My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 182KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #if Z_MIN_PIN == -1
  26. #error "You must have a Z_MIN endstop to enable Auto Bed Leveling feature. Z_MIN_PIN must point to a valid hardware pin."
  27. #endif
  28. #include "vector_3.h"
  29. #ifdef AUTO_BED_LEVELING_GRID
  30. #include "qr_solve.h"
  31. #endif
  32. #endif // ENABLE_AUTO_BED_LEVELING
  33. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home all Axis
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Displays measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. #ifdef ENABLE_AUTO_BED_LEVELING
  185. int xy_travel_speed = XY_TRAVEL_SPEED;
  186. #endif
  187. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  188. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  189. int feedmultiply = 100; //100->1 200->2
  190. int saved_feedmultiply;
  191. int extrudemultiply = 100; //100->1 200->2
  192. int extruder_multiply[EXTRUDERS] = { 100
  193. #if EXTRUDERS > 1
  194. , 100
  195. #if EXTRUDERS > 2
  196. , 100
  197. #if EXTRUDERS > 3
  198. , 100
  199. #endif
  200. #endif
  201. #endif
  202. };
  203. bool volumetric_enabled = false;
  204. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  205. #if EXTRUDERS > 1
  206. , DEFAULT_NOMINAL_FILAMENT_DIA
  207. #if EXTRUDERS > 2
  208. , DEFAULT_NOMINAL_FILAMENT_DIA
  209. #if EXTRUDERS > 3
  210. , DEFAULT_NOMINAL_FILAMENT_DIA
  211. #endif
  212. #endif
  213. #endif
  214. };
  215. float volumetric_multiplier[EXTRUDERS] = {1.0
  216. #if EXTRUDERS > 1
  217. , 1.0
  218. #if EXTRUDERS > 2
  219. , 1.0
  220. #if EXTRUDERS > 3
  221. , 1.0
  222. #endif
  223. #endif
  224. #endif
  225. };
  226. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  227. float add_homing[3] = { 0, 0, 0 };
  228. #ifdef DELTA
  229. float endstop_adj[3] = { 0, 0, 0 };
  230. #endif
  231. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  232. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  233. bool axis_known_position[3] = { false, false, false };
  234. float zprobe_zoffset;
  235. // Extruder offset
  236. #if EXTRUDERS > 1
  237. #ifndef DUAL_X_CARRIAGE
  238. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  239. #else
  240. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  241. #endif
  242. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  243. #if defined(EXTRUDER_OFFSET_X)
  244. EXTRUDER_OFFSET_X
  245. #else
  246. 0
  247. #endif
  248. ,
  249. #if defined(EXTRUDER_OFFSET_Y)
  250. EXTRUDER_OFFSET_Y
  251. #else
  252. 0
  253. #endif
  254. };
  255. #endif
  256. uint8_t active_extruder = 0;
  257. int fanSpeed = 0;
  258. #ifdef SERVO_ENDSTOPS
  259. int servo_endstops[] = SERVO_ENDSTOPS;
  260. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  261. #endif
  262. #ifdef BARICUDA
  263. int ValvePressure = 0;
  264. int EtoPPressure = 0;
  265. #endif
  266. #ifdef FWRETRACT
  267. bool autoretract_enabled = false;
  268. bool retracted[EXTRUDERS] = { false
  269. #if EXTRUDERS > 1
  270. , false
  271. #if EXTRUDERS > 2
  272. , false
  273. #if EXTRUDERS > 3
  274. , false
  275. #endif
  276. #endif
  277. #endif
  278. };
  279. bool retracted_swap[EXTRUDERS] = { false
  280. #if EXTRUDERS > 1
  281. , false
  282. #if EXTRUDERS > 2
  283. , false
  284. #if EXTRUDERS > 3
  285. , false
  286. #endif
  287. #endif
  288. #endif
  289. };
  290. float retract_length = RETRACT_LENGTH;
  291. float retract_length_swap = RETRACT_LENGTH_SWAP;
  292. float retract_feedrate = RETRACT_FEEDRATE;
  293. float retract_zlift = RETRACT_ZLIFT;
  294. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  295. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  296. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  297. #endif // FWRETRACT
  298. #ifdef ULTIPANEL
  299. bool powersupply =
  300. #ifdef PS_DEFAULT_OFF
  301. false
  302. #else
  303. true
  304. #endif
  305. ;
  306. #endif
  307. #ifdef DELTA
  308. float delta[3] = { 0, 0, 0 };
  309. #define SIN_60 0.8660254037844386
  310. #define COS_60 0.5
  311. // these are the default values, can be overriden with M665
  312. float delta_radius = DELTA_RADIUS;
  313. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  314. float delta_tower1_y = -COS_60 * delta_radius;
  315. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  316. float delta_tower2_y = -COS_60 * delta_radius;
  317. float delta_tower3_x = 0; // back middle tower
  318. float delta_tower3_y = delta_radius;
  319. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  320. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  321. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  322. #ifdef ENABLE_AUTO_BED_LEVELING
  323. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  324. #endif
  325. #endif
  326. #ifdef SCARA
  327. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  328. #endif
  329. bool cancel_heatup = false;
  330. #ifdef FILAMENT_SENSOR
  331. //Variables for Filament Sensor input
  332. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  333. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  334. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  335. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  336. int delay_index1=0; //index into ring buffer
  337. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  338. float delay_dist=0; //delay distance counter
  339. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  340. #endif
  341. #ifdef FILAMENT_RUNOUT_SENSOR
  342. static bool filrunoutEnqued = false;
  343. #endif
  344. const char errormagic[] PROGMEM = "Error:";
  345. const char echomagic[] PROGMEM = "echo:";
  346. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  347. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  348. #ifndef DELTA
  349. static float delta[3] = { 0, 0, 0 };
  350. #endif
  351. static float offset[3] = { 0, 0, 0 };
  352. static bool home_all_axis = true;
  353. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  354. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  355. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  356. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  357. static bool fromsd[BUFSIZE];
  358. static int bufindr = 0;
  359. static int bufindw = 0;
  360. static int buflen = 0;
  361. static char serial_char;
  362. static int serial_count = 0;
  363. static boolean comment_mode = false;
  364. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  365. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  366. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  367. // Inactivity shutdown
  368. static unsigned long previous_millis_cmd = 0;
  369. static unsigned long max_inactive_time = 0;
  370. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  371. unsigned long starttime = 0; ///< Print job start time
  372. unsigned long stoptime = 0; ///< Print job stop time
  373. static uint8_t tmp_extruder;
  374. bool Stopped = false;
  375. #if NUM_SERVOS > 0
  376. Servo servos[NUM_SERVOS];
  377. #endif
  378. bool CooldownNoWait = true;
  379. bool target_direction;
  380. #ifdef CHDK
  381. unsigned long chdkHigh = 0;
  382. boolean chdkActive = false;
  383. #endif
  384. //===========================================================================
  385. //=============================Routines======================================
  386. //===========================================================================
  387. void get_arc_coordinates();
  388. bool setTargetedHotend(int code);
  389. void serial_echopair_P(const char *s_P, float v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, double v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. void serial_echopair_P(const char *s_P, unsigned long v)
  394. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. #ifdef SDSUPPORT
  396. #include "SdFatUtil.h"
  397. int freeMemory() { return SdFatUtil::FreeRam(); }
  398. #else
  399. extern "C" {
  400. extern unsigned int __bss_end;
  401. extern unsigned int __heap_start;
  402. extern void *__brkval;
  403. int freeMemory() {
  404. int free_memory;
  405. if ((int)__brkval == 0)
  406. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  407. else
  408. free_memory = ((int)&free_memory) - ((int)__brkval);
  409. return free_memory;
  410. }
  411. }
  412. #endif //!SDSUPPORT
  413. //Injects the next command from the pending sequence of commands, when possible
  414. //Return false if and only if no command was pending
  415. static bool drain_queued_commands_P()
  416. {
  417. char cmd[30];
  418. if(!queued_commands_P)
  419. return false;
  420. // Get the next 30 chars from the sequence of gcodes to run
  421. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  422. cmd[sizeof(cmd)-1]= 0;
  423. // Look for the end of line, or the end of sequence
  424. size_t i= 0;
  425. char c;
  426. while( (c= cmd[i]) && c!='\n' )
  427. ++i; // look for the end of this gcode command
  428. cmd[i]= 0;
  429. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  430. {
  431. if(c)
  432. queued_commands_P+= i+1; // move to next command
  433. else
  434. queued_commands_P= NULL; // will have no more commands in the sequence
  435. }
  436. return true;
  437. }
  438. //Record one or many commands to run from program memory.
  439. //Aborts the current queue, if any.
  440. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  441. void enquecommands_P(const char* pgcode)
  442. {
  443. queued_commands_P= pgcode;
  444. drain_queued_commands_P(); // first command exectuted asap (when possible)
  445. }
  446. //adds a single command to the main command buffer, from RAM
  447. //that is really done in a non-safe way.
  448. //needs overworking someday
  449. //Returns false if it failed to do so
  450. bool enquecommand(const char *cmd)
  451. {
  452. if(*cmd==';')
  453. return false;
  454. if(buflen >= BUFSIZE)
  455. return false;
  456. //this is dangerous if a mixing of serial and this happens
  457. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  458. SERIAL_ECHO_START;
  459. SERIAL_ECHOPGM(MSG_Enqueing);
  460. SERIAL_ECHO(cmdbuffer[bufindw]);
  461. SERIAL_ECHOLNPGM("\"");
  462. bufindw= (bufindw + 1)%BUFSIZE;
  463. buflen += 1;
  464. return true;
  465. }
  466. void setup_killpin()
  467. {
  468. #if defined(KILL_PIN) && KILL_PIN > -1
  469. SET_INPUT(KILL_PIN);
  470. WRITE(KILL_PIN,HIGH);
  471. #endif
  472. }
  473. void setup_filrunoutpin()
  474. {
  475. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  476. pinMode(FILRUNOUT_PIN,INPUT);
  477. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  478. WRITE(FILLRUNOUT_PIN,HIGH);
  479. #endif
  480. #endif
  481. }
  482. // Set home pin
  483. void setup_homepin(void)
  484. {
  485. #if defined(HOME_PIN) && HOME_PIN > -1
  486. SET_INPUT(HOME_PIN);
  487. WRITE(HOME_PIN,HIGH);
  488. #endif
  489. }
  490. void setup_photpin()
  491. {
  492. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  493. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  494. #endif
  495. }
  496. void setup_powerhold()
  497. {
  498. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  499. OUT_WRITE(SUICIDE_PIN, HIGH);
  500. #endif
  501. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  502. #if defined(PS_DEFAULT_OFF)
  503. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  504. #else
  505. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  506. #endif
  507. #endif
  508. }
  509. void suicide()
  510. {
  511. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  512. OUT_WRITE(SUICIDE_PIN, LOW);
  513. #endif
  514. }
  515. void servo_init()
  516. {
  517. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  518. servos[0].attach(SERVO0_PIN);
  519. #endif
  520. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  521. servos[1].attach(SERVO1_PIN);
  522. #endif
  523. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  524. servos[2].attach(SERVO2_PIN);
  525. #endif
  526. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  527. servos[3].attach(SERVO3_PIN);
  528. #endif
  529. #if (NUM_SERVOS >= 5)
  530. #error "TODO: enter initalisation code for more servos"
  531. #endif
  532. // Set position of Servo Endstops that are defined
  533. #ifdef SERVO_ENDSTOPS
  534. for(int8_t i = 0; i < 3; i++)
  535. {
  536. if(servo_endstops[i] > -1) {
  537. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  538. }
  539. }
  540. #endif
  541. #if SERVO_LEVELING
  542. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  543. servos[servo_endstops[Z_AXIS]].detach();
  544. #endif
  545. }
  546. void setup()
  547. {
  548. setup_killpin();
  549. setup_filrunoutpin();
  550. setup_powerhold();
  551. MYSERIAL.begin(BAUDRATE);
  552. SERIAL_PROTOCOLLNPGM("start");
  553. SERIAL_ECHO_START;
  554. // Check startup - does nothing if bootloader sets MCUSR to 0
  555. byte mcu = MCUSR;
  556. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  557. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  558. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  559. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  560. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  561. MCUSR=0;
  562. SERIAL_ECHOPGM(MSG_MARLIN);
  563. SERIAL_ECHOLNPGM(STRING_VERSION);
  564. #ifdef STRING_VERSION_CONFIG_H
  565. #ifdef STRING_CONFIG_H_AUTHOR
  566. SERIAL_ECHO_START;
  567. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  568. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  569. SERIAL_ECHOPGM(MSG_AUTHOR);
  570. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  571. SERIAL_ECHOPGM("Compiled: ");
  572. SERIAL_ECHOLNPGM(__DATE__);
  573. #endif // STRING_CONFIG_H_AUTHOR
  574. #endif // STRING_VERSION_CONFIG_H
  575. SERIAL_ECHO_START;
  576. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  577. SERIAL_ECHO(freeMemory());
  578. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  579. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  580. for(int8_t i = 0; i < BUFSIZE; i++)
  581. {
  582. fromsd[i] = false;
  583. }
  584. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  585. Config_RetrieveSettings();
  586. tp_init(); // Initialize temperature loop
  587. plan_init(); // Initialize planner;
  588. watchdog_init();
  589. st_init(); // Initialize stepper, this enables interrupts!
  590. setup_photpin();
  591. servo_init();
  592. lcd_init();
  593. _delay_ms(1000); // wait 1sec to display the splash screen
  594. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  595. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  596. #endif
  597. #ifdef DIGIPOT_I2C
  598. digipot_i2c_init();
  599. #endif
  600. #ifdef Z_PROBE_SLED
  601. pinMode(SERVO0_PIN, OUTPUT);
  602. digitalWrite(SERVO0_PIN, LOW); // turn it off
  603. #endif // Z_PROBE_SLED
  604. setup_homepin();
  605. #ifdef STAT_LED_RED
  606. pinMode(STAT_LED_RED, OUTPUT);
  607. digitalWrite(STAT_LED_RED, LOW); // turn it off
  608. #endif
  609. #ifdef STAT_LED_BLUE
  610. pinMode(STAT_LED_BLUE, OUTPUT);
  611. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  612. #endif
  613. }
  614. void loop()
  615. {
  616. if(buflen < (BUFSIZE-1))
  617. get_command();
  618. #ifdef SDSUPPORT
  619. card.checkautostart(false);
  620. #endif
  621. if(buflen)
  622. {
  623. #ifdef SDSUPPORT
  624. if(card.saving)
  625. {
  626. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  627. {
  628. card.write_command(cmdbuffer[bufindr]);
  629. if(card.logging)
  630. {
  631. process_commands();
  632. }
  633. else
  634. {
  635. SERIAL_PROTOCOLLNPGM(MSG_OK);
  636. }
  637. }
  638. else
  639. {
  640. card.closefile();
  641. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  642. }
  643. }
  644. else
  645. {
  646. process_commands();
  647. }
  648. #else
  649. process_commands();
  650. #endif //SDSUPPORT
  651. buflen = (buflen-1);
  652. bufindr = (bufindr + 1)%BUFSIZE;
  653. }
  654. //check heater every n milliseconds
  655. manage_heater();
  656. manage_inactivity();
  657. checkHitEndstops();
  658. lcd_update();
  659. }
  660. void get_command()
  661. {
  662. if(drain_queued_commands_P()) // priority is given to non-serial commands
  663. return;
  664. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  665. serial_char = MYSERIAL.read();
  666. if(serial_char == '\n' ||
  667. serial_char == '\r' ||
  668. serial_count >= (MAX_CMD_SIZE - 1) )
  669. {
  670. // end of line == end of comment
  671. comment_mode = false;
  672. if(!serial_count) {
  673. // short cut for empty lines
  674. return;
  675. }
  676. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  677. fromsd[bufindw] = false;
  678. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  679. {
  680. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  681. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  682. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  683. SERIAL_ERROR_START;
  684. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  685. SERIAL_ERRORLN(gcode_LastN);
  686. //Serial.println(gcode_N);
  687. FlushSerialRequestResend();
  688. serial_count = 0;
  689. return;
  690. }
  691. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  692. {
  693. byte checksum = 0;
  694. byte count = 0;
  695. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  696. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  697. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  698. SERIAL_ERROR_START;
  699. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  700. SERIAL_ERRORLN(gcode_LastN);
  701. FlushSerialRequestResend();
  702. serial_count = 0;
  703. return;
  704. }
  705. //if no errors, continue parsing
  706. }
  707. else
  708. {
  709. SERIAL_ERROR_START;
  710. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  711. SERIAL_ERRORLN(gcode_LastN);
  712. FlushSerialRequestResend();
  713. serial_count = 0;
  714. return;
  715. }
  716. gcode_LastN = gcode_N;
  717. //if no errors, continue parsing
  718. }
  719. else // if we don't receive 'N' but still see '*'
  720. {
  721. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  722. {
  723. SERIAL_ERROR_START;
  724. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  725. SERIAL_ERRORLN(gcode_LastN);
  726. serial_count = 0;
  727. return;
  728. }
  729. }
  730. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  731. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  732. switch(strtol(strchr_pointer + 1, NULL, 10)){
  733. case 0:
  734. case 1:
  735. case 2:
  736. case 3:
  737. if (Stopped == true) {
  738. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  739. LCD_MESSAGEPGM(MSG_STOPPED);
  740. }
  741. break;
  742. default:
  743. break;
  744. }
  745. }
  746. //If command was e-stop process now
  747. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  748. kill();
  749. bufindw = (bufindw + 1)%BUFSIZE;
  750. buflen += 1;
  751. serial_count = 0; //clear buffer
  752. }
  753. else if(serial_char == '\\') { //Handle escapes
  754. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  755. // if we have one more character, copy it over
  756. serial_char = MYSERIAL.read();
  757. cmdbuffer[bufindw][serial_count++] = serial_char;
  758. }
  759. //otherwise do nothing
  760. }
  761. else { // its not a newline, carriage return or escape char
  762. if(serial_char == ';') comment_mode = true;
  763. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  764. }
  765. }
  766. #ifdef SDSUPPORT
  767. if(!card.sdprinting || serial_count!=0){
  768. return;
  769. }
  770. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  771. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  772. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  773. static bool stop_buffering=false;
  774. if(buflen==0) stop_buffering=false;
  775. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  776. int16_t n=card.get();
  777. serial_char = (char)n;
  778. if(serial_char == '\n' ||
  779. serial_char == '\r' ||
  780. (serial_char == '#' && comment_mode == false) ||
  781. (serial_char == ':' && comment_mode == false) ||
  782. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  783. {
  784. if(card.eof()){
  785. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  786. stoptime=millis();
  787. char time[30];
  788. unsigned long t=(stoptime-starttime)/1000;
  789. int hours, minutes;
  790. minutes=(t/60)%60;
  791. hours=t/60/60;
  792. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  793. SERIAL_ECHO_START;
  794. SERIAL_ECHOLN(time);
  795. lcd_setstatus(time);
  796. card.printingHasFinished();
  797. card.checkautostart(true);
  798. }
  799. if(serial_char=='#')
  800. stop_buffering=true;
  801. if(!serial_count)
  802. {
  803. comment_mode = false; //for new command
  804. return; //if empty line
  805. }
  806. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  807. // if(!comment_mode){
  808. fromsd[bufindw] = true;
  809. buflen += 1;
  810. bufindw = (bufindw + 1)%BUFSIZE;
  811. // }
  812. comment_mode = false; //for new command
  813. serial_count = 0; //clear buffer
  814. }
  815. else
  816. {
  817. if(serial_char == ';') comment_mode = true;
  818. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  819. }
  820. }
  821. #endif //SDSUPPORT
  822. }
  823. float code_value()
  824. {
  825. return (strtod(strchr_pointer + 1, NULL));
  826. }
  827. long code_value_long()
  828. {
  829. return (strtol(strchr_pointer + 1, NULL, 10));
  830. }
  831. bool code_seen(char code)
  832. {
  833. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  834. return (strchr_pointer != NULL); //Return True if a character was found
  835. }
  836. #define DEFINE_PGM_READ_ANY(type, reader) \
  837. static inline type pgm_read_any(const type *p) \
  838. { return pgm_read_##reader##_near(p); }
  839. DEFINE_PGM_READ_ANY(float, float);
  840. DEFINE_PGM_READ_ANY(signed char, byte);
  841. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  842. static const PROGMEM type array##_P[3] = \
  843. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  844. static inline type array(int axis) \
  845. { return pgm_read_any(&array##_P[axis]); }
  846. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  847. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  848. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  849. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  850. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  851. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  852. #ifdef DUAL_X_CARRIAGE
  853. #if EXTRUDERS == 1 || defined(COREXY) \
  854. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  855. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  856. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  857. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  858. #endif
  859. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  860. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  861. #endif
  862. #define DXC_FULL_CONTROL_MODE 0
  863. #define DXC_AUTO_PARK_MODE 1
  864. #define DXC_DUPLICATION_MODE 2
  865. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  866. static float x_home_pos(int extruder) {
  867. if (extruder == 0)
  868. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  869. else
  870. // In dual carriage mode the extruder offset provides an override of the
  871. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  872. // This allow soft recalibration of the second extruder offset position without firmware reflash
  873. // (through the M218 command).
  874. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  875. }
  876. static int x_home_dir(int extruder) {
  877. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  878. }
  879. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  880. static bool active_extruder_parked = false; // used in mode 1 & 2
  881. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  882. static unsigned long delayed_move_time = 0; // used in mode 1
  883. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  884. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  885. bool extruder_duplication_enabled = false; // used in mode 2
  886. #endif //DUAL_X_CARRIAGE
  887. static void axis_is_at_home(int axis) {
  888. #ifdef DUAL_X_CARRIAGE
  889. if (axis == X_AXIS) {
  890. if (active_extruder != 0) {
  891. current_position[X_AXIS] = x_home_pos(active_extruder);
  892. min_pos[X_AXIS] = X2_MIN_POS;
  893. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  894. return;
  895. }
  896. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  897. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  898. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  899. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  900. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  901. return;
  902. }
  903. }
  904. #endif
  905. #ifdef SCARA
  906. float homeposition[3];
  907. char i;
  908. if (axis < 2)
  909. {
  910. for (i=0; i<3; i++)
  911. {
  912. homeposition[i] = base_home_pos(i);
  913. }
  914. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  915. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  916. // Works out real Homeposition angles using inverse kinematics,
  917. // and calculates homing offset using forward kinematics
  918. calculate_delta(homeposition);
  919. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  920. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  921. for (i=0; i<2; i++)
  922. {
  923. delta[i] -= add_homing[i];
  924. }
  925. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  926. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  927. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  928. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  929. calculate_SCARA_forward_Transform(delta);
  930. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  931. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  932. current_position[axis] = delta[axis];
  933. // SCARA home positions are based on configuration since the actual limits are determined by the
  934. // inverse kinematic transform.
  935. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  936. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  937. }
  938. else
  939. {
  940. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  941. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  942. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  943. }
  944. #else
  945. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  946. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  947. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  948. #endif
  949. }
  950. #ifdef ENABLE_AUTO_BED_LEVELING
  951. #ifdef AUTO_BED_LEVELING_GRID
  952. #ifndef DELTA
  953. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  954. {
  955. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  956. planeNormal.debug("planeNormal");
  957. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  958. //bedLevel.debug("bedLevel");
  959. //plan_bed_level_matrix.debug("bed level before");
  960. //vector_3 uncorrected_position = plan_get_position_mm();
  961. //uncorrected_position.debug("position before");
  962. vector_3 corrected_position = plan_get_position();
  963. // corrected_position.debug("position after");
  964. current_position[X_AXIS] = corrected_position.x;
  965. current_position[Y_AXIS] = corrected_position.y;
  966. current_position[Z_AXIS] = corrected_position.z;
  967. // put the bed at 0 so we don't go below it.
  968. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  969. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  970. }
  971. #endif
  972. #else // not AUTO_BED_LEVELING_GRID
  973. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  974. plan_bed_level_matrix.set_to_identity();
  975. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  976. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  977. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  978. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  979. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  980. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  981. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  982. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  983. vector_3 corrected_position = plan_get_position();
  984. current_position[X_AXIS] = corrected_position.x;
  985. current_position[Y_AXIS] = corrected_position.y;
  986. current_position[Z_AXIS] = corrected_position.z;
  987. // put the bed at 0 so we don't go below it.
  988. current_position[Z_AXIS] = zprobe_zoffset;
  989. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  990. }
  991. #endif // AUTO_BED_LEVELING_GRID
  992. static void run_z_probe() {
  993. #ifdef DELTA
  994. float start_z = current_position[Z_AXIS];
  995. long start_steps = st_get_position(Z_AXIS);
  996. // move down slowly until you find the bed
  997. feedrate = homing_feedrate[Z_AXIS] / 4;
  998. destination[Z_AXIS] = -10;
  999. prepare_move_raw();
  1000. st_synchronize();
  1001. endstops_hit_on_purpose();
  1002. // we have to let the planner know where we are right now as it is not where we said to go.
  1003. long stop_steps = st_get_position(Z_AXIS);
  1004. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1005. current_position[Z_AXIS] = mm;
  1006. calculate_delta(current_position);
  1007. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1008. #else
  1009. plan_bed_level_matrix.set_to_identity();
  1010. feedrate = homing_feedrate[Z_AXIS];
  1011. // move down until you find the bed
  1012. float zPosition = -10;
  1013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1014. st_synchronize();
  1015. // we have to let the planner know where we are right now as it is not where we said to go.
  1016. zPosition = st_get_position_mm(Z_AXIS);
  1017. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1018. // move up the retract distance
  1019. zPosition += home_retract_mm(Z_AXIS);
  1020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1021. st_synchronize();
  1022. // move back down slowly to find bed
  1023. if (homing_bump_divisor[Z_AXIS] >= 1)
  1024. {
  1025. feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
  1026. }
  1027. else
  1028. {
  1029. feedrate = homing_feedrate[Z_AXIS]/10;
  1030. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1031. }
  1032. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1034. st_synchronize();
  1035. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1036. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1037. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1038. #endif
  1039. }
  1040. static void do_blocking_move_to(float x, float y, float z) {
  1041. float oldFeedRate = feedrate;
  1042. #ifdef DELTA
  1043. feedrate = XY_TRAVEL_SPEED;
  1044. destination[X_AXIS] = x;
  1045. destination[Y_AXIS] = y;
  1046. destination[Z_AXIS] = z;
  1047. prepare_move_raw();
  1048. st_synchronize();
  1049. #else
  1050. feedrate = homing_feedrate[Z_AXIS];
  1051. current_position[Z_AXIS] = z;
  1052. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1053. st_synchronize();
  1054. feedrate = xy_travel_speed;
  1055. current_position[X_AXIS] = x;
  1056. current_position[Y_AXIS] = y;
  1057. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1058. st_synchronize();
  1059. #endif
  1060. feedrate = oldFeedRate;
  1061. }
  1062. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1063. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1064. }
  1065. static void setup_for_endstop_move() {
  1066. saved_feedrate = feedrate;
  1067. saved_feedmultiply = feedmultiply;
  1068. feedmultiply = 100;
  1069. previous_millis_cmd = millis();
  1070. enable_endstops(true);
  1071. }
  1072. static void clean_up_after_endstop_move() {
  1073. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1074. enable_endstops(false);
  1075. #endif
  1076. feedrate = saved_feedrate;
  1077. feedmultiply = saved_feedmultiply;
  1078. previous_millis_cmd = millis();
  1079. }
  1080. static void engage_z_probe() {
  1081. // Engage Z Servo endstop if enabled
  1082. #ifdef SERVO_ENDSTOPS
  1083. if (servo_endstops[Z_AXIS] > -1) {
  1084. #if SERVO_LEVELING
  1085. servos[servo_endstops[Z_AXIS]].attach(0);
  1086. #endif
  1087. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1088. #if SERVO_LEVELING
  1089. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1090. servos[servo_endstops[Z_AXIS]].detach();
  1091. #endif
  1092. }
  1093. #elif defined(Z_PROBE_ALLEN_KEY)
  1094. feedrate = homing_feedrate[X_AXIS];
  1095. // Move to the start position to initiate deployment
  1096. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1097. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1098. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1099. prepare_move_raw();
  1100. // Home X to touch the belt
  1101. feedrate = homing_feedrate[X_AXIS]/10;
  1102. destination[X_AXIS] = 0;
  1103. prepare_move_raw();
  1104. // Home Y for safety
  1105. feedrate = homing_feedrate[X_AXIS]/2;
  1106. destination[Y_AXIS] = 0;
  1107. prepare_move_raw();
  1108. st_synchronize();
  1109. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1110. if (z_min_endstop)
  1111. {
  1112. if (!Stopped)
  1113. {
  1114. SERIAL_ERROR_START;
  1115. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1116. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1117. }
  1118. Stop();
  1119. }
  1120. #endif
  1121. }
  1122. static void retract_z_probe() {
  1123. // Retract Z Servo endstop if enabled
  1124. #ifdef SERVO_ENDSTOPS
  1125. if (servo_endstops[Z_AXIS] > -1) {
  1126. #if SERVO_LEVELING
  1127. servos[servo_endstops[Z_AXIS]].attach(0);
  1128. #endif
  1129. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1130. #if SERVO_LEVELING
  1131. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1132. servos[servo_endstops[Z_AXIS]].detach();
  1133. #endif
  1134. }
  1135. #elif defined(Z_PROBE_ALLEN_KEY)
  1136. // Move up for safety
  1137. feedrate = homing_feedrate[X_AXIS];
  1138. destination[Z_AXIS] = current_position[Z_AXIS] + 20;
  1139. prepare_move_raw();
  1140. // Move to the start position to initiate retraction
  1141. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1142. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1143. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1144. prepare_move_raw();
  1145. // Move the nozzle down to push the probe into retracted position
  1146. feedrate = homing_feedrate[Z_AXIS]/10;
  1147. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1148. prepare_move_raw();
  1149. // Move up for safety
  1150. feedrate = homing_feedrate[Z_AXIS]/2;
  1151. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1152. prepare_move_raw();
  1153. // Home XY for safety
  1154. feedrate = homing_feedrate[X_AXIS]/2;
  1155. destination[X_AXIS] = 0;
  1156. destination[Y_AXIS] = 0;
  1157. prepare_move_raw();
  1158. st_synchronize();
  1159. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1160. if (!z_min_endstop)
  1161. {
  1162. if (!Stopped)
  1163. {
  1164. SERIAL_ERROR_START;
  1165. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1166. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1167. }
  1168. Stop();
  1169. }
  1170. #endif
  1171. }
  1172. enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
  1173. /// Probe bed height at position (x,y), returns the measured z value
  1174. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract, int verbose_level=1) {
  1175. // move to right place
  1176. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1177. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1178. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1179. if (retract_action & ProbeEngage) engage_z_probe();
  1180. #endif
  1181. run_z_probe();
  1182. float measured_z = current_position[Z_AXIS];
  1183. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1184. if (retract_action & ProbeRetract) retract_z_probe();
  1185. #endif
  1186. if (verbose_level > 2) {
  1187. SERIAL_PROTOCOLPGM(MSG_BED);
  1188. SERIAL_PROTOCOLPGM(" X: ");
  1189. SERIAL_PROTOCOL(x + 0.0001);
  1190. SERIAL_PROTOCOLPGM(" Y: ");
  1191. SERIAL_PROTOCOL(y + 0.0001);
  1192. SERIAL_PROTOCOLPGM(" Z: ");
  1193. SERIAL_PROTOCOL(measured_z + 0.0001);
  1194. SERIAL_EOL;
  1195. }
  1196. return measured_z;
  1197. }
  1198. #ifdef DELTA
  1199. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1200. if (bed_level[x][y] != 0.0) {
  1201. return; // Don't overwrite good values.
  1202. }
  1203. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1204. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1205. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1206. float median = c; // Median is robust (ignores outliers).
  1207. if (a < b) {
  1208. if (b < c) median = b;
  1209. if (c < a) median = a;
  1210. } else { // b <= a
  1211. if (c < b) median = b;
  1212. if (a < c) median = a;
  1213. }
  1214. bed_level[x][y] = median;
  1215. }
  1216. // Fill in the unprobed points (corners of circular print surface)
  1217. // using linear extrapolation, away from the center.
  1218. static void extrapolate_unprobed_bed_level() {
  1219. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1220. for (int y = 0; y <= half; y++) {
  1221. for (int x = 0; x <= half; x++) {
  1222. if (x + y < 3) continue;
  1223. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1224. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1225. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1226. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1227. }
  1228. }
  1229. }
  1230. // Print calibration results for plotting or manual frame adjustment.
  1231. static void print_bed_level() {
  1232. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1233. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1234. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1235. SERIAL_PROTOCOLPGM(" ");
  1236. }
  1237. SERIAL_ECHOLN("");
  1238. }
  1239. }
  1240. // Reset calibration results to zero.
  1241. void reset_bed_level() {
  1242. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1243. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1244. bed_level[x][y] = 0.0;
  1245. }
  1246. }
  1247. }
  1248. #endif // DELTA
  1249. #endif // ENABLE_AUTO_BED_LEVELING
  1250. static void homeaxis(int axis) {
  1251. #define HOMEAXIS_DO(LETTER) \
  1252. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1253. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1254. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1255. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1256. 0) {
  1257. int axis_home_dir = home_dir(axis);
  1258. #ifdef DUAL_X_CARRIAGE
  1259. if (axis == X_AXIS)
  1260. axis_home_dir = x_home_dir(active_extruder);
  1261. #endif
  1262. current_position[axis] = 0;
  1263. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1264. #ifndef Z_PROBE_SLED
  1265. // Engage Servo endstop if enabled
  1266. #ifdef SERVO_ENDSTOPS
  1267. #if SERVO_LEVELING
  1268. if (axis==Z_AXIS) {
  1269. engage_z_probe();
  1270. }
  1271. else
  1272. #endif
  1273. if (servo_endstops[axis] > -1) {
  1274. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1275. }
  1276. #endif
  1277. #endif // Z_PROBE_SLED
  1278. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1279. feedrate = homing_feedrate[axis];
  1280. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1281. st_synchronize();
  1282. current_position[axis] = 0;
  1283. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1284. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1285. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1286. st_synchronize();
  1287. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1288. if (homing_bump_divisor[axis] >= 1)
  1289. {
  1290. feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
  1291. }
  1292. else
  1293. {
  1294. feedrate = homing_feedrate[axis]/10;
  1295. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1296. }
  1297. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1298. st_synchronize();
  1299. #ifdef DELTA
  1300. // retrace by the amount specified in endstop_adj
  1301. if (endstop_adj[axis] * axis_home_dir < 0) {
  1302. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1303. destination[axis] = endstop_adj[axis];
  1304. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1305. st_synchronize();
  1306. }
  1307. #endif
  1308. axis_is_at_home(axis);
  1309. destination[axis] = current_position[axis];
  1310. feedrate = 0.0;
  1311. endstops_hit_on_purpose();
  1312. axis_known_position[axis] = true;
  1313. // Retract Servo endstop if enabled
  1314. #ifdef SERVO_ENDSTOPS
  1315. if (servo_endstops[axis] > -1) {
  1316. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1317. }
  1318. #endif
  1319. #if SERVO_LEVELING
  1320. #ifndef Z_PROBE_SLED
  1321. if (axis==Z_AXIS) retract_z_probe();
  1322. #endif
  1323. #endif
  1324. }
  1325. }
  1326. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1327. void refresh_cmd_timeout(void)
  1328. {
  1329. previous_millis_cmd = millis();
  1330. }
  1331. #ifdef FWRETRACT
  1332. void retract(bool retracting, bool swapretract = false) {
  1333. if(retracting && !retracted[active_extruder]) {
  1334. destination[X_AXIS]=current_position[X_AXIS];
  1335. destination[Y_AXIS]=current_position[Y_AXIS];
  1336. destination[Z_AXIS]=current_position[Z_AXIS];
  1337. destination[E_AXIS]=current_position[E_AXIS];
  1338. if (swapretract) {
  1339. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1340. } else {
  1341. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1342. }
  1343. plan_set_e_position(current_position[E_AXIS]);
  1344. float oldFeedrate = feedrate;
  1345. feedrate=retract_feedrate*60;
  1346. retracted[active_extruder]=true;
  1347. prepare_move();
  1348. if(retract_zlift > 0.01) {
  1349. current_position[Z_AXIS]-=retract_zlift;
  1350. #ifdef DELTA
  1351. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1352. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1353. #else
  1354. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1355. #endif
  1356. prepare_move();
  1357. }
  1358. feedrate = oldFeedrate;
  1359. } else if(!retracting && retracted[active_extruder]) {
  1360. destination[X_AXIS]=current_position[X_AXIS];
  1361. destination[Y_AXIS]=current_position[Y_AXIS];
  1362. destination[Z_AXIS]=current_position[Z_AXIS];
  1363. destination[E_AXIS]=current_position[E_AXIS];
  1364. if(retract_zlift > 0.01) {
  1365. current_position[Z_AXIS]+=retract_zlift;
  1366. #ifdef DELTA
  1367. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1368. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1369. #else
  1370. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1371. #endif
  1372. //prepare_move();
  1373. }
  1374. if (swapretract) {
  1375. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1376. } else {
  1377. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1378. }
  1379. plan_set_e_position(current_position[E_AXIS]);
  1380. float oldFeedrate = feedrate;
  1381. feedrate=retract_recover_feedrate*60;
  1382. retracted[active_extruder]=false;
  1383. prepare_move();
  1384. feedrate = oldFeedrate;
  1385. }
  1386. } //retract
  1387. #endif //FWRETRACT
  1388. #ifdef Z_PROBE_SLED
  1389. #ifndef SLED_DOCKING_OFFSET
  1390. #define SLED_DOCKING_OFFSET 0
  1391. #endif
  1392. //
  1393. // Method to dock/undock a sled designed by Charles Bell.
  1394. //
  1395. // dock[in] If true, move to MAX_X and engage the electromagnet
  1396. // offset[in] The additional distance to move to adjust docking location
  1397. //
  1398. static void dock_sled(bool dock, int offset=0) {
  1399. int z_loc;
  1400. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1401. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1402. SERIAL_ECHO_START;
  1403. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1404. return;
  1405. }
  1406. if (dock) {
  1407. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1408. current_position[Y_AXIS],
  1409. current_position[Z_AXIS]);
  1410. // turn off magnet
  1411. digitalWrite(SERVO0_PIN, LOW);
  1412. } else {
  1413. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1414. z_loc = Z_RAISE_BEFORE_PROBING;
  1415. else
  1416. z_loc = current_position[Z_AXIS];
  1417. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1418. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1419. // turn on magnet
  1420. digitalWrite(SERVO0_PIN, HIGH);
  1421. }
  1422. }
  1423. #endif
  1424. /**
  1425. *
  1426. * G-Code Handler functions
  1427. *
  1428. */
  1429. /**
  1430. * G0, G1: Coordinated movement of X Y Z E axes
  1431. */
  1432. inline void gcode_G0_G1() {
  1433. if (!Stopped) {
  1434. get_coordinates(); // For X Y Z E F
  1435. #ifdef FWRETRACT
  1436. if (autoretract_enabled)
  1437. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1438. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1439. // Is this move an attempt to retract or recover?
  1440. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1441. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1442. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1443. retract(!retracted[active_extruder]);
  1444. return;
  1445. }
  1446. }
  1447. #endif //FWRETRACT
  1448. prepare_move();
  1449. //ClearToSend();
  1450. }
  1451. }
  1452. /**
  1453. * G2: Clockwise Arc
  1454. * G3: Counterclockwise Arc
  1455. */
  1456. inline void gcode_G2_G3(bool clockwise) {
  1457. if (!Stopped) {
  1458. get_arc_coordinates();
  1459. prepare_arc_move(clockwise);
  1460. }
  1461. }
  1462. /**
  1463. * G4: Dwell S<seconds> or P<milliseconds>
  1464. */
  1465. inline void gcode_G4() {
  1466. unsigned long codenum;
  1467. LCD_MESSAGEPGM(MSG_DWELL);
  1468. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1469. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1470. st_synchronize();
  1471. previous_millis_cmd = millis();
  1472. codenum += previous_millis_cmd; // keep track of when we started waiting
  1473. while(millis() < codenum) {
  1474. manage_heater();
  1475. manage_inactivity();
  1476. lcd_update();
  1477. }
  1478. }
  1479. #ifdef FWRETRACT
  1480. /**
  1481. * G10 - Retract filament according to settings of M207
  1482. * G11 - Recover filament according to settings of M208
  1483. */
  1484. inline void gcode_G10_G11(bool doRetract=false) {
  1485. #if EXTRUDERS > 1
  1486. if (doRetract) {
  1487. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1488. }
  1489. #endif
  1490. retract(doRetract
  1491. #if EXTRUDERS > 1
  1492. , retracted_swap[active_extruder]
  1493. #endif
  1494. );
  1495. }
  1496. #endif //FWRETRACT
  1497. /**
  1498. * G28: Home all axes, one at a time
  1499. */
  1500. inline void gcode_G28() {
  1501. #ifdef ENABLE_AUTO_BED_LEVELING
  1502. #ifdef DELTA
  1503. reset_bed_level();
  1504. #else
  1505. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1506. #endif
  1507. #endif
  1508. saved_feedrate = feedrate;
  1509. saved_feedmultiply = feedmultiply;
  1510. feedmultiply = 100;
  1511. previous_millis_cmd = millis();
  1512. enable_endstops(true);
  1513. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
  1514. feedrate = 0.0;
  1515. #ifdef DELTA
  1516. // A delta can only safely home all axis at the same time
  1517. // all axis have to home at the same time
  1518. // Move all carriages up together until the first endstop is hit.
  1519. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1520. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1521. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1522. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1523. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1524. st_synchronize();
  1525. endstops_hit_on_purpose();
  1526. // Destination reached
  1527. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1528. // take care of back off and rehome now we are all at the top
  1529. HOMEAXIS(X);
  1530. HOMEAXIS(Y);
  1531. HOMEAXIS(Z);
  1532. calculate_delta(current_position);
  1533. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1534. #else // NOT DELTA
  1535. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1536. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1537. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1538. HOMEAXIS(Z);
  1539. }
  1540. #endif
  1541. #ifdef QUICK_HOME
  1542. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1543. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1544. #ifndef DUAL_X_CARRIAGE
  1545. int x_axis_home_dir = home_dir(X_AXIS);
  1546. #else
  1547. int x_axis_home_dir = x_home_dir(active_extruder);
  1548. extruder_duplication_enabled = false;
  1549. #endif
  1550. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1551. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1552. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1553. feedrate = homing_feedrate[X_AXIS];
  1554. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1555. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1556. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1557. } else {
  1558. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1559. }
  1560. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1561. st_synchronize();
  1562. axis_is_at_home(X_AXIS);
  1563. axis_is_at_home(Y_AXIS);
  1564. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1565. destination[X_AXIS] = current_position[X_AXIS];
  1566. destination[Y_AXIS] = current_position[Y_AXIS];
  1567. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1568. feedrate = 0.0;
  1569. st_synchronize();
  1570. endstops_hit_on_purpose();
  1571. current_position[X_AXIS] = destination[X_AXIS];
  1572. current_position[Y_AXIS] = destination[Y_AXIS];
  1573. #ifndef SCARA
  1574. current_position[Z_AXIS] = destination[Z_AXIS];
  1575. #endif
  1576. }
  1577. #endif //QUICK_HOME
  1578. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1579. #ifdef DUAL_X_CARRIAGE
  1580. int tmp_extruder = active_extruder;
  1581. extruder_duplication_enabled = false;
  1582. active_extruder = !active_extruder;
  1583. HOMEAXIS(X);
  1584. inactive_extruder_x_pos = current_position[X_AXIS];
  1585. active_extruder = tmp_extruder;
  1586. HOMEAXIS(X);
  1587. // reset state used by the different modes
  1588. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1589. delayed_move_time = 0;
  1590. active_extruder_parked = true;
  1591. #else
  1592. HOMEAXIS(X);
  1593. #endif
  1594. }
  1595. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1596. if (code_seen(axis_codes[X_AXIS])) {
  1597. if (code_value_long() != 0) {
  1598. current_position[X_AXIS] = code_value()
  1599. #ifndef SCARA
  1600. + add_homing[X_AXIS]
  1601. #endif
  1602. ;
  1603. }
  1604. }
  1605. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1606. current_position[Y_AXIS] = code_value()
  1607. #ifndef SCARA
  1608. + add_homing[Y_AXIS]
  1609. #endif
  1610. ;
  1611. }
  1612. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1613. #ifndef Z_SAFE_HOMING
  1614. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1615. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1616. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1617. feedrate = max_feedrate[Z_AXIS];
  1618. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1619. st_synchronize();
  1620. #endif
  1621. HOMEAXIS(Z);
  1622. }
  1623. #else // Z_SAFE_HOMING
  1624. if (home_all_axis) {
  1625. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1626. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1627. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1628. feedrate = XY_TRAVEL_SPEED / 60;
  1629. current_position[Z_AXIS] = 0;
  1630. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1631. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1632. st_synchronize();
  1633. current_position[X_AXIS] = destination[X_AXIS];
  1634. current_position[Y_AXIS] = destination[Y_AXIS];
  1635. HOMEAXIS(Z);
  1636. }
  1637. // Let's see if X and Y are homed and probe is inside bed area.
  1638. if (code_seen(axis_codes[Z_AXIS])) {
  1639. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1640. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1641. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1642. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1643. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1644. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1645. current_position[Z_AXIS] = 0;
  1646. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1647. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1648. feedrate = max_feedrate[Z_AXIS];
  1649. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1650. st_synchronize();
  1651. HOMEAXIS(Z);
  1652. }
  1653. else {
  1654. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1655. SERIAL_ECHO_START;
  1656. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1657. }
  1658. }
  1659. else {
  1660. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1661. SERIAL_ECHO_START;
  1662. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1663. }
  1664. }
  1665. #endif // Z_SAFE_HOMING
  1666. #endif // Z_HOME_DIR < 0
  1667. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1668. current_position[Z_AXIS] = code_value() + add_homing[Z_AXIS];
  1669. #ifdef ENABLE_AUTO_BED_LEVELING
  1670. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1671. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1672. #endif
  1673. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1674. #endif // else DELTA
  1675. #ifdef SCARA
  1676. calculate_delta(current_position);
  1677. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1678. #endif
  1679. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1680. enable_endstops(false);
  1681. #endif
  1682. feedrate = saved_feedrate;
  1683. feedmultiply = saved_feedmultiply;
  1684. previous_millis_cmd = millis();
  1685. endstops_hit_on_purpose();
  1686. }
  1687. #ifdef ENABLE_AUTO_BED_LEVELING
  1688. // Define the possible boundaries for probing based on set limits
  1689. #define MIN_PROBE_X (max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1690. #define MAX_PROBE_X (min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
  1691. #define MIN_PROBE_Y (max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1692. #define MAX_PROBE_Y (min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
  1693. #ifdef AUTO_BED_LEVELING_GRID
  1694. // Make sure probing points are reachable
  1695. #if LEFT_PROBE_BED_POSITION < MIN_PROBE_X
  1696. #error "The given LEFT_PROBE_BED_POSITION can't be reached by the probe."
  1697. #elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X
  1698. #error "The given RIGHT_PROBE_BED_POSITION can't be reached by the probe."
  1699. #elif FRONT_PROBE_BED_POSITION < MIN_PROBE_Y
  1700. #error "The given FRONT_PROBE_BED_POSITION can't be reached by the probe."
  1701. #elif BACK_PROBE_BED_POSITION > MAX_PROBE_Y
  1702. #error "The given BACK_PROBE_BED_POSITION can't be reached by the probe."
  1703. #endif
  1704. #else // !AUTO_BED_LEVELING_GRID
  1705. #if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
  1706. #error "The given ABL_PROBE_PT_1_X can't be reached by the probe."
  1707. #elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
  1708. #error "The given ABL_PROBE_PT_2_X can't be reached by the probe."
  1709. #elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X
  1710. #error "The given ABL_PROBE_PT_3_X can't be reached by the probe."
  1711. #elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y
  1712. #error "The given ABL_PROBE_PT_1_Y can't be reached by the probe."
  1713. #elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y
  1714. #error "The given ABL_PROBE_PT_2_Y can't be reached by the probe."
  1715. #elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
  1716. #error "The given ABL_PROBE_PT_3_Y can't be reached by the probe."
  1717. #endif
  1718. #endif // !AUTO_BED_LEVELING_GRID
  1719. /**
  1720. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1721. * Will fail if the printer has not been homed with G28.
  1722. *
  1723. * Enhanced G29 Auto Bed Leveling Probe Routine
  1724. *
  1725. * Parameters With AUTO_BED_LEVELING_GRID:
  1726. *
  1727. * P Set the size of the grid that will be probed (P x P points).
  1728. * Not supported by non-linear delta printer bed leveling.
  1729. * Example: "G29 P4"
  1730. *
  1731. * S Set the XY travel speed between probe points (in mm/min)
  1732. *
  1733. * V Set the verbose level (0-4). Example: "G29 V3"
  1734. *
  1735. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1736. * This is useful for manual bed leveling and finding flaws in the bed (to
  1737. * assist with part placement).
  1738. * Not supported by non-linear delta printer bed leveling.
  1739. *
  1740. * F Set the Front limit of the probing grid
  1741. * B Set the Back limit of the probing grid
  1742. * L Set the Left limit of the probing grid
  1743. * R Set the Right limit of the probing grid
  1744. *
  1745. * Global Parameters:
  1746. *
  1747. * E/e By default G29 engages / disengages the probe for each point.
  1748. * Include "E" to engage and disengage the probe just once.
  1749. * There's no extra effect if you have a fixed probe.
  1750. * Usage: "G29 E" or "G29 e"
  1751. *
  1752. */
  1753. inline void gcode_G29() {
  1754. // Prevent user from running a G29 without first homing in X and Y
  1755. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1756. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1757. SERIAL_ECHO_START;
  1758. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1759. return;
  1760. }
  1761. int verbose_level = 1;
  1762. float x_tmp, y_tmp, z_tmp, real_z;
  1763. if (code_seen('V') || code_seen('v')) {
  1764. verbose_level = code_value_long();
  1765. if (verbose_level < 0 || verbose_level > 4) {
  1766. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1767. return;
  1768. }
  1769. }
  1770. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1771. #ifdef AUTO_BED_LEVELING_GRID
  1772. #ifndef DELTA
  1773. bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t');
  1774. #endif
  1775. if (verbose_level > 0)
  1776. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1777. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1778. #ifndef DELTA
  1779. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1780. if (auto_bed_leveling_grid_points < 2) {
  1781. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1782. return;
  1783. }
  1784. #endif
  1785. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1786. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1787. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1788. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1789. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1790. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1791. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1792. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1793. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1794. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1795. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1796. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1797. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1798. if (left_out || right_out || front_out || back_out) {
  1799. if (left_out) {
  1800. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1801. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1802. }
  1803. if (right_out) {
  1804. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1805. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1806. }
  1807. if (front_out) {
  1808. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1809. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1810. }
  1811. if (back_out) {
  1812. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1813. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1814. }
  1815. return;
  1816. }
  1817. #endif // AUTO_BED_LEVELING_GRID
  1818. #ifdef Z_PROBE_SLED
  1819. dock_sled(false); // engage (un-dock) the probe
  1820. #elif not defined(SERVO_ENDSTOPS)
  1821. engage_z_probe();
  1822. #endif
  1823. st_synchronize();
  1824. #ifdef DELTA
  1825. reset_bed_level();
  1826. #else
  1827. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1828. //vector_3 corrected_position = plan_get_position_mm();
  1829. //corrected_position.debug("position before G29");
  1830. plan_bed_level_matrix.set_to_identity();
  1831. vector_3 uncorrected_position = plan_get_position();
  1832. //uncorrected_position.debug("position during G29");
  1833. current_position[X_AXIS] = uncorrected_position.x;
  1834. current_position[Y_AXIS] = uncorrected_position.y;
  1835. current_position[Z_AXIS] = uncorrected_position.z;
  1836. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1837. #endif
  1838. setup_for_endstop_move();
  1839. feedrate = homing_feedrate[Z_AXIS];
  1840. #ifdef AUTO_BED_LEVELING_GRID
  1841. // probe at the points of a lattice grid
  1842. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1843. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1844. #ifndef DELTA
  1845. // solve the plane equation ax + by + d = z
  1846. // A is the matrix with rows [x y 1] for all the probed points
  1847. // B is the vector of the Z positions
  1848. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1849. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1850. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1851. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1852. eqnBVector[abl2], // "B" vector of Z points
  1853. mean = 0.0;
  1854. #else
  1855. delta_grid_spacing[0] = xGridSpacing;
  1856. delta_grid_spacing[1] = yGridSpacing;
  1857. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1858. if (code_seen(axis_codes[Z_AXIS])) {
  1859. z_offset += code_value();
  1860. }
  1861. #endif
  1862. int probePointCounter = 0;
  1863. bool zig = true;
  1864. for (int yCount=0; yCount < auto_bed_leveling_grid_points; yCount++)
  1865. {
  1866. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1867. int xStart, xStop, xInc;
  1868. if (zig)
  1869. {
  1870. xStart = 0;
  1871. xStop = auto_bed_leveling_grid_points;
  1872. xInc = 1;
  1873. zig = false;
  1874. }
  1875. else
  1876. {
  1877. xStart = auto_bed_leveling_grid_points - 1;
  1878. xStop = -1;
  1879. xInc = -1;
  1880. zig = true;
  1881. }
  1882. #ifndef DELTA
  1883. // If topo_flag is set then don't zig-zag. Just scan in one direction.
  1884. // This gets the probe points in more readable order.
  1885. if (!topo_flag) zig = !zig;
  1886. #endif
  1887. for (int xCount=xStart; xCount != xStop; xCount += xInc)
  1888. {
  1889. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1890. // raise extruder
  1891. float measured_z,
  1892. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1893. #ifdef DELTA
  1894. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1895. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1896. if (distance_from_center > DELTA_PROBABLE_RADIUS)
  1897. continue;
  1898. #endif //DELTA
  1899. // Enhanced G29 - Do not retract servo between probes
  1900. ProbeAction act;
  1901. if (enhanced_g29) {
  1902. if (yProbe == front_probe_bed_position && xCount == 0)
  1903. act = ProbeEngage;
  1904. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1905. act = ProbeRetract;
  1906. else
  1907. act = ProbeStay;
  1908. }
  1909. else
  1910. act = ProbeEngageRetract;
  1911. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1912. #ifndef DELTA
  1913. mean += measured_z;
  1914. eqnBVector[probePointCounter] = measured_z;
  1915. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1916. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1917. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1918. #else
  1919. bed_level[xCount][yCount] = measured_z + z_offset;
  1920. #endif
  1921. probePointCounter++;
  1922. } //xProbe
  1923. } //yProbe
  1924. clean_up_after_endstop_move();
  1925. #ifndef DELTA
  1926. // solve lsq problem
  1927. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1928. mean /= abl2;
  1929. if (verbose_level) {
  1930. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1931. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  1932. SERIAL_PROTOCOLPGM(" b: ");
  1933. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  1934. SERIAL_PROTOCOLPGM(" d: ");
  1935. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  1936. SERIAL_EOL;
  1937. if (verbose_level > 2) {
  1938. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  1939. SERIAL_PROTOCOL_F(mean, 8);
  1940. SERIAL_EOL;
  1941. }
  1942. }
  1943. if (topo_flag) {
  1944. int xx, yy;
  1945. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  1946. #if TOPO_ORIGIN == OriginFrontLeft
  1947. SERIAL_PROTOCOLPGM("+-----------+\n");
  1948. SERIAL_PROTOCOLPGM("|...Back....|\n");
  1949. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  1950. SERIAL_PROTOCOLPGM("|...Front...|\n");
  1951. SERIAL_PROTOCOLPGM("+-----------+\n");
  1952. for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
  1953. #else
  1954. for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
  1955. #endif
  1956. {
  1957. #if TOPO_ORIGIN == OriginBackRight
  1958. for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
  1959. #else
  1960. for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
  1961. #endif
  1962. {
  1963. int ind =
  1964. #if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
  1965. yy * auto_bed_leveling_grid_points + xx
  1966. #elif TOPO_ORIGIN == OriginBackLeft
  1967. xx * auto_bed_leveling_grid_points + yy
  1968. #elif TOPO_ORIGIN == OriginFrontRight
  1969. abl2 - xx * auto_bed_leveling_grid_points - yy - 1
  1970. #endif
  1971. ;
  1972. float diff = eqnBVector[ind] - mean;
  1973. if (diff >= 0.0)
  1974. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  1975. else
  1976. SERIAL_PROTOCOLPGM(" ");
  1977. SERIAL_PROTOCOL_F(diff, 5);
  1978. } // xx
  1979. SERIAL_EOL;
  1980. } // yy
  1981. SERIAL_EOL;
  1982. } //topo_flag
  1983. set_bed_level_equation_lsq(plane_equation_coefficients);
  1984. free(plane_equation_coefficients);
  1985. #else
  1986. extrapolate_unprobed_bed_level();
  1987. print_bed_level();
  1988. #endif
  1989. #else // !AUTO_BED_LEVELING_GRID
  1990. // Probe at 3 arbitrary points
  1991. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  1992. if (enhanced_g29) {
  1993. // Basic Enhanced G29
  1994. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
  1995. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
  1996. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
  1997. }
  1998. else {
  1999. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, verbose_level);
  2000. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
  2001. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
  2002. }
  2003. clean_up_after_endstop_move();
  2004. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2005. #endif // !AUTO_BED_LEVELING_GRID
  2006. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  2007. st_synchronize();
  2008. #ifndef DELTA
  2009. if (verbose_level > 0)
  2010. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2011. // Correct the Z height difference from z-probe position and hotend tip position.
  2012. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2013. // When the bed is uneven, this height must be corrected.
  2014. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2015. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2016. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2017. z_tmp = current_position[Z_AXIS];
  2018. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2019. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2020. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2021. #endif
  2022. #ifdef Z_PROBE_SLED
  2023. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2024. #elif not defined(SERVO_ENDSTOPS)
  2025. retract_z_probe();
  2026. #endif
  2027. #ifdef Z_PROBE_END_SCRIPT
  2028. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2029. st_synchronize();
  2030. #endif
  2031. }
  2032. #ifndef Z_PROBE_SLED
  2033. inline void gcode_G30() {
  2034. engage_z_probe(); // Engage Z Servo endstop if available
  2035. st_synchronize();
  2036. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2037. setup_for_endstop_move();
  2038. feedrate = homing_feedrate[Z_AXIS];
  2039. run_z_probe();
  2040. SERIAL_PROTOCOLPGM(MSG_BED);
  2041. SERIAL_PROTOCOLPGM(" X: ");
  2042. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2043. SERIAL_PROTOCOLPGM(" Y: ");
  2044. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2045. SERIAL_PROTOCOLPGM(" Z: ");
  2046. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2047. SERIAL_EOL;
  2048. clean_up_after_endstop_move();
  2049. retract_z_probe(); // Retract Z Servo endstop if available
  2050. }
  2051. #endif //!Z_PROBE_SLED
  2052. #endif //ENABLE_AUTO_BED_LEVELING
  2053. /**
  2054. * G92: Set current position to given X Y Z E
  2055. */
  2056. inline void gcode_G92() {
  2057. if (!code_seen(axis_codes[E_AXIS]))
  2058. st_synchronize();
  2059. for (int i=0;i<NUM_AXIS;i++) {
  2060. if (code_seen(axis_codes[i])) {
  2061. if (i == E_AXIS) {
  2062. current_position[i] = code_value();
  2063. plan_set_e_position(current_position[E_AXIS]);
  2064. }
  2065. else {
  2066. current_position[i] = code_value() +
  2067. #ifdef SCARA
  2068. ((i != X_AXIS && i != Y_AXIS) ? add_homing[i] : 0)
  2069. #else
  2070. add_homing[i]
  2071. #endif
  2072. ;
  2073. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2074. }
  2075. }
  2076. }
  2077. }
  2078. #ifdef ULTIPANEL
  2079. /**
  2080. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2081. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2082. */
  2083. inline void gcode_M0_M1() {
  2084. char *src = strchr_pointer + 2;
  2085. unsigned long codenum = 0;
  2086. bool hasP = false, hasS = false;
  2087. if (code_seen('P')) {
  2088. codenum = code_value(); // milliseconds to wait
  2089. hasP = codenum > 0;
  2090. }
  2091. if (code_seen('S')) {
  2092. codenum = code_value() * 1000; // seconds to wait
  2093. hasS = codenum > 0;
  2094. }
  2095. char* starpos = strchr(src, '*');
  2096. if (starpos != NULL) *(starpos) = '\0';
  2097. while (*src == ' ') ++src;
  2098. if (!hasP && !hasS && *src != '\0')
  2099. lcd_setstatus(src);
  2100. else
  2101. LCD_MESSAGEPGM(MSG_USERWAIT);
  2102. lcd_ignore_click();
  2103. st_synchronize();
  2104. previous_millis_cmd = millis();
  2105. if (codenum > 0) {
  2106. codenum += previous_millis_cmd; // keep track of when we started waiting
  2107. while(millis() < codenum && !lcd_clicked()) {
  2108. manage_heater();
  2109. manage_inactivity();
  2110. lcd_update();
  2111. }
  2112. lcd_ignore_click(false);
  2113. }
  2114. else {
  2115. if (!lcd_detected()) return;
  2116. while (!lcd_clicked()) {
  2117. manage_heater();
  2118. manage_inactivity();
  2119. lcd_update();
  2120. }
  2121. }
  2122. if (IS_SD_PRINTING)
  2123. LCD_MESSAGEPGM(MSG_RESUMING);
  2124. else
  2125. LCD_MESSAGEPGM(WELCOME_MSG);
  2126. }
  2127. #endif // ULTIPANEL
  2128. /**
  2129. * M17: Enable power on all stepper motors
  2130. */
  2131. inline void gcode_M17() {
  2132. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2133. enable_x();
  2134. enable_y();
  2135. enable_z();
  2136. enable_e0();
  2137. enable_e1();
  2138. enable_e2();
  2139. enable_e3();
  2140. }
  2141. #ifdef SDSUPPORT
  2142. /**
  2143. * M20: List SD card to serial output
  2144. */
  2145. inline void gcode_M20() {
  2146. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2147. card.ls();
  2148. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2149. }
  2150. /**
  2151. * M21: Init SD Card
  2152. */
  2153. inline void gcode_M21() {
  2154. card.initsd();
  2155. }
  2156. /**
  2157. * M22: Release SD Card
  2158. */
  2159. inline void gcode_M22() {
  2160. card.release();
  2161. }
  2162. /**
  2163. * M23: Select a file
  2164. */
  2165. inline void gcode_M23() {
  2166. char* codepos = strchr_pointer + 4;
  2167. char* starpos = strchr(codepos, '*');
  2168. if (starpos) *starpos = '\0';
  2169. card.openFile(codepos, true);
  2170. }
  2171. /**
  2172. * M24: Start SD Print
  2173. */
  2174. inline void gcode_M24() {
  2175. card.startFileprint();
  2176. starttime = millis();
  2177. }
  2178. /**
  2179. * M25: Pause SD Print
  2180. */
  2181. inline void gcode_M25() {
  2182. card.pauseSDPrint();
  2183. }
  2184. /**
  2185. * M26: Set SD Card file index
  2186. */
  2187. inline void gcode_M26() {
  2188. if (card.cardOK && code_seen('S'))
  2189. card.setIndex(code_value_long());
  2190. }
  2191. /**
  2192. * M27: Get SD Card status
  2193. */
  2194. inline void gcode_M27() {
  2195. card.getStatus();
  2196. }
  2197. /**
  2198. * M28: Start SD Write
  2199. */
  2200. inline void gcode_M28() {
  2201. char* codepos = strchr_pointer + 4;
  2202. char* starpos = strchr(strchr_pointer + 4, '*');
  2203. if (starpos) {
  2204. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2205. strchr_pointer = strchr(npos, ' ') + 1;
  2206. *(starpos) = '\0';
  2207. }
  2208. card.openFile(strchr_pointer + 4, false);
  2209. }
  2210. /**
  2211. * M29: Stop SD Write
  2212. * Processed in write to file routine above
  2213. */
  2214. inline void gcode_M29() {
  2215. // card.saving = false;
  2216. }
  2217. /**
  2218. * M30 <filename>: Delete SD Card file
  2219. */
  2220. inline void gcode_M30() {
  2221. if (card.cardOK) {
  2222. card.closefile();
  2223. char* starpos = strchr(strchr_pointer + 4, '*');
  2224. if (starpos) {
  2225. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2226. strchr_pointer = strchr(npos, ' ') + 1;
  2227. *(starpos) = '\0';
  2228. }
  2229. card.removeFile(strchr_pointer + 4);
  2230. }
  2231. }
  2232. #endif
  2233. /**
  2234. * M31: Get the time since the start of SD Print (or last M109)
  2235. */
  2236. inline void gcode_M31() {
  2237. stoptime = millis();
  2238. unsigned long t = (stoptime - starttime) / 1000;
  2239. int min = t / 60, sec = t % 60;
  2240. char time[30];
  2241. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2242. SERIAL_ECHO_START;
  2243. SERIAL_ECHOLN(time);
  2244. lcd_setstatus(time);
  2245. autotempShutdown();
  2246. }
  2247. #ifdef SDSUPPORT
  2248. /**
  2249. * M32: Select file and start SD Print
  2250. */
  2251. inline void gcode_M32() {
  2252. if (card.sdprinting)
  2253. st_synchronize();
  2254. char* codepos = strchr_pointer + 4;
  2255. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2256. if (! namestartpos)
  2257. namestartpos = codepos; //default name position, 4 letters after the M
  2258. else
  2259. namestartpos++; //to skip the '!'
  2260. char* starpos = strchr(codepos, '*');
  2261. if (starpos) *(starpos) = '\0';
  2262. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2263. if (card.cardOK) {
  2264. card.openFile(namestartpos, true, !call_procedure);
  2265. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2266. card.setIndex(code_value_long());
  2267. card.startFileprint();
  2268. if (!call_procedure)
  2269. starttime = millis(); //procedure calls count as normal print time.
  2270. }
  2271. }
  2272. /**
  2273. * M928: Start SD Write
  2274. */
  2275. inline void gcode_M928() {
  2276. char* starpos = strchr(strchr_pointer + 5, '*');
  2277. if (starpos) {
  2278. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2279. strchr_pointer = strchr(npos, ' ') + 1;
  2280. *(starpos) = '\0';
  2281. }
  2282. card.openLogFile(strchr_pointer + 5);
  2283. }
  2284. #endif // SDSUPPORT
  2285. /**
  2286. * M42: Change pin status via GCode
  2287. */
  2288. inline void gcode_M42() {
  2289. if (code_seen('S')) {
  2290. int pin_status = code_value(),
  2291. pin_number = LED_PIN;
  2292. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2293. pin_number = code_value();
  2294. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2295. if (sensitive_pins[i] == pin_number) {
  2296. pin_number = -1;
  2297. break;
  2298. }
  2299. }
  2300. #if defined(FAN_PIN) && FAN_PIN > -1
  2301. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2302. #endif
  2303. if (pin_number > -1) {
  2304. pinMode(pin_number, OUTPUT);
  2305. digitalWrite(pin_number, pin_status);
  2306. analogWrite(pin_number, pin_status);
  2307. }
  2308. } // code_seen('S')
  2309. }
  2310. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2311. #if Z_MIN_PIN == -1
  2312. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2313. #endif
  2314. /**
  2315. * M48: Z-Probe repeatability measurement function.
  2316. *
  2317. * Usage:
  2318. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2319. * n = Number of samples (4-50, default 10)
  2320. * X = Sample X position
  2321. * Y = Sample Y position
  2322. * V = Verbose level (0-4, default=1)
  2323. * E = Engage probe for each reading
  2324. * L = Number of legs of movement before probe
  2325. *
  2326. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2327. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2328. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2329. * regenerated.
  2330. *
  2331. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2332. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2333. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2334. */
  2335. inline void gcode_M48() {
  2336. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2337. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2338. double X_current, Y_current, Z_current;
  2339. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2340. if (code_seen('V') || code_seen('v')) {
  2341. verbose_level = code_value();
  2342. if (verbose_level < 0 || verbose_level > 4 ) {
  2343. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2344. return;
  2345. }
  2346. }
  2347. if (verbose_level > 0)
  2348. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2349. if (code_seen('n')) {
  2350. n_samples = code_value();
  2351. if (n_samples < 4 || n_samples > 50) {
  2352. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2353. return;
  2354. }
  2355. }
  2356. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2357. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2358. Z_current = st_get_position_mm(Z_AXIS);
  2359. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2360. ext_position = st_get_position_mm(E_AXIS);
  2361. if (code_seen('E') || code_seen('e'))
  2362. engage_probe_for_each_reading++;
  2363. if (code_seen('X') || code_seen('x')) {
  2364. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2365. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2366. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2367. return;
  2368. }
  2369. }
  2370. if (code_seen('Y') || code_seen('y')) {
  2371. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2372. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2373. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2374. return;
  2375. }
  2376. }
  2377. if (code_seen('L') || code_seen('l')) {
  2378. n_legs = code_value();
  2379. if (n_legs == 1) n_legs = 2;
  2380. if (n_legs < 0 || n_legs > 15) {
  2381. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2382. return;
  2383. }
  2384. }
  2385. //
  2386. // Do all the preliminary setup work. First raise the probe.
  2387. //
  2388. st_synchronize();
  2389. plan_bed_level_matrix.set_to_identity();
  2390. plan_buffer_line(X_current, Y_current, Z_start_location,
  2391. ext_position,
  2392. homing_feedrate[Z_AXIS] / 60,
  2393. active_extruder);
  2394. st_synchronize();
  2395. //
  2396. // Now get everything to the specified probe point So we can safely do a probe to
  2397. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2398. // use that as a starting point for each probe.
  2399. //
  2400. if (verbose_level > 2)
  2401. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2402. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2403. ext_position,
  2404. homing_feedrate[X_AXIS]/60,
  2405. active_extruder);
  2406. st_synchronize();
  2407. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2408. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2409. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2410. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2411. //
  2412. // OK, do the inital probe to get us close to the bed.
  2413. // Then retrace the right amount and use that in subsequent probes
  2414. //
  2415. engage_z_probe();
  2416. setup_for_endstop_move();
  2417. run_z_probe();
  2418. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2419. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2420. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2421. ext_position,
  2422. homing_feedrate[X_AXIS]/60,
  2423. active_extruder);
  2424. st_synchronize();
  2425. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2426. if (engage_probe_for_each_reading) retract_z_probe();
  2427. for (n=0; n < n_samples; n++) {
  2428. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2429. if (n_legs) {
  2430. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2431. int l;
  2432. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2433. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2434. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2435. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2436. //SERIAL_ECHOPAIR(" theta: ",theta);
  2437. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2438. //SERIAL_PROTOCOLLNPGM("");
  2439. float dir = rotational_direction ? 1 : -1;
  2440. for (l = 0; l < n_legs - 1; l++) {
  2441. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2442. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2443. if (radius < 0.0) radius = -radius;
  2444. X_current = X_probe_location + cos(theta) * radius;
  2445. Y_current = Y_probe_location + sin(theta) * radius;
  2446. // Make sure our X & Y are sane
  2447. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2448. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2449. if (verbose_level > 3) {
  2450. SERIAL_ECHOPAIR("x: ", X_current);
  2451. SERIAL_ECHOPAIR("y: ", Y_current);
  2452. SERIAL_PROTOCOLLNPGM("");
  2453. }
  2454. do_blocking_move_to( X_current, Y_current, Z_current );
  2455. }
  2456. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2457. }
  2458. if (engage_probe_for_each_reading) {
  2459. engage_z_probe();
  2460. delay(1000);
  2461. }
  2462. setup_for_endstop_move();
  2463. run_z_probe();
  2464. sample_set[n] = current_position[Z_AXIS];
  2465. //
  2466. // Get the current mean for the data points we have so far
  2467. //
  2468. sum = 0.0;
  2469. for (j=0; j<=n; j++) sum += sample_set[j];
  2470. mean = sum / (double (n+1));
  2471. //
  2472. // Now, use that mean to calculate the standard deviation for the
  2473. // data points we have so far
  2474. //
  2475. sum = 0.0;
  2476. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2477. sigma = sqrt( sum / (double (n+1)) );
  2478. if (verbose_level > 1) {
  2479. SERIAL_PROTOCOL(n+1);
  2480. SERIAL_PROTOCOL(" of ");
  2481. SERIAL_PROTOCOL(n_samples);
  2482. SERIAL_PROTOCOLPGM(" z: ");
  2483. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2484. }
  2485. if (verbose_level > 2) {
  2486. SERIAL_PROTOCOL(" mean: ");
  2487. SERIAL_PROTOCOL_F(mean,6);
  2488. SERIAL_PROTOCOL(" sigma: ");
  2489. SERIAL_PROTOCOL_F(sigma,6);
  2490. }
  2491. if (verbose_level > 0) SERIAL_EOL;
  2492. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2493. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2494. st_synchronize();
  2495. if (engage_probe_for_each_reading) {
  2496. retract_z_probe();
  2497. delay(1000);
  2498. }
  2499. }
  2500. retract_z_probe();
  2501. delay(1000);
  2502. clean_up_after_endstop_move();
  2503. // enable_endstops(true);
  2504. if (verbose_level > 0) {
  2505. SERIAL_PROTOCOLPGM("Mean: ");
  2506. SERIAL_PROTOCOL_F(mean, 6);
  2507. SERIAL_EOL;
  2508. }
  2509. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2510. SERIAL_PROTOCOL_F(sigma, 6);
  2511. SERIAL_EOL; SERIAL_EOL;
  2512. }
  2513. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2514. /**
  2515. * M104: Set hot end temperature
  2516. */
  2517. inline void gcode_M104() {
  2518. if (setTargetedHotend(104)) return;
  2519. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2520. #ifdef DUAL_X_CARRIAGE
  2521. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2522. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2523. #endif
  2524. setWatch();
  2525. }
  2526. /**
  2527. * M105: Read hot end and bed temperature
  2528. */
  2529. inline void gcode_M105() {
  2530. if (setTargetedHotend(105)) return;
  2531. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2532. SERIAL_PROTOCOLPGM("ok T:");
  2533. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2534. SERIAL_PROTOCOLPGM(" /");
  2535. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2536. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2537. SERIAL_PROTOCOLPGM(" B:");
  2538. SERIAL_PROTOCOL_F(degBed(),1);
  2539. SERIAL_PROTOCOLPGM(" /");
  2540. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2541. #endif //TEMP_BED_PIN
  2542. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2543. SERIAL_PROTOCOLPGM(" T");
  2544. SERIAL_PROTOCOL(cur_extruder);
  2545. SERIAL_PROTOCOLPGM(":");
  2546. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2547. SERIAL_PROTOCOLPGM(" /");
  2548. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2549. }
  2550. #else
  2551. SERIAL_ERROR_START;
  2552. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2553. #endif
  2554. SERIAL_PROTOCOLPGM(" @:");
  2555. #ifdef EXTRUDER_WATTS
  2556. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2557. SERIAL_PROTOCOLPGM("W");
  2558. #else
  2559. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2560. #endif
  2561. SERIAL_PROTOCOLPGM(" B@:");
  2562. #ifdef BED_WATTS
  2563. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2564. SERIAL_PROTOCOLPGM("W");
  2565. #else
  2566. SERIAL_PROTOCOL(getHeaterPower(-1));
  2567. #endif
  2568. #ifdef SHOW_TEMP_ADC_VALUES
  2569. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2570. SERIAL_PROTOCOLPGM(" ADC B:");
  2571. SERIAL_PROTOCOL_F(degBed(),1);
  2572. SERIAL_PROTOCOLPGM("C->");
  2573. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2574. #endif
  2575. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2576. SERIAL_PROTOCOLPGM(" T");
  2577. SERIAL_PROTOCOL(cur_extruder);
  2578. SERIAL_PROTOCOLPGM(":");
  2579. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2580. SERIAL_PROTOCOLPGM("C->");
  2581. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2582. }
  2583. #endif
  2584. SERIAL_PROTOCOLLN("");
  2585. }
  2586. #if defined(FAN_PIN) && FAN_PIN > -1
  2587. /**
  2588. * M106: Set Fan Speed
  2589. */
  2590. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2591. /**
  2592. * M107: Fan Off
  2593. */
  2594. inline void gcode_M107() { fanSpeed = 0; }
  2595. #endif //FAN_PIN
  2596. /**
  2597. * M109: Wait for extruder(s) to reach temperature
  2598. */
  2599. inline void gcode_M109() {
  2600. if (setTargetedHotend(109)) return;
  2601. LCD_MESSAGEPGM(MSG_HEATING);
  2602. CooldownNoWait = code_seen('S');
  2603. if (CooldownNoWait || code_seen('R')) {
  2604. setTargetHotend(code_value(), tmp_extruder);
  2605. #ifdef DUAL_X_CARRIAGE
  2606. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2607. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2608. #endif
  2609. }
  2610. #ifdef AUTOTEMP
  2611. autotemp_enabled = code_seen('F');
  2612. if (autotemp_enabled) autotemp_factor = code_value();
  2613. if (code_seen('S')) autotemp_min = code_value();
  2614. if (code_seen('B')) autotemp_max = code_value();
  2615. #endif
  2616. setWatch();
  2617. unsigned long timetemp = millis();
  2618. /* See if we are heating up or cooling down */
  2619. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2620. cancel_heatup = false;
  2621. #ifdef TEMP_RESIDENCY_TIME
  2622. long residencyStart = -1;
  2623. /* continue to loop until we have reached the target temp
  2624. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2625. while((!cancel_heatup)&&((residencyStart == -1) ||
  2626. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2627. #else
  2628. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2629. #endif //TEMP_RESIDENCY_TIME
  2630. { // while loop
  2631. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2632. SERIAL_PROTOCOLPGM("T:");
  2633. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2634. SERIAL_PROTOCOLPGM(" E:");
  2635. SERIAL_PROTOCOL((int)tmp_extruder);
  2636. #ifdef TEMP_RESIDENCY_TIME
  2637. SERIAL_PROTOCOLPGM(" W:");
  2638. if (residencyStart > -1) {
  2639. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2640. SERIAL_PROTOCOLLN( timetemp );
  2641. }
  2642. else {
  2643. SERIAL_PROTOCOLLN( "?" );
  2644. }
  2645. #else
  2646. SERIAL_PROTOCOLLN("");
  2647. #endif
  2648. timetemp = millis();
  2649. }
  2650. manage_heater();
  2651. manage_inactivity();
  2652. lcd_update();
  2653. #ifdef TEMP_RESIDENCY_TIME
  2654. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2655. // or when current temp falls outside the hysteresis after target temp was reached
  2656. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2657. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2658. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2659. {
  2660. residencyStart = millis();
  2661. }
  2662. #endif //TEMP_RESIDENCY_TIME
  2663. }
  2664. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2665. starttime = previous_millis_cmd = millis();
  2666. }
  2667. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2668. /**
  2669. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2670. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2671. */
  2672. inline void gcode_M190() {
  2673. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2674. CooldownNoWait = code_seen('S');
  2675. if (CooldownNoWait || code_seen('R'))
  2676. setTargetBed(code_value());
  2677. unsigned long timetemp = millis();
  2678. cancel_heatup = false;
  2679. target_direction = isHeatingBed(); // true if heating, false if cooling
  2680. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2681. unsigned long ms = millis();
  2682. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2683. timetemp = ms;
  2684. float tt = degHotend(active_extruder);
  2685. SERIAL_PROTOCOLPGM("T:");
  2686. SERIAL_PROTOCOL(tt);
  2687. SERIAL_PROTOCOLPGM(" E:");
  2688. SERIAL_PROTOCOL((int)active_extruder);
  2689. SERIAL_PROTOCOLPGM(" B:");
  2690. SERIAL_PROTOCOL_F(degBed(), 1);
  2691. SERIAL_PROTOCOLLN("");
  2692. }
  2693. manage_heater();
  2694. manage_inactivity();
  2695. lcd_update();
  2696. }
  2697. LCD_MESSAGEPGM(MSG_BED_DONE);
  2698. previous_millis_cmd = millis();
  2699. }
  2700. #endif // TEMP_BED_PIN > -1
  2701. /**
  2702. * M112: Emergency Stop
  2703. */
  2704. inline void gcode_M112() {
  2705. kill();
  2706. }
  2707. #ifdef BARICUDA
  2708. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2709. /**
  2710. * M126: Heater 1 valve open
  2711. */
  2712. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2713. /**
  2714. * M127: Heater 1 valve close
  2715. */
  2716. inline void gcode_M127() { ValvePressure = 0; }
  2717. #endif
  2718. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2719. /**
  2720. * M128: Heater 2 valve open
  2721. */
  2722. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2723. /**
  2724. * M129: Heater 2 valve close
  2725. */
  2726. inline void gcode_M129() { EtoPPressure = 0; }
  2727. #endif
  2728. #endif //BARICUDA
  2729. /**
  2730. * M140: Set bed temperature
  2731. */
  2732. inline void gcode_M140() {
  2733. if (code_seen('S')) setTargetBed(code_value());
  2734. }
  2735. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2736. /**
  2737. * M80: Turn on Power Supply
  2738. */
  2739. inline void gcode_M80() {
  2740. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2741. // If you have a switch on suicide pin, this is useful
  2742. // if you want to start another print with suicide feature after
  2743. // a print without suicide...
  2744. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2745. OUT_WRITE(SUICIDE_PIN, HIGH);
  2746. #endif
  2747. #ifdef ULTIPANEL
  2748. powersupply = true;
  2749. LCD_MESSAGEPGM(WELCOME_MSG);
  2750. lcd_update();
  2751. #endif
  2752. }
  2753. #endif // PS_ON_PIN
  2754. /**
  2755. * M81: Turn off Power Supply
  2756. */
  2757. inline void gcode_M81() {
  2758. disable_heater();
  2759. st_synchronize();
  2760. disable_e0();
  2761. disable_e1();
  2762. disable_e2();
  2763. disable_e3();
  2764. finishAndDisableSteppers();
  2765. fanSpeed = 0;
  2766. delay(1000); // Wait 1 second before switching off
  2767. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2768. st_synchronize();
  2769. suicide();
  2770. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2771. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2772. #endif
  2773. #ifdef ULTIPANEL
  2774. powersupply = false;
  2775. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2776. lcd_update();
  2777. #endif
  2778. }
  2779. /**
  2780. * M82: Set E codes absolute (default)
  2781. */
  2782. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2783. /**
  2784. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2785. */
  2786. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2787. /**
  2788. * M18, M84: Disable all stepper motors
  2789. */
  2790. inline void gcode_M18_M84() {
  2791. if (code_seen('S')) {
  2792. stepper_inactive_time = code_value() * 1000;
  2793. }
  2794. else {
  2795. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2796. if (all_axis) {
  2797. st_synchronize();
  2798. disable_e0();
  2799. disable_e1();
  2800. disable_e2();
  2801. disable_e3();
  2802. finishAndDisableSteppers();
  2803. }
  2804. else {
  2805. st_synchronize();
  2806. if (code_seen('X')) disable_x();
  2807. if (code_seen('Y')) disable_y();
  2808. if (code_seen('Z')) disable_z();
  2809. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2810. if (code_seen('E')) {
  2811. disable_e0();
  2812. disable_e1();
  2813. disable_e2();
  2814. disable_e3();
  2815. }
  2816. #endif
  2817. }
  2818. }
  2819. }
  2820. /**
  2821. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2822. */
  2823. inline void gcode_M85() {
  2824. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2825. }
  2826. /**
  2827. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2828. */
  2829. inline void gcode_M92() {
  2830. for(int8_t i=0; i < NUM_AXIS; i++) {
  2831. if (code_seen(axis_codes[i])) {
  2832. if (i == E_AXIS) {
  2833. float value = code_value();
  2834. if (value < 20.0) {
  2835. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2836. max_e_jerk *= factor;
  2837. max_feedrate[i] *= factor;
  2838. axis_steps_per_sqr_second[i] *= factor;
  2839. }
  2840. axis_steps_per_unit[i] = value;
  2841. }
  2842. else {
  2843. axis_steps_per_unit[i] = code_value();
  2844. }
  2845. }
  2846. }
  2847. }
  2848. /**
  2849. * M114: Output current position to serial port
  2850. */
  2851. inline void gcode_M114() {
  2852. SERIAL_PROTOCOLPGM("X:");
  2853. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2854. SERIAL_PROTOCOLPGM(" Y:");
  2855. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2856. SERIAL_PROTOCOLPGM(" Z:");
  2857. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2858. SERIAL_PROTOCOLPGM(" E:");
  2859. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2860. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2861. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2862. SERIAL_PROTOCOLPGM(" Y:");
  2863. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2864. SERIAL_PROTOCOLPGM(" Z:");
  2865. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2866. SERIAL_PROTOCOLLN("");
  2867. #ifdef SCARA
  2868. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2869. SERIAL_PROTOCOL(delta[X_AXIS]);
  2870. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2871. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2872. SERIAL_PROTOCOLLN("");
  2873. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2874. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2875. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2876. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2877. SERIAL_PROTOCOLLN("");
  2878. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2879. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2880. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2881. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2882. SERIAL_PROTOCOLLN("");
  2883. SERIAL_PROTOCOLLN("");
  2884. #endif
  2885. }
  2886. /**
  2887. * M115: Capabilities string
  2888. */
  2889. inline void gcode_M115() {
  2890. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2891. }
  2892. /**
  2893. * M117: Set LCD Status Message
  2894. */
  2895. inline void gcode_M117() {
  2896. char* codepos = strchr_pointer + 5;
  2897. char* starpos = strchr(codepos, '*');
  2898. if (starpos) *starpos = '\0';
  2899. lcd_setstatus(codepos);
  2900. }
  2901. /**
  2902. * M119: Output endstop states to serial output
  2903. */
  2904. inline void gcode_M119() {
  2905. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2906. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2907. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2908. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2909. #endif
  2910. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2911. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2912. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2913. #endif
  2914. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2915. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2916. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2917. #endif
  2918. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2919. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2920. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2921. #endif
  2922. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2923. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2924. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2925. #endif
  2926. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2927. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2928. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2929. #endif
  2930. }
  2931. /**
  2932. * M120: Enable endstops
  2933. */
  2934. inline void gcode_M120() { enable_endstops(false); }
  2935. /**
  2936. * M121: Disable endstops
  2937. */
  2938. inline void gcode_M121() { enable_endstops(true); }
  2939. #ifdef BLINKM
  2940. /**
  2941. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2942. */
  2943. inline void gcode_M150() {
  2944. SendColors(
  2945. code_seen('R') ? (byte)code_value() : 0,
  2946. code_seen('U') ? (byte)code_value() : 0,
  2947. code_seen('B') ? (byte)code_value() : 0
  2948. );
  2949. }
  2950. #endif // BLINKM
  2951. /**
  2952. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2953. * T<extruder>
  2954. * D<millimeters>
  2955. */
  2956. inline void gcode_M200() {
  2957. tmp_extruder = active_extruder;
  2958. if (code_seen('T')) {
  2959. tmp_extruder = code_value();
  2960. if (tmp_extruder >= EXTRUDERS) {
  2961. SERIAL_ECHO_START;
  2962. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2963. return;
  2964. }
  2965. }
  2966. float area = .0;
  2967. if (code_seen('D')) {
  2968. float diameter = code_value();
  2969. // setting any extruder filament size disables volumetric on the assumption that
  2970. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2971. // for all extruders
  2972. volumetric_enabled = (diameter != 0.0);
  2973. if (volumetric_enabled) {
  2974. filament_size[tmp_extruder] = diameter;
  2975. // make sure all extruders have some sane value for the filament size
  2976. for (int i=0; i<EXTRUDERS; i++)
  2977. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2978. }
  2979. }
  2980. else {
  2981. //reserved for setting filament diameter via UFID or filament measuring device
  2982. return;
  2983. }
  2984. calculate_volumetric_multipliers();
  2985. }
  2986. /**
  2987. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2988. */
  2989. inline void gcode_M201() {
  2990. for (int8_t i=0; i < NUM_AXIS; i++) {
  2991. if (code_seen(axis_codes[i])) {
  2992. max_acceleration_units_per_sq_second[i] = code_value();
  2993. }
  2994. }
  2995. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2996. reset_acceleration_rates();
  2997. }
  2998. #if 0 // Not used for Sprinter/grbl gen6
  2999. inline void gcode_M202() {
  3000. for(int8_t i=0; i < NUM_AXIS; i++) {
  3001. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3002. }
  3003. }
  3004. #endif
  3005. /**
  3006. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3007. */
  3008. inline void gcode_M203() {
  3009. for (int8_t i=0; i < NUM_AXIS; i++) {
  3010. if (code_seen(axis_codes[i])) {
  3011. max_feedrate[i] = code_value();
  3012. }
  3013. }
  3014. }
  3015. /**
  3016. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3017. *
  3018. * P = Printing moves
  3019. * R = Retract only (no X, Y, Z) moves
  3020. * T = Travel (non printing) moves
  3021. *
  3022. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3023. */
  3024. inline void gcode_M204() {
  3025. if (code_seen('P'))
  3026. {
  3027. acceleration = code_value();
  3028. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3029. SERIAL_EOL;
  3030. }
  3031. if (code_seen('R'))
  3032. {
  3033. retract_acceleration = code_value();
  3034. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3035. SERIAL_EOL;
  3036. }
  3037. if (code_seen('T'))
  3038. {
  3039. travel_acceleration = code_value();
  3040. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3041. SERIAL_EOL;
  3042. }
  3043. }
  3044. /**
  3045. * M205: Set Advanced Settings
  3046. *
  3047. * S = Min Feed Rate (mm/s)
  3048. * T = Min Travel Feed Rate (mm/s)
  3049. * B = Min Segment Time (µs)
  3050. * X = Max XY Jerk (mm/s/s)
  3051. * Z = Max Z Jerk (mm/s/s)
  3052. * E = Max E Jerk (mm/s/s)
  3053. */
  3054. inline void gcode_M205() {
  3055. if (code_seen('S')) minimumfeedrate = code_value();
  3056. if (code_seen('T')) mintravelfeedrate = code_value();
  3057. if (code_seen('B')) minsegmenttime = code_value();
  3058. if (code_seen('X')) max_xy_jerk = code_value();
  3059. if (code_seen('Z')) max_z_jerk = code_value();
  3060. if (code_seen('E')) max_e_jerk = code_value();
  3061. }
  3062. /**
  3063. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3064. */
  3065. inline void gcode_M206() {
  3066. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3067. if (code_seen(axis_codes[i])) {
  3068. add_homing[i] = code_value();
  3069. }
  3070. }
  3071. #ifdef SCARA
  3072. if (code_seen('T')) add_homing[X_AXIS] = code_value(); // Theta
  3073. if (code_seen('P')) add_homing[Y_AXIS] = code_value(); // Psi
  3074. #endif
  3075. }
  3076. #ifdef DELTA
  3077. /**
  3078. * M665: Set delta configurations
  3079. *
  3080. * L = diagonal rod
  3081. * R = delta radius
  3082. * S = segments per second
  3083. */
  3084. inline void gcode_M665() {
  3085. if (code_seen('L')) delta_diagonal_rod = code_value();
  3086. if (code_seen('R')) delta_radius = code_value();
  3087. if (code_seen('S')) delta_segments_per_second = code_value();
  3088. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3089. }
  3090. /**
  3091. * M666: Set delta endstop adjustment
  3092. */
  3093. inline void gcode_M666() {
  3094. for (int8_t i = 0; i < 3; i++) {
  3095. if (code_seen(axis_codes[i])) {
  3096. endstop_adj[i] = code_value();
  3097. }
  3098. }
  3099. }
  3100. #endif // DELTA
  3101. #ifdef FWRETRACT
  3102. /**
  3103. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3104. */
  3105. inline void gcode_M207() {
  3106. if (code_seen('S')) retract_length = code_value();
  3107. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3108. if (code_seen('Z')) retract_zlift = code_value();
  3109. }
  3110. /**
  3111. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3112. */
  3113. inline void gcode_M208() {
  3114. if (code_seen('S')) retract_recover_length = code_value();
  3115. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3116. }
  3117. /**
  3118. * M209: Enable automatic retract (M209 S1)
  3119. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3120. */
  3121. inline void gcode_M209() {
  3122. if (code_seen('S')) {
  3123. int t = code_value();
  3124. switch(t) {
  3125. case 0:
  3126. autoretract_enabled = false;
  3127. break;
  3128. case 1:
  3129. autoretract_enabled = true;
  3130. break;
  3131. default:
  3132. SERIAL_ECHO_START;
  3133. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3134. SERIAL_ECHO(cmdbuffer[bufindr]);
  3135. SERIAL_ECHOLNPGM("\"");
  3136. return;
  3137. }
  3138. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3139. }
  3140. }
  3141. #endif // FWRETRACT
  3142. #if EXTRUDERS > 1
  3143. /**
  3144. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3145. */
  3146. inline void gcode_M218() {
  3147. if (setTargetedHotend(218)) return;
  3148. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3149. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3150. #ifdef DUAL_X_CARRIAGE
  3151. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3152. #endif
  3153. SERIAL_ECHO_START;
  3154. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3155. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3156. SERIAL_ECHO(" ");
  3157. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3158. SERIAL_ECHO(",");
  3159. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3160. #ifdef DUAL_X_CARRIAGE
  3161. SERIAL_ECHO(",");
  3162. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3163. #endif
  3164. }
  3165. SERIAL_EOL;
  3166. }
  3167. #endif // EXTRUDERS > 1
  3168. /**
  3169. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3170. */
  3171. inline void gcode_M220() {
  3172. if (code_seen('S')) feedmultiply = code_value();
  3173. }
  3174. /**
  3175. * M221: Set extrusion percentage (M221 T0 S95)
  3176. */
  3177. inline void gcode_M221() {
  3178. if (code_seen('S')) {
  3179. int sval = code_value();
  3180. if (code_seen('T')) {
  3181. if (setTargetedHotend(221)) return;
  3182. extruder_multiply[tmp_extruder] = sval;
  3183. }
  3184. else {
  3185. extrudemultiply = sval;
  3186. }
  3187. }
  3188. }
  3189. /**
  3190. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3191. */
  3192. inline void gcode_M226() {
  3193. if (code_seen('P')) {
  3194. int pin_number = code_value();
  3195. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3196. if (pin_state >= -1 && pin_state <= 1) {
  3197. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3198. if (sensitive_pins[i] == pin_number) {
  3199. pin_number = -1;
  3200. break;
  3201. }
  3202. }
  3203. if (pin_number > -1) {
  3204. int target = LOW;
  3205. st_synchronize();
  3206. pinMode(pin_number, INPUT);
  3207. switch(pin_state){
  3208. case 1:
  3209. target = HIGH;
  3210. break;
  3211. case 0:
  3212. target = LOW;
  3213. break;
  3214. case -1:
  3215. target = !digitalRead(pin_number);
  3216. break;
  3217. }
  3218. while(digitalRead(pin_number) != target) {
  3219. manage_heater();
  3220. manage_inactivity();
  3221. lcd_update();
  3222. }
  3223. } // pin_number > -1
  3224. } // pin_state -1 0 1
  3225. } // code_seen('P')
  3226. }
  3227. #if NUM_SERVOS > 0
  3228. /**
  3229. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3230. */
  3231. inline void gcode_M280() {
  3232. int servo_index = code_seen('P') ? code_value() : -1;
  3233. int servo_position = 0;
  3234. if (code_seen('S')) {
  3235. servo_position = code_value();
  3236. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3237. #if SERVO_LEVELING
  3238. servos[servo_index].attach(0);
  3239. #endif
  3240. servos[servo_index].write(servo_position);
  3241. #if SERVO_LEVELING
  3242. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3243. servos[servo_index].detach();
  3244. #endif
  3245. }
  3246. else {
  3247. SERIAL_ECHO_START;
  3248. SERIAL_ECHO("Servo ");
  3249. SERIAL_ECHO(servo_index);
  3250. SERIAL_ECHOLN(" out of range");
  3251. }
  3252. }
  3253. else if (servo_index >= 0) {
  3254. SERIAL_PROTOCOL(MSG_OK);
  3255. SERIAL_PROTOCOL(" Servo ");
  3256. SERIAL_PROTOCOL(servo_index);
  3257. SERIAL_PROTOCOL(": ");
  3258. SERIAL_PROTOCOL(servos[servo_index].read());
  3259. SERIAL_PROTOCOLLN("");
  3260. }
  3261. }
  3262. #endif // NUM_SERVOS > 0
  3263. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3264. /**
  3265. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3266. */
  3267. inline void gcode_M300() {
  3268. int beepS = code_seen('S') ? code_value() : 110;
  3269. int beepP = code_seen('P') ? code_value() : 1000;
  3270. if (beepS > 0) {
  3271. #if BEEPER > 0
  3272. tone(BEEPER, beepS);
  3273. delay(beepP);
  3274. noTone(BEEPER);
  3275. #elif defined(ULTRALCD)
  3276. lcd_buzz(beepS, beepP);
  3277. #elif defined(LCD_USE_I2C_BUZZER)
  3278. lcd_buzz(beepP, beepS);
  3279. #endif
  3280. }
  3281. else {
  3282. delay(beepP);
  3283. }
  3284. }
  3285. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3286. #ifdef PIDTEMP
  3287. /**
  3288. * M301: Set PID parameters P I D (and optionally C)
  3289. */
  3290. inline void gcode_M301() {
  3291. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3292. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3293. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3294. if (e < EXTRUDERS) { // catch bad input value
  3295. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3296. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3297. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3298. #ifdef PID_ADD_EXTRUSION_RATE
  3299. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3300. #endif
  3301. updatePID();
  3302. SERIAL_PROTOCOL(MSG_OK);
  3303. #ifdef PID_PARAMS_PER_EXTRUDER
  3304. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3305. SERIAL_PROTOCOL(e);
  3306. #endif // PID_PARAMS_PER_EXTRUDER
  3307. SERIAL_PROTOCOL(" p:");
  3308. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3309. SERIAL_PROTOCOL(" i:");
  3310. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3311. SERIAL_PROTOCOL(" d:");
  3312. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3313. #ifdef PID_ADD_EXTRUSION_RATE
  3314. SERIAL_PROTOCOL(" c:");
  3315. //Kc does not have scaling applied above, or in resetting defaults
  3316. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3317. #endif
  3318. SERIAL_PROTOCOLLN("");
  3319. }
  3320. else {
  3321. SERIAL_ECHO_START;
  3322. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3323. }
  3324. }
  3325. #endif // PIDTEMP
  3326. #ifdef PIDTEMPBED
  3327. inline void gcode_M304() {
  3328. if (code_seen('P')) bedKp = code_value();
  3329. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3330. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3331. updatePID();
  3332. SERIAL_PROTOCOL(MSG_OK);
  3333. SERIAL_PROTOCOL(" p:");
  3334. SERIAL_PROTOCOL(bedKp);
  3335. SERIAL_PROTOCOL(" i:");
  3336. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3337. SERIAL_PROTOCOL(" d:");
  3338. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3339. SERIAL_PROTOCOLLN("");
  3340. }
  3341. #endif // PIDTEMPBED
  3342. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3343. /**
  3344. * M240: Trigger a camera by emulating a Canon RC-1
  3345. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3346. */
  3347. inline void gcode_M240() {
  3348. #ifdef CHDK
  3349. OUT_WRITE(CHDK, HIGH);
  3350. chdkHigh = millis();
  3351. chdkActive = true;
  3352. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3353. const uint8_t NUM_PULSES = 16;
  3354. const float PULSE_LENGTH = 0.01524;
  3355. for (int i = 0; i < NUM_PULSES; i++) {
  3356. WRITE(PHOTOGRAPH_PIN, HIGH);
  3357. _delay_ms(PULSE_LENGTH);
  3358. WRITE(PHOTOGRAPH_PIN, LOW);
  3359. _delay_ms(PULSE_LENGTH);
  3360. }
  3361. delay(7.33);
  3362. for (int i = 0; i < NUM_PULSES; i++) {
  3363. WRITE(PHOTOGRAPH_PIN, HIGH);
  3364. _delay_ms(PULSE_LENGTH);
  3365. WRITE(PHOTOGRAPH_PIN, LOW);
  3366. _delay_ms(PULSE_LENGTH);
  3367. }
  3368. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3369. }
  3370. #endif // CHDK || PHOTOGRAPH_PIN
  3371. #ifdef DOGLCD
  3372. /**
  3373. * M250: Read and optionally set the LCD contrast
  3374. */
  3375. inline void gcode_M250() {
  3376. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3377. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3378. SERIAL_PROTOCOL(lcd_contrast);
  3379. SERIAL_PROTOCOLLN("");
  3380. }
  3381. #endif // DOGLCD
  3382. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3383. /**
  3384. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3385. */
  3386. inline void gcode_M302() {
  3387. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3388. }
  3389. #endif // PREVENT_DANGEROUS_EXTRUDE
  3390. /**
  3391. * M303: PID relay autotune
  3392. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3393. * E<extruder> (-1 for the bed)
  3394. * C<cycles>
  3395. */
  3396. inline void gcode_M303() {
  3397. int e = code_seen('E') ? code_value_long() : 0;
  3398. int c = code_seen('C') ? code_value_long() : 5;
  3399. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3400. PID_autotune(temp, e, c);
  3401. }
  3402. #ifdef SCARA
  3403. /**
  3404. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3405. */
  3406. inline bool gcode_M360() {
  3407. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3408. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3409. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3410. if (! Stopped) {
  3411. //get_coordinates(); // For X Y Z E F
  3412. delta[X_AXIS] = 0;
  3413. delta[Y_AXIS] = 120;
  3414. calculate_SCARA_forward_Transform(delta);
  3415. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3416. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3417. prepare_move();
  3418. //ClearToSend();
  3419. return true;
  3420. }
  3421. return false;
  3422. }
  3423. /**
  3424. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3425. */
  3426. inline bool gcode_M361() {
  3427. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3428. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3429. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3430. if (! Stopped) {
  3431. //get_coordinates(); // For X Y Z E F
  3432. delta[X_AXIS] = 90;
  3433. delta[Y_AXIS] = 130;
  3434. calculate_SCARA_forward_Transform(delta);
  3435. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3436. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3437. prepare_move();
  3438. //ClearToSend();
  3439. return true;
  3440. }
  3441. return false;
  3442. }
  3443. /**
  3444. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3445. */
  3446. inline bool gcode_M362() {
  3447. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3448. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3449. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3450. if (! Stopped) {
  3451. //get_coordinates(); // For X Y Z E F
  3452. delta[X_AXIS] = 60;
  3453. delta[Y_AXIS] = 180;
  3454. calculate_SCARA_forward_Transform(delta);
  3455. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3456. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3457. prepare_move();
  3458. //ClearToSend();
  3459. return true;
  3460. }
  3461. return false;
  3462. }
  3463. /**
  3464. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3465. */
  3466. inline bool gcode_M363() {
  3467. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3468. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3469. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3470. if (! Stopped) {
  3471. //get_coordinates(); // For X Y Z E F
  3472. delta[X_AXIS] = 50;
  3473. delta[Y_AXIS] = 90;
  3474. calculate_SCARA_forward_Transform(delta);
  3475. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3476. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3477. prepare_move();
  3478. //ClearToSend();
  3479. return true;
  3480. }
  3481. return false;
  3482. }
  3483. /**
  3484. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3485. */
  3486. inline bool gcode_M364() {
  3487. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3488. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3489. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3490. if (! Stopped) {
  3491. //get_coordinates(); // For X Y Z E F
  3492. delta[X_AXIS] = 45;
  3493. delta[Y_AXIS] = 135;
  3494. calculate_SCARA_forward_Transform(delta);
  3495. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  3496. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  3497. prepare_move();
  3498. //ClearToSend();
  3499. return true;
  3500. }
  3501. return false;
  3502. }
  3503. /**
  3504. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3505. */
  3506. inline void gcode_M365() {
  3507. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3508. if (code_seen(axis_codes[i])) {
  3509. axis_scaling[i] = code_value();
  3510. }
  3511. }
  3512. }
  3513. #endif // SCARA
  3514. #ifdef EXT_SOLENOID
  3515. void enable_solenoid(uint8_t num) {
  3516. switch(num) {
  3517. case 0:
  3518. OUT_WRITE(SOL0_PIN, HIGH);
  3519. break;
  3520. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3521. case 1:
  3522. OUT_WRITE(SOL1_PIN, HIGH);
  3523. break;
  3524. #endif
  3525. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3526. case 2:
  3527. OUT_WRITE(SOL2_PIN, HIGH);
  3528. break;
  3529. #endif
  3530. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3531. case 3:
  3532. OUT_WRITE(SOL3_PIN, HIGH);
  3533. break;
  3534. #endif
  3535. default:
  3536. SERIAL_ECHO_START;
  3537. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3538. break;
  3539. }
  3540. }
  3541. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3542. void disable_all_solenoids() {
  3543. OUT_WRITE(SOL0_PIN, LOW);
  3544. OUT_WRITE(SOL1_PIN, LOW);
  3545. OUT_WRITE(SOL2_PIN, LOW);
  3546. OUT_WRITE(SOL3_PIN, LOW);
  3547. }
  3548. /**
  3549. * M380: Enable solenoid on the active extruder
  3550. */
  3551. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3552. /**
  3553. * M381: Disable all solenoids
  3554. */
  3555. inline void gcode_M381() { disable_all_solenoids(); }
  3556. #endif // EXT_SOLENOID
  3557. /**
  3558. * M400: Finish all moves
  3559. */
  3560. inline void gcode_M400() { st_synchronize(); }
  3561. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3562. /**
  3563. * M401: Engage Z Servo endstop if available
  3564. */
  3565. inline void gcode_M401() { engage_z_probe(); }
  3566. /**
  3567. * M402: Retract Z Servo endstop if enabled
  3568. */
  3569. inline void gcode_M402() { retract_z_probe(); }
  3570. #endif
  3571. #ifdef FILAMENT_SENSOR
  3572. /**
  3573. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3574. */
  3575. inline void gcode_M404() {
  3576. #if FILWIDTH_PIN > -1
  3577. if (code_seen('W')) {
  3578. filament_width_nominal = code_value();
  3579. }
  3580. else {
  3581. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3582. SERIAL_PROTOCOLLN(filament_width_nominal);
  3583. }
  3584. #endif
  3585. }
  3586. /**
  3587. * M405: Turn on filament sensor for control
  3588. */
  3589. inline void gcode_M405() {
  3590. if (code_seen('D')) meas_delay_cm = code_value();
  3591. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3592. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3593. int temp_ratio = widthFil_to_size_ratio();
  3594. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3595. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3596. delay_index1 = delay_index2 = 0;
  3597. }
  3598. filament_sensor = true;
  3599. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3600. //SERIAL_PROTOCOL(filament_width_meas);
  3601. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3602. //SERIAL_PROTOCOL(extrudemultiply);
  3603. }
  3604. /**
  3605. * M406: Turn off filament sensor for control
  3606. */
  3607. inline void gcode_M406() { filament_sensor = false; }
  3608. /**
  3609. * M407: Get measured filament diameter on serial output
  3610. */
  3611. inline void gcode_M407() {
  3612. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3613. SERIAL_PROTOCOLLN(filament_width_meas);
  3614. }
  3615. #endif // FILAMENT_SENSOR
  3616. /**
  3617. * M500: Store settings in EEPROM
  3618. */
  3619. inline void gcode_M500() {
  3620. Config_StoreSettings();
  3621. }
  3622. /**
  3623. * M501: Read settings from EEPROM
  3624. */
  3625. inline void gcode_M501() {
  3626. Config_RetrieveSettings();
  3627. }
  3628. /**
  3629. * M502: Revert to default settings
  3630. */
  3631. inline void gcode_M502() {
  3632. Config_ResetDefault();
  3633. }
  3634. /**
  3635. * M503: print settings currently in memory
  3636. */
  3637. inline void gcode_M503() {
  3638. Config_PrintSettings(code_seen('S') && code_value == 0);
  3639. }
  3640. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3641. /**
  3642. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3643. */
  3644. inline void gcode_M540() {
  3645. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3646. }
  3647. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3648. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3649. inline void gcode_SET_Z_PROBE_OFFSET() {
  3650. float value;
  3651. if (code_seen('Z')) {
  3652. value = code_value();
  3653. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3654. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3655. SERIAL_ECHO_START;
  3656. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3657. SERIAL_PROTOCOLLN("");
  3658. }
  3659. else {
  3660. SERIAL_ECHO_START;
  3661. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3662. SERIAL_ECHOPGM(MSG_Z_MIN);
  3663. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3664. SERIAL_ECHOPGM(MSG_Z_MAX);
  3665. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3666. SERIAL_PROTOCOLLN("");
  3667. }
  3668. }
  3669. else {
  3670. SERIAL_ECHO_START;
  3671. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3672. SERIAL_ECHO(-zprobe_zoffset);
  3673. SERIAL_PROTOCOLLN("");
  3674. }
  3675. }
  3676. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3677. #ifdef FILAMENTCHANGEENABLE
  3678. /**
  3679. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3680. */
  3681. inline void gcode_M600() {
  3682. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3683. for (int i=0; i<NUM_AXIS; i++)
  3684. target[i] = lastpos[i] = current_position[i];
  3685. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3686. #ifdef DELTA
  3687. #define RUNPLAN calculate_delta(target); BASICPLAN
  3688. #else
  3689. #define RUNPLAN BASICPLAN
  3690. #endif
  3691. //retract by E
  3692. if (code_seen('E')) target[E_AXIS] += code_value();
  3693. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3694. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3695. #endif
  3696. RUNPLAN;
  3697. //lift Z
  3698. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3699. #ifdef FILAMENTCHANGE_ZADD
  3700. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3701. #endif
  3702. RUNPLAN;
  3703. //move xy
  3704. if (code_seen('X')) target[X_AXIS] = code_value();
  3705. #ifdef FILAMENTCHANGE_XPOS
  3706. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3707. #endif
  3708. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3709. #ifdef FILAMENTCHANGE_YPOS
  3710. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3711. #endif
  3712. RUNPLAN;
  3713. if (code_seen('L')) target[E_AXIS] += code_value();
  3714. #ifdef FILAMENTCHANGE_FINALRETRACT
  3715. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3716. #endif
  3717. RUNPLAN;
  3718. //finish moves
  3719. st_synchronize();
  3720. //disable extruder steppers so filament can be removed
  3721. disable_e0();
  3722. disable_e1();
  3723. disable_e2();
  3724. disable_e3();
  3725. delay(100);
  3726. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3727. uint8_t cnt = 0;
  3728. while (!lcd_clicked()) {
  3729. cnt++;
  3730. manage_heater();
  3731. manage_inactivity(true);
  3732. lcd_update();
  3733. if (cnt == 0) {
  3734. #if BEEPER > 0
  3735. OUT_WRITE(BEEPER,HIGH);
  3736. delay(3);
  3737. WRITE(BEEPER,LOW);
  3738. delay(3);
  3739. #else
  3740. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3741. lcd_buzz(1000/6, 100);
  3742. #else
  3743. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3744. #endif
  3745. #endif
  3746. }
  3747. } // while(!lcd_clicked)
  3748. //return to normal
  3749. if (code_seen('L')) target[E_AXIS] -= code_value();
  3750. #ifdef FILAMENTCHANGE_FINALRETRACT
  3751. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3752. #endif
  3753. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3754. plan_set_e_position(current_position[E_AXIS]);
  3755. RUNPLAN; //should do nothing
  3756. lcd_reset_alert_level();
  3757. #ifdef DELTA
  3758. calculate_delta(lastpos);
  3759. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3760. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3761. #else
  3762. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3763. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3764. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3765. #endif
  3766. #ifdef FILAMENT_RUNOUT_SENSOR
  3767. filrunoutEnqued = false;
  3768. #endif
  3769. }
  3770. #endif // FILAMENTCHANGEENABLE
  3771. #ifdef DUAL_X_CARRIAGE
  3772. /**
  3773. * M605: Set dual x-carriage movement mode
  3774. *
  3775. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3776. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3777. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3778. * millimeters x-offset and an optional differential hotend temperature of
  3779. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3780. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3781. *
  3782. * Note: the X axis should be homed after changing dual x-carriage mode.
  3783. */
  3784. inline void gcode_M605() {
  3785. st_synchronize();
  3786. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3787. switch(dual_x_carriage_mode) {
  3788. case DXC_DUPLICATION_MODE:
  3789. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3790. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3791. SERIAL_ECHO_START;
  3792. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3793. SERIAL_ECHO(" ");
  3794. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3795. SERIAL_ECHO(",");
  3796. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3797. SERIAL_ECHO(" ");
  3798. SERIAL_ECHO(duplicate_extruder_x_offset);
  3799. SERIAL_ECHO(",");
  3800. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3801. break;
  3802. case DXC_FULL_CONTROL_MODE:
  3803. case DXC_AUTO_PARK_MODE:
  3804. break;
  3805. default:
  3806. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3807. break;
  3808. }
  3809. active_extruder_parked = false;
  3810. extruder_duplication_enabled = false;
  3811. delayed_move_time = 0;
  3812. }
  3813. #endif // DUAL_X_CARRIAGE
  3814. /**
  3815. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3816. */
  3817. inline void gcode_M907() {
  3818. #if HAS_DIGIPOTSS
  3819. for (int i=0;i<NUM_AXIS;i++)
  3820. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3821. if (code_seen('B')) digipot_current(4, code_value());
  3822. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3823. #endif
  3824. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3825. if (code_seen('X')) digipot_current(0, code_value());
  3826. #endif
  3827. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3828. if (code_seen('Z')) digipot_current(1, code_value());
  3829. #endif
  3830. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3831. if (code_seen('E')) digipot_current(2, code_value());
  3832. #endif
  3833. #ifdef DIGIPOT_I2C
  3834. // this one uses actual amps in floating point
  3835. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3836. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3837. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3838. #endif
  3839. }
  3840. #if HAS_DIGIPOTSS
  3841. /**
  3842. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3843. */
  3844. inline void gcode_M908() {
  3845. digitalPotWrite(
  3846. code_seen('P') ? code_value() : 0,
  3847. code_seen('S') ? code_value() : 0
  3848. );
  3849. }
  3850. #endif // HAS_DIGIPOTSS
  3851. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3852. inline void gcode_M350() {
  3853. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3854. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3855. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3856. if(code_seen('B')) microstep_mode(4,code_value());
  3857. microstep_readings();
  3858. #endif
  3859. }
  3860. /**
  3861. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3862. * S# determines MS1 or MS2, X# sets the pin high/low.
  3863. */
  3864. inline void gcode_M351() {
  3865. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3866. if (code_seen('S')) switch(code_value_long()) {
  3867. case 1:
  3868. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3869. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3870. break;
  3871. case 2:
  3872. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3873. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3874. break;
  3875. }
  3876. microstep_readings();
  3877. #endif
  3878. }
  3879. /**
  3880. * M999: Restart after being stopped
  3881. */
  3882. inline void gcode_M999() {
  3883. Stopped = false;
  3884. lcd_reset_alert_level();
  3885. gcode_LastN = Stopped_gcode_LastN;
  3886. FlushSerialRequestResend();
  3887. }
  3888. inline void gcode_T() {
  3889. tmp_extruder = code_value();
  3890. if (tmp_extruder >= EXTRUDERS) {
  3891. SERIAL_ECHO_START;
  3892. SERIAL_ECHO("T");
  3893. SERIAL_ECHO(tmp_extruder);
  3894. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3895. }
  3896. else {
  3897. boolean make_move = false;
  3898. if (code_seen('F')) {
  3899. make_move = true;
  3900. next_feedrate = code_value();
  3901. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3902. }
  3903. #if EXTRUDERS > 1
  3904. if (tmp_extruder != active_extruder) {
  3905. // Save current position to return to after applying extruder offset
  3906. memcpy(destination, current_position, sizeof(destination));
  3907. #ifdef DUAL_X_CARRIAGE
  3908. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3909. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3910. // Park old head: 1) raise 2) move to park position 3) lower
  3911. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3912. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3913. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3914. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3915. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3916. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3917. st_synchronize();
  3918. }
  3919. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3920. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3921. extruder_offset[Y_AXIS][active_extruder] +
  3922. extruder_offset[Y_AXIS][tmp_extruder];
  3923. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3924. extruder_offset[Z_AXIS][active_extruder] +
  3925. extruder_offset[Z_AXIS][tmp_extruder];
  3926. active_extruder = tmp_extruder;
  3927. // This function resets the max/min values - the current position may be overwritten below.
  3928. axis_is_at_home(X_AXIS);
  3929. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3930. current_position[X_AXIS] = inactive_extruder_x_pos;
  3931. inactive_extruder_x_pos = destination[X_AXIS];
  3932. }
  3933. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3934. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3935. if (active_extruder == 0 || active_extruder_parked)
  3936. current_position[X_AXIS] = inactive_extruder_x_pos;
  3937. else
  3938. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3939. inactive_extruder_x_pos = destination[X_AXIS];
  3940. extruder_duplication_enabled = false;
  3941. }
  3942. else {
  3943. // record raised toolhead position for use by unpark
  3944. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3945. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3946. active_extruder_parked = true;
  3947. delayed_move_time = 0;
  3948. }
  3949. #else // !DUAL_X_CARRIAGE
  3950. // Offset extruder (only by XY)
  3951. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3952. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3953. // Set the new active extruder and position
  3954. active_extruder = tmp_extruder;
  3955. #endif // !DUAL_X_CARRIAGE
  3956. #ifdef DELTA
  3957. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3958. //sent position to plan_set_position();
  3959. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3960. #else
  3961. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3962. #endif
  3963. // Move to the old position if 'F' was in the parameters
  3964. if (make_move && !Stopped) prepare_move();
  3965. }
  3966. #ifdef EXT_SOLENOID
  3967. st_synchronize();
  3968. disable_all_solenoids();
  3969. enable_solenoid_on_active_extruder();
  3970. #endif // EXT_SOLENOID
  3971. #endif // EXTRUDERS > 1
  3972. SERIAL_ECHO_START;
  3973. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3974. SERIAL_PROTOCOLLN((int)active_extruder);
  3975. }
  3976. }
  3977. /**
  3978. * Process Commands and dispatch them to handlers
  3979. */
  3980. void process_commands() {
  3981. if (code_seen('G')) {
  3982. int gCode = code_value_long();
  3983. switch(gCode) {
  3984. // G0, G1
  3985. case 0:
  3986. case 1:
  3987. gcode_G0_G1();
  3988. break;
  3989. // G2, G3
  3990. #ifndef SCARA
  3991. case 2: // G2 - CW ARC
  3992. case 3: // G3 - CCW ARC
  3993. gcode_G2_G3(gCode == 2);
  3994. break;
  3995. #endif
  3996. // G4 Dwell
  3997. case 4:
  3998. gcode_G4();
  3999. break;
  4000. #ifdef FWRETRACT
  4001. case 10: // G10: retract
  4002. case 11: // G11: retract_recover
  4003. gcode_G10_G11(gCode == 10);
  4004. break;
  4005. #endif //FWRETRACT
  4006. case 28: // G28: Home all axes, one at a time
  4007. gcode_G28();
  4008. break;
  4009. #ifdef ENABLE_AUTO_BED_LEVELING
  4010. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4011. gcode_G29();
  4012. break;
  4013. #ifndef Z_PROBE_SLED
  4014. case 30: // G30 Single Z Probe
  4015. gcode_G30();
  4016. break;
  4017. #else // Z_PROBE_SLED
  4018. case 31: // G31: dock the sled
  4019. case 32: // G32: undock the sled
  4020. dock_sled(gCode == 31);
  4021. break;
  4022. #endif // Z_PROBE_SLED
  4023. #endif // ENABLE_AUTO_BED_LEVELING
  4024. case 90: // G90
  4025. relative_mode = false;
  4026. break;
  4027. case 91: // G91
  4028. relative_mode = true;
  4029. break;
  4030. case 92: // G92
  4031. gcode_G92();
  4032. break;
  4033. }
  4034. }
  4035. else if (code_seen('M')) {
  4036. switch( code_value_long() ) {
  4037. #ifdef ULTIPANEL
  4038. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4039. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4040. gcode_M0_M1();
  4041. break;
  4042. #endif // ULTIPANEL
  4043. case 17:
  4044. gcode_M17();
  4045. break;
  4046. #ifdef SDSUPPORT
  4047. case 20: // M20 - list SD card
  4048. gcode_M20(); break;
  4049. case 21: // M21 - init SD card
  4050. gcode_M21(); break;
  4051. case 22: //M22 - release SD card
  4052. gcode_M22(); break;
  4053. case 23: //M23 - Select file
  4054. gcode_M23(); break;
  4055. case 24: //M24 - Start SD print
  4056. gcode_M24(); break;
  4057. case 25: //M25 - Pause SD print
  4058. gcode_M25(); break;
  4059. case 26: //M26 - Set SD index
  4060. gcode_M26(); break;
  4061. case 27: //M27 - Get SD status
  4062. gcode_M27(); break;
  4063. case 28: //M28 - Start SD write
  4064. gcode_M28(); break;
  4065. case 29: //M29 - Stop SD write
  4066. gcode_M29(); break;
  4067. case 30: //M30 <filename> Delete File
  4068. gcode_M30(); break;
  4069. case 32: //M32 - Select file and start SD print
  4070. gcode_M32(); break;
  4071. case 928: //M928 - Start SD write
  4072. gcode_M928(); break;
  4073. #endif //SDSUPPORT
  4074. case 31: //M31 take time since the start of the SD print or an M109 command
  4075. gcode_M31();
  4076. break;
  4077. case 42: //M42 -Change pin status via gcode
  4078. gcode_M42();
  4079. break;
  4080. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4081. case 48: // M48 Z-Probe repeatability
  4082. gcode_M48();
  4083. break;
  4084. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4085. case 104: // M104
  4086. gcode_M104();
  4087. break;
  4088. case 112: // M112 Emergency Stop
  4089. gcode_M112();
  4090. break;
  4091. case 140: // M140 Set bed temp
  4092. gcode_M140();
  4093. break;
  4094. case 105: // M105 Read current temperature
  4095. gcode_M105();
  4096. return;
  4097. break;
  4098. case 109: // M109 Wait for temperature
  4099. gcode_M109();
  4100. break;
  4101. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4102. case 190: // M190 - Wait for bed heater to reach target.
  4103. gcode_M190();
  4104. break;
  4105. #endif //TEMP_BED_PIN
  4106. #if defined(FAN_PIN) && FAN_PIN > -1
  4107. case 106: //M106 Fan On
  4108. gcode_M106();
  4109. break;
  4110. case 107: //M107 Fan Off
  4111. gcode_M107();
  4112. break;
  4113. #endif //FAN_PIN
  4114. #ifdef BARICUDA
  4115. // PWM for HEATER_1_PIN
  4116. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4117. case 126: // M126 valve open
  4118. gcode_M126();
  4119. break;
  4120. case 127: // M127 valve closed
  4121. gcode_M127();
  4122. break;
  4123. #endif //HEATER_1_PIN
  4124. // PWM for HEATER_2_PIN
  4125. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4126. case 128: // M128 valve open
  4127. gcode_M128();
  4128. break;
  4129. case 129: // M129 valve closed
  4130. gcode_M129();
  4131. break;
  4132. #endif //HEATER_2_PIN
  4133. #endif //BARICUDA
  4134. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4135. case 80: // M80 - Turn on Power Supply
  4136. gcode_M80();
  4137. break;
  4138. #endif // PS_ON_PIN
  4139. case 81: // M81 - Turn off Power Supply
  4140. gcode_M81();
  4141. break;
  4142. case 82:
  4143. gcode_M82();
  4144. break;
  4145. case 83:
  4146. gcode_M83();
  4147. break;
  4148. case 18: //compatibility
  4149. case 84: // M84
  4150. gcode_M18_M84();
  4151. break;
  4152. case 85: // M85
  4153. gcode_M85();
  4154. break;
  4155. case 92: // M92
  4156. gcode_M92();
  4157. break;
  4158. case 115: // M115
  4159. gcode_M115();
  4160. break;
  4161. case 117: // M117 display message
  4162. gcode_M117();
  4163. break;
  4164. case 114: // M114
  4165. gcode_M114();
  4166. break;
  4167. case 120: // M120
  4168. gcode_M120();
  4169. break;
  4170. case 121: // M121
  4171. gcode_M121();
  4172. break;
  4173. case 119: // M119
  4174. gcode_M119();
  4175. break;
  4176. //TODO: update for all axis, use for loop
  4177. #ifdef BLINKM
  4178. case 150: // M150
  4179. gcode_M150();
  4180. break;
  4181. #endif //BLINKM
  4182. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4183. gcode_M200();
  4184. break;
  4185. case 201: // M201
  4186. gcode_M201();
  4187. break;
  4188. #if 0 // Not used for Sprinter/grbl gen6
  4189. case 202: // M202
  4190. gcode_M202();
  4191. break;
  4192. #endif
  4193. case 203: // M203 max feedrate mm/sec
  4194. gcode_M203();
  4195. break;
  4196. case 204: // M204 acclereration S normal moves T filmanent only moves
  4197. gcode_M204();
  4198. break;
  4199. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4200. gcode_M205();
  4201. break;
  4202. case 206: // M206 additional homing offset
  4203. gcode_M206();
  4204. break;
  4205. #ifdef DELTA
  4206. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4207. gcode_M665();
  4208. break;
  4209. case 666: // M666 set delta endstop adjustment
  4210. gcode_M666();
  4211. break;
  4212. #endif // DELTA
  4213. #ifdef FWRETRACT
  4214. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4215. gcode_M207();
  4216. break;
  4217. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4218. gcode_M208();
  4219. break;
  4220. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4221. gcode_M209();
  4222. break;
  4223. #endif // FWRETRACT
  4224. #if EXTRUDERS > 1
  4225. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4226. gcode_M218();
  4227. break;
  4228. #endif
  4229. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4230. gcode_M220();
  4231. break;
  4232. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4233. gcode_M221();
  4234. break;
  4235. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4236. gcode_M226();
  4237. break;
  4238. #if NUM_SERVOS > 0
  4239. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4240. gcode_M280();
  4241. break;
  4242. #endif // NUM_SERVOS > 0
  4243. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4244. case 300: // M300 - Play beep tone
  4245. gcode_M300();
  4246. break;
  4247. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4248. #ifdef PIDTEMP
  4249. case 301: // M301
  4250. gcode_M301();
  4251. break;
  4252. #endif // PIDTEMP
  4253. #ifdef PIDTEMPBED
  4254. case 304: // M304
  4255. gcode_M304();
  4256. break;
  4257. #endif // PIDTEMPBED
  4258. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4259. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4260. gcode_M240();
  4261. break;
  4262. #endif // CHDK || PHOTOGRAPH_PIN
  4263. #ifdef DOGLCD
  4264. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4265. gcode_M250();
  4266. break;
  4267. #endif // DOGLCD
  4268. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4269. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4270. gcode_M302();
  4271. break;
  4272. #endif // PREVENT_DANGEROUS_EXTRUDE
  4273. case 303: // M303 PID autotune
  4274. gcode_M303();
  4275. break;
  4276. #ifdef SCARA
  4277. case 360: // M360 SCARA Theta pos1
  4278. if (gcode_M360()) return;
  4279. break;
  4280. case 361: // M361 SCARA Theta pos2
  4281. if (gcode_M361()) return;
  4282. break;
  4283. case 362: // M362 SCARA Psi pos1
  4284. if (gcode_M362()) return;
  4285. break;
  4286. case 363: // M363 SCARA Psi pos2
  4287. if (gcode_M363()) return;
  4288. break;
  4289. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4290. if (gcode_M364()) return;
  4291. break;
  4292. case 365: // M365 Set SCARA scaling for X Y Z
  4293. gcode_M365();
  4294. break;
  4295. #endif // SCARA
  4296. case 400: // M400 finish all moves
  4297. gcode_M400();
  4298. break;
  4299. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4300. case 401:
  4301. gcode_M401();
  4302. break;
  4303. case 402:
  4304. gcode_M402();
  4305. break;
  4306. #endif
  4307. #ifdef FILAMENT_SENSOR
  4308. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4309. gcode_M404();
  4310. break;
  4311. case 405: //M405 Turn on filament sensor for control
  4312. gcode_M405();
  4313. break;
  4314. case 406: //M406 Turn off filament sensor for control
  4315. gcode_M406();
  4316. break;
  4317. case 407: //M407 Display measured filament diameter
  4318. gcode_M407();
  4319. break;
  4320. #endif // FILAMENT_SENSOR
  4321. case 500: // M500 Store settings in EEPROM
  4322. gcode_M500();
  4323. break;
  4324. case 501: // M501 Read settings from EEPROM
  4325. gcode_M501();
  4326. break;
  4327. case 502: // M502 Revert to default settings
  4328. gcode_M502();
  4329. break;
  4330. case 503: // M503 print settings currently in memory
  4331. gcode_M503();
  4332. break;
  4333. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4334. case 540:
  4335. gcode_M540();
  4336. break;
  4337. #endif
  4338. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4339. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4340. gcode_SET_Z_PROBE_OFFSET();
  4341. break;
  4342. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4343. #ifdef FILAMENTCHANGEENABLE
  4344. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4345. gcode_M600();
  4346. break;
  4347. #endif // FILAMENTCHANGEENABLE
  4348. #ifdef DUAL_X_CARRIAGE
  4349. case 605:
  4350. gcode_M605();
  4351. break;
  4352. #endif // DUAL_X_CARRIAGE
  4353. case 907: // M907 Set digital trimpot motor current using axis codes.
  4354. gcode_M907();
  4355. break;
  4356. #if HAS_DIGIPOTSS
  4357. case 908: // M908 Control digital trimpot directly.
  4358. gcode_M908();
  4359. break;
  4360. #endif // HAS_DIGIPOTSS
  4361. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4362. gcode_M350();
  4363. break;
  4364. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4365. gcode_M351();
  4366. break;
  4367. case 999: // M999: Restart after being Stopped
  4368. gcode_M999();
  4369. break;
  4370. }
  4371. }
  4372. else if (code_seen('T')) {
  4373. gcode_T();
  4374. }
  4375. else {
  4376. SERIAL_ECHO_START;
  4377. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4378. SERIAL_ECHO(cmdbuffer[bufindr]);
  4379. SERIAL_ECHOLNPGM("\"");
  4380. }
  4381. ClearToSend();
  4382. }
  4383. void FlushSerialRequestResend()
  4384. {
  4385. //char cmdbuffer[bufindr][100]="Resend:";
  4386. MYSERIAL.flush();
  4387. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4388. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4389. ClearToSend();
  4390. }
  4391. void ClearToSend()
  4392. {
  4393. previous_millis_cmd = millis();
  4394. #ifdef SDSUPPORT
  4395. if(fromsd[bufindr])
  4396. return;
  4397. #endif //SDSUPPORT
  4398. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4399. }
  4400. void get_coordinates()
  4401. {
  4402. bool seen[4]={false,false,false,false};
  4403. for(int8_t i=0; i < NUM_AXIS; i++) {
  4404. if(code_seen(axis_codes[i]))
  4405. {
  4406. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4407. seen[i]=true;
  4408. }
  4409. else destination[i] = current_position[i]; //Are these else lines really needed?
  4410. }
  4411. if(code_seen('F')) {
  4412. next_feedrate = code_value();
  4413. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4414. }
  4415. }
  4416. void get_arc_coordinates()
  4417. {
  4418. #ifdef SF_ARC_FIX
  4419. bool relative_mode_backup = relative_mode;
  4420. relative_mode = true;
  4421. #endif
  4422. get_coordinates();
  4423. #ifdef SF_ARC_FIX
  4424. relative_mode=relative_mode_backup;
  4425. #endif
  4426. if(code_seen('I')) {
  4427. offset[0] = code_value();
  4428. }
  4429. else {
  4430. offset[0] = 0.0;
  4431. }
  4432. if(code_seen('J')) {
  4433. offset[1] = code_value();
  4434. }
  4435. else {
  4436. offset[1] = 0.0;
  4437. }
  4438. }
  4439. void clamp_to_software_endstops(float target[3])
  4440. {
  4441. if (min_software_endstops) {
  4442. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4443. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4444. float negative_z_offset = 0;
  4445. #ifdef ENABLE_AUTO_BED_LEVELING
  4446. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4447. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4448. #endif
  4449. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4450. }
  4451. if (max_software_endstops) {
  4452. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4453. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4454. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4455. }
  4456. }
  4457. #ifdef DELTA
  4458. void recalc_delta_settings(float radius, float diagonal_rod)
  4459. {
  4460. delta_tower1_x= -SIN_60*radius; // front left tower
  4461. delta_tower1_y= -COS_60*radius;
  4462. delta_tower2_x= SIN_60*radius; // front right tower
  4463. delta_tower2_y= -COS_60*radius;
  4464. delta_tower3_x= 0.0; // back middle tower
  4465. delta_tower3_y= radius;
  4466. delta_diagonal_rod_2= sq(diagonal_rod);
  4467. }
  4468. void calculate_delta(float cartesian[3])
  4469. {
  4470. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4471. - sq(delta_tower1_x-cartesian[X_AXIS])
  4472. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4473. ) + cartesian[Z_AXIS];
  4474. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4475. - sq(delta_tower2_x-cartesian[X_AXIS])
  4476. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4477. ) + cartesian[Z_AXIS];
  4478. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4479. - sq(delta_tower3_x-cartesian[X_AXIS])
  4480. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4481. ) + cartesian[Z_AXIS];
  4482. /*
  4483. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4484. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4485. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4486. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4487. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4488. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4489. */
  4490. }
  4491. #ifdef ENABLE_AUTO_BED_LEVELING
  4492. // Adjust print surface height by linear interpolation over the bed_level array.
  4493. int delta_grid_spacing[2] = { 0, 0 };
  4494. void adjust_delta(float cartesian[3])
  4495. {
  4496. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4497. return; // G29 not done
  4498. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4499. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4500. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4501. int floor_x = floor(grid_x);
  4502. int floor_y = floor(grid_y);
  4503. float ratio_x = grid_x - floor_x;
  4504. float ratio_y = grid_y - floor_y;
  4505. float z1 = bed_level[floor_x+half][floor_y+half];
  4506. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4507. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4508. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4509. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4510. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4511. float offset = (1-ratio_x)*left + ratio_x*right;
  4512. delta[X_AXIS] += offset;
  4513. delta[Y_AXIS] += offset;
  4514. delta[Z_AXIS] += offset;
  4515. /*
  4516. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4517. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4518. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4519. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4520. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4521. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4522. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4523. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4524. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4525. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4526. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4527. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4528. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4529. */
  4530. }
  4531. #endif //ENABLE_AUTO_BED_LEVELING
  4532. void prepare_move_raw()
  4533. {
  4534. previous_millis_cmd = millis();
  4535. calculate_delta(destination);
  4536. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4537. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4538. active_extruder);
  4539. for(int8_t i=0; i < NUM_AXIS; i++) {
  4540. current_position[i] = destination[i];
  4541. }
  4542. }
  4543. #endif //DELTA
  4544. void prepare_move()
  4545. {
  4546. clamp_to_software_endstops(destination);
  4547. previous_millis_cmd = millis();
  4548. #ifdef SCARA //for now same as delta-code
  4549. float difference[NUM_AXIS];
  4550. for (int8_t i=0; i < NUM_AXIS; i++) {
  4551. difference[i] = destination[i] - current_position[i];
  4552. }
  4553. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4554. sq(difference[Y_AXIS]) +
  4555. sq(difference[Z_AXIS]));
  4556. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4557. if (cartesian_mm < 0.000001) { return; }
  4558. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4559. int steps = max(1, int(scara_segments_per_second * seconds));
  4560. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4561. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4562. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4563. for (int s = 1; s <= steps; s++) {
  4564. float fraction = float(s) / float(steps);
  4565. for(int8_t i=0; i < NUM_AXIS; i++) {
  4566. destination[i] = current_position[i] + difference[i] * fraction;
  4567. }
  4568. calculate_delta(destination);
  4569. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4570. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4571. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4572. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4573. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4574. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4575. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4576. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4577. active_extruder);
  4578. }
  4579. #endif // SCARA
  4580. #ifdef DELTA
  4581. float difference[NUM_AXIS];
  4582. for (int8_t i=0; i < NUM_AXIS; i++) {
  4583. difference[i] = destination[i] - current_position[i];
  4584. }
  4585. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4586. sq(difference[Y_AXIS]) +
  4587. sq(difference[Z_AXIS]));
  4588. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4589. if (cartesian_mm < 0.000001) { return; }
  4590. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4591. int steps = max(1, int(delta_segments_per_second * seconds));
  4592. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4593. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4594. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4595. for (int s = 1; s <= steps; s++) {
  4596. float fraction = float(s) / float(steps);
  4597. for(int8_t i=0; i < NUM_AXIS; i++) {
  4598. destination[i] = current_position[i] + difference[i] * fraction;
  4599. }
  4600. calculate_delta(destination);
  4601. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4602. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4603. active_extruder);
  4604. }
  4605. #endif // DELTA
  4606. #ifdef DUAL_X_CARRIAGE
  4607. if (active_extruder_parked)
  4608. {
  4609. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4610. {
  4611. // move duplicate extruder into correct duplication position.
  4612. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4613. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4614. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4615. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4616. st_synchronize();
  4617. extruder_duplication_enabled = true;
  4618. active_extruder_parked = false;
  4619. }
  4620. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4621. {
  4622. if (current_position[E_AXIS] == destination[E_AXIS])
  4623. {
  4624. // this is a travel move - skit it but keep track of current position (so that it can later
  4625. // be used as start of first non-travel move)
  4626. if (delayed_move_time != 0xFFFFFFFFUL)
  4627. {
  4628. memcpy(current_position, destination, sizeof(current_position));
  4629. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4630. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4631. delayed_move_time = millis();
  4632. return;
  4633. }
  4634. }
  4635. delayed_move_time = 0;
  4636. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4637. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4639. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4640. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4641. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4642. active_extruder_parked = false;
  4643. }
  4644. }
  4645. #endif //DUAL_X_CARRIAGE
  4646. #if ! (defined DELTA || defined SCARA)
  4647. // Do not use feedmultiply for E or Z only moves
  4648. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4649. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4650. }
  4651. else {
  4652. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4653. }
  4654. #endif // !(DELTA || SCARA)
  4655. for(int8_t i=0; i < NUM_AXIS; i++) {
  4656. current_position[i] = destination[i];
  4657. }
  4658. }
  4659. void prepare_arc_move(char isclockwise) {
  4660. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4661. // Trace the arc
  4662. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4663. // As far as the parser is concerned, the position is now == target. In reality the
  4664. // motion control system might still be processing the action and the real tool position
  4665. // in any intermediate location.
  4666. for(int8_t i=0; i < NUM_AXIS; i++) {
  4667. current_position[i] = destination[i];
  4668. }
  4669. previous_millis_cmd = millis();
  4670. }
  4671. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4672. #if defined(FAN_PIN)
  4673. #if CONTROLLERFAN_PIN == FAN_PIN
  4674. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4675. #endif
  4676. #endif
  4677. unsigned long lastMotor = 0; // Last time a motor was turned on
  4678. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4679. void controllerFan() {
  4680. uint32_t ms = millis();
  4681. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4682. lastMotorCheck = ms;
  4683. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4684. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4685. #if EXTRUDERS > 1
  4686. || E1_ENABLE_READ == E_ENABLE_ON
  4687. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4688. || X2_ENABLE_READ == X_ENABLE_ON
  4689. #endif
  4690. #if EXTRUDERS > 2
  4691. || E2_ENABLE_READ == E_ENABLE_ON
  4692. #if EXTRUDERS > 3
  4693. || E3_ENABLE_READ == E_ENABLE_ON
  4694. #endif
  4695. #endif
  4696. #endif
  4697. ) {
  4698. lastMotor = ms; //... set time to NOW so the fan will turn on
  4699. }
  4700. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4701. // allows digital or PWM fan output to be used (see M42 handling)
  4702. digitalWrite(CONTROLLERFAN_PIN, speed);
  4703. analogWrite(CONTROLLERFAN_PIN, speed);
  4704. }
  4705. }
  4706. #endif
  4707. #ifdef SCARA
  4708. void calculate_SCARA_forward_Transform(float f_scara[3])
  4709. {
  4710. // Perform forward kinematics, and place results in delta[3]
  4711. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4712. float x_sin, x_cos, y_sin, y_cos;
  4713. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4714. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4715. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4716. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4717. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4718. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4719. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4720. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4721. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4722. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4723. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4724. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4725. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4726. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4727. }
  4728. void calculate_delta(float cartesian[3]){
  4729. //reverse kinematics.
  4730. // Perform reversed kinematics, and place results in delta[3]
  4731. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4732. float SCARA_pos[2];
  4733. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4734. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4735. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4736. #if (Linkage_1 == Linkage_2)
  4737. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4738. #else
  4739. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4740. #endif
  4741. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4742. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4743. SCARA_K2 = Linkage_2 * SCARA_S2;
  4744. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4745. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4746. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4747. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4748. delta[Z_AXIS] = cartesian[Z_AXIS];
  4749. /*
  4750. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4751. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4752. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4753. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4754. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4755. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4756. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4757. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4758. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4759. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4760. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4761. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4762. SERIAL_ECHOLN(" ");*/
  4763. }
  4764. #endif
  4765. #ifdef TEMP_STAT_LEDS
  4766. static bool blue_led = false;
  4767. static bool red_led = false;
  4768. static uint32_t stat_update = 0;
  4769. void handle_status_leds(void) {
  4770. float max_temp = 0.0;
  4771. if(millis() > stat_update) {
  4772. stat_update += 500; // Update every 0.5s
  4773. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4774. max_temp = max(max_temp, degHotend(cur_extruder));
  4775. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4776. }
  4777. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4778. max_temp = max(max_temp, degTargetBed());
  4779. max_temp = max(max_temp, degBed());
  4780. #endif
  4781. if((max_temp > 55.0) && (red_led == false)) {
  4782. digitalWrite(STAT_LED_RED, 1);
  4783. digitalWrite(STAT_LED_BLUE, 0);
  4784. red_led = true;
  4785. blue_led = false;
  4786. }
  4787. if((max_temp < 54.0) && (blue_led == false)) {
  4788. digitalWrite(STAT_LED_RED, 0);
  4789. digitalWrite(STAT_LED_BLUE, 1);
  4790. red_led = false;
  4791. blue_led = true;
  4792. }
  4793. }
  4794. }
  4795. #endif
  4796. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4797. {
  4798. #if defined(KILL_PIN) && KILL_PIN > -1
  4799. static int killCount = 0; // make the inactivity button a bit less responsive
  4800. const int KILL_DELAY = 10000;
  4801. #endif
  4802. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4803. if(card.sdprinting) {
  4804. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4805. filrunout(); }
  4806. #endif
  4807. #if defined(HOME_PIN) && HOME_PIN > -1
  4808. static int homeDebounceCount = 0; // poor man's debouncing count
  4809. const int HOME_DEBOUNCE_DELAY = 10000;
  4810. #endif
  4811. if(buflen < (BUFSIZE-1))
  4812. get_command();
  4813. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4814. if(max_inactive_time)
  4815. kill();
  4816. if(stepper_inactive_time) {
  4817. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4818. {
  4819. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4820. disable_x();
  4821. disable_y();
  4822. disable_z();
  4823. disable_e0();
  4824. disable_e1();
  4825. disable_e2();
  4826. disable_e3();
  4827. }
  4828. }
  4829. }
  4830. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4831. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4832. {
  4833. chdkActive = false;
  4834. WRITE(CHDK, LOW);
  4835. }
  4836. #endif
  4837. #if defined(KILL_PIN) && KILL_PIN > -1
  4838. // Check if the kill button was pressed and wait just in case it was an accidental
  4839. // key kill key press
  4840. // -------------------------------------------------------------------------------
  4841. if( 0 == READ(KILL_PIN) )
  4842. {
  4843. killCount++;
  4844. }
  4845. else if (killCount > 0)
  4846. {
  4847. killCount--;
  4848. }
  4849. // Exceeded threshold and we can confirm that it was not accidental
  4850. // KILL the machine
  4851. // ----------------------------------------------------------------
  4852. if ( killCount >= KILL_DELAY)
  4853. {
  4854. kill();
  4855. }
  4856. #endif
  4857. #if defined(HOME_PIN) && HOME_PIN > -1
  4858. // Check to see if we have to home, use poor man's debouncer
  4859. // ---------------------------------------------------------
  4860. if ( 0 == READ(HOME_PIN) )
  4861. {
  4862. if (homeDebounceCount == 0)
  4863. {
  4864. enquecommands_P((PSTR("G28")));
  4865. homeDebounceCount++;
  4866. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4867. }
  4868. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4869. {
  4870. homeDebounceCount++;
  4871. }
  4872. else
  4873. {
  4874. homeDebounceCount = 0;
  4875. }
  4876. }
  4877. #endif
  4878. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4879. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4880. #endif
  4881. #ifdef EXTRUDER_RUNOUT_PREVENT
  4882. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4883. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4884. {
  4885. bool oldstatus=E0_ENABLE_READ;
  4886. enable_e0();
  4887. float oldepos=current_position[E_AXIS];
  4888. float oldedes=destination[E_AXIS];
  4889. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4890. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4891. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4892. current_position[E_AXIS]=oldepos;
  4893. destination[E_AXIS]=oldedes;
  4894. plan_set_e_position(oldepos);
  4895. previous_millis_cmd=millis();
  4896. st_synchronize();
  4897. E0_ENABLE_WRITE(oldstatus);
  4898. }
  4899. #endif
  4900. #if defined(DUAL_X_CARRIAGE)
  4901. // handle delayed move timeout
  4902. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4903. {
  4904. // travel moves have been received so enact them
  4905. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4906. memcpy(destination,current_position,sizeof(destination));
  4907. prepare_move();
  4908. }
  4909. #endif
  4910. #ifdef TEMP_STAT_LEDS
  4911. handle_status_leds();
  4912. #endif
  4913. check_axes_activity();
  4914. }
  4915. void kill()
  4916. {
  4917. cli(); // Stop interrupts
  4918. disable_heater();
  4919. disable_x();
  4920. disable_y();
  4921. disable_z();
  4922. disable_e0();
  4923. disable_e1();
  4924. disable_e2();
  4925. disable_e3();
  4926. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4927. pinMode(PS_ON_PIN,INPUT);
  4928. #endif
  4929. SERIAL_ERROR_START;
  4930. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4931. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4932. // FMC small patch to update the LCD before ending
  4933. sei(); // enable interrupts
  4934. for ( int i=5; i--; lcd_update())
  4935. {
  4936. delay(200);
  4937. }
  4938. cli(); // disable interrupts
  4939. suicide();
  4940. while(1) { /* Intentionally left empty */ } // Wait for reset
  4941. }
  4942. #ifdef FILAMENT_RUNOUT_SENSOR
  4943. void filrunout()
  4944. {
  4945. if filrunoutEnqued == false {
  4946. filrunoutEnqued = true;
  4947. enquecommand("M600");
  4948. }
  4949. }
  4950. #endif
  4951. void Stop()
  4952. {
  4953. disable_heater();
  4954. if(Stopped == false) {
  4955. Stopped = true;
  4956. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4957. SERIAL_ERROR_START;
  4958. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4959. LCD_MESSAGEPGM(MSG_STOPPED);
  4960. }
  4961. }
  4962. bool IsStopped() { return Stopped; };
  4963. #ifdef FAST_PWM_FAN
  4964. void setPwmFrequency(uint8_t pin, int val)
  4965. {
  4966. val &= 0x07;
  4967. switch(digitalPinToTimer(pin))
  4968. {
  4969. #if defined(TCCR0A)
  4970. case TIMER0A:
  4971. case TIMER0B:
  4972. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4973. // TCCR0B |= val;
  4974. break;
  4975. #endif
  4976. #if defined(TCCR1A)
  4977. case TIMER1A:
  4978. case TIMER1B:
  4979. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4980. // TCCR1B |= val;
  4981. break;
  4982. #endif
  4983. #if defined(TCCR2)
  4984. case TIMER2:
  4985. case TIMER2:
  4986. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4987. TCCR2 |= val;
  4988. break;
  4989. #endif
  4990. #if defined(TCCR2A)
  4991. case TIMER2A:
  4992. case TIMER2B:
  4993. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4994. TCCR2B |= val;
  4995. break;
  4996. #endif
  4997. #if defined(TCCR3A)
  4998. case TIMER3A:
  4999. case TIMER3B:
  5000. case TIMER3C:
  5001. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5002. TCCR3B |= val;
  5003. break;
  5004. #endif
  5005. #if defined(TCCR4A)
  5006. case TIMER4A:
  5007. case TIMER4B:
  5008. case TIMER4C:
  5009. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5010. TCCR4B |= val;
  5011. break;
  5012. #endif
  5013. #if defined(TCCR5A)
  5014. case TIMER5A:
  5015. case TIMER5B:
  5016. case TIMER5C:
  5017. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5018. TCCR5B |= val;
  5019. break;
  5020. #endif
  5021. }
  5022. }
  5023. #endif //FAST_PWM_FAN
  5024. bool setTargetedHotend(int code){
  5025. tmp_extruder = active_extruder;
  5026. if(code_seen('T')) {
  5027. tmp_extruder = code_value();
  5028. if(tmp_extruder >= EXTRUDERS) {
  5029. SERIAL_ECHO_START;
  5030. switch(code){
  5031. case 104:
  5032. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5033. break;
  5034. case 105:
  5035. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5036. break;
  5037. case 109:
  5038. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5039. break;
  5040. case 218:
  5041. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5042. break;
  5043. case 221:
  5044. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5045. break;
  5046. }
  5047. SERIAL_ECHOLN(tmp_extruder);
  5048. return true;
  5049. }
  5050. }
  5051. return false;
  5052. }
  5053. float calculate_volumetric_multiplier(float diameter) {
  5054. if (!volumetric_enabled || diameter == 0) return 1.0;
  5055. float d2 = diameter * 0.5;
  5056. return 1.0 / (M_PI * d2 * d2);
  5057. }
  5058. void calculate_volumetric_multipliers() {
  5059. for (int i=0; i<EXTRUDERS; i++)
  5060. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5061. }