My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 39KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  59. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  60. bool Stepper::abort_on_endstop_hit = false;
  61. #endif
  62. #if ENABLED(Z_DUAL_ENDSTOPS)
  63. bool Stepper::performing_homing = false;
  64. #endif
  65. // private:
  66. unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  67. unsigned int Stepper::cleaning_buffer_counter = 0;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. bool Stepper::locked_z_motor = false;
  70. bool Stepper::locked_z2_motor = false;
  71. #endif
  72. long Stepper::counter_X = 0,
  73. Stepper::counter_Y = 0,
  74. Stepper::counter_Z = 0,
  75. Stepper::counter_E = 0;
  76. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  78. unsigned char Stepper::old_OCR0A = 0;
  79. volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
  80. #if ENABLED(LIN_ADVANCE)
  81. volatile int Stepper::e_steps[E_STEPPERS];
  82. int Stepper::final_estep_rate,
  83. Stepper::current_estep_rate[E_STEPPERS],
  84. Stepper::current_adv_steps[E_STEPPERS];
  85. #else
  86. long Stepper::e_steps[E_STEPPERS],
  87. Stepper::final_advance = 0,
  88. Stepper::old_advance = 0,
  89. Stepper::advance_rate,
  90. Stepper::advance;
  91. #endif
  92. #endif
  93. long Stepper::acceleration_time, Stepper::deceleration_time;
  94. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  95. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  96. #if ENABLED(MIXING_EXTRUDER)
  97. long Stepper::counter_m[MIXING_STEPPERS];
  98. #endif
  99. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  100. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  101. unsigned short Stepper::OCR1A_nominal;
  102. volatile long Stepper::endstops_trigsteps[XYZ];
  103. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  104. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  105. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  106. #elif ENABLED(DUAL_X_CARRIAGE)
  107. #define X_APPLY_DIR(v,ALWAYS) \
  108. if (extruder_duplication_enabled || ALWAYS) { \
  109. X_DIR_WRITE(v); \
  110. X2_DIR_WRITE(v); \
  111. } \
  112. else { \
  113. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  114. }
  115. #define X_APPLY_STEP(v,ALWAYS) \
  116. if (extruder_duplication_enabled || ALWAYS) { \
  117. X_STEP_WRITE(v); \
  118. X2_STEP_WRITE(v); \
  119. } \
  120. else { \
  121. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  122. }
  123. #else
  124. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  125. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  126. #endif
  127. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  128. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  129. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  130. #else
  131. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  132. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  133. #endif
  134. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  135. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  136. #if ENABLED(Z_DUAL_ENDSTOPS)
  137. #define Z_APPLY_STEP(v,Q) \
  138. if (performing_homing) { \
  139. if (Z_HOME_DIR < 0) { \
  140. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  141. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  142. } \
  143. else { \
  144. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  145. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  146. } \
  147. } \
  148. else { \
  149. Z_STEP_WRITE(v); \
  150. Z2_STEP_WRITE(v); \
  151. }
  152. #else
  153. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  154. #endif
  155. #else
  156. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  157. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  158. #endif
  159. #if DISABLED(MIXING_EXTRUDER)
  160. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  161. #endif
  162. // intRes = longIn1 * longIn2 >> 24
  163. // uses:
  164. // r26 to store 0
  165. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  166. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  167. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  168. // B0 A0 are bits 24-39 and are the returned value
  169. // C1 B1 A1 is longIn1
  170. // D2 C2 B2 A2 is longIn2
  171. //
  172. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  173. asm volatile ( \
  174. "clr r26 \n\t" \
  175. "mul %A1, %B2 \n\t" \
  176. "mov r27, r1 \n\t" \
  177. "mul %B1, %C2 \n\t" \
  178. "movw %A0, r0 \n\t" \
  179. "mul %C1, %C2 \n\t" \
  180. "add %B0, r0 \n\t" \
  181. "mul %C1, %B2 \n\t" \
  182. "add %A0, r0 \n\t" \
  183. "adc %B0, r1 \n\t" \
  184. "mul %A1, %C2 \n\t" \
  185. "add r27, r0 \n\t" \
  186. "adc %A0, r1 \n\t" \
  187. "adc %B0, r26 \n\t" \
  188. "mul %B1, %B2 \n\t" \
  189. "add r27, r0 \n\t" \
  190. "adc %A0, r1 \n\t" \
  191. "adc %B0, r26 \n\t" \
  192. "mul %C1, %A2 \n\t" \
  193. "add r27, r0 \n\t" \
  194. "adc %A0, r1 \n\t" \
  195. "adc %B0, r26 \n\t" \
  196. "mul %B1, %A2 \n\t" \
  197. "add r27, r1 \n\t" \
  198. "adc %A0, r26 \n\t" \
  199. "adc %B0, r26 \n\t" \
  200. "lsr r27 \n\t" \
  201. "adc %A0, r26 \n\t" \
  202. "adc %B0, r26 \n\t" \
  203. "mul %D2, %A1 \n\t" \
  204. "add %A0, r0 \n\t" \
  205. "adc %B0, r1 \n\t" \
  206. "mul %D2, %B1 \n\t" \
  207. "add %B0, r0 \n\t" \
  208. "clr r1 \n\t" \
  209. : \
  210. "=&r" (intRes) \
  211. : \
  212. "d" (longIn1), \
  213. "d" (longIn2) \
  214. : \
  215. "r26" , "r27" \
  216. )
  217. // Some useful constants
  218. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  219. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  220. /**
  221. * __________________________
  222. * /| |\ _________________ ^
  223. * / | | \ /| |\ |
  224. * / | | \ / | | \ s
  225. * / | | | | | \ p
  226. * / | | | | | \ e
  227. * +-----+------------------------+---+--+---------------+----+ e
  228. * | BLOCK 1 | BLOCK 2 | d
  229. *
  230. * time ----->
  231. *
  232. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  233. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  234. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  235. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  236. */
  237. void Stepper::wake_up() {
  238. // TCNT1 = 0;
  239. ENABLE_STEPPER_DRIVER_INTERRUPT();
  240. }
  241. /**
  242. * Set the stepper direction of each axis
  243. *
  244. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  245. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  246. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  247. */
  248. void Stepper::set_directions() {
  249. #define SET_STEP_DIR(AXIS) \
  250. if (motor_direction(AXIS ##_AXIS)) { \
  251. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  252. count_direction[AXIS ##_AXIS] = -1; \
  253. } \
  254. else { \
  255. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  256. count_direction[AXIS ##_AXIS] = 1; \
  257. }
  258. #if HAS_X_DIR
  259. SET_STEP_DIR(X); // A
  260. #endif
  261. #if HAS_Y_DIR
  262. SET_STEP_DIR(Y); // B
  263. #endif
  264. #if HAS_Z_DIR
  265. SET_STEP_DIR(Z); // C
  266. #endif
  267. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  268. if (motor_direction(E_AXIS)) {
  269. REV_E_DIR();
  270. count_direction[E_AXIS] = -1;
  271. }
  272. else {
  273. NORM_E_DIR();
  274. count_direction[E_AXIS] = 1;
  275. }
  276. #endif // !ADVANCE && !LIN_ADVANCE
  277. }
  278. /**
  279. * Stepper Driver Interrupt
  280. *
  281. * Directly pulses the stepper motors at high frequency.
  282. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  283. *
  284. * OCR1A Frequency
  285. * 1 2 MHz
  286. * 50 40 KHz
  287. * 100 20 KHz - capped max rate
  288. * 200 10 KHz - nominal max rate
  289. * 2000 1 KHz - sleep rate
  290. * 4000 500 Hz - init rate
  291. */
  292. ISR(TIMER1_COMPA_vect) { Stepper::isr(); }
  293. void Stepper::isr() {
  294. if (cleaning_buffer_counter) {
  295. current_block = NULL;
  296. planner.discard_current_block();
  297. #ifdef SD_FINISHED_RELEASECOMMAND
  298. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  299. #endif
  300. cleaning_buffer_counter--;
  301. OCR1A = 200; // Run at max speed - 10 KHz
  302. return;
  303. }
  304. // If there is no current block, attempt to pop one from the buffer
  305. if (!current_block) {
  306. // Anything in the buffer?
  307. current_block = planner.get_current_block();
  308. if (current_block) {
  309. trapezoid_generator_reset();
  310. // Initialize Bresenham counters to 1/2 the ceiling
  311. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  312. #if ENABLED(MIXING_EXTRUDER)
  313. MIXING_STEPPERS_LOOP(i)
  314. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  315. #endif
  316. step_events_completed = 0;
  317. #if ENABLED(Z_LATE_ENABLE)
  318. if (current_block->steps[Z_AXIS] > 0) {
  319. enable_z();
  320. OCR1A = 2000; // Run at slow speed - 1 KHz
  321. return;
  322. }
  323. #endif
  324. // #if ENABLED(ADVANCE)
  325. // e_steps[TOOL_E_INDEX] = 0;
  326. // #endif
  327. }
  328. else {
  329. OCR1A = 2000; // Run at slow speed - 1 KHz
  330. return;
  331. }
  332. }
  333. // Update endstops state, if enabled
  334. if (endstops.enabled
  335. #if HAS_BED_PROBE
  336. || endstops.z_probe_enabled
  337. #endif
  338. ) endstops.update();
  339. // Take multiple steps per interrupt (For high speed moves)
  340. bool all_steps_done = false;
  341. for (int8_t i = 0; i < step_loops; i++) {
  342. #ifndef USBCON
  343. customizedSerial.checkRx(); // Check for serial chars.
  344. #endif
  345. #if ENABLED(LIN_ADVANCE)
  346. counter_E += current_block->steps[E_AXIS];
  347. if (counter_E > 0) {
  348. counter_E -= current_block->step_event_count;
  349. #if DISABLED(MIXING_EXTRUDER)
  350. // Don't step E here for mixing extruder
  351. count_position[E_AXIS] += count_direction[E_AXIS];
  352. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  353. #endif
  354. }
  355. #if ENABLED(MIXING_EXTRUDER)
  356. // Step mixing steppers proportionally
  357. const bool dir = motor_direction(E_AXIS);
  358. MIXING_STEPPERS_LOOP(j) {
  359. counter_m[j] += current_block->steps[E_AXIS];
  360. if (counter_m[j] > 0) {
  361. counter_m[j] -= current_block->mix_event_count[j];
  362. dir ? --e_steps[j] : ++e_steps[j];
  363. }
  364. }
  365. #endif
  366. #elif ENABLED(ADVANCE)
  367. // Always count the unified E axis
  368. counter_E += current_block->steps[E_AXIS];
  369. if (counter_E > 0) {
  370. counter_E -= current_block->step_event_count;
  371. #if DISABLED(MIXING_EXTRUDER)
  372. // Don't step E here for mixing extruder
  373. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  374. #endif
  375. }
  376. #if ENABLED(MIXING_EXTRUDER)
  377. // Step mixing steppers proportionally
  378. const bool dir = motor_direction(E_AXIS);
  379. MIXING_STEPPERS_LOOP(j) {
  380. counter_m[j] += current_block->steps[E_AXIS];
  381. if (counter_m[j] > 0) {
  382. counter_m[j] -= current_block->mix_event_count[j];
  383. dir ? --e_steps[j] : ++e_steps[j];
  384. }
  385. }
  386. #endif // MIXING_EXTRUDER
  387. #endif // ADVANCE or LIN_ADVANCE
  388. #define _COUNTER(AXIS) counter_## AXIS
  389. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  390. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  391. // Advance the Bresenham counter; start a pulse if the axis needs a step
  392. #define PULSE_START(AXIS) \
  393. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  394. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  395. // Stop an active pulse, reset the Bresenham counter, update the position
  396. #define PULSE_STOP(AXIS) \
  397. if (_COUNTER(AXIS) > 0) { \
  398. _COUNTER(AXIS) -= current_block->step_event_count; \
  399. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  400. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  401. }
  402. #define CYCLES_EATEN_BY_CODE 240
  403. // If a minimum pulse time was specified get the CPU clock
  404. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  405. static uint32_t pulse_start;
  406. pulse_start = TCNT0;
  407. #endif
  408. #if HAS_X_STEP
  409. PULSE_START(X);
  410. #endif
  411. #if HAS_Y_STEP
  412. PULSE_START(Y);
  413. #endif
  414. #if HAS_Z_STEP
  415. PULSE_START(Z);
  416. #endif
  417. // For non-advance use linear interpolation for E also
  418. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  419. #if ENABLED(MIXING_EXTRUDER)
  420. // Keep updating the single E axis
  421. counter_E += current_block->steps[E_AXIS];
  422. // Tick the counters used for this mix
  423. MIXING_STEPPERS_LOOP(j) {
  424. // Step mixing steppers (proportionally)
  425. counter_m[j] += current_block->steps[E_AXIS];
  426. // Step when the counter goes over zero
  427. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  428. }
  429. #else // !MIXING_EXTRUDER
  430. PULSE_START(E);
  431. #endif
  432. #endif // !ADVANCE && !LIN_ADVANCE
  433. // For a minimum pulse time wait before stopping pulses
  434. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  435. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_CODE) { /* nada */ }
  436. #endif
  437. #if HAS_X_STEP
  438. PULSE_STOP(X);
  439. #endif
  440. #if HAS_Y_STEP
  441. PULSE_STOP(Y);
  442. #endif
  443. #if HAS_Z_STEP
  444. PULSE_STOP(Z);
  445. #endif
  446. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  447. #if ENABLED(MIXING_EXTRUDER)
  448. // Always step the single E axis
  449. if (counter_E > 0) {
  450. counter_E -= current_block->step_event_count;
  451. count_position[E_AXIS] += count_direction[E_AXIS];
  452. }
  453. MIXING_STEPPERS_LOOP(j) {
  454. if (counter_m[j] > 0) {
  455. counter_m[j] -= current_block->mix_event_count[j];
  456. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  457. }
  458. }
  459. #else // !MIXING_EXTRUDER
  460. PULSE_STOP(E);
  461. #endif
  462. #endif // !ADVANCE && !LIN_ADVANCE
  463. if (++step_events_completed >= current_block->step_event_count) {
  464. all_steps_done = true;
  465. break;
  466. }
  467. }
  468. #if ENABLED(LIN_ADVANCE)
  469. if (current_block->use_advance_lead) {
  470. int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  471. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  472. #if ENABLED(MIXING_EXTRUDER)
  473. // Mixing extruders apply advance lead proportionally
  474. MIXING_STEPPERS_LOOP(j)
  475. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  476. #else
  477. // For most extruders, advance the single E stepper
  478. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  479. #endif
  480. }
  481. #endif
  482. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  483. // If we have esteps to execute, fire the next advance_isr "now"
  484. if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
  485. #endif
  486. // Calculate new timer value
  487. uint16_t timer, step_rate;
  488. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  489. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  490. acc_step_rate += current_block->initial_rate;
  491. // upper limit
  492. NOMORE(acc_step_rate, current_block->nominal_rate);
  493. // step_rate to timer interval
  494. timer = calc_timer(acc_step_rate);
  495. OCR1A = timer;
  496. acceleration_time += timer;
  497. #if ENABLED(LIN_ADVANCE)
  498. if (current_block->use_advance_lead) {
  499. #if ENABLED(MIXING_EXTRUDER)
  500. MIXING_STEPPERS_LOOP(j)
  501. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  502. #else
  503. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  504. #endif
  505. }
  506. #elif ENABLED(ADVANCE)
  507. advance += advance_rate * step_loops;
  508. //NOLESS(advance, current_block->advance);
  509. long advance_whole = advance >> 8,
  510. advance_factor = advance_whole - old_advance;
  511. // Do E steps + advance steps
  512. #if ENABLED(MIXING_EXTRUDER)
  513. // ...for mixing steppers proportionally
  514. MIXING_STEPPERS_LOOP(j)
  515. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  516. #else
  517. // ...for the active extruder
  518. e_steps[TOOL_E_INDEX] += advance_factor;
  519. #endif
  520. old_advance = advance_whole;
  521. #endif // ADVANCE or LIN_ADVANCE
  522. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  523. eISR_Rate = (timer >> 3) * step_loops / abs(e_steps[TOOL_E_INDEX]); //>> 3 is divide by 8. Reason: Timer 1 runs at 16/8=2MHz, Timer 0 at 16/64=0.25MHz. ==> 2/0.25=8.
  524. #endif
  525. }
  526. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  527. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  528. if (step_rate < acc_step_rate) { // Still decelerating?
  529. step_rate = acc_step_rate - step_rate;
  530. NOLESS(step_rate, current_block->final_rate);
  531. }
  532. else
  533. step_rate = current_block->final_rate;
  534. // step_rate to timer interval
  535. timer = calc_timer(step_rate);
  536. OCR1A = timer;
  537. deceleration_time += timer;
  538. #if ENABLED(LIN_ADVANCE)
  539. if (current_block->use_advance_lead) {
  540. #if ENABLED(MIXING_EXTRUDER)
  541. MIXING_STEPPERS_LOOP(j)
  542. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  543. #else
  544. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  545. #endif
  546. }
  547. #elif ENABLED(ADVANCE)
  548. advance -= advance_rate * step_loops;
  549. NOLESS(advance, final_advance);
  550. // Do E steps + advance steps
  551. long advance_whole = advance >> 8,
  552. advance_factor = advance_whole - old_advance;
  553. #if ENABLED(MIXING_EXTRUDER)
  554. MIXING_STEPPERS_LOOP(j)
  555. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  556. #else
  557. e_steps[TOOL_E_INDEX] += advance_factor;
  558. #endif
  559. old_advance = advance_whole;
  560. #endif // ADVANCE or LIN_ADVANCE
  561. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  562. eISR_Rate = (timer >> 3) * step_loops / abs(e_steps[TOOL_E_INDEX]);
  563. #endif
  564. }
  565. else {
  566. #if ENABLED(LIN_ADVANCE)
  567. if (current_block->use_advance_lead)
  568. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  569. eISR_Rate = (OCR1A_nominal >> 3) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
  570. #endif
  571. OCR1A = OCR1A_nominal;
  572. // ensure we're running at the correct step rate, even if we just came off an acceleration
  573. step_loops = step_loops_nominal;
  574. }
  575. NOLESS(OCR1A, TCNT1 + 16);
  576. // If current block is finished, reset pointer
  577. if (all_steps_done) {
  578. current_block = NULL;
  579. planner.discard_current_block();
  580. }
  581. }
  582. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  583. // Timer interrupt for E. e_steps is set in the main routine;
  584. // Timer 0 is shared with millies
  585. ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); }
  586. void Stepper::advance_isr() {
  587. old_OCR0A += eISR_Rate;
  588. OCR0A = old_OCR0A;
  589. #define SET_E_STEP_DIR(INDEX) \
  590. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  591. #define START_E_PULSE(INDEX) \
  592. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  593. #define STOP_E_PULSE(INDEX) \
  594. if (e_steps[INDEX]) { \
  595. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  596. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  597. }
  598. SET_E_STEP_DIR(0);
  599. #if E_STEPPERS > 1
  600. SET_E_STEP_DIR(1);
  601. #if E_STEPPERS > 2
  602. SET_E_STEP_DIR(2);
  603. #if E_STEPPERS > 3
  604. SET_E_STEP_DIR(3);
  605. #endif
  606. #endif
  607. #endif
  608. #define CYCLES_EATEN_BY_E 60
  609. // Step all E steppers that have steps
  610. for (uint8_t i = 0; i < step_loops; i++) {
  611. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  612. static uint32_t pulse_start;
  613. pulse_start = TCNT0;
  614. #endif
  615. START_E_PULSE(0);
  616. #if E_STEPPERS > 1
  617. START_E_PULSE(1);
  618. #if E_STEPPERS > 2
  619. START_E_PULSE(2);
  620. #if E_STEPPERS > 3
  621. START_E_PULSE(3);
  622. #endif
  623. #endif
  624. #endif
  625. // For a minimum pulse time wait before stopping pulses
  626. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  627. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_E) { /* nada */ }
  628. #endif
  629. STOP_E_PULSE(0);
  630. #if E_STEPPERS > 1
  631. STOP_E_PULSE(1);
  632. #if E_STEPPERS > 2
  633. STOP_E_PULSE(2);
  634. #if E_STEPPERS > 3
  635. STOP_E_PULSE(3);
  636. #endif
  637. #endif
  638. #endif
  639. }
  640. }
  641. #endif // ADVANCE or LIN_ADVANCE
  642. void Stepper::init() {
  643. // Init Digipot Motor Current
  644. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  645. digipot_init();
  646. #endif
  647. // Init Microstepping Pins
  648. #if HAS_MICROSTEPS
  649. microstep_init();
  650. #endif
  651. // Init TMC Steppers
  652. #if ENABLED(HAVE_TMCDRIVER)
  653. tmc_init();
  654. #endif
  655. // Init L6470 Steppers
  656. #if ENABLED(HAVE_L6470DRIVER)
  657. L6470_init();
  658. #endif
  659. // Init Dir Pins
  660. #if HAS_X_DIR
  661. X_DIR_INIT;
  662. #endif
  663. #if HAS_X2_DIR
  664. X2_DIR_INIT;
  665. #endif
  666. #if HAS_Y_DIR
  667. Y_DIR_INIT;
  668. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  669. Y2_DIR_INIT;
  670. #endif
  671. #endif
  672. #if HAS_Z_DIR
  673. Z_DIR_INIT;
  674. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  675. Z2_DIR_INIT;
  676. #endif
  677. #endif
  678. #if HAS_E0_DIR
  679. E0_DIR_INIT;
  680. #endif
  681. #if HAS_E1_DIR
  682. E1_DIR_INIT;
  683. #endif
  684. #if HAS_E2_DIR
  685. E2_DIR_INIT;
  686. #endif
  687. #if HAS_E3_DIR
  688. E3_DIR_INIT;
  689. #endif
  690. // Init Enable Pins - steppers default to disabled.
  691. #if HAS_X_ENABLE
  692. X_ENABLE_INIT;
  693. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  694. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  695. X2_ENABLE_INIT;
  696. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  697. #endif
  698. #endif
  699. #if HAS_Y_ENABLE
  700. Y_ENABLE_INIT;
  701. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  702. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  703. Y2_ENABLE_INIT;
  704. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  705. #endif
  706. #endif
  707. #if HAS_Z_ENABLE
  708. Z_ENABLE_INIT;
  709. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  710. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  711. Z2_ENABLE_INIT;
  712. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  713. #endif
  714. #endif
  715. #if HAS_E0_ENABLE
  716. E0_ENABLE_INIT;
  717. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  718. #endif
  719. #if HAS_E1_ENABLE
  720. E1_ENABLE_INIT;
  721. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  722. #endif
  723. #if HAS_E2_ENABLE
  724. E2_ENABLE_INIT;
  725. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  726. #endif
  727. #if HAS_E3_ENABLE
  728. E3_ENABLE_INIT;
  729. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  730. #endif
  731. // Init endstops and pullups
  732. endstops.init();
  733. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  734. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  735. #define _DISABLE(axis) disable_## axis()
  736. #define AXIS_INIT(axis, AXIS, PIN) \
  737. _STEP_INIT(AXIS); \
  738. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  739. _DISABLE(axis)
  740. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  741. // Init Step Pins
  742. #if HAS_X_STEP
  743. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  744. X2_STEP_INIT;
  745. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  746. #endif
  747. AXIS_INIT(x, X, X);
  748. #endif
  749. #if HAS_Y_STEP
  750. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  751. Y2_STEP_INIT;
  752. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  753. #endif
  754. AXIS_INIT(y, Y, Y);
  755. #endif
  756. #if HAS_Z_STEP
  757. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  758. Z2_STEP_INIT;
  759. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  760. #endif
  761. AXIS_INIT(z, Z, Z);
  762. #endif
  763. #if HAS_E0_STEP
  764. E_AXIS_INIT(0);
  765. #endif
  766. #if HAS_E1_STEP
  767. E_AXIS_INIT(1);
  768. #endif
  769. #if HAS_E2_STEP
  770. E_AXIS_INIT(2);
  771. #endif
  772. #if HAS_E3_STEP
  773. E_AXIS_INIT(3);
  774. #endif
  775. // waveform generation = 0100 = CTC
  776. CBI(TCCR1B, WGM13);
  777. SBI(TCCR1B, WGM12);
  778. CBI(TCCR1A, WGM11);
  779. CBI(TCCR1A, WGM10);
  780. // output mode = 00 (disconnected)
  781. TCCR1A &= ~(3 << COM1A0);
  782. TCCR1A &= ~(3 << COM1B0);
  783. // Set the timer pre-scaler
  784. // Generally we use a divider of 8, resulting in a 2MHz timer
  785. // frequency on a 16MHz MCU. If you are going to change this, be
  786. // sure to regenerate speed_lookuptable.h with
  787. // create_speed_lookuptable.py
  788. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  789. // Init Stepper ISR to 122 Hz for quick starting
  790. OCR1A = 0x4000;
  791. TCNT1 = 0;
  792. ENABLE_STEPPER_DRIVER_INTERRUPT();
  793. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  794. for (int i = 0; i < E_STEPPERS; i++) {
  795. e_steps[i] = 0;
  796. #if ENABLED(LIN_ADVANCE)
  797. current_adv_steps[i] = 0;
  798. #endif
  799. }
  800. #if defined(TCCR0A) && defined(WGM01)
  801. CBI(TCCR0A, WGM01);
  802. CBI(TCCR0A, WGM00);
  803. #endif
  804. SBI(TIMSK0, OCIE0A);
  805. #endif // ADVANCE or LIN_ADVANCE
  806. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  807. sei();
  808. set_directions(); // Init directions to last_direction_bits = 0
  809. }
  810. /**
  811. * Block until all buffered steps are executed
  812. */
  813. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  814. /**
  815. * Set the stepper positions directly in steps
  816. *
  817. * The input is based on the typical per-axis XYZ steps.
  818. * For CORE machines XYZ needs to be translated to ABC.
  819. *
  820. * This allows get_axis_position_mm to correctly
  821. * derive the current XYZ position later on.
  822. */
  823. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  824. synchronize(); // Bad to set stepper counts in the middle of a move
  825. CRITICAL_SECTION_START;
  826. #if ENABLED(COREXY)
  827. // corexy positioning
  828. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  829. count_position[A_AXIS] = a + b;
  830. count_position[B_AXIS] = a - b;
  831. count_position[Z_AXIS] = c;
  832. #elif ENABLED(COREXZ)
  833. // corexz planning
  834. count_position[A_AXIS] = a + c;
  835. count_position[Y_AXIS] = b;
  836. count_position[C_AXIS] = a - c;
  837. #elif ENABLED(COREYZ)
  838. // coreyz planning
  839. count_position[X_AXIS] = a;
  840. count_position[B_AXIS] = b + c;
  841. count_position[C_AXIS] = b - c;
  842. #else
  843. // default non-h-bot planning
  844. count_position[X_AXIS] = a;
  845. count_position[Y_AXIS] = b;
  846. count_position[Z_AXIS] = c;
  847. #endif
  848. count_position[E_AXIS] = e;
  849. CRITICAL_SECTION_END;
  850. }
  851. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  852. CRITICAL_SECTION_START;
  853. count_position[axis] = v;
  854. CRITICAL_SECTION_END;
  855. }
  856. void Stepper::set_e_position(const long &e) {
  857. CRITICAL_SECTION_START;
  858. count_position[E_AXIS] = e;
  859. CRITICAL_SECTION_END;
  860. }
  861. /**
  862. * Get a stepper's position in steps.
  863. */
  864. long Stepper::position(AxisEnum axis) {
  865. CRITICAL_SECTION_START;
  866. long count_pos = count_position[axis];
  867. CRITICAL_SECTION_END;
  868. return count_pos;
  869. }
  870. /**
  871. * Get an axis position according to stepper position(s)
  872. * For CORE machines apply translation from ABC to XYZ.
  873. */
  874. float Stepper::get_axis_position_mm(AxisEnum axis) {
  875. float axis_steps;
  876. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  877. // Requesting one of the "core" axes?
  878. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  879. CRITICAL_SECTION_START;
  880. long pos1 = count_position[CORE_AXIS_1],
  881. pos2 = count_position[CORE_AXIS_2];
  882. CRITICAL_SECTION_END;
  883. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  884. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  885. axis_steps = (pos1 + ((axis == CORE_AXIS_1) ? pos2 : -pos2)) * 0.5f;
  886. }
  887. else
  888. axis_steps = position(axis);
  889. #else
  890. axis_steps = position(axis);
  891. #endif
  892. return axis_steps * planner.steps_to_mm[axis];
  893. }
  894. void Stepper::finish_and_disable() {
  895. synchronize();
  896. disable_all_steppers();
  897. }
  898. void Stepper::quick_stop() {
  899. cleaning_buffer_counter = 5000;
  900. DISABLE_STEPPER_DRIVER_INTERRUPT();
  901. while (planner.blocks_queued()) planner.discard_current_block();
  902. current_block = NULL;
  903. ENABLE_STEPPER_DRIVER_INTERRUPT();
  904. }
  905. void Stepper::endstop_triggered(AxisEnum axis) {
  906. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  907. float axis_pos = count_position[axis];
  908. if (axis == CORE_AXIS_1)
  909. axis_pos = (axis_pos + count_position[CORE_AXIS_2]) * 0.5;
  910. else if (axis == CORE_AXIS_2)
  911. axis_pos = (count_position[CORE_AXIS_1] - axis_pos) * 0.5;
  912. endstops_trigsteps[axis] = axis_pos;
  913. #else // !COREXY && !COREXZ && !COREYZ
  914. endstops_trigsteps[axis] = count_position[axis];
  915. #endif // !COREXY && !COREXZ && !COREYZ
  916. kill_current_block();
  917. }
  918. void Stepper::report_positions() {
  919. CRITICAL_SECTION_START;
  920. long xpos = count_position[X_AXIS],
  921. ypos = count_position[Y_AXIS],
  922. zpos = count_position[Z_AXIS];
  923. CRITICAL_SECTION_END;
  924. #if ENABLED(COREXY) || ENABLED(COREXZ) || IS_SCARA
  925. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  926. #else
  927. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  928. #endif
  929. SERIAL_PROTOCOL(xpos);
  930. #if ENABLED(COREXY) || ENABLED(COREYZ) || IS_SCARA
  931. SERIAL_PROTOCOLPGM(" B:");
  932. #else
  933. SERIAL_PROTOCOLPGM(" Y:");
  934. #endif
  935. SERIAL_PROTOCOL(ypos);
  936. #if ENABLED(COREXZ) || ENABLED(COREYZ)
  937. SERIAL_PROTOCOLPGM(" C:");
  938. #else
  939. SERIAL_PROTOCOLPGM(" Z:");
  940. #endif
  941. SERIAL_PROTOCOL(zpos);
  942. SERIAL_EOL;
  943. }
  944. #if ENABLED(BABYSTEPPING)
  945. #define _ENABLE(axis) enable_## axis()
  946. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  947. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  948. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  949. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  950. _ENABLE(axis); \
  951. uint8_t old_pin = _READ_DIR(AXIS); \
  952. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  953. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  954. delayMicroseconds(2); \
  955. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  956. _APPLY_DIR(AXIS, old_pin); \
  957. }
  958. // MUST ONLY BE CALLED BY AN ISR,
  959. // No other ISR should ever interrupt this!
  960. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  961. switch (axis) {
  962. case X_AXIS:
  963. BABYSTEP_AXIS(x, X, false);
  964. break;
  965. case Y_AXIS:
  966. BABYSTEP_AXIS(y, Y, false);
  967. break;
  968. case Z_AXIS: {
  969. #if DISABLED(DELTA)
  970. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  971. #else // DELTA
  972. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  973. enable_x();
  974. enable_y();
  975. enable_z();
  976. uint8_t old_x_dir_pin = X_DIR_READ,
  977. old_y_dir_pin = Y_DIR_READ,
  978. old_z_dir_pin = Z_DIR_READ;
  979. //setup new step
  980. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  981. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  982. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  983. //perform step
  984. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  985. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  986. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  987. delayMicroseconds(2);
  988. X_STEP_WRITE(INVERT_X_STEP_PIN);
  989. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  990. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  991. //get old pin state back.
  992. X_DIR_WRITE(old_x_dir_pin);
  993. Y_DIR_WRITE(old_y_dir_pin);
  994. Z_DIR_WRITE(old_z_dir_pin);
  995. #endif
  996. } break;
  997. default: break;
  998. }
  999. }
  1000. #endif //BABYSTEPPING
  1001. /**
  1002. * Software-controlled Stepper Motor Current
  1003. */
  1004. #if HAS_DIGIPOTSS
  1005. // From Arduino DigitalPotControl example
  1006. void Stepper::digitalPotWrite(int address, int value) {
  1007. WRITE(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  1008. SPI.transfer(address); // send in the address and value via SPI:
  1009. SPI.transfer(value);
  1010. WRITE(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  1011. //delay(10);
  1012. }
  1013. #endif //HAS_DIGIPOTSS
  1014. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1015. void Stepper::digipot_init() {
  1016. #if HAS_DIGIPOTSS
  1017. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1018. SPI.begin();
  1019. SET_OUTPUT(DIGIPOTSS_PIN);
  1020. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1021. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1022. digipot_current(i, digipot_motor_current[i]);
  1023. }
  1024. #elif HAS_MOTOR_CURRENT_PWM
  1025. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1026. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1027. digipot_current(0, motor_current_setting[0]);
  1028. #endif
  1029. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1030. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1031. digipot_current(1, motor_current_setting[1]);
  1032. #endif
  1033. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1034. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1035. digipot_current(2, motor_current_setting[2]);
  1036. #endif
  1037. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1038. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1039. #endif
  1040. }
  1041. void Stepper::digipot_current(uint8_t driver, int current) {
  1042. #if HAS_DIGIPOTSS
  1043. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1044. digitalPotWrite(digipot_ch[driver], current);
  1045. #elif HAS_MOTOR_CURRENT_PWM
  1046. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1047. switch (driver) {
  1048. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1049. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  1050. #endif
  1051. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1052. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  1053. #endif
  1054. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1055. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  1056. #endif
  1057. }
  1058. #endif
  1059. }
  1060. #endif
  1061. #if HAS_MICROSTEPS
  1062. /**
  1063. * Software-controlled Microstepping
  1064. */
  1065. void Stepper::microstep_init() {
  1066. SET_OUTPUT(X_MS1_PIN);
  1067. SET_OUTPUT(X_MS2_PIN);
  1068. #if HAS_MICROSTEPS_Y
  1069. SET_OUTPUT(Y_MS1_PIN);
  1070. SET_OUTPUT(Y_MS2_PIN);
  1071. #endif
  1072. #if HAS_MICROSTEPS_Z
  1073. SET_OUTPUT(Z_MS1_PIN);
  1074. SET_OUTPUT(Z_MS2_PIN);
  1075. #endif
  1076. #if HAS_MICROSTEPS_E0
  1077. SET_OUTPUT(E0_MS1_PIN);
  1078. SET_OUTPUT(E0_MS2_PIN);
  1079. #endif
  1080. #if HAS_MICROSTEPS_E1
  1081. SET_OUTPUT(E1_MS1_PIN);
  1082. SET_OUTPUT(E1_MS2_PIN);
  1083. #endif
  1084. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1085. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1086. microstep_mode(i, microstep_modes[i]);
  1087. }
  1088. void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1089. if (ms1 >= 0) switch (driver) {
  1090. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1091. #if HAS_MICROSTEPS_Y
  1092. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1093. #endif
  1094. #if HAS_MICROSTEPS_Z
  1095. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1096. #endif
  1097. #if HAS_MICROSTEPS_E0
  1098. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1099. #endif
  1100. #if HAS_MICROSTEPS_E1
  1101. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1102. #endif
  1103. }
  1104. if (ms2 >= 0) switch (driver) {
  1105. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1106. #if HAS_MICROSTEPS_Y
  1107. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1108. #endif
  1109. #if HAS_MICROSTEPS_Z
  1110. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1111. #endif
  1112. #if HAS_MICROSTEPS_E0
  1113. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1114. #endif
  1115. #if HAS_MICROSTEPS_E1
  1116. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1117. #endif
  1118. }
  1119. }
  1120. void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1121. switch (stepping_mode) {
  1122. case 1: microstep_ms(driver, MICROSTEP1); break;
  1123. case 2: microstep_ms(driver, MICROSTEP2); break;
  1124. case 4: microstep_ms(driver, MICROSTEP4); break;
  1125. case 8: microstep_ms(driver, MICROSTEP8); break;
  1126. case 16: microstep_ms(driver, MICROSTEP16); break;
  1127. }
  1128. }
  1129. void Stepper::microstep_readings() {
  1130. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1131. SERIAL_PROTOCOLPGM("X: ");
  1132. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1133. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1134. #if HAS_MICROSTEPS_Y
  1135. SERIAL_PROTOCOLPGM("Y: ");
  1136. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1137. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1138. #endif
  1139. #if HAS_MICROSTEPS_Z
  1140. SERIAL_PROTOCOLPGM("Z: ");
  1141. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1142. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1143. #endif
  1144. #if HAS_MICROSTEPS_E0
  1145. SERIAL_PROTOCOLPGM("E0: ");
  1146. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1147. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1148. #endif
  1149. #if HAS_MICROSTEPS_E1
  1150. SERIAL_PROTOCOLPGM("E1: ");
  1151. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1152. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1153. #endif
  1154. }
  1155. #endif // HAS_MICROSTEPS