_raw();
  1576. // Home XY for safety
  1577. feedrate = homing_feedrate[X_AXIS] / 2;
  1578. destination[X_AXIS] = 0;
  1579. destination[Y_AXIS] = 0;
  1580. prepare_move_raw(); // this will also set_current_to_destination
  1581. stepper.synchronize();
  1582. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1583. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1584. if (!z_probe_endstop)
  1585. #else
  1586. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1587. if (!z_min_endstop)
  1588. #endif
  1589. {
  1590. if (IsRunning()) {
  1591. SERIAL_ERROR_START;
  1592. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1593. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1594. }
  1595. stop();
  1596. }
  1597. #endif // Z_PROBE_ALLEN_KEY
  1598. #if ENABLED(FIX_MOUNTED_PROBE)
  1599. // Nothing to do here. Just clear endstops.z_probe_enabled
  1600. #endif
  1601. endstops.enable_z_probe(false);
  1602. }
  1603. #endif // HAS_BED_PROBE
  1604. enum ProbeAction {
  1605. ProbeStay = 0,
  1606. ProbeDeploy = _BV(0),
  1607. ProbeStow = _BV(1),
  1608. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1609. };
  1610. // Probe bed height at position (x,y), returns the measured z value
  1611. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1612. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1613. if (DEBUGGING(LEVELING)) {
  1614. SERIAL_ECHOLNPGM("probe_pt >>>");
  1615. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1616. SERIAL_EOL;
  1617. DEBUG_POS("", current_position);
  1618. }
  1619. #endif
  1620. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1621. if (DEBUGGING(LEVELING)) {
  1622. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1623. SERIAL_EOL;
  1624. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1625. SERIAL_EOL;
  1626. }
  1627. #endif
  1628. // Move Z up to the z_before height, then move the Z probe to the given XY
  1629. do_blocking_move_to_z(z_before); // this also updates current_position
  1630. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1631. if (DEBUGGING(LEVELING)) {
  1632. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1633. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1634. SERIAL_EOL;
  1635. }
  1636. #endif
  1637. // this also updates current_position
  1638. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1639. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1640. if (probe_action & ProbeDeploy) {
  1641. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1642. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1643. #endif
  1644. deploy_z_probe();
  1645. }
  1646. #endif
  1647. run_z_probe();
  1648. float measured_z = current_position[Z_AXIS];
  1649. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1650. if (probe_action & ProbeStow) {
  1651. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1652. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1653. #endif
  1654. stow_z_probe();
  1655. }
  1656. #endif
  1657. if (verbose_level > 2) {
  1658. SERIAL_PROTOCOLPGM("Bed X: ");
  1659. SERIAL_PROTOCOL_F(x, 3);
  1660. SERIAL_PROTOCOLPGM(" Y: ");
  1661. SERIAL_PROTOCOL_F(y, 3);
  1662. SERIAL_PROTOCOLPGM(" Z: ");
  1663. SERIAL_PROTOCOL_F(measured_z, 3);
  1664. SERIAL_EOL;
  1665. }
  1666. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1667. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1668. #endif
  1669. return measured_z;
  1670. }
  1671. #if ENABLED(DELTA)
  1672. /**
  1673. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1674. */
  1675. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1676. if (bed_level[x][y] != 0.0) {
  1677. return; // Don't overwrite good values.
  1678. }
  1679. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1680. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1681. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1682. float median = c; // Median is robust (ignores outliers).
  1683. if (a < b) {
  1684. if (b < c) median = b;
  1685. if (c < a) median = a;
  1686. }
  1687. else { // b <= a
  1688. if (c < b) median = b;
  1689. if (a < c) median = a;
  1690. }
  1691. bed_level[x][y] = median;
  1692. }
  1693. /**
  1694. * Fill in the unprobed points (corners of circular print surface)
  1695. * using linear extrapolation, away from the center.
  1696. */
  1697. static void extrapolate_unprobed_bed_level() {
  1698. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1699. for (int y = 0; y <= half; y++) {
  1700. for (int x = 0; x <= half; x++) {
  1701. if (x + y < 3) continue;
  1702. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1703. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1704. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1705. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1706. }
  1707. }
  1708. }
  1709. /**
  1710. * Print calibration results for plotting or manual frame adjustment.
  1711. */
  1712. static void print_bed_level() {
  1713. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1714. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1715. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1716. SERIAL_PROTOCOLCHAR(' ');
  1717. }
  1718. SERIAL_EOL;
  1719. }
  1720. }
  1721. /**
  1722. * Reset calibration results to zero.
  1723. */
  1724. void reset_bed_level() {
  1725. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1726. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1727. #endif
  1728. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1729. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1730. bed_level[x][y] = 0.0;
  1731. }
  1732. }
  1733. }
  1734. #endif // DELTA
  1735. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1736. void raise_z_for_servo() {
  1737. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1738. /**
  1739. * The zprobe_zoffset is negative any switch below the nozzle, so
  1740. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1741. */
  1742. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1743. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1744. }
  1745. #endif
  1746. #endif // AUTO_BED_LEVELING_FEATURE
  1747. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1748. static void axis_unhomed_error(bool xyz=false) {
  1749. if (xyz) {
  1750. LCD_MESSAGEPGM(MSG_XYZ_UNHOMED);
  1751. SERIAL_ECHO_START;
  1752. SERIAL_ECHOLNPGM(MSG_XYZ_UNHOMED);
  1753. }
  1754. else {
  1755. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1756. SERIAL_ECHO_START;
  1757. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1758. }
  1759. }
  1760. #endif
  1761. #if ENABLED(Z_PROBE_SLED)
  1762. #ifndef SLED_DOCKING_OFFSET
  1763. #define SLED_DOCKING_OFFSET 0
  1764. #endif
  1765. /**
  1766. * Method to dock/undock a sled designed by Charles Bell.
  1767. *
  1768. * dock[in] If true, move to MAX_X and engage the electromagnet
  1769. * offset[in] The additional distance to move to adjust docking location
  1770. */
  1771. static void dock_sled(bool dock, int offset = 0) {
  1772. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1773. if (DEBUGGING(LEVELING)) {
  1774. SERIAL_ECHOPAIR("dock_sled(", dock);
  1775. SERIAL_ECHOLNPGM(")");
  1776. }
  1777. #endif
  1778. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  1779. axis_unhomed_error(true);
  1780. return;
  1781. }
  1782. if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
  1783. float oldXpos = current_position[X_AXIS]; // save x position
  1784. if (dock) {
  1785. #if Z_RAISE_AFTER_PROBING > 0
  1786. raise_z_after_probing(); // raise Z
  1787. #endif
  1788. // Dock sled a bit closer to ensure proper capturing
  1789. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1790. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1791. }
  1792. else {
  1793. float z_loc = current_position[Z_AXIS];
  1794. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1795. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1796. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1797. }
  1798. do_blocking_move_to_x(oldXpos); // return to position before docking
  1799. endstops.enable_z_probe(!dock); // logically disable docked probe
  1800. }
  1801. #endif // Z_PROBE_SLED
  1802. /**
  1803. * Home an individual axis
  1804. */
  1805. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1806. static void homeaxis(AxisEnum axis) {
  1807. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1808. if (DEBUGGING(LEVELING)) {
  1809. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1810. SERIAL_ECHOLNPGM(")");
  1811. }
  1812. #endif
  1813. #define HOMEAXIS_DO(LETTER) \
  1814. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1815. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1816. int axis_home_dir =
  1817. #if ENABLED(DUAL_X_CARRIAGE)
  1818. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1819. #endif
  1820. home_dir(axis);
  1821. // Set the axis position as setup for the move
  1822. current_position[axis] = 0;
  1823. sync_plan_position();
  1824. #if ENABLED(Z_PROBE_SLED)
  1825. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1826. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1827. #define _Z_DEPLOY (dock_sled(false))
  1828. #define _Z_STOW (dock_sled(true))
  1829. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1830. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1831. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1832. #define _Z_DEPLOY (deploy_z_probe())
  1833. #define _Z_STOW (stow_z_probe())
  1834. #elif HAS_SERVO_ENDSTOPS
  1835. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1836. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1837. #endif
  1838. if (axis == Z_AXIS) {
  1839. // If there's a Z probe that needs deployment...
  1840. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1841. // ...and homing Z towards the bed? Deploy it.
  1842. if (axis_home_dir < 0) _Z_DEPLOY;
  1843. #endif
  1844. }
  1845. #if HAS_SERVO_ENDSTOPS
  1846. // Engage an X or Y Servo endstop if enabled
  1847. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1848. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1849. if (_Z_PROBE_SUBTEST) endstops.z_probe_enabled = true;
  1850. }
  1851. #endif
  1852. // Set a flag for Z motor locking
  1853. #if ENABLED(Z_DUAL_ENDSTOPS)
  1854. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1855. #endif
  1856. // Move towards the endstop until an endstop is triggered
  1857. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1858. feedrate = homing_feedrate[axis];
  1859. line_to_destination();
  1860. stepper.synchronize();
  1861. // Set the axis position as setup for the move
  1862. current_position[axis] = 0;
  1863. sync_plan_position();
  1864. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1865. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1866. #endif
  1867. endstops.enable(false); // Disable endstops while moving away
  1868. // Move away from the endstop by the axis HOME_BUMP_MM
  1869. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1870. line_to_destination();
  1871. stepper.synchronize();
  1872. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1873. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1874. #endif
  1875. endstops.enable(true); // Enable endstops for next homing move
  1876. // Slow down the feedrate for the next move
  1877. set_homing_bump_feedrate(axis);
  1878. // Move slowly towards the endstop until triggered
  1879. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1880. line_to_destination();
  1881. stepper.synchronize();
  1882. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1883. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1884. #endif
  1885. #if ENABLED(Z_DUAL_ENDSTOPS)
  1886. if (axis == Z_AXIS) {
  1887. float adj = fabs(z_endstop_adj);
  1888. bool lockZ1;
  1889. if (axis_home_dir > 0) {
  1890. adj = -adj;
  1891. lockZ1 = (z_endstop_adj > 0);
  1892. }
  1893. else
  1894. lockZ1 = (z_endstop_adj < 0);
  1895. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1896. sync_plan_position();
  1897. // Move to the adjusted endstop height
  1898. feedrate = homing_feedrate[axis];
  1899. destination[Z_AXIS] = adj;
  1900. line_to_destination();
  1901. stepper.synchronize();
  1902. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1903. stepper.set_homing_flag(false);
  1904. } // Z_AXIS
  1905. #endif
  1906. #if ENABLED(DELTA)
  1907. // retrace by the amount specified in endstop_adj
  1908. if (endstop_adj[axis] * axis_home_dir < 0) {
  1909. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1910. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  1911. #endif
  1912. endstops.enable(false); // Disable endstops while moving away
  1913. sync_plan_position();
  1914. destination[axis] = endstop_adj[axis];
  1915. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1916. if (DEBUGGING(LEVELING)) {
  1917. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1918. DEBUG_POS("", destination);
  1919. }
  1920. #endif
  1921. line_to_destination();
  1922. stepper.synchronize();
  1923. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1924. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  1925. #endif
  1926. endstops.enable(true); // Enable endstops for next homing move
  1927. }
  1928. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1929. else {
  1930. if (DEBUGGING(LEVELING)) {
  1931. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1932. SERIAL_EOL;
  1933. }
  1934. }
  1935. #endif
  1936. #endif
  1937. // Set the axis position to its home position (plus home offsets)
  1938. set_axis_is_at_home(axis);
  1939. sync_plan_position();
  1940. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1941. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1942. #endif
  1943. destination[axis] = current_position[axis];
  1944. feedrate = 0.0;
  1945. endstops.hit_on_purpose(); // clear endstop hit flags
  1946. axis_known_position[axis] = true;
  1947. axis_homed[axis] = true;
  1948. // Put away the Z probe
  1949. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1950. if (axis == Z_AXIS && axis_home_dir < 0) {
  1951. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1952. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1953. #endif
  1954. _Z_STOW;
  1955. }
  1956. #endif
  1957. // Retract Servo endstop if enabled
  1958. #if HAS_SERVO_ENDSTOPS
  1959. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1960. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1961. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1962. #endif
  1963. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1964. if (_Z_PROBE_SUBTEST) endstops.enable_z_probe(false);
  1965. }
  1966. #endif
  1967. }
  1968. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1969. if (DEBUGGING(LEVELING)) {
  1970. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  1971. SERIAL_ECHOLNPGM(")");
  1972. }
  1973. #endif
  1974. }
  1975. #if ENABLED(FWRETRACT)
  1976. void retract(bool retracting, bool swapping = false) {
  1977. if (retracting == retracted[active_extruder]) return;
  1978. float oldFeedrate = feedrate;
  1979. set_destination_to_current();
  1980. if (retracting) {
  1981. feedrate = retract_feedrate * 60;
  1982. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1983. sync_plan_position_e();
  1984. prepare_move();
  1985. if (retract_zlift > 0.01) {
  1986. current_position[Z_AXIS] -= retract_zlift;
  1987. #if ENABLED(DELTA)
  1988. sync_plan_position_delta();
  1989. #else
  1990. sync_plan_position();
  1991. #endif
  1992. prepare_move();
  1993. }
  1994. }
  1995. else {
  1996. if (retract_zlift > 0.01) {
  1997. current_position[Z_AXIS] += retract_zlift;
  1998. #if ENABLED(DELTA)
  1999. sync_plan_position_delta();
  2000. #else
  2001. sync_plan_position();
  2002. #endif
  2003. }
  2004. feedrate = retract_recover_feedrate * 60;
  2005. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2006. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2007. sync_plan_position_e();
  2008. prepare_move();
  2009. }
  2010. feedrate = oldFeedrate;
  2011. retracted[active_extruder] = retracting;
  2012. } // retract()
  2013. #endif // FWRETRACT
  2014. /**
  2015. * ***************************************************************************
  2016. * ***************************** G-CODE HANDLING *****************************
  2017. * ***************************************************************************
  2018. */
  2019. /**
  2020. * Set XYZE destination and feedrate from the current GCode command
  2021. *
  2022. * - Set destination from included axis codes
  2023. * - Set to current for missing axis codes
  2024. * - Set the feedrate, if included
  2025. */
  2026. void gcode_get_destination() {
  2027. for (int i = 0; i < NUM_AXIS; i++) {
  2028. if (code_seen(axis_codes[i]))
  2029. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2030. else
  2031. destination[i] = current_position[i];
  2032. }
  2033. if (code_seen('F')) {
  2034. float next_feedrate = code_value();
  2035. if (next_feedrate > 0.0) feedrate = next_feedrate;
  2036. }
  2037. }
  2038. void unknown_command_error() {
  2039. SERIAL_ECHO_START;
  2040. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2041. SERIAL_ECHO(current_command);
  2042. SERIAL_ECHOPGM("\"\n");
  2043. }
  2044. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2045. /**
  2046. * Output a "busy" message at regular intervals
  2047. * while the machine is not accepting commands.
  2048. */
  2049. void host_keepalive() {
  2050. millis_t ms = millis();
  2051. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2052. if (PENDING(ms, next_busy_signal_ms)) return;
  2053. switch (busy_state) {
  2054. case IN_HANDLER:
  2055. case IN_PROCESS:
  2056. SERIAL_ECHO_START;
  2057. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2058. break;
  2059. case PAUSED_FOR_USER:
  2060. SERIAL_ECHO_START;
  2061. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2062. break;
  2063. case PAUSED_FOR_INPUT:
  2064. SERIAL_ECHO_START;
  2065. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2066. break;
  2067. default:
  2068. break;
  2069. }
  2070. }
  2071. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2072. }
  2073. #endif //HOST_KEEPALIVE_FEATURE
  2074. /**
  2075. * G0, G1: Coordinated movement of X Y Z E axes
  2076. */
  2077. inline void gcode_G0_G1() {
  2078. if (IsRunning()) {
  2079. gcode_get_destination(); // For X Y Z E F
  2080. #if ENABLED(FWRETRACT)
  2081. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2082. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2083. // Is this move an attempt to retract or recover?
  2084. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2085. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2086. sync_plan_position_e(); // AND from the planner
  2087. retract(!retracted[active_extruder]);
  2088. return;
  2089. }
  2090. }
  2091. #endif //FWRETRACT
  2092. prepare_move();
  2093. }
  2094. }
  2095. /**
  2096. * G2: Clockwise Arc
  2097. * G3: Counterclockwise Arc
  2098. */
  2099. #if ENABLED(ARC_SUPPORT)
  2100. inline void gcode_G2_G3(bool clockwise) {
  2101. if (IsRunning()) {
  2102. #if ENABLED(SF_ARC_FIX)
  2103. bool relative_mode_backup = relative_mode;
  2104. relative_mode = true;
  2105. #endif
  2106. gcode_get_destination();
  2107. #if ENABLED(SF_ARC_FIX)
  2108. relative_mode = relative_mode_backup;
  2109. #endif
  2110. // Center of arc as offset from current_position
  2111. float arc_offset[2] = {
  2112. code_seen('I') ? code_value() : 0,
  2113. code_seen('J') ? code_value() : 0
  2114. };
  2115. // Send an arc to the planner
  2116. plan_arc(destination, arc_offset, clockwise);
  2117. refresh_cmd_timeout();
  2118. }
  2119. }
  2120. #endif
  2121. /**
  2122. * G4: Dwell S<seconds> or P<milliseconds>
  2123. */
  2124. inline void gcode_G4() {
  2125. millis_t codenum = 0;
  2126. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  2127. if (code_seen('S')) codenum = code_value() * 1000UL; // seconds to wait
  2128. stepper.synchronize();
  2129. refresh_cmd_timeout();
  2130. codenum += previous_cmd_ms; // keep track of when we started waiting
  2131. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2132. while (PENDING(millis(), codenum)) idle();
  2133. }
  2134. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2135. /**
  2136. * Parameters interpreted according to:
  2137. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2138. * However I, J omission is not supported at this point; all
  2139. * parameters can be omitted and default to zero.
  2140. */
  2141. /**
  2142. * G5: Cubic B-spline
  2143. */
  2144. inline void gcode_G5() {
  2145. if (IsRunning()) {
  2146. gcode_get_destination();
  2147. float offset[] = {
  2148. code_seen('I') ? code_value() : 0.0,
  2149. code_seen('J') ? code_value() : 0.0,
  2150. code_seen('P') ? code_value() : 0.0,
  2151. code_seen('Q') ? code_value() : 0.0
  2152. };
  2153. plan_cubic_move(offset);
  2154. }
  2155. }
  2156. #endif // BEZIER_CURVE_SUPPORT
  2157. #if ENABLED(FWRETRACT)
  2158. /**
  2159. * G10 - Retract filament according to settings of M207
  2160. * G11 - Recover filament according to settings of M208
  2161. */
  2162. inline void gcode_G10_G11(bool doRetract=false) {
  2163. #if EXTRUDERS > 1
  2164. if (doRetract) {
  2165. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  2166. }
  2167. #endif
  2168. retract(doRetract
  2169. #if EXTRUDERS > 1
  2170. , retracted_swap[active_extruder]
  2171. #endif
  2172. );
  2173. }
  2174. #endif //FWRETRACT
  2175. /**
  2176. * G28: Home all axes according to settings
  2177. *
  2178. * Parameters
  2179. *
  2180. * None Home to all axes with no parameters.
  2181. * With QUICK_HOME enabled XY will home together, then Z.
  2182. *
  2183. * Cartesian parameters
  2184. *
  2185. * X Home to the X endstop
  2186. * Y Home to the Y endstop
  2187. * Z Home to the Z endstop
  2188. *
  2189. */
  2190. inline void gcode_G28() {
  2191. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2192. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2193. #endif
  2194. // Wait for planner moves to finish!
  2195. stepper.synchronize();
  2196. // For auto bed leveling, clear the level matrix
  2197. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2198. planner.bed_level_matrix.set_to_identity();
  2199. #if ENABLED(DELTA)
  2200. reset_bed_level();
  2201. #endif
  2202. #endif
  2203. /**
  2204. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2205. * on again when homing all axis
  2206. */
  2207. #if ENABLED(MESH_BED_LEVELING)
  2208. uint8_t mbl_was_active = mbl.active;
  2209. mbl.active = false;
  2210. #endif
  2211. setup_for_endstop_move();
  2212. /**
  2213. * Directly after a reset this is all 0. Later we get a hint if we have
  2214. * to raise z or not.
  2215. */
  2216. set_destination_to_current();
  2217. feedrate = 0.0;
  2218. #if ENABLED(DELTA)
  2219. /**
  2220. * A delta can only safely home all axis at the same time
  2221. * all axis have to home at the same time
  2222. */
  2223. // Pretend the current position is 0,0,0
  2224. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2225. sync_plan_position();
  2226. // Move all carriages up together until the first endstop is hit.
  2227. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2228. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2229. line_to_destination();
  2230. stepper.synchronize();
  2231. endstops.hit_on_purpose(); // clear endstop hit flags
  2232. // Destination reached
  2233. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2234. // take care of back off and rehome now we are all at the top
  2235. HOMEAXIS(X);
  2236. HOMEAXIS(Y);
  2237. HOMEAXIS(Z);
  2238. sync_plan_position_delta();
  2239. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2240. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2241. #endif
  2242. #else // NOT DELTA
  2243. bool homeX = code_seen(axis_codes[X_AXIS]),
  2244. homeY = code_seen(axis_codes[Y_AXIS]),
  2245. homeZ = code_seen(axis_codes[Z_AXIS]);
  2246. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2247. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2248. if (home_all_axis || homeZ) {
  2249. HOMEAXIS(Z);
  2250. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2251. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2252. #endif
  2253. }
  2254. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2255. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2256. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2257. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2258. feedrate = planner.max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2259. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2260. if (DEBUGGING(LEVELING)) {
  2261. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2262. SERIAL_EOL;
  2263. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2264. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2265. }
  2266. #endif
  2267. line_to_destination();
  2268. stepper.synchronize();
  2269. /**
  2270. * Update the current Z position even if it currently not real from
  2271. * Z-home otherwise each call to line_to_destination() will want to
  2272. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2273. */
  2274. current_position[Z_AXIS] = destination[Z_AXIS];
  2275. }
  2276. #endif
  2277. #if ENABLED(QUICK_HOME)
  2278. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2279. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2280. #if ENABLED(DUAL_X_CARRIAGE)
  2281. int x_axis_home_dir = x_home_dir(active_extruder);
  2282. extruder_duplication_enabled = false;
  2283. #else
  2284. int x_axis_home_dir = home_dir(X_AXIS);
  2285. #endif
  2286. sync_plan_position();
  2287. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2288. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2289. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2290. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2291. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2292. line_to_destination();
  2293. stepper.synchronize();
  2294. set_axis_is_at_home(X_AXIS);
  2295. set_axis_is_at_home(Y_AXIS);
  2296. sync_plan_position();
  2297. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2298. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2299. #endif
  2300. destination[X_AXIS] = current_position[X_AXIS];
  2301. destination[Y_AXIS] = current_position[Y_AXIS];
  2302. line_to_destination();
  2303. feedrate = 0.0;
  2304. stepper.synchronize();
  2305. endstops.hit_on_purpose(); // clear endstop hit flags
  2306. current_position[X_AXIS] = destination[X_AXIS];
  2307. current_position[Y_AXIS] = destination[Y_AXIS];
  2308. #if DISABLED(SCARA)
  2309. current_position[Z_AXIS] = destination[Z_AXIS];
  2310. #endif
  2311. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2312. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2313. #endif
  2314. }
  2315. #endif // QUICK_HOME
  2316. #if ENABLED(HOME_Y_BEFORE_X)
  2317. // Home Y
  2318. if (home_all_axis || homeY) HOMEAXIS(Y);
  2319. #endif
  2320. // Home X
  2321. if (home_all_axis || homeX) {
  2322. #if ENABLED(DUAL_X_CARRIAGE)
  2323. int tmp_extruder = active_extruder;
  2324. extruder_duplication_enabled = false;
  2325. active_extruder = !active_extruder;
  2326. HOMEAXIS(X);
  2327. inactive_extruder_x_pos = current_position[X_AXIS];
  2328. active_extruder = tmp_extruder;
  2329. HOMEAXIS(X);
  2330. // reset state used by the different modes
  2331. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2332. delayed_move_time = 0;
  2333. active_extruder_parked = true;
  2334. #else
  2335. HOMEAXIS(X);
  2336. #endif
  2337. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2338. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2339. #endif
  2340. }
  2341. #if DISABLED(HOME_Y_BEFORE_X)
  2342. // Home Y
  2343. if (home_all_axis || homeY) {
  2344. HOMEAXIS(Y);
  2345. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2346. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2347. #endif
  2348. }
  2349. #endif
  2350. // Home Z last if homing towards the bed
  2351. #if Z_HOME_DIR < 0
  2352. if (home_all_axis || homeZ) {
  2353. #if ENABLED(Z_SAFE_HOMING)
  2354. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2355. if (DEBUGGING(LEVELING)) {
  2356. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2357. }
  2358. #endif
  2359. if (home_all_axis) {
  2360. /**
  2361. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2362. * No need to move Z any more as this height should already be safe
  2363. * enough to reach Z_SAFE_HOMING XY positions.
  2364. * Just make sure the planner is in sync.
  2365. */
  2366. sync_plan_position();
  2367. /**
  2368. * Set the Z probe (or just the nozzle) destination to the safe
  2369. * homing point
  2370. */
  2371. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2372. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2373. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2374. feedrate = XY_TRAVEL_SPEED;
  2375. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2376. if (DEBUGGING(LEVELING)) {
  2377. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2378. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2379. }
  2380. #endif
  2381. // Move in the XY plane
  2382. line_to_destination();
  2383. stepper.synchronize();
  2384. /**
  2385. * Update the current positions for XY, Z is still at least at
  2386. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2387. */
  2388. current_position[X_AXIS] = destination[X_AXIS];
  2389. current_position[Y_AXIS] = destination[Y_AXIS];
  2390. // Home the Z axis
  2391. HOMEAXIS(Z);
  2392. }
  2393. else if (homeZ) { // Don't need to Home Z twice
  2394. // Let's see if X and Y are homed
  2395. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2396. /**
  2397. * Make sure the Z probe is within the physical limits
  2398. * NOTE: This doesn't necessarily ensure the Z probe is also
  2399. * within the bed!
  2400. */
  2401. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2402. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2403. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2404. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2405. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2406. // Home the Z axis
  2407. HOMEAXIS(Z);
  2408. }
  2409. else {
  2410. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2411. SERIAL_ECHO_START;
  2412. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2413. }
  2414. }
  2415. else {
  2416. axis_unhomed_error();
  2417. }
  2418. } // !home_all_axes && homeZ
  2419. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2420. if (DEBUGGING(LEVELING)) {
  2421. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2422. }
  2423. #endif
  2424. #else // !Z_SAFE_HOMING
  2425. HOMEAXIS(Z);
  2426. #endif // !Z_SAFE_HOMING
  2427. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2428. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2429. #endif
  2430. } // home_all_axis || homeZ
  2431. #endif // Z_HOME_DIR < 0
  2432. sync_plan_position();
  2433. #endif // else DELTA
  2434. #if ENABLED(SCARA)
  2435. sync_plan_position_delta();
  2436. #endif
  2437. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2438. endstops.enable(false);
  2439. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2440. if (DEBUGGING(LEVELING)) {
  2441. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING endstops.enable(false)");
  2442. }
  2443. #endif
  2444. #endif
  2445. // Enable mesh leveling again
  2446. #if ENABLED(MESH_BED_LEVELING)
  2447. if (mbl_was_active && home_all_axis) {
  2448. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2449. sync_plan_position();
  2450. mbl.active = 1;
  2451. #if ENABLED(MESH_G28_REST_ORIGIN)
  2452. current_position[Z_AXIS] = 0.0;
  2453. set_destination_to_current();
  2454. feedrate = homing_feedrate[Z_AXIS];
  2455. line_to_destination();
  2456. stepper.synchronize();
  2457. #endif
  2458. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2459. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2460. #endif
  2461. }
  2462. #endif
  2463. feedrate = saved_feedrate;
  2464. feedrate_multiplier = saved_feedrate_multiplier;
  2465. refresh_cmd_timeout();
  2466. endstops.hit_on_purpose(); // clear endstop hit flags
  2467. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2468. if (DEBUGGING(LEVELING)) {
  2469. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2470. }
  2471. #endif
  2472. report_current_position();
  2473. }
  2474. #if ENABLED(MESH_BED_LEVELING)
  2475. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2476. inline void _mbl_goto_xy(float x, float y) {
  2477. saved_feedrate = feedrate;
  2478. feedrate = homing_feedrate[X_AXIS];
  2479. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2480. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2481. + MIN_Z_HEIGHT_FOR_HOMING
  2482. #endif
  2483. ;
  2484. line_to_current_position();
  2485. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2486. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2487. line_to_current_position();
  2488. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2489. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2490. line_to_current_position();
  2491. #endif
  2492. feedrate = saved_feedrate;
  2493. stepper.synchronize();
  2494. }
  2495. /**
  2496. * G29: Mesh-based Z probe, probes a grid and produces a
  2497. * mesh to compensate for variable bed height
  2498. *
  2499. * Parameters With MESH_BED_LEVELING:
  2500. *
  2501. * S0 Produce a mesh report
  2502. * S1 Start probing mesh points
  2503. * S2 Probe the next mesh point
  2504. * S3 Xn Yn Zn.nn Manually modify a single point
  2505. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2506. *
  2507. * The S0 report the points as below
  2508. *
  2509. * +----> X-axis 1-n
  2510. * |
  2511. * |
  2512. * v Y-axis 1-n
  2513. *
  2514. */
  2515. inline void gcode_G29() {
  2516. static int probe_point = -1;
  2517. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2518. if (state < 0 || state > 4) {
  2519. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2520. return;
  2521. }
  2522. int8_t px, py;
  2523. float z;
  2524. switch (state) {
  2525. case MeshReport:
  2526. if (mbl.active) {
  2527. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2528. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2529. SERIAL_PROTOCOLCHAR(',');
  2530. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2531. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2532. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2533. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2534. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2535. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2536. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2537. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2538. SERIAL_PROTOCOLPGM(" ");
  2539. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2540. }
  2541. SERIAL_EOL;
  2542. }
  2543. }
  2544. else
  2545. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2546. break;
  2547. case MeshStart:
  2548. mbl.reset();
  2549. probe_point = 0;
  2550. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2551. break;
  2552. case MeshNext:
  2553. if (probe_point < 0) {
  2554. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2555. return;
  2556. }
  2557. // For each G29 S2...
  2558. if (probe_point == 0) {
  2559. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2560. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2561. sync_plan_position();
  2562. }
  2563. else {
  2564. // For G29 S2 after adjusting Z.
  2565. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2566. }
  2567. // If there's another point to sample, move there with optional lift.
  2568. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2569. mbl.zigzag(probe_point, px, py);
  2570. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2571. probe_point++;
  2572. }
  2573. else {
  2574. // One last "return to the bed" (as originally coded) at completion
  2575. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2576. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2577. + MIN_Z_HEIGHT_FOR_HOMING
  2578. #endif
  2579. ;
  2580. line_to_current_position();
  2581. stepper.synchronize();
  2582. // After recording the last point, activate the mbl and home
  2583. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2584. probe_point = -1;
  2585. mbl.active = true;
  2586. enqueue_and_echo_commands_P(PSTR("G28"));
  2587. }
  2588. break;
  2589. case MeshSet:
  2590. if (code_seen('X')) {
  2591. px = code_value_long() - 1;
  2592. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2593. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2594. return;
  2595. }
  2596. }
  2597. else {
  2598. SERIAL_PROTOCOLPGM("X not entered.\n");
  2599. return;
  2600. }
  2601. if (code_seen('Y')) {
  2602. py = code_value_long() - 1;
  2603. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2604. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2605. return;
  2606. }
  2607. }
  2608. else {
  2609. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2610. return;
  2611. }
  2612. if (code_seen('Z')) {
  2613. z = code_value();
  2614. }
  2615. else {
  2616. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2617. return;
  2618. }
  2619. mbl.z_values[py][px] = z;
  2620. break;
  2621. case MeshSetZOffset:
  2622. if (code_seen('Z')) {
  2623. z = code_value();
  2624. }
  2625. else {
  2626. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2627. return;
  2628. }
  2629. mbl.z_offset = z;
  2630. } // switch(state)
  2631. report_current_position();
  2632. }
  2633. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2634. void out_of_range_error(const char* p_edge) {
  2635. SERIAL_PROTOCOLPGM("?Probe ");
  2636. serialprintPGM(p_edge);
  2637. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2638. }
  2639. /**
  2640. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2641. * Will fail if the printer has not been homed with G28.
  2642. *
  2643. * Enhanced G29 Auto Bed Leveling Probe Routine
  2644. *
  2645. * Parameters With AUTO_BED_LEVELING_GRID:
  2646. *
  2647. * P Set the size of the grid that will be probed (P x P points).
  2648. * Not supported by non-linear delta printer bed leveling.
  2649. * Example: "G29 P4"
  2650. *
  2651. * S Set the XY travel speed between probe points (in mm/min)
  2652. *
  2653. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2654. * or clean the rotation Matrix. Useful to check the topology
  2655. * after a first run of G29.
  2656. *
  2657. * V Set the verbose level (0-4). Example: "G29 V3"
  2658. *
  2659. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2660. * This is useful for manual bed leveling and finding flaws in the bed (to
  2661. * assist with part placement).
  2662. * Not supported by non-linear delta printer bed leveling.
  2663. *
  2664. * F Set the Front limit of the probing grid
  2665. * B Set the Back limit of the probing grid
  2666. * L Set the Left limit of the probing grid
  2667. * R Set the Right limit of the probing grid
  2668. *
  2669. * Global Parameters:
  2670. *
  2671. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2672. * Include "E" to engage/disengage the Z probe for each sample.
  2673. * There's no extra effect if you have a fixed Z probe.
  2674. * Usage: "G29 E" or "G29 e"
  2675. *
  2676. */
  2677. inline void gcode_G29() {
  2678. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2679. if (DEBUGGING(LEVELING)) {
  2680. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2681. DEBUG_POS("", current_position);
  2682. }
  2683. #endif
  2684. // Don't allow auto-leveling without homing first
  2685. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  2686. axis_unhomed_error(true);
  2687. return;
  2688. }
  2689. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2690. if (verbose_level < 0 || verbose_level > 4) {
  2691. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2692. return;
  2693. }
  2694. bool dryrun = code_seen('D'),
  2695. deploy_probe_for_each_reading = code_seen('E');
  2696. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2697. #if DISABLED(DELTA)
  2698. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2699. #endif
  2700. if (verbose_level > 0) {
  2701. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2702. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2703. }
  2704. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2705. #if DISABLED(DELTA)
  2706. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2707. if (auto_bed_leveling_grid_points < 2) {
  2708. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2709. return;
  2710. }
  2711. #endif
  2712. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2713. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2714. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2715. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2716. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2717. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2718. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2719. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2720. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2721. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2722. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2723. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2724. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2725. if (left_out || right_out || front_out || back_out) {
  2726. if (left_out) {
  2727. out_of_range_error(PSTR("(L)eft"));
  2728. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2729. }
  2730. if (right_out) {
  2731. out_of_range_error(PSTR("(R)ight"));
  2732. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2733. }
  2734. if (front_out) {
  2735. out_of_range_error(PSTR("(F)ront"));
  2736. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2737. }
  2738. if (back_out) {
  2739. out_of_range_error(PSTR("(B)ack"));
  2740. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2741. }
  2742. return;
  2743. }
  2744. #endif // AUTO_BED_LEVELING_GRID
  2745. if (!dryrun) {
  2746. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2747. if (DEBUGGING(LEVELING)) {
  2748. vector_3 corrected_position = planner.adjusted_position();
  2749. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2750. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2751. }
  2752. #endif
  2753. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2754. planner.bed_level_matrix.set_to_identity();
  2755. #if ENABLED(DELTA)
  2756. reset_bed_level();
  2757. #else //!DELTA
  2758. //vector_3 corrected_position = planner.adjusted_position();
  2759. //corrected_position.debug("position before G29");
  2760. vector_3 uncorrected_position = planner.adjusted_position();
  2761. //uncorrected_position.debug("position during G29");
  2762. current_position[X_AXIS] = uncorrected_position.x;
  2763. current_position[Y_AXIS] = uncorrected_position.y;
  2764. current_position[Z_AXIS] = uncorrected_position.z;
  2765. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2766. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2767. #endif
  2768. sync_plan_position();
  2769. #endif // !DELTA
  2770. }
  2771. #if ENABLED(Z_PROBE_SLED)
  2772. dock_sled(false); // engage (un-dock) the Z probe
  2773. #elif ENABLED(FIX_MOUNTED_PROBE) || ENABLED(MECHANICAL_PROBE) || ENABLED(Z_PROBE_ALLEN_KEY) || (ENABLED(DELTA) && SERVO_LEVELING)
  2774. deploy_z_probe();
  2775. #endif
  2776. stepper.synchronize();
  2777. setup_for_endstop_move();
  2778. feedrate = homing_feedrate[Z_AXIS];
  2779. bed_leveling_in_progress = true;
  2780. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2781. // probe at the points of a lattice grid
  2782. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2783. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2784. #if ENABLED(DELTA)
  2785. delta_grid_spacing[0] = xGridSpacing;
  2786. delta_grid_spacing[1] = yGridSpacing;
  2787. float zoffset = zprobe_zoffset;
  2788. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value();
  2789. #else // !DELTA
  2790. /**
  2791. * solve the plane equation ax + by + d = z
  2792. * A is the matrix with rows [x y 1] for all the probed points
  2793. * B is the vector of the Z positions
  2794. * the normal vector to the plane is formed by the coefficients of the
  2795. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2796. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2797. */
  2798. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2799. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2800. eqnBVector[abl2], // "B" vector of Z points
  2801. mean = 0.0;
  2802. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2803. #endif // !DELTA
  2804. int probePointCounter = 0;
  2805. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2806. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2807. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2808. int xStart, xStop, xInc;
  2809. if (zig) {
  2810. xStart = 0;
  2811. xStop = auto_bed_leveling_grid_points;
  2812. xInc = 1;
  2813. }
  2814. else {
  2815. xStart = auto_bed_leveling_grid_points - 1;
  2816. xStop = -1;
  2817. xInc = -1;
  2818. }
  2819. zig = !zig;
  2820. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2821. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2822. // raise extruder
  2823. float measured_z,
  2824. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2825. if (probePointCounter) {
  2826. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2827. if (DEBUGGING(LEVELING)) {
  2828. SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2829. SERIAL_EOL;
  2830. }
  2831. #endif
  2832. }
  2833. else {
  2834. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2835. if (DEBUGGING(LEVELING)) {
  2836. SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]);
  2837. SERIAL_EOL;
  2838. }
  2839. #endif
  2840. }
  2841. #if ENABLED(DELTA)
  2842. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2843. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2844. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2845. #endif //DELTA
  2846. ProbeAction act;
  2847. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2848. act = ProbeDeployAndStow;
  2849. else if (yCount == 0 && xCount == xStart)
  2850. act = ProbeDeploy;
  2851. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2852. act = ProbeStow;
  2853. else
  2854. act = ProbeStay;
  2855. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2856. #if DISABLED(DELTA)
  2857. mean += measured_z;
  2858. eqnBVector[probePointCounter] = measured_z;
  2859. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2860. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2861. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2862. indexIntoAB[xCount][yCount] = probePointCounter;
  2863. #else
  2864. bed_level[xCount][yCount] = measured_z + zoffset;
  2865. #endif
  2866. probePointCounter++;
  2867. idle();
  2868. } //xProbe
  2869. } //yProbe
  2870. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2871. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2872. #endif
  2873. clean_up_after_endstop_move();
  2874. #if ENABLED(DELTA)
  2875. if (!dryrun) extrapolate_unprobed_bed_level();
  2876. print_bed_level();
  2877. #else // !DELTA
  2878. // solve lsq problem
  2879. double plane_equation_coefficients[3];
  2880. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2881. mean /= abl2;
  2882. if (verbose_level) {
  2883. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2884. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2885. SERIAL_PROTOCOLPGM(" b: ");
  2886. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2887. SERIAL_PROTOCOLPGM(" d: ");
  2888. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2889. SERIAL_EOL;
  2890. if (verbose_level > 2) {
  2891. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2892. SERIAL_PROTOCOL_F(mean, 8);
  2893. SERIAL_EOL;
  2894. }
  2895. }
  2896. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2897. // Show the Topography map if enabled
  2898. if (do_topography_map) {
  2899. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2900. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2901. SERIAL_PROTOCOLPGM(" | |\n");
  2902. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2903. SERIAL_PROTOCOLPGM(" E | | I\n");
  2904. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2905. SERIAL_PROTOCOLPGM(" T | | H\n");
  2906. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2907. SERIAL_PROTOCOLPGM(" | |\n");
  2908. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2909. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2910. float min_diff = 999;
  2911. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2912. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2913. int ind = indexIntoAB[xx][yy];
  2914. float diff = eqnBVector[ind] - mean;
  2915. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2916. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2917. z_tmp = 0;
  2918. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2919. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2920. if (diff >= 0.0)
  2921. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2922. else
  2923. SERIAL_PROTOCOLCHAR(' ');
  2924. SERIAL_PROTOCOL_F(diff, 5);
  2925. } // xx
  2926. SERIAL_EOL;
  2927. } // yy
  2928. SERIAL_EOL;
  2929. if (verbose_level > 3) {
  2930. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2931. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2932. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2933. int ind = indexIntoAB[xx][yy];
  2934. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2935. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2936. z_tmp = 0;
  2937. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2938. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2939. if (diff >= 0.0)
  2940. SERIAL_PROTOCOLPGM(" +");
  2941. // Include + for column alignment
  2942. else
  2943. SERIAL_PROTOCOLCHAR(' ');
  2944. SERIAL_PROTOCOL_F(diff, 5);
  2945. } // xx
  2946. SERIAL_EOL;
  2947. } // yy
  2948. SERIAL_EOL;
  2949. }
  2950. } //do_topography_map
  2951. #endif //!DELTA
  2952. #else // !AUTO_BED_LEVELING_GRID
  2953. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2954. if (DEBUGGING(LEVELING)) {
  2955. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2956. }
  2957. #endif
  2958. // Actions for each probe
  2959. ProbeAction p1, p2, p3;
  2960. if (deploy_probe_for_each_reading)
  2961. p1 = p2 = p3 = ProbeDeployAndStow;
  2962. else
  2963. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2964. // Probe at 3 arbitrary points
  2965. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  2966. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  2967. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  2968. p1, verbose_level),
  2969. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  2970. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  2971. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2972. p2, verbose_level),
  2973. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  2974. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  2975. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2976. p3, verbose_level);
  2977. clean_up_after_endstop_move();
  2978. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2979. #endif // !AUTO_BED_LEVELING_GRID
  2980. #if ENABLED(DELTA)
  2981. // Allen Key Probe for Delta
  2982. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2983. stow_z_probe();
  2984. #elif Z_RAISE_AFTER_PROBING > 0
  2985. raise_z_after_probing(); // for non Allen Key probes, such as simple mechanical probe
  2986. #endif
  2987. #else // !DELTA
  2988. if (verbose_level > 0)
  2989. planner.bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2990. if (!dryrun) {
  2991. /**
  2992. * Correct the Z height difference from Z probe position and nozzle tip position.
  2993. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2994. * from the nozzle. When the bed is uneven, this height must be corrected.
  2995. */
  2996. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2997. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2998. z_tmp = current_position[Z_AXIS],
  2999. real_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3000. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3001. if (DEBUGGING(LEVELING)) {
  3002. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  3003. SERIAL_EOL;
  3004. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  3005. SERIAL_EOL;
  3006. }
  3007. #endif
  3008. // Apply the correction sending the Z probe offset
  3009. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3010. /*
  3011. * Get the current Z position and send it to the planner.
  3012. *
  3013. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  3014. * (most recent planner.set_position/sync_plan_position)
  3015. *
  3016. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  3017. * (set by default, M851, EEPROM, or Menu)
  3018. *
  3019. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  3020. * after the last probe
  3021. *
  3022. * >> Should home_offset[Z_AXIS] be included?
  3023. *
  3024. *
  3025. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  3026. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  3027. * not actually "homing" Z... then perhaps it should not be included
  3028. * here. The purpose of home_offset[] is to adjust for inaccurate
  3029. * endstops, not for reasonably accurate probes. If it were added
  3030. * here, it could be seen as a compensating factor for the Z probe.
  3031. */
  3032. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3033. if (DEBUGGING(LEVELING)) {
  3034. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3035. SERIAL_EOL;
  3036. }
  3037. #endif
  3038. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  3039. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  3040. + Z_RAISE_AFTER_PROBING
  3041. #endif
  3042. ;
  3043. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  3044. sync_plan_position();
  3045. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3046. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3047. #endif
  3048. }
  3049. // Sled assembly for Cartesian bots
  3050. #if ENABLED(Z_PROBE_SLED)
  3051. dock_sled(true); // dock the sled
  3052. #elif Z_RAISE_AFTER_PROBING > 0
  3053. // Raise Z axis for non-delta and non servo based probes
  3054. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  3055. raise_z_after_probing();
  3056. #endif
  3057. #endif
  3058. #endif // !DELTA
  3059. #if ENABLED(MECHANICAL_PROBE)
  3060. stow_z_probe();
  3061. #endif
  3062. #ifdef Z_PROBE_END_SCRIPT
  3063. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3064. if (DEBUGGING(LEVELING)) {
  3065. SERIAL_ECHO("Z Probe End Script: ");
  3066. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3067. }
  3068. #endif
  3069. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3070. #if HAS_BED_PROBE
  3071. endstops.enable_z_probe(false);
  3072. #endif
  3073. stepper.synchronize();
  3074. #endif
  3075. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3076. if (DEBUGGING(LEVELING)) {
  3077. SERIAL_ECHOLNPGM("<<< gcode_G29");
  3078. }
  3079. #endif
  3080. bed_leveling_in_progress = false;
  3081. report_current_position();
  3082. KEEPALIVE_STATE(IN_HANDLER);
  3083. }
  3084. #if DISABLED(Z_PROBE_SLED) // could be avoided
  3085. /**
  3086. * G30: Do a single Z probe at the current XY
  3087. */
  3088. inline void gcode_G30() {
  3089. #if HAS_SERVO_ENDSTOPS
  3090. raise_z_for_servo();
  3091. #endif
  3092. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3093. stepper.synchronize();
  3094. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3095. setup_for_endstop_move(); // Too late. Must be done before deploying.
  3096. feedrate = homing_feedrate[Z_AXIS];
  3097. run_z_probe();
  3098. SERIAL_PROTOCOLPGM("Bed X: ");
  3099. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3100. SERIAL_PROTOCOLPGM(" Y: ");
  3101. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3102. SERIAL_PROTOCOLPGM(" Z: ");
  3103. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  3104. SERIAL_EOL;
  3105. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  3106. #if HAS_SERVO_ENDSTOPS
  3107. raise_z_for_servo();
  3108. #endif
  3109. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3110. report_current_position();
  3111. }
  3112. #endif //!Z_PROBE_SLED
  3113. #endif //AUTO_BED_LEVELING_FEATURE
  3114. /**
  3115. * G92: Set current position to given X Y Z E
  3116. */
  3117. inline void gcode_G92() {
  3118. bool didE = code_seen(axis_codes[E_AXIS]);
  3119. if (!didE) stepper.synchronize();
  3120. bool didXYZ = false;
  3121. for (int i = 0; i < NUM_AXIS; i++) {
  3122. if (code_seen(axis_codes[i])) {
  3123. float p = current_position[i],
  3124. v = code_value();
  3125. current_position[i] = v;
  3126. if (i != E_AXIS) {
  3127. position_shift[i] += v - p; // Offset the coordinate space
  3128. update_software_endstops((AxisEnum)i);
  3129. didXYZ = true;
  3130. }
  3131. }
  3132. }
  3133. if (didXYZ) {
  3134. #if ENABLED(DELTA) || ENABLED(SCARA)
  3135. sync_plan_position_delta();
  3136. #else
  3137. sync_plan_position();
  3138. #endif
  3139. }
  3140. else if (didE) {
  3141. sync_plan_position_e();
  3142. }
  3143. }
  3144. #if ENABLED(ULTIPANEL)
  3145. /**
  3146. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3147. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3148. */
  3149. inline void gcode_M0_M1() {
  3150. char* args = current_command_args;
  3151. uint8_t test_value = 12;
  3152. SERIAL_ECHOPAIR("TEST", test_value);
  3153. millis_t codenum = 0;
  3154. bool hasP = false, hasS = false;
  3155. if (code_seen('P')) {
  3156. codenum = code_value_short(); // milliseconds to wait
  3157. hasP = codenum > 0;
  3158. }
  3159. if (code_seen('S')) {
  3160. codenum = code_value() * 1000UL; // seconds to wait
  3161. hasS = codenum > 0;
  3162. }
  3163. if (!hasP && !hasS && *args != '\0')
  3164. lcd_setstatus(args, true);
  3165. else {
  3166. LCD_MESSAGEPGM(MSG_USERWAIT);
  3167. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3168. dontExpireStatus();
  3169. #endif
  3170. }
  3171. lcd_ignore_click();
  3172. stepper.synchronize();
  3173. refresh_cmd_timeout();
  3174. if (codenum > 0) {
  3175. codenum += previous_cmd_ms; // wait until this time for a click
  3176. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3177. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3178. KEEPALIVE_STATE(IN_HANDLER);
  3179. lcd_ignore_click(false);
  3180. }
  3181. else {
  3182. if (!lcd_detected()) return;
  3183. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3184. while (!lcd_clicked()) idle();
  3185. KEEPALIVE_STATE(IN_HANDLER);
  3186. }
  3187. if (IS_SD_PRINTING)
  3188. LCD_MESSAGEPGM(MSG_RESUMING);
  3189. else
  3190. LCD_MESSAGEPGM(WELCOME_MSG);
  3191. }
  3192. #endif // ULTIPANEL
  3193. /**
  3194. * M17: Enable power on all stepper motors
  3195. */
  3196. inline void gcode_M17() {
  3197. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3198. enable_all_steppers();
  3199. }
  3200. #if ENABLED(SDSUPPORT)
  3201. /**
  3202. * M20: List SD card to serial output
  3203. */
  3204. inline void gcode_M20() {
  3205. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3206. card.ls();
  3207. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3208. }
  3209. /**
  3210. * M21: Init SD Card
  3211. */
  3212. inline void gcode_M21() {
  3213. card.initsd();
  3214. }
  3215. /**
  3216. * M22: Release SD Card
  3217. */
  3218. inline void gcode_M22() {
  3219. card.release();
  3220. }
  3221. /**
  3222. * M23: Open a file
  3223. */
  3224. inline void gcode_M23() {
  3225. card.openFile(current_command_args, true);
  3226. }
  3227. /**
  3228. * M24: Start SD Print
  3229. */
  3230. inline void gcode_M24() {
  3231. card.startFileprint();
  3232. print_job_timer.start();
  3233. }
  3234. /**
  3235. * M25: Pause SD Print
  3236. */
  3237. inline void gcode_M25() {
  3238. card.pauseSDPrint();
  3239. }
  3240. /**
  3241. * M26: Set SD Card file index
  3242. */
  3243. inline void gcode_M26() {
  3244. if (card.cardOK && code_seen('S'))
  3245. card.setIndex(code_value_long());
  3246. }
  3247. /**
  3248. * M27: Get SD Card status
  3249. */
  3250. inline void gcode_M27() {
  3251. card.getStatus();
  3252. }
  3253. /**
  3254. * M28: Start SD Write
  3255. */
  3256. inline void gcode_M28() {
  3257. card.openFile(current_command_args, false);
  3258. }
  3259. /**
  3260. * M29: Stop SD Write
  3261. * Processed in write to file routine above
  3262. */
  3263. inline void gcode_M29() {
  3264. // card.saving = false;
  3265. }
  3266. /**
  3267. * M30 <filename>: Delete SD Card file
  3268. */
  3269. inline void gcode_M30() {
  3270. if (card.cardOK) {
  3271. card.closefile();
  3272. card.removeFile(current_command_args);
  3273. }
  3274. }
  3275. #endif //SDSUPPORT
  3276. /**
  3277. * M31: Get the time since the start of SD Print (or last M109)
  3278. */
  3279. inline void gcode_M31() {
  3280. millis_t t = print_job_timer.duration();
  3281. int min = t / 60, sec = t % 60;
  3282. char time[30];
  3283. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3284. SERIAL_ECHO_START;
  3285. SERIAL_ECHOLN(time);
  3286. lcd_setstatus(time);
  3287. thermalManager.autotempShutdown();
  3288. }
  3289. #if ENABLED(SDSUPPORT)
  3290. /**
  3291. * M32: Select file and start SD Print
  3292. */
  3293. inline void gcode_M32() {
  3294. if (card.sdprinting)
  3295. stepper.synchronize();
  3296. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3297. if (!namestartpos)
  3298. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3299. else
  3300. namestartpos++; //to skip the '!'
  3301. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3302. if (card.cardOK) {
  3303. card.openFile(namestartpos, true, call_procedure);
  3304. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3305. card.setIndex(code_value_long());
  3306. card.startFileprint();
  3307. // Procedure calls count as normal print time.
  3308. if (!call_procedure) print_job_timer.start();
  3309. }
  3310. }
  3311. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3312. /**
  3313. * M33: Get the long full path of a file or folder
  3314. *
  3315. * Parameters:
  3316. * <dospath> Case-insensitive DOS-style path to a file or folder
  3317. *
  3318. * Example:
  3319. * M33 miscel~1/armchair/armcha~1.gco
  3320. *
  3321. * Output:
  3322. * /Miscellaneous/Armchair/Armchair.gcode
  3323. */
  3324. inline void gcode_M33() {
  3325. card.printLongPath(current_command_args);
  3326. }
  3327. #endif
  3328. /**
  3329. * M928: Start SD Write
  3330. */
  3331. inline void gcode_M928() {
  3332. card.openLogFile(current_command_args);
  3333. }
  3334. #endif // SDSUPPORT
  3335. /**
  3336. * M42: Change pin status via GCode
  3337. *
  3338. * P<pin> Pin number (LED if omitted)
  3339. * S<byte> Pin status from 0 - 255
  3340. */
  3341. inline void gcode_M42() {
  3342. if (code_seen('S')) {
  3343. int pin_status = code_value_short();
  3344. if (pin_status < 0 || pin_status > 255) return;
  3345. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3346. if (pin_number < 0) return;
  3347. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3348. if (pin_number == sensitive_pins[i]) return;
  3349. pinMode(pin_number, OUTPUT);
  3350. digitalWrite(pin_number, pin_status);
  3351. analogWrite(pin_number, pin_status);
  3352. #if FAN_COUNT > 0
  3353. switch (pin_number) {
  3354. #if HAS_FAN0
  3355. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3356. #endif
  3357. #if HAS_FAN1
  3358. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3359. #endif
  3360. #if HAS_FAN2
  3361. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3362. #endif
  3363. }
  3364. #endif
  3365. } // code_seen('S')
  3366. }
  3367. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3368. /**
  3369. * This is redundant since the SanityCheck.h already checks for a valid
  3370. * Z_MIN_PROBE_PIN, but here for clarity.
  3371. */
  3372. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3373. #if !HAS_Z_MIN_PROBE_PIN
  3374. #error "You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation."
  3375. #endif
  3376. #elif !HAS_Z_MIN
  3377. #error "You must define Z_MIN_PIN to enable Z probe repeatability calculation."
  3378. #endif
  3379. /**
  3380. * M48: Z probe repeatability measurement function.
  3381. *
  3382. * Usage:
  3383. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3384. * P = Number of sampled points (4-50, default 10)
  3385. * X = Sample X position
  3386. * Y = Sample Y position
  3387. * V = Verbose level (0-4, default=1)
  3388. * E = Engage Z probe for each reading
  3389. * L = Number of legs of movement before probe
  3390. * S = Schizoid (Or Star if you prefer)
  3391. *
  3392. * This function assumes the bed has been homed. Specifically, that a G28 command
  3393. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3394. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3395. * regenerated.
  3396. */
  3397. inline void gcode_M48() {
  3398. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3399. axis_unhomed_error(true);
  3400. return;
  3401. }
  3402. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3403. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3404. if (code_seen('V')) {
  3405. verbose_level = code_value_short();
  3406. if (verbose_level < 0 || verbose_level > 4) {
  3407. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3408. return;
  3409. }
  3410. }
  3411. if (verbose_level > 0)
  3412. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3413. if (code_seen('P')) {
  3414. n_samples = code_value_short();
  3415. if (n_samples < 4 || n_samples > 50) {
  3416. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3417. return;
  3418. }
  3419. }
  3420. float X_current = current_position[X_AXIS],
  3421. Y_current = current_position[Y_AXIS],
  3422. Z_current = current_position[Z_AXIS],
  3423. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3424. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3425. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3426. bool deploy_probe_for_each_reading = code_seen('E');
  3427. if (code_seen('X')) {
  3428. X_probe_location = code_value();
  3429. #if DISABLED(DELTA)
  3430. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3431. out_of_range_error(PSTR("X"));
  3432. return;
  3433. }
  3434. #endif
  3435. }
  3436. if (code_seen('Y')) {
  3437. Y_probe_location = code_value();
  3438. #if DISABLED(DELTA)
  3439. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3440. out_of_range_error(PSTR("Y"));
  3441. return;
  3442. }
  3443. #endif
  3444. }
  3445. #if ENABLED(DELTA)
  3446. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3447. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3448. return;
  3449. }
  3450. #endif
  3451. bool seen_L = code_seen('L');
  3452. if (seen_L) {
  3453. n_legs = code_value_short();
  3454. if (n_legs < 0 || n_legs > 15) {
  3455. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3456. return;
  3457. }
  3458. if (n_legs == 1) n_legs = 2;
  3459. }
  3460. if (code_seen('S')) {
  3461. schizoid_flag++;
  3462. if (!seen_L) n_legs = 7;
  3463. }
  3464. /**
  3465. * Now get everything to the specified probe point So we can safely do a
  3466. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3467. * we don't want to use that as a starting point for each probe.
  3468. */
  3469. if (verbose_level > 2)
  3470. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3471. #if ENABLED(DELTA)
  3472. // we don't do bed level correction in M48 because we want the raw data when we probe
  3473. reset_bed_level();
  3474. #else
  3475. // we don't do bed level correction in M48 because we want the raw data when we probe
  3476. planner.bed_level_matrix.set_to_identity();
  3477. #endif
  3478. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3479. do_blocking_move_to_z(Z_start_location);
  3480. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3481. /**
  3482. * OK, do the initial probe to get us close to the bed.
  3483. * Then retrace the right amount and use that in subsequent probes
  3484. */
  3485. setup_for_endstop_move();
  3486. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3487. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3488. verbose_level);
  3489. raise_z_after_probing();
  3490. for (uint8_t n = 0; n < n_samples; n++) {
  3491. randomSeed(millis());
  3492. delay(500);
  3493. if (n_legs) {
  3494. float radius, angle = random(0.0, 360.0);
  3495. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3496. radius = random(
  3497. #if ENABLED(DELTA)
  3498. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3499. #else
  3500. 5, X_MAX_LENGTH / 8
  3501. #endif
  3502. );
  3503. if (verbose_level > 3) {
  3504. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3505. SERIAL_ECHOPAIR(" angle: ", angle);
  3506. delay(100);
  3507. if (dir > 0)
  3508. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3509. else
  3510. SERIAL_ECHO(" Direction: Clockwise \n");
  3511. delay(100);
  3512. }
  3513. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3514. double delta_angle;
  3515. if (schizoid_flag)
  3516. // The points of a 5 point star are 72 degrees apart. We need to
  3517. // skip a point and go to the next one on the star.
  3518. delta_angle = dir * 2.0 * 72.0;
  3519. else
  3520. // If we do this line, we are just trying to move further
  3521. // around the circle.
  3522. delta_angle = dir * (float) random(25, 45);
  3523. angle += delta_angle;
  3524. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3525. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3526. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3527. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3528. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3529. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3530. #if DISABLED(DELTA)
  3531. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3532. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3533. #else
  3534. // If we have gone out too far, we can do a simple fix and scale the numbers
  3535. // back in closer to the origin.
  3536. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3537. X_current /= 1.25;
  3538. Y_current /= 1.25;
  3539. if (verbose_level > 3) {
  3540. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3541. SERIAL_ECHOPAIR(", ", Y_current);
  3542. SERIAL_EOL;
  3543. delay(50);
  3544. }
  3545. }
  3546. #endif
  3547. if (verbose_level > 3) {
  3548. SERIAL_PROTOCOL("Going to:");
  3549. SERIAL_ECHOPAIR("x: ", X_current);
  3550. SERIAL_ECHOPAIR("y: ", Y_current);
  3551. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3552. SERIAL_EOL;
  3553. delay(55);
  3554. }
  3555. do_blocking_move_to_xy(X_current, Y_current);
  3556. } // n_legs loop
  3557. } // n_legs
  3558. /**
  3559. * We don't really have to do this move, but if we don't we can see a
  3560. * funny shift in the Z Height because the user might not have the
  3561. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3562. * height. This gets us back to the probe location at the same height that
  3563. * we have been running around the circle at.
  3564. */
  3565. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3566. if (deploy_probe_for_each_reading)
  3567. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3568. else {
  3569. if (n == n_samples - 1)
  3570. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3571. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3572. }
  3573. /**
  3574. * Get the current mean for the data points we have so far
  3575. */
  3576. sum = 0.0;
  3577. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3578. mean = sum / (n + 1);
  3579. /**
  3580. * Now, use that mean to calculate the standard deviation for the
  3581. * data points we have so far
  3582. */
  3583. sum = 0.0;
  3584. for (uint8_t j = 0; j <= n; j++) {
  3585. float ss = sample_set[j] - mean;
  3586. sum += ss * ss;
  3587. }
  3588. sigma = sqrt(sum / (n + 1));
  3589. if (verbose_level > 1) {
  3590. SERIAL_PROTOCOL(n + 1);
  3591. SERIAL_PROTOCOLPGM(" of ");
  3592. SERIAL_PROTOCOL((int)n_samples);
  3593. SERIAL_PROTOCOLPGM(" z: ");
  3594. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3595. delay(50);
  3596. if (verbose_level > 2) {
  3597. SERIAL_PROTOCOLPGM(" mean: ");
  3598. SERIAL_PROTOCOL_F(mean, 6);
  3599. SERIAL_PROTOCOLPGM(" sigma: ");
  3600. SERIAL_PROTOCOL_F(sigma, 6);
  3601. }
  3602. }
  3603. if (verbose_level > 0) SERIAL_EOL;
  3604. delay(50);
  3605. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3606. } // End of probe loop code
  3607. // raise_z_after_probing();
  3608. if (verbose_level > 0) {
  3609. SERIAL_PROTOCOLPGM("Mean: ");
  3610. SERIAL_PROTOCOL_F(mean, 6);
  3611. SERIAL_EOL;
  3612. delay(25);
  3613. }
  3614. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3615. SERIAL_PROTOCOL_F(sigma, 6);
  3616. SERIAL_EOL; SERIAL_EOL;
  3617. delay(25);
  3618. clean_up_after_endstop_move();
  3619. report_current_position();
  3620. }
  3621. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3622. /**
  3623. * M75: Start print timer
  3624. */
  3625. inline void gcode_M75() { print_job_timer.start(); }
  3626. /**
  3627. * M76: Pause print timer
  3628. */
  3629. inline void gcode_M76() { print_job_timer.pause(); }
  3630. /**
  3631. * M77: Stop print timer
  3632. */
  3633. inline void gcode_M77() { print_job_timer.stop(); }
  3634. #if ENABLED(PRINTCOUNTER)
  3635. /*+
  3636. * M78: Show print statistics
  3637. */
  3638. inline void gcode_M78() {
  3639. // "M78 S78" will reset the statistics
  3640. if (code_seen('S') && code_value_short() == 78)
  3641. print_job_timer.initStats();
  3642. else print_job_timer.showStats();
  3643. }
  3644. #endif
  3645. /**
  3646. * M104: Set hot end temperature
  3647. */
  3648. inline void gcode_M104() {
  3649. if (get_target_extruder_from_command(104)) return;
  3650. if (DEBUGGING(DRYRUN)) return;
  3651. if (code_seen('S')) {
  3652. float temp = code_value();
  3653. thermalManager.setTargetHotend(temp, target_extruder);
  3654. #if ENABLED(DUAL_X_CARRIAGE)
  3655. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3656. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3657. #endif
  3658. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3659. /**
  3660. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3661. * stand by mode, for instance in a dual extruder setup, without affecting
  3662. * the running print timer.
  3663. */
  3664. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3665. print_job_timer.stop();
  3666. LCD_MESSAGEPGM(WELCOME_MSG);
  3667. }
  3668. /**
  3669. * We do not check if the timer is already running because this check will
  3670. * be done for us inside the Stopwatch::start() method thus a running timer
  3671. * will not restart.
  3672. */
  3673. else print_job_timer.start();
  3674. #endif
  3675. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3676. }
  3677. }
  3678. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3679. void print_heaterstates() {
  3680. #if HAS_TEMP_HOTEND
  3681. SERIAL_PROTOCOLPGM(" T:");
  3682. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3683. SERIAL_PROTOCOLPGM(" /");
  3684. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3685. #endif
  3686. #if HAS_TEMP_BED
  3687. SERIAL_PROTOCOLPGM(" B:");
  3688. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3689. SERIAL_PROTOCOLPGM(" /");
  3690. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3691. #endif
  3692. #if EXTRUDERS > 1
  3693. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3694. SERIAL_PROTOCOLPGM(" T");
  3695. SERIAL_PROTOCOL(e);
  3696. SERIAL_PROTOCOLCHAR(':');
  3697. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3698. SERIAL_PROTOCOLPGM(" /");
  3699. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3700. }
  3701. #endif
  3702. #if HAS_TEMP_BED
  3703. SERIAL_PROTOCOLPGM(" B@:");
  3704. #ifdef BED_WATTS
  3705. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3706. SERIAL_PROTOCOLCHAR('W');
  3707. #else
  3708. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3709. #endif
  3710. #endif
  3711. SERIAL_PROTOCOLPGM(" @:");
  3712. #ifdef EXTRUDER_WATTS
  3713. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3714. SERIAL_PROTOCOLCHAR('W');
  3715. #else
  3716. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3717. #endif
  3718. #if EXTRUDERS > 1
  3719. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3720. SERIAL_PROTOCOLPGM(" @");
  3721. SERIAL_PROTOCOL(e);
  3722. SERIAL_PROTOCOLCHAR(':');
  3723. #ifdef EXTRUDER_WATTS
  3724. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3725. SERIAL_PROTOCOLCHAR('W');
  3726. #else
  3727. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3728. #endif
  3729. }
  3730. #endif
  3731. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3732. #if HAS_TEMP_BED
  3733. SERIAL_PROTOCOLPGM(" ADC B:");
  3734. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3735. SERIAL_PROTOCOLPGM("C->");
  3736. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3737. #endif
  3738. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3739. SERIAL_PROTOCOLPGM(" T");
  3740. SERIAL_PROTOCOL(cur_extruder);
  3741. SERIAL_PROTOCOLCHAR(':');
  3742. SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_extruder), 1);
  3743. SERIAL_PROTOCOLPGM("C->");
  3744. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3745. }
  3746. #endif
  3747. }
  3748. #endif
  3749. /**
  3750. * M105: Read hot end and bed temperature
  3751. */
  3752. inline void gcode_M105() {
  3753. if (get_target_extruder_from_command(105)) return;
  3754. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3755. SERIAL_PROTOCOLPGM(MSG_OK);
  3756. print_heaterstates();
  3757. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3758. SERIAL_ERROR_START;
  3759. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3760. #endif
  3761. SERIAL_EOL;
  3762. }
  3763. #if FAN_COUNT > 0
  3764. /**
  3765. * M106: Set Fan Speed
  3766. *
  3767. * S<int> Speed between 0-255
  3768. * P<index> Fan index, if more than one fan
  3769. */
  3770. inline void gcode_M106() {
  3771. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3772. p = code_seen('P') ? code_value_short() : 0;
  3773. NOMORE(s, 255);
  3774. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3775. }
  3776. /**
  3777. * M107: Fan Off
  3778. */
  3779. inline void gcode_M107() {
  3780. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3781. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3782. }
  3783. #endif // FAN_COUNT > 0
  3784. /**
  3785. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3786. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3787. */
  3788. inline void gcode_M109() {
  3789. if (get_target_extruder_from_command(109)) return;
  3790. if (DEBUGGING(DRYRUN)) return;
  3791. bool no_wait_for_cooling = code_seen('S');
  3792. if (no_wait_for_cooling || code_seen('R')) {
  3793. float temp = code_value();
  3794. thermalManager.setTargetHotend(temp, target_extruder);
  3795. #if ENABLED(DUAL_X_CARRIAGE)
  3796. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3797. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3798. #endif
  3799. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3800. /**
  3801. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3802. * stand by mode, for instance in a dual extruder setup, without affecting
  3803. * the running print timer.
  3804. */
  3805. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3806. print_job_timer.stop();
  3807. LCD_MESSAGEPGM(WELCOME_MSG);
  3808. }
  3809. /**
  3810. * We do not check if the timer is already running because this check will
  3811. * be done for us inside the Stopwatch::start() method thus a running timer
  3812. * will not restart.
  3813. */
  3814. else print_job_timer.start();
  3815. #endif
  3816. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3817. }
  3818. #if ENABLED(AUTOTEMP)
  3819. planner.autotemp_M109();
  3820. #endif
  3821. #if TEMP_RESIDENCY_TIME > 0
  3822. millis_t residency_start_ms = 0;
  3823. // Loop until the temperature has stabilized
  3824. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3825. #else
  3826. // Loop until the temperature is very close target
  3827. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3828. #endif //TEMP_RESIDENCY_TIME > 0
  3829. float theTarget = -1;
  3830. bool wants_to_cool;
  3831. cancel_heatup = false;
  3832. millis_t now, next_temp_ms = 0;
  3833. KEEPALIVE_STATE(NOT_BUSY);
  3834. do {
  3835. now = millis();
  3836. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3837. next_temp_ms = now + 1000UL;
  3838. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3839. print_heaterstates();
  3840. #endif
  3841. #if TEMP_RESIDENCY_TIME > 0
  3842. SERIAL_PROTOCOLPGM(" W:");
  3843. if (residency_start_ms) {
  3844. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3845. SERIAL_PROTOCOLLN(rem);
  3846. }
  3847. else {
  3848. SERIAL_PROTOCOLLNPGM("?");
  3849. }
  3850. #else
  3851. SERIAL_EOL;
  3852. #endif
  3853. }
  3854. // Target temperature might be changed during the loop
  3855. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3856. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3857. theTarget = thermalManager.degTargetHotend(target_extruder);
  3858. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3859. if (no_wait_for_cooling && wants_to_cool) break;
  3860. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3861. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3862. if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break;
  3863. }
  3864. idle();
  3865. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3866. #if TEMP_RESIDENCY_TIME > 0
  3867. float temp_diff = fabs(theTarget - thermalManager.degHotend(target_extruder));
  3868. if (!residency_start_ms) {
  3869. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3870. if (temp_diff < TEMP_WINDOW) residency_start_ms = millis();
  3871. }
  3872. else if (temp_diff > TEMP_HYSTERESIS) {
  3873. // Restart the timer whenever the temperature falls outside the hysteresis.
  3874. residency_start_ms = millis();
  3875. }
  3876. #endif //TEMP_RESIDENCY_TIME > 0
  3877. } while (!cancel_heatup && TEMP_CONDITIONS);
  3878. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3879. KEEPALIVE_STATE(IN_HANDLER);
  3880. }
  3881. #if HAS_TEMP_BED
  3882. /**
  3883. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3884. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3885. */
  3886. inline void gcode_M190() {
  3887. if (DEBUGGING(DRYRUN)) return;
  3888. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3889. bool no_wait_for_cooling = code_seen('S');
  3890. if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value());
  3891. #if TEMP_BED_RESIDENCY_TIME > 0
  3892. millis_t residency_start_ms = 0;
  3893. // Loop until the temperature has stabilized
  3894. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3895. #else
  3896. // Loop until the temperature is very close target
  3897. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3898. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3899. float theTarget = -1;
  3900. bool wants_to_cool;
  3901. cancel_heatup = false;
  3902. millis_t now, next_temp_ms = 0;
  3903. KEEPALIVE_STATE(NOT_BUSY);
  3904. do {
  3905. now = millis();
  3906. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3907. next_temp_ms = now + 1000UL;
  3908. print_heaterstates();
  3909. #if TEMP_BED_RESIDENCY_TIME > 0
  3910. SERIAL_PROTOCOLPGM(" W:");
  3911. if (residency_start_ms) {
  3912. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3913. SERIAL_PROTOCOLLN(rem);
  3914. }
  3915. else {
  3916. SERIAL_PROTOCOLLNPGM("?");
  3917. }
  3918. #else
  3919. SERIAL_EOL;
  3920. #endif
  3921. }
  3922. // Target temperature might be changed during the loop
  3923. if (theTarget != thermalManager.degTargetBed()) {
  3924. wants_to_cool = thermalManager.isCoolingBed();
  3925. theTarget = thermalManager.degTargetBed();
  3926. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3927. if (no_wait_for_cooling && wants_to_cool) break;
  3928. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3929. // Simply don't wait to cool a bed under 30C
  3930. if (wants_to_cool && theTarget < 30) break;
  3931. }
  3932. idle();
  3933. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3934. #if TEMP_BED_RESIDENCY_TIME > 0
  3935. float temp_diff = fabs(theTarget - thermalManager.degBed());
  3936. if (!residency_start_ms) {
  3937. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3938. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = millis();
  3939. }
  3940. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3941. // Restart the timer whenever the temperature falls outside the hysteresis.
  3942. residency_start_ms = millis();
  3943. }
  3944. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3945. } while (!cancel_heatup && TEMP_BED_CONDITIONS);
  3946. LCD_MESSAGEPGM(MSG_BED_DONE);
  3947. KEEPALIVE_STATE(IN_HANDLER);
  3948. }
  3949. #endif // HAS_TEMP_BED
  3950. /**
  3951. * M110: Set Current Line Number
  3952. */
  3953. inline void gcode_M110() {
  3954. if (code_seen('N')) gcode_N = code_value_long();
  3955. }
  3956. /**
  3957. * M111: Set the debug level
  3958. */
  3959. inline void gcode_M111() {
  3960. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3961. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3962. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3963. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3964. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3965. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3966. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3967. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3968. #endif
  3969. const static char* const debug_strings[] PROGMEM = {
  3970. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3971. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3972. str_debug_32
  3973. #endif
  3974. };
  3975. SERIAL_ECHO_START;
  3976. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3977. if (marlin_debug_flags) {
  3978. uint8_t comma = 0;
  3979. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3980. if (TEST(marlin_debug_flags, i)) {
  3981. if (comma++) SERIAL_CHAR(',');
  3982. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3983. }
  3984. }
  3985. }
  3986. else {
  3987. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3988. }
  3989. SERIAL_EOL;
  3990. }
  3991. /**
  3992. * M112: Emergency Stop
  3993. */
  3994. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3995. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  3996. /**
  3997. * M113: Get or set Host Keepalive interval (0 to disable)
  3998. *
  3999. * S<seconds> Optional. Set the keepalive interval.
  4000. */
  4001. inline void gcode_M113() {
  4002. if (code_seen('S')) {
  4003. host_keepalive_interval = (uint8_t)code_value_short();
  4004. NOMORE(host_keepalive_interval, 60);
  4005. }
  4006. else {
  4007. SERIAL_ECHO_START;
  4008. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4009. SERIAL_EOL;
  4010. }
  4011. }
  4012. #endif
  4013. #if ENABLED(BARICUDA)
  4014. #if HAS_HEATER_1
  4015. /**
  4016. * M126: Heater 1 valve open
  4017. */
  4018. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  4019. /**
  4020. * M127: Heater 1 valve close
  4021. */
  4022. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4023. #endif
  4024. #if HAS_HEATER_2
  4025. /**
  4026. * M128: Heater 2 valve open
  4027. */
  4028. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  4029. /**
  4030. * M129: Heater 2 valve close
  4031. */
  4032. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4033. #endif
  4034. #endif //BARICUDA
  4035. /**
  4036. * M140: Set bed temperature
  4037. */
  4038. inline void gcode_M140() {
  4039. if (DEBUGGING(DRYRUN)) return;
  4040. if (code_seen('S')) thermalManager.setTargetBed(code_value());
  4041. }
  4042. #if ENABLED(ULTIPANEL)
  4043. /**
  4044. * M145: Set the heatup state for a material in the LCD menu
  4045. * S<material> (0=PLA, 1=ABS)
  4046. * H<hotend temp>
  4047. * B<bed temp>
  4048. * F<fan speed>
  4049. */
  4050. inline void gcode_M145() {
  4051. int8_t material = code_seen('S') ? code_value_short() : 0;
  4052. if (material < 0 || material > 1) {
  4053. SERIAL_ERROR_START;
  4054. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4055. }
  4056. else {
  4057. int v;
  4058. switch (material) {
  4059. case 0:
  4060. if (code_seen('H')) {
  4061. v = code_value_short();
  4062. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4063. }
  4064. if (code_seen('F')) {
  4065. v = code_value_short();
  4066. plaPreheatFanSpeed = constrain(v, 0, 255);
  4067. }
  4068. #if TEMP_SENSOR_BED != 0
  4069. if (code_seen('B')) {
  4070. v = code_value_short();
  4071. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4072. }
  4073. #endif
  4074. break;
  4075. case 1:
  4076. if (code_seen('H')) {
  4077. v = code_value_short();
  4078. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4079. }
  4080. if (code_seen('F')) {
  4081. v = code_value_short();
  4082. absPreheatFanSpeed = constrain(v, 0, 255);
  4083. }
  4084. #if TEMP_SENSOR_BED != 0
  4085. if (code_seen('B')) {
  4086. v = code_value_short();
  4087. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4088. }
  4089. #endif
  4090. break;
  4091. }
  4092. }
  4093. }
  4094. #endif
  4095. #if HAS_POWER_SWITCH
  4096. /**
  4097. * M80: Turn on Power Supply
  4098. */
  4099. inline void gcode_M80() {
  4100. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4101. /**
  4102. * If you have a switch on suicide pin, this is useful
  4103. * if you want to start another print with suicide feature after
  4104. * a print without suicide...
  4105. */
  4106. #if HAS_SUICIDE
  4107. OUT_WRITE(SUICIDE_PIN, HIGH);
  4108. #endif
  4109. #if ENABLED(ULTIPANEL)
  4110. powersupply = true;
  4111. LCD_MESSAGEPGM(WELCOME_MSG);
  4112. lcd_update();
  4113. #endif
  4114. }
  4115. #endif // HAS_POWER_SWITCH
  4116. /**
  4117. * M81: Turn off Power, including Power Supply, if there is one.
  4118. *
  4119. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4120. */
  4121. inline void gcode_M81() {
  4122. thermalManager.disable_all_heaters();
  4123. stepper.finish_and_disable();
  4124. #if FAN_COUNT > 0
  4125. #if FAN_COUNT > 1
  4126. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4127. #else
  4128. fanSpeeds[0] = 0;
  4129. #endif
  4130. #endif
  4131. delay(1000); // Wait 1 second before switching off
  4132. #if HAS_SUICIDE
  4133. stepper.synchronize();
  4134. suicide();
  4135. #elif HAS_POWER_SWITCH
  4136. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4137. #endif
  4138. #if ENABLED(ULTIPANEL)
  4139. #if HAS_POWER_SWITCH
  4140. powersupply = false;
  4141. #endif
  4142. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4143. lcd_update();
  4144. #endif
  4145. }
  4146. /**
  4147. * M82: Set E codes absolute (default)
  4148. */
  4149. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4150. /**
  4151. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4152. */
  4153. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4154. /**
  4155. * M18, M84: Disable all stepper motors
  4156. */
  4157. inline void gcode_M18_M84() {
  4158. if (code_seen('S')) {
  4159. stepper_inactive_time = code_value() * 1000UL;
  4160. }
  4161. else {
  4162. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4163. if (all_axis) {
  4164. stepper.finish_and_disable();
  4165. }
  4166. else {
  4167. stepper.synchronize();
  4168. if (code_seen('X')) disable_x();
  4169. if (code_seen('Y')) disable_y();
  4170. if (code_seen('Z')) disable_z();
  4171. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4172. if (code_seen('E')) {
  4173. disable_e0();
  4174. disable_e1();
  4175. disable_e2();
  4176. disable_e3();
  4177. }
  4178. #endif
  4179. }
  4180. }
  4181. }
  4182. /**
  4183. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4184. */
  4185. inline void gcode_M85() {
  4186. if (code_seen('S')) max_inactive_time = code_value() * 1000UL;
  4187. }
  4188. /**
  4189. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4190. * (Follows the same syntax as G92)
  4191. */
  4192. inline void gcode_M92() {
  4193. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4194. if (code_seen(axis_codes[i])) {
  4195. if (i == E_AXIS) {
  4196. float value = code_value();
  4197. if (value < 20.0) {
  4198. float factor = planner.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4199. planner.max_e_jerk *= factor;
  4200. planner.max_feedrate[i] *= factor;
  4201. planner.axis_steps_per_sqr_second[i] *= factor;
  4202. }
  4203. planner.axis_steps_per_unit[i] = value;
  4204. }
  4205. else {
  4206. planner.axis_steps_per_unit[i] = code_value();
  4207. }
  4208. }
  4209. }
  4210. }
  4211. /**
  4212. * Output the current position to serial
  4213. */
  4214. static void report_current_position() {
  4215. SERIAL_PROTOCOLPGM("X:");
  4216. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4217. SERIAL_PROTOCOLPGM(" Y:");
  4218. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4219. SERIAL_PROTOCOLPGM(" Z:");
  4220. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4221. SERIAL_PROTOCOLPGM(" E:");
  4222. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4223. stepper.report_positions();
  4224. #if ENABLED(SCARA)
  4225. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4226. SERIAL_PROTOCOL(delta[X_AXIS]);
  4227. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4228. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4229. SERIAL_EOL;
  4230. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4231. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4232. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4233. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4234. SERIAL_EOL;
  4235. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4236. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_unit[X_AXIS]);
  4237. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4238. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_unit[Y_AXIS]);
  4239. SERIAL_EOL; SERIAL_EOL;
  4240. #endif
  4241. }
  4242. /**
  4243. * M114: Output current position to serial port
  4244. */
  4245. inline void gcode_M114() { report_current_position(); }
  4246. /**
  4247. * M115: Capabilities string
  4248. */
  4249. inline void gcode_M115() {
  4250. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4251. }
  4252. /**
  4253. * M117: Set LCD Status Message
  4254. */
  4255. inline void gcode_M117() {
  4256. lcd_setstatus(current_command_args);
  4257. }
  4258. /**
  4259. * M119: Output endstop states to serial output
  4260. */
  4261. inline void gcode_M119() { endstops.M119(); }
  4262. /**
  4263. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4264. */
  4265. inline void gcode_M120() { endstops.enable_globally(true); }
  4266. /**
  4267. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4268. */
  4269. inline void gcode_M121() { endstops.enable_globally(false); }
  4270. #if ENABLED(BLINKM)
  4271. /**
  4272. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4273. */
  4274. inline void gcode_M150() {
  4275. SendColors(
  4276. code_seen('R') ? (byte)code_value_short() : 0,
  4277. code_seen('U') ? (byte)code_value_short() : 0,
  4278. code_seen('B') ? (byte)code_value_short() : 0
  4279. );
  4280. }
  4281. #endif // BLINKM
  4282. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4283. /**
  4284. * M155: Send data to a I2C slave device
  4285. *
  4286. * This is a PoC, the formating and arguments for the GCODE will
  4287. * change to be more compatible, the current proposal is:
  4288. *
  4289. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4290. *
  4291. * M155 B<byte-1 value in base 10>
  4292. * M155 B<byte-2 value in base 10>
  4293. * M155 B<byte-3 value in base 10>
  4294. *
  4295. * M155 S1 ; Send the buffered data and reset the buffer
  4296. * M155 R1 ; Reset the buffer without sending data
  4297. *
  4298. */
  4299. inline void gcode_M155() {
  4300. // Set the target address
  4301. if (code_seen('A'))
  4302. i2c.address((uint8_t) code_value_short());
  4303. // Add a new byte to the buffer
  4304. else if (code_seen('B'))
  4305. i2c.addbyte((int) code_value_short());
  4306. // Flush the buffer to the bus
  4307. else if (code_seen('S')) i2c.send();
  4308. // Reset and rewind the buffer
  4309. else if (code_seen('R')) i2c.reset();
  4310. }
  4311. /**
  4312. * M156: Request X bytes from I2C slave device
  4313. *
  4314. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4315. */
  4316. inline void gcode_M156() {
  4317. uint8_t addr = code_seen('A') ? code_value_short() : 0;
  4318. int bytes = code_seen('B') ? code_value_short() : 1;
  4319. if (addr && bytes > 0 && bytes <= 32) {
  4320. i2c.address(addr);
  4321. i2c.reqbytes(bytes);
  4322. }
  4323. else {
  4324. SERIAL_ERROR_START;
  4325. SERIAL_ERRORLN("Bad i2c request");
  4326. }
  4327. }
  4328. #endif //EXPERIMENTAL_I2CBUS
  4329. /**
  4330. * M200: Set filament diameter and set E axis units to cubic millimeters
  4331. *
  4332. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4333. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4334. */
  4335. inline void gcode_M200() {
  4336. if (get_target_extruder_from_command(200)) return;
  4337. if (code_seen('D')) {
  4338. float diameter = code_value();
  4339. // setting any extruder filament size disables volumetric on the assumption that
  4340. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4341. // for all extruders
  4342. volumetric_enabled = (diameter != 0.0);
  4343. if (volumetric_enabled) {
  4344. filament_size[target_extruder] = diameter;
  4345. // make sure all extruders have some sane value for the filament size
  4346. for (int i = 0; i < EXTRUDERS; i++)
  4347. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4348. }
  4349. }
  4350. else {
  4351. //reserved for setting filament diameter via UFID or filament measuring device
  4352. return;
  4353. }
  4354. calculate_volumetric_multipliers();
  4355. }
  4356. /**
  4357. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4358. */
  4359. inline void gcode_M201() {
  4360. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4361. if (code_seen(axis_codes[i])) {
  4362. planner.max_acceleration_units_per_sq_second[i] = code_value();
  4363. }
  4364. }
  4365. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4366. planner.reset_acceleration_rates();
  4367. }
  4368. #if 0 // Not used for Sprinter/grbl gen6
  4369. inline void gcode_M202() {
  4370. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4371. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * planner.axis_steps_per_unit[i];
  4372. }
  4373. }
  4374. #endif
  4375. /**
  4376. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4377. */
  4378. inline void gcode_M203() {
  4379. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4380. if (code_seen(axis_codes[i])) {
  4381. planner.max_feedrate[i] = code_value();
  4382. }
  4383. }
  4384. }
  4385. /**
  4386. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4387. *
  4388. * P = Printing moves
  4389. * R = Retract only (no X, Y, Z) moves
  4390. * T = Travel (non printing) moves
  4391. *
  4392. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4393. */
  4394. inline void gcode_M204() {
  4395. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4396. planner.travel_acceleration = planner.acceleration = code_value();
  4397. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4398. SERIAL_EOL;
  4399. }
  4400. if (code_seen('P')) {
  4401. planner.acceleration = code_value();
  4402. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4403. SERIAL_EOL;
  4404. }
  4405. if (code_seen('R')) {
  4406. planner.retract_acceleration = code_value();
  4407. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4408. SERIAL_EOL;
  4409. }
  4410. if (code_seen('T')) {
  4411. planner.travel_acceleration = code_value();
  4412. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4413. SERIAL_EOL;
  4414. }
  4415. }
  4416. /**
  4417. * M205: Set Advanced Settings
  4418. *
  4419. * S = Min Feed Rate (mm/s)
  4420. * T = Min Travel Feed Rate (mm/s)
  4421. * B = Min Segment Time (µs)
  4422. * X = Max XY Jerk (mm/s/s)
  4423. * Z = Max Z Jerk (mm/s/s)
  4424. * E = Max E Jerk (mm/s/s)
  4425. */
  4426. inline void gcode_M205() {
  4427. if (code_seen('S')) planner.min_feedrate = code_value();
  4428. if (code_seen('T')) planner.min_travel_feedrate = code_value();
  4429. if (code_seen('B')) planner.min_segment_time = code_value();
  4430. if (code_seen('X')) planner.max_xy_jerk = code_value();
  4431. if (code_seen('Z')) planner.max_z_jerk = code_value();
  4432. if (code_seen('E')) planner.max_e_jerk = code_value();
  4433. }
  4434. /**
  4435. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4436. */
  4437. inline void gcode_M206() {
  4438. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4439. if (code_seen(axis_codes[i]))
  4440. set_home_offset((AxisEnum)i, code_value());
  4441. #if ENABLED(SCARA)
  4442. if (code_seen('T')) set_home_offset(X_AXIS, code_value()); // Theta
  4443. if (code_seen('P')) set_home_offset(Y_AXIS, code_value()); // Psi
  4444. #endif
  4445. sync_plan_position();
  4446. report_current_position();
  4447. }
  4448. #if ENABLED(DELTA)
  4449. /**
  4450. * M665: Set delta configurations
  4451. *
  4452. * L = diagonal rod
  4453. * R = delta radius
  4454. * S = segments per second
  4455. * A = Alpha (Tower 1) diagonal rod trim
  4456. * B = Beta (Tower 2) diagonal rod trim
  4457. * C = Gamma (Tower 3) diagonal rod trim
  4458. */
  4459. inline void gcode_M665() {
  4460. if (code_seen('L')) delta_diagonal_rod = code_value();
  4461. if (code_seen('R')) delta_radius = code_value();
  4462. if (code_seen('S')) delta_segments_per_second = code_value();
  4463. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4464. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4465. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4466. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4467. }
  4468. /**
  4469. * M666: Set delta endstop adjustment
  4470. */
  4471. inline void gcode_M666() {
  4472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4473. if (DEBUGGING(LEVELING)) {
  4474. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4475. }
  4476. #endif
  4477. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4478. if (code_seen(axis_codes[i])) {
  4479. endstop_adj[i] = code_value();
  4480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4481. if (DEBUGGING(LEVELING)) {
  4482. SERIAL_ECHOPGM("endstop_adj[");
  4483. SERIAL_ECHO(axis_codes[i]);
  4484. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4485. SERIAL_EOL;
  4486. }
  4487. #endif
  4488. }
  4489. }
  4490. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4491. if (DEBUGGING(LEVELING)) {
  4492. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4493. }
  4494. #endif
  4495. }
  4496. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4497. /**
  4498. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4499. */
  4500. inline void gcode_M666() {
  4501. if (code_seen('Z')) z_endstop_adj = code_value();
  4502. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4503. SERIAL_EOL;
  4504. }
  4505. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4506. #if ENABLED(FWRETRACT)
  4507. /**
  4508. * M207: Set firmware retraction values
  4509. *
  4510. * S[+mm] retract_length
  4511. * W[+mm] retract_length_swap (multi-extruder)
  4512. * F[mm/min] retract_feedrate
  4513. * Z[mm] retract_zlift
  4514. */
  4515. inline void gcode_M207() {
  4516. if (code_seen('S')) retract_length = code_value();
  4517. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4518. if (code_seen('Z')) retract_zlift = code_value();
  4519. #if EXTRUDERS > 1
  4520. if (code_seen('W')) retract_length_swap = code_value();
  4521. #endif
  4522. }
  4523. /**
  4524. * M208: Set firmware un-retraction values
  4525. *
  4526. * S[+mm] retract_recover_length (in addition to M207 S*)
  4527. * W[+mm] retract_recover_length_swap (multi-extruder)
  4528. * F[mm/min] retract_recover_feedrate
  4529. */
  4530. inline void gcode_M208() {
  4531. if (code_seen('S')) retract_recover_length = code_value();
  4532. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4533. #if EXTRUDERS > 1
  4534. if (code_seen('W')) retract_recover_length_swap = code_value();
  4535. #endif
  4536. }
  4537. /**
  4538. * M209: Enable automatic retract (M209 S1)
  4539. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4540. */
  4541. inline void gcode_M209() {
  4542. if (code_seen('S')) {
  4543. int t = code_value_short();
  4544. switch (t) {
  4545. case 0:
  4546. autoretract_enabled = false;
  4547. break;
  4548. case 1:
  4549. autoretract_enabled = true;
  4550. break;
  4551. default:
  4552. unknown_command_error();
  4553. return;
  4554. }
  4555. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4556. }
  4557. }
  4558. #endif // FWRETRACT
  4559. #if EXTRUDERS > 1
  4560. /**
  4561. * M218 - set hotend offset (in mm)
  4562. *
  4563. * T<tool>
  4564. * X<xoffset>
  4565. * Y<yoffset>
  4566. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4567. */
  4568. inline void gcode_M218() {
  4569. if (get_target_extruder_from_command(218)) return;
  4570. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4571. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4572. #if ENABLED(DUAL_X_CARRIAGE)
  4573. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4574. #endif
  4575. SERIAL_ECHO_START;
  4576. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4577. for (int e = 0; e < EXTRUDERS; e++) {
  4578. SERIAL_CHAR(' ');
  4579. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4580. SERIAL_CHAR(',');
  4581. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4582. #if ENABLED(DUAL_X_CARRIAGE)
  4583. SERIAL_CHAR(',');
  4584. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4585. #endif
  4586. }
  4587. SERIAL_EOL;
  4588. }
  4589. #endif // EXTRUDERS > 1
  4590. /**
  4591. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4592. */
  4593. inline void gcode_M220() {
  4594. if (code_seen('S')) feedrate_multiplier = code_value();
  4595. }
  4596. /**
  4597. * M221: Set extrusion percentage (M221 T0 S95)
  4598. */
  4599. inline void gcode_M221() {
  4600. if (code_seen('S')) {
  4601. int sval = code_value();
  4602. if (get_target_extruder_from_command(221)) return;
  4603. extruder_multiplier[target_extruder] = sval;
  4604. }
  4605. }
  4606. /**
  4607. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4608. */
  4609. inline void gcode_M226() {
  4610. if (code_seen('P')) {
  4611. int pin_number = code_value();
  4612. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4613. if (pin_state >= -1 && pin_state <= 1) {
  4614. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4615. if (sensitive_pins[i] == pin_number) {
  4616. pin_number = -1;
  4617. break;
  4618. }
  4619. }
  4620. if (pin_number > -1) {
  4621. int target = LOW;
  4622. stepper.synchronize();
  4623. pinMode(pin_number, INPUT);
  4624. switch (pin_state) {
  4625. case 1:
  4626. target = HIGH;
  4627. break;
  4628. case 0:
  4629. target = LOW;
  4630. break;
  4631. case -1:
  4632. target = !digitalRead(pin_number);
  4633. break;
  4634. }
  4635. while (digitalRead(pin_number) != target) idle();
  4636. } // pin_number > -1
  4637. } // pin_state -1 0 1
  4638. } // code_seen('P')
  4639. }
  4640. #if HAS_SERVOS
  4641. /**
  4642. * M280: Get or set servo position. P<index> S<angle>
  4643. */
  4644. inline void gcode_M280() {
  4645. int servo_index = code_seen('P') ? code_value_short() : -1;
  4646. int servo_position = 0;
  4647. if (code_seen('S')) {
  4648. servo_position = code_value_short();
  4649. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4650. servo[servo_index].move(servo_position);
  4651. else {
  4652. SERIAL_ERROR_START;
  4653. SERIAL_ERROR("Servo ");
  4654. SERIAL_ERROR(servo_index);
  4655. SERIAL_ERRORLN(" out of range");
  4656. }
  4657. }
  4658. else if (servo_index >= 0) {
  4659. SERIAL_ECHO_START;
  4660. SERIAL_ECHO(" Servo ");
  4661. SERIAL_ECHO(servo_index);
  4662. SERIAL_ECHO(": ");
  4663. SERIAL_ECHOLN(servo[servo_index].read());
  4664. }
  4665. }
  4666. #endif // HAS_SERVOS
  4667. #if HAS_BUZZER
  4668. /**
  4669. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4670. */
  4671. inline void gcode_M300() {
  4672. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4673. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4674. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4675. buzz(beepP, beepS);
  4676. }
  4677. #endif // HAS_BUZZER
  4678. #if ENABLED(PIDTEMP)
  4679. /**
  4680. * M301: Set PID parameters P I D (and optionally C, L)
  4681. *
  4682. * P[float] Kp term
  4683. * I[float] Ki term (unscaled)
  4684. * D[float] Kd term (unscaled)
  4685. *
  4686. * With PID_ADD_EXTRUSION_RATE:
  4687. *
  4688. * C[float] Kc term
  4689. * L[float] LPQ length
  4690. */
  4691. inline void gcode_M301() {
  4692. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4693. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4694. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4695. if (e < EXTRUDERS) { // catch bad input value
  4696. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4697. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4698. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4699. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4700. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4701. if (code_seen('L')) lpq_len = code_value();
  4702. NOMORE(lpq_len, LPQ_MAX_LEN);
  4703. #endif
  4704. thermalManager.updatePID();
  4705. SERIAL_ECHO_START;
  4706. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4707. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4708. SERIAL_ECHO(e);
  4709. #endif // PID_PARAMS_PER_EXTRUDER
  4710. SERIAL_ECHO(" p:");
  4711. SERIAL_ECHO(PID_PARAM(Kp, e));
  4712. SERIAL_ECHO(" i:");
  4713. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4714. SERIAL_ECHO(" d:");
  4715. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4716. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4717. SERIAL_ECHO(" c:");
  4718. //Kc does not have scaling applied above, or in resetting defaults
  4719. SERIAL_ECHO(PID_PARAM(Kc, e));
  4720. #endif
  4721. SERIAL_EOL;
  4722. }
  4723. else {
  4724. SERIAL_ERROR_START;
  4725. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4726. }
  4727. }
  4728. #endif // PIDTEMP
  4729. #if ENABLED(PIDTEMPBED)
  4730. inline void gcode_M304() {
  4731. if (code_seen('P')) thermalManager.bedKp = code_value();
  4732. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value());
  4733. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value());
  4734. thermalManager.updatePID();
  4735. SERIAL_ECHO_START;
  4736. SERIAL_ECHO(" p:");
  4737. SERIAL_ECHO(thermalManager.bedKp);
  4738. SERIAL_ECHO(" i:");
  4739. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4740. SERIAL_ECHO(" d:");
  4741. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4742. }
  4743. #endif // PIDTEMPBED
  4744. #if defined(CHDK) || HAS_PHOTOGRAPH
  4745. /**
  4746. * M240: Trigger a camera by emulating a Canon RC-1
  4747. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4748. */
  4749. inline void gcode_M240() {
  4750. #ifdef CHDK
  4751. OUT_WRITE(CHDK, HIGH);
  4752. chdkHigh = millis();
  4753. chdkActive = true;
  4754. #elif HAS_PHOTOGRAPH
  4755. const uint8_t NUM_PULSES = 16;
  4756. const float PULSE_LENGTH = 0.01524;
  4757. for (int i = 0; i < NUM_PULSES; i++) {
  4758. WRITE(PHOTOGRAPH_PIN, HIGH);
  4759. _delay_ms(PULSE_LENGTH);
  4760. WRITE(PHOTOGRAPH_PIN, LOW);
  4761. _delay_ms(PULSE_LENGTH);
  4762. }
  4763. delay(7.33);
  4764. for (int i = 0; i < NUM_PULSES; i++) {
  4765. WRITE(PHOTOGRAPH_PIN, HIGH);
  4766. _delay_ms(PULSE_LENGTH);
  4767. WRITE(PHOTOGRAPH_PIN, LOW);
  4768. _delay_ms(PULSE_LENGTH);
  4769. }
  4770. #endif // !CHDK && HAS_PHOTOGRAPH
  4771. }
  4772. #endif // CHDK || PHOTOGRAPH_PIN
  4773. #if HAS_LCD_CONTRAST
  4774. /**
  4775. * M250: Read and optionally set the LCD contrast
  4776. */
  4777. inline void gcode_M250() {
  4778. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4779. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4780. SERIAL_PROTOCOL(lcd_contrast);
  4781. SERIAL_EOL;
  4782. }
  4783. #endif // HAS_LCD_CONTRAST
  4784. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4785. /**
  4786. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4787. */
  4788. inline void gcode_M302() {
  4789. thermalManager.extrude_min_temp = code_seen('S') ? code_value() : 0;
  4790. }
  4791. #endif // PREVENT_DANGEROUS_EXTRUDE
  4792. /**
  4793. * M303: PID relay autotune
  4794. *
  4795. * S<temperature> sets the target temperature. (default 150C)
  4796. * E<extruder> (-1 for the bed) (default 0)
  4797. * C<cycles>
  4798. * U<bool> with a non-zero value will apply the result to current settings
  4799. */
  4800. inline void gcode_M303() {
  4801. #if HAS_PID_HEATING
  4802. int e = code_seen('E') ? code_value_short() : 0;
  4803. int c = code_seen('C') ? code_value_short() : 5;
  4804. bool u = code_seen('U') && code_value_short() != 0;
  4805. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4806. if (e >= 0 && e < EXTRUDERS)
  4807. target_extruder = e;
  4808. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4809. thermalManager.PID_autotune(temp, e, c, u);
  4810. KEEPALIVE_STATE(IN_HANDLER);
  4811. #else
  4812. SERIAL_ERROR_START;
  4813. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4814. #endif
  4815. }
  4816. #if ENABLED(SCARA)
  4817. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4818. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4819. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4820. if (IsRunning()) {
  4821. //gcode_get_destination(); // For X Y Z E F
  4822. delta[X_AXIS] = delta_x;
  4823. delta[Y_AXIS] = delta_y;
  4824. calculate_SCARA_forward_Transform(delta);
  4825. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4826. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4827. prepare_move();
  4828. //ok_to_send();
  4829. return true;
  4830. }
  4831. return false;
  4832. }
  4833. /**
  4834. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4835. */
  4836. inline bool gcode_M360() {
  4837. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4838. return SCARA_move_to_cal(0, 120);
  4839. }
  4840. /**
  4841. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4842. */
  4843. inline bool gcode_M361() {
  4844. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4845. return SCARA_move_to_cal(90, 130);
  4846. }
  4847. /**
  4848. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4849. */
  4850. inline bool gcode_M362() {
  4851. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4852. return SCARA_move_to_cal(60, 180);
  4853. }
  4854. /**
  4855. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4856. */
  4857. inline bool gcode_M363() {
  4858. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4859. return SCARA_move_to_cal(50, 90);
  4860. }
  4861. /**
  4862. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4863. */
  4864. inline bool gcode_M364() {
  4865. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4866. return SCARA_move_to_cal(45, 135);
  4867. }
  4868. /**
  4869. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4870. */
  4871. inline void gcode_M365() {
  4872. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4873. if (code_seen(axis_codes[i])) {
  4874. axis_scaling[i] = code_value();
  4875. }
  4876. }
  4877. }
  4878. #endif // SCARA
  4879. #if ENABLED(EXT_SOLENOID)
  4880. void enable_solenoid(uint8_t num) {
  4881. switch (num) {
  4882. case 0:
  4883. OUT_WRITE(SOL0_PIN, HIGH);
  4884. break;
  4885. #if HAS_SOLENOID_1
  4886. case 1:
  4887. OUT_WRITE(SOL1_PIN, HIGH);
  4888. break;
  4889. #endif
  4890. #if HAS_SOLENOID_2
  4891. case 2:
  4892. OUT_WRITE(SOL2_PIN, HIGH);
  4893. break;
  4894. #endif
  4895. #if HAS_SOLENOID_3
  4896. case 3:
  4897. OUT_WRITE(SOL3_PIN, HIGH);
  4898. break;
  4899. #endif
  4900. default:
  4901. SERIAL_ECHO_START;
  4902. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4903. break;
  4904. }
  4905. }
  4906. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4907. void disable_all_solenoids() {
  4908. OUT_WRITE(SOL0_PIN, LOW);
  4909. OUT_WRITE(SOL1_PIN, LOW);
  4910. OUT_WRITE(SOL2_PIN, LOW);
  4911. OUT_WRITE(SOL3_PIN, LOW);
  4912. }
  4913. /**
  4914. * M380: Enable solenoid on the active extruder
  4915. */
  4916. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4917. /**
  4918. * M381: Disable all solenoids
  4919. */
  4920. inline void gcode_M381() { disable_all_solenoids(); }
  4921. #endif // EXT_SOLENOID
  4922. /**
  4923. * M400: Finish all moves
  4924. */
  4925. inline void gcode_M400() { stepper.synchronize(); }
  4926. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4927. /**
  4928. * M401: Engage Z Servo endstop if available
  4929. */
  4930. inline void gcode_M401() {
  4931. #if HAS_SERVO_ENDSTOPS
  4932. raise_z_for_servo();
  4933. #endif
  4934. deploy_z_probe();
  4935. }
  4936. /**
  4937. * M402: Retract Z Servo endstop if enabled
  4938. */
  4939. inline void gcode_M402() {
  4940. #if HAS_SERVO_ENDSTOPS
  4941. raise_z_for_servo();
  4942. #endif
  4943. stow_z_probe(false);
  4944. }
  4945. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4946. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4947. /**
  4948. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4949. */
  4950. inline void gcode_M404() {
  4951. if (code_seen('W')) {
  4952. filament_width_nominal = code_value();
  4953. }
  4954. else {
  4955. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4956. SERIAL_PROTOCOLLN(filament_width_nominal);
  4957. }
  4958. }
  4959. /**
  4960. * M405: Turn on filament sensor for control
  4961. */
  4962. inline void gcode_M405() {
  4963. if (code_seen('D')) meas_delay_cm = code_value();
  4964. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4965. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4966. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  4967. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4968. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4969. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4970. }
  4971. filament_sensor = true;
  4972. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4973. //SERIAL_PROTOCOL(filament_width_meas);
  4974. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4975. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4976. }
  4977. /**
  4978. * M406: Turn off filament sensor for control
  4979. */
  4980. inline void gcode_M406() { filament_sensor = false; }
  4981. /**
  4982. * M407: Get measured filament diameter on serial output
  4983. */
  4984. inline void gcode_M407() {
  4985. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4986. SERIAL_PROTOCOLLN(filament_width_meas);
  4987. }
  4988. #endif // FILAMENT_WIDTH_SENSOR
  4989. /**
  4990. * M410: Quickstop - Abort all planned moves
  4991. *
  4992. * This will stop the carriages mid-move, so most likely they
  4993. * will be out of sync with the stepper position after this.
  4994. */
  4995. inline void gcode_M410() { stepper.quick_stop(); }
  4996. #if ENABLED(MESH_BED_LEVELING)
  4997. /**
  4998. * M420: Enable/Disable Mesh Bed Leveling
  4999. */
  5000. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  5001. /**
  5002. * M421: Set a single Mesh Bed Leveling Z coordinate
  5003. * Use either 'M421 X<mm> Y<mm> Z<mm>' or 'M421 I<xindex> J<yindex> Z<mm>'
  5004. */
  5005. inline void gcode_M421() {
  5006. int8_t px, py;
  5007. float z = 0;
  5008. bool hasX, hasY, hasZ, hasI, hasJ;
  5009. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value());
  5010. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value());
  5011. if ((hasI = code_seen('I'))) px = code_value();
  5012. if ((hasJ = code_seen('J'))) py = code_value();
  5013. if ((hasZ = code_seen('Z'))) z = code_value();
  5014. if (hasX && hasY && hasZ) {
  5015. if (px >= 0 && py >= 0)
  5016. mbl.set_z(px, py, z);
  5017. else {
  5018. SERIAL_ERROR_START;
  5019. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5020. }
  5021. }
  5022. else if (hasI && hasJ && hasZ) {
  5023. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5024. mbl.set_z(px, py, z);
  5025. else {
  5026. SERIAL_ERROR_START;
  5027. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5028. }
  5029. }
  5030. else {
  5031. SERIAL_ERROR_START;
  5032. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5033. }
  5034. }
  5035. #endif
  5036. /**
  5037. * M428: Set home_offset based on the distance between the
  5038. * current_position and the nearest "reference point."
  5039. * If an axis is past center its endstop position
  5040. * is the reference-point. Otherwise it uses 0. This allows
  5041. * the Z offset to be set near the bed when using a max endstop.
  5042. *
  5043. * M428 can't be used more than 2cm away from 0 or an endstop.
  5044. *
  5045. * Use M206 to set these values directly.
  5046. */
  5047. inline void gcode_M428() {
  5048. bool err = false;
  5049. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5050. if (axis_homed[i]) {
  5051. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5052. diff = current_position[i] - base;
  5053. if (diff > -20 && diff < 20) {
  5054. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5055. }
  5056. else {
  5057. SERIAL_ERROR_START;
  5058. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5059. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5060. #if HAS_BUZZER
  5061. buzz(200, 40);
  5062. #endif
  5063. err = true;
  5064. break;
  5065. }
  5066. }
  5067. }
  5068. if (!err) {
  5069. sync_plan_position();
  5070. report_current_position();
  5071. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5072. #if HAS_BUZZER
  5073. buzz(200, 659);
  5074. buzz(200, 698);
  5075. #endif
  5076. }
  5077. }
  5078. /**
  5079. * M500: Store settings in EEPROM
  5080. */
  5081. inline void gcode_M500() {
  5082. Config_StoreSettings();
  5083. }
  5084. /**
  5085. * M501: Read settings from EEPROM
  5086. */
  5087. inline void gcode_M501() {
  5088. Config_RetrieveSettings();
  5089. }
  5090. /**
  5091. * M502: Revert to default settings
  5092. */
  5093. inline void gcode_M502() {
  5094. Config_ResetDefault();
  5095. }
  5096. /**
  5097. * M503: print settings currently in memory
  5098. */
  5099. inline void gcode_M503() {
  5100. Config_PrintSettings(code_seen('S') && code_value() == 0);
  5101. }
  5102. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5103. /**
  5104. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5105. */
  5106. inline void gcode_M540() {
  5107. if (code_seen('S')) stepper.abort_on_endstop_hit = (code_value() > 0);
  5108. }
  5109. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5110. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5111. inline void gcode_SET_Z_PROBE_OFFSET() {
  5112. SERIAL_ECHO_START;
  5113. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5114. SERIAL_CHAR(' ');
  5115. if (code_seen('Z')) {
  5116. float value = code_value();
  5117. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5118. zprobe_zoffset = value;
  5119. SERIAL_ECHO(zprobe_zoffset);
  5120. }
  5121. else {
  5122. SERIAL_ECHOPGM(MSG_Z_MIN);
  5123. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5124. SERIAL_ECHOPGM(MSG_Z_MAX);
  5125. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5126. }
  5127. }
  5128. else {
  5129. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5130. }
  5131. SERIAL_EOL;
  5132. }
  5133. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5134. #if ENABLED(FILAMENTCHANGEENABLE)
  5135. /**
  5136. * M600: Pause for filament change
  5137. *
  5138. * E[distance] - Retract the filament this far (negative value)
  5139. * Z[distance] - Move the Z axis by this distance
  5140. * X[position] - Move to this X position, with Y
  5141. * Y[position] - Move to this Y position, with X
  5142. * L[distance] - Retract distance for removal (manual reload)
  5143. *
  5144. * Default values are used for omitted arguments.
  5145. *
  5146. */
  5147. inline void gcode_M600() {
  5148. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5149. SERIAL_ERROR_START;
  5150. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5151. return;
  5152. }
  5153. float lastpos[NUM_AXIS];
  5154. #if ENABLED(DELTA)
  5155. float fr60 = feedrate / 60;
  5156. #endif
  5157. for (int i = 0; i < NUM_AXIS; i++)
  5158. lastpos[i] = destination[i] = current_position[i];
  5159. #if ENABLED(DELTA)
  5160. #define RUNPLAN calculate_delta(destination); \
  5161. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5162. #else
  5163. #define RUNPLAN line_to_destination();
  5164. #endif
  5165. //retract by E
  5166. if (code_seen('E')) destination[E_AXIS] += code_value();
  5167. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5168. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5169. #endif
  5170. RUNPLAN;
  5171. //lift Z
  5172. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  5173. #ifdef FILAMENTCHANGE_ZADD
  5174. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5175. #endif
  5176. RUNPLAN;
  5177. //move xy
  5178. if (code_seen('X')) destination[X_AXIS] = code_value();
  5179. #ifdef FILAMENTCHANGE_XPOS
  5180. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5181. #endif
  5182. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  5183. #ifdef FILAMENTCHANGE_YPOS
  5184. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5185. #endif
  5186. RUNPLAN;
  5187. if (code_seen('L')) destination[E_AXIS] += code_value();
  5188. #ifdef FILAMENTCHANGE_FINALRETRACT
  5189. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5190. #endif
  5191. RUNPLAN;
  5192. //finish moves
  5193. stepper.synchronize();
  5194. //disable extruder steppers so filament can be removed
  5195. disable_e0();
  5196. disable_e1();
  5197. disable_e2();
  5198. disable_e3();
  5199. delay(100);
  5200. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5201. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5202. millis_t next_tick = 0;
  5203. #endif
  5204. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5205. while (!lcd_clicked()) {
  5206. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5207. millis_t ms = millis();
  5208. if (ELAPSED(ms, next_tick)) {
  5209. lcd_quick_feedback();
  5210. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5211. }
  5212. idle(true);
  5213. #else
  5214. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5215. destination[E_AXIS] = current_position[E_AXIS];
  5216. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5217. stepper.synchronize();
  5218. #endif
  5219. } // while(!lcd_clicked)
  5220. KEEPALIVE_STATE(IN_HANDLER);
  5221. lcd_quick_feedback(); // click sound feedback
  5222. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5223. current_position[E_AXIS] = 0;
  5224. stepper.synchronize();
  5225. #endif
  5226. //return to normal
  5227. if (code_seen('L')) destination[E_AXIS] -= code_value();
  5228. #ifdef FILAMENTCHANGE_FINALRETRACT
  5229. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5230. #endif
  5231. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5232. sync_plan_position_e();
  5233. RUNPLAN; //should do nothing
  5234. lcd_reset_alert_level();
  5235. #if ENABLED(DELTA)
  5236. // Move XYZ to starting position, then E
  5237. calculate_delta(lastpos);
  5238. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5239. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5240. #else
  5241. // Move XY to starting position, then Z, then E
  5242. destination[X_AXIS] = lastpos[X_AXIS];
  5243. destination[Y_AXIS] = lastpos[Y_AXIS];
  5244. line_to_destination();
  5245. destination[Z_AXIS] = lastpos[Z_AXIS];
  5246. line_to_destination();
  5247. destination[E_AXIS] = lastpos[E_AXIS];
  5248. line_to_destination();
  5249. #endif
  5250. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5251. filament_ran_out = false;
  5252. #endif
  5253. }
  5254. #endif // FILAMENTCHANGEENABLE
  5255. #if ENABLED(DUAL_X_CARRIAGE)
  5256. /**
  5257. * M605: Set dual x-carriage movement mode
  5258. *
  5259. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5260. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5261. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5262. * millimeters x-offset and an optional differential hotend temperature of
  5263. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5264. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5265. *
  5266. * Note: the X axis should be homed after changing dual x-carriage mode.
  5267. */
  5268. inline void gcode_M605() {
  5269. stepper.synchronize();
  5270. if (code_seen('S')) dual_x_carriage_mode = code_value();
  5271. switch (dual_x_carriage_mode) {
  5272. case DXC_DUPLICATION_MODE:
  5273. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  5274. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  5275. SERIAL_ECHO_START;
  5276. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5277. SERIAL_CHAR(' ');
  5278. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  5279. SERIAL_CHAR(',');
  5280. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  5281. SERIAL_CHAR(' ');
  5282. SERIAL_ECHO(duplicate_extruder_x_offset);
  5283. SERIAL_CHAR(',');
  5284. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  5285. break;
  5286. case DXC_FULL_CONTROL_MODE:
  5287. case DXC_AUTO_PARK_MODE:
  5288. break;
  5289. default:
  5290. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5291. break;
  5292. }
  5293. active_extruder_parked = false;
  5294. extruder_duplication_enabled = false;
  5295. delayed_move_time = 0;
  5296. }
  5297. #endif // DUAL_X_CARRIAGE
  5298. /**
  5299. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5300. */
  5301. inline void gcode_M907() {
  5302. #if HAS_DIGIPOTSS
  5303. for (int i = 0; i < NUM_AXIS; i++)
  5304. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value());
  5305. if (code_seen('B')) stepper.digipot_current(4, code_value());
  5306. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value());
  5307. #endif
  5308. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5309. if (code_seen('X')) stepper.digipot_current(0, code_value());
  5310. #endif
  5311. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5312. if (code_seen('Z')) stepper.digipot_current(1, code_value());
  5313. #endif
  5314. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5315. if (code_seen('E')) stepper.digipot_current(2, code_value());
  5316. #endif
  5317. #if ENABLED(DIGIPOT_I2C)
  5318. // this one uses actual amps in floating point
  5319. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5320. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5321. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  5322. #endif
  5323. #if ENABLED(DAC_STEPPER_CURRENT)
  5324. if (code_seen('S')) {
  5325. float dac_percent = code_value();
  5326. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5327. }
  5328. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  5329. #endif
  5330. }
  5331. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5332. /**
  5333. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5334. */
  5335. inline void gcode_M908() {
  5336. #if HAS_DIGIPOTSS
  5337. stepper.digitalPotWrite(
  5338. code_seen('P') ? code_value() : 0,
  5339. code_seen('S') ? code_value() : 0
  5340. );
  5341. #endif
  5342. #ifdef DAC_STEPPER_CURRENT
  5343. dac_current_raw(
  5344. code_seen('P') ? code_value_long() : -1,
  5345. code_seen('S') ? code_value_short() : 0
  5346. );
  5347. #endif
  5348. }
  5349. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5350. inline void gcode_M909() { dac_print_values(); }
  5351. inline void gcode_M910() { dac_commit_eeprom(); }
  5352. #endif
  5353. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5354. #if HAS_MICROSTEPS
  5355. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5356. inline void gcode_M350() {
  5357. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value());
  5358. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, (uint8_t)code_value());
  5359. if (code_seen('B')) stepper.microstep_mode(4, code_value());
  5360. stepper.microstep_readings();
  5361. }
  5362. /**
  5363. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5364. * S# determines MS1 or MS2, X# sets the pin high/low.
  5365. */
  5366. inline void gcode_M351() {
  5367. if (code_seen('S')) switch (code_value_short()) {
  5368. case 1:
  5369. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value(), -1);
  5370. if (code_seen('B')) stepper.microstep_ms(4, code_value(), -1);
  5371. break;
  5372. case 2:
  5373. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value());
  5374. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value());
  5375. break;
  5376. }
  5377. stepper.microstep_readings();
  5378. }
  5379. #endif // HAS_MICROSTEPS
  5380. /**
  5381. * M999: Restart after being stopped
  5382. *
  5383. * Default behaviour is to flush the serial buffer and request
  5384. * a resend to the host starting on the last N line received.
  5385. *
  5386. * Sending "M999 S1" will resume printing without flushing the
  5387. * existing command buffer.
  5388. *
  5389. */
  5390. inline void gcode_M999() {
  5391. Running = true;
  5392. lcd_reset_alert_level();
  5393. if (code_seen('S') && code_value_short() == 1) return;
  5394. // gcode_LastN = Stopped_gcode_LastN;
  5395. FlushSerialRequestResend();
  5396. }
  5397. /**
  5398. * T0-T3: Switch tool, usually switching extruders
  5399. *
  5400. * F[mm/min] Set the movement feedrate
  5401. */
  5402. inline void gcode_T(uint8_t tmp_extruder) {
  5403. if (tmp_extruder >= EXTRUDERS) {
  5404. SERIAL_ECHO_START;
  5405. SERIAL_CHAR('T');
  5406. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5407. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5408. return;
  5409. }
  5410. float stored_feedrate = feedrate;
  5411. if (code_seen('F')) {
  5412. float next_feedrate = code_value();
  5413. if (next_feedrate > 0.0) stored_feedrate = feedrate = next_feedrate;
  5414. }
  5415. else {
  5416. #ifdef XY_TRAVEL_SPEED
  5417. feedrate = XY_TRAVEL_SPEED;
  5418. #else
  5419. feedrate = min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]);
  5420. #endif
  5421. }
  5422. #if EXTRUDERS > 1
  5423. if (tmp_extruder != active_extruder) {
  5424. // Save current position to return to after applying extruder offset
  5425. set_destination_to_current();
  5426. #if ENABLED(DUAL_X_CARRIAGE)
  5427. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5428. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5429. // Park old head: 1) raise 2) move to park position 3) lower
  5430. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5431. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5432. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5433. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5434. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5435. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5436. stepper.synchronize();
  5437. }
  5438. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5439. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5440. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5441. active_extruder = tmp_extruder;
  5442. // This function resets the max/min values - the current position may be overwritten below.
  5443. set_axis_is_at_home(X_AXIS);
  5444. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5445. current_position[X_AXIS] = inactive_extruder_x_pos;
  5446. inactive_extruder_x_pos = destination[X_AXIS];
  5447. }
  5448. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5449. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5450. if (active_extruder_parked)
  5451. current_position[X_AXIS] = inactive_extruder_x_pos;
  5452. else
  5453. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5454. inactive_extruder_x_pos = destination[X_AXIS];
  5455. extruder_duplication_enabled = false;
  5456. }
  5457. else {
  5458. // record raised toolhead position for use by unpark
  5459. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5460. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5461. active_extruder_parked = true;
  5462. delayed_move_time = 0;
  5463. }
  5464. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5465. #else // !DUAL_X_CARRIAGE
  5466. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5467. // Offset extruder, make sure to apply the bed level rotation matrix
  5468. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5469. extruder_offset[Y_AXIS][tmp_extruder],
  5470. 0),
  5471. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5472. extruder_offset[Y_AXIS][active_extruder],
  5473. 0),
  5474. offset_vec = tmp_offset_vec - act_offset_vec;
  5475. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5476. if (DEBUGGING(LEVELING)) {
  5477. SERIAL_ECHOLNPGM(">>> gcode_T");
  5478. tmp_offset_vec.debug("tmp_offset_vec");
  5479. act_offset_vec.debug("act_offset_vec");
  5480. offset_vec.debug("offset_vec (BEFORE)");
  5481. DEBUG_POS("BEFORE rotation", current_position);
  5482. }
  5483. #endif
  5484. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5485. current_position[X_AXIS] += offset_vec.x;
  5486. current_position[Y_AXIS] += offset_vec.y;
  5487. current_position[Z_AXIS] += offset_vec.z;
  5488. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5489. if (DEBUGGING(LEVELING)) {
  5490. offset_vec.debug("offset_vec (AFTER)");
  5491. DEBUG_POS("AFTER rotation", current_position);
  5492. SERIAL_ECHOLNPGM("<<< gcode_T");
  5493. }
  5494. #endif
  5495. #else // !AUTO_BED_LEVELING_FEATURE
  5496. // The newly-selected extruder is actually at...
  5497. for (int i=X_AXIS; i<=Y_AXIS; i++) {
  5498. float diff = extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5499. current_position[i] += diff;
  5500. position_shift[i] += diff; // Offset the coordinate space
  5501. update_software_endstops((AxisEnum)i);
  5502. }
  5503. #endif // !AUTO_BED_LEVELING_FEATURE
  5504. // Set the new active extruder
  5505. active_extruder = tmp_extruder;
  5506. #endif // !DUAL_X_CARRIAGE
  5507. // Tell the planner the new "current position"
  5508. #if ENABLED(DELTA)
  5509. sync_plan_position_delta();
  5510. #else
  5511. sync_plan_position();
  5512. #endif
  5513. // Move to the "old position" (move the extruder into place)
  5514. if (IsRunning()) prepare_move();
  5515. } // (tmp_extruder != active_extruder)
  5516. #if ENABLED(EXT_SOLENOID)
  5517. stepper.synchronize();
  5518. disable_all_solenoids();
  5519. enable_solenoid_on_active_extruder();
  5520. #endif // EXT_SOLENOID
  5521. #endif // EXTRUDERS > 1
  5522. feedrate = stored_feedrate;
  5523. SERIAL_ECHO_START;
  5524. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5525. SERIAL_PROTOCOLLN((int)active_extruder);
  5526. }
  5527. /**
  5528. * Process a single command and dispatch it to its handler
  5529. * This is called from the main loop()
  5530. */
  5531. void process_next_command() {
  5532. current_command = command_queue[cmd_queue_index_r];
  5533. if (DEBUGGING(ECHO)) {
  5534. SERIAL_ECHO_START;
  5535. SERIAL_ECHOLN(current_command);
  5536. }
  5537. // Sanitize the current command:
  5538. // - Skip leading spaces
  5539. // - Bypass N[-0-9][0-9]*[ ]*
  5540. // - Overwrite * with nul to mark the end
  5541. while (*current_command == ' ') ++current_command;
  5542. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5543. current_command += 2; // skip N[-0-9]
  5544. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5545. while (*current_command == ' ') ++current_command; // skip [ ]*
  5546. }
  5547. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5548. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5549. char *cmd_ptr = current_command;
  5550. // Get the command code, which must be G, M, or T
  5551. char command_code = *cmd_ptr++;
  5552. // Skip spaces to get the numeric part
  5553. while (*cmd_ptr == ' ') cmd_ptr++;
  5554. uint16_t codenum = 0; // define ahead of goto
  5555. // Bail early if there's no code
  5556. bool code_is_good = NUMERIC(*cmd_ptr);
  5557. if (!code_is_good) goto ExitUnknownCommand;
  5558. // Get and skip the code number
  5559. do {
  5560. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5561. cmd_ptr++;
  5562. } while (NUMERIC(*cmd_ptr));
  5563. // Skip all spaces to get to the first argument, or nul
  5564. while (*cmd_ptr == ' ') cmd_ptr++;
  5565. // The command's arguments (if any) start here, for sure!
  5566. current_command_args = cmd_ptr;
  5567. KEEPALIVE_STATE(IN_HANDLER);
  5568. // Handle a known G, M, or T
  5569. switch (command_code) {
  5570. case 'G': switch (codenum) {
  5571. // G0, G1
  5572. case 0:
  5573. case 1:
  5574. gcode_G0_G1();
  5575. break;
  5576. // G2, G3
  5577. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5578. case 2: // G2 - CW ARC
  5579. case 3: // G3 - CCW ARC
  5580. gcode_G2_G3(codenum == 2);
  5581. break;
  5582. #endif
  5583. // G4 Dwell
  5584. case 4:
  5585. gcode_G4();
  5586. break;
  5587. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5588. // G5
  5589. case 5: // G5 - Cubic B_spline
  5590. gcode_G5();
  5591. break;
  5592. #endif // BEZIER_CURVE_SUPPORT
  5593. #if ENABLED(FWRETRACT)
  5594. case 10: // G10: retract
  5595. case 11: // G11: retract_recover
  5596. gcode_G10_G11(codenum == 10);
  5597. break;
  5598. #endif // FWRETRACT
  5599. case 28: // G28: Home all axes, one at a time
  5600. gcode_G28();
  5601. break;
  5602. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5603. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5604. gcode_G29();
  5605. break;
  5606. #endif
  5607. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5608. #if DISABLED(Z_PROBE_SLED)
  5609. case 30: // G30 Single Z probe
  5610. gcode_G30();
  5611. break;
  5612. #else // Z_PROBE_SLED
  5613. case 31: // G31: dock the sled
  5614. case 32: // G32: undock the sled
  5615. dock_sled(codenum == 31);
  5616. break;
  5617. #endif // Z_PROBE_SLED
  5618. #endif // AUTO_BED_LEVELING_FEATURE
  5619. case 90: // G90
  5620. relative_mode = false;
  5621. break;
  5622. case 91: // G91
  5623. relative_mode = true;
  5624. break;
  5625. case 92: // G92
  5626. gcode_G92();
  5627. break;
  5628. }
  5629. break;
  5630. case 'M': switch (codenum) {
  5631. #if ENABLED(ULTIPANEL)
  5632. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5633. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5634. gcode_M0_M1();
  5635. break;
  5636. #endif // ULTIPANEL
  5637. case 17:
  5638. gcode_M17();
  5639. break;
  5640. #if ENABLED(SDSUPPORT)
  5641. case 20: // M20 - list SD card
  5642. gcode_M20(); break;
  5643. case 21: // M21 - init SD card
  5644. gcode_M21(); break;
  5645. case 22: //M22 - release SD card
  5646. gcode_M22(); break;
  5647. case 23: //M23 - Select file
  5648. gcode_M23(); break;
  5649. case 24: //M24 - Start SD print
  5650. gcode_M24(); break;
  5651. case 25: //M25 - Pause SD print
  5652. gcode_M25(); break;
  5653. case 26: //M26 - Set SD index
  5654. gcode_M26(); break;
  5655. case 27: //M27 - Get SD status
  5656. gcode_M27(); break;
  5657. case 28: //M28 - Start SD write
  5658. gcode_M28(); break;
  5659. case 29: //M29 - Stop SD write
  5660. gcode_M29(); break;
  5661. case 30: //M30 <filename> Delete File
  5662. gcode_M30(); break;
  5663. case 32: //M32 - Select file and start SD print
  5664. gcode_M32(); break;
  5665. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5666. case 33: //M33 - Get the long full path to a file or folder
  5667. gcode_M33(); break;
  5668. #endif // LONG_FILENAME_HOST_SUPPORT
  5669. case 928: //M928 - Start SD write
  5670. gcode_M928(); break;
  5671. #endif //SDSUPPORT
  5672. case 31: //M31 take time since the start of the SD print or an M109 command
  5673. gcode_M31();
  5674. break;
  5675. case 42: //M42 -Change pin status via gcode
  5676. gcode_M42();
  5677. break;
  5678. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5679. case 48: // M48 Z probe repeatability
  5680. gcode_M48();
  5681. break;
  5682. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5683. case 75: // Start print timer
  5684. gcode_M75();
  5685. break;
  5686. case 76: // Pause print timer
  5687. gcode_M76();
  5688. break;
  5689. case 77: // Stop print timer
  5690. gcode_M77();
  5691. break;
  5692. #if ENABLED(PRINTCOUNTER)
  5693. case 78: // Show print statistics
  5694. gcode_M78();
  5695. break;
  5696. #endif
  5697. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5698. case 100:
  5699. gcode_M100();
  5700. break;
  5701. #endif
  5702. case 104: // M104
  5703. gcode_M104();
  5704. break;
  5705. case 110: // M110: Set Current Line Number
  5706. gcode_M110();
  5707. break;
  5708. case 111: // M111: Set debug level
  5709. gcode_M111();
  5710. break;
  5711. case 112: // M112: Emergency Stop
  5712. gcode_M112();
  5713. break;
  5714. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5715. case 113: // M113: Set Host Keepalive interval
  5716. gcode_M113();
  5717. break;
  5718. #endif
  5719. case 140: // M140: Set bed temp
  5720. gcode_M140();
  5721. break;
  5722. case 105: // M105: Read current temperature
  5723. gcode_M105();
  5724. KEEPALIVE_STATE(NOT_BUSY);
  5725. return; // "ok" already printed
  5726. case 109: // M109: Wait for temperature
  5727. gcode_M109();
  5728. break;
  5729. #if HAS_TEMP_BED
  5730. case 190: // M190: Wait for bed heater to reach target
  5731. gcode_M190();
  5732. break;
  5733. #endif // HAS_TEMP_BED
  5734. #if FAN_COUNT > 0
  5735. case 106: // M106: Fan On
  5736. gcode_M106();
  5737. break;
  5738. case 107: // M107: Fan Off
  5739. gcode_M107();
  5740. break;
  5741. #endif // FAN_COUNT > 0
  5742. #if ENABLED(BARICUDA)
  5743. // PWM for HEATER_1_PIN
  5744. #if HAS_HEATER_1
  5745. case 126: // M126: valve open
  5746. gcode_M126();
  5747. break;
  5748. case 127: // M127: valve closed
  5749. gcode_M127();
  5750. break;
  5751. #endif // HAS_HEATER_1
  5752. // PWM for HEATER_2_PIN
  5753. #if HAS_HEATER_2
  5754. case 128: // M128: valve open
  5755. gcode_M128();
  5756. break;
  5757. case 129: // M129: valve closed
  5758. gcode_M129();
  5759. break;
  5760. #endif // HAS_HEATER_2
  5761. #endif // BARICUDA
  5762. #if HAS_POWER_SWITCH
  5763. case 80: // M80: Turn on Power Supply
  5764. gcode_M80();
  5765. break;
  5766. #endif // HAS_POWER_SWITCH
  5767. case 81: // M81: Turn off Power, including Power Supply, if possible
  5768. gcode_M81();
  5769. break;
  5770. case 82:
  5771. gcode_M82();
  5772. break;
  5773. case 83:
  5774. gcode_M83();
  5775. break;
  5776. case 18: // (for compatibility)
  5777. case 84: // M84
  5778. gcode_M18_M84();
  5779. break;
  5780. case 85: // M85
  5781. gcode_M85();
  5782. break;
  5783. case 92: // M92: Set the steps-per-unit for one or more axes
  5784. gcode_M92();
  5785. break;
  5786. case 115: // M115: Report capabilities
  5787. gcode_M115();
  5788. break;
  5789. case 117: // M117: Set LCD message text, if possible
  5790. gcode_M117();
  5791. break;
  5792. case 114: // M114: Report current position
  5793. gcode_M114();
  5794. break;
  5795. case 120: // M120: Enable endstops
  5796. gcode_M120();
  5797. break;
  5798. case 121: // M121: Disable endstops
  5799. gcode_M121();
  5800. break;
  5801. case 119: // M119: Report endstop states
  5802. gcode_M119();
  5803. break;
  5804. #if ENABLED(ULTIPANEL)
  5805. case 145: // M145: Set material heatup parameters
  5806. gcode_M145();
  5807. break;
  5808. #endif
  5809. #if ENABLED(BLINKM)
  5810. case 150: // M150
  5811. gcode_M150();
  5812. break;
  5813. #endif //BLINKM
  5814. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5815. case 155:
  5816. gcode_M155();
  5817. break;
  5818. case 156:
  5819. gcode_M156();
  5820. break;
  5821. #endif //EXPERIMENTAL_I2CBUS
  5822. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5823. gcode_M200();
  5824. break;
  5825. case 201: // M201
  5826. gcode_M201();
  5827. break;
  5828. #if 0 // Not used for Sprinter/grbl gen6
  5829. case 202: // M202
  5830. gcode_M202();
  5831. break;
  5832. #endif
  5833. case 203: // M203 max feedrate mm/sec
  5834. gcode_M203();
  5835. break;
  5836. case 204: // M204 acclereration S normal moves T filmanent only moves
  5837. gcode_M204();
  5838. break;
  5839. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5840. gcode_M205();
  5841. break;
  5842. case 206: // M206 additional homing offset
  5843. gcode_M206();
  5844. break;
  5845. #if ENABLED(DELTA)
  5846. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5847. gcode_M665();
  5848. break;
  5849. #endif
  5850. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5851. case 666: // M666 set delta / dual endstop adjustment
  5852. gcode_M666();
  5853. break;
  5854. #endif
  5855. #if ENABLED(FWRETRACT)
  5856. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5857. gcode_M207();
  5858. break;
  5859. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5860. gcode_M208();
  5861. break;
  5862. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5863. gcode_M209();
  5864. break;
  5865. #endif // FWRETRACT
  5866. #if EXTRUDERS > 1
  5867. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5868. gcode_M218();
  5869. break;
  5870. #endif
  5871. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5872. gcode_M220();
  5873. break;
  5874. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5875. gcode_M221();
  5876. break;
  5877. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5878. gcode_M226();
  5879. break;
  5880. #if HAS_SERVOS
  5881. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5882. gcode_M280();
  5883. break;
  5884. #endif // HAS_SERVOS
  5885. #if HAS_BUZZER
  5886. case 300: // M300 - Play beep tone
  5887. gcode_M300();
  5888. break;
  5889. #endif // HAS_BUZZER
  5890. #if ENABLED(PIDTEMP)
  5891. case 301: // M301
  5892. gcode_M301();
  5893. break;
  5894. #endif // PIDTEMP
  5895. #if ENABLED(PIDTEMPBED)
  5896. case 304: // M304
  5897. gcode_M304();
  5898. break;
  5899. #endif // PIDTEMPBED
  5900. #if defined(CHDK) || HAS_PHOTOGRAPH
  5901. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5902. gcode_M240();
  5903. break;
  5904. #endif // CHDK || PHOTOGRAPH_PIN
  5905. #if HAS_LCD_CONTRAST
  5906. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5907. gcode_M250();
  5908. break;
  5909. #endif // HAS_LCD_CONTRAST
  5910. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5911. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5912. gcode_M302();
  5913. break;
  5914. #endif // PREVENT_DANGEROUS_EXTRUDE
  5915. case 303: // M303 PID autotune
  5916. gcode_M303();
  5917. break;
  5918. #if ENABLED(SCARA)
  5919. case 360: // M360 SCARA Theta pos1
  5920. if (gcode_M360()) return;
  5921. break;
  5922. case 361: // M361 SCARA Theta pos2
  5923. if (gcode_M361()) return;
  5924. break;
  5925. case 362: // M362 SCARA Psi pos1
  5926. if (gcode_M362()) return;
  5927. break;
  5928. case 363: // M363 SCARA Psi pos2
  5929. if (gcode_M363()) return;
  5930. break;
  5931. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5932. if (gcode_M364()) return;
  5933. break;
  5934. case 365: // M365 Set SCARA scaling for X Y Z
  5935. gcode_M365();
  5936. break;
  5937. #endif // SCARA
  5938. case 400: // M400 finish all moves
  5939. gcode_M400();
  5940. break;
  5941. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5942. case 401:
  5943. gcode_M401();
  5944. break;
  5945. case 402:
  5946. gcode_M402();
  5947. break;
  5948. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5949. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5950. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5951. gcode_M404();
  5952. break;
  5953. case 405: //M405 Turn on filament sensor for control
  5954. gcode_M405();
  5955. break;
  5956. case 406: //M406 Turn off filament sensor for control
  5957. gcode_M406();
  5958. break;
  5959. case 407: //M407 Display measured filament diameter
  5960. gcode_M407();
  5961. break;
  5962. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5963. case 410: // M410 quickstop - Abort all the planned moves.
  5964. gcode_M410();
  5965. break;
  5966. #if ENABLED(MESH_BED_LEVELING)
  5967. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5968. gcode_M420();
  5969. break;
  5970. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5971. gcode_M421();
  5972. break;
  5973. #endif
  5974. case 428: // M428 Apply current_position to home_offset
  5975. gcode_M428();
  5976. break;
  5977. case 500: // M500 Store settings in EEPROM
  5978. gcode_M500();
  5979. break;
  5980. case 501: // M501 Read settings from EEPROM
  5981. gcode_M501();
  5982. break;
  5983. case 502: // M502 Revert to default settings
  5984. gcode_M502();
  5985. break;
  5986. case 503: // M503 print settings currently in memory
  5987. gcode_M503();
  5988. break;
  5989. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5990. case 540:
  5991. gcode_M540();
  5992. break;
  5993. #endif
  5994. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5995. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5996. gcode_SET_Z_PROBE_OFFSET();
  5997. break;
  5998. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5999. #if ENABLED(FILAMENTCHANGEENABLE)
  6000. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6001. gcode_M600();
  6002. break;
  6003. #endif // FILAMENTCHANGEENABLE
  6004. #if ENABLED(DUAL_X_CARRIAGE)
  6005. case 605:
  6006. gcode_M605();
  6007. break;
  6008. #endif // DUAL_X_CARRIAGE
  6009. case 907: // M907 Set digital trimpot motor current using axis codes.
  6010. gcode_M907();
  6011. break;
  6012. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6013. case 908: // M908 Control digital trimpot directly.
  6014. gcode_M908();
  6015. break;
  6016. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6017. case 909: // M909 Print digipot/DAC current value
  6018. gcode_M909();
  6019. break;
  6020. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6021. gcode_M910();
  6022. break;
  6023. #endif
  6024. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6025. #if HAS_MICROSTEPS
  6026. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6027. gcode_M350();
  6028. break;
  6029. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6030. gcode_M351();
  6031. break;
  6032. #endif // HAS_MICROSTEPS
  6033. case 999: // M999: Restart after being Stopped
  6034. gcode_M999();
  6035. break;
  6036. }
  6037. break;
  6038. case 'T':
  6039. gcode_T(codenum);
  6040. break;
  6041. default: code_is_good = false;
  6042. }
  6043. KEEPALIVE_STATE(NOT_BUSY);
  6044. ExitUnknownCommand:
  6045. // Still unknown command? Throw an error
  6046. if (!code_is_good) unknown_command_error();
  6047. ok_to_send();
  6048. }
  6049. void FlushSerialRequestResend() {
  6050. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6051. MYSERIAL.flush();
  6052. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6053. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6054. ok_to_send();
  6055. }
  6056. void ok_to_send() {
  6057. refresh_cmd_timeout();
  6058. if (!send_ok[cmd_queue_index_r]) return;
  6059. SERIAL_PROTOCOLPGM(MSG_OK);
  6060. #if ENABLED(ADVANCED_OK)
  6061. char* p = command_queue[cmd_queue_index_r];
  6062. if (*p == 'N') {
  6063. SERIAL_PROTOCOL(' ');
  6064. SERIAL_ECHO(*p++);
  6065. while (NUMERIC_SIGNED(*p))
  6066. SERIAL_ECHO(*p++);
  6067. }
  6068. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6069. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6070. #endif
  6071. SERIAL_EOL;
  6072. }
  6073. void clamp_to_software_endstops(float target[3]) {
  6074. if (min_software_endstops) {
  6075. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6076. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6077. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6078. }
  6079. if (max_software_endstops) {
  6080. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6081. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6082. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6083. }
  6084. }
  6085. #if ENABLED(DELTA)
  6086. void recalc_delta_settings(float radius, float diagonal_rod) {
  6087. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6088. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6089. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6090. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6091. delta_tower3_x = 0.0; // back middle tower
  6092. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6093. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6094. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6095. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6096. }
  6097. void calculate_delta(float cartesian[3]) {
  6098. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6099. - sq(delta_tower1_x - cartesian[X_AXIS])
  6100. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6101. ) + cartesian[Z_AXIS];
  6102. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6103. - sq(delta_tower2_x - cartesian[X_AXIS])
  6104. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6105. ) + cartesian[Z_AXIS];
  6106. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6107. - sq(delta_tower3_x - cartesian[X_AXIS])
  6108. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6109. ) + cartesian[Z_AXIS];
  6110. /**
  6111. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6112. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6113. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6114. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6115. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6116. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6117. */
  6118. }
  6119. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6120. // Adjust print surface height by linear interpolation over the bed_level array.
  6121. void adjust_delta(float cartesian[3]) {
  6122. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6123. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6124. float h1 = 0.001 - half, h2 = half - 0.001,
  6125. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6126. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6127. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6128. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6129. z1 = bed_level[floor_x + half][floor_y + half],
  6130. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6131. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6132. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6133. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6134. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6135. offset = (1 - ratio_x) * left + ratio_x * right;
  6136. delta[X_AXIS] += offset;
  6137. delta[Y_AXIS] += offset;
  6138. delta[Z_AXIS] += offset;
  6139. /**
  6140. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6141. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6142. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6143. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6144. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6145. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6146. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6147. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6148. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6149. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6150. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6151. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6152. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6153. */
  6154. }
  6155. #endif // AUTO_BED_LEVELING_FEATURE
  6156. #endif // DELTA
  6157. #if ENABLED(MESH_BED_LEVELING)
  6158. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6159. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6160. if (!mbl.active) {
  6161. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6162. set_current_to_destination();
  6163. return;
  6164. }
  6165. int pcx = mbl.cel_index_x(current_position[X_AXIS] - home_offset[X_AXIS]);
  6166. int pcy = mbl.cel_index_y(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6167. int cx = mbl.cel_index_x(x - home_offset[X_AXIS]);
  6168. int cy = mbl.cel_index_y(y - home_offset[Y_AXIS]);
  6169. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6170. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6171. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6172. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6173. if (pcx == cx && pcy == cy) {
  6174. // Start and end on same mesh square
  6175. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6176. set_current_to_destination();
  6177. return;
  6178. }
  6179. float nx, ny, nz, ne, normalized_dist;
  6180. if (cx > pcx && TEST(x_splits, cx)) {
  6181. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6182. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6183. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6184. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6185. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6186. CBI(x_splits, cx);
  6187. }
  6188. else if (cx < pcx && TEST(x_splits, pcx)) {
  6189. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6190. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6191. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6192. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6193. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6194. CBI(x_splits, pcx);
  6195. }
  6196. else if (cy > pcy && TEST(y_splits, cy)) {
  6197. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6198. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6199. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6200. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6201. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6202. CBI(y_splits, cy);
  6203. }
  6204. else if (cy < pcy && TEST(y_splits, pcy)) {
  6205. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6206. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6207. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6208. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6209. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6210. CBI(y_splits, pcy);
  6211. }
  6212. else {
  6213. // Already split on a border
  6214. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6215. set_current_to_destination();
  6216. return;
  6217. }
  6218. // Do the split and look for more borders
  6219. destination[X_AXIS] = nx;
  6220. destination[Y_AXIS] = ny;
  6221. destination[Z_AXIS] = nz;
  6222. destination[E_AXIS] = ne;
  6223. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6224. destination[X_AXIS] = x;
  6225. destination[Y_AXIS] = y;
  6226. destination[Z_AXIS] = z;
  6227. destination[E_AXIS] = e;
  6228. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6229. }
  6230. #endif // MESH_BED_LEVELING
  6231. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6232. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6233. if (DEBUGGING(DRYRUN)) return;
  6234. float de = dest_e - curr_e;
  6235. if (de) {
  6236. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6237. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6238. SERIAL_ECHO_START;
  6239. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6240. }
  6241. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6242. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6243. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6244. SERIAL_ECHO_START;
  6245. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6246. }
  6247. #endif
  6248. }
  6249. }
  6250. #endif // PREVENT_DANGEROUS_EXTRUDE
  6251. #if ENABLED(DELTA) || ENABLED(SCARA)
  6252. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  6253. float difference[NUM_AXIS];
  6254. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6255. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6256. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6257. if (cartesian_mm < 0.000001) return false;
  6258. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6259. float seconds = cartesian_mm / _feedrate;
  6260. int steps = max(1, int(delta_segments_per_second * seconds));
  6261. float inv_steps = 1.0/steps;
  6262. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6263. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6264. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6265. for (int s = 1; s <= steps; s++) {
  6266. float fraction = float(s) * inv_steps;
  6267. for (int8_t i = 0; i < NUM_AXIS; i++)
  6268. target[i] = current_position[i] + difference[i] * fraction;
  6269. calculate_delta(target);
  6270. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6271. if (!bed_leveling_in_progress) adjust_delta(target);
  6272. #endif
  6273. //DEBUG_POS("prepare_move_delta", target);
  6274. //DEBUG_POS("prepare_move_delta", delta);
  6275. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6276. }
  6277. return true;
  6278. }
  6279. #endif // DELTA || SCARA
  6280. #if ENABLED(SCARA)
  6281. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  6282. #endif
  6283. #if ENABLED(DUAL_X_CARRIAGE)
  6284. inline bool prepare_move_dual_x_carriage() {
  6285. if (active_extruder_parked) {
  6286. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6287. // move duplicate extruder into correct duplication position.
  6288. planner.set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6289. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6290. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6291. sync_plan_position();
  6292. stepper.synchronize();
  6293. extruder_duplication_enabled = true;
  6294. active_extruder_parked = false;
  6295. }
  6296. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6297. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6298. // This is a travel move (with no extrusion)
  6299. // Skip it, but keep track of the current position
  6300. // (so it can be used as the start of the next non-travel move)
  6301. if (delayed_move_time != 0xFFFFFFFFUL) {
  6302. set_current_to_destination();
  6303. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6304. delayed_move_time = millis();
  6305. return false;
  6306. }
  6307. }
  6308. delayed_move_time = 0;
  6309. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6310. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6311. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]), active_extruder);
  6312. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6313. active_extruder_parked = false;
  6314. }
  6315. }
  6316. return true;
  6317. }
  6318. #endif // DUAL_X_CARRIAGE
  6319. #if DISABLED(DELTA) && DISABLED(SCARA)
  6320. inline bool prepare_move_cartesian() {
  6321. // Do not use feedrate_multiplier for E or Z only moves
  6322. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6323. line_to_destination();
  6324. }
  6325. else {
  6326. #if ENABLED(MESH_BED_LEVELING)
  6327. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6328. return false;
  6329. #else
  6330. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6331. #endif
  6332. }
  6333. return true;
  6334. }
  6335. #endif // !DELTA && !SCARA
  6336. /**
  6337. * Prepare a single move and get ready for the next one
  6338. *
  6339. * (This may call planner.buffer_line several times to put
  6340. * smaller moves into the planner for DELTA or SCARA.)
  6341. */
  6342. void prepare_move() {
  6343. clamp_to_software_endstops(destination);
  6344. refresh_cmd_timeout();
  6345. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6346. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6347. #endif
  6348. #if ENABLED(SCARA)
  6349. if (!prepare_move_scara(destination)) return;
  6350. #elif ENABLED(DELTA)
  6351. if (!prepare_move_delta(destination)) return;
  6352. #else
  6353. #if ENABLED(DUAL_X_CARRIAGE)
  6354. if (!prepare_move_dual_x_carriage()) return;
  6355. #endif
  6356. if (!prepare_move_cartesian()) return;
  6357. #endif
  6358. set_current_to_destination();
  6359. }
  6360. #if ENABLED(ARC_SUPPORT)
  6361. /**
  6362. * Plan an arc in 2 dimensions
  6363. *
  6364. * The arc is approximated by generating many small linear segments.
  6365. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6366. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6367. * larger segments will tend to be more efficient. Your slicer should have
  6368. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6369. */
  6370. void plan_arc(
  6371. float target[NUM_AXIS], // Destination position
  6372. float* offset, // Center of rotation relative to current_position
  6373. uint8_t clockwise // Clockwise?
  6374. ) {
  6375. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6376. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6377. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6378. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6379. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6380. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6381. r_Y = -offset[Y_AXIS],
  6382. rt_X = target[X_AXIS] - center_X,
  6383. rt_Y = target[Y_AXIS] - center_Y;
  6384. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6385. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6386. if (angular_travel < 0) angular_travel += RADIANS(360);
  6387. if (clockwise) angular_travel -= RADIANS(360);
  6388. // Make a circle if the angular rotation is 0
  6389. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6390. angular_travel += RADIANS(360);
  6391. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6392. if (mm_of_travel < 0.001) return;
  6393. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6394. if (segments == 0) segments = 1;
  6395. float theta_per_segment = angular_travel / segments;
  6396. float linear_per_segment = linear_travel / segments;
  6397. float extruder_per_segment = extruder_travel / segments;
  6398. /**
  6399. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6400. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6401. * r_T = [cos(phi) -sin(phi);
  6402. * sin(phi) cos(phi] * r ;
  6403. *
  6404. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6405. * defined from the circle center to the initial position. Each line segment is formed by successive
  6406. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6407. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6408. * all double numbers are single precision on the Arduino. (True double precision will not have
  6409. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6410. * tool precision in some cases. Therefore, arc path correction is implemented.
  6411. *
  6412. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6413. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6414. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6415. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6416. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6417. * issue for CNC machines with the single precision Arduino calculations.
  6418. *
  6419. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6420. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6421. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6422. * This is important when there are successive arc motions.
  6423. */
  6424. // Vector rotation matrix values
  6425. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6426. float sin_T = theta_per_segment;
  6427. float arc_target[NUM_AXIS];
  6428. float sin_Ti, cos_Ti, r_new_Y;
  6429. uint16_t i;
  6430. int8_t count = 0;
  6431. // Initialize the linear axis
  6432. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6433. // Initialize the extruder axis
  6434. arc_target[E_AXIS] = current_position[E_AXIS];
  6435. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6436. millis_t next_idle_ms = millis() + 200UL;
  6437. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6438. thermalManager.manage_heater();
  6439. millis_t now = millis();
  6440. if (ELAPSED(now, next_idle_ms)) {
  6441. next_idle_ms = now + 200UL;
  6442. idle();
  6443. }
  6444. if (++count < N_ARC_CORRECTION) {
  6445. // Apply vector rotation matrix to previous r_X / 1
  6446. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6447. r_X = r_X * cos_T - r_Y * sin_T;
  6448. r_Y = r_new_Y;
  6449. }
  6450. else {
  6451. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6452. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6453. // To reduce stuttering, the sin and cos could be computed at different times.
  6454. // For now, compute both at the same time.
  6455. cos_Ti = cos(i * theta_per_segment);
  6456. sin_Ti = sin(i * theta_per_segment);
  6457. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6458. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6459. count = 0;
  6460. }
  6461. // Update arc_target location
  6462. arc_target[X_AXIS] = center_X + r_X;
  6463. arc_target[Y_AXIS] = center_Y + r_Y;
  6464. arc_target[Z_AXIS] += linear_per_segment;
  6465. arc_target[E_AXIS] += extruder_per_segment;
  6466. clamp_to_software_endstops(arc_target);
  6467. #if ENABLED(DELTA) || ENABLED(SCARA)
  6468. calculate_delta(arc_target);
  6469. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6470. adjust_delta(arc_target);
  6471. #endif
  6472. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6473. #else
  6474. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6475. #endif
  6476. }
  6477. // Ensure last segment arrives at target location.
  6478. #if ENABLED(DELTA) || ENABLED(SCARA)
  6479. calculate_delta(target);
  6480. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6481. adjust_delta(target);
  6482. #endif
  6483. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6484. #else
  6485. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6486. #endif
  6487. // As far as the parser is concerned, the position is now == target. In reality the
  6488. // motion control system might still be processing the action and the real tool position
  6489. // in any intermediate location.
  6490. set_current_to_destination();
  6491. }
  6492. #endif
  6493. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6494. void plan_cubic_move(const float offset[4]) {
  6495. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6496. // As far as the parser is concerned, the position is now == target. In reality the
  6497. // motion control system might still be processing the action and the real tool position
  6498. // in any intermediate location.
  6499. set_current_to_destination();
  6500. }
  6501. #endif // BEZIER_CURVE_SUPPORT
  6502. #if HAS_CONTROLLERFAN
  6503. void controllerFan() {
  6504. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6505. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6506. millis_t ms = millis();
  6507. if (ELAPSED(ms, nextMotorCheck)) {
  6508. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6509. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6510. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6511. #if EXTRUDERS > 1
  6512. || E1_ENABLE_READ == E_ENABLE_ON
  6513. #if HAS_X2_ENABLE
  6514. || X2_ENABLE_READ == X_ENABLE_ON
  6515. #endif
  6516. #if EXTRUDERS > 2
  6517. || E2_ENABLE_READ == E_ENABLE_ON
  6518. #if EXTRUDERS > 3
  6519. || E3_ENABLE_READ == E_ENABLE_ON
  6520. #endif
  6521. #endif
  6522. #endif
  6523. ) {
  6524. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6525. }
  6526. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6527. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6528. // allows digital or PWM fan output to be used (see M42 handling)
  6529. digitalWrite(CONTROLLERFAN_PIN, speed);
  6530. analogWrite(CONTROLLERFAN_PIN, speed);
  6531. }
  6532. }
  6533. #endif // HAS_CONTROLLERFAN
  6534. #if ENABLED(SCARA)
  6535. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6536. // Perform forward kinematics, and place results in delta[3]
  6537. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6538. float x_sin, x_cos, y_sin, y_cos;
  6539. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6540. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6541. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6542. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6543. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6544. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6545. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6546. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6547. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6548. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6549. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6550. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6551. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6552. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6553. }
  6554. void calculate_delta(float cartesian[3]) {
  6555. //reverse kinematics.
  6556. // Perform reversed kinematics, and place results in delta[3]
  6557. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6558. float SCARA_pos[2];
  6559. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6560. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6561. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6562. #if (Linkage_1 == Linkage_2)
  6563. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6564. #else
  6565. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6566. #endif
  6567. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6568. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6569. SCARA_K2 = Linkage_2 * SCARA_S2;
  6570. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6571. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6572. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6573. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6574. delta[Z_AXIS] = cartesian[Z_AXIS];
  6575. /**
  6576. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6577. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6578. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6579. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6580. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6581. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6582. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6583. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6584. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6585. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6586. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6587. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6588. SERIAL_EOL;
  6589. */
  6590. }
  6591. #endif // SCARA
  6592. #if ENABLED(TEMP_STAT_LEDS)
  6593. static bool red_led = false;
  6594. static millis_t next_status_led_update_ms = 0;
  6595. void handle_status_leds(void) {
  6596. float max_temp = 0.0;
  6597. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6598. next_status_led_update_ms += 500; // Update every 0.5s
  6599. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6600. max_temp = max(max(max_temp, thermalManager.degHotend(cur_extruder)), thermalManager.degTargetHotend(cur_extruder));
  6601. #if HAS_TEMP_BED
  6602. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6603. #endif
  6604. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6605. if (new_led != red_led) {
  6606. red_led = new_led;
  6607. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6608. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6609. }
  6610. }
  6611. }
  6612. #endif
  6613. void enable_all_steppers() {
  6614. enable_x();
  6615. enable_y();
  6616. enable_z();
  6617. enable_e0();
  6618. enable_e1();
  6619. enable_e2();
  6620. enable_e3();
  6621. }
  6622. void disable_all_steppers() {
  6623. disable_x();
  6624. disable_y();
  6625. disable_z();
  6626. disable_e0();
  6627. disable_e1();
  6628. disable_e2();
  6629. disable_e3();
  6630. }
  6631. /**
  6632. * Standard idle routine keeps the machine alive
  6633. */
  6634. void idle(
  6635. #if ENABLED(FILAMENTCHANGEENABLE)
  6636. bool no_stepper_sleep/*=false*/
  6637. #endif
  6638. ) {
  6639. thermalManager.manage_heater();
  6640. manage_inactivity(
  6641. #if ENABLED(FILAMENTCHANGEENABLE)
  6642. no_stepper_sleep
  6643. #endif
  6644. );
  6645. host_keepalive();
  6646. lcd_update();
  6647. #if ENABLED(PRINTCOUNTER)
  6648. print_job_timer.tick();
  6649. #endif
  6650. }
  6651. /**
  6652. * Manage several activities:
  6653. * - Check for Filament Runout
  6654. * - Keep the command buffer full
  6655. * - Check for maximum inactive time between commands
  6656. * - Check for maximum inactive time between stepper commands
  6657. * - Check if pin CHDK needs to go LOW
  6658. * - Check for KILL button held down
  6659. * - Check for HOME button held down
  6660. * - Check if cooling fan needs to be switched on
  6661. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6662. */
  6663. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6664. #if HAS_FILRUNOUT
  6665. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6666. handle_filament_runout();
  6667. #endif
  6668. if (commands_in_queue < BUFSIZE) get_available_commands();
  6669. millis_t ms = millis();
  6670. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6671. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6672. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6673. #if ENABLED(DISABLE_INACTIVE_X)
  6674. disable_x();
  6675. #endif
  6676. #if ENABLED(DISABLE_INACTIVE_Y)
  6677. disable_y();
  6678. #endif
  6679. #if ENABLED(DISABLE_INACTIVE_Z)
  6680. disable_z();
  6681. #endif
  6682. #if ENABLED(DISABLE_INACTIVE_E)
  6683. disable_e0();
  6684. disable_e1();
  6685. disable_e2();
  6686. disable_e3();
  6687. #endif
  6688. }
  6689. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6690. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6691. chdkActive = false;
  6692. WRITE(CHDK, LOW);
  6693. }
  6694. #endif
  6695. #if HAS_KILL
  6696. // Check if the kill button was pressed and wait just in case it was an accidental
  6697. // key kill key press
  6698. // -------------------------------------------------------------------------------
  6699. static int killCount = 0; // make the inactivity button a bit less responsive
  6700. const int KILL_DELAY = 750;
  6701. if (!READ(KILL_PIN))
  6702. killCount++;
  6703. else if (killCount > 0)
  6704. killCount--;
  6705. // Exceeded threshold and we can confirm that it was not accidental
  6706. // KILL the machine
  6707. // ----------------------------------------------------------------
  6708. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6709. #endif
  6710. #if HAS_HOME
  6711. // Check to see if we have to home, use poor man's debouncer
  6712. // ---------------------------------------------------------
  6713. static int homeDebounceCount = 0; // poor man's debouncing count
  6714. const int HOME_DEBOUNCE_DELAY = 2500;
  6715. if (!READ(HOME_PIN)) {
  6716. if (!homeDebounceCount) {
  6717. enqueue_and_echo_commands_P(PSTR("G28"));
  6718. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6719. }
  6720. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6721. homeDebounceCount++;
  6722. else
  6723. homeDebounceCount = 0;
  6724. }
  6725. #endif
  6726. #if HAS_CONTROLLERFAN
  6727. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6728. #endif
  6729. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6730. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6731. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6732. bool oldstatus;
  6733. switch (active_extruder) {
  6734. case 0:
  6735. oldstatus = E0_ENABLE_READ;
  6736. enable_e0();
  6737. break;
  6738. #if EXTRUDERS > 1
  6739. case 1:
  6740. oldstatus = E1_ENABLE_READ;
  6741. enable_e1();
  6742. break;
  6743. #if EXTRUDERS > 2
  6744. case 2:
  6745. oldstatus = E2_ENABLE_READ;
  6746. enable_e2();
  6747. break;
  6748. #if EXTRUDERS > 3
  6749. case 3:
  6750. oldstatus = E3_ENABLE_READ;
  6751. enable_e3();
  6752. break;
  6753. #endif
  6754. #endif
  6755. #endif
  6756. }
  6757. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6758. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6759. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_unit[E_AXIS],
  6760. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_unit[E_AXIS], active_extruder);
  6761. current_position[E_AXIS] = oldepos;
  6762. destination[E_AXIS] = oldedes;
  6763. planner.set_e_position(oldepos);
  6764. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6765. stepper.synchronize();
  6766. switch (active_extruder) {
  6767. case 0:
  6768. E0_ENABLE_WRITE(oldstatus);
  6769. break;
  6770. #if EXTRUDERS > 1
  6771. case 1:
  6772. E1_ENABLE_WRITE(oldstatus);
  6773. break;
  6774. #if EXTRUDERS > 2
  6775. case 2:
  6776. E2_ENABLE_WRITE(oldstatus);
  6777. break;
  6778. #if EXTRUDERS > 3
  6779. case 3:
  6780. E3_ENABLE_WRITE(oldstatus);
  6781. break;
  6782. #endif
  6783. #endif
  6784. #endif
  6785. }
  6786. }
  6787. #endif
  6788. #if ENABLED(DUAL_X_CARRIAGE)
  6789. // handle delayed move timeout
  6790. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6791. // travel moves have been received so enact them
  6792. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6793. set_destination_to_current();
  6794. prepare_move();
  6795. }
  6796. #endif
  6797. #if ENABLED(TEMP_STAT_LEDS)
  6798. handle_status_leds();
  6799. #endif
  6800. planner.check_axes_activity();
  6801. }
  6802. void kill(const char* lcd_msg) {
  6803. #if ENABLED(ULTRA_LCD)
  6804. lcd_setalertstatuspgm(lcd_msg);
  6805. #else
  6806. UNUSED(lcd_msg);
  6807. #endif
  6808. cli(); // Stop interrupts
  6809. thermalManager.disable_all_heaters();
  6810. disable_all_steppers();
  6811. #if HAS_POWER_SWITCH
  6812. pinMode(PS_ON_PIN, INPUT);
  6813. #endif
  6814. SERIAL_ERROR_START;
  6815. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6816. // FMC small patch to update the LCD before ending
  6817. sei(); // enable interrupts
  6818. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6819. cli(); // disable interrupts
  6820. suicide();
  6821. while (1) {
  6822. #if ENABLED(USE_WATCHDOG)
  6823. watchdog_reset();
  6824. #endif
  6825. } // Wait for reset
  6826. }
  6827. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6828. void handle_filament_runout() {
  6829. if (!filament_ran_out) {
  6830. filament_ran_out = true;
  6831. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6832. stepper.synchronize();
  6833. }
  6834. }
  6835. #endif // FILAMENT_RUNOUT_SENSOR
  6836. #if ENABLED(FAST_PWM_FAN)
  6837. void setPwmFrequency(uint8_t pin, int val) {
  6838. val &= 0x07;
  6839. switch (digitalPinToTimer(pin)) {
  6840. #if defined(TCCR0A)
  6841. case TIMER0A:
  6842. case TIMER0B:
  6843. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6844. // TCCR0B |= val;
  6845. break;
  6846. #endif
  6847. #if defined(TCCR1A)
  6848. case TIMER1A:
  6849. case TIMER1B:
  6850. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6851. // TCCR1B |= val;
  6852. break;
  6853. #endif
  6854. #if defined(TCCR2)
  6855. case TIMER2:
  6856. case TIMER2:
  6857. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6858. TCCR2 |= val;
  6859. break;
  6860. #endif
  6861. #if defined(TCCR2A)
  6862. case TIMER2A:
  6863. case TIMER2B:
  6864. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6865. TCCR2B |= val;
  6866. break;
  6867. #endif
  6868. #if defined(TCCR3A)
  6869. case TIMER3A:
  6870. case TIMER3B:
  6871. case TIMER3C:
  6872. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6873. TCCR3B |= val;
  6874. break;
  6875. #endif
  6876. #if defined(TCCR4A)
  6877. case TIMER4A:
  6878. case TIMER4B:
  6879. case TIMER4C:
  6880. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6881. TCCR4B |= val;
  6882. break;
  6883. #endif
  6884. #if defined(TCCR5A)
  6885. case TIMER5A:
  6886. case TIMER5B:
  6887. case TIMER5C:
  6888. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6889. TCCR5B |= val;
  6890. break;
  6891. #endif
  6892. }
  6893. }
  6894. #endif // FAST_PWM_FAN
  6895. void stop() {
  6896. thermalManager.disable_all_heaters();
  6897. if (IsRunning()) {
  6898. Running = false;
  6899. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6900. SERIAL_ERROR_START;
  6901. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6902. LCD_MESSAGEPGM(MSG_STOPPED);
  6903. }
  6904. }
  6905. float calculate_volumetric_multiplier(float diameter) {
  6906. if (!volumetric_enabled || diameter == 0) return 1.0;
  6907. float d2 = diameter * 0.5;
  6908. return 1.0 / (M_PI * d2 * d2);
  6909. }
  6910. void calculate_volumetric_multipliers() {
  6911. for (int i = 0; i < EXTRUDERS; i++)
  6912. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6913. }