My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 149KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_COMPENSATION
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_COMPENSATION_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_COMPENSATION
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G31 - Dock sled (Z_PROBE_SLED only)
  67. // G32 - Undock sled (Z_PROBE_SLED only)
  68. // G90 - Use Absolute Coordinates
  69. // G91 - Use Relative Coordinates
  70. // G92 - Set current position to coordinates given
  71. // M Codes
  72. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  73. // M1 - Same as M0
  74. // M17 - Enable/Power all stepper motors
  75. // M18 - Disable all stepper motors; same as M84
  76. // M20 - List SD card
  77. // M21 - Init SD card
  78. // M22 - Release SD card
  79. // M23 - Select SD file (M23 filename.g)
  80. // M24 - Start/resume SD print
  81. // M25 - Pause SD print
  82. // M26 - Set SD position in bytes (M26 S12345)
  83. // M27 - Report SD print status
  84. // M28 - Start SD write (M28 filename.g)
  85. // M29 - Stop SD write
  86. // M30 - Delete file from SD (M30 filename.g)
  87. // M31 - Output time since last M109 or SD card start to serial
  88. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  89. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  90. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  91. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  92. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  93. // M80 - Turn on Power Supply
  94. // M81 - Turn off Power Supply
  95. // M82 - Set E codes absolute (default)
  96. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  97. // M84 - Disable steppers until next move,
  98. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  99. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  100. // M92 - Set axis_steps_per_unit - same syntax as G92
  101. // M104 - Set extruder target temp
  102. // M105 - Read current temp
  103. // M106 - Fan on
  104. // M107 - Fan off
  105. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  106. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  107. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  108. // M112 - Emergency stop
  109. // M114 - Output current position to serial port
  110. // M115 - Capabilities string
  111. // M117 - display message
  112. // M119 - Output Endstop status to serial port
  113. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  114. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  115. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  116. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  117. // M140 - Set bed target temp
  118. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  119. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  120. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  121. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  122. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  123. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  124. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  125. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  126. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  127. // M206 - set additional homing offset
  128. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  129. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  130. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  131. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  132. // M220 S<factor in percent>- set speed factor override percentage
  133. // M221 S<factor in percent>- set extrude factor override percentage
  134. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  135. // M240 - Trigger a camera to take a photograph
  136. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  137. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  138. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  139. // M301 - Set PID parameters P I and D
  140. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  141. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  142. // M304 - Set bed PID parameters P I and D
  143. // M400 - Finish all moves
  144. // M401 - Lower z-probe if present
  145. // M402 - Raise z-probe if present
  146. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  147. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  148. // M406 - Turn off Filament Sensor extrusion control
  149. // M407 - Displays measured filament diameter
  150. // M500 - stores parameters in EEPROM
  151. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  152. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  153. // M503 - print the current settings (from memory not from EEPROM)
  154. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  155. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  156. // M665 - set delta configurations
  157. // M666 - set delta endstop adjustment
  158. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  159. // M907 - Set digital trimpot motor current using axis codes.
  160. // M908 - Control digital trimpot directly.
  161. // M350 - Set microstepping mode.
  162. // M351 - Toggle MS1 MS2 pins directly.
  163. // ************ SCARA Specific - This can change to suit future G-code regulations
  164. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  165. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  166. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  167. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  168. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  169. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  170. //************* SCARA End ***************
  171. // M928 - Start SD logging (M928 filename.g) - ended by M29
  172. // M999 - Restart after being stopped by error
  173. //Stepper Movement Variables
  174. //===========================================================================
  175. //=============================imported variables============================
  176. //===========================================================================
  177. //===========================================================================
  178. //=============================public variables=============================
  179. //===========================================================================
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  185. int feedmultiply=100; //100->1 200->2
  186. int saved_feedmultiply;
  187. int extrudemultiply=100; //100->1 200->2
  188. int extruder_multiply[EXTRUDERS] = {100
  189. #if EXTRUDERS > 1
  190. , 100
  191. #if EXTRUDERS > 2
  192. , 100
  193. #endif
  194. #endif
  195. };
  196. float volumetric_multiplier[EXTRUDERS] = {1.0
  197. #if EXTRUDERS > 1
  198. , 1.0
  199. #if EXTRUDERS > 2
  200. , 1.0
  201. #endif
  202. #endif
  203. };
  204. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  205. float add_homing[3]={0,0,0};
  206. #ifdef DELTA
  207. float endstop_adj[3]={0,0,0};
  208. #endif
  209. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  210. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  211. bool axis_known_position[3] = {false, false, false};
  212. float zprobe_zoffset;
  213. // Extruder offset
  214. #if EXTRUDERS > 1
  215. #ifndef DUAL_X_CARRIAGE
  216. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  217. #else
  218. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  219. #endif
  220. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  221. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  222. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  223. #endif
  224. };
  225. #endif
  226. uint8_t active_extruder = 0;
  227. int fanSpeed=0;
  228. #ifdef SERVO_ENDSTOPS
  229. int servo_endstops[] = SERVO_ENDSTOPS;
  230. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  231. #endif
  232. #ifdef BARICUDA
  233. int ValvePressure=0;
  234. int EtoPPressure=0;
  235. #endif
  236. #ifdef FWRETRACT
  237. bool autoretract_enabled=false;
  238. bool retracted[EXTRUDERS]={false
  239. #if EXTRUDERS > 1
  240. , false
  241. #if EXTRUDERS > 2
  242. , false
  243. #endif
  244. #endif
  245. };
  246. bool retracted_swap[EXTRUDERS]={false
  247. #if EXTRUDERS > 1
  248. , false
  249. #if EXTRUDERS > 2
  250. , false
  251. #endif
  252. #endif
  253. };
  254. float retract_length = RETRACT_LENGTH;
  255. float retract_length_swap = RETRACT_LENGTH_SWAP;
  256. float retract_feedrate = RETRACT_FEEDRATE;
  257. float retract_zlift = RETRACT_ZLIFT;
  258. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  259. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  260. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  261. #endif
  262. #ifdef ULTIPANEL
  263. #ifdef PS_DEFAULT_OFF
  264. bool powersupply = false;
  265. #else
  266. bool powersupply = true;
  267. #endif
  268. #endif
  269. #ifdef DELTA
  270. float delta[3] = {0.0, 0.0, 0.0};
  271. #define SIN_60 0.8660254037844386
  272. #define COS_60 0.5
  273. // these are the default values, can be overriden with M665
  274. float delta_radius= DELTA_RADIUS;
  275. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  276. float delta_tower1_y= -COS_60*delta_radius;
  277. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  278. float delta_tower2_y= -COS_60*delta_radius;
  279. float delta_tower3_x= 0.0; // back middle tower
  280. float delta_tower3_y= delta_radius;
  281. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  282. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  283. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  284. #endif
  285. #ifdef SCARA // Build size scaling
  286. float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
  287. #endif
  288. bool cancel_heatup = false ;
  289. #ifdef FILAMENT_SENSOR
  290. //Variables for Filament Sensor input
  291. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  292. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  293. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  294. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  295. int delay_index1=0; //index into ring buffer
  296. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  297. float delay_dist=0; //delay distance counter
  298. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  299. #endif
  300. //===========================================================================
  301. //=============================Private Variables=============================
  302. //===========================================================================
  303. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  304. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  305. #ifndef DELTA
  306. static float delta[3] = {0.0, 0.0, 0.0};
  307. #endif
  308. static float offset[3] = {0.0, 0.0, 0.0};
  309. static bool home_all_axis = true;
  310. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  311. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  312. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  313. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  314. static bool fromsd[BUFSIZE];
  315. static int bufindr = 0;
  316. static int bufindw = 0;
  317. static int buflen = 0;
  318. //static int i = 0;
  319. static char serial_char;
  320. static int serial_count = 0;
  321. static boolean comment_mode = false;
  322. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  323. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  324. //static float tt = 0;
  325. //static float bt = 0;
  326. //Inactivity shutdown variables
  327. static unsigned long previous_millis_cmd = 0;
  328. static unsigned long max_inactive_time = 0;
  329. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  330. unsigned long starttime=0;
  331. unsigned long stoptime=0;
  332. static uint8_t tmp_extruder;
  333. bool Stopped=false;
  334. #if NUM_SERVOS > 0
  335. Servo servos[NUM_SERVOS];
  336. #endif
  337. bool CooldownNoWait = true;
  338. bool target_direction;
  339. //Insert variables if CHDK is defined
  340. #ifdef CHDK
  341. unsigned long chdkHigh = 0;
  342. boolean chdkActive = false;
  343. #endif
  344. //===========================================================================
  345. //=============================Routines======================================
  346. //===========================================================================
  347. void get_arc_coordinates();
  348. bool setTargetedHotend(int code);
  349. void serial_echopair_P(const char *s_P, float v)
  350. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  351. void serial_echopair_P(const char *s_P, double v)
  352. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  353. void serial_echopair_P(const char *s_P, unsigned long v)
  354. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  355. extern "C"{
  356. extern unsigned int __bss_end;
  357. extern unsigned int __heap_start;
  358. extern void *__brkval;
  359. int freeMemory() {
  360. int free_memory;
  361. if((int)__brkval == 0)
  362. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  363. else
  364. free_memory = ((int)&free_memory) - ((int)__brkval);
  365. return free_memory;
  366. }
  367. }
  368. //adds an command to the main command buffer
  369. //thats really done in a non-safe way.
  370. //needs overworking someday
  371. void enquecommand(const char *cmd)
  372. {
  373. if(buflen < BUFSIZE)
  374. {
  375. //this is dangerous if a mixing of serial and this happens
  376. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  377. SERIAL_ECHO_START;
  378. SERIAL_ECHOPGM(MSG_Enqueing);
  379. SERIAL_ECHO(cmdbuffer[bufindw]);
  380. SERIAL_ECHOLNPGM("\"");
  381. bufindw= (bufindw + 1)%BUFSIZE;
  382. buflen += 1;
  383. }
  384. }
  385. void enquecommand_P(const char *cmd)
  386. {
  387. if(buflen < BUFSIZE)
  388. {
  389. //this is dangerous if a mixing of serial and this happens
  390. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  391. SERIAL_ECHO_START;
  392. SERIAL_ECHOPGM(MSG_Enqueing);
  393. SERIAL_ECHO(cmdbuffer[bufindw]);
  394. SERIAL_ECHOLNPGM("\"");
  395. bufindw= (bufindw + 1)%BUFSIZE;
  396. buflen += 1;
  397. }
  398. }
  399. void setup_killpin()
  400. {
  401. #if defined(KILL_PIN) && KILL_PIN > -1
  402. pinMode(KILL_PIN,INPUT);
  403. WRITE(KILL_PIN,HIGH);
  404. #endif
  405. }
  406. void setup_photpin()
  407. {
  408. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  409. SET_OUTPUT(PHOTOGRAPH_PIN);
  410. WRITE(PHOTOGRAPH_PIN, LOW);
  411. #endif
  412. }
  413. void setup_powerhold()
  414. {
  415. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  416. SET_OUTPUT(SUICIDE_PIN);
  417. WRITE(SUICIDE_PIN, HIGH);
  418. #endif
  419. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  420. SET_OUTPUT(PS_ON_PIN);
  421. #if defined(PS_DEFAULT_OFF)
  422. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  423. #else
  424. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  425. #endif
  426. #endif
  427. }
  428. void suicide()
  429. {
  430. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  431. SET_OUTPUT(SUICIDE_PIN);
  432. WRITE(SUICIDE_PIN, LOW);
  433. #endif
  434. }
  435. void servo_init()
  436. {
  437. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  438. servos[0].attach(SERVO0_PIN);
  439. #endif
  440. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  441. servos[1].attach(SERVO1_PIN);
  442. #endif
  443. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  444. servos[2].attach(SERVO2_PIN);
  445. #endif
  446. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  447. servos[3].attach(SERVO3_PIN);
  448. #endif
  449. #if (NUM_SERVOS >= 5)
  450. #error "TODO: enter initalisation code for more servos"
  451. #endif
  452. // Set position of Servo Endstops that are defined
  453. #ifdef SERVO_ENDSTOPS
  454. for(int8_t i = 0; i < 3; i++)
  455. {
  456. if(servo_endstops[i] > -1) {
  457. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  458. }
  459. }
  460. #endif
  461. #if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  462. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  463. servos[servo_endstops[Z_AXIS]].detach();
  464. #endif
  465. }
  466. void setup()
  467. {
  468. setup_killpin();
  469. setup_powerhold();
  470. MYSERIAL.begin(BAUDRATE);
  471. SERIAL_PROTOCOLLNPGM("start");
  472. SERIAL_ECHO_START;
  473. // Check startup - does nothing if bootloader sets MCUSR to 0
  474. byte mcu = MCUSR;
  475. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  476. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  477. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  478. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  479. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  480. MCUSR=0;
  481. SERIAL_ECHOPGM(MSG_MARLIN);
  482. SERIAL_ECHOLNPGM(VERSION_STRING);
  483. #ifdef STRING_VERSION_CONFIG_H
  484. #ifdef STRING_CONFIG_H_AUTHOR
  485. SERIAL_ECHO_START;
  486. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  487. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  488. SERIAL_ECHOPGM(MSG_AUTHOR);
  489. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  490. SERIAL_ECHOPGM("Compiled: ");
  491. SERIAL_ECHOLNPGM(__DATE__);
  492. #endif
  493. #endif
  494. SERIAL_ECHO_START;
  495. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  496. SERIAL_ECHO(freeMemory());
  497. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  498. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  499. for(int8_t i = 0; i < BUFSIZE; i++)
  500. {
  501. fromsd[i] = false;
  502. }
  503. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  504. Config_RetrieveSettings();
  505. tp_init(); // Initialize temperature loop
  506. plan_init(); // Initialize planner;
  507. watchdog_init();
  508. st_init(); // Initialize stepper, this enables interrupts!
  509. setup_photpin();
  510. servo_init();
  511. lcd_init();
  512. _delay_ms(1000); // wait 1sec to display the splash screen
  513. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  514. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  515. #endif
  516. #ifdef DIGIPOT_I2C
  517. digipot_i2c_init();
  518. #endif
  519. #ifdef Z_PROBE_SLED
  520. pinMode(SERVO0_PIN, OUTPUT);
  521. digitalWrite(SERVO0_PIN, LOW); // turn it off
  522. #endif // Z_PROBE_SLED
  523. }
  524. void loop()
  525. {
  526. if(buflen < (BUFSIZE-1))
  527. get_command();
  528. #ifdef SDSUPPORT
  529. card.checkautostart(false);
  530. #endif
  531. if(buflen)
  532. {
  533. #ifdef SDSUPPORT
  534. if(card.saving)
  535. {
  536. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  537. {
  538. card.write_command(cmdbuffer[bufindr]);
  539. if(card.logging)
  540. {
  541. process_commands();
  542. }
  543. else
  544. {
  545. SERIAL_PROTOCOLLNPGM(MSG_OK);
  546. }
  547. }
  548. else
  549. {
  550. card.closefile();
  551. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  552. }
  553. }
  554. else
  555. {
  556. process_commands();
  557. }
  558. #else
  559. process_commands();
  560. #endif //SDSUPPORT
  561. buflen = (buflen-1);
  562. bufindr = (bufindr + 1)%BUFSIZE;
  563. }
  564. //check heater every n milliseconds
  565. manage_heater();
  566. manage_inactivity();
  567. checkHitEndstops();
  568. lcd_update();
  569. }
  570. void get_command()
  571. {
  572. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  573. serial_char = MYSERIAL.read();
  574. if(serial_char == '\n' ||
  575. serial_char == '\r' ||
  576. (serial_char == ':' && comment_mode == false) ||
  577. serial_count >= (MAX_CMD_SIZE - 1) )
  578. {
  579. if(!serial_count) { //if empty line
  580. comment_mode = false; //for new command
  581. return;
  582. }
  583. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  584. if(!comment_mode){
  585. comment_mode = false; //for new command
  586. fromsd[bufindw] = false;
  587. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  588. {
  589. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  590. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  591. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  592. SERIAL_ERROR_START;
  593. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  594. SERIAL_ERRORLN(gcode_LastN);
  595. //Serial.println(gcode_N);
  596. FlushSerialRequestResend();
  597. serial_count = 0;
  598. return;
  599. }
  600. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  601. {
  602. byte checksum = 0;
  603. byte count = 0;
  604. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  605. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  606. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  607. SERIAL_ERROR_START;
  608. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  609. SERIAL_ERRORLN(gcode_LastN);
  610. FlushSerialRequestResend();
  611. serial_count = 0;
  612. return;
  613. }
  614. //if no errors, continue parsing
  615. }
  616. else
  617. {
  618. SERIAL_ERROR_START;
  619. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  620. SERIAL_ERRORLN(gcode_LastN);
  621. FlushSerialRequestResend();
  622. serial_count = 0;
  623. return;
  624. }
  625. gcode_LastN = gcode_N;
  626. //if no errors, continue parsing
  627. }
  628. else // if we don't receive 'N' but still see '*'
  629. {
  630. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  631. {
  632. SERIAL_ERROR_START;
  633. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  634. SERIAL_ERRORLN(gcode_LastN);
  635. serial_count = 0;
  636. return;
  637. }
  638. }
  639. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  640. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  641. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  642. case 0:
  643. case 1:
  644. case 2:
  645. case 3:
  646. if (Stopped == true) {
  647. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  648. LCD_MESSAGEPGM(MSG_STOPPED);
  649. }
  650. break;
  651. default:
  652. break;
  653. }
  654. }
  655. //If command was e-stop process now
  656. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  657. kill();
  658. bufindw = (bufindw + 1)%BUFSIZE;
  659. buflen += 1;
  660. }
  661. serial_count = 0; //clear buffer
  662. }
  663. else
  664. {
  665. if(serial_char == ';') comment_mode = true;
  666. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  667. }
  668. }
  669. #ifdef SDSUPPORT
  670. if(!card.sdprinting || serial_count!=0){
  671. return;
  672. }
  673. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  674. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  675. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  676. static bool stop_buffering=false;
  677. if(buflen==0) stop_buffering=false;
  678. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  679. int16_t n=card.get();
  680. serial_char = (char)n;
  681. if(serial_char == '\n' ||
  682. serial_char == '\r' ||
  683. (serial_char == '#' && comment_mode == false) ||
  684. (serial_char == ':' && comment_mode == false) ||
  685. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  686. {
  687. if(card.eof()){
  688. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  689. stoptime=millis();
  690. char time[30];
  691. unsigned long t=(stoptime-starttime)/1000;
  692. int hours, minutes;
  693. minutes=(t/60)%60;
  694. hours=t/60/60;
  695. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  696. SERIAL_ECHO_START;
  697. SERIAL_ECHOLN(time);
  698. lcd_setstatus(time);
  699. card.printingHasFinished();
  700. card.checkautostart(true);
  701. }
  702. if(serial_char=='#')
  703. stop_buffering=true;
  704. if(!serial_count)
  705. {
  706. comment_mode = false; //for new command
  707. return; //if empty line
  708. }
  709. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  710. // if(!comment_mode){
  711. fromsd[bufindw] = true;
  712. buflen += 1;
  713. bufindw = (bufindw + 1)%BUFSIZE;
  714. // }
  715. comment_mode = false; //for new command
  716. serial_count = 0; //clear buffer
  717. }
  718. else
  719. {
  720. if(serial_char == ';') comment_mode = true;
  721. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  722. }
  723. }
  724. #endif //SDSUPPORT
  725. }
  726. float code_value()
  727. {
  728. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  729. }
  730. long code_value_long()
  731. {
  732. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  733. }
  734. bool code_seen(char code)
  735. {
  736. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  737. return (strchr_pointer != NULL); //Return True if a character was found
  738. }
  739. #define DEFINE_PGM_READ_ANY(type, reader) \
  740. static inline type pgm_read_any(const type *p) \
  741. { return pgm_read_##reader##_near(p); }
  742. DEFINE_PGM_READ_ANY(float, float);
  743. DEFINE_PGM_READ_ANY(signed char, byte);
  744. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  745. static const PROGMEM type array##_P[3] = \
  746. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  747. static inline type array(int axis) \
  748. { return pgm_read_any(&array##_P[axis]); }
  749. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  750. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  751. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  752. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  753. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  754. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  755. #ifdef DUAL_X_CARRIAGE
  756. #if EXTRUDERS == 1 || defined(COREXY) \
  757. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  758. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  759. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  760. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  761. #endif
  762. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  763. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  764. #endif
  765. #define DXC_FULL_CONTROL_MODE 0
  766. #define DXC_AUTO_PARK_MODE 1
  767. #define DXC_DUPLICATION_MODE 2
  768. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  769. static float x_home_pos(int extruder) {
  770. if (extruder == 0)
  771. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  772. else
  773. // In dual carriage mode the extruder offset provides an override of the
  774. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  775. // This allow soft recalibration of the second extruder offset position without firmware reflash
  776. // (through the M218 command).
  777. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  778. }
  779. static int x_home_dir(int extruder) {
  780. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  781. }
  782. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  783. static bool active_extruder_parked = false; // used in mode 1 & 2
  784. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  785. static unsigned long delayed_move_time = 0; // used in mode 1
  786. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  787. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  788. bool extruder_duplication_enabled = false; // used in mode 2
  789. #endif //DUAL_X_CARRIAGE
  790. static void axis_is_at_home(int axis) {
  791. #ifdef DUAL_X_CARRIAGE
  792. if (axis == X_AXIS) {
  793. if (active_extruder != 0) {
  794. current_position[X_AXIS] = x_home_pos(active_extruder);
  795. min_pos[X_AXIS] = X2_MIN_POS;
  796. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  797. return;
  798. }
  799. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  800. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  801. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  802. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  803. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  804. return;
  805. }
  806. }
  807. #endif
  808. #ifdef SCARA
  809. float homeposition[3];
  810. char i;
  811. if (axis < 2)
  812. {
  813. for (i=0; i<3; i++)
  814. {
  815. homeposition[i] = base_home_pos(i);
  816. }
  817. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  818. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  819. // Works out real Homeposition angles using inverse kinematics,
  820. // and calculates homing offset using forward kinematics
  821. calculate_delta(homeposition);
  822. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  823. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  824. for (i=0; i<2; i++)
  825. {
  826. delta[i] -= add_homing[i];
  827. }
  828. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  829. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  830. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  831. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  832. calculate_SCARA_forward_Transform(delta);
  833. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  834. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  835. current_position[axis] = delta[axis];
  836. // SCARA home positions are based on configuration since the actual limits are determined by the
  837. // inverse kinematic transform.
  838. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  839. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  840. }
  841. else
  842. {
  843. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  844. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  845. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  846. }
  847. #else
  848. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  849. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  850. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  851. #endif
  852. }
  853. #ifdef ENABLE_AUTO_BED_COMPENSATION
  854. #ifdef AUTO_BED_COMPENSATION_GRID
  855. static void set_bed_compensation_equation_lsq(double *plane_equation_coefficients)
  856. {
  857. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  858. planeNormal.debug("planeNormal");
  859. plan_bed_compensation_matrix = matrix_3x3::create_look_at(planeNormal);
  860. //bedCompensation.debug("bedCompensation");
  861. //plan_bed_compensation_matrix.debug("bed compensation before");
  862. //vector_3 uncorrected_position = plan_get_position_mm();
  863. //uncorrected_position.debug("position before");
  864. vector_3 corrected_position = plan_get_position();
  865. // corrected_position.debug("position after");
  866. current_position[X_AXIS] = corrected_position.x;
  867. current_position[Y_AXIS] = corrected_position.y;
  868. current_position[Z_AXIS] = corrected_position.z;
  869. // put the bed at 0 so we don't go below it.
  870. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  871. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  872. }
  873. #else // not AUTO_BED_COMPENSATION_GRID
  874. static void set_bed_compensation_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  875. plan_bed_compensation_matrix.set_to_identity();
  876. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  877. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  878. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  879. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  880. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  881. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  882. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  883. plan_bed_compensation_matrix = matrix_3x3::create_look_at(planeNormal);
  884. vector_3 corrected_position = plan_get_position();
  885. current_position[X_AXIS] = corrected_position.x;
  886. current_position[Y_AXIS] = corrected_position.y;
  887. current_position[Z_AXIS] = corrected_position.z;
  888. // put the bed at 0 so we don't go below it.
  889. current_position[Z_AXIS] = zprobe_zoffset;
  890. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  891. }
  892. #endif // AUTO_BED_COMPENSATION_GRID
  893. static void run_z_probe() {
  894. plan_bed_compensation_matrix.set_to_identity();
  895. feedrate = homing_feedrate[Z_AXIS];
  896. // move down until you find the bed
  897. float zPosition = -10;
  898. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  899. st_synchronize();
  900. // we have to let the planner know where we are right now as it is not where we said to go.
  901. zPosition = st_get_position_mm(Z_AXIS);
  902. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  903. // move up the retract distance
  904. zPosition += home_retract_mm(Z_AXIS);
  905. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  906. st_synchronize();
  907. // move back down slowly to find bed
  908. feedrate = homing_feedrate[Z_AXIS]/4;
  909. zPosition -= home_retract_mm(Z_AXIS) * 2;
  910. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  911. st_synchronize();
  912. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  913. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  914. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  915. }
  916. static void do_blocking_move_to(float x, float y, float z) {
  917. float oldFeedRate = feedrate;
  918. feedrate = XY_TRAVEL_SPEED;
  919. current_position[X_AXIS] = x;
  920. current_position[Y_AXIS] = y;
  921. current_position[Z_AXIS] = z;
  922. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  923. st_synchronize();
  924. feedrate = oldFeedRate;
  925. }
  926. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  927. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  928. }
  929. static void setup_for_endstop_move() {
  930. saved_feedrate = feedrate;
  931. saved_feedmultiply = feedmultiply;
  932. feedmultiply = 100;
  933. previous_millis_cmd = millis();
  934. enable_endstops(true);
  935. }
  936. static void clean_up_after_endstop_move() {
  937. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  938. enable_endstops(false);
  939. #endif
  940. feedrate = saved_feedrate;
  941. feedmultiply = saved_feedmultiply;
  942. previous_millis_cmd = millis();
  943. }
  944. static void engage_z_probe() {
  945. // Engage Z Servo endstop if enabled
  946. #ifdef SERVO_ENDSTOPS
  947. if (servo_endstops[Z_AXIS] > -1) {
  948. #if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  949. servos[servo_endstops[Z_AXIS]].attach(0);
  950. #endif
  951. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  952. #if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  953. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  954. servos[servo_endstops[Z_AXIS]].detach();
  955. #endif
  956. }
  957. #endif
  958. }
  959. static void retract_z_probe() {
  960. // Retract Z Servo endstop if enabled
  961. #ifdef SERVO_ENDSTOPS
  962. if (servo_endstops[Z_AXIS] > -1) {
  963. #if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  964. servos[servo_endstops[Z_AXIS]].attach(0);
  965. #endif
  966. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  967. #if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  968. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  969. servos[servo_endstops[Z_AXIS]].detach();
  970. #endif
  971. }
  972. #endif
  973. }
  974. /// Probe bed height at position (x,y), returns the measured z value
  975. static float probe_pt(float x, float y, float z_before) {
  976. // move to right place
  977. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  978. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  979. #ifndef Z_PROBE_SLED
  980. engage_z_probe(); // Engage Z Servo endstop if available
  981. #endif // Z_PROBE_SLED
  982. run_z_probe();
  983. float measured_z = current_position[Z_AXIS];
  984. #ifndef Z_PROBE_SLED
  985. retract_z_probe();
  986. #endif // Z_PROBE_SLED
  987. SERIAL_PROTOCOLPGM(MSG_BED);
  988. SERIAL_PROTOCOLPGM(" x: ");
  989. SERIAL_PROTOCOL(x);
  990. SERIAL_PROTOCOLPGM(" y: ");
  991. SERIAL_PROTOCOL(y);
  992. SERIAL_PROTOCOLPGM(" z: ");
  993. SERIAL_PROTOCOL(measured_z);
  994. SERIAL_PROTOCOLPGM("\n");
  995. return measured_z;
  996. }
  997. #endif // #ifdef ENABLE_AUTO_BED_COMPENSATION
  998. static void homeaxis(int axis) {
  999. #define HOMEAXIS_DO(LETTER) \
  1000. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1001. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1002. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1003. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1004. 0) {
  1005. int axis_home_dir = home_dir(axis);
  1006. #ifdef DUAL_X_CARRIAGE
  1007. if (axis == X_AXIS)
  1008. axis_home_dir = x_home_dir(active_extruder);
  1009. #endif
  1010. current_position[axis] = 0;
  1011. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1012. #ifndef Z_PROBE_SLED
  1013. // Engage Servo endstop if enabled
  1014. #ifdef SERVO_ENDSTOPS
  1015. #if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1016. if (axis==Z_AXIS) {
  1017. engage_z_probe();
  1018. }
  1019. else
  1020. #endif
  1021. if (servo_endstops[axis] > -1) {
  1022. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1023. }
  1024. #endif
  1025. #endif // Z_PROBE_SLED
  1026. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1027. feedrate = homing_feedrate[axis];
  1028. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1029. st_synchronize();
  1030. current_position[axis] = 0;
  1031. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1032. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1033. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1034. st_synchronize();
  1035. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1036. #ifdef DELTA
  1037. feedrate = homing_feedrate[axis]/10;
  1038. #else
  1039. feedrate = homing_feedrate[axis]/2 ;
  1040. #endif
  1041. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1042. st_synchronize();
  1043. #ifdef DELTA
  1044. // retrace by the amount specified in endstop_adj
  1045. if (endstop_adj[axis] * axis_home_dir < 0) {
  1046. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1047. destination[axis] = endstop_adj[axis];
  1048. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1049. st_synchronize();
  1050. }
  1051. #endif
  1052. axis_is_at_home(axis);
  1053. destination[axis] = current_position[axis];
  1054. feedrate = 0.0;
  1055. endstops_hit_on_purpose();
  1056. axis_known_position[axis] = true;
  1057. // Retract Servo endstop if enabled
  1058. #ifdef SERVO_ENDSTOPS
  1059. if (servo_endstops[axis] > -1) {
  1060. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1061. }
  1062. #endif
  1063. #if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1064. #ifndef Z_PROBE_SLED
  1065. if (axis==Z_AXIS) retract_z_probe();
  1066. #endif
  1067. #endif
  1068. }
  1069. }
  1070. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1071. void refresh_cmd_timeout(void)
  1072. {
  1073. previous_millis_cmd = millis();
  1074. }
  1075. #ifdef FWRETRACT
  1076. void retract(bool retracting, bool swapretract = false) {
  1077. if(retracting && !retracted[active_extruder]) {
  1078. destination[X_AXIS]=current_position[X_AXIS];
  1079. destination[Y_AXIS]=current_position[Y_AXIS];
  1080. destination[Z_AXIS]=current_position[Z_AXIS];
  1081. destination[E_AXIS]=current_position[E_AXIS];
  1082. if (swapretract) {
  1083. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1084. } else {
  1085. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1086. }
  1087. plan_set_e_position(current_position[E_AXIS]);
  1088. float oldFeedrate = feedrate;
  1089. feedrate=retract_feedrate*60;
  1090. retracted[active_extruder]=true;
  1091. prepare_move();
  1092. current_position[Z_AXIS]-=retract_zlift;
  1093. #ifdef DELTA
  1094. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1095. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1096. #else
  1097. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1098. #endif
  1099. prepare_move();
  1100. feedrate = oldFeedrate;
  1101. } else if(!retracting && retracted[active_extruder]) {
  1102. destination[X_AXIS]=current_position[X_AXIS];
  1103. destination[Y_AXIS]=current_position[Y_AXIS];
  1104. destination[Z_AXIS]=current_position[Z_AXIS];
  1105. destination[E_AXIS]=current_position[E_AXIS];
  1106. current_position[Z_AXIS]+=retract_zlift;
  1107. #ifdef DELTA
  1108. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1109. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1110. #else
  1111. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1112. #endif
  1113. //prepare_move();
  1114. if (swapretract) {
  1115. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1116. } else {
  1117. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1118. }
  1119. plan_set_e_position(current_position[E_AXIS]);
  1120. float oldFeedrate = feedrate;
  1121. feedrate=retract_recover_feedrate*60;
  1122. retracted[active_extruder]=false;
  1123. prepare_move();
  1124. feedrate = oldFeedrate;
  1125. }
  1126. } //retract
  1127. #endif //FWRETRACT
  1128. #ifdef Z_PROBE_SLED
  1129. //
  1130. // Method to dock/undock a sled designed by Charles Bell.
  1131. //
  1132. // dock[in] If true, move to MAX_X and engage the electromagnet
  1133. // offset[in] The additional distance to move to adjust docking location
  1134. //
  1135. static void dock_sled(bool dock, int offset=0) {
  1136. int z_loc;
  1137. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1138. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1139. SERIAL_ECHO_START;
  1140. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1141. return;
  1142. }
  1143. if (dock) {
  1144. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1145. current_position[Y_AXIS],
  1146. current_position[Z_AXIS]);
  1147. // turn off magnet
  1148. digitalWrite(SERVO0_PIN, LOW);
  1149. } else {
  1150. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1151. z_loc = Z_RAISE_BEFORE_PROBING;
  1152. else
  1153. z_loc = current_position[Z_AXIS];
  1154. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1155. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1156. // turn on magnet
  1157. digitalWrite(SERVO0_PIN, HIGH);
  1158. }
  1159. }
  1160. #endif
  1161. void process_commands()
  1162. {
  1163. unsigned long codenum; //throw away variable
  1164. char *starpos = NULL;
  1165. #ifdef ENABLE_AUTO_BED_COMPENSATION
  1166. float x_tmp, y_tmp, z_tmp, real_z;
  1167. #endif
  1168. if(code_seen('G'))
  1169. {
  1170. switch((int)code_value())
  1171. {
  1172. case 0: // G0 -> G1
  1173. case 1: // G1
  1174. if(Stopped == false) {
  1175. get_coordinates(); // For X Y Z E F
  1176. #ifdef FWRETRACT
  1177. if(autoretract_enabled)
  1178. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1179. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1180. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1181. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1182. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1183. retract(!retracted);
  1184. return;
  1185. }
  1186. }
  1187. #endif //FWRETRACT
  1188. prepare_move();
  1189. //ClearToSend();
  1190. }
  1191. break;
  1192. #ifndef SCARA //disable arc support
  1193. case 2: // G2 - CW ARC
  1194. if(Stopped == false) {
  1195. get_arc_coordinates();
  1196. prepare_arc_move(true);
  1197. }
  1198. break;
  1199. case 3: // G3 - CCW ARC
  1200. if(Stopped == false) {
  1201. get_arc_coordinates();
  1202. prepare_arc_move(false);
  1203. }
  1204. break;
  1205. #endif
  1206. case 4: // G4 dwell
  1207. LCD_MESSAGEPGM(MSG_DWELL);
  1208. codenum = 0;
  1209. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1210. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1211. st_synchronize();
  1212. codenum += millis(); // keep track of when we started waiting
  1213. previous_millis_cmd = millis();
  1214. while(millis() < codenum) {
  1215. manage_heater();
  1216. manage_inactivity();
  1217. lcd_update();
  1218. }
  1219. break;
  1220. #ifdef FWRETRACT
  1221. case 10: // G10 retract
  1222. #if EXTRUDERS > 1
  1223. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1224. retract(true,retracted_swap[active_extruder]);
  1225. #else
  1226. retract(true);
  1227. #endif
  1228. break;
  1229. case 11: // G11 retract_recover
  1230. #if EXTRUDERS > 1
  1231. retract(false,retracted_swap[active_extruder]);
  1232. #else
  1233. retract(false);
  1234. #endif
  1235. break;
  1236. #endif //FWRETRACT
  1237. case 28: //G28 Home all Axis one at a time
  1238. #ifdef ENABLE_AUTO_BED_COMPENSATION
  1239. plan_bed_compensation_matrix.set_to_identity(); //Reset the plane ("erase" all compensation data)
  1240. #endif //ENABLE_AUTO_BED_COMPENSATION
  1241. saved_feedrate = feedrate;
  1242. saved_feedmultiply = feedmultiply;
  1243. feedmultiply = 100;
  1244. previous_millis_cmd = millis();
  1245. enable_endstops(true);
  1246. for(int8_t i=0; i < NUM_AXIS; i++) {
  1247. destination[i] = current_position[i];
  1248. }
  1249. feedrate = 0.0;
  1250. #ifdef DELTA
  1251. // A delta can only safely home all axis at the same time
  1252. // all axis have to home at the same time
  1253. // Move all carriages up together until the first endstop is hit.
  1254. current_position[X_AXIS] = 0;
  1255. current_position[Y_AXIS] = 0;
  1256. current_position[Z_AXIS] = 0;
  1257. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1258. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1259. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1260. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1261. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1262. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1263. st_synchronize();
  1264. endstops_hit_on_purpose();
  1265. current_position[X_AXIS] = destination[X_AXIS];
  1266. current_position[Y_AXIS] = destination[Y_AXIS];
  1267. current_position[Z_AXIS] = destination[Z_AXIS];
  1268. // take care of back off and rehome now we are all at the top
  1269. HOMEAXIS(X);
  1270. HOMEAXIS(Y);
  1271. HOMEAXIS(Z);
  1272. calculate_delta(current_position);
  1273. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1274. #else // NOT DELTA
  1275. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1276. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1277. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1278. HOMEAXIS(Z);
  1279. }
  1280. #endif
  1281. #ifdef QUICK_HOME
  1282. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1283. {
  1284. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1285. #ifndef DUAL_X_CARRIAGE
  1286. int x_axis_home_dir = home_dir(X_AXIS);
  1287. #else
  1288. int x_axis_home_dir = x_home_dir(active_extruder);
  1289. extruder_duplication_enabled = false;
  1290. #endif
  1291. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1292. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1293. feedrate = homing_feedrate[X_AXIS];
  1294. if(homing_feedrate[Y_AXIS]<feedrate)
  1295. feedrate = homing_feedrate[Y_AXIS];
  1296. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1297. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1298. } else {
  1299. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1300. }
  1301. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1302. st_synchronize();
  1303. axis_is_at_home(X_AXIS);
  1304. axis_is_at_home(Y_AXIS);
  1305. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1306. destination[X_AXIS] = current_position[X_AXIS];
  1307. destination[Y_AXIS] = current_position[Y_AXIS];
  1308. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1309. feedrate = 0.0;
  1310. st_synchronize();
  1311. endstops_hit_on_purpose();
  1312. current_position[X_AXIS] = destination[X_AXIS];
  1313. current_position[Y_AXIS] = destination[Y_AXIS];
  1314. #ifndef SCARA
  1315. current_position[Z_AXIS] = destination[Z_AXIS];
  1316. #endif
  1317. }
  1318. #endif
  1319. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1320. {
  1321. #ifdef DUAL_X_CARRIAGE
  1322. int tmp_extruder = active_extruder;
  1323. extruder_duplication_enabled = false;
  1324. active_extruder = !active_extruder;
  1325. HOMEAXIS(X);
  1326. inactive_extruder_x_pos = current_position[X_AXIS];
  1327. active_extruder = tmp_extruder;
  1328. HOMEAXIS(X);
  1329. // reset state used by the different modes
  1330. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1331. delayed_move_time = 0;
  1332. active_extruder_parked = true;
  1333. #else
  1334. HOMEAXIS(X);
  1335. #endif
  1336. }
  1337. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1338. HOMEAXIS(Y);
  1339. }
  1340. if(code_seen(axis_codes[X_AXIS]))
  1341. {
  1342. if(code_value_long() != 0) {
  1343. #ifdef SCARA
  1344. current_position[X_AXIS]=code_value();
  1345. #else
  1346. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1347. #endif
  1348. }
  1349. }
  1350. if(code_seen(axis_codes[Y_AXIS])) {
  1351. if(code_value_long() != 0) {
  1352. #ifdef SCARA
  1353. current_position[Y_AXIS]=code_value();
  1354. #else
  1355. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1356. #endif
  1357. }
  1358. }
  1359. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1360. #ifndef Z_SAFE_HOMING
  1361. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1362. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1363. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1364. feedrate = max_feedrate[Z_AXIS];
  1365. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1366. st_synchronize();
  1367. #endif
  1368. HOMEAXIS(Z);
  1369. }
  1370. #else // Z Safe mode activated.
  1371. if(home_all_axis) {
  1372. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1373. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1374. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1375. feedrate = XY_TRAVEL_SPEED;
  1376. current_position[Z_AXIS] = 0;
  1377. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1378. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1379. st_synchronize();
  1380. current_position[X_AXIS] = destination[X_AXIS];
  1381. current_position[Y_AXIS] = destination[Y_AXIS];
  1382. HOMEAXIS(Z);
  1383. }
  1384. // Let's see if X and Y are homed and probe is inside bed area.
  1385. if(code_seen(axis_codes[Z_AXIS])) {
  1386. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1387. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1388. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1389. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1390. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1391. current_position[Z_AXIS] = 0;
  1392. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1393. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1394. feedrate = max_feedrate[Z_AXIS];
  1395. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1396. st_synchronize();
  1397. HOMEAXIS(Z);
  1398. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1399. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1400. SERIAL_ECHO_START;
  1401. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1402. } else {
  1403. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1404. SERIAL_ECHO_START;
  1405. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1406. }
  1407. }
  1408. #endif
  1409. #endif
  1410. if(code_seen(axis_codes[Z_AXIS])) {
  1411. if(code_value_long() != 0) {
  1412. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1413. }
  1414. }
  1415. #ifdef ENABLE_AUTO_BED_COMPENSATION
  1416. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1417. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1418. }
  1419. #endif
  1420. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1421. #endif // else DELTA
  1422. #ifdef SCARA
  1423. calculate_delta(current_position);
  1424. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1425. #endif // SCARA
  1426. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1427. enable_endstops(false);
  1428. #endif
  1429. feedrate = saved_feedrate;
  1430. feedmultiply = saved_feedmultiply;
  1431. previous_millis_cmd = millis();
  1432. endstops_hit_on_purpose();
  1433. break;
  1434. #ifdef ENABLE_AUTO_BED_COMPENSATION
  1435. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1436. {
  1437. #if Z_MIN_PIN == -1
  1438. #error "You must have a Z_MIN endstop in order to enable Auto Bed Compensation feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1439. #endif
  1440. // Prevent user from running a G29 without first homing in X and Y
  1441. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1442. {
  1443. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1444. SERIAL_ECHO_START;
  1445. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1446. break; // abort G29, since we don't know where we are
  1447. }
  1448. #ifdef Z_PROBE_SLED
  1449. dock_sled(false);
  1450. #endif // Z_PROBE_SLED
  1451. st_synchronize();
  1452. // make sure the bed_compensation_rotation_matrix is identity or the planner will get it incorectly
  1453. //vector_3 corrected_position = plan_get_position_mm();
  1454. //corrected_position.debug("position before G29");
  1455. plan_bed_compensation_matrix.set_to_identity();
  1456. vector_3 uncorrected_position = plan_get_position();
  1457. //uncorrected_position.debug("position durring G29");
  1458. current_position[X_AXIS] = uncorrected_position.x;
  1459. current_position[Y_AXIS] = uncorrected_position.y;
  1460. current_position[Z_AXIS] = uncorrected_position.z;
  1461. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1462. setup_for_endstop_move();
  1463. feedrate = homing_feedrate[Z_AXIS];
  1464. #ifdef AUTO_BED_COMPENSATION_GRID
  1465. // probe at the points of a lattice grid
  1466. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_COMPENSATION_GRID_POINTS-1);
  1467. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_COMPENSATION_GRID_POINTS-1);
  1468. // solve the plane equation ax + by + d = z
  1469. // A is the matrix with rows [x y 1] for all the probed points
  1470. // B is the vector of the Z positions
  1471. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1472. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1473. // "A" matrix of the linear system of equations
  1474. double eqnAMatrix[AUTO_BED_COMPENSATION_GRID_POINTS*AUTO_BED_COMPENSATION_GRID_POINTS*3];
  1475. // "B" vector of Z points
  1476. double eqnBVector[AUTO_BED_COMPENSATION_GRID_POINTS*AUTO_BED_COMPENSATION_GRID_POINTS];
  1477. int probePointCounter = 0;
  1478. bool zig = true;
  1479. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1480. {
  1481. int xProbe, xInc;
  1482. if (zig)
  1483. {
  1484. xProbe = LEFT_PROBE_BED_POSITION;
  1485. //xEnd = RIGHT_PROBE_BED_POSITION;
  1486. xInc = xGridSpacing;
  1487. zig = false;
  1488. } else // zag
  1489. {
  1490. xProbe = RIGHT_PROBE_BED_POSITION;
  1491. //xEnd = LEFT_PROBE_BED_POSITION;
  1492. xInc = -xGridSpacing;
  1493. zig = true;
  1494. }
  1495. for (int xCount=0; xCount < AUTO_BED_COMPENSATION_GRID_POINTS; xCount++)
  1496. {
  1497. float z_before;
  1498. if (probePointCounter == 0)
  1499. {
  1500. // raise before probing
  1501. z_before = Z_RAISE_BEFORE_PROBING;
  1502. } else
  1503. {
  1504. // raise extruder
  1505. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1506. }
  1507. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1508. eqnBVector[probePointCounter] = measured_z;
  1509. eqnAMatrix[probePointCounter + 0*AUTO_BED_COMPENSATION_GRID_POINTS*AUTO_BED_COMPENSATION_GRID_POINTS] = xProbe;
  1510. eqnAMatrix[probePointCounter + 1*AUTO_BED_COMPENSATION_GRID_POINTS*AUTO_BED_COMPENSATION_GRID_POINTS] = yProbe;
  1511. eqnAMatrix[probePointCounter + 2*AUTO_BED_COMPENSATION_GRID_POINTS*AUTO_BED_COMPENSATION_GRID_POINTS] = 1;
  1512. probePointCounter++;
  1513. xProbe += xInc;
  1514. }
  1515. }
  1516. clean_up_after_endstop_move();
  1517. // solve lsq problem
  1518. double *plane_equation_coefficients = qr_solve(AUTO_BED_COMPENSATION_GRID_POINTS*AUTO_BED_COMPENSATION_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1519. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1520. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1521. SERIAL_PROTOCOLPGM(" b: ");
  1522. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1523. SERIAL_PROTOCOLPGM(" d: ");
  1524. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1525. set_bed_compensation_equation_lsq(plane_equation_coefficients);
  1526. free(plane_equation_coefficients);
  1527. #else // AUTO_BED_COMPENSATION_GRID not defined
  1528. // Probe at 3 arbitrary points
  1529. // probe 1
  1530. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1531. // probe 2
  1532. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1533. // probe 3
  1534. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1535. clean_up_after_endstop_move();
  1536. set_bed_compensation_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1537. #endif // AUTO_BED_COMPENSATION_GRID
  1538. st_synchronize();
  1539. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1540. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1541. // When the bed is uneven, this height must be corrected.
  1542. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed compensation is already correcting the plane)
  1543. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1544. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1545. z_tmp = current_position[Z_AXIS];
  1546. apply_rotation_xyz(plan_bed_compensation_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1547. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1548. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1549. #ifdef Z_PROBE_SLED
  1550. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1551. #endif // Z_PROBE_SLED
  1552. }
  1553. break;
  1554. #ifndef Z_PROBE_SLED
  1555. case 30: // G30 Single Z Probe
  1556. {
  1557. engage_z_probe(); // Engage Z Servo endstop if available
  1558. st_synchronize();
  1559. // TODO: make sure the bed_compensation_rotation_matrix is identity or the planner will get set incorectly
  1560. setup_for_endstop_move();
  1561. feedrate = homing_feedrate[Z_AXIS];
  1562. run_z_probe();
  1563. SERIAL_PROTOCOLPGM(MSG_BED);
  1564. SERIAL_PROTOCOLPGM(" X: ");
  1565. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1566. SERIAL_PROTOCOLPGM(" Y: ");
  1567. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1568. SERIAL_PROTOCOLPGM(" Z: ");
  1569. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1570. SERIAL_PROTOCOLPGM("\n");
  1571. clean_up_after_endstop_move();
  1572. retract_z_probe(); // Retract Z Servo endstop if available
  1573. }
  1574. break;
  1575. #else
  1576. case 31: // dock the sled
  1577. dock_sled(true);
  1578. break;
  1579. case 32: // undock the sled
  1580. dock_sled(false);
  1581. break;
  1582. #endif // Z_PROBE_SLED
  1583. #endif // ENABLE_AUTO_BED_COMPENSATION
  1584. case 90: // G90
  1585. relative_mode = false;
  1586. break;
  1587. case 91: // G91
  1588. relative_mode = true;
  1589. break;
  1590. case 92: // G92
  1591. if(!code_seen(axis_codes[E_AXIS]))
  1592. st_synchronize();
  1593. for(int8_t i=0; i < NUM_AXIS; i++) {
  1594. if(code_seen(axis_codes[i])) {
  1595. if(i == E_AXIS) {
  1596. current_position[i] = code_value();
  1597. plan_set_e_position(current_position[E_AXIS]);
  1598. }
  1599. else {
  1600. #ifdef SCARA
  1601. if (i == X_AXIS || i == Y_AXIS) {
  1602. current_position[i] = code_value();
  1603. }
  1604. else {
  1605. current_position[i] = code_value()+add_homing[i];
  1606. }
  1607. #else
  1608. current_position[i] = code_value()+add_homing[i];
  1609. #endif
  1610. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1611. }
  1612. }
  1613. }
  1614. break;
  1615. }
  1616. }
  1617. else if(code_seen('M'))
  1618. {
  1619. switch( (int)code_value() )
  1620. {
  1621. #ifdef ULTIPANEL
  1622. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1623. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1624. {
  1625. char *src = strchr_pointer + 2;
  1626. codenum = 0;
  1627. bool hasP = false, hasS = false;
  1628. if (code_seen('P')) {
  1629. codenum = code_value(); // milliseconds to wait
  1630. hasP = codenum > 0;
  1631. }
  1632. if (code_seen('S')) {
  1633. codenum = code_value() * 1000; // seconds to wait
  1634. hasS = codenum > 0;
  1635. }
  1636. starpos = strchr(src, '*');
  1637. if (starpos != NULL) *(starpos) = '\0';
  1638. while (*src == ' ') ++src;
  1639. if (!hasP && !hasS && *src != '\0') {
  1640. lcd_setstatus(src);
  1641. } else {
  1642. LCD_MESSAGEPGM(MSG_USERWAIT);
  1643. }
  1644. lcd_ignore_click();
  1645. st_synchronize();
  1646. previous_millis_cmd = millis();
  1647. if (codenum > 0){
  1648. codenum += millis(); // keep track of when we started waiting
  1649. while(millis() < codenum && !lcd_clicked()){
  1650. manage_heater();
  1651. manage_inactivity();
  1652. lcd_update();
  1653. }
  1654. lcd_ignore_click(false);
  1655. }else{
  1656. if (!lcd_detected())
  1657. break;
  1658. while(!lcd_clicked()){
  1659. manage_heater();
  1660. manage_inactivity();
  1661. lcd_update();
  1662. }
  1663. }
  1664. if (IS_SD_PRINTING)
  1665. LCD_MESSAGEPGM(MSG_RESUMING);
  1666. else
  1667. LCD_MESSAGEPGM(WELCOME_MSG);
  1668. }
  1669. break;
  1670. #endif
  1671. case 17:
  1672. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1673. enable_x();
  1674. enable_y();
  1675. enable_z();
  1676. enable_e0();
  1677. enable_e1();
  1678. enable_e2();
  1679. break;
  1680. #ifdef SDSUPPORT
  1681. case 20: // M20 - list SD card
  1682. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1683. card.ls();
  1684. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1685. break;
  1686. case 21: // M21 - init SD card
  1687. card.initsd();
  1688. break;
  1689. case 22: //M22 - release SD card
  1690. card.release();
  1691. break;
  1692. case 23: //M23 - Select file
  1693. starpos = (strchr(strchr_pointer + 4,'*'));
  1694. if(starpos!=NULL)
  1695. *(starpos)='\0';
  1696. card.openFile(strchr_pointer + 4,true);
  1697. break;
  1698. case 24: //M24 - Start SD print
  1699. card.startFileprint();
  1700. starttime=millis();
  1701. break;
  1702. case 25: //M25 - Pause SD print
  1703. card.pauseSDPrint();
  1704. break;
  1705. case 26: //M26 - Set SD index
  1706. if(card.cardOK && code_seen('S')) {
  1707. card.setIndex(code_value_long());
  1708. }
  1709. break;
  1710. case 27: //M27 - Get SD status
  1711. card.getStatus();
  1712. break;
  1713. case 28: //M28 - Start SD write
  1714. starpos = (strchr(strchr_pointer + 4,'*'));
  1715. if(starpos != NULL){
  1716. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1717. strchr_pointer = strchr(npos,' ') + 1;
  1718. *(starpos) = '\0';
  1719. }
  1720. card.openFile(strchr_pointer+4,false);
  1721. break;
  1722. case 29: //M29 - Stop SD write
  1723. //processed in write to file routine above
  1724. //card,saving = false;
  1725. break;
  1726. case 30: //M30 <filename> Delete File
  1727. if (card.cardOK){
  1728. card.closefile();
  1729. starpos = (strchr(strchr_pointer + 4,'*'));
  1730. if(starpos != NULL){
  1731. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1732. strchr_pointer = strchr(npos,' ') + 1;
  1733. *(starpos) = '\0';
  1734. }
  1735. card.removeFile(strchr_pointer + 4);
  1736. }
  1737. break;
  1738. case 32: //M32 - Select file and start SD print
  1739. {
  1740. if(card.sdprinting) {
  1741. st_synchronize();
  1742. }
  1743. starpos = (strchr(strchr_pointer + 4,'*'));
  1744. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1745. if(namestartpos==NULL)
  1746. {
  1747. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1748. }
  1749. else
  1750. namestartpos++; //to skip the '!'
  1751. if(starpos!=NULL)
  1752. *(starpos)='\0';
  1753. bool call_procedure=(code_seen('P'));
  1754. if(strchr_pointer>namestartpos)
  1755. call_procedure=false; //false alert, 'P' found within filename
  1756. if( card.cardOK )
  1757. {
  1758. card.openFile(namestartpos,true,!call_procedure);
  1759. if(code_seen('S'))
  1760. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1761. card.setIndex(code_value_long());
  1762. card.startFileprint();
  1763. if(!call_procedure)
  1764. starttime=millis(); //procedure calls count as normal print time.
  1765. }
  1766. } break;
  1767. case 928: //M928 - Start SD write
  1768. starpos = (strchr(strchr_pointer + 5,'*'));
  1769. if(starpos != NULL){
  1770. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1771. strchr_pointer = strchr(npos,' ') + 1;
  1772. *(starpos) = '\0';
  1773. }
  1774. card.openLogFile(strchr_pointer+5);
  1775. break;
  1776. #endif //SDSUPPORT
  1777. case 31: //M31 take time since the start of the SD print or an M109 command
  1778. {
  1779. stoptime=millis();
  1780. char time[30];
  1781. unsigned long t=(stoptime-starttime)/1000;
  1782. int sec,min;
  1783. min=t/60;
  1784. sec=t%60;
  1785. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1786. SERIAL_ECHO_START;
  1787. SERIAL_ECHOLN(time);
  1788. lcd_setstatus(time);
  1789. autotempShutdown();
  1790. }
  1791. break;
  1792. case 42: //M42 -Change pin status via gcode
  1793. if (code_seen('S'))
  1794. {
  1795. int pin_status = code_value();
  1796. int pin_number = LED_PIN;
  1797. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1798. pin_number = code_value();
  1799. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1800. {
  1801. if (sensitive_pins[i] == pin_number)
  1802. {
  1803. pin_number = -1;
  1804. break;
  1805. }
  1806. }
  1807. #if defined(FAN_PIN) && FAN_PIN > -1
  1808. if (pin_number == FAN_PIN)
  1809. fanSpeed = pin_status;
  1810. #endif
  1811. if (pin_number > -1)
  1812. {
  1813. pinMode(pin_number, OUTPUT);
  1814. digitalWrite(pin_number, pin_status);
  1815. analogWrite(pin_number, pin_status);
  1816. }
  1817. }
  1818. break;
  1819. // M48 Z-Probe repeatability measurement function.
  1820. //
  1821. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  1822. //
  1823. // This function assumes the bed has been homed. Specificaly, that a G28 command
  1824. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  1825. // Any information generated by a prior G29 Bed compensation command will be lost and need to be
  1826. // regenerated.
  1827. //
  1828. // The number of samples will default to 10 if not specified. You can use upper or lower case
  1829. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  1830. // N for its communication protocol and will get horribly confused if you send it a capital N.
  1831. //
  1832. #ifdef ENABLE_AUTO_BED_COMPENSATION
  1833. #ifdef Z_PROBE_REPEATABILITY_TEST
  1834. case 48: // M48 Z-Probe repeatability
  1835. {
  1836. #if Z_MIN_PIN == -1
  1837. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  1838. #endif
  1839. double sum=0.0;
  1840. double mean=0.0;
  1841. double sigma=0.0;
  1842. double sample_set[50];
  1843. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  1844. double X_current, Y_current, Z_current;
  1845. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  1846. if (code_seen('V') || code_seen('v')) {
  1847. verbose_level = code_value();
  1848. if (verbose_level<0 || verbose_level>4 ) {
  1849. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  1850. goto Sigma_Exit;
  1851. }
  1852. }
  1853. if (verbose_level > 0) {
  1854. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  1855. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  1856. }
  1857. if (code_seen('n')) {
  1858. n_samples = code_value();
  1859. if (n_samples<4 || n_samples>50 ) {
  1860. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  1861. goto Sigma_Exit;
  1862. }
  1863. }
  1864. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  1865. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  1866. Z_current = st_get_position_mm(Z_AXIS);
  1867. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1868. ext_position = st_get_position_mm(E_AXIS);
  1869. if (code_seen('E') || code_seen('e') )
  1870. engage_probe_for_each_reading++;
  1871. if (code_seen('X') || code_seen('x') ) {
  1872. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  1873. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  1874. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  1875. goto Sigma_Exit;
  1876. }
  1877. }
  1878. if (code_seen('Y') || code_seen('y') ) {
  1879. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1880. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  1881. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  1882. goto Sigma_Exit;
  1883. }
  1884. }
  1885. if (code_seen('L') || code_seen('l') ) {
  1886. n_legs = code_value();
  1887. if ( n_legs==1 )
  1888. n_legs = 2;
  1889. if ( n_legs<0 || n_legs>15 ) {
  1890. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  1891. goto Sigma_Exit;
  1892. }
  1893. }
  1894. //
  1895. // Do all the preliminary setup work. First raise the probe.
  1896. //
  1897. st_synchronize();
  1898. plan_bed_compensation_matrix.set_to_identity();
  1899. plan_buffer_line( X_current, Y_current, Z_start_location,
  1900. ext_position,
  1901. homing_feedrate[Z_AXIS]/60,
  1902. active_extruder);
  1903. st_synchronize();
  1904. //
  1905. // Now get everything to the specified probe point So we can safely do a probe to
  1906. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  1907. // use that as a starting point for each probe.
  1908. //
  1909. if (verbose_level > 2)
  1910. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  1911. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1912. ext_position,
  1913. homing_feedrate[X_AXIS]/60,
  1914. active_extruder);
  1915. st_synchronize();
  1916. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  1917. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  1918. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1919. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  1920. //
  1921. // OK, do the inital probe to get us close to the bed.
  1922. // Then retrace the right amount and use that in subsequent probes
  1923. //
  1924. engage_z_probe();
  1925. setup_for_endstop_move();
  1926. run_z_probe();
  1927. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1928. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1929. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1930. ext_position,
  1931. homing_feedrate[X_AXIS]/60,
  1932. active_extruder);
  1933. st_synchronize();
  1934. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1935. if (engage_probe_for_each_reading)
  1936. retract_z_probe();
  1937. for( n=0; n<n_samples; n++) {
  1938. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  1939. if ( n_legs) {
  1940. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  1941. int rotational_direction, l;
  1942. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  1943. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  1944. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  1945. //SERIAL_ECHOPAIR("starting radius: ",radius);
  1946. //SERIAL_ECHOPAIR(" theta: ",theta);
  1947. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  1948. //SERIAL_PROTOCOLLNPGM("");
  1949. for( l=0; l<n_legs-1; l++) {
  1950. if (rotational_direction==1)
  1951. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  1952. else
  1953. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  1954. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  1955. if ( radius<0.0 )
  1956. radius = -radius;
  1957. X_current = X_probe_location + cos(theta) * radius;
  1958. Y_current = Y_probe_location + sin(theta) * radius;
  1959. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  1960. X_current = X_MIN_POS;
  1961. if ( X_current>X_MAX_POS)
  1962. X_current = X_MAX_POS;
  1963. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  1964. Y_current = Y_MIN_POS;
  1965. if ( Y_current>Y_MAX_POS)
  1966. Y_current = Y_MAX_POS;
  1967. if (verbose_level>3 ) {
  1968. SERIAL_ECHOPAIR("x: ", X_current);
  1969. SERIAL_ECHOPAIR("y: ", Y_current);
  1970. SERIAL_PROTOCOLLNPGM("");
  1971. }
  1972. do_blocking_move_to( X_current, Y_current, Z_current );
  1973. }
  1974. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  1975. }
  1976. if (engage_probe_for_each_reading) {
  1977. engage_z_probe();
  1978. delay(1000);
  1979. }
  1980. setup_for_endstop_move();
  1981. run_z_probe();
  1982. sample_set[n] = current_position[Z_AXIS];
  1983. //
  1984. // Get the current mean for the data points we have so far
  1985. //
  1986. sum=0.0;
  1987. for( j=0; j<=n; j++) {
  1988. sum = sum + sample_set[j];
  1989. }
  1990. mean = sum / (double (n+1));
  1991. //
  1992. // Now, use that mean to calculate the standard deviation for the
  1993. // data points we have so far
  1994. //
  1995. sum=0.0;
  1996. for( j=0; j<=n; j++) {
  1997. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  1998. }
  1999. sigma = sqrt( sum / (double (n+1)) );
  2000. if (verbose_level > 1) {
  2001. SERIAL_PROTOCOL(n+1);
  2002. SERIAL_PROTOCOL(" of ");
  2003. SERIAL_PROTOCOL(n_samples);
  2004. SERIAL_PROTOCOLPGM(" z: ");
  2005. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2006. }
  2007. if (verbose_level > 2) {
  2008. SERIAL_PROTOCOL(" mean: ");
  2009. SERIAL_PROTOCOL_F(mean,6);
  2010. SERIAL_PROTOCOL(" sigma: ");
  2011. SERIAL_PROTOCOL_F(sigma,6);
  2012. }
  2013. if (verbose_level > 0)
  2014. SERIAL_PROTOCOLPGM("\n");
  2015. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2016. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2017. st_synchronize();
  2018. if (engage_probe_for_each_reading) {
  2019. retract_z_probe();
  2020. delay(1000);
  2021. }
  2022. }
  2023. retract_z_probe();
  2024. delay(1000);
  2025. clean_up_after_endstop_move();
  2026. // enable_endstops(true);
  2027. if (verbose_level > 0) {
  2028. SERIAL_PROTOCOLPGM("Mean: ");
  2029. SERIAL_PROTOCOL_F(mean, 6);
  2030. SERIAL_PROTOCOLPGM("\n");
  2031. }
  2032. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2033. SERIAL_PROTOCOL_F(sigma, 6);
  2034. SERIAL_PROTOCOLPGM("\n\n");
  2035. Sigma_Exit:
  2036. break;
  2037. }
  2038. #endif // Z_PROBE_REPEATABILITY_TEST
  2039. #endif // ENABLE_AUTO_BED_COMPENSATION
  2040. case 104: // M104
  2041. if(setTargetedHotend(104)){
  2042. break;
  2043. }
  2044. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2045. #ifdef DUAL_X_CARRIAGE
  2046. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2047. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2048. #endif
  2049. setWatch();
  2050. break;
  2051. case 112: // M112 -Emergency Stop
  2052. kill();
  2053. break;
  2054. case 140: // M140 set bed temp
  2055. if (code_seen('S')) setTargetBed(code_value());
  2056. break;
  2057. case 105 : // M105
  2058. if(setTargetedHotend(105)){
  2059. break;
  2060. }
  2061. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2062. SERIAL_PROTOCOLPGM("ok T:");
  2063. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2064. SERIAL_PROTOCOLPGM(" /");
  2065. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2066. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2067. SERIAL_PROTOCOLPGM(" B:");
  2068. SERIAL_PROTOCOL_F(degBed(),1);
  2069. SERIAL_PROTOCOLPGM(" /");
  2070. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2071. #endif //TEMP_BED_PIN
  2072. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2073. SERIAL_PROTOCOLPGM(" T");
  2074. SERIAL_PROTOCOL(cur_extruder);
  2075. SERIAL_PROTOCOLPGM(":");
  2076. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2077. SERIAL_PROTOCOLPGM(" /");
  2078. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2079. }
  2080. #else
  2081. SERIAL_ERROR_START;
  2082. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2083. #endif
  2084. SERIAL_PROTOCOLPGM(" @:");
  2085. #ifdef EXTRUDER_WATTS
  2086. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2087. SERIAL_PROTOCOLPGM("W");
  2088. #else
  2089. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2090. #endif
  2091. SERIAL_PROTOCOLPGM(" B@:");
  2092. #ifdef BED_WATTS
  2093. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2094. SERIAL_PROTOCOLPGM("W");
  2095. #else
  2096. SERIAL_PROTOCOL(getHeaterPower(-1));
  2097. #endif
  2098. #ifdef SHOW_TEMP_ADC_VALUES
  2099. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2100. SERIAL_PROTOCOLPGM(" ADC B:");
  2101. SERIAL_PROTOCOL_F(degBed(),1);
  2102. SERIAL_PROTOCOLPGM("C->");
  2103. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2104. #endif
  2105. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2106. SERIAL_PROTOCOLPGM(" T");
  2107. SERIAL_PROTOCOL(cur_extruder);
  2108. SERIAL_PROTOCOLPGM(":");
  2109. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2110. SERIAL_PROTOCOLPGM("C->");
  2111. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2112. }
  2113. #endif
  2114. SERIAL_PROTOCOLLN("");
  2115. return;
  2116. break;
  2117. case 109:
  2118. {// M109 - Wait for extruder heater to reach target.
  2119. if(setTargetedHotend(109)){
  2120. break;
  2121. }
  2122. LCD_MESSAGEPGM(MSG_HEATING);
  2123. #ifdef AUTOTEMP
  2124. autotemp_enabled=false;
  2125. #endif
  2126. if (code_seen('S')) {
  2127. setTargetHotend(code_value(), tmp_extruder);
  2128. #ifdef DUAL_X_CARRIAGE
  2129. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2130. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2131. #endif
  2132. CooldownNoWait = true;
  2133. } else if (code_seen('R')) {
  2134. setTargetHotend(code_value(), tmp_extruder);
  2135. #ifdef DUAL_X_CARRIAGE
  2136. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2137. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2138. #endif
  2139. CooldownNoWait = false;
  2140. }
  2141. #ifdef AUTOTEMP
  2142. if (code_seen('S')) autotemp_min=code_value();
  2143. if (code_seen('B')) autotemp_max=code_value();
  2144. if (code_seen('F'))
  2145. {
  2146. autotemp_factor=code_value();
  2147. autotemp_enabled=true;
  2148. }
  2149. #endif
  2150. setWatch();
  2151. codenum = millis();
  2152. /* See if we are heating up or cooling down */
  2153. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2154. cancel_heatup = false;
  2155. #ifdef TEMP_RESIDENCY_TIME
  2156. long residencyStart;
  2157. residencyStart = -1;
  2158. /* continue to loop until we have reached the target temp
  2159. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2160. while((!cancel_heatup)&&((residencyStart == -1) ||
  2161. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2162. #else
  2163. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2164. #endif //TEMP_RESIDENCY_TIME
  2165. if( (millis() - codenum) > 1000UL )
  2166. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2167. SERIAL_PROTOCOLPGM("T:");
  2168. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2169. SERIAL_PROTOCOLPGM(" E:");
  2170. SERIAL_PROTOCOL((int)tmp_extruder);
  2171. #ifdef TEMP_RESIDENCY_TIME
  2172. SERIAL_PROTOCOLPGM(" W:");
  2173. if(residencyStart > -1)
  2174. {
  2175. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2176. SERIAL_PROTOCOLLN( codenum );
  2177. }
  2178. else
  2179. {
  2180. SERIAL_PROTOCOLLN( "?" );
  2181. }
  2182. #else
  2183. SERIAL_PROTOCOLLN("");
  2184. #endif
  2185. codenum = millis();
  2186. }
  2187. manage_heater();
  2188. manage_inactivity();
  2189. lcd_update();
  2190. #ifdef TEMP_RESIDENCY_TIME
  2191. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2192. or when current temp falls outside the hysteresis after target temp was reached */
  2193. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2194. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2195. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2196. {
  2197. residencyStart = millis();
  2198. }
  2199. #endif //TEMP_RESIDENCY_TIME
  2200. }
  2201. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2202. starttime=millis();
  2203. previous_millis_cmd = millis();
  2204. }
  2205. break;
  2206. case 190: // M190 - Wait for bed heater to reach target.
  2207. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2208. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2209. if (code_seen('S')) {
  2210. setTargetBed(code_value());
  2211. CooldownNoWait = true;
  2212. } else if (code_seen('R')) {
  2213. setTargetBed(code_value());
  2214. CooldownNoWait = false;
  2215. }
  2216. codenum = millis();
  2217. cancel_heatup = false;
  2218. target_direction = isHeatingBed(); // true if heating, false if cooling
  2219. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2220. {
  2221. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2222. {
  2223. float tt=degHotend(active_extruder);
  2224. SERIAL_PROTOCOLPGM("T:");
  2225. SERIAL_PROTOCOL(tt);
  2226. SERIAL_PROTOCOLPGM(" E:");
  2227. SERIAL_PROTOCOL((int)active_extruder);
  2228. SERIAL_PROTOCOLPGM(" B:");
  2229. SERIAL_PROTOCOL_F(degBed(),1);
  2230. SERIAL_PROTOCOLLN("");
  2231. codenum = millis();
  2232. }
  2233. manage_heater();
  2234. manage_inactivity();
  2235. lcd_update();
  2236. }
  2237. LCD_MESSAGEPGM(MSG_BED_DONE);
  2238. previous_millis_cmd = millis();
  2239. #endif
  2240. break;
  2241. #if defined(FAN_PIN) && FAN_PIN > -1
  2242. case 106: //M106 Fan On
  2243. if (code_seen('S')){
  2244. fanSpeed=constrain(code_value(),0,255);
  2245. }
  2246. else {
  2247. fanSpeed=255;
  2248. }
  2249. break;
  2250. case 107: //M107 Fan Off
  2251. fanSpeed = 0;
  2252. break;
  2253. #endif //FAN_PIN
  2254. #ifdef BARICUDA
  2255. // PWM for HEATER_1_PIN
  2256. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2257. case 126: //M126 valve open
  2258. if (code_seen('S')){
  2259. ValvePressure=constrain(code_value(),0,255);
  2260. }
  2261. else {
  2262. ValvePressure=255;
  2263. }
  2264. break;
  2265. case 127: //M127 valve closed
  2266. ValvePressure = 0;
  2267. break;
  2268. #endif //HEATER_1_PIN
  2269. // PWM for HEATER_2_PIN
  2270. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2271. case 128: //M128 valve open
  2272. if (code_seen('S')){
  2273. EtoPPressure=constrain(code_value(),0,255);
  2274. }
  2275. else {
  2276. EtoPPressure=255;
  2277. }
  2278. break;
  2279. case 129: //M129 valve closed
  2280. EtoPPressure = 0;
  2281. break;
  2282. #endif //HEATER_2_PIN
  2283. #endif
  2284. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2285. case 80: // M80 - Turn on Power Supply
  2286. SET_OUTPUT(PS_ON_PIN); //GND
  2287. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2288. // If you have a switch on suicide pin, this is useful
  2289. // if you want to start another print with suicide feature after
  2290. // a print without suicide...
  2291. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2292. SET_OUTPUT(SUICIDE_PIN);
  2293. WRITE(SUICIDE_PIN, HIGH);
  2294. #endif
  2295. #ifdef ULTIPANEL
  2296. powersupply = true;
  2297. LCD_MESSAGEPGM(WELCOME_MSG);
  2298. lcd_update();
  2299. #endif
  2300. break;
  2301. #endif
  2302. case 81: // M81 - Turn off Power Supply
  2303. disable_heater();
  2304. st_synchronize();
  2305. disable_e0();
  2306. disable_e1();
  2307. disable_e2();
  2308. finishAndDisableSteppers();
  2309. fanSpeed = 0;
  2310. delay(1000); // Wait a little before to switch off
  2311. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2312. st_synchronize();
  2313. suicide();
  2314. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2315. SET_OUTPUT(PS_ON_PIN);
  2316. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2317. #endif
  2318. #ifdef ULTIPANEL
  2319. powersupply = false;
  2320. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2321. lcd_update();
  2322. #endif
  2323. break;
  2324. case 82:
  2325. axis_relative_modes[3] = false;
  2326. break;
  2327. case 83:
  2328. axis_relative_modes[3] = true;
  2329. break;
  2330. case 18: //compatibility
  2331. case 84: // M84
  2332. if(code_seen('S')){
  2333. stepper_inactive_time = code_value() * 1000;
  2334. }
  2335. else
  2336. {
  2337. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2338. if(all_axis)
  2339. {
  2340. st_synchronize();
  2341. disable_e0();
  2342. disable_e1();
  2343. disable_e2();
  2344. finishAndDisableSteppers();
  2345. }
  2346. else
  2347. {
  2348. st_synchronize();
  2349. if(code_seen('X')) disable_x();
  2350. if(code_seen('Y')) disable_y();
  2351. if(code_seen('Z')) disable_z();
  2352. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2353. if(code_seen('E')) {
  2354. disable_e0();
  2355. disable_e1();
  2356. disable_e2();
  2357. }
  2358. #endif
  2359. }
  2360. }
  2361. break;
  2362. case 85: // M85
  2363. if(code_seen('S')) {
  2364. max_inactive_time = code_value() * 1000;
  2365. }
  2366. break;
  2367. case 92: // M92
  2368. for(int8_t i=0; i < NUM_AXIS; i++)
  2369. {
  2370. if(code_seen(axis_codes[i]))
  2371. {
  2372. if(i == 3) { // E
  2373. float value = code_value();
  2374. if(value < 20.0) {
  2375. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2376. max_e_jerk *= factor;
  2377. max_feedrate[i] *= factor;
  2378. axis_steps_per_sqr_second[i] *= factor;
  2379. }
  2380. axis_steps_per_unit[i] = value;
  2381. }
  2382. else {
  2383. axis_steps_per_unit[i] = code_value();
  2384. }
  2385. }
  2386. }
  2387. break;
  2388. case 115: // M115
  2389. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2390. break;
  2391. case 117: // M117 display message
  2392. starpos = (strchr(strchr_pointer + 5,'*'));
  2393. if(starpos!=NULL)
  2394. *(starpos)='\0';
  2395. lcd_setstatus(strchr_pointer + 5);
  2396. break;
  2397. case 114: // M114
  2398. SERIAL_PROTOCOLPGM("X:");
  2399. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2400. SERIAL_PROTOCOLPGM(" Y:");
  2401. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2402. SERIAL_PROTOCOLPGM(" Z:");
  2403. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2404. SERIAL_PROTOCOLPGM(" E:");
  2405. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2406. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2407. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2408. SERIAL_PROTOCOLPGM(" Y:");
  2409. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2410. SERIAL_PROTOCOLPGM(" Z:");
  2411. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2412. SERIAL_PROTOCOLLN("");
  2413. #ifdef SCARA
  2414. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2415. SERIAL_PROTOCOL(delta[X_AXIS]);
  2416. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2417. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2418. SERIAL_PROTOCOLLN("");
  2419. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2420. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2421. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2422. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2423. SERIAL_PROTOCOLLN("");
  2424. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2425. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2426. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2427. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2428. SERIAL_PROTOCOLLN("");
  2429. SERIAL_PROTOCOLLN("");
  2430. #endif
  2431. break;
  2432. case 120: // M120
  2433. enable_endstops(false) ;
  2434. break;
  2435. case 121: // M121
  2436. enable_endstops(true) ;
  2437. break;
  2438. case 119: // M119
  2439. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2440. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2441. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2442. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2443. #endif
  2444. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2445. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2446. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2447. #endif
  2448. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2449. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2450. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2451. #endif
  2452. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2453. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2454. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2455. #endif
  2456. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2457. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2458. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2459. #endif
  2460. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2461. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2462. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2463. #endif
  2464. break;
  2465. //TODO: update for all axis, use for loop
  2466. #ifdef BLINKM
  2467. case 150: // M150
  2468. {
  2469. byte red;
  2470. byte grn;
  2471. byte blu;
  2472. if(code_seen('R')) red = code_value();
  2473. if(code_seen('U')) grn = code_value();
  2474. if(code_seen('B')) blu = code_value();
  2475. SendColors(red,grn,blu);
  2476. }
  2477. break;
  2478. #endif //BLINKM
  2479. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2480. {
  2481. float area = .0;
  2482. float radius = .0;
  2483. if(code_seen('D')) {
  2484. radius = (float)code_value() * .5;
  2485. if(radius == 0) {
  2486. area = 1;
  2487. } else {
  2488. area = M_PI * pow(radius, 2);
  2489. }
  2490. } else {
  2491. //reserved for setting filament diameter via UFID or filament measuring device
  2492. break;
  2493. }
  2494. tmp_extruder = active_extruder;
  2495. if(code_seen('T')) {
  2496. tmp_extruder = code_value();
  2497. if(tmp_extruder >= EXTRUDERS) {
  2498. SERIAL_ECHO_START;
  2499. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2500. break;
  2501. }
  2502. }
  2503. volumetric_multiplier[tmp_extruder] = 1 / area;
  2504. }
  2505. break;
  2506. case 201: // M201
  2507. for(int8_t i=0; i < NUM_AXIS; i++)
  2508. {
  2509. if(code_seen(axis_codes[i]))
  2510. {
  2511. max_acceleration_units_per_sq_second[i] = code_value();
  2512. }
  2513. }
  2514. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2515. reset_acceleration_rates();
  2516. break;
  2517. #if 0 // Not used for Sprinter/grbl gen6
  2518. case 202: // M202
  2519. for(int8_t i=0; i < NUM_AXIS; i++) {
  2520. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2521. }
  2522. break;
  2523. #endif
  2524. case 203: // M203 max feedrate mm/sec
  2525. for(int8_t i=0; i < NUM_AXIS; i++) {
  2526. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2527. }
  2528. break;
  2529. case 204: // M204 acclereration S normal moves T filmanent only moves
  2530. {
  2531. if(code_seen('S')) acceleration = code_value() ;
  2532. if(code_seen('T')) retract_acceleration = code_value() ;
  2533. }
  2534. break;
  2535. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2536. {
  2537. if(code_seen('S')) minimumfeedrate = code_value();
  2538. if(code_seen('T')) mintravelfeedrate = code_value();
  2539. if(code_seen('B')) minsegmenttime = code_value() ;
  2540. if(code_seen('X')) max_xy_jerk = code_value() ;
  2541. if(code_seen('Z')) max_z_jerk = code_value() ;
  2542. if(code_seen('E')) max_e_jerk = code_value() ;
  2543. }
  2544. break;
  2545. case 206: // M206 additional homing offset
  2546. for(int8_t i=0; i < 3; i++)
  2547. {
  2548. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2549. }
  2550. #ifdef SCARA
  2551. if(code_seen('T')) // Theta
  2552. {
  2553. add_homing[X_AXIS] = code_value() ;
  2554. }
  2555. if(code_seen('P')) // Psi
  2556. {
  2557. add_homing[Y_AXIS] = code_value() ;
  2558. }
  2559. #endif
  2560. break;
  2561. #ifdef DELTA
  2562. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2563. if(code_seen('L')) {
  2564. delta_diagonal_rod= code_value();
  2565. }
  2566. if(code_seen('R')) {
  2567. delta_radius= code_value();
  2568. }
  2569. if(code_seen('S')) {
  2570. delta_segments_per_second= code_value();
  2571. }
  2572. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2573. break;
  2574. case 666: // M666 set delta endstop adjustemnt
  2575. for(int8_t i=0; i < 3; i++)
  2576. {
  2577. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2578. }
  2579. break;
  2580. #endif
  2581. #ifdef FWRETRACT
  2582. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2583. {
  2584. if(code_seen('S'))
  2585. {
  2586. retract_length = code_value() ;
  2587. }
  2588. if(code_seen('F'))
  2589. {
  2590. retract_feedrate = code_value()/60 ;
  2591. }
  2592. if(code_seen('Z'))
  2593. {
  2594. retract_zlift = code_value() ;
  2595. }
  2596. }break;
  2597. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2598. {
  2599. if(code_seen('S'))
  2600. {
  2601. retract_recover_length = code_value() ;
  2602. }
  2603. if(code_seen('F'))
  2604. {
  2605. retract_recover_feedrate = code_value()/60 ;
  2606. }
  2607. }break;
  2608. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2609. {
  2610. if(code_seen('S'))
  2611. {
  2612. int t= code_value() ;
  2613. switch(t)
  2614. {
  2615. case 0:
  2616. {
  2617. autoretract_enabled=false;
  2618. retracted[0]=false;
  2619. #if EXTRUDERS > 1
  2620. retracted[1]=false;
  2621. #endif
  2622. #if EXTRUDERS > 2
  2623. retracted[2]=false;
  2624. #endif
  2625. }break;
  2626. case 1:
  2627. {
  2628. autoretract_enabled=true;
  2629. retracted[0]=false;
  2630. #if EXTRUDERS > 1
  2631. retracted[1]=false;
  2632. #endif
  2633. #if EXTRUDERS > 2
  2634. retracted[2]=false;
  2635. #endif
  2636. }break;
  2637. default:
  2638. SERIAL_ECHO_START;
  2639. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2640. SERIAL_ECHO(cmdbuffer[bufindr]);
  2641. SERIAL_ECHOLNPGM("\"");
  2642. }
  2643. }
  2644. }break;
  2645. #endif // FWRETRACT
  2646. #if EXTRUDERS > 1
  2647. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2648. {
  2649. if(setTargetedHotend(218)){
  2650. break;
  2651. }
  2652. if(code_seen('X'))
  2653. {
  2654. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2655. }
  2656. if(code_seen('Y'))
  2657. {
  2658. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2659. }
  2660. #ifdef DUAL_X_CARRIAGE
  2661. if(code_seen('Z'))
  2662. {
  2663. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2664. }
  2665. #endif
  2666. SERIAL_ECHO_START;
  2667. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2668. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2669. {
  2670. SERIAL_ECHO(" ");
  2671. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2672. SERIAL_ECHO(",");
  2673. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2674. #ifdef DUAL_X_CARRIAGE
  2675. SERIAL_ECHO(",");
  2676. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2677. #endif
  2678. }
  2679. SERIAL_ECHOLN("");
  2680. }break;
  2681. #endif
  2682. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2683. {
  2684. if(code_seen('S'))
  2685. {
  2686. feedmultiply = code_value() ;
  2687. }
  2688. }
  2689. break;
  2690. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2691. {
  2692. if(code_seen('S'))
  2693. {
  2694. int tmp_code = code_value();
  2695. if (code_seen('T'))
  2696. {
  2697. if(setTargetedHotend(221)){
  2698. break;
  2699. }
  2700. extruder_multiply[tmp_extruder] = tmp_code;
  2701. }
  2702. else
  2703. {
  2704. extrudemultiply = tmp_code ;
  2705. }
  2706. }
  2707. }
  2708. break;
  2709. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2710. {
  2711. if(code_seen('P')){
  2712. int pin_number = code_value(); // pin number
  2713. int pin_state = -1; // required pin state - default is inverted
  2714. if(code_seen('S')) pin_state = code_value(); // required pin state
  2715. if(pin_state >= -1 && pin_state <= 1){
  2716. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2717. {
  2718. if (sensitive_pins[i] == pin_number)
  2719. {
  2720. pin_number = -1;
  2721. break;
  2722. }
  2723. }
  2724. if (pin_number > -1)
  2725. {
  2726. int target = LOW;
  2727. st_synchronize();
  2728. pinMode(pin_number, INPUT);
  2729. switch(pin_state){
  2730. case 1:
  2731. target = HIGH;
  2732. break;
  2733. case 0:
  2734. target = LOW;
  2735. break;
  2736. case -1:
  2737. target = !digitalRead(pin_number);
  2738. break;
  2739. }
  2740. while(digitalRead(pin_number) != target){
  2741. manage_heater();
  2742. manage_inactivity();
  2743. lcd_update();
  2744. }
  2745. }
  2746. }
  2747. }
  2748. }
  2749. break;
  2750. #if NUM_SERVOS > 0
  2751. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2752. {
  2753. int servo_index = -1;
  2754. int servo_position = 0;
  2755. if (code_seen('P'))
  2756. servo_index = code_value();
  2757. if (code_seen('S')) {
  2758. servo_position = code_value();
  2759. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2760. #if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2761. servos[servo_index].attach(0);
  2762. #endif
  2763. servos[servo_index].write(servo_position);
  2764. #if defined (ENABLE_AUTO_BED_COMPENSATION) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2765. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2766. servos[servo_index].detach();
  2767. #endif
  2768. }
  2769. else {
  2770. SERIAL_ECHO_START;
  2771. SERIAL_ECHO("Servo ");
  2772. SERIAL_ECHO(servo_index);
  2773. SERIAL_ECHOLN(" out of range");
  2774. }
  2775. }
  2776. else if (servo_index >= 0) {
  2777. SERIAL_PROTOCOL(MSG_OK);
  2778. SERIAL_PROTOCOL(" Servo ");
  2779. SERIAL_PROTOCOL(servo_index);
  2780. SERIAL_PROTOCOL(": ");
  2781. SERIAL_PROTOCOL(servos[servo_index].read());
  2782. SERIAL_PROTOCOLLN("");
  2783. }
  2784. }
  2785. break;
  2786. #endif // NUM_SERVOS > 0
  2787. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2788. case 300: // M300
  2789. {
  2790. int beepS = code_seen('S') ? code_value() : 110;
  2791. int beepP = code_seen('P') ? code_value() : 1000;
  2792. if (beepS > 0)
  2793. {
  2794. #if BEEPER > 0
  2795. tone(BEEPER, beepS);
  2796. delay(beepP);
  2797. noTone(BEEPER);
  2798. #elif defined(ULTRALCD)
  2799. lcd_buzz(beepS, beepP);
  2800. #elif defined(LCD_USE_I2C_BUZZER)
  2801. lcd_buzz(beepP, beepS);
  2802. #endif
  2803. }
  2804. else
  2805. {
  2806. delay(beepP);
  2807. }
  2808. }
  2809. break;
  2810. #endif // M300
  2811. #ifdef PIDTEMP
  2812. case 301: // M301
  2813. {
  2814. if(code_seen('P')) Kp = code_value();
  2815. if(code_seen('I')) Ki = scalePID_i(code_value());
  2816. if(code_seen('D')) Kd = scalePID_d(code_value());
  2817. #ifdef PID_ADD_EXTRUSION_RATE
  2818. if(code_seen('C')) Kc = code_value();
  2819. #endif
  2820. updatePID();
  2821. SERIAL_PROTOCOL(MSG_OK);
  2822. SERIAL_PROTOCOL(" p:");
  2823. SERIAL_PROTOCOL(Kp);
  2824. SERIAL_PROTOCOL(" i:");
  2825. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2826. SERIAL_PROTOCOL(" d:");
  2827. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2828. #ifdef PID_ADD_EXTRUSION_RATE
  2829. SERIAL_PROTOCOL(" c:");
  2830. //Kc does not have scaling applied above, or in resetting defaults
  2831. SERIAL_PROTOCOL(Kc);
  2832. #endif
  2833. SERIAL_PROTOCOLLN("");
  2834. }
  2835. break;
  2836. #endif //PIDTEMP
  2837. #ifdef PIDTEMPBED
  2838. case 304: // M304
  2839. {
  2840. if(code_seen('P')) bedKp = code_value();
  2841. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2842. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2843. updatePID();
  2844. SERIAL_PROTOCOL(MSG_OK);
  2845. SERIAL_PROTOCOL(" p:");
  2846. SERIAL_PROTOCOL(bedKp);
  2847. SERIAL_PROTOCOL(" i:");
  2848. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2849. SERIAL_PROTOCOL(" d:");
  2850. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2851. SERIAL_PROTOCOLLN("");
  2852. }
  2853. break;
  2854. #endif //PIDTEMP
  2855. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2856. {
  2857. #ifdef CHDK
  2858. SET_OUTPUT(CHDK);
  2859. WRITE(CHDK, HIGH);
  2860. chdkHigh = millis();
  2861. chdkActive = true;
  2862. #else
  2863. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2864. const uint8_t NUM_PULSES=16;
  2865. const float PULSE_LENGTH=0.01524;
  2866. for(int i=0; i < NUM_PULSES; i++) {
  2867. WRITE(PHOTOGRAPH_PIN, HIGH);
  2868. _delay_ms(PULSE_LENGTH);
  2869. WRITE(PHOTOGRAPH_PIN, LOW);
  2870. _delay_ms(PULSE_LENGTH);
  2871. }
  2872. delay(7.33);
  2873. for(int i=0; i < NUM_PULSES; i++) {
  2874. WRITE(PHOTOGRAPH_PIN, HIGH);
  2875. _delay_ms(PULSE_LENGTH);
  2876. WRITE(PHOTOGRAPH_PIN, LOW);
  2877. _delay_ms(PULSE_LENGTH);
  2878. }
  2879. #endif
  2880. #endif //chdk end if
  2881. }
  2882. break;
  2883. #ifdef DOGLCD
  2884. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2885. {
  2886. if (code_seen('C')) {
  2887. lcd_setcontrast( ((int)code_value())&63 );
  2888. }
  2889. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2890. SERIAL_PROTOCOL(lcd_contrast);
  2891. SERIAL_PROTOCOLLN("");
  2892. }
  2893. break;
  2894. #endif
  2895. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2896. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2897. {
  2898. float temp = .0;
  2899. if (code_seen('S')) temp=code_value();
  2900. set_extrude_min_temp(temp);
  2901. }
  2902. break;
  2903. #endif
  2904. case 303: // M303 PID autotune
  2905. {
  2906. float temp = 150.0;
  2907. int e=0;
  2908. int c=5;
  2909. if (code_seen('E')) e=code_value();
  2910. if (e<0)
  2911. temp=70;
  2912. if (code_seen('S')) temp=code_value();
  2913. if (code_seen('C')) c=code_value();
  2914. PID_autotune(temp, e, c);
  2915. }
  2916. break;
  2917. #ifdef SCARA
  2918. case 360: // M360 SCARA Theta pos1
  2919. SERIAL_ECHOLN(" Cal: Theta 0 ");
  2920. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2921. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2922. if(Stopped == false) {
  2923. //get_coordinates(); // For X Y Z E F
  2924. delta[X_AXIS] = 0;
  2925. delta[Y_AXIS] = 120;
  2926. calculate_SCARA_forward_Transform(delta);
  2927. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  2928. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  2929. prepare_move();
  2930. //ClearToSend();
  2931. return;
  2932. }
  2933. break;
  2934. case 361: // SCARA Theta pos2
  2935. SERIAL_ECHOLN(" Cal: Theta 90 ");
  2936. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2937. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2938. if(Stopped == false) {
  2939. //get_coordinates(); // For X Y Z E F
  2940. delta[X_AXIS] = 90;
  2941. delta[Y_AXIS] = 130;
  2942. calculate_SCARA_forward_Transform(delta);
  2943. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  2944. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  2945. prepare_move();
  2946. //ClearToSend();
  2947. return;
  2948. }
  2949. break;
  2950. case 362: // SCARA Psi pos1
  2951. SERIAL_ECHOLN(" Cal: Psi 0 ");
  2952. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2953. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2954. if(Stopped == false) {
  2955. //get_coordinates(); // For X Y Z E F
  2956. delta[X_AXIS] = 60;
  2957. delta[Y_AXIS] = 180;
  2958. calculate_SCARA_forward_Transform(delta);
  2959. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  2960. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  2961. prepare_move();
  2962. //ClearToSend();
  2963. return;
  2964. }
  2965. break;
  2966. case 363: // SCARA Psi pos2
  2967. SERIAL_ECHOLN(" Cal: Psi 90 ");
  2968. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2969. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2970. if(Stopped == false) {
  2971. //get_coordinates(); // For X Y Z E F
  2972. delta[X_AXIS] = 50;
  2973. delta[Y_AXIS] = 90;
  2974. calculate_SCARA_forward_Transform(delta);
  2975. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  2976. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  2977. prepare_move();
  2978. //ClearToSend();
  2979. return;
  2980. }
  2981. break;
  2982. case 364: // SCARA Psi pos3 (90 deg to Theta)
  2983. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  2984. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2985. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2986. if(Stopped == false) {
  2987. //get_coordinates(); // For X Y Z E F
  2988. delta[X_AXIS] = 45;
  2989. delta[Y_AXIS] = 135;
  2990. calculate_SCARA_forward_Transform(delta);
  2991. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  2992. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  2993. prepare_move();
  2994. //ClearToSend();
  2995. return;
  2996. }
  2997. break;
  2998. case 365: // M364 Set SCARA scaling for X Y Z
  2999. for(int8_t i=0; i < 3; i++)
  3000. {
  3001. if(code_seen(axis_codes[i]))
  3002. {
  3003. axis_scaling[i] = code_value();
  3004. }
  3005. }
  3006. break;
  3007. #endif
  3008. case 400: // M400 finish all moves
  3009. {
  3010. st_synchronize();
  3011. }
  3012. break;
  3013. #if defined(ENABLE_AUTO_BED_COMPENSATION) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3014. case 401:
  3015. {
  3016. engage_z_probe(); // Engage Z Servo endstop if available
  3017. }
  3018. break;
  3019. case 402:
  3020. {
  3021. retract_z_probe(); // Retract Z Servo endstop if enabled
  3022. }
  3023. break;
  3024. #endif
  3025. #ifdef FILAMENT_SENSOR
  3026. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3027. {
  3028. #if (FILWIDTH_PIN > -1)
  3029. if(code_seen('N')) filament_width_nominal=code_value();
  3030. else{
  3031. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3032. SERIAL_PROTOCOLLN(filament_width_nominal);
  3033. }
  3034. #endif
  3035. }
  3036. break;
  3037. case 405: //M405 Turn on filament sensor for control
  3038. {
  3039. if(code_seen('D')) meas_delay_cm=code_value();
  3040. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3041. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3042. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3043. {
  3044. int temp_ratio = widthFil_to_size_ratio();
  3045. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3046. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3047. }
  3048. delay_index1=0;
  3049. delay_index2=0;
  3050. }
  3051. filament_sensor = true ;
  3052. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3053. //SERIAL_PROTOCOL(filament_width_meas);
  3054. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3055. //SERIAL_PROTOCOL(extrudemultiply);
  3056. }
  3057. break;
  3058. case 406: //M406 Turn off filament sensor for control
  3059. {
  3060. filament_sensor = false ;
  3061. }
  3062. break;
  3063. case 407: //M407 Display measured filament diameter
  3064. {
  3065. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3066. SERIAL_PROTOCOLLN(filament_width_meas);
  3067. }
  3068. break;
  3069. #endif
  3070. case 500: // M500 Store settings in EEPROM
  3071. {
  3072. Config_StoreSettings();
  3073. }
  3074. break;
  3075. case 501: // M501 Read settings from EEPROM
  3076. {
  3077. Config_RetrieveSettings();
  3078. }
  3079. break;
  3080. case 502: // M502 Revert to default settings
  3081. {
  3082. Config_ResetDefault();
  3083. }
  3084. break;
  3085. case 503: // M503 print settings currently in memory
  3086. {
  3087. Config_PrintSettings();
  3088. }
  3089. break;
  3090. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3091. case 540:
  3092. {
  3093. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3094. }
  3095. break;
  3096. #endif
  3097. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3098. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3099. {
  3100. float value;
  3101. if (code_seen('Z'))
  3102. {
  3103. value = code_value();
  3104. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3105. {
  3106. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3107. SERIAL_ECHO_START;
  3108. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3109. SERIAL_PROTOCOLLN("");
  3110. }
  3111. else
  3112. {
  3113. SERIAL_ECHO_START;
  3114. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3115. SERIAL_ECHOPGM(MSG_Z_MIN);
  3116. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3117. SERIAL_ECHOPGM(MSG_Z_MAX);
  3118. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3119. SERIAL_PROTOCOLLN("");
  3120. }
  3121. }
  3122. else
  3123. {
  3124. SERIAL_ECHO_START;
  3125. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3126. SERIAL_ECHO(-zprobe_zoffset);
  3127. SERIAL_PROTOCOLLN("");
  3128. }
  3129. break;
  3130. }
  3131. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3132. #ifdef FILAMENTCHANGEENABLE
  3133. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3134. {
  3135. float target[4];
  3136. float lastpos[4];
  3137. target[X_AXIS]=current_position[X_AXIS];
  3138. target[Y_AXIS]=current_position[Y_AXIS];
  3139. target[Z_AXIS]=current_position[Z_AXIS];
  3140. target[E_AXIS]=current_position[E_AXIS];
  3141. lastpos[X_AXIS]=current_position[X_AXIS];
  3142. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3143. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3144. lastpos[E_AXIS]=current_position[E_AXIS];
  3145. //retract by E
  3146. if(code_seen('E'))
  3147. {
  3148. target[E_AXIS]+= code_value();
  3149. }
  3150. else
  3151. {
  3152. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3153. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3154. #endif
  3155. }
  3156. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3157. //lift Z
  3158. if(code_seen('Z'))
  3159. {
  3160. target[Z_AXIS]+= code_value();
  3161. }
  3162. else
  3163. {
  3164. #ifdef FILAMENTCHANGE_ZADD
  3165. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3166. #endif
  3167. }
  3168. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3169. //move xy
  3170. if(code_seen('X'))
  3171. {
  3172. target[X_AXIS]+= code_value();
  3173. }
  3174. else
  3175. {
  3176. #ifdef FILAMENTCHANGE_XPOS
  3177. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3178. #endif
  3179. }
  3180. if(code_seen('Y'))
  3181. {
  3182. target[Y_AXIS]= code_value();
  3183. }
  3184. else
  3185. {
  3186. #ifdef FILAMENTCHANGE_YPOS
  3187. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3188. #endif
  3189. }
  3190. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3191. if(code_seen('L'))
  3192. {
  3193. target[E_AXIS]+= code_value();
  3194. }
  3195. else
  3196. {
  3197. #ifdef FILAMENTCHANGE_FINALRETRACT
  3198. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3199. #endif
  3200. }
  3201. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3202. //finish moves
  3203. st_synchronize();
  3204. //disable extruder steppers so filament can be removed
  3205. disable_e0();
  3206. disable_e1();
  3207. disable_e2();
  3208. delay(100);
  3209. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3210. uint8_t cnt=0;
  3211. while(!lcd_clicked()){
  3212. cnt++;
  3213. manage_heater();
  3214. manage_inactivity();
  3215. lcd_update();
  3216. if(cnt==0)
  3217. {
  3218. #if BEEPER > 0
  3219. SET_OUTPUT(BEEPER);
  3220. WRITE(BEEPER,HIGH);
  3221. delay(3);
  3222. WRITE(BEEPER,LOW);
  3223. delay(3);
  3224. #else
  3225. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3226. lcd_buzz(1000/6,100);
  3227. #else
  3228. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3229. #endif
  3230. #endif
  3231. }
  3232. }
  3233. //return to normal
  3234. if(code_seen('L'))
  3235. {
  3236. target[E_AXIS]+= -code_value();
  3237. }
  3238. else
  3239. {
  3240. #ifdef FILAMENTCHANGE_FINALRETRACT
  3241. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  3242. #endif
  3243. }
  3244. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3245. plan_set_e_position(current_position[E_AXIS]);
  3246. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  3247. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  3248. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  3249. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  3250. }
  3251. break;
  3252. #endif //FILAMENTCHANGEENABLE
  3253. #ifdef DUAL_X_CARRIAGE
  3254. case 605: // Set dual x-carriage movement mode:
  3255. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3256. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3257. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3258. // millimeters x-offset and an optional differential hotend temperature of
  3259. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3260. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3261. //
  3262. // Note: the X axis should be homed after changing dual x-carriage mode.
  3263. {
  3264. st_synchronize();
  3265. if (code_seen('S'))
  3266. dual_x_carriage_mode = code_value();
  3267. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3268. {
  3269. if (code_seen('X'))
  3270. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3271. if (code_seen('R'))
  3272. duplicate_extruder_temp_offset = code_value();
  3273. SERIAL_ECHO_START;
  3274. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3275. SERIAL_ECHO(" ");
  3276. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3277. SERIAL_ECHO(",");
  3278. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3279. SERIAL_ECHO(" ");
  3280. SERIAL_ECHO(duplicate_extruder_x_offset);
  3281. SERIAL_ECHO(",");
  3282. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3283. }
  3284. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3285. {
  3286. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3287. }
  3288. active_extruder_parked = false;
  3289. extruder_duplication_enabled = false;
  3290. delayed_move_time = 0;
  3291. }
  3292. break;
  3293. #endif //DUAL_X_CARRIAGE
  3294. case 907: // M907 Set digital trimpot motor current using axis codes.
  3295. {
  3296. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3297. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3298. if(code_seen('B')) digipot_current(4,code_value());
  3299. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3300. #endif
  3301. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3302. if(code_seen('X')) digipot_current(0, code_value());
  3303. #endif
  3304. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3305. if(code_seen('Z')) digipot_current(1, code_value());
  3306. #endif
  3307. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3308. if(code_seen('E')) digipot_current(2, code_value());
  3309. #endif
  3310. #ifdef DIGIPOT_I2C
  3311. // this one uses actual amps in floating point
  3312. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3313. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3314. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3315. #endif
  3316. }
  3317. break;
  3318. case 908: // M908 Control digital trimpot directly.
  3319. {
  3320. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3321. uint8_t channel,current;
  3322. if(code_seen('P')) channel=code_value();
  3323. if(code_seen('S')) current=code_value();
  3324. digitalPotWrite(channel, current);
  3325. #endif
  3326. }
  3327. break;
  3328. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3329. {
  3330. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3331. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3332. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3333. if(code_seen('B')) microstep_mode(4,code_value());
  3334. microstep_readings();
  3335. #endif
  3336. }
  3337. break;
  3338. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3339. {
  3340. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3341. if(code_seen('S')) switch((int)code_value())
  3342. {
  3343. case 1:
  3344. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3345. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3346. break;
  3347. case 2:
  3348. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3349. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3350. break;
  3351. }
  3352. microstep_readings();
  3353. #endif
  3354. }
  3355. break;
  3356. case 999: // M999: Restart after being stopped
  3357. Stopped = false;
  3358. lcd_reset_alert_level();
  3359. gcode_LastN = Stopped_gcode_LastN;
  3360. FlushSerialRequestResend();
  3361. break;
  3362. }
  3363. }
  3364. else if(code_seen('T'))
  3365. {
  3366. tmp_extruder = code_value();
  3367. if(tmp_extruder >= EXTRUDERS) {
  3368. SERIAL_ECHO_START;
  3369. SERIAL_ECHO("T");
  3370. SERIAL_ECHO(tmp_extruder);
  3371. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3372. }
  3373. else {
  3374. boolean make_move = false;
  3375. if(code_seen('F')) {
  3376. make_move = true;
  3377. next_feedrate = code_value();
  3378. if(next_feedrate > 0.0) {
  3379. feedrate = next_feedrate;
  3380. }
  3381. }
  3382. #if EXTRUDERS > 1
  3383. if(tmp_extruder != active_extruder) {
  3384. // Save current position to return to after applying extruder offset
  3385. memcpy(destination, current_position, sizeof(destination));
  3386. #ifdef DUAL_X_CARRIAGE
  3387. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3388. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3389. {
  3390. // Park old head: 1) raise 2) move to park position 3) lower
  3391. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3392. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3393. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3394. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3395. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3396. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3397. st_synchronize();
  3398. }
  3399. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3400. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3401. extruder_offset[Y_AXIS][active_extruder] +
  3402. extruder_offset[Y_AXIS][tmp_extruder];
  3403. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3404. extruder_offset[Z_AXIS][active_extruder] +
  3405. extruder_offset[Z_AXIS][tmp_extruder];
  3406. active_extruder = tmp_extruder;
  3407. // This function resets the max/min values - the current position may be overwritten below.
  3408. axis_is_at_home(X_AXIS);
  3409. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3410. {
  3411. current_position[X_AXIS] = inactive_extruder_x_pos;
  3412. inactive_extruder_x_pos = destination[X_AXIS];
  3413. }
  3414. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3415. {
  3416. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3417. if (active_extruder == 0 || active_extruder_parked)
  3418. current_position[X_AXIS] = inactive_extruder_x_pos;
  3419. else
  3420. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3421. inactive_extruder_x_pos = destination[X_AXIS];
  3422. extruder_duplication_enabled = false;
  3423. }
  3424. else
  3425. {
  3426. // record raised toolhead position for use by unpark
  3427. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3428. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3429. active_extruder_parked = true;
  3430. delayed_move_time = 0;
  3431. }
  3432. #else
  3433. // Offset extruder (only by XY)
  3434. int i;
  3435. for(i = 0; i < 2; i++) {
  3436. current_position[i] = current_position[i] -
  3437. extruder_offset[i][active_extruder] +
  3438. extruder_offset[i][tmp_extruder];
  3439. }
  3440. // Set the new active extruder and position
  3441. active_extruder = tmp_extruder;
  3442. #endif //else DUAL_X_CARRIAGE
  3443. #ifdef DELTA
  3444. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3445. //sent position to plan_set_position();
  3446. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3447. #else
  3448. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3449. #endif
  3450. // Move to the old position if 'F' was in the parameters
  3451. if(make_move && Stopped == false) {
  3452. prepare_move();
  3453. }
  3454. }
  3455. #endif
  3456. SERIAL_ECHO_START;
  3457. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3458. SERIAL_PROTOCOLLN((int)active_extruder);
  3459. }
  3460. }
  3461. else
  3462. {
  3463. SERIAL_ECHO_START;
  3464. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3465. SERIAL_ECHO(cmdbuffer[bufindr]);
  3466. SERIAL_ECHOLNPGM("\"");
  3467. }
  3468. ClearToSend();
  3469. }
  3470. void FlushSerialRequestResend()
  3471. {
  3472. //char cmdbuffer[bufindr][100]="Resend:";
  3473. MYSERIAL.flush();
  3474. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3475. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3476. ClearToSend();
  3477. }
  3478. void ClearToSend()
  3479. {
  3480. previous_millis_cmd = millis();
  3481. #ifdef SDSUPPORT
  3482. if(fromsd[bufindr])
  3483. return;
  3484. #endif //SDSUPPORT
  3485. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3486. }
  3487. void get_coordinates()
  3488. {
  3489. bool seen[4]={false,false,false,false};
  3490. for(int8_t i=0; i < NUM_AXIS; i++) {
  3491. if(code_seen(axis_codes[i]))
  3492. {
  3493. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3494. seen[i]=true;
  3495. }
  3496. else destination[i] = current_position[i]; //Are these else lines really needed?
  3497. }
  3498. if(code_seen('F')) {
  3499. next_feedrate = code_value();
  3500. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3501. }
  3502. }
  3503. void get_arc_coordinates()
  3504. {
  3505. #ifdef SF_ARC_FIX
  3506. bool relative_mode_backup = relative_mode;
  3507. relative_mode = true;
  3508. #endif
  3509. get_coordinates();
  3510. #ifdef SF_ARC_FIX
  3511. relative_mode=relative_mode_backup;
  3512. #endif
  3513. if(code_seen('I')) {
  3514. offset[0] = code_value();
  3515. }
  3516. else {
  3517. offset[0] = 0.0;
  3518. }
  3519. if(code_seen('J')) {
  3520. offset[1] = code_value();
  3521. }
  3522. else {
  3523. offset[1] = 0.0;
  3524. }
  3525. }
  3526. void clamp_to_software_endstops(float target[3])
  3527. {
  3528. if (min_software_endstops) {
  3529. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3530. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3531. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  3532. }
  3533. if (max_software_endstops) {
  3534. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3535. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3536. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3537. }
  3538. }
  3539. #ifdef DELTA
  3540. void recalc_delta_settings(float radius, float diagonal_rod)
  3541. {
  3542. delta_tower1_x= -SIN_60*radius; // front left tower
  3543. delta_tower1_y= -COS_60*radius;
  3544. delta_tower2_x= SIN_60*radius; // front right tower
  3545. delta_tower2_y= -COS_60*radius;
  3546. delta_tower3_x= 0.0; // back middle tower
  3547. delta_tower3_y= radius;
  3548. delta_diagonal_rod_2= sq(diagonal_rod);
  3549. }
  3550. void calculate_delta(float cartesian[3])
  3551. {
  3552. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3553. - sq(delta_tower1_x-cartesian[X_AXIS])
  3554. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3555. ) + cartesian[Z_AXIS];
  3556. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3557. - sq(delta_tower2_x-cartesian[X_AXIS])
  3558. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3559. ) + cartesian[Z_AXIS];
  3560. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3561. - sq(delta_tower3_x-cartesian[X_AXIS])
  3562. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3563. ) + cartesian[Z_AXIS];
  3564. /*
  3565. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3566. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3567. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3568. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3569. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3570. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3571. */
  3572. }
  3573. #endif
  3574. void prepare_move()
  3575. {
  3576. clamp_to_software_endstops(destination);
  3577. previous_millis_cmd = millis();
  3578. #ifdef SCARA //for now same as delta-code
  3579. float difference[NUM_AXIS];
  3580. for (int8_t i=0; i < NUM_AXIS; i++) {
  3581. difference[i] = destination[i] - current_position[i];
  3582. }
  3583. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3584. sq(difference[Y_AXIS]) +
  3585. sq(difference[Z_AXIS]));
  3586. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3587. if (cartesian_mm < 0.000001) { return; }
  3588. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3589. int steps = max(1, int(scara_segments_per_second * seconds));
  3590. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3591. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3592. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3593. for (int s = 1; s <= steps; s++) {
  3594. float fraction = float(s) / float(steps);
  3595. for(int8_t i=0; i < NUM_AXIS; i++) {
  3596. destination[i] = current_position[i] + difference[i] * fraction;
  3597. }
  3598. calculate_delta(destination);
  3599. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  3600. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  3601. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  3602. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3603. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3604. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3605. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3606. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3607. active_extruder);
  3608. }
  3609. #endif // SCARA
  3610. #ifdef DELTA
  3611. float difference[NUM_AXIS];
  3612. for (int8_t i=0; i < NUM_AXIS; i++) {
  3613. difference[i] = destination[i] - current_position[i];
  3614. }
  3615. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3616. sq(difference[Y_AXIS]) +
  3617. sq(difference[Z_AXIS]));
  3618. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3619. if (cartesian_mm < 0.000001) { return; }
  3620. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3621. int steps = max(1, int(delta_segments_per_second * seconds));
  3622. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3623. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3624. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3625. for (int s = 1; s <= steps; s++) {
  3626. float fraction = float(s) / float(steps);
  3627. for(int8_t i=0; i < NUM_AXIS; i++) {
  3628. destination[i] = current_position[i] + difference[i] * fraction;
  3629. }
  3630. calculate_delta(destination);
  3631. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3632. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3633. active_extruder);
  3634. }
  3635. #endif // DELTA
  3636. #ifdef DUAL_X_CARRIAGE
  3637. if (active_extruder_parked)
  3638. {
  3639. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3640. {
  3641. // move duplicate extruder into correct duplication position.
  3642. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3643. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3644. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3645. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3646. st_synchronize();
  3647. extruder_duplication_enabled = true;
  3648. active_extruder_parked = false;
  3649. }
  3650. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3651. {
  3652. if (current_position[E_AXIS] == destination[E_AXIS])
  3653. {
  3654. // this is a travel move - skit it but keep track of current position (so that it can later
  3655. // be used as start of first non-travel move)
  3656. if (delayed_move_time != 0xFFFFFFFFUL)
  3657. {
  3658. memcpy(current_position, destination, sizeof(current_position));
  3659. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3660. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3661. delayed_move_time = millis();
  3662. return;
  3663. }
  3664. }
  3665. delayed_move_time = 0;
  3666. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3667. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3668. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3669. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3670. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3671. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3672. active_extruder_parked = false;
  3673. }
  3674. }
  3675. #endif //DUAL_X_CARRIAGE
  3676. #if ! (defined DELTA || defined SCARA)
  3677. // Do not use feedmultiply for E or Z only moves
  3678. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3679. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3680. }
  3681. else {
  3682. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3683. }
  3684. #endif // !(DELTA || SCARA)
  3685. for(int8_t i=0; i < NUM_AXIS; i++) {
  3686. current_position[i] = destination[i];
  3687. }
  3688. }
  3689. void prepare_arc_move(char isclockwise) {
  3690. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3691. // Trace the arc
  3692. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3693. // As far as the parser is concerned, the position is now == target. In reality the
  3694. // motion control system might still be processing the action and the real tool position
  3695. // in any intermediate location.
  3696. for(int8_t i=0; i < NUM_AXIS; i++) {
  3697. current_position[i] = destination[i];
  3698. }
  3699. previous_millis_cmd = millis();
  3700. }
  3701. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3702. #if defined(FAN_PIN)
  3703. #if CONTROLLERFAN_PIN == FAN_PIN
  3704. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3705. #endif
  3706. #endif
  3707. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3708. unsigned long lastMotorCheck = 0;
  3709. void controllerFan()
  3710. {
  3711. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3712. {
  3713. lastMotorCheck = millis();
  3714. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3715. #if EXTRUDERS > 2
  3716. || !READ(E2_ENABLE_PIN)
  3717. #endif
  3718. #if EXTRUDER > 1
  3719. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3720. || !READ(X2_ENABLE_PIN)
  3721. #endif
  3722. || !READ(E1_ENABLE_PIN)
  3723. #endif
  3724. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3725. {
  3726. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3727. }
  3728. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3729. {
  3730. digitalWrite(CONTROLLERFAN_PIN, 0);
  3731. analogWrite(CONTROLLERFAN_PIN, 0);
  3732. }
  3733. else
  3734. {
  3735. // allows digital or PWM fan output to be used (see M42 handling)
  3736. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3737. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3738. }
  3739. }
  3740. }
  3741. #endif
  3742. #ifdef SCARA
  3743. void calculate_SCARA_forward_Transform(float f_scara[3])
  3744. {
  3745. // Perform forward kinematics, and place results in delta[3]
  3746. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3747. float x_sin, x_cos, y_sin, y_cos;
  3748. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3749. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3750. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3751. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3752. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3753. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3754. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  3755. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  3756. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  3757. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  3758. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  3759. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  3760. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  3761. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3762. }
  3763. void calculate_delta(float cartesian[3]){
  3764. //reverse kinematics.
  3765. // Perform reversed kinematics, and place results in delta[3]
  3766. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3767. float SCARA_pos[2];
  3768. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  3769. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  3770. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  3771. #if (Linkage_1 == Linkage_2)
  3772. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  3773. #else
  3774. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  3775. #endif
  3776. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  3777. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  3778. SCARA_K2 = Linkage_2 * SCARA_S2;
  3779. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  3780. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  3781. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  3782. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  3783. delta[Z_AXIS] = cartesian[Z_AXIS];
  3784. /*
  3785. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3786. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3787. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3788. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  3789. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  3790. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3791. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3792. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3793. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  3794. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  3795. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  3796. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  3797. SERIAL_ECHOLN(" ");*/
  3798. }
  3799. #endif
  3800. #ifdef TEMP_STAT_LEDS
  3801. static bool blue_led = false;
  3802. static bool red_led = false;
  3803. static uint32_t stat_update = 0;
  3804. void handle_status_leds(void) {
  3805. float max_temp = 0.0;
  3806. if(millis() > stat_update) {
  3807. stat_update += 500; // Update every 0.5s
  3808. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3809. max_temp = max(max_temp, degHotend(cur_extruder));
  3810. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3811. }
  3812. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3813. max_temp = max(max_temp, degTargetBed());
  3814. max_temp = max(max_temp, degBed());
  3815. #endif
  3816. if((max_temp > 55.0) && (red_led == false)) {
  3817. digitalWrite(STAT_LED_RED, 1);
  3818. digitalWrite(STAT_LED_BLUE, 0);
  3819. red_led = true;
  3820. blue_led = false;
  3821. }
  3822. if((max_temp < 54.0) && (blue_led == false)) {
  3823. digitalWrite(STAT_LED_RED, 0);
  3824. digitalWrite(STAT_LED_BLUE, 1);
  3825. red_led = false;
  3826. blue_led = true;
  3827. }
  3828. }
  3829. }
  3830. #endif
  3831. void manage_inactivity()
  3832. {
  3833. if(buflen < (BUFSIZE-1))
  3834. get_command();
  3835. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3836. if(max_inactive_time)
  3837. kill();
  3838. if(stepper_inactive_time) {
  3839. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3840. {
  3841. if(blocks_queued() == false) {
  3842. disable_x();
  3843. disable_y();
  3844. disable_z();
  3845. disable_e0();
  3846. disable_e1();
  3847. disable_e2();
  3848. }
  3849. }
  3850. }
  3851. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3852. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  3853. {
  3854. chdkActive = false;
  3855. WRITE(CHDK, LOW);
  3856. }
  3857. #endif
  3858. #if defined(KILL_PIN) && KILL_PIN > -1
  3859. if( 0 == READ(KILL_PIN) )
  3860. kill();
  3861. #endif
  3862. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3863. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3864. #endif
  3865. #ifdef EXTRUDER_RUNOUT_PREVENT
  3866. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3867. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3868. {
  3869. bool oldstatus=READ(E0_ENABLE_PIN);
  3870. enable_e0();
  3871. float oldepos=current_position[E_AXIS];
  3872. float oldedes=destination[E_AXIS];
  3873. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3874. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3875. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3876. current_position[E_AXIS]=oldepos;
  3877. destination[E_AXIS]=oldedes;
  3878. plan_set_e_position(oldepos);
  3879. previous_millis_cmd=millis();
  3880. st_synchronize();
  3881. WRITE(E0_ENABLE_PIN,oldstatus);
  3882. }
  3883. #endif
  3884. #if defined(DUAL_X_CARRIAGE)
  3885. // handle delayed move timeout
  3886. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3887. {
  3888. // travel moves have been received so enact them
  3889. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3890. memcpy(destination,current_position,sizeof(destination));
  3891. prepare_move();
  3892. }
  3893. #endif
  3894. #ifdef TEMP_STAT_LEDS
  3895. handle_status_leds();
  3896. #endif
  3897. check_axes_activity();
  3898. }
  3899. void kill()
  3900. {
  3901. cli(); // Stop interrupts
  3902. disable_heater();
  3903. disable_x();
  3904. disable_y();
  3905. disable_z();
  3906. disable_e0();
  3907. disable_e1();
  3908. disable_e2();
  3909. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3910. pinMode(PS_ON_PIN,INPUT);
  3911. #endif
  3912. SERIAL_ERROR_START;
  3913. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3914. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3915. suicide();
  3916. while(1) { /* Intentionally left empty */ } // Wait for reset
  3917. }
  3918. void Stop()
  3919. {
  3920. disable_heater();
  3921. if(Stopped == false) {
  3922. Stopped = true;
  3923. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3924. SERIAL_ERROR_START;
  3925. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3926. LCD_MESSAGEPGM(MSG_STOPPED);
  3927. }
  3928. }
  3929. bool IsStopped() { return Stopped; };
  3930. #ifdef FAST_PWM_FAN
  3931. void setPwmFrequency(uint8_t pin, int val)
  3932. {
  3933. val &= 0x07;
  3934. switch(digitalPinToTimer(pin))
  3935. {
  3936. #if defined(TCCR0A)
  3937. case TIMER0A:
  3938. case TIMER0B:
  3939. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3940. // TCCR0B |= val;
  3941. break;
  3942. #endif
  3943. #if defined(TCCR1A)
  3944. case TIMER1A:
  3945. case TIMER1B:
  3946. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3947. // TCCR1B |= val;
  3948. break;
  3949. #endif
  3950. #if defined(TCCR2)
  3951. case TIMER2:
  3952. case TIMER2:
  3953. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3954. TCCR2 |= val;
  3955. break;
  3956. #endif
  3957. #if defined(TCCR2A)
  3958. case TIMER2A:
  3959. case TIMER2B:
  3960. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3961. TCCR2B |= val;
  3962. break;
  3963. #endif
  3964. #if defined(TCCR3A)
  3965. case TIMER3A:
  3966. case TIMER3B:
  3967. case TIMER3C:
  3968. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3969. TCCR3B |= val;
  3970. break;
  3971. #endif
  3972. #if defined(TCCR4A)
  3973. case TIMER4A:
  3974. case TIMER4B:
  3975. case TIMER4C:
  3976. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3977. TCCR4B |= val;
  3978. break;
  3979. #endif
  3980. #if defined(TCCR5A)
  3981. case TIMER5A:
  3982. case TIMER5B:
  3983. case TIMER5C:
  3984. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3985. TCCR5B |= val;
  3986. break;
  3987. #endif
  3988. }
  3989. }
  3990. #endif //FAST_PWM_FAN
  3991. bool setTargetedHotend(int code){
  3992. tmp_extruder = active_extruder;
  3993. if(code_seen('T')) {
  3994. tmp_extruder = code_value();
  3995. if(tmp_extruder >= EXTRUDERS) {
  3996. SERIAL_ECHO_START;
  3997. switch(code){
  3998. case 104:
  3999. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4000. break;
  4001. case 105:
  4002. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4003. break;
  4004. case 109:
  4005. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4006. break;
  4007. case 218:
  4008. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4009. break;
  4010. case 221:
  4011. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4012. break;
  4013. }
  4014. SERIAL_ECHOLN(tmp_extruder);
  4015. return true;
  4016. }
  4017. }
  4018. return false;
  4019. }