My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 36KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if HAS_DIGIPOTSS
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //============================= public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //============================= private variables ===========================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. // Counter variables for the bresenham line tracer
  40. static long counter_x, counter_y, counter_z, counter_e;
  41. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  42. #ifdef ADVANCE
  43. static long advance_rate, advance, final_advance = 0;
  44. static long old_advance = 0;
  45. static long e_steps[4];
  46. #endif
  47. static long acceleration_time, deceleration_time;
  48. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  49. static unsigned short acc_step_rate; // needed for deccelaration start point
  50. static char step_loops;
  51. static unsigned short OCR1A_nominal;
  52. static unsigned short step_loops_nominal;
  53. volatile long endstops_trigsteps[3] = { 0 };
  54. volatile long endstops_stepsTotal, endstops_stepsDone;
  55. static volatile bool endstop_x_hit = false;
  56. static volatile bool endstop_y_hit = false;
  57. static volatile bool endstop_z_hit = false;
  58. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  59. bool abort_on_endstop_hit = false;
  60. #endif
  61. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  62. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  63. #endif
  64. static bool old_x_min_endstop = false,
  65. old_x_max_endstop = false,
  66. old_y_min_endstop = false,
  67. old_y_max_endstop = false,
  68. old_z_min_endstop = false,
  69. old_z_max_endstop = false;
  70. static bool check_endstops = true;
  71. volatile long count_position[NUM_AXIS] = { 0 };
  72. volatile signed char count_direction[NUM_AXIS] = { 1 };
  73. //===========================================================================
  74. //================================ functions ================================
  75. //===========================================================================
  76. #ifdef DUAL_X_CARRIAGE
  77. #define X_APPLY_DIR(v,ALWAYS) \
  78. if (extruder_duplication_enabled || ALWAYS) { \
  79. X_DIR_WRITE(v); \
  80. X2_DIR_WRITE(v); \
  81. } \
  82. else{ \
  83. if (current_block->active_extruder) \
  84. X2_DIR_WRITE(v); \
  85. else \
  86. X_DIR_WRITE(v); \
  87. }
  88. #define X_APPLY_STEP(v,ALWAYS) \
  89. if (extruder_duplication_enabled || ALWAYS) { \
  90. X_STEP_WRITE(v); \
  91. X2_STEP_WRITE(v); \
  92. } \
  93. else { \
  94. if (current_block->active_extruder != 0) \
  95. X2_STEP_WRITE(v); \
  96. else \
  97. X_STEP_WRITE(v); \
  98. }
  99. #else
  100. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  101. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  102. #endif
  103. #ifdef Y_DUAL_STEPPER_DRIVERS
  104. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v), Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR)
  105. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v), Y2_STEP_WRITE(v)
  106. #else
  107. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  108. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  109. #endif
  110. #ifdef Z_DUAL_STEPPER_DRIVERS
  111. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v), Z2_DIR_WRITE(v)
  112. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v), Z2_STEP_WRITE(v)
  113. #else
  114. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  115. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  116. #endif
  117. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  118. // intRes = intIn1 * intIn2 >> 16
  119. // uses:
  120. // r26 to store 0
  121. // r27 to store the byte 1 of the 24 bit result
  122. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  123. asm volatile ( \
  124. "clr r26 \n\t" \
  125. "mul %A1, %B2 \n\t" \
  126. "movw %A0, r0 \n\t" \
  127. "mul %A1, %A2 \n\t" \
  128. "add %A0, r1 \n\t" \
  129. "adc %B0, r26 \n\t" \
  130. "lsr r0 \n\t" \
  131. "adc %A0, r26 \n\t" \
  132. "adc %B0, r26 \n\t" \
  133. "clr r1 \n\t" \
  134. : \
  135. "=&r" (intRes) \
  136. : \
  137. "d" (charIn1), \
  138. "d" (intIn2) \
  139. : \
  140. "r26" \
  141. )
  142. // intRes = longIn1 * longIn2 >> 24
  143. // uses:
  144. // r26 to store 0
  145. // r27 to store the byte 1 of the 48bit result
  146. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  147. asm volatile ( \
  148. "clr r26 \n\t" \
  149. "mul %A1, %B2 \n\t" \
  150. "mov r27, r1 \n\t" \
  151. "mul %B1, %C2 \n\t" \
  152. "movw %A0, r0 \n\t" \
  153. "mul %C1, %C2 \n\t" \
  154. "add %B0, r0 \n\t" \
  155. "mul %C1, %B2 \n\t" \
  156. "add %A0, r0 \n\t" \
  157. "adc %B0, r1 \n\t" \
  158. "mul %A1, %C2 \n\t" \
  159. "add r27, r0 \n\t" \
  160. "adc %A0, r1 \n\t" \
  161. "adc %B0, r26 \n\t" \
  162. "mul %B1, %B2 \n\t" \
  163. "add r27, r0 \n\t" \
  164. "adc %A0, r1 \n\t" \
  165. "adc %B0, r26 \n\t" \
  166. "mul %C1, %A2 \n\t" \
  167. "add r27, r0 \n\t" \
  168. "adc %A0, r1 \n\t" \
  169. "adc %B0, r26 \n\t" \
  170. "mul %B1, %A2 \n\t" \
  171. "add r27, r1 \n\t" \
  172. "adc %A0, r26 \n\t" \
  173. "adc %B0, r26 \n\t" \
  174. "lsr r27 \n\t" \
  175. "adc %A0, r26 \n\t" \
  176. "adc %B0, r26 \n\t" \
  177. "clr r1 \n\t" \
  178. : \
  179. "=&r" (intRes) \
  180. : \
  181. "d" (longIn1), \
  182. "d" (longIn2) \
  183. : \
  184. "r26" , "r27" \
  185. )
  186. // Some useful constants
  187. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  188. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  189. void endstops_hit_on_purpose() {
  190. endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
  191. }
  192. void checkHitEndstops() {
  193. if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  194. SERIAL_ECHO_START;
  195. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  196. if (endstop_x_hit) {
  197. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  198. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  199. }
  200. if (endstop_y_hit) {
  201. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  202. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  203. }
  204. if (endstop_z_hit) {
  205. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  206. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  207. }
  208. SERIAL_EOL;
  209. endstops_hit_on_purpose();
  210. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  211. if (abort_on_endstop_hit) {
  212. card.sdprinting = false;
  213. card.closefile();
  214. quickStop();
  215. setTargetHotend0(0);
  216. setTargetHotend1(0);
  217. setTargetHotend2(0);
  218. setTargetHotend3(0);
  219. setTargetBed(0);
  220. }
  221. #endif
  222. }
  223. }
  224. void enable_endstops(bool check) { check_endstops = check; }
  225. // __________________________
  226. // /| |\ _________________ ^
  227. // / | | \ /| |\ |
  228. // / | | \ / | | \ s
  229. // / | | | | | \ p
  230. // / | | | | | \ e
  231. // +-----+------------------------+---+--+---------------+----+ e
  232. // | BLOCK 1 | BLOCK 2 | d
  233. //
  234. // time ----->
  235. //
  236. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  237. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  238. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  239. // The slope of acceleration is calculated with the leib ramp alghorithm.
  240. void st_wake_up() {
  241. // TCNT1 = 0;
  242. ENABLE_STEPPER_DRIVER_INTERRUPT();
  243. }
  244. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  245. unsigned short timer;
  246. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  247. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  248. step_rate = (step_rate >> 2) & 0x3fff;
  249. step_loops = 4;
  250. }
  251. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  252. step_rate = (step_rate >> 1) & 0x7fff;
  253. step_loops = 2;
  254. }
  255. else {
  256. step_loops = 1;
  257. }
  258. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  259. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  260. if (step_rate >= (8 * 256)) { // higher step rate
  261. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  262. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  263. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  264. MultiU16X8toH16(timer, tmp_step_rate, gain);
  265. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  266. }
  267. else { // lower step rates
  268. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  269. table_address += ((step_rate)>>1) & 0xfffc;
  270. timer = (unsigned short)pgm_read_word_near(table_address);
  271. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  272. }
  273. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  274. return timer;
  275. }
  276. // Initializes the trapezoid generator from the current block. Called whenever a new
  277. // block begins.
  278. FORCE_INLINE void trapezoid_generator_reset() {
  279. #ifdef ADVANCE
  280. advance = current_block->initial_advance;
  281. final_advance = current_block->final_advance;
  282. // Do E steps + advance steps
  283. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  284. old_advance = advance >>8;
  285. #endif
  286. deceleration_time = 0;
  287. // step_rate to timer interval
  288. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  289. // make a note of the number of step loops required at nominal speed
  290. step_loops_nominal = step_loops;
  291. acc_step_rate = current_block->initial_rate;
  292. acceleration_time = calc_timer(acc_step_rate);
  293. OCR1A = acceleration_time;
  294. // SERIAL_ECHO_START;
  295. // SERIAL_ECHOPGM("advance :");
  296. // SERIAL_ECHO(current_block->advance/256.0);
  297. // SERIAL_ECHOPGM("advance rate :");
  298. // SERIAL_ECHO(current_block->advance_rate/256.0);
  299. // SERIAL_ECHOPGM("initial advance :");
  300. // SERIAL_ECHO(current_block->initial_advance/256.0);
  301. // SERIAL_ECHOPGM("final advance :");
  302. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  303. }
  304. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  305. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  306. ISR(TIMER1_COMPA_vect) {
  307. // If there is no current block, attempt to pop one from the buffer
  308. if (!current_block) {
  309. // Anything in the buffer?
  310. current_block = plan_get_current_block();
  311. if (current_block) {
  312. current_block->busy = true;
  313. trapezoid_generator_reset();
  314. counter_x = -(current_block->step_event_count >> 1);
  315. counter_y = counter_z = counter_e = counter_x;
  316. step_events_completed = 0;
  317. #ifdef Z_LATE_ENABLE
  318. if (current_block->steps_z > 0) {
  319. enable_z();
  320. OCR1A = 2000; //1ms wait
  321. return;
  322. }
  323. #endif
  324. // #ifdef ADVANCE
  325. // e_steps[current_block->active_extruder] = 0;
  326. // #endif
  327. }
  328. else {
  329. OCR1A = 2000; // 1kHz.
  330. }
  331. }
  332. if (current_block != NULL) {
  333. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  334. out_bits = current_block->direction_bits;
  335. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  336. if (TEST(out_bits, X_AXIS)) {
  337. X_APPLY_DIR(INVERT_X_DIR,0);
  338. count_direction[X_AXIS] = -1;
  339. }
  340. else {
  341. X_APPLY_DIR(!INVERT_X_DIR,0);
  342. count_direction[X_AXIS] = 1;
  343. }
  344. if (TEST(out_bits, Y_AXIS)) {
  345. Y_APPLY_DIR(INVERT_Y_DIR,0);
  346. count_direction[Y_AXIS] = -1;
  347. }
  348. else {
  349. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  350. count_direction[Y_AXIS] = 1;
  351. }
  352. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  353. bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
  354. if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps_## axis > 0)) { \
  355. endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
  356. endstop_## axis ##_hit = true; \
  357. step_events_completed = current_block->step_event_count; \
  358. } \
  359. old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
  360. // Check X and Y endstops
  361. if (check_endstops) {
  362. #ifndef COREXY
  363. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
  364. #else
  365. // Head direction in -X axis for CoreXY bots.
  366. // If DeltaX == -DeltaY, the movement is only in Y axis
  367. if (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) == TEST(out_bits, Y_AXIS)))
  368. if (TEST(out_bits, X_HEAD))
  369. #endif
  370. { // -direction
  371. #ifdef DUAL_X_CARRIAGE
  372. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  373. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  374. #endif
  375. {
  376. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  377. UPDATE_ENDSTOP(x, X, min, MIN);
  378. #endif
  379. }
  380. }
  381. else { // +direction
  382. #ifdef DUAL_X_CARRIAGE
  383. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  384. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  385. #endif
  386. {
  387. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  388. UPDATE_ENDSTOP(x, X, max, MAX);
  389. #endif
  390. }
  391. }
  392. #ifndef COREXY
  393. if (TEST(out_bits, Y_AXIS)) // -direction
  394. #else
  395. // Head direction in -Y axis for CoreXY bots.
  396. // If DeltaX == DeltaY, the movement is only in X axis
  397. if (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) != TEST(out_bits, Y_AXIS)))
  398. if (TEST(out_bits, Y_HEAD))
  399. #endif
  400. { // -direction
  401. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  402. UPDATE_ENDSTOP(y, Y, min, MIN);
  403. #endif
  404. }
  405. else { // +direction
  406. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  407. UPDATE_ENDSTOP(y, Y, max, MAX);
  408. #endif
  409. }
  410. }
  411. if (TEST(out_bits, Z_AXIS)) { // -direction
  412. Z_DIR_WRITE(INVERT_Z_DIR);
  413. #ifdef Z_DUAL_STEPPER_DRIVERS
  414. Z2_DIR_WRITE(INVERT_Z_DIR);
  415. #endif
  416. count_direction[Z_AXIS] = -1;
  417. if (check_endstops) {
  418. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  419. UPDATE_ENDSTOP(z, Z, min, MIN);
  420. #endif
  421. }
  422. }
  423. else { // +direction
  424. Z_DIR_WRITE(!INVERT_Z_DIR);
  425. #ifdef Z_DUAL_STEPPER_DRIVERS
  426. Z2_DIR_WRITE(!INVERT_Z_DIR);
  427. #endif
  428. count_direction[Z_AXIS] = 1;
  429. if (check_endstops) {
  430. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  431. UPDATE_ENDSTOP(z, Z, max, MAX);
  432. #endif
  433. }
  434. }
  435. #ifndef ADVANCE
  436. if (TEST(out_bits, E_AXIS)) { // -direction
  437. REV_E_DIR();
  438. count_direction[E_AXIS]=-1;
  439. }
  440. else { // +direction
  441. NORM_E_DIR();
  442. count_direction[E_AXIS]=1;
  443. }
  444. #endif //!ADVANCE
  445. // Take multiple steps per interrupt (For high speed moves)
  446. for (int8_t i=0; i < step_loops; i++) {
  447. #ifndef AT90USB
  448. MSerial.checkRx(); // Check for serial chars.
  449. #endif
  450. #ifdef ADVANCE
  451. counter_e += current_block->steps_e;
  452. if (counter_e > 0) {
  453. counter_e -= current_block->step_event_count;
  454. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  455. }
  456. #endif //ADVANCE
  457. #ifdef CONFIG_STEPPERS_TOSHIBA
  458. /**
  459. * The Toshiba stepper controller require much longer pulses.
  460. * So we 'stage' decompose the pulses between high and low
  461. * instead of doing each in turn. The extra tests add enough
  462. * lag to allow it work with without needing NOPs
  463. */
  464. counter_x += current_block->steps_x;
  465. if (counter_x > 0) X_STEP_WRITE(HIGH);
  466. counter_y += current_block->steps_y;
  467. if (counter_y > 0) Y_STEP_WRITE(HIGH);
  468. counter_z += current_block->steps_z;
  469. if (counter_z > 0) Z_STEP_WRITE(HIGH);
  470. #ifndef ADVANCE
  471. counter_e += current_block->steps_e;
  472. if (counter_e > 0) E_STEP_WRITE(HIGH);
  473. #endif
  474. #define STEP_IF_COUNTER(axis, AXIS) \
  475. if (counter_## axis > 0) { \
  476. counter_## axis -= current_block->step_event_count; \
  477. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  478. AXIS ##_STEP_WRITE(LOW); \
  479. }
  480. STEP_IF_COUNTER(x, X);
  481. STEP_IF_COUNTER(y, Y);
  482. STEP_IF_COUNTER(z, Z);
  483. #ifndef ADVANCE
  484. STEP_IF_COUNTER(e, E);
  485. #endif
  486. #else // !CONFIG_STEPPERS_TOSHIBA
  487. #define APPLY_MOVEMENT(axis, AXIS) \
  488. counter_## axis += current_block->steps_## axis; \
  489. if (counter_## axis > 0) { \
  490. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
  491. counter_## axis -= current_block->step_event_count; \
  492. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  493. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
  494. }
  495. APPLY_MOVEMENT(x, X);
  496. APPLY_MOVEMENT(y, Y);
  497. APPLY_MOVEMENT(z, Z);
  498. #ifndef ADVANCE
  499. APPLY_MOVEMENT(e, E);
  500. #endif
  501. #endif // CONFIG_STEPPERS_TOSHIBA
  502. step_events_completed++;
  503. if (step_events_completed >= current_block->step_event_count) break;
  504. }
  505. // Calculare new timer value
  506. unsigned short timer;
  507. unsigned short step_rate;
  508. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  509. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  510. acc_step_rate += current_block->initial_rate;
  511. // upper limit
  512. if (acc_step_rate > current_block->nominal_rate)
  513. acc_step_rate = current_block->nominal_rate;
  514. // step_rate to timer interval
  515. timer = calc_timer(acc_step_rate);
  516. OCR1A = timer;
  517. acceleration_time += timer;
  518. #ifdef ADVANCE
  519. for(int8_t i=0; i < step_loops; i++) {
  520. advance += advance_rate;
  521. }
  522. //if (advance > current_block->advance) advance = current_block->advance;
  523. // Do E steps + advance steps
  524. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  525. old_advance = advance >>8;
  526. #endif
  527. }
  528. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  529. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  530. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  531. step_rate = current_block->final_rate;
  532. }
  533. else {
  534. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  535. }
  536. // lower limit
  537. if (step_rate < current_block->final_rate)
  538. step_rate = current_block->final_rate;
  539. // step_rate to timer interval
  540. timer = calc_timer(step_rate);
  541. OCR1A = timer;
  542. deceleration_time += timer;
  543. #ifdef ADVANCE
  544. for(int8_t i=0; i < step_loops; i++) {
  545. advance -= advance_rate;
  546. }
  547. if (advance < final_advance) advance = final_advance;
  548. // Do E steps + advance steps
  549. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  550. old_advance = advance >>8;
  551. #endif //ADVANCE
  552. }
  553. else {
  554. OCR1A = OCR1A_nominal;
  555. // ensure we're running at the correct step rate, even if we just came off an acceleration
  556. step_loops = step_loops_nominal;
  557. }
  558. // If current block is finished, reset pointer
  559. if (step_events_completed >= current_block->step_event_count) {
  560. current_block = NULL;
  561. plan_discard_current_block();
  562. }
  563. }
  564. }
  565. #ifdef ADVANCE
  566. unsigned char old_OCR0A;
  567. // Timer interrupt for E. e_steps is set in the main routine;
  568. // Timer 0 is shared with millies
  569. ISR(TIMER0_COMPA_vect)
  570. {
  571. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  572. OCR0A = old_OCR0A;
  573. // Set E direction (Depends on E direction + advance)
  574. for(unsigned char i=0; i<4;i++) {
  575. if (e_steps[0] != 0) {
  576. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  577. if (e_steps[0] < 0) {
  578. E0_DIR_WRITE(INVERT_E0_DIR);
  579. e_steps[0]++;
  580. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  581. }
  582. else if (e_steps[0] > 0) {
  583. E0_DIR_WRITE(!INVERT_E0_DIR);
  584. e_steps[0]--;
  585. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  586. }
  587. }
  588. #if EXTRUDERS > 1
  589. if (e_steps[1] != 0) {
  590. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  591. if (e_steps[1] < 0) {
  592. E1_DIR_WRITE(INVERT_E1_DIR);
  593. e_steps[1]++;
  594. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  595. }
  596. else if (e_steps[1] > 0) {
  597. E1_DIR_WRITE(!INVERT_E1_DIR);
  598. e_steps[1]--;
  599. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  600. }
  601. }
  602. #endif
  603. #if EXTRUDERS > 2
  604. if (e_steps[2] != 0) {
  605. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  606. if (e_steps[2] < 0) {
  607. E2_DIR_WRITE(INVERT_E2_DIR);
  608. e_steps[2]++;
  609. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  610. }
  611. else if (e_steps[2] > 0) {
  612. E2_DIR_WRITE(!INVERT_E2_DIR);
  613. e_steps[2]--;
  614. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  615. }
  616. }
  617. #endif
  618. #if EXTRUDERS > 3
  619. if (e_steps[3] != 0) {
  620. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  621. if (e_steps[3] < 0) {
  622. E3_DIR_WRITE(INVERT_E3_DIR);
  623. e_steps[3]++;
  624. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  625. }
  626. else if (e_steps[3] > 0) {
  627. E3_DIR_WRITE(!INVERT_E3_DIR);
  628. e_steps[3]--;
  629. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  630. }
  631. }
  632. #endif
  633. }
  634. }
  635. #endif // ADVANCE
  636. void st_init() {
  637. digipot_init(); //Initialize Digipot Motor Current
  638. microstep_init(); //Initialize Microstepping Pins
  639. // initialise TMC Steppers
  640. #ifdef HAVE_TMCDRIVER
  641. tmc_init();
  642. #endif
  643. // initialise L6470 Steppers
  644. #ifdef HAVE_L6470DRIVER
  645. L6470_init();
  646. #endif
  647. // Initialize Dir Pins
  648. #if defined(X_DIR_PIN) && X_DIR_PIN >= 0
  649. X_DIR_INIT;
  650. #endif
  651. #if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
  652. X2_DIR_INIT;
  653. #endif
  654. #if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
  655. Y_DIR_INIT;
  656. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
  657. Y2_DIR_INIT;
  658. #endif
  659. #endif
  660. #if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
  661. Z_DIR_INIT;
  662. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
  663. Z2_DIR_INIT;
  664. #endif
  665. #endif
  666. #if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
  667. E0_DIR_INIT;
  668. #endif
  669. #if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
  670. E1_DIR_INIT;
  671. #endif
  672. #if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
  673. E2_DIR_INIT;
  674. #endif
  675. #if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
  676. E3_DIR_INIT;
  677. #endif
  678. //Initialize Enable Pins - steppers default to disabled.
  679. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
  680. X_ENABLE_INIT;
  681. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  682. #endif
  683. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
  684. X2_ENABLE_INIT;
  685. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  686. #endif
  687. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
  688. Y_ENABLE_INIT;
  689. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  690. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
  691. Y2_ENABLE_INIT;
  692. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  693. #endif
  694. #endif
  695. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
  696. Z_ENABLE_INIT;
  697. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  698. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
  699. Z2_ENABLE_INIT;
  700. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  701. #endif
  702. #endif
  703. #if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
  704. E0_ENABLE_INIT;
  705. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  706. #endif
  707. #if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
  708. E1_ENABLE_INIT;
  709. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  710. #endif
  711. #if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
  712. E2_ENABLE_INIT;
  713. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  714. #endif
  715. #if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
  716. E3_ENABLE_INIT;
  717. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  718. #endif
  719. //endstops and pullups
  720. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  721. SET_INPUT(X_MIN_PIN);
  722. #ifdef ENDSTOPPULLUP_XMIN
  723. WRITE(X_MIN_PIN,HIGH);
  724. #endif
  725. #endif
  726. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  727. SET_INPUT(Y_MIN_PIN);
  728. #ifdef ENDSTOPPULLUP_YMIN
  729. WRITE(Y_MIN_PIN,HIGH);
  730. #endif
  731. #endif
  732. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  733. SET_INPUT(Z_MIN_PIN);
  734. #ifdef ENDSTOPPULLUP_ZMIN
  735. WRITE(Z_MIN_PIN,HIGH);
  736. #endif
  737. #endif
  738. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  739. SET_INPUT(X_MAX_PIN);
  740. #ifdef ENDSTOPPULLUP_XMAX
  741. WRITE(X_MAX_PIN,HIGH);
  742. #endif
  743. #endif
  744. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  745. SET_INPUT(Y_MAX_PIN);
  746. #ifdef ENDSTOPPULLUP_YMAX
  747. WRITE(Y_MAX_PIN,HIGH);
  748. #endif
  749. #endif
  750. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  751. SET_INPUT(Z_MAX_PIN);
  752. #ifdef ENDSTOPPULLUP_ZMAX
  753. WRITE(Z_MAX_PIN,HIGH);
  754. #endif
  755. #endif
  756. #define AXIS_INIT(axis, AXIS, PIN) \
  757. AXIS ##_STEP_INIT; \
  758. AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
  759. disable_## axis()
  760. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  761. // Initialize Step Pins
  762. #if defined(X_STEP_PIN) && X_STEP_PIN >= 0
  763. AXIS_INIT(x, X, X);
  764. #endif
  765. #if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
  766. AXIS_INIT(x, X2, X);
  767. #endif
  768. #if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
  769. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
  770. Y2_STEP_INIT;
  771. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  772. #endif
  773. AXIS_INIT(y, Y, Y);
  774. #endif
  775. #if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
  776. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
  777. Z2_STEP_INIT;
  778. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  779. #endif
  780. AXIS_INIT(z, Z, Z);
  781. #endif
  782. #if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
  783. E_AXIS_INIT(0);
  784. #endif
  785. #if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
  786. E_AXIS_INIT(1);
  787. #endif
  788. #if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
  789. E_AXIS_INIT(2);
  790. #endif
  791. #if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
  792. E_AXIS_INIT(3);
  793. #endif
  794. // waveform generation = 0100 = CTC
  795. TCCR1B &= ~BIT(WGM13);
  796. TCCR1B |= BIT(WGM12);
  797. TCCR1A &= ~BIT(WGM11);
  798. TCCR1A &= ~BIT(WGM10);
  799. // output mode = 00 (disconnected)
  800. TCCR1A &= ~(3<<COM1A0);
  801. TCCR1A &= ~(3<<COM1B0);
  802. // Set the timer pre-scaler
  803. // Generally we use a divider of 8, resulting in a 2MHz timer
  804. // frequency on a 16MHz MCU. If you are going to change this, be
  805. // sure to regenerate speed_lookuptable.h with
  806. // create_speed_lookuptable.py
  807. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  808. OCR1A = 0x4000;
  809. TCNT1 = 0;
  810. ENABLE_STEPPER_DRIVER_INTERRUPT();
  811. #ifdef ADVANCE
  812. #if defined(TCCR0A) && defined(WGM01)
  813. TCCR0A &= ~BIT(WGM01);
  814. TCCR0A &= ~BIT(WGM00);
  815. #endif
  816. e_steps[0] = 0;
  817. e_steps[1] = 0;
  818. e_steps[2] = 0;
  819. e_steps[3] = 0;
  820. TIMSK0 |= BIT(OCIE0A);
  821. #endif //ADVANCE
  822. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  823. sei();
  824. }
  825. // Block until all buffered steps are executed
  826. void st_synchronize() {
  827. while (blocks_queued()) {
  828. manage_heater();
  829. manage_inactivity();
  830. lcd_update();
  831. }
  832. }
  833. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  834. CRITICAL_SECTION_START;
  835. count_position[X_AXIS] = x;
  836. count_position[Y_AXIS] = y;
  837. count_position[Z_AXIS] = z;
  838. count_position[E_AXIS] = e;
  839. CRITICAL_SECTION_END;
  840. }
  841. void st_set_e_position(const long &e) {
  842. CRITICAL_SECTION_START;
  843. count_position[E_AXIS] = e;
  844. CRITICAL_SECTION_END;
  845. }
  846. long st_get_position(uint8_t axis) {
  847. long count_pos;
  848. CRITICAL_SECTION_START;
  849. count_pos = count_position[axis];
  850. CRITICAL_SECTION_END;
  851. return count_pos;
  852. }
  853. #ifdef ENABLE_AUTO_BED_LEVELING
  854. float st_get_position_mm(uint8_t axis) {
  855. float steper_position_in_steps = st_get_position(axis);
  856. return steper_position_in_steps / axis_steps_per_unit[axis];
  857. }
  858. #endif // ENABLE_AUTO_BED_LEVELING
  859. void finishAndDisableSteppers() {
  860. st_synchronize();
  861. disable_x();
  862. disable_y();
  863. disable_z();
  864. disable_e0();
  865. disable_e1();
  866. disable_e2();
  867. disable_e3();
  868. }
  869. void quickStop() {
  870. DISABLE_STEPPER_DRIVER_INTERRUPT();
  871. while (blocks_queued()) plan_discard_current_block();
  872. current_block = NULL;
  873. ENABLE_STEPPER_DRIVER_INTERRUPT();
  874. }
  875. #ifdef BABYSTEPPING
  876. // MUST ONLY BE CALLED BY AN ISR,
  877. // No other ISR should ever interrupt this!
  878. void babystep(const uint8_t axis, const bool direction) {
  879. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  880. enable_## axis(); \
  881. uint8_t old_pin = AXIS ##_DIR_READ; \
  882. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
  883. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
  884. _delay_us(1U); \
  885. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
  886. AXIS ##_APPLY_DIR(old_pin, true); \
  887. }
  888. switch(axis) {
  889. case X_AXIS:
  890. BABYSTEP_AXIS(x, X, false);
  891. break;
  892. case Y_AXIS:
  893. BABYSTEP_AXIS(y, Y, false);
  894. break;
  895. case Z_AXIS: {
  896. #ifndef DELTA
  897. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  898. #else // DELTA
  899. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  900. enable_x();
  901. enable_y();
  902. enable_z();
  903. uint8_t old_x_dir_pin = X_DIR_READ,
  904. old_y_dir_pin = Y_DIR_READ,
  905. old_z_dir_pin = Z_DIR_READ;
  906. //setup new step
  907. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  908. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  909. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  910. //perform step
  911. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  912. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  913. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  914. _delay_us(1U);
  915. X_STEP_WRITE(INVERT_X_STEP_PIN);
  916. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  917. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  918. //get old pin state back.
  919. X_DIR_WRITE(old_x_dir_pin);
  920. Y_DIR_WRITE(old_y_dir_pin);
  921. Z_DIR_WRITE(old_z_dir_pin);
  922. #endif
  923. } break;
  924. default: break;
  925. }
  926. }
  927. #endif //BABYSTEPPING
  928. // From Arduino DigitalPotControl example
  929. void digitalPotWrite(int address, int value) {
  930. #if HAS_DIGIPOTSS
  931. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  932. SPI.transfer(address); // send in the address and value via SPI:
  933. SPI.transfer(value);
  934. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  935. //delay(10);
  936. #endif
  937. }
  938. // Initialize Digipot Motor Current
  939. void digipot_init() {
  940. #if HAS_DIGIPOTSS
  941. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  942. SPI.begin();
  943. pinMode(DIGIPOTSS_PIN, OUTPUT);
  944. for (int i = 0; i <= 4; i++) {
  945. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  946. digipot_current(i,digipot_motor_current[i]);
  947. }
  948. #endif
  949. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  950. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  951. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  952. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  953. digipot_current(0, motor_current_setting[0]);
  954. digipot_current(1, motor_current_setting[1]);
  955. digipot_current(2, motor_current_setting[2]);
  956. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  957. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  958. #endif
  959. }
  960. void digipot_current(uint8_t driver, int current) {
  961. #if HAS_DIGIPOTSS
  962. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  963. digitalPotWrite(digipot_ch[driver], current);
  964. #endif
  965. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  966. switch(driver) {
  967. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  968. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  969. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  970. }
  971. #endif
  972. }
  973. void microstep_init() {
  974. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  975. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  976. pinMode(E1_MS1_PIN,OUTPUT);
  977. pinMode(E1_MS2_PIN,OUTPUT);
  978. #endif
  979. #if defined(X_MS1_PIN) && X_MS1_PIN >= 0
  980. pinMode(X_MS1_PIN,OUTPUT);
  981. pinMode(X_MS2_PIN,OUTPUT);
  982. pinMode(Y_MS1_PIN,OUTPUT);
  983. pinMode(Y_MS2_PIN,OUTPUT);
  984. pinMode(Z_MS1_PIN,OUTPUT);
  985. pinMode(Z_MS2_PIN,OUTPUT);
  986. pinMode(E0_MS1_PIN,OUTPUT);
  987. pinMode(E0_MS2_PIN,OUTPUT);
  988. for (int i = 0; i <= 4; i++) microstep_mode(i, microstep_modes[i]);
  989. #endif
  990. }
  991. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  992. if (ms1 >= 0) switch(driver) {
  993. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  994. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  995. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  996. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  997. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  998. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  999. #endif
  1000. }
  1001. if (ms2 >= 0) switch(driver) {
  1002. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1003. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1004. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1005. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1006. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1007. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1008. #endif
  1009. }
  1010. }
  1011. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1012. switch(stepping_mode) {
  1013. case 1: microstep_ms(driver,MICROSTEP1); break;
  1014. case 2: microstep_ms(driver,MICROSTEP2); break;
  1015. case 4: microstep_ms(driver,MICROSTEP4); break;
  1016. case 8: microstep_ms(driver,MICROSTEP8); break;
  1017. case 16: microstep_ms(driver,MICROSTEP16); break;
  1018. }
  1019. }
  1020. void microstep_readings() {
  1021. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1022. SERIAL_PROTOCOLPGM("X: ");
  1023. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1024. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1025. SERIAL_PROTOCOLPGM("Y: ");
  1026. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1027. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1028. SERIAL_PROTOCOLPGM("Z: ");
  1029. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1030. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1031. SERIAL_PROTOCOLPGM("E0: ");
  1032. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1033. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1034. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1035. SERIAL_PROTOCOLPGM("E1: ");
  1036. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1037. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1038. #endif
  1039. }