My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

Marlin_main.cpp 386KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G33 - Delta '4-point' auto calibration iteration
  63. * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
  64. * G90 - Use Absolute Coordinates
  65. * G91 - Use Relative Coordinates
  66. * G92 - Set current position to coordinates given
  67. *
  68. * "M" Codes
  69. *
  70. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. * M1 - Same as M0
  72. * M17 - Enable/Power all stepper motors
  73. * M18 - Disable all stepper motors; same as M84
  74. * M20 - List SD card. (Requires SDSUPPORT)
  75. * M21 - Init SD card. (Requires SDSUPPORT)
  76. * M22 - Release SD card. (Requires SDSUPPORT)
  77. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  78. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  79. * M25 - Pause SD print. (Requires SDSUPPORT)
  80. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  81. * M27 - Report SD print status. (Requires SDSUPPORT)
  82. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  83. * M29 - Stop SD write. (Requires SDSUPPORT)
  84. * M30 - Delete file from SD: "M30 /path/file.gco"
  85. * M31 - Report time since last M109 or SD card start to serial.
  86. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  87. * Use P to run other files as sub-programs: "M32 P !filename#"
  88. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  89. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  90. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  91. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  92. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  93. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  94. * M75 - Start the print job timer.
  95. * M76 - Pause the print job timer.
  96. * M77 - Stop the print job timer.
  97. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  98. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  99. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  100. * M82 - Set E codes absolute (default).
  101. * M83 - Set E codes relative while in Absolute (G90) mode.
  102. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  103. * duration after which steppers should turn off. S0 disables the timeout.
  104. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  105. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  106. * M104 - Set extruder target temp.
  107. * M105 - Report current temperatures.
  108. * M106 - Fan on.
  109. * M107 - Fan off.
  110. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  111. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  112. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  113. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  114. * M110 - Set the current line number. (Used by host printing)
  115. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  116. * M112 - Emergency stop.
  117. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  118. * M114 - Report current position.
  119. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  120. * M117 - Display a message on the controller screen. (Requires an LCD)
  121. * M119 - Report endstops status.
  122. * M120 - Enable endstops detection.
  123. * M121 - Disable endstops detection.
  124. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  125. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  126. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  127. * M128 - EtoP Open. (Requires BARICUDA)
  128. * M129 - EtoP Closed. (Requires BARICUDA)
  129. * M140 - Set bed target temp. S<temp>
  130. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  131. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  132. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  133. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  134. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  135. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  136. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  137. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  138. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  139. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  140. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  141. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  142. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  143. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  144. * M205 - Set advanced settings. Current units apply:
  145. S<print> T<travel> minimum speeds
  146. B<minimum segment time>
  147. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  148. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  149. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  150. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  151. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  152. Every normal extrude-only move will be classified as retract depending on the direction.
  153. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  154. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  155. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  156. * M221 - Set Flow Percentage: "M221 S<percent>"
  157. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  158. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  159. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  160. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  162. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  163. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  164. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  165. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  166. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  167. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  168. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  169. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  170. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  171. * M400 - Finish all moves.
  172. * M401 - Lower Z probe. (Requires a probe)
  173. * M402 - Raise Z probe. (Requires a probe)
  174. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  176. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  178. * M410 - Quickstop. Abort all planned moves.
  179. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  180. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  181. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  182. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  183. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  184. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  185. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  186. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  187. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  188. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  189. * M666 - Set delta endstop adjustment. (Requires DELTA)
  190. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  191. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  192. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  193. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  194. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  195. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  196. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  197. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  198. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  199. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  200. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  201. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  202. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  203. *
  204. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  205. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  206. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  207. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  208. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  209. *
  210. * ************ Custom codes - This can change to suit future G-code regulations
  211. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  212. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  213. * M999 - Restart after being stopped by error
  214. *
  215. * "T" Codes
  216. *
  217. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  218. *
  219. */
  220. #include "Marlin.h"
  221. #include "ultralcd.h"
  222. #include "planner.h"
  223. #include "stepper.h"
  224. #include "endstops.h"
  225. #include "temperature.h"
  226. #include "cardreader.h"
  227. #include "configuration_store.h"
  228. #include "language.h"
  229. #include "pins_arduino.h"
  230. #include "math.h"
  231. #include "nozzle.h"
  232. #include "duration_t.h"
  233. #include "types.h"
  234. #if HAS_ABL
  235. #include "vector_3.h"
  236. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  237. #include "qr_solve.h"
  238. #endif
  239. #elif ENABLED(MESH_BED_LEVELING)
  240. #include "mesh_bed_leveling.h"
  241. #endif
  242. #if ENABLED(BEZIER_CURVE_SUPPORT)
  243. #include "planner_bezier.h"
  244. #endif
  245. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  246. #include "buzzer.h"
  247. #endif
  248. #if ENABLED(USE_WATCHDOG)
  249. #include "watchdog.h"
  250. #endif
  251. #if ENABLED(BLINKM)
  252. #include "blinkm.h"
  253. #include "Wire.h"
  254. #endif
  255. #if HAS_SERVOS
  256. #include "servo.h"
  257. #endif
  258. #if HAS_DIGIPOTSS
  259. #include <SPI.h>
  260. #endif
  261. #if ENABLED(DAC_STEPPER_CURRENT)
  262. #include "stepper_dac.h"
  263. #endif
  264. #if ENABLED(EXPERIMENTAL_I2CBUS)
  265. #include "twibus.h"
  266. #endif
  267. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  268. #include "endstop_interrupts.h"
  269. #endif
  270. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  271. void gcode_M100();
  272. void M100_dump_routine(const char * const title, const char *start, const char *end);
  273. #endif
  274. #if ENABLED(SDSUPPORT)
  275. CardReader card;
  276. #endif
  277. #if ENABLED(EXPERIMENTAL_I2CBUS)
  278. TWIBus i2c;
  279. #endif
  280. #if ENABLED(G38_PROBE_TARGET)
  281. bool G38_move = false,
  282. G38_endstop_hit = false;
  283. #endif
  284. #if ENABLED(AUTO_BED_LEVELING_UBL)
  285. #include "ubl.h"
  286. unified_bed_leveling ubl;
  287. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  288. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  289. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  290. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  291. || isnan(ubl.z_values[0][0]))
  292. #endif
  293. bool Running = true;
  294. uint8_t marlin_debug_flags = DEBUG_NONE;
  295. /**
  296. * Cartesian Current Position
  297. * Used to track the logical position as moves are queued.
  298. * Used by 'line_to_current_position' to do a move after changing it.
  299. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  300. */
  301. float current_position[XYZE] = { 0.0 };
  302. /**
  303. * Cartesian Destination
  304. * A temporary position, usually applied to 'current_position'.
  305. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  306. * 'line_to_destination' sets 'current_position' to 'destination'.
  307. */
  308. float destination[XYZE] = { 0.0 };
  309. /**
  310. * axis_homed
  311. * Flags that each linear axis was homed.
  312. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  313. *
  314. * axis_known_position
  315. * Flags that the position is known in each linear axis. Set when homed.
  316. * Cleared whenever a stepper powers off, potentially losing its position.
  317. */
  318. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  319. /**
  320. * GCode line number handling. Hosts may opt to include line numbers when
  321. * sending commands to Marlin, and lines will be checked for sequentiality.
  322. * M110 N<int> sets the current line number.
  323. */
  324. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  325. /**
  326. * GCode Command Queue
  327. * A simple ring buffer of BUFSIZE command strings.
  328. *
  329. * Commands are copied into this buffer by the command injectors
  330. * (immediate, serial, sd card) and they are processed sequentially by
  331. * the main loop. The process_next_command function parses the next
  332. * command and hands off execution to individual handler functions.
  333. */
  334. uint8_t commands_in_queue = 0; // Count of commands in the queue
  335. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  336. cmd_queue_index_w = 0; // Ring buffer write position
  337. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  338. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  339. #else // This can be collapsed back to the way it was soon.
  340. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  341. #endif
  342. /**
  343. * Current GCode Command
  344. * When a GCode handler is running, these will be set
  345. */
  346. static char *current_command, // The command currently being executed
  347. *current_command_args, // The address where arguments begin
  348. *seen_pointer; // Set by code_seen(), used by the code_value functions
  349. /**
  350. * Next Injected Command pointer. NULL if no commands are being injected.
  351. * Used by Marlin internally to ensure that commands initiated from within
  352. * are enqueued ahead of any pending serial or sd card commands.
  353. */
  354. static const char *injected_commands_P = NULL;
  355. #if ENABLED(INCH_MODE_SUPPORT)
  356. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  357. #endif
  358. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  359. TempUnit input_temp_units = TEMPUNIT_C;
  360. #endif
  361. /**
  362. * Feed rates are often configured with mm/m
  363. * but the planner and stepper like mm/s units.
  364. */
  365. float constexpr homing_feedrate_mm_s[] = {
  366. #if ENABLED(DELTA)
  367. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  368. #else
  369. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  370. #endif
  371. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  372. };
  373. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  374. int feedrate_percentage = 100, saved_feedrate_percentage,
  375. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  376. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  377. volumetric_enabled =
  378. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  379. true
  380. #else
  381. false
  382. #endif
  383. ;
  384. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  385. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  386. #if HAS_WORKSPACE_OFFSET
  387. #if HAS_POSITION_SHIFT
  388. // The distance that XYZ has been offset by G92. Reset by G28.
  389. float position_shift[XYZ] = { 0 };
  390. #endif
  391. #if HAS_HOME_OFFSET
  392. // This offset is added to the configured home position.
  393. // Set by M206, M428, or menu item. Saved to EEPROM.
  394. float home_offset[XYZ] = { 0 };
  395. #endif
  396. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  397. // The above two are combined to save on computes
  398. float workspace_offset[XYZ] = { 0 };
  399. #endif
  400. #endif
  401. // Software Endstops are based on the configured limits.
  402. #if HAS_SOFTWARE_ENDSTOPS
  403. bool soft_endstops_enabled = true;
  404. #endif
  405. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  406. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  407. #if FAN_COUNT > 0
  408. int fanSpeeds[FAN_COUNT] = { 0 };
  409. #endif
  410. // The active extruder (tool). Set with T<extruder> command.
  411. uint8_t active_extruder = 0;
  412. // Relative Mode. Enable with G91, disable with G90.
  413. static bool relative_mode = false;
  414. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  415. volatile bool wait_for_heatup = true;
  416. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  417. #if HAS_RESUME_CONTINUE
  418. volatile bool wait_for_user = false;
  419. #endif
  420. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  421. // Number of characters read in the current line of serial input
  422. static int serial_count = 0;
  423. // Inactivity shutdown
  424. millis_t previous_cmd_ms = 0;
  425. static millis_t max_inactive_time = 0;
  426. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  427. // Print Job Timer
  428. #if ENABLED(PRINTCOUNTER)
  429. PrintCounter print_job_timer = PrintCounter();
  430. #else
  431. Stopwatch print_job_timer = Stopwatch();
  432. #endif
  433. // Buzzer - I2C on the LCD or a BEEPER_PIN
  434. #if ENABLED(LCD_USE_I2C_BUZZER)
  435. #define BUZZ(d,f) lcd_buzz(d, f)
  436. #elif PIN_EXISTS(BEEPER)
  437. Buzzer buzzer;
  438. #define BUZZ(d,f) buzzer.tone(d, f)
  439. #else
  440. #define BUZZ(d,f) NOOP
  441. #endif
  442. static uint8_t target_extruder;
  443. #if HAS_BED_PROBE
  444. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  445. #endif
  446. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  447. #if HAS_ABL
  448. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  449. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  450. #elif defined(XY_PROBE_SPEED)
  451. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  452. #else
  453. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  454. #endif
  455. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  456. #if ENABLED(DELTA)
  457. #define ADJUST_DELTA(V) \
  458. if (planner.abl_enabled) { \
  459. const float zadj = bilinear_z_offset(V); \
  460. delta[A_AXIS] += zadj; \
  461. delta[B_AXIS] += zadj; \
  462. delta[C_AXIS] += zadj; \
  463. }
  464. #else
  465. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  466. #endif
  467. #elif IS_KINEMATIC
  468. #define ADJUST_DELTA(V) NOOP
  469. #endif
  470. #if ENABLED(Z_DUAL_ENDSTOPS)
  471. float z_endstop_adj =
  472. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  473. Z_DUAL_ENDSTOPS_ADJUSTMENT
  474. #else
  475. 0
  476. #endif
  477. ;
  478. #endif
  479. // Extruder offsets
  480. #if HOTENDS > 1
  481. float hotend_offset[XYZ][HOTENDS];
  482. #endif
  483. #if HAS_Z_SERVO_ENDSTOP
  484. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  485. #endif
  486. #if ENABLED(BARICUDA)
  487. int baricuda_valve_pressure = 0;
  488. int baricuda_e_to_p_pressure = 0;
  489. #endif
  490. #if ENABLED(FWRETRACT)
  491. bool autoretract_enabled = false;
  492. bool retracted[EXTRUDERS] = { false };
  493. bool retracted_swap[EXTRUDERS] = { false };
  494. float retract_length = RETRACT_LENGTH;
  495. float retract_length_swap = RETRACT_LENGTH_SWAP;
  496. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  497. float retract_zlift = RETRACT_ZLIFT;
  498. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  499. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  500. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  501. #endif // FWRETRACT
  502. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  503. bool powersupply =
  504. #if ENABLED(PS_DEFAULT_OFF)
  505. false
  506. #else
  507. true
  508. #endif
  509. ;
  510. #endif
  511. #if HAS_CASE_LIGHT
  512. bool case_light_on =
  513. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  514. true
  515. #else
  516. false
  517. #endif
  518. ;
  519. #endif
  520. #if ENABLED(DELTA)
  521. float delta[ABC],
  522. endstop_adj[ABC] = { 0 };
  523. // These values are loaded or reset at boot time when setup() calls
  524. // settings.load(), which calls recalc_delta_settings().
  525. float delta_radius,
  526. delta_tower_angle_trim[ABC],
  527. delta_tower[ABC][2],
  528. delta_diagonal_rod,
  529. delta_diagonal_rod_trim[ABC],
  530. delta_diagonal_rod_2_tower[ABC],
  531. delta_segments_per_second,
  532. delta_clip_start_height = Z_MAX_POS;
  533. float delta_safe_distance_from_top();
  534. #endif
  535. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  536. int bilinear_grid_spacing[2], bilinear_start[2];
  537. float bed_level_grid[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  538. #endif
  539. #if IS_SCARA
  540. // Float constants for SCARA calculations
  541. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  542. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  543. L2_2 = sq(float(L2));
  544. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  545. delta[ABC];
  546. #endif
  547. float cartes[XYZ] = { 0 };
  548. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  549. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  550. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  551. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  552. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  553. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  554. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  555. #endif
  556. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  557. static bool filament_ran_out = false;
  558. #endif
  559. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  560. FilamentChangeMenuResponse filament_change_menu_response;
  561. #endif
  562. #if ENABLED(MIXING_EXTRUDER)
  563. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  564. #if MIXING_VIRTUAL_TOOLS > 1
  565. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  566. #endif
  567. #endif
  568. static bool send_ok[BUFSIZE];
  569. #if HAS_SERVOS
  570. Servo servo[NUM_SERVOS];
  571. #define MOVE_SERVO(I, P) servo[I].move(P)
  572. #if HAS_Z_SERVO_ENDSTOP
  573. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  574. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  575. #endif
  576. #endif
  577. #ifdef CHDK
  578. millis_t chdkHigh = 0;
  579. bool chdkActive = false;
  580. #endif
  581. #ifdef AUTOMATIC_CURRENT_CONTROL
  582. bool auto_current_control = 0;
  583. #endif
  584. #if ENABLED(PID_EXTRUSION_SCALING)
  585. int lpq_len = 20;
  586. #endif
  587. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  588. MarlinBusyState busy_state = NOT_BUSY;
  589. static millis_t next_busy_signal_ms = 0;
  590. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  591. #else
  592. #define host_keepalive() NOOP
  593. #endif
  594. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  595. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  596. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  597. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  598. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); }
  599. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  600. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  601. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  602. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  603. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  604. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  605. /**
  606. * ***************************************************************************
  607. * ******************************** FUNCTIONS ********************************
  608. * ***************************************************************************
  609. */
  610. void stop();
  611. void get_available_commands();
  612. void process_next_command();
  613. void prepare_move_to_destination();
  614. void get_cartesian_from_steppers();
  615. void set_current_from_steppers_for_axis(const AxisEnum axis);
  616. #if ENABLED(ARC_SUPPORT)
  617. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  618. #endif
  619. #if ENABLED(BEZIER_CURVE_SUPPORT)
  620. void plan_cubic_move(const float offset[4]);
  621. #endif
  622. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  623. static void report_current_position();
  624. #if ENABLED(DEBUG_LEVELING_FEATURE)
  625. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  626. serialprintPGM(prefix);
  627. SERIAL_ECHOPAIR("(", x);
  628. SERIAL_ECHOPAIR(", ", y);
  629. SERIAL_ECHOPAIR(", ", z);
  630. SERIAL_CHAR(')');
  631. if (suffix) serialprintPGM(suffix);
  632. else SERIAL_EOL;
  633. }
  634. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  635. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  636. }
  637. #if HAS_ABL
  638. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  639. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  640. }
  641. #endif
  642. #define DEBUG_POS(SUFFIX,VAR) do { \
  643. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  644. #endif
  645. /**
  646. * sync_plan_position
  647. *
  648. * Set the planner/stepper positions directly from current_position with
  649. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  650. */
  651. inline void sync_plan_position() {
  652. #if ENABLED(DEBUG_LEVELING_FEATURE)
  653. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  654. #endif
  655. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  656. }
  657. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  658. #if IS_KINEMATIC
  659. inline void sync_plan_position_kinematic() {
  660. #if ENABLED(DEBUG_LEVELING_FEATURE)
  661. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  662. #endif
  663. planner.set_position_mm_kinematic(current_position);
  664. }
  665. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  666. #else
  667. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  668. #endif
  669. #if ENABLED(SDSUPPORT)
  670. #include "SdFatUtil.h"
  671. int freeMemory() { return SdFatUtil::FreeRam(); }
  672. #else
  673. extern "C" {
  674. extern char __bss_end;
  675. extern char __heap_start;
  676. extern void* __brkval;
  677. int freeMemory() {
  678. int free_memory;
  679. if ((int)__brkval == 0)
  680. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  681. else
  682. free_memory = ((int)&free_memory) - ((int)__brkval);
  683. return free_memory;
  684. }
  685. }
  686. #endif //!SDSUPPORT
  687. #if ENABLED(DIGIPOT_I2C)
  688. extern void digipot_i2c_set_current(int channel, float current);
  689. extern void digipot_i2c_init();
  690. #endif
  691. /**
  692. * Inject the next "immediate" command, when possible, onto the front of the queue.
  693. * Return true if any immediate commands remain to inject.
  694. */
  695. static bool drain_injected_commands_P() {
  696. if (injected_commands_P != NULL) {
  697. size_t i = 0;
  698. char c, cmd[30];
  699. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  700. cmd[sizeof(cmd) - 1] = '\0';
  701. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  702. cmd[i] = '\0';
  703. if (enqueue_and_echo_command(cmd)) // success?
  704. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  705. }
  706. return (injected_commands_P != NULL); // return whether any more remain
  707. }
  708. /**
  709. * Record one or many commands to run from program memory.
  710. * Aborts the current queue, if any.
  711. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  712. */
  713. void enqueue_and_echo_commands_P(const char* pgcode) {
  714. injected_commands_P = pgcode;
  715. drain_injected_commands_P(); // first command executed asap (when possible)
  716. }
  717. /**
  718. * Clear the Marlin command queue
  719. */
  720. void clear_command_queue() {
  721. cmd_queue_index_r = cmd_queue_index_w;
  722. commands_in_queue = 0;
  723. }
  724. /**
  725. * Once a new command is in the ring buffer, call this to commit it
  726. */
  727. inline void _commit_command(bool say_ok) {
  728. send_ok[cmd_queue_index_w] = say_ok;
  729. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  730. commands_in_queue++;
  731. }
  732. /**
  733. * Copy a command from RAM into the main command buffer.
  734. * Return true if the command was successfully added.
  735. * Return false for a full buffer, or if the 'command' is a comment.
  736. */
  737. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  738. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  739. strcpy(command_queue[cmd_queue_index_w], cmd);
  740. _commit_command(say_ok);
  741. return true;
  742. }
  743. /**
  744. * Enqueue with Serial Echo
  745. */
  746. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  747. if (_enqueuecommand(cmd, say_ok)) {
  748. SERIAL_ECHO_START;
  749. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  750. SERIAL_CHAR('"');
  751. SERIAL_EOL;
  752. return true;
  753. }
  754. return false;
  755. }
  756. void setup_killpin() {
  757. #if HAS_KILL
  758. SET_INPUT_PULLUP(KILL_PIN);
  759. #endif
  760. }
  761. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  762. void setup_filrunoutpin() {
  763. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  764. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  765. #else
  766. SET_INPUT(FIL_RUNOUT_PIN);
  767. #endif
  768. }
  769. #endif
  770. void setup_homepin(void) {
  771. #if HAS_HOME
  772. SET_INPUT_PULLUP(HOME_PIN);
  773. #endif
  774. }
  775. void setup_powerhold() {
  776. #if HAS_SUICIDE
  777. OUT_WRITE(SUICIDE_PIN, HIGH);
  778. #endif
  779. #if HAS_POWER_SWITCH
  780. #if ENABLED(PS_DEFAULT_OFF)
  781. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  782. #else
  783. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  784. #endif
  785. #endif
  786. }
  787. void suicide() {
  788. #if HAS_SUICIDE
  789. OUT_WRITE(SUICIDE_PIN, LOW);
  790. #endif
  791. }
  792. void servo_init() {
  793. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  794. servo[0].attach(SERVO0_PIN);
  795. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  796. #endif
  797. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  798. servo[1].attach(SERVO1_PIN);
  799. servo[1].detach();
  800. #endif
  801. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  802. servo[2].attach(SERVO2_PIN);
  803. servo[2].detach();
  804. #endif
  805. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  806. servo[3].attach(SERVO3_PIN);
  807. servo[3].detach();
  808. #endif
  809. #if HAS_Z_SERVO_ENDSTOP
  810. /**
  811. * Set position of Z Servo Endstop
  812. *
  813. * The servo might be deployed and positioned too low to stow
  814. * when starting up the machine or rebooting the board.
  815. * There's no way to know where the nozzle is positioned until
  816. * homing has been done - no homing with z-probe without init!
  817. *
  818. */
  819. STOW_Z_SERVO();
  820. #endif
  821. }
  822. /**
  823. * Stepper Reset (RigidBoard, et.al.)
  824. */
  825. #if HAS_STEPPER_RESET
  826. void disableStepperDrivers() {
  827. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  828. }
  829. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  830. #endif
  831. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  832. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  833. i2c.receive(bytes);
  834. }
  835. void i2c_on_request() { // just send dummy data for now
  836. i2c.reply("Hello World!\n");
  837. }
  838. #endif
  839. #if HAS_COLOR_LEDS
  840. void set_led_color(
  841. const uint8_t r, const uint8_t g, const uint8_t b
  842. #if ENABLED(RGBW_LED)
  843. , const uint8_t w=0
  844. #endif
  845. ) {
  846. #if ENABLED(BLINKM)
  847. // This variant uses i2c to send the RGB components to the device.
  848. SendColors(r, g, b);
  849. #else
  850. // This variant uses 3 separate pins for the RGB components.
  851. // If the pins can do PWM then their intensity will be set.
  852. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  853. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  854. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  855. analogWrite(RGB_LED_R_PIN, r);
  856. analogWrite(RGB_LED_G_PIN, g);
  857. analogWrite(RGB_LED_B_PIN, b);
  858. #if ENABLED(RGBW_LED)
  859. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  860. analogWrite(RGB_LED_W_PIN, w);
  861. #endif
  862. #endif
  863. }
  864. #endif // HAS_COLOR_LEDS
  865. void gcode_line_error(const char* err, bool doFlush = true) {
  866. SERIAL_ERROR_START;
  867. serialprintPGM(err);
  868. SERIAL_ERRORLN(gcode_LastN);
  869. //Serial.println(gcode_N);
  870. if (doFlush) FlushSerialRequestResend();
  871. serial_count = 0;
  872. }
  873. /**
  874. * Get all commands waiting on the serial port and queue them.
  875. * Exit when the buffer is full or when no more characters are
  876. * left on the serial port.
  877. */
  878. inline void get_serial_commands() {
  879. static char serial_line_buffer[MAX_CMD_SIZE];
  880. static bool serial_comment_mode = false;
  881. // If the command buffer is empty for too long,
  882. // send "wait" to indicate Marlin is still waiting.
  883. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  884. static millis_t last_command_time = 0;
  885. const millis_t ms = millis();
  886. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  887. SERIAL_ECHOLNPGM(MSG_WAIT);
  888. last_command_time = ms;
  889. }
  890. #endif
  891. /**
  892. * Loop while serial characters are incoming and the queue is not full
  893. */
  894. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  895. char serial_char = MYSERIAL.read();
  896. /**
  897. * If the character ends the line
  898. */
  899. if (serial_char == '\n' || serial_char == '\r') {
  900. serial_comment_mode = false; // end of line == end of comment
  901. if (!serial_count) continue; // skip empty lines
  902. serial_line_buffer[serial_count] = 0; // terminate string
  903. serial_count = 0; //reset buffer
  904. char* command = serial_line_buffer;
  905. while (*command == ' ') command++; // skip any leading spaces
  906. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  907. char* apos = strchr(command, '*');
  908. if (npos) {
  909. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  910. if (M110) {
  911. char* n2pos = strchr(command + 4, 'N');
  912. if (n2pos) npos = n2pos;
  913. }
  914. gcode_N = strtol(npos + 1, NULL, 10);
  915. if (gcode_N != gcode_LastN + 1 && !M110) {
  916. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  917. return;
  918. }
  919. if (apos) {
  920. byte checksum = 0, count = 0;
  921. while (command[count] != '*') checksum ^= command[count++];
  922. if (strtol(apos + 1, NULL, 10) != checksum) {
  923. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  924. return;
  925. }
  926. // if no errors, continue parsing
  927. }
  928. else {
  929. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  930. return;
  931. }
  932. gcode_LastN = gcode_N;
  933. // if no errors, continue parsing
  934. }
  935. else if (apos) { // No '*' without 'N'
  936. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  937. return;
  938. }
  939. // Movement commands alert when stopped
  940. if (IsStopped()) {
  941. char* gpos = strchr(command, 'G');
  942. if (gpos) {
  943. const int codenum = strtol(gpos + 1, NULL, 10);
  944. switch (codenum) {
  945. case 0:
  946. case 1:
  947. case 2:
  948. case 3:
  949. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  950. LCD_MESSAGEPGM(MSG_STOPPED);
  951. break;
  952. }
  953. }
  954. }
  955. #if DISABLED(EMERGENCY_PARSER)
  956. // If command was e-stop process now
  957. if (strcmp(command, "M108") == 0) {
  958. wait_for_heatup = false;
  959. #if ENABLED(ULTIPANEL)
  960. wait_for_user = false;
  961. #endif
  962. }
  963. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  964. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  965. #endif
  966. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  967. last_command_time = ms;
  968. #endif
  969. // Add the command to the queue
  970. _enqueuecommand(serial_line_buffer, true);
  971. }
  972. else if (serial_count >= MAX_CMD_SIZE - 1) {
  973. // Keep fetching, but ignore normal characters beyond the max length
  974. // The command will be injected when EOL is reached
  975. }
  976. else if (serial_char == '\\') { // Handle escapes
  977. if (MYSERIAL.available() > 0) {
  978. // if we have one more character, copy it over
  979. serial_char = MYSERIAL.read();
  980. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  981. }
  982. // otherwise do nothing
  983. }
  984. else { // it's not a newline, carriage return or escape char
  985. if (serial_char == ';') serial_comment_mode = true;
  986. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  987. }
  988. } // queue has space, serial has data
  989. }
  990. #if ENABLED(SDSUPPORT)
  991. /**
  992. * Get commands from the SD Card until the command buffer is full
  993. * or until the end of the file is reached. The special character '#'
  994. * can also interrupt buffering.
  995. */
  996. inline void get_sdcard_commands() {
  997. static bool stop_buffering = false,
  998. sd_comment_mode = false;
  999. if (!card.sdprinting) return;
  1000. /**
  1001. * '#' stops reading from SD to the buffer prematurely, so procedural
  1002. * macro calls are possible. If it occurs, stop_buffering is triggered
  1003. * and the buffer is run dry; this character _can_ occur in serial com
  1004. * due to checksums, however, no checksums are used in SD printing.
  1005. */
  1006. if (commands_in_queue == 0) stop_buffering = false;
  1007. uint16_t sd_count = 0;
  1008. bool card_eof = card.eof();
  1009. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1010. const int16_t n = card.get();
  1011. char sd_char = (char)n;
  1012. card_eof = card.eof();
  1013. if (card_eof || n == -1
  1014. || sd_char == '\n' || sd_char == '\r'
  1015. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1016. ) {
  1017. if (card_eof) {
  1018. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1019. card.printingHasFinished();
  1020. #if ENABLED(PRINTER_EVENT_LEDS)
  1021. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1022. set_led_color(0, 255, 0); // Green
  1023. #if HAS_RESUME_CONTINUE
  1024. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1025. wait_for_user = true;
  1026. while (wait_for_user) idle();
  1027. KEEPALIVE_STATE(IN_HANDLER);
  1028. #else
  1029. safe_delay(1000);
  1030. #endif
  1031. set_led_color(0, 0, 0); // OFF
  1032. #endif
  1033. card.checkautostart(true);
  1034. }
  1035. else if (n == -1) {
  1036. SERIAL_ERROR_START;
  1037. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1038. }
  1039. if (sd_char == '#') stop_buffering = true;
  1040. sd_comment_mode = false; // for new command
  1041. if (!sd_count) continue; // skip empty lines (and comment lines)
  1042. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1043. sd_count = 0; // clear sd line buffer
  1044. _commit_command(false);
  1045. }
  1046. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1047. /**
  1048. * Keep fetching, but ignore normal characters beyond the max length
  1049. * The command will be injected when EOL is reached
  1050. */
  1051. }
  1052. else {
  1053. if (sd_char == ';') sd_comment_mode = true;
  1054. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1055. }
  1056. }
  1057. }
  1058. #endif // SDSUPPORT
  1059. /**
  1060. * Add to the circular command queue the next command from:
  1061. * - The command-injection queue (injected_commands_P)
  1062. * - The active serial input (usually USB)
  1063. * - The SD card file being actively printed
  1064. */
  1065. void get_available_commands() {
  1066. // if any immediate commands remain, don't get other commands yet
  1067. if (drain_injected_commands_P()) return;
  1068. get_serial_commands();
  1069. #if ENABLED(SDSUPPORT)
  1070. get_sdcard_commands();
  1071. #endif
  1072. }
  1073. inline bool code_has_value() {
  1074. int i = 1;
  1075. char c = seen_pointer[i];
  1076. while (c == ' ') c = seen_pointer[++i];
  1077. if (c == '-' || c == '+') c = seen_pointer[++i];
  1078. if (c == '.') c = seen_pointer[++i];
  1079. return NUMERIC(c);
  1080. }
  1081. inline float code_value_float() {
  1082. char* e = strchr(seen_pointer, 'E');
  1083. if (!e) return strtod(seen_pointer + 1, NULL);
  1084. *e = 0;
  1085. float ret = strtod(seen_pointer + 1, NULL);
  1086. *e = 'E';
  1087. return ret;
  1088. }
  1089. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1090. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1091. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1092. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1093. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1094. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1095. #if ENABLED(INCH_MODE_SUPPORT)
  1096. inline void set_input_linear_units(LinearUnit units) {
  1097. switch (units) {
  1098. case LINEARUNIT_INCH:
  1099. linear_unit_factor = 25.4;
  1100. break;
  1101. case LINEARUNIT_MM:
  1102. default:
  1103. linear_unit_factor = 1.0;
  1104. break;
  1105. }
  1106. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1107. }
  1108. inline float axis_unit_factor(const AxisEnum axis) {
  1109. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1110. }
  1111. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1112. inline float code_value_axis_units(const AxisEnum axis) { return code_value_float() * axis_unit_factor(axis); }
  1113. inline float code_value_per_axis_unit(const AxisEnum axis) { return code_value_float() / axis_unit_factor(axis); }
  1114. #else
  1115. #define code_value_linear_units() code_value_float()
  1116. #define code_value_axis_units(A) code_value_float()
  1117. #define code_value_per_axis_unit(A) code_value_float()
  1118. #endif
  1119. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1120. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1121. float code_value_temp_abs() {
  1122. switch (input_temp_units) {
  1123. case TEMPUNIT_C:
  1124. return code_value_float();
  1125. case TEMPUNIT_F:
  1126. return (code_value_float() - 32) * 0.5555555556;
  1127. case TEMPUNIT_K:
  1128. return code_value_float() - 273.15;
  1129. default:
  1130. return code_value_float();
  1131. }
  1132. }
  1133. float code_value_temp_diff() {
  1134. switch (input_temp_units) {
  1135. case TEMPUNIT_C:
  1136. case TEMPUNIT_K:
  1137. return code_value_float();
  1138. case TEMPUNIT_F:
  1139. return code_value_float() * 0.5555555556;
  1140. default:
  1141. return code_value_float();
  1142. }
  1143. }
  1144. #else
  1145. float code_value_temp_abs() { return code_value_float(); }
  1146. float code_value_temp_diff() { return code_value_float(); }
  1147. #endif
  1148. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1149. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1150. bool code_seen(char code) {
  1151. seen_pointer = strchr(current_command_args, code);
  1152. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1153. }
  1154. /**
  1155. * Set target_extruder from the T parameter or the active_extruder
  1156. *
  1157. * Returns TRUE if the target is invalid
  1158. */
  1159. bool get_target_extruder_from_command(int code) {
  1160. if (code_seen('T')) {
  1161. if (code_value_byte() >= EXTRUDERS) {
  1162. SERIAL_ECHO_START;
  1163. SERIAL_CHAR('M');
  1164. SERIAL_ECHO(code);
  1165. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1166. return true;
  1167. }
  1168. target_extruder = code_value_byte();
  1169. }
  1170. else
  1171. target_extruder = active_extruder;
  1172. return false;
  1173. }
  1174. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1175. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1176. #endif
  1177. #if ENABLED(DUAL_X_CARRIAGE)
  1178. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1179. static float x_home_pos(const int extruder) {
  1180. if (extruder == 0)
  1181. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1182. else
  1183. /**
  1184. * In dual carriage mode the extruder offset provides an override of the
  1185. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1186. * This allows soft recalibration of the second extruder home position
  1187. * without firmware reflash (through the M218 command).
  1188. */
  1189. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1190. }
  1191. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1192. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1193. static bool active_extruder_parked = false; // used in mode 1 & 2
  1194. static float raised_parked_position[XYZE]; // used in mode 1
  1195. static millis_t delayed_move_time = 0; // used in mode 1
  1196. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1197. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1198. #endif // DUAL_X_CARRIAGE
  1199. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1200. /**
  1201. * Software endstops can be used to monitor the open end of
  1202. * an axis that has a hardware endstop on the other end. Or
  1203. * they can prevent axes from moving past endstops and grinding.
  1204. *
  1205. * To keep doing their job as the coordinate system changes,
  1206. * the software endstop positions must be refreshed to remain
  1207. * at the same positions relative to the machine.
  1208. */
  1209. void update_software_endstops(const AxisEnum axis) {
  1210. const float offs = 0.0
  1211. #if HAS_HOME_OFFSET
  1212. + home_offset[axis]
  1213. #endif
  1214. #if HAS_POSITION_SHIFT
  1215. + position_shift[axis]
  1216. #endif
  1217. ;
  1218. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1219. workspace_offset[axis] = offs;
  1220. #endif
  1221. #if ENABLED(DUAL_X_CARRIAGE)
  1222. if (axis == X_AXIS) {
  1223. // In Dual X mode hotend_offset[X] is T1's home position
  1224. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1225. if (active_extruder != 0) {
  1226. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1227. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1228. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1229. }
  1230. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1231. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1232. // but not so far to the right that T1 would move past the end
  1233. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1234. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1235. }
  1236. else {
  1237. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1238. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1239. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1240. }
  1241. }
  1242. #else
  1243. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1244. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1245. #endif
  1246. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1247. if (DEBUGGING(LEVELING)) {
  1248. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1249. #if HAS_HOME_OFFSET
  1250. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1251. #endif
  1252. #if HAS_POSITION_SHIFT
  1253. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1254. #endif
  1255. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1256. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1257. }
  1258. #endif
  1259. #if ENABLED(DELTA)
  1260. if (axis == Z_AXIS)
  1261. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1262. #endif
  1263. }
  1264. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1265. #if HAS_M206_COMMAND
  1266. /**
  1267. * Change the home offset for an axis, update the current
  1268. * position and the software endstops to retain the same
  1269. * relative distance to the new home.
  1270. *
  1271. * Since this changes the current_position, code should
  1272. * call sync_plan_position soon after this.
  1273. */
  1274. static void set_home_offset(const AxisEnum axis, const float v) {
  1275. current_position[axis] += v - home_offset[axis];
  1276. home_offset[axis] = v;
  1277. update_software_endstops(axis);
  1278. }
  1279. #endif // HAS_M206_COMMAND
  1280. /**
  1281. * Set an axis' current position to its home position (after homing).
  1282. *
  1283. * For Core and Cartesian robots this applies one-to-one when an
  1284. * individual axis has been homed.
  1285. *
  1286. * DELTA should wait until all homing is done before setting the XYZ
  1287. * current_position to home, because homing is a single operation.
  1288. * In the case where the axis positions are already known and previously
  1289. * homed, DELTA could home to X or Y individually by moving either one
  1290. * to the center. However, homing Z always homes XY and Z.
  1291. *
  1292. * SCARA should wait until all XY homing is done before setting the XY
  1293. * current_position to home, because neither X nor Y is at home until
  1294. * both are at home. Z can however be homed individually.
  1295. *
  1296. * Callers must sync the planner position after calling this!
  1297. */
  1298. static void set_axis_is_at_home(AxisEnum axis) {
  1299. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1300. if (DEBUGGING(LEVELING)) {
  1301. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1302. SERIAL_CHAR(')');
  1303. SERIAL_EOL;
  1304. }
  1305. #endif
  1306. axis_known_position[axis] = axis_homed[axis] = true;
  1307. #if HAS_POSITION_SHIFT
  1308. position_shift[axis] = 0;
  1309. update_software_endstops(axis);
  1310. #endif
  1311. #if ENABLED(DUAL_X_CARRIAGE)
  1312. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1313. current_position[X_AXIS] = x_home_pos(active_extruder);
  1314. return;
  1315. }
  1316. #endif
  1317. #if ENABLED(MORGAN_SCARA)
  1318. /**
  1319. * Morgan SCARA homes XY at the same time
  1320. */
  1321. if (axis == X_AXIS || axis == Y_AXIS) {
  1322. float homeposition[XYZ];
  1323. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1324. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1325. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1326. /**
  1327. * Get Home position SCARA arm angles using inverse kinematics,
  1328. * and calculate homing offset using forward kinematics
  1329. */
  1330. inverse_kinematics(homeposition);
  1331. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1332. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1333. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1334. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1335. /**
  1336. * SCARA home positions are based on configuration since the actual
  1337. * limits are determined by the inverse kinematic transform.
  1338. */
  1339. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1340. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1341. }
  1342. else
  1343. #endif
  1344. {
  1345. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1346. }
  1347. /**
  1348. * Z Probe Z Homing? Account for the probe's Z offset.
  1349. */
  1350. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1351. if (axis == Z_AXIS) {
  1352. #if HOMING_Z_WITH_PROBE
  1353. current_position[Z_AXIS] -= zprobe_zoffset;
  1354. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1355. if (DEBUGGING(LEVELING)) {
  1356. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1357. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1358. }
  1359. #endif
  1360. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1361. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1362. #endif
  1363. }
  1364. #endif
  1365. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1366. if (DEBUGGING(LEVELING)) {
  1367. #if HAS_HOME_OFFSET
  1368. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1369. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1370. #endif
  1371. DEBUG_POS("", current_position);
  1372. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1373. SERIAL_CHAR(')');
  1374. SERIAL_EOL;
  1375. }
  1376. #endif
  1377. }
  1378. /**
  1379. * Some planner shorthand inline functions
  1380. */
  1381. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1382. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1383. int hbd = homing_bump_divisor[axis];
  1384. if (hbd < 1) {
  1385. hbd = 10;
  1386. SERIAL_ECHO_START;
  1387. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1388. }
  1389. return homing_feedrate_mm_s[axis] / hbd;
  1390. }
  1391. //
  1392. // line_to_current_position
  1393. // Move the planner to the current position from wherever it last moved
  1394. // (or from wherever it has been told it is located).
  1395. //
  1396. inline void line_to_current_position() {
  1397. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1398. }
  1399. //
  1400. // line_to_destination
  1401. // Move the planner, not necessarily synced with current_position
  1402. //
  1403. inline void line_to_destination(float fr_mm_s) {
  1404. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1405. }
  1406. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1407. inline void set_current_to_destination() { COPY(current_position, destination); }
  1408. inline void set_destination_to_current() { COPY(destination, current_position); }
  1409. #if IS_KINEMATIC
  1410. /**
  1411. * Calculate delta, start a line, and set current_position to destination
  1412. */
  1413. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1414. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1415. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1416. #endif
  1417. if ( current_position[X_AXIS] == destination[X_AXIS]
  1418. && current_position[Y_AXIS] == destination[Y_AXIS]
  1419. && current_position[Z_AXIS] == destination[Z_AXIS]
  1420. && current_position[E_AXIS] == destination[E_AXIS]
  1421. ) return;
  1422. refresh_cmd_timeout();
  1423. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1424. set_current_to_destination();
  1425. }
  1426. #endif // IS_KINEMATIC
  1427. /**
  1428. * Plan a move to (X, Y, Z) and set the current_position
  1429. * The final current_position may not be the one that was requested
  1430. */
  1431. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1432. const float old_feedrate_mm_s = feedrate_mm_s;
  1433. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1434. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1435. #endif
  1436. #if ENABLED(DELTA)
  1437. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1438. set_destination_to_current(); // sync destination at the start
  1439. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1440. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1441. #endif
  1442. // when in the danger zone
  1443. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1444. if (z > delta_clip_start_height) { // staying in the danger zone
  1445. destination[X_AXIS] = x; // move directly (uninterpolated)
  1446. destination[Y_AXIS] = y;
  1447. destination[Z_AXIS] = z;
  1448. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1450. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1451. #endif
  1452. return;
  1453. }
  1454. else {
  1455. destination[Z_AXIS] = delta_clip_start_height;
  1456. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1457. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1458. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1459. #endif
  1460. }
  1461. }
  1462. if (z > current_position[Z_AXIS]) { // raising?
  1463. destination[Z_AXIS] = z;
  1464. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1465. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1466. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1467. #endif
  1468. }
  1469. destination[X_AXIS] = x;
  1470. destination[Y_AXIS] = y;
  1471. prepare_move_to_destination(); // set_current_to_destination
  1472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1473. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1474. #endif
  1475. if (z < current_position[Z_AXIS]) { // lowering?
  1476. destination[Z_AXIS] = z;
  1477. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1478. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1479. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1480. #endif
  1481. }
  1482. #elif IS_SCARA
  1483. set_destination_to_current();
  1484. // If Z needs to raise, do it before moving XY
  1485. if (destination[Z_AXIS] < z) {
  1486. destination[Z_AXIS] = z;
  1487. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1488. }
  1489. destination[X_AXIS] = x;
  1490. destination[Y_AXIS] = y;
  1491. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1492. // If Z needs to lower, do it after moving XY
  1493. if (destination[Z_AXIS] > z) {
  1494. destination[Z_AXIS] = z;
  1495. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1496. }
  1497. #else
  1498. // If Z needs to raise, do it before moving XY
  1499. if (current_position[Z_AXIS] < z) {
  1500. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1501. current_position[Z_AXIS] = z;
  1502. line_to_current_position();
  1503. }
  1504. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1505. current_position[X_AXIS] = x;
  1506. current_position[Y_AXIS] = y;
  1507. line_to_current_position();
  1508. // If Z needs to lower, do it after moving XY
  1509. if (current_position[Z_AXIS] > z) {
  1510. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1511. current_position[Z_AXIS] = z;
  1512. line_to_current_position();
  1513. }
  1514. #endif
  1515. stepper.synchronize();
  1516. feedrate_mm_s = old_feedrate_mm_s;
  1517. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1518. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1519. #endif
  1520. }
  1521. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1522. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1523. }
  1524. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1525. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1526. }
  1527. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1528. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1529. }
  1530. //
  1531. // Prepare to do endstop or probe moves
  1532. // with custom feedrates.
  1533. //
  1534. // - Save current feedrates
  1535. // - Reset the rate multiplier
  1536. // - Reset the command timeout
  1537. // - Enable the endstops (for endstop moves)
  1538. //
  1539. static void setup_for_endstop_or_probe_move() {
  1540. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1541. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1542. #endif
  1543. saved_feedrate_mm_s = feedrate_mm_s;
  1544. saved_feedrate_percentage = feedrate_percentage;
  1545. feedrate_percentage = 100;
  1546. refresh_cmd_timeout();
  1547. }
  1548. static void clean_up_after_endstop_or_probe_move() {
  1549. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1550. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1551. #endif
  1552. feedrate_mm_s = saved_feedrate_mm_s;
  1553. feedrate_percentage = saved_feedrate_percentage;
  1554. refresh_cmd_timeout();
  1555. }
  1556. #if HAS_BED_PROBE
  1557. /**
  1558. * Raise Z to a minimum height to make room for a probe to move
  1559. */
  1560. inline void do_probe_raise(float z_raise) {
  1561. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1562. if (DEBUGGING(LEVELING)) {
  1563. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1564. SERIAL_CHAR(')');
  1565. SERIAL_EOL;
  1566. }
  1567. #endif
  1568. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1569. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1570. if (z_dest > current_position[Z_AXIS])
  1571. do_blocking_move_to_z(z_dest);
  1572. }
  1573. #endif //HAS_BED_PROBE
  1574. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1575. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1576. const bool xx = x && !axis_homed[X_AXIS],
  1577. yy = y && !axis_homed[Y_AXIS],
  1578. zz = z && !axis_homed[Z_AXIS];
  1579. if (xx || yy || zz) {
  1580. SERIAL_ECHO_START;
  1581. SERIAL_ECHOPGM(MSG_HOME " ");
  1582. if (xx) SERIAL_ECHOPGM(MSG_X);
  1583. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1584. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1585. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1586. #if ENABLED(ULTRA_LCD)
  1587. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1588. #endif
  1589. return true;
  1590. }
  1591. return false;
  1592. }
  1593. #endif
  1594. #if ENABLED(Z_PROBE_SLED)
  1595. #ifndef SLED_DOCKING_OFFSET
  1596. #define SLED_DOCKING_OFFSET 0
  1597. #endif
  1598. /**
  1599. * Method to dock/undock a sled designed by Charles Bell.
  1600. *
  1601. * stow[in] If false, move to MAX_X and engage the solenoid
  1602. * If true, move to MAX_X and release the solenoid
  1603. */
  1604. static void dock_sled(bool stow) {
  1605. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1606. if (DEBUGGING(LEVELING)) {
  1607. SERIAL_ECHOPAIR("dock_sled(", stow);
  1608. SERIAL_CHAR(')');
  1609. SERIAL_EOL;
  1610. }
  1611. #endif
  1612. // Dock sled a bit closer to ensure proper capturing
  1613. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1614. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1615. WRITE(SOL1_PIN, !stow); // switch solenoid
  1616. #endif
  1617. }
  1618. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1619. void run_deploy_moves_script() {
  1620. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1621. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1622. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1623. #endif
  1624. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1625. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1626. #endif
  1627. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1628. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1629. #endif
  1630. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1631. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1632. #endif
  1633. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1634. #endif
  1635. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1636. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1637. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1638. #endif
  1639. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1640. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1641. #endif
  1642. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1643. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1644. #endif
  1645. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1646. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1647. #endif
  1648. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1649. #endif
  1650. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1651. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1652. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1653. #endif
  1654. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1655. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1656. #endif
  1657. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1658. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1659. #endif
  1660. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1661. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1662. #endif
  1663. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1664. #endif
  1665. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1666. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1667. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1668. #endif
  1669. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1670. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1671. #endif
  1672. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1673. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1674. #endif
  1675. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1676. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1677. #endif
  1678. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1679. #endif
  1680. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1681. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1682. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1683. #endif
  1684. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1685. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1686. #endif
  1687. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1688. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1689. #endif
  1690. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1691. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1692. #endif
  1693. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1694. #endif
  1695. }
  1696. void run_stow_moves_script() {
  1697. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1698. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1699. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1700. #endif
  1701. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1702. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1703. #endif
  1704. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1705. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1706. #endif
  1707. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1708. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1709. #endif
  1710. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1711. #endif
  1712. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1713. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1714. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1715. #endif
  1716. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1717. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1718. #endif
  1719. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1720. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1721. #endif
  1722. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1723. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1724. #endif
  1725. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1726. #endif
  1727. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1728. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1729. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1730. #endif
  1731. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1732. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1733. #endif
  1734. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1735. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1736. #endif
  1737. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1738. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1739. #endif
  1740. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1741. #endif
  1742. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1743. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1744. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1745. #endif
  1746. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1747. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1748. #endif
  1749. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1750. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1751. #endif
  1752. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1753. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1754. #endif
  1755. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1756. #endif
  1757. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1758. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1759. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1760. #endif
  1761. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1762. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1763. #endif
  1764. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1765. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1766. #endif
  1767. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1768. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1769. #endif
  1770. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1771. #endif
  1772. }
  1773. #endif
  1774. #if HAS_BED_PROBE
  1775. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1776. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1777. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1778. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1779. #else
  1780. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1781. #endif
  1782. #endif
  1783. #if ENABLED(BLTOUCH)
  1784. void bltouch_command(int angle) {
  1785. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1786. safe_delay(BLTOUCH_DELAY);
  1787. }
  1788. void set_bltouch_deployed(const bool deploy) {
  1789. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1790. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1791. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1792. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1793. safe_delay(1500); // wait for internal self test to complete
  1794. // measured completion time was 0.65 seconds
  1795. // after reset, deploy & stow sequence
  1796. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1797. SERIAL_ERROR_START;
  1798. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1799. stop(); // punt!
  1800. }
  1801. }
  1802. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1803. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1804. if (DEBUGGING(LEVELING)) {
  1805. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1806. SERIAL_CHAR(')');
  1807. SERIAL_EOL;
  1808. }
  1809. #endif
  1810. }
  1811. #endif
  1812. // returns false for ok and true for failure
  1813. bool set_probe_deployed(bool deploy) {
  1814. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1815. if (DEBUGGING(LEVELING)) {
  1816. DEBUG_POS("set_probe_deployed", current_position);
  1817. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1818. }
  1819. #endif
  1820. if (endstops.z_probe_enabled == deploy) return false;
  1821. // Make room for probe
  1822. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1823. // When deploying make sure BLTOUCH is not already triggered
  1824. #if ENABLED(BLTOUCH)
  1825. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1826. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1827. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1828. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1829. safe_delay(1500); // wait for internal self test to complete
  1830. // measured completion time was 0.65 seconds
  1831. // after reset, deploy & stow sequence
  1832. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1833. SERIAL_ERROR_START;
  1834. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1835. stop(); // punt!
  1836. return true;
  1837. }
  1838. }
  1839. #elif ENABLED(Z_PROBE_SLED)
  1840. if (axis_unhomed_error(true, false, false)) {
  1841. SERIAL_ERROR_START;
  1842. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1843. stop();
  1844. return true;
  1845. }
  1846. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1847. if (axis_unhomed_error(true, true, true )) {
  1848. SERIAL_ERROR_START;
  1849. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1850. stop();
  1851. return true;
  1852. }
  1853. #endif
  1854. const float oldXpos = current_position[X_AXIS],
  1855. oldYpos = current_position[Y_AXIS];
  1856. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1857. // If endstop is already false, the Z probe is deployed
  1858. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1859. // Would a goto be less ugly?
  1860. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1861. // for a triggered when stowed manual probe.
  1862. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1863. // otherwise an Allen-Key probe can't be stowed.
  1864. #endif
  1865. #if ENABLED(SOLENOID_PROBE)
  1866. #if HAS_SOLENOID_1
  1867. WRITE(SOL1_PIN, deploy);
  1868. #endif
  1869. #elif ENABLED(Z_PROBE_SLED)
  1870. dock_sled(!deploy);
  1871. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1872. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1873. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1874. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1875. #endif
  1876. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1877. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1878. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1879. if (IsRunning()) {
  1880. SERIAL_ERROR_START;
  1881. SERIAL_ERRORLNPGM("Z-Probe failed");
  1882. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1883. }
  1884. stop();
  1885. return true;
  1886. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1887. #endif
  1888. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1889. endstops.enable_z_probe(deploy);
  1890. return false;
  1891. }
  1892. static void do_probe_move(float z, float fr_mm_m) {
  1893. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1894. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1895. #endif
  1896. // Deploy BLTouch at the start of any probe
  1897. #if ENABLED(BLTOUCH)
  1898. set_bltouch_deployed(true);
  1899. #endif
  1900. // Move down until probe triggered
  1901. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1902. // Retract BLTouch immediately after a probe
  1903. #if ENABLED(BLTOUCH)
  1904. set_bltouch_deployed(false);
  1905. #endif
  1906. // Clear endstop flags
  1907. endstops.hit_on_purpose();
  1908. // Get Z where the steppers were interrupted
  1909. set_current_from_steppers_for_axis(Z_AXIS);
  1910. // Tell the planner where we actually are
  1911. SYNC_PLAN_POSITION_KINEMATIC();
  1912. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1913. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1914. #endif
  1915. }
  1916. // Do a single Z probe and return with current_position[Z_AXIS]
  1917. // at the height where the probe triggered.
  1918. static float run_z_probe() {
  1919. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1920. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1921. #endif
  1922. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1923. refresh_cmd_timeout();
  1924. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1925. // Do a first probe at the fast speed
  1926. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1927. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1928. float first_probe_z = current_position[Z_AXIS];
  1929. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1930. #endif
  1931. // move up by the bump distance
  1932. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1933. #else
  1934. // If the nozzle is above the travel height then
  1935. // move down quickly before doing the slow probe
  1936. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1937. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1938. if (z < current_position[Z_AXIS])
  1939. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1940. #endif
  1941. // move down slowly to find bed
  1942. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1943. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1944. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1945. #endif
  1946. // Debug: compare probe heights
  1947. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1948. if (DEBUGGING(LEVELING)) {
  1949. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1950. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1951. }
  1952. #endif
  1953. return current_position[Z_AXIS] + zprobe_zoffset;
  1954. }
  1955. //
  1956. // - Move to the given XY
  1957. // - Deploy the probe, if not already deployed
  1958. // - Probe the bed, get the Z position
  1959. // - Depending on the 'stow' flag
  1960. // - Stow the probe, or
  1961. // - Raise to the BETWEEN height
  1962. // - Return the probed Z position
  1963. //
  1964. float probe_pt(const float x, const float y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
  1965. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1966. if (DEBUGGING(LEVELING)) {
  1967. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1968. SERIAL_ECHOPAIR(", ", y);
  1969. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1970. SERIAL_ECHOLNPGM("stow)");
  1971. DEBUG_POS("", current_position);
  1972. }
  1973. #endif
  1974. const float old_feedrate_mm_s = feedrate_mm_s;
  1975. #if ENABLED(DELTA)
  1976. if (current_position[Z_AXIS] > delta_clip_start_height)
  1977. do_blocking_move_to_z(delta_clip_start_height);
  1978. #endif
  1979. // Ensure a minimum height before moving the probe
  1980. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1981. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1982. // Move the probe to the given XY
  1983. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1984. if (DEPLOY_PROBE()) return NAN;
  1985. const float measured_z = run_z_probe();
  1986. if (!stow)
  1987. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1988. else
  1989. if (STOW_PROBE()) return NAN;
  1990. if (verbose_level > 2) {
  1991. SERIAL_PROTOCOLPGM("Bed X: ");
  1992. SERIAL_PROTOCOL_F(x, 3);
  1993. SERIAL_PROTOCOLPGM(" Y: ");
  1994. SERIAL_PROTOCOL_F(y, 3);
  1995. SERIAL_PROTOCOLPGM(" Z: ");
  1996. SERIAL_PROTOCOL_F(measured_z, 3);
  1997. SERIAL_EOL;
  1998. }
  1999. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2000. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2001. #endif
  2002. feedrate_mm_s = old_feedrate_mm_s;
  2003. return measured_z;
  2004. }
  2005. #endif // HAS_BED_PROBE
  2006. #if PLANNER_LEVELING
  2007. /**
  2008. * Turn bed leveling on or off, fixing the current
  2009. * position as-needed.
  2010. *
  2011. * Disable: Current position = physical position
  2012. * Enable: Current position = "unleveled" physical position
  2013. */
  2014. void set_bed_leveling_enabled(bool enable/*=true*/) {
  2015. #if ENABLED(MESH_BED_LEVELING)
  2016. if (enable != mbl.active()) {
  2017. if (!enable)
  2018. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2019. mbl.set_active(enable && mbl.has_mesh());
  2020. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  2021. }
  2022. #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
  2023. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2024. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  2025. #else
  2026. constexpr bool can_change = true;
  2027. #endif
  2028. if (can_change && enable != planner.abl_enabled) {
  2029. planner.abl_enabled = enable;
  2030. if (!enable)
  2031. set_current_from_steppers_for_axis(
  2032. #if ABL_PLANAR
  2033. ALL_AXES
  2034. #else
  2035. Z_AXIS
  2036. #endif
  2037. );
  2038. else
  2039. planner.unapply_leveling(current_position);
  2040. }
  2041. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2042. ubl.state.active = enable;
  2043. //set_current_from_steppers_for_axis(Z_AXIS);
  2044. #endif
  2045. }
  2046. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2047. void set_z_fade_height(const float zfh) {
  2048. planner.z_fade_height = zfh;
  2049. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2050. if (
  2051. #if ENABLED(MESH_BED_LEVELING)
  2052. mbl.active()
  2053. #else
  2054. planner.abl_enabled
  2055. #endif
  2056. ) {
  2057. set_current_from_steppers_for_axis(
  2058. #if ABL_PLANAR
  2059. ALL_AXES
  2060. #else
  2061. Z_AXIS
  2062. #endif
  2063. );
  2064. }
  2065. }
  2066. #endif // LEVELING_FADE_HEIGHT
  2067. /**
  2068. * Reset calibration results to zero.
  2069. */
  2070. void reset_bed_level() {
  2071. set_bed_leveling_enabled(false);
  2072. #if ENABLED(MESH_BED_LEVELING)
  2073. if (mbl.has_mesh()) {
  2074. mbl.reset();
  2075. mbl.set_has_mesh(false);
  2076. }
  2077. #else
  2078. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2079. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2080. #endif
  2081. #if ABL_PLANAR
  2082. planner.bed_level_matrix.set_to_identity();
  2083. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2084. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2085. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2086. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2087. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2088. bed_level_grid[x][y] = NAN;
  2089. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2090. ubl.reset();
  2091. #endif
  2092. #endif
  2093. }
  2094. #endif // PLANNER_LEVELING
  2095. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2096. //
  2097. // Enable if you prefer your output in JSON format
  2098. // suitable for SCAD or JavaScript mesh visualizers.
  2099. //
  2100. // Visualize meshes in OpenSCAD using the included script.
  2101. //
  2102. // buildroot/shared/scripts/MarlinMesh.scad
  2103. //
  2104. //#define SCAD_MESH_OUTPUT
  2105. /**
  2106. * Print calibration results for plotting or manual frame adjustment.
  2107. */
  2108. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2109. #ifndef SCAD_MESH_OUTPUT
  2110. for (uint8_t x = 0; x < sx; x++) {
  2111. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2112. SERIAL_PROTOCOLCHAR(' ');
  2113. SERIAL_PROTOCOL((int)x);
  2114. }
  2115. SERIAL_EOL;
  2116. #endif
  2117. #ifdef SCAD_MESH_OUTPUT
  2118. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2119. #endif
  2120. for (uint8_t y = 0; y < sy; y++) {
  2121. #ifdef SCAD_MESH_OUTPUT
  2122. SERIAL_PROTOCOLLNPGM(" ["); // open sub-array
  2123. #else
  2124. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2125. SERIAL_PROTOCOL((int)y);
  2126. #endif
  2127. for (uint8_t x = 0; x < sx; x++) {
  2128. SERIAL_PROTOCOLCHAR(' ');
  2129. const float offset = fn(x, y);
  2130. if (!isnan(offset)) {
  2131. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2132. SERIAL_PROTOCOL_F(offset, precision);
  2133. }
  2134. else {
  2135. #ifdef SCAD_MESH_OUTPUT
  2136. for (uint8_t i = 3; i < precision + 3; i++)
  2137. SERIAL_PROTOCOLCHAR(' ');
  2138. SERIAL_PROTOCOLPGM("NAN");
  2139. #else
  2140. for (uint8_t i = 0; i < precision + 3; i++)
  2141. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2142. #endif
  2143. }
  2144. #ifdef SCAD_MESH_OUTPUT
  2145. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2146. #endif
  2147. }
  2148. #ifdef SCAD_MESH_OUTPUT
  2149. SERIAL_PROTOCOLCHAR(' ');
  2150. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2151. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2152. #endif
  2153. SERIAL_EOL;
  2154. }
  2155. #ifdef SCAD_MESH_OUTPUT
  2156. SERIAL_PROTOCOLPGM("\n];"); // close 2D array
  2157. #endif
  2158. SERIAL_EOL;
  2159. }
  2160. #endif
  2161. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2162. /**
  2163. * Extrapolate a single point from its neighbors
  2164. */
  2165. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2166. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2167. if (DEBUGGING(LEVELING)) {
  2168. SERIAL_ECHOPGM("Extrapolate [");
  2169. if (x < 10) SERIAL_CHAR(' ');
  2170. SERIAL_ECHO((int)x);
  2171. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2172. SERIAL_CHAR(' ');
  2173. if (y < 10) SERIAL_CHAR(' ');
  2174. SERIAL_ECHO((int)y);
  2175. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2176. SERIAL_CHAR(']');
  2177. }
  2178. #endif
  2179. if (!isnan(bed_level_grid[x][y])) {
  2180. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2181. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2182. #endif
  2183. return; // Don't overwrite good values.
  2184. }
  2185. SERIAL_EOL;
  2186. // Get X neighbors, Y neighbors, and XY neighbors
  2187. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  2188. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  2189. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  2190. // Treat far unprobed points as zero, near as equal to far
  2191. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2192. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2193. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2194. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2195. // Take the average instead of the median
  2196. bed_level_grid[x][y] = (a + b + c) / 3.0;
  2197. // Median is robust (ignores outliers).
  2198. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2199. // : ((c < b) ? b : (a < c) ? a : c);
  2200. }
  2201. //Enable this if your SCARA uses 180° of total area
  2202. //#define EXTRAPOLATE_FROM_EDGE
  2203. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2204. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2205. #define HALF_IN_X
  2206. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2207. #define HALF_IN_Y
  2208. #endif
  2209. #endif
  2210. /**
  2211. * Fill in the unprobed points (corners of circular print surface)
  2212. * using linear extrapolation, away from the center.
  2213. */
  2214. static void extrapolate_unprobed_bed_level() {
  2215. #ifdef HALF_IN_X
  2216. const uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2217. #else
  2218. const uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2219. ctrx2 = GRID_MAX_POINTS_X / 2, // right-of-center
  2220. xlen = ctrx1;
  2221. #endif
  2222. #ifdef HALF_IN_Y
  2223. const uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2224. #else
  2225. const uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2226. ctry2 = GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2227. ylen = ctry1;
  2228. #endif
  2229. for (uint8_t xo = 0; xo <= xlen; xo++)
  2230. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2231. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2232. #ifndef HALF_IN_X
  2233. const uint8_t x1 = ctrx1 - xo;
  2234. #endif
  2235. #ifndef HALF_IN_Y
  2236. const uint8_t y1 = ctry1 - yo;
  2237. #ifndef HALF_IN_X
  2238. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2239. #endif
  2240. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2241. #endif
  2242. #ifndef HALF_IN_X
  2243. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2244. #endif
  2245. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2246. }
  2247. }
  2248. static void print_bilinear_leveling_grid() {
  2249. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2250. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2251. [](const uint8_t ix, const uint8_t iy) { return bed_level_grid[ix][iy]; }
  2252. );
  2253. }
  2254. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2255. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2256. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2257. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2258. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2259. float bed_level_grid_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2260. int bilinear_grid_spacing_virt[2] = { 0 };
  2261. static void bed_level_virt_print() {
  2262. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2263. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2264. [](const uint8_t ix, const uint8_t iy) { return bed_level_grid_virt[ix][iy]; }
  2265. );
  2266. }
  2267. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2268. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2269. uint8_t ep = 0, ip = 1;
  2270. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2271. if (x) {
  2272. ep = GRID_MAX_POINTS_X - 1;
  2273. ip = GRID_MAX_POINTS_X - 2;
  2274. }
  2275. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2276. return LINEAR_EXTRAPOLATION(
  2277. bed_level_grid[ep][y - 1],
  2278. bed_level_grid[ip][y - 1]
  2279. );
  2280. else
  2281. return LINEAR_EXTRAPOLATION(
  2282. bed_level_virt_coord(ep + 1, y),
  2283. bed_level_virt_coord(ip + 1, y)
  2284. );
  2285. }
  2286. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2287. if (y) {
  2288. ep = GRID_MAX_POINTS_Y - 1;
  2289. ip = GRID_MAX_POINTS_Y - 2;
  2290. }
  2291. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2292. return LINEAR_EXTRAPOLATION(
  2293. bed_level_grid[x - 1][ep],
  2294. bed_level_grid[x - 1][ip]
  2295. );
  2296. else
  2297. return LINEAR_EXTRAPOLATION(
  2298. bed_level_virt_coord(x, ep + 1),
  2299. bed_level_virt_coord(x, ip + 1)
  2300. );
  2301. }
  2302. return bed_level_grid[x - 1][y - 1];
  2303. }
  2304. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2305. return (
  2306. p[i-1] * -t * sq(1 - t)
  2307. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2308. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2309. - p[i+2] * sq(t) * (1 - t)
  2310. ) * 0.5;
  2311. }
  2312. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2313. float row[4], column[4];
  2314. for (uint8_t i = 0; i < 4; i++) {
  2315. for (uint8_t j = 0; j < 4; j++) {
  2316. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2317. }
  2318. row[i] = bed_level_virt_cmr(column, 1, ty);
  2319. }
  2320. return bed_level_virt_cmr(row, 1, tx);
  2321. }
  2322. void bed_level_virt_interpolate() {
  2323. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2324. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2325. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2326. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2327. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2328. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2329. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2330. continue;
  2331. bed_level_grid_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2332. bed_level_virt_2cmr(
  2333. x + 1,
  2334. y + 1,
  2335. (float)tx / (BILINEAR_SUBDIVISIONS),
  2336. (float)ty / (BILINEAR_SUBDIVISIONS)
  2337. );
  2338. }
  2339. }
  2340. #endif // ABL_BILINEAR_SUBDIVISION
  2341. #endif // AUTO_BED_LEVELING_BILINEAR
  2342. /**
  2343. * Home an individual linear axis
  2344. */
  2345. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2346. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2347. if (DEBUGGING(LEVELING)) {
  2348. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2349. SERIAL_ECHOPAIR(", ", distance);
  2350. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2351. SERIAL_CHAR(')');
  2352. SERIAL_EOL;
  2353. }
  2354. #endif
  2355. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2356. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2357. if (deploy_bltouch) set_bltouch_deployed(true);
  2358. #endif
  2359. // Tell the planner we're at Z=0
  2360. current_position[axis] = 0;
  2361. #if IS_SCARA
  2362. SYNC_PLAN_POSITION_KINEMATIC();
  2363. current_position[axis] = distance;
  2364. inverse_kinematics(current_position);
  2365. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2366. #else
  2367. sync_plan_position();
  2368. current_position[axis] = distance;
  2369. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2370. #endif
  2371. stepper.synchronize();
  2372. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2373. if (deploy_bltouch) set_bltouch_deployed(false);
  2374. #endif
  2375. endstops.hit_on_purpose();
  2376. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2377. if (DEBUGGING(LEVELING)) {
  2378. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2379. SERIAL_CHAR(')');
  2380. SERIAL_EOL;
  2381. }
  2382. #endif
  2383. }
  2384. /**
  2385. * TMC2130 specific sensorless homing using stallGuard2.
  2386. * stallGuard2 only works when in spreadCycle mode.
  2387. * spreadCycle and stealthChop are mutually exclusive.
  2388. */
  2389. #if ENABLED(SENSORLESS_HOMING)
  2390. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2391. #if ENABLED(STEALTHCHOP)
  2392. if (enable) {
  2393. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2394. st.stealthChop(0);
  2395. }
  2396. else {
  2397. st.coolstep_min_speed(0);
  2398. st.stealthChop(1);
  2399. }
  2400. #endif
  2401. st.diag1_stall(enable ? 1 : 0);
  2402. }
  2403. #endif
  2404. /**
  2405. * Home an individual "raw axis" to its endstop.
  2406. * This applies to XYZ on Cartesian and Core robots, and
  2407. * to the individual ABC steppers on DELTA and SCARA.
  2408. *
  2409. * At the end of the procedure the axis is marked as
  2410. * homed and the current position of that axis is updated.
  2411. * Kinematic robots should wait till all axes are homed
  2412. * before updating the current position.
  2413. */
  2414. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2415. static void homeaxis(const AxisEnum axis) {
  2416. #if IS_SCARA
  2417. // Only Z homing (with probe) is permitted
  2418. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2419. #else
  2420. #define CAN_HOME(A) \
  2421. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2422. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2423. #endif
  2424. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2425. if (DEBUGGING(LEVELING)) {
  2426. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2427. SERIAL_CHAR(')');
  2428. SERIAL_EOL;
  2429. }
  2430. #endif
  2431. const int axis_home_dir =
  2432. #if ENABLED(DUAL_X_CARRIAGE)
  2433. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2434. #endif
  2435. home_dir(axis);
  2436. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2437. #if HOMING_Z_WITH_PROBE
  2438. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2439. #endif
  2440. // Set a flag for Z motor locking
  2441. #if ENABLED(Z_DUAL_ENDSTOPS)
  2442. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2443. #endif
  2444. // Disable stealthChop if used. Enable diag1 pin on driver.
  2445. #if ENABLED(SENSORLESS_HOMING)
  2446. #if ENABLED(X_IS_TMC2130)
  2447. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2448. #endif
  2449. #if ENABLED(Y_IS_TMC2130)
  2450. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2451. #endif
  2452. #endif
  2453. // Fast move towards endstop until triggered
  2454. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2455. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2456. #endif
  2457. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2458. // When homing Z with probe respect probe clearance
  2459. const float bump = axis_home_dir * (
  2460. #if HOMING_Z_WITH_PROBE
  2461. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2462. #endif
  2463. home_bump_mm(axis)
  2464. );
  2465. // If a second homing move is configured...
  2466. if (bump) {
  2467. // Move away from the endstop by the axis HOME_BUMP_MM
  2468. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2469. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2470. #endif
  2471. do_homing_move(axis, -bump);
  2472. // Slow move towards endstop until triggered
  2473. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2474. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2475. #endif
  2476. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2477. }
  2478. #if ENABLED(Z_DUAL_ENDSTOPS)
  2479. if (axis == Z_AXIS) {
  2480. float adj = fabs(z_endstop_adj);
  2481. bool lockZ1;
  2482. if (axis_home_dir > 0) {
  2483. adj = -adj;
  2484. lockZ1 = (z_endstop_adj > 0);
  2485. }
  2486. else
  2487. lockZ1 = (z_endstop_adj < 0);
  2488. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2489. // Move to the adjusted endstop height
  2490. do_homing_move(axis, adj);
  2491. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2492. stepper.set_homing_flag(false);
  2493. } // Z_AXIS
  2494. #endif
  2495. #if IS_SCARA
  2496. set_axis_is_at_home(axis);
  2497. SYNC_PLAN_POSITION_KINEMATIC();
  2498. #elif ENABLED(DELTA)
  2499. // Delta has already moved all three towers up in G28
  2500. // so here it re-homes each tower in turn.
  2501. // Delta homing treats the axes as normal linear axes.
  2502. // retrace by the amount specified in endstop_adj
  2503. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2504. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2505. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2506. #endif
  2507. do_homing_move(axis, endstop_adj[axis]);
  2508. }
  2509. #else
  2510. // For cartesian/core machines,
  2511. // set the axis to its home position
  2512. set_axis_is_at_home(axis);
  2513. sync_plan_position();
  2514. destination[axis] = current_position[axis];
  2515. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2516. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2517. #endif
  2518. #endif
  2519. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2520. #if ENABLED(SENSORLESS_HOMING)
  2521. #if ENABLED(X_IS_TMC2130)
  2522. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2523. #endif
  2524. #if ENABLED(Y_IS_TMC2130)
  2525. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2526. #endif
  2527. #endif
  2528. // Put away the Z probe
  2529. #if HOMING_Z_WITH_PROBE
  2530. if (axis == Z_AXIS && STOW_PROBE()) return;
  2531. #endif
  2532. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2533. if (DEBUGGING(LEVELING)) {
  2534. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2535. SERIAL_CHAR(')');
  2536. SERIAL_EOL;
  2537. }
  2538. #endif
  2539. } // homeaxis()
  2540. #if ENABLED(FWRETRACT)
  2541. void retract(const bool retracting, const bool swapping = false) {
  2542. static float hop_height;
  2543. if (retracting == retracted[active_extruder]) return;
  2544. const float old_feedrate_mm_s = feedrate_mm_s;
  2545. set_destination_to_current();
  2546. if (retracting) {
  2547. feedrate_mm_s = retract_feedrate_mm_s;
  2548. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2549. sync_plan_position_e();
  2550. prepare_move_to_destination();
  2551. if (retract_zlift > 0.01) {
  2552. hop_height = current_position[Z_AXIS];
  2553. // Pretend current position is lower
  2554. current_position[Z_AXIS] -= retract_zlift;
  2555. SYNC_PLAN_POSITION_KINEMATIC();
  2556. // Raise up to the old current_position
  2557. prepare_move_to_destination();
  2558. }
  2559. }
  2560. else {
  2561. // If the height hasn't been altered, undo the Z hop
  2562. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2563. // Pretend current position is higher. Z will lower on the next move
  2564. current_position[Z_AXIS] += retract_zlift;
  2565. SYNC_PLAN_POSITION_KINEMATIC();
  2566. }
  2567. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2568. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2569. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2570. sync_plan_position_e();
  2571. // Lower Z and recover E
  2572. prepare_move_to_destination();
  2573. }
  2574. feedrate_mm_s = old_feedrate_mm_s;
  2575. retracted[active_extruder] = retracting;
  2576. } // retract()
  2577. #endif // FWRETRACT
  2578. #if ENABLED(MIXING_EXTRUDER)
  2579. void normalize_mix() {
  2580. float mix_total = 0.0;
  2581. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2582. // Scale all values if they don't add up to ~1.0
  2583. if (!NEAR(mix_total, 1.0)) {
  2584. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2585. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2586. }
  2587. }
  2588. #if ENABLED(DIRECT_MIXING_IN_G1)
  2589. // Get mixing parameters from the GCode
  2590. // The total "must" be 1.0 (but it will be normalized)
  2591. // If no mix factors are given, the old mix is preserved
  2592. void gcode_get_mix() {
  2593. const char* mixing_codes = "ABCDHI";
  2594. byte mix_bits = 0;
  2595. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2596. if (code_seen(mixing_codes[i])) {
  2597. SBI(mix_bits, i);
  2598. float v = code_value_float();
  2599. NOLESS(v, 0.0);
  2600. mixing_factor[i] = RECIPROCAL(v);
  2601. }
  2602. }
  2603. // If any mixing factors were included, clear the rest
  2604. // If none were included, preserve the last mix
  2605. if (mix_bits) {
  2606. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2607. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2608. normalize_mix();
  2609. }
  2610. }
  2611. #endif
  2612. #endif
  2613. /**
  2614. * ***************************************************************************
  2615. * ***************************** G-CODE HANDLING *****************************
  2616. * ***************************************************************************
  2617. */
  2618. /**
  2619. * Set XYZE destination and feedrate from the current GCode command
  2620. *
  2621. * - Set destination from included axis codes
  2622. * - Set to current for missing axis codes
  2623. * - Set the feedrate, if included
  2624. */
  2625. void gcode_get_destination() {
  2626. LOOP_XYZE(i) {
  2627. if (code_seen(axis_codes[i]))
  2628. destination[i] = code_value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2629. else
  2630. destination[i] = current_position[i];
  2631. }
  2632. if (code_seen('F') && code_value_linear_units() > 0.0)
  2633. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2634. #if ENABLED(PRINTCOUNTER)
  2635. if (!DEBUGGING(DRYRUN))
  2636. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2637. #endif
  2638. // Get ABCDHI mixing factors
  2639. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2640. gcode_get_mix();
  2641. #endif
  2642. }
  2643. void unknown_command_error() {
  2644. SERIAL_ECHO_START;
  2645. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2646. SERIAL_CHAR('"');
  2647. SERIAL_EOL;
  2648. }
  2649. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2650. /**
  2651. * Output a "busy" message at regular intervals
  2652. * while the machine is not accepting commands.
  2653. */
  2654. void host_keepalive() {
  2655. const millis_t ms = millis();
  2656. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2657. if (PENDING(ms, next_busy_signal_ms)) return;
  2658. switch (busy_state) {
  2659. case IN_HANDLER:
  2660. case IN_PROCESS:
  2661. SERIAL_ECHO_START;
  2662. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2663. break;
  2664. case PAUSED_FOR_USER:
  2665. SERIAL_ECHO_START;
  2666. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2667. break;
  2668. case PAUSED_FOR_INPUT:
  2669. SERIAL_ECHO_START;
  2670. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2671. break;
  2672. default:
  2673. break;
  2674. }
  2675. }
  2676. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2677. }
  2678. #endif //HOST_KEEPALIVE_FEATURE
  2679. bool position_is_reachable(float target[XYZ]
  2680. #if HAS_BED_PROBE
  2681. , bool by_probe=false
  2682. #endif
  2683. ) {
  2684. float dx = RAW_X_POSITION(target[X_AXIS]),
  2685. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2686. #if HAS_BED_PROBE
  2687. if (by_probe) {
  2688. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2689. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2690. }
  2691. #endif
  2692. #if IS_SCARA
  2693. #if MIDDLE_DEAD_ZONE_R > 0
  2694. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2695. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2696. #else
  2697. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2698. #endif
  2699. #elif ENABLED(DELTA)
  2700. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2701. #else
  2702. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2703. return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
  2704. && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
  2705. && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
  2706. #endif
  2707. }
  2708. /**************************************************
  2709. ***************** GCode Handlers *****************
  2710. **************************************************/
  2711. /**
  2712. * G0, G1: Coordinated movement of X Y Z E axes
  2713. */
  2714. inline void gcode_G0_G1(
  2715. #if IS_SCARA
  2716. bool fast_move=false
  2717. #endif
  2718. ) {
  2719. if (IsRunning()) {
  2720. gcode_get_destination(); // For X Y Z E F
  2721. #if ENABLED(FWRETRACT)
  2722. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2723. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2724. // Is this move an attempt to retract or recover?
  2725. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2726. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2727. sync_plan_position_e(); // AND from the planner
  2728. retract(!retracted[active_extruder]);
  2729. return;
  2730. }
  2731. }
  2732. #endif //FWRETRACT
  2733. #if IS_SCARA
  2734. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2735. #else
  2736. prepare_move_to_destination();
  2737. #endif
  2738. }
  2739. }
  2740. /**
  2741. * G2: Clockwise Arc
  2742. * G3: Counterclockwise Arc
  2743. *
  2744. * This command has two forms: IJ-form and R-form.
  2745. *
  2746. * - I specifies an X offset. J specifies a Y offset.
  2747. * At least one of the IJ parameters is required.
  2748. * X and Y can be omitted to do a complete circle.
  2749. * The given XY is not error-checked. The arc ends
  2750. * based on the angle of the destination.
  2751. * Mixing I or J with R will throw an error.
  2752. *
  2753. * - R specifies the radius. X or Y is required.
  2754. * Omitting both X and Y will throw an error.
  2755. * X or Y must differ from the current XY.
  2756. * Mixing R with I or J will throw an error.
  2757. *
  2758. * Examples:
  2759. *
  2760. * G2 I10 ; CW circle centered at X+10
  2761. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2762. */
  2763. #if ENABLED(ARC_SUPPORT)
  2764. inline void gcode_G2_G3(bool clockwise) {
  2765. if (IsRunning()) {
  2766. #if ENABLED(SF_ARC_FIX)
  2767. const bool relative_mode_backup = relative_mode;
  2768. relative_mode = true;
  2769. #endif
  2770. gcode_get_destination();
  2771. #if ENABLED(SF_ARC_FIX)
  2772. relative_mode = relative_mode_backup;
  2773. #endif
  2774. float arc_offset[2] = { 0.0, 0.0 };
  2775. if (code_seen('R')) {
  2776. const float r = code_value_linear_units(),
  2777. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2778. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2779. if (r && (x2 != x1 || y2 != y1)) {
  2780. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2781. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2782. d = HYPOT(dx, dy), // Linear distance between the points
  2783. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2784. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2785. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2786. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2787. arc_offset[X_AXIS] = cx - x1;
  2788. arc_offset[Y_AXIS] = cy - y1;
  2789. }
  2790. }
  2791. else {
  2792. if (code_seen('I')) arc_offset[X_AXIS] = code_value_linear_units();
  2793. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_linear_units();
  2794. }
  2795. if (arc_offset[0] || arc_offset[1]) {
  2796. // Send an arc to the planner
  2797. plan_arc(destination, arc_offset, clockwise);
  2798. refresh_cmd_timeout();
  2799. }
  2800. else {
  2801. // Bad arguments
  2802. SERIAL_ERROR_START;
  2803. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2804. }
  2805. }
  2806. }
  2807. #endif
  2808. /**
  2809. * G4: Dwell S<seconds> or P<milliseconds>
  2810. */
  2811. inline void gcode_G4() {
  2812. millis_t dwell_ms = 0;
  2813. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2814. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2815. stepper.synchronize();
  2816. refresh_cmd_timeout();
  2817. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2818. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2819. while (PENDING(millis(), dwell_ms)) idle();
  2820. }
  2821. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2822. /**
  2823. * Parameters interpreted according to:
  2824. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2825. * However I, J omission is not supported at this point; all
  2826. * parameters can be omitted and default to zero.
  2827. */
  2828. /**
  2829. * G5: Cubic B-spline
  2830. */
  2831. inline void gcode_G5() {
  2832. if (IsRunning()) {
  2833. gcode_get_destination();
  2834. const float offset[] = {
  2835. code_seen('I') ? code_value_linear_units() : 0.0,
  2836. code_seen('J') ? code_value_linear_units() : 0.0,
  2837. code_seen('P') ? code_value_linear_units() : 0.0,
  2838. code_seen('Q') ? code_value_linear_units() : 0.0
  2839. };
  2840. plan_cubic_move(offset);
  2841. }
  2842. }
  2843. #endif // BEZIER_CURVE_SUPPORT
  2844. #if ENABLED(FWRETRACT)
  2845. /**
  2846. * G10 - Retract filament according to settings of M207
  2847. * G11 - Recover filament according to settings of M208
  2848. */
  2849. inline void gcode_G10_G11(bool doRetract=false) {
  2850. #if EXTRUDERS > 1
  2851. if (doRetract) {
  2852. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2853. }
  2854. #endif
  2855. retract(doRetract
  2856. #if EXTRUDERS > 1
  2857. , retracted_swap[active_extruder]
  2858. #endif
  2859. );
  2860. }
  2861. #endif //FWRETRACT
  2862. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2863. /**
  2864. * G12: Clean the nozzle
  2865. */
  2866. inline void gcode_G12() {
  2867. // Don't allow nozzle cleaning without homing first
  2868. if (axis_unhomed_error(true, true, true)) return;
  2869. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2870. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2871. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2872. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2873. Nozzle::clean(pattern, strokes, radius, objects);
  2874. }
  2875. #endif
  2876. #if ENABLED(INCH_MODE_SUPPORT)
  2877. /**
  2878. * G20: Set input mode to inches
  2879. */
  2880. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2881. /**
  2882. * G21: Set input mode to millimeters
  2883. */
  2884. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2885. #endif
  2886. #if ENABLED(NOZZLE_PARK_FEATURE)
  2887. /**
  2888. * G27: Park the nozzle
  2889. */
  2890. inline void gcode_G27() {
  2891. // Don't allow nozzle parking without homing first
  2892. if (axis_unhomed_error(true, true, true)) return;
  2893. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2894. }
  2895. #endif // NOZZLE_PARK_FEATURE
  2896. #if ENABLED(QUICK_HOME)
  2897. static void quick_home_xy() {
  2898. // Pretend the current position is 0,0
  2899. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2900. sync_plan_position();
  2901. const int x_axis_home_dir =
  2902. #if ENABLED(DUAL_X_CARRIAGE)
  2903. x_home_dir(active_extruder)
  2904. #else
  2905. home_dir(X_AXIS)
  2906. #endif
  2907. ;
  2908. const float mlx = max_length(X_AXIS),
  2909. mly = max_length(Y_AXIS),
  2910. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2911. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2912. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2913. endstops.hit_on_purpose(); // clear endstop hit flags
  2914. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2915. }
  2916. #endif // QUICK_HOME
  2917. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2918. void log_machine_info() {
  2919. SERIAL_ECHOPGM("Machine Type: ");
  2920. #if ENABLED(DELTA)
  2921. SERIAL_ECHOLNPGM("Delta");
  2922. #elif IS_SCARA
  2923. SERIAL_ECHOLNPGM("SCARA");
  2924. #elif IS_CORE
  2925. SERIAL_ECHOLNPGM("Core");
  2926. #else
  2927. SERIAL_ECHOLNPGM("Cartesian");
  2928. #endif
  2929. SERIAL_ECHOPGM("Probe: ");
  2930. #if ENABLED(PROBE_MANUALLY)
  2931. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  2932. #elif ENABLED(FIX_MOUNTED_PROBE)
  2933. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2934. #elif ENABLED(BLTOUCH)
  2935. SERIAL_ECHOLNPGM("BLTOUCH");
  2936. #elif HAS_Z_SERVO_ENDSTOP
  2937. SERIAL_ECHOLNPGM("SERVO PROBE");
  2938. #elif ENABLED(Z_PROBE_SLED)
  2939. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2940. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2941. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2942. #else
  2943. SERIAL_ECHOLNPGM("NONE");
  2944. #endif
  2945. #if HAS_BED_PROBE
  2946. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2947. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2948. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2949. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2950. SERIAL_ECHOPGM(" (Right");
  2951. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2952. SERIAL_ECHOPGM(" (Left");
  2953. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2954. SERIAL_ECHOPGM(" (Middle");
  2955. #else
  2956. SERIAL_ECHOPGM(" (Aligned With");
  2957. #endif
  2958. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2959. SERIAL_ECHOPGM("-Back");
  2960. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2961. SERIAL_ECHOPGM("-Front");
  2962. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2963. SERIAL_ECHOPGM("-Center");
  2964. #endif
  2965. if (zprobe_zoffset < 0)
  2966. SERIAL_ECHOPGM(" & Below");
  2967. else if (zprobe_zoffset > 0)
  2968. SERIAL_ECHOPGM(" & Above");
  2969. else
  2970. SERIAL_ECHOPGM(" & Same Z as");
  2971. SERIAL_ECHOLNPGM(" Nozzle)");
  2972. #endif
  2973. #if HAS_ABL
  2974. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2975. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2976. SERIAL_ECHOPGM("LINEAR");
  2977. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2978. SERIAL_ECHOPGM("BILINEAR");
  2979. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2980. SERIAL_ECHOPGM("3POINT");
  2981. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2982. SERIAL_ECHOPGM("UBL");
  2983. #endif
  2984. if (planner.abl_enabled) {
  2985. SERIAL_ECHOLNPGM(" (enabled)");
  2986. #if ABL_PLANAR
  2987. float diff[XYZ] = {
  2988. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2989. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2990. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2991. };
  2992. SERIAL_ECHOPGM("ABL Adjustment X");
  2993. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2994. SERIAL_ECHO(diff[X_AXIS]);
  2995. SERIAL_ECHOPGM(" Y");
  2996. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2997. SERIAL_ECHO(diff[Y_AXIS]);
  2998. SERIAL_ECHOPGM(" Z");
  2999. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3000. SERIAL_ECHO(diff[Z_AXIS]);
  3001. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3002. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3003. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3004. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3005. #endif
  3006. }
  3007. else
  3008. SERIAL_ECHOLNPGM(" (disabled)");
  3009. SERIAL_EOL;
  3010. #elif ENABLED(MESH_BED_LEVELING)
  3011. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3012. if (mbl.active()) {
  3013. float lz = current_position[Z_AXIS];
  3014. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3015. SERIAL_ECHOLNPGM(" (enabled)");
  3016. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3017. }
  3018. else
  3019. SERIAL_ECHOPGM(" (disabled)");
  3020. SERIAL_EOL;
  3021. #endif // MESH_BED_LEVELING
  3022. }
  3023. #endif // DEBUG_LEVELING_FEATURE
  3024. #if ENABLED(DELTA)
  3025. /**
  3026. * A delta can only safely home all axes at the same time
  3027. * This is like quick_home_xy() but for 3 towers.
  3028. */
  3029. inline void home_delta() {
  3030. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3031. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3032. #endif
  3033. // Init the current position of all carriages to 0,0,0
  3034. ZERO(current_position);
  3035. sync_plan_position();
  3036. // Move all carriages together linearly until an endstop is hit.
  3037. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  3038. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  3039. line_to_current_position();
  3040. stepper.synchronize();
  3041. endstops.hit_on_purpose(); // clear endstop hit flags
  3042. // At least one carriage has reached the top.
  3043. // Now re-home each carriage separately.
  3044. HOMEAXIS(A);
  3045. HOMEAXIS(B);
  3046. HOMEAXIS(C);
  3047. // Set all carriages to their home positions
  3048. // Do this here all at once for Delta, because
  3049. // XYZ isn't ABC. Applying this per-tower would
  3050. // give the impression that they are the same.
  3051. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3052. SYNC_PLAN_POSITION_KINEMATIC();
  3053. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3054. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3055. #endif
  3056. }
  3057. #endif // DELTA
  3058. #if ENABLED(Z_SAFE_HOMING)
  3059. inline void home_z_safely() {
  3060. // Disallow Z homing if X or Y are unknown
  3061. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3062. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3063. SERIAL_ECHO_START;
  3064. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3065. return;
  3066. }
  3067. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3068. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3069. #endif
  3070. SYNC_PLAN_POSITION_KINEMATIC();
  3071. /**
  3072. * Move the Z probe (or just the nozzle) to the safe homing point
  3073. */
  3074. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3075. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3076. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3077. if (position_is_reachable(
  3078. destination
  3079. #if HOMING_Z_WITH_PROBE
  3080. , true
  3081. #endif
  3082. )
  3083. ) {
  3084. #if HOMING_Z_WITH_PROBE
  3085. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3086. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3087. #endif
  3088. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3089. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3090. #endif
  3091. // This causes the carriage on Dual X to unpark
  3092. #if ENABLED(DUAL_X_CARRIAGE)
  3093. active_extruder_parked = false;
  3094. #endif
  3095. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3096. HOMEAXIS(Z);
  3097. }
  3098. else {
  3099. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3100. SERIAL_ECHO_START;
  3101. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3102. }
  3103. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3104. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3105. #endif
  3106. }
  3107. #endif // Z_SAFE_HOMING
  3108. #if ENABLED(PROBE_MANUALLY)
  3109. bool g29_in_progress = false;
  3110. #else
  3111. constexpr bool g29_in_progress = false;
  3112. #endif
  3113. /**
  3114. * G28: Home all axes according to settings
  3115. *
  3116. * Parameters
  3117. *
  3118. * None Home to all axes with no parameters.
  3119. * With QUICK_HOME enabled XY will home together, then Z.
  3120. *
  3121. * Cartesian parameters
  3122. *
  3123. * X Home to the X endstop
  3124. * Y Home to the Y endstop
  3125. * Z Home to the Z endstop
  3126. *
  3127. */
  3128. inline void gcode_G28() {
  3129. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3130. if (DEBUGGING(LEVELING)) {
  3131. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3132. log_machine_info();
  3133. }
  3134. #endif
  3135. // Wait for planner moves to finish!
  3136. stepper.synchronize();
  3137. // Cancel the active G29 session
  3138. #if ENABLED(PROBE_MANUALLY)
  3139. g29_in_progress = false;
  3140. #endif
  3141. // Disable the leveling matrix before homing
  3142. #if PLANNER_LEVELING
  3143. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3144. const bool bed_leveling_state_at_entry = ubl.state.active;
  3145. #endif
  3146. set_bed_leveling_enabled(false);
  3147. #endif
  3148. // Always home with tool 0 active
  3149. #if HOTENDS > 1
  3150. const uint8_t old_tool_index = active_extruder;
  3151. tool_change(0, 0, true);
  3152. #endif
  3153. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3154. extruder_duplication_enabled = false;
  3155. #endif
  3156. setup_for_endstop_or_probe_move();
  3157. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3158. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3159. #endif
  3160. endstops.enable(true); // Enable endstops for next homing move
  3161. #if ENABLED(DELTA)
  3162. home_delta();
  3163. #else // NOT DELTA
  3164. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3165. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3166. set_destination_to_current();
  3167. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3168. if (home_all_axis || homeZ) {
  3169. HOMEAXIS(Z);
  3170. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3171. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3172. #endif
  3173. }
  3174. #else
  3175. if (home_all_axis || homeX || homeY) {
  3176. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3177. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3178. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3179. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3180. if (DEBUGGING(LEVELING))
  3181. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3182. #endif
  3183. do_blocking_move_to_z(destination[Z_AXIS]);
  3184. }
  3185. }
  3186. #endif
  3187. #if ENABLED(QUICK_HOME)
  3188. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3189. #endif
  3190. #if ENABLED(HOME_Y_BEFORE_X)
  3191. // Home Y
  3192. if (home_all_axis || homeY) {
  3193. HOMEAXIS(Y);
  3194. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3195. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3196. #endif
  3197. }
  3198. #endif
  3199. // Home X
  3200. if (home_all_axis || homeX) {
  3201. #if ENABLED(DUAL_X_CARRIAGE)
  3202. // Always home the 2nd (right) extruder first
  3203. active_extruder = 1;
  3204. HOMEAXIS(X);
  3205. // Remember this extruder's position for later tool change
  3206. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3207. // Home the 1st (left) extruder
  3208. active_extruder = 0;
  3209. HOMEAXIS(X);
  3210. // Consider the active extruder to be parked
  3211. COPY(raised_parked_position, current_position);
  3212. delayed_move_time = 0;
  3213. active_extruder_parked = true;
  3214. #else
  3215. HOMEAXIS(X);
  3216. #endif
  3217. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3218. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3219. #endif
  3220. }
  3221. #if DISABLED(HOME_Y_BEFORE_X)
  3222. // Home Y
  3223. if (home_all_axis || homeY) {
  3224. HOMEAXIS(Y);
  3225. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3226. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3227. #endif
  3228. }
  3229. #endif
  3230. // Home Z last if homing towards the bed
  3231. #if Z_HOME_DIR < 0
  3232. if (home_all_axis || homeZ) {
  3233. #if ENABLED(Z_SAFE_HOMING)
  3234. home_z_safely();
  3235. #else
  3236. HOMEAXIS(Z);
  3237. #endif
  3238. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3239. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3240. #endif
  3241. } // home_all_axis || homeZ
  3242. #endif // Z_HOME_DIR < 0
  3243. SYNC_PLAN_POSITION_KINEMATIC();
  3244. #endif // !DELTA (gcode_G28)
  3245. endstops.not_homing();
  3246. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3247. // move to a height where we can use the full xy-area
  3248. do_blocking_move_to_z(delta_clip_start_height);
  3249. #endif
  3250. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3251. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  3252. #endif
  3253. // Enable mesh leveling again
  3254. #if ENABLED(MESH_BED_LEVELING)
  3255. if (mbl.reactivate()) {
  3256. set_bed_leveling_enabled(true);
  3257. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3258. #if ENABLED(MESH_G28_REST_ORIGIN)
  3259. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3260. set_destination_to_current();
  3261. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3262. stepper.synchronize();
  3263. #endif
  3264. }
  3265. }
  3266. #endif
  3267. clean_up_after_endstop_or_probe_move();
  3268. // Restore the active tool after homing
  3269. #if HOTENDS > 1
  3270. tool_change(old_tool_index, 0, true);
  3271. #endif
  3272. report_current_position();
  3273. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3274. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3275. #endif
  3276. }
  3277. #if HAS_PROBING_PROCEDURE
  3278. void out_of_range_error(const char* p_edge) {
  3279. SERIAL_PROTOCOLPGM("?Probe ");
  3280. serialprintPGM(p_edge);
  3281. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3282. }
  3283. #endif
  3284. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3285. inline void _manual_goto_xy(const float &x, const float &y) {
  3286. const float old_feedrate_mm_s = feedrate_mm_s;
  3287. #if MANUAL_PROBE_HEIGHT > 0
  3288. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3289. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3290. line_to_current_position();
  3291. #endif
  3292. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3293. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3294. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3295. line_to_current_position();
  3296. #if MANUAL_PROBE_HEIGHT > 0
  3297. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3298. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3299. line_to_current_position();
  3300. #endif
  3301. feedrate_mm_s = old_feedrate_mm_s;
  3302. stepper.synchronize();
  3303. }
  3304. #endif
  3305. #if ENABLED(MESH_BED_LEVELING)
  3306. // Save 130 bytes with non-duplication of PSTR
  3307. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3308. void mbl_mesh_report() {
  3309. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3310. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3311. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3312. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3313. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3314. );
  3315. }
  3316. /**
  3317. * G29: Mesh-based Z probe, probes a grid and produces a
  3318. * mesh to compensate for variable bed height
  3319. *
  3320. * Parameters With MESH_BED_LEVELING:
  3321. *
  3322. * S0 Produce a mesh report
  3323. * S1 Start probing mesh points
  3324. * S2 Probe the next mesh point
  3325. * S3 Xn Yn Zn.nn Manually modify a single point
  3326. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3327. * S5 Reset and disable mesh
  3328. *
  3329. * The S0 report the points as below
  3330. *
  3331. * +----> X-axis 1-n
  3332. * |
  3333. * |
  3334. * v Y-axis 1-n
  3335. *
  3336. */
  3337. inline void gcode_G29() {
  3338. static int mbl_probe_index = -1;
  3339. #if HAS_SOFTWARE_ENDSTOPS
  3340. static bool enable_soft_endstops;
  3341. #endif
  3342. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3343. if (!WITHIN(state, 0, 5)) {
  3344. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3345. return;
  3346. }
  3347. int8_t px, py;
  3348. switch (state) {
  3349. case MeshReport:
  3350. if (mbl.has_mesh()) {
  3351. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3352. mbl_mesh_report();
  3353. }
  3354. else
  3355. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3356. break;
  3357. case MeshStart:
  3358. mbl.reset();
  3359. mbl_probe_index = 0;
  3360. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3361. break;
  3362. case MeshNext:
  3363. if (mbl_probe_index < 0) {
  3364. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3365. return;
  3366. }
  3367. // For each G29 S2...
  3368. if (mbl_probe_index == 0) {
  3369. #if HAS_SOFTWARE_ENDSTOPS
  3370. // For the initial G29 S2 save software endstop state
  3371. enable_soft_endstops = soft_endstops_enabled;
  3372. #endif
  3373. }
  3374. else {
  3375. // For G29 S2 after adjusting Z.
  3376. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3377. #if HAS_SOFTWARE_ENDSTOPS
  3378. soft_endstops_enabled = enable_soft_endstops;
  3379. #endif
  3380. }
  3381. // If there's another point to sample, move there with optional lift.
  3382. if (mbl_probe_index < (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)) {
  3383. mbl.zigzag(mbl_probe_index, px, py);
  3384. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3385. #if HAS_SOFTWARE_ENDSTOPS
  3386. // Disable software endstops to allow manual adjustment
  3387. // If G29 is not completed, they will not be re-enabled
  3388. soft_endstops_enabled = false;
  3389. #endif
  3390. mbl_probe_index++;
  3391. }
  3392. else {
  3393. // One last "return to the bed" (as originally coded) at completion
  3394. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3395. line_to_current_position();
  3396. stepper.synchronize();
  3397. // After recording the last point, activate the mbl and home
  3398. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3399. mbl_probe_index = -1;
  3400. mbl.set_has_mesh(true);
  3401. mbl.set_reactivate(true);
  3402. enqueue_and_echo_commands_P(PSTR("G28"));
  3403. BUZZ(100, 659);
  3404. BUZZ(100, 698);
  3405. }
  3406. break;
  3407. case MeshSet:
  3408. if (code_seen('X')) {
  3409. px = code_value_int() - 1;
  3410. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3411. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3412. return;
  3413. }
  3414. }
  3415. else {
  3416. SERIAL_CHAR('X'); say_not_entered();
  3417. return;
  3418. }
  3419. if (code_seen('Y')) {
  3420. py = code_value_int() - 1;
  3421. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3422. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3423. return;
  3424. }
  3425. }
  3426. else {
  3427. SERIAL_CHAR('Y'); say_not_entered();
  3428. return;
  3429. }
  3430. if (code_seen('Z')) {
  3431. mbl.z_values[px][py] = code_value_linear_units();
  3432. }
  3433. else {
  3434. SERIAL_CHAR('Z'); say_not_entered();
  3435. return;
  3436. }
  3437. break;
  3438. case MeshSetZOffset:
  3439. if (code_seen('Z')) {
  3440. mbl.z_offset = code_value_linear_units();
  3441. }
  3442. else {
  3443. SERIAL_CHAR('Z'); say_not_entered();
  3444. return;
  3445. }
  3446. break;
  3447. case MeshReset:
  3448. reset_bed_level();
  3449. break;
  3450. } // switch(state)
  3451. report_current_position();
  3452. }
  3453. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3454. #if ABL_GRID
  3455. #if ENABLED(PROBE_Y_FIRST)
  3456. #define PR_OUTER_VAR xCount
  3457. #define PR_OUTER_END abl_grid_points_x
  3458. #define PR_INNER_VAR yCount
  3459. #define PR_INNER_END abl_grid_points_y
  3460. #else
  3461. #define PR_OUTER_VAR yCount
  3462. #define PR_OUTER_END abl_grid_points_y
  3463. #define PR_INNER_VAR xCount
  3464. #define PR_INNER_END abl_grid_points_x
  3465. #endif
  3466. #endif
  3467. /**
  3468. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3469. * Will fail if the printer has not been homed with G28.
  3470. *
  3471. * Enhanced G29 Auto Bed Leveling Probe Routine
  3472. *
  3473. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3474. * or alter the bed level data. Useful to check the topology
  3475. * after a first run of G29.
  3476. *
  3477. * J Jettison current bed leveling data
  3478. *
  3479. * V Set the verbose level (0-4). Example: "G29 V3"
  3480. *
  3481. * Parameters With LINEAR leveling only:
  3482. *
  3483. * P Set the size of the grid that will be probed (P x P points).
  3484. * Example: "G29 P4"
  3485. *
  3486. * X Set the X size of the grid that will be probed (X x Y points).
  3487. * Example: "G29 X7 Y5"
  3488. *
  3489. * Y Set the Y size of the grid that will be probed (X x Y points).
  3490. *
  3491. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3492. * This is useful for manual bed leveling and finding flaws in the bed (to
  3493. * assist with part placement).
  3494. * Not supported by non-linear delta printer bed leveling.
  3495. *
  3496. * Parameters With LINEAR and BILINEAR leveling only:
  3497. *
  3498. * S Set the XY travel speed between probe points (in units/min)
  3499. *
  3500. * F Set the Front limit of the probing grid
  3501. * B Set the Back limit of the probing grid
  3502. * L Set the Left limit of the probing grid
  3503. * R Set the Right limit of the probing grid
  3504. *
  3505. * Parameters with DEBUG_LEVELING_FEATURE only:
  3506. *
  3507. * C Make a totally fake grid with no actual probing.
  3508. * For use in testing when no probing is possible.
  3509. *
  3510. * Parameters with BILINEAR leveling only:
  3511. *
  3512. * Z Supply an additional Z probe offset
  3513. *
  3514. * Extra parameters with PROBE_MANUALLY:
  3515. *
  3516. * To do manual probing simply repeat G29 until the procedure is complete.
  3517. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3518. *
  3519. * Q Query leveling and G29 state
  3520. *
  3521. * A Abort current leveling procedure
  3522. *
  3523. * W Write a mesh point. (Ignored during leveling.)
  3524. * X Required X for mesh point
  3525. * Y Required Y for mesh point
  3526. * Z Required Z for mesh point
  3527. *
  3528. * Without PROBE_MANUALLY:
  3529. *
  3530. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3531. * Include "E" to engage/disengage the Z probe for each sample.
  3532. * There's no extra effect if you have a fixed Z probe.
  3533. *
  3534. */
  3535. inline void gcode_G29() {
  3536. // G29 Q is also available if debugging
  3537. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3538. const bool query = code_seen('Q');
  3539. const uint8_t old_debug_flags = marlin_debug_flags;
  3540. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3541. if (DEBUGGING(LEVELING)) {
  3542. DEBUG_POS(">>> gcode_G29", current_position);
  3543. log_machine_info();
  3544. }
  3545. marlin_debug_flags = old_debug_flags;
  3546. #if DISABLED(PROBE_MANUALLY)
  3547. if (query) return;
  3548. #endif
  3549. #endif
  3550. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3551. const bool faux = code_seen('C') && code_value_bool();
  3552. #else
  3553. bool constexpr faux = false;
  3554. #endif
  3555. // Don't allow auto-leveling without homing first
  3556. if (axis_unhomed_error(true, true, true)) return;
  3557. // Define local vars 'static' for manual probing, 'auto' otherwise
  3558. #if ENABLED(PROBE_MANUALLY)
  3559. #define ABL_VAR static
  3560. #else
  3561. #define ABL_VAR
  3562. #endif
  3563. ABL_VAR int verbose_level;
  3564. ABL_VAR float xProbe, yProbe, measured_z;
  3565. ABL_VAR bool dryrun, abl_should_enable;
  3566. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3567. ABL_VAR int abl_probe_index;
  3568. #endif
  3569. #if HAS_SOFTWARE_ENDSTOPS
  3570. ABL_VAR bool enable_soft_endstops = true;
  3571. #endif
  3572. #if ABL_GRID
  3573. #if ENABLED(PROBE_MANUALLY)
  3574. ABL_VAR uint8_t PR_OUTER_VAR;
  3575. ABL_VAR int8_t PR_INNER_VAR;
  3576. #endif
  3577. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3578. ABL_VAR float xGridSpacing, yGridSpacing;
  3579. #define ABL_GRID_MAX (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)
  3580. #if ABL_PLANAR
  3581. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3582. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3583. ABL_VAR bool do_topography_map;
  3584. #else // 3-point
  3585. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3586. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3587. #endif
  3588. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3589. #if ABL_PLANAR
  3590. ABL_VAR int abl2;
  3591. #else // 3-point
  3592. int constexpr abl2 = ABL_GRID_MAX;
  3593. #endif
  3594. #endif
  3595. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3596. ABL_VAR float zoffset;
  3597. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3598. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3599. ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
  3600. eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
  3601. mean;
  3602. #endif
  3603. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3604. // Probe at 3 arbitrary points
  3605. ABL_VAR vector_3 points[3] = {
  3606. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3607. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3608. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3609. };
  3610. #endif // AUTO_BED_LEVELING_3POINT
  3611. /**
  3612. * On the initial G29 fetch command parameters.
  3613. */
  3614. if (!g29_in_progress) {
  3615. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3616. abl_probe_index = 0;
  3617. #endif
  3618. abl_should_enable = planner.abl_enabled;
  3619. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3620. if (code_seen('W')) {
  3621. if (!bilinear_grid_spacing[X_AXIS]) {
  3622. SERIAL_ERROR_START;
  3623. SERIAL_ERRORLNPGM("No bilinear grid");
  3624. return;
  3625. }
  3626. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3627. if (!WITHIN(z, -10, 10)) {
  3628. SERIAL_ERROR_START;
  3629. SERIAL_ERRORLNPGM("Bad Z value");
  3630. return;
  3631. }
  3632. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3633. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3634. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3635. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3636. if (x < 99998 && y < 99998) {
  3637. // Get nearest i / j from x / y
  3638. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3639. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3640. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3641. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3642. }
  3643. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3644. set_bed_leveling_enabled(false);
  3645. bed_level_grid[i][j] = z;
  3646. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3647. bed_level_virt_interpolate();
  3648. #endif
  3649. set_bed_leveling_enabled(abl_should_enable);
  3650. }
  3651. return;
  3652. } // code_seen('W')
  3653. #endif
  3654. #if PLANNER_LEVELING
  3655. // Jettison bed leveling data
  3656. if (code_seen('J')) {
  3657. reset_bed_level();
  3658. return;
  3659. }
  3660. #endif
  3661. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3662. if (!WITHIN(verbose_level, 0, 4)) {
  3663. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3664. return;
  3665. }
  3666. dryrun = code_seen('D') && code_value_bool();
  3667. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3668. do_topography_map = verbose_level > 2 || code_seen('T');
  3669. // X and Y specify points in each direction, overriding the default
  3670. // These values may be saved with the completed mesh
  3671. abl_grid_points_x = code_seen('X') ? code_value_int() : GRID_MAX_POINTS_X;
  3672. abl_grid_points_y = code_seen('Y') ? code_value_int() : GRID_MAX_POINTS_Y;
  3673. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3674. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3675. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3676. return;
  3677. }
  3678. abl2 = abl_grid_points_x * abl_grid_points_y;
  3679. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3680. zoffset = code_seen('Z') ? code_value_linear_units() : 0;
  3681. #endif
  3682. #if ABL_GRID
  3683. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3684. left_probe_bed_position = code_seen('L') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3685. right_probe_bed_position = code_seen('R') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3686. front_probe_bed_position = code_seen('F') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3687. back_probe_bed_position = code_seen('B') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3688. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3689. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3690. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3691. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3692. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3693. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3694. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3695. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3696. if (left_out || right_out || front_out || back_out) {
  3697. if (left_out) {
  3698. out_of_range_error(PSTR("(L)eft"));
  3699. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3700. }
  3701. if (right_out) {
  3702. out_of_range_error(PSTR("(R)ight"));
  3703. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3704. }
  3705. if (front_out) {
  3706. out_of_range_error(PSTR("(F)ront"));
  3707. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3708. }
  3709. if (back_out) {
  3710. out_of_range_error(PSTR("(B)ack"));
  3711. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3712. }
  3713. return;
  3714. }
  3715. // probe at the points of a lattice grid
  3716. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3717. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3718. #endif // ABL_GRID
  3719. if (verbose_level > 0) {
  3720. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3721. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3722. }
  3723. stepper.synchronize();
  3724. // Disable auto bed leveling during G29
  3725. planner.abl_enabled = false;
  3726. if (!dryrun) {
  3727. // Re-orient the current position without leveling
  3728. // based on where the steppers are positioned.
  3729. set_current_from_steppers_for_axis(ALL_AXES);
  3730. // Sync the planner to where the steppers stopped
  3731. SYNC_PLAN_POSITION_KINEMATIC();
  3732. }
  3733. if (!faux) setup_for_endstop_or_probe_move();
  3734. //xProbe = yProbe = measured_z = 0;
  3735. #if HAS_BED_PROBE
  3736. // Deploy the probe. Probe will raise if needed.
  3737. if (DEPLOY_PROBE()) {
  3738. planner.abl_enabled = abl_should_enable;
  3739. return;
  3740. }
  3741. #endif
  3742. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3743. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3744. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3745. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3746. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3747. ) {
  3748. if (dryrun) {
  3749. // Before reset bed level, re-enable to correct the position
  3750. planner.abl_enabled = abl_should_enable;
  3751. }
  3752. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3753. reset_bed_level();
  3754. // Initialize a grid with the given dimensions
  3755. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3756. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3757. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3758. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3759. // Can't re-enable (on error) until the new grid is written
  3760. abl_should_enable = false;
  3761. }
  3762. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3763. mean = 0.0;
  3764. #endif // AUTO_BED_LEVELING_LINEAR
  3765. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3766. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3767. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3768. #endif
  3769. // Probe at 3 arbitrary points
  3770. points[0].z = points[1].z = points[2].z = 0;
  3771. #endif // AUTO_BED_LEVELING_3POINT
  3772. } // !g29_in_progress
  3773. #if ENABLED(PROBE_MANUALLY)
  3774. // Abort current G29 procedure, go back to ABLStart
  3775. if (code_seen('A') && g29_in_progress) {
  3776. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3777. #if HAS_SOFTWARE_ENDSTOPS
  3778. soft_endstops_enabled = enable_soft_endstops;
  3779. #endif
  3780. planner.abl_enabled = abl_should_enable;
  3781. g29_in_progress = false;
  3782. }
  3783. // Query G29 status
  3784. if (code_seen('Q')) {
  3785. if (!g29_in_progress)
  3786. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3787. else {
  3788. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3789. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3790. }
  3791. }
  3792. if (code_seen('A') || code_seen('Q')) return;
  3793. // Fall through to probe the first point
  3794. g29_in_progress = true;
  3795. if (abl_probe_index == 0) {
  3796. // For the initial G29 save software endstop state
  3797. #if HAS_SOFTWARE_ENDSTOPS
  3798. enable_soft_endstops = soft_endstops_enabled;
  3799. #endif
  3800. }
  3801. else {
  3802. // For G29 after adjusting Z.
  3803. // Save the previous Z before going to the next point
  3804. measured_z = current_position[Z_AXIS];
  3805. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3806. mean += measured_z;
  3807. eqnBVector[abl_probe_index] = measured_z;
  3808. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3809. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3810. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3811. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3812. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3813. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3814. points[i].z = measured_z;
  3815. #endif
  3816. }
  3817. //
  3818. // If there's another point to sample, move there with optional lift.
  3819. //
  3820. #if ABL_GRID
  3821. // Find a next point to probe
  3822. // On the first G29 this will be the first probe point
  3823. while (abl_probe_index < abl2) {
  3824. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3825. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3826. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3827. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3828. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3829. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3830. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3831. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3832. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3833. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3834. indexIntoAB[xCount][yCount] = abl_probe_index;
  3835. #endif
  3836. float pos[XYZ] = { xProbe, yProbe, 0 };
  3837. if (position_is_reachable(pos)) break;
  3838. ++abl_probe_index;
  3839. }
  3840. // Is there a next point to move to?
  3841. if (abl_probe_index < abl2) {
  3842. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3843. ++abl_probe_index;
  3844. #if HAS_SOFTWARE_ENDSTOPS
  3845. // Disable software endstops to allow manual adjustment
  3846. // If G29 is not completed, they will not be re-enabled
  3847. soft_endstops_enabled = false;
  3848. #endif
  3849. return;
  3850. }
  3851. else {
  3852. // Then leveling is done!
  3853. // G29 finishing code goes here
  3854. // After recording the last point, activate abl
  3855. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3856. g29_in_progress = false;
  3857. // Re-enable software endstops, if needed
  3858. #if HAS_SOFTWARE_ENDSTOPS
  3859. soft_endstops_enabled = enable_soft_endstops;
  3860. #endif
  3861. }
  3862. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3863. // Probe at 3 arbitrary points
  3864. if (abl_probe_index < 3) {
  3865. xProbe = LOGICAL_X_POSITION(points[i].x);
  3866. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3867. ++abl_probe_index;
  3868. #if HAS_SOFTWARE_ENDSTOPS
  3869. // Disable software endstops to allow manual adjustment
  3870. // If G29 is not completed, they will not be re-enabled
  3871. soft_endstops_enabled = false;
  3872. #endif
  3873. return;
  3874. }
  3875. else {
  3876. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3877. g29_in_progress = false;
  3878. // Re-enable software endstops, if needed
  3879. #if HAS_SOFTWARE_ENDSTOPS
  3880. soft_endstops_enabled = enable_soft_endstops;
  3881. #endif
  3882. if (!dryrun) {
  3883. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3884. if (planeNormal.z < 0) {
  3885. planeNormal.x *= -1;
  3886. planeNormal.y *= -1;
  3887. planeNormal.z *= -1;
  3888. }
  3889. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3890. // Can't re-enable (on error) until the new grid is written
  3891. abl_should_enable = false;
  3892. }
  3893. }
  3894. #endif // AUTO_BED_LEVELING_3POINT
  3895. #else // !PROBE_MANUALLY
  3896. bool stow_probe_after_each = code_seen('E');
  3897. #if ABL_GRID
  3898. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3899. // Outer loop is Y with PROBE_Y_FIRST disabled
  3900. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3901. int8_t inStart, inStop, inInc;
  3902. if (zig) { // away from origin
  3903. inStart = 0;
  3904. inStop = PR_INNER_END;
  3905. inInc = 1;
  3906. }
  3907. else { // towards origin
  3908. inStart = PR_INNER_END - 1;
  3909. inStop = -1;
  3910. inInc = -1;
  3911. }
  3912. zig ^= true; // zag
  3913. // Inner loop is Y with PROBE_Y_FIRST enabled
  3914. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3915. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3916. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3917. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3918. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3919. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3920. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  3921. #endif
  3922. #if IS_KINEMATIC
  3923. // Avoid probing outside the round or hexagonal area
  3924. float pos[XYZ] = { xProbe, yProbe, 0 };
  3925. if (!position_is_reachable(pos, true)) continue;
  3926. #endif
  3927. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3928. if (isnan(measured_z)) {
  3929. planner.abl_enabled = abl_should_enable;
  3930. return;
  3931. }
  3932. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3933. mean += measured_z;
  3934. eqnBVector[abl_probe_index] = measured_z;
  3935. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3936. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3937. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3938. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3939. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3940. #endif
  3941. abl_should_enable = false;
  3942. idle();
  3943. } // inner
  3944. } // outer
  3945. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3946. // Probe at 3 arbitrary points
  3947. for (uint8_t i = 0; i < 3; ++i) {
  3948. // Retain the last probe position
  3949. xProbe = LOGICAL_X_POSITION(points[i].x);
  3950. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3951. measured_z = points[i].z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3952. }
  3953. if (isnan(measured_z)) {
  3954. planner.abl_enabled = abl_should_enable;
  3955. return;
  3956. }
  3957. if (!dryrun) {
  3958. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3959. if (planeNormal.z < 0) {
  3960. planeNormal.x *= -1;
  3961. planeNormal.y *= -1;
  3962. planeNormal.z *= -1;
  3963. }
  3964. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3965. // Can't re-enable (on error) until the new grid is written
  3966. abl_should_enable = false;
  3967. }
  3968. #endif // AUTO_BED_LEVELING_3POINT
  3969. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3970. if (STOW_PROBE()) {
  3971. planner.abl_enabled = abl_should_enable;
  3972. return;
  3973. }
  3974. #endif // !PROBE_MANUALLY
  3975. //
  3976. // G29 Finishing Code
  3977. //
  3978. // Unless this is a dry run, auto bed leveling will
  3979. // definitely be enabled after this point
  3980. //
  3981. // Restore state after probing
  3982. if (!faux) clean_up_after_endstop_or_probe_move();
  3983. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3984. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3985. #endif
  3986. // Calculate leveling, print reports, correct the position
  3987. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3988. if (!dryrun) extrapolate_unprobed_bed_level();
  3989. print_bilinear_leveling_grid();
  3990. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3991. bed_level_virt_interpolate();
  3992. bed_level_virt_print();
  3993. #endif
  3994. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3995. // For LINEAR leveling calculate matrix, print reports, correct the position
  3996. /**
  3997. * solve the plane equation ax + by + d = z
  3998. * A is the matrix with rows [x y 1] for all the probed points
  3999. * B is the vector of the Z positions
  4000. * the normal vector to the plane is formed by the coefficients of the
  4001. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4002. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4003. */
  4004. float plane_equation_coefficients[3];
  4005. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  4006. mean /= abl2;
  4007. if (verbose_level) {
  4008. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4009. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4010. SERIAL_PROTOCOLPGM(" b: ");
  4011. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4012. SERIAL_PROTOCOLPGM(" d: ");
  4013. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4014. SERIAL_EOL;
  4015. if (verbose_level > 2) {
  4016. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4017. SERIAL_PROTOCOL_F(mean, 8);
  4018. SERIAL_EOL;
  4019. }
  4020. }
  4021. // Create the matrix but don't correct the position yet
  4022. if (!dryrun) {
  4023. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4024. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  4025. );
  4026. }
  4027. // Show the Topography map if enabled
  4028. if (do_topography_map) {
  4029. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4030. " +--- BACK --+\n"
  4031. " | |\n"
  4032. " L | (+) | R\n"
  4033. " E | | I\n"
  4034. " F | (-) N (+) | G\n"
  4035. " T | | H\n"
  4036. " | (-) | T\n"
  4037. " | |\n"
  4038. " O-- FRONT --+\n"
  4039. " (0,0)");
  4040. float min_diff = 999;
  4041. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4042. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4043. int ind = indexIntoAB[xx][yy];
  4044. float diff = eqnBVector[ind] - mean,
  4045. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4046. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4047. z_tmp = 0;
  4048. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4049. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4050. if (diff >= 0.0)
  4051. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4052. else
  4053. SERIAL_PROTOCOLCHAR(' ');
  4054. SERIAL_PROTOCOL_F(diff, 5);
  4055. } // xx
  4056. SERIAL_EOL;
  4057. } // yy
  4058. SERIAL_EOL;
  4059. if (verbose_level > 3) {
  4060. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4061. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4062. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4063. int ind = indexIntoAB[xx][yy];
  4064. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4065. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4066. z_tmp = 0;
  4067. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4068. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4069. if (diff >= 0.0)
  4070. SERIAL_PROTOCOLPGM(" +");
  4071. // Include + for column alignment
  4072. else
  4073. SERIAL_PROTOCOLCHAR(' ');
  4074. SERIAL_PROTOCOL_F(diff, 5);
  4075. } // xx
  4076. SERIAL_EOL;
  4077. } // yy
  4078. SERIAL_EOL;
  4079. }
  4080. } //do_topography_map
  4081. #endif // AUTO_BED_LEVELING_LINEAR
  4082. #if ABL_PLANAR
  4083. // For LINEAR and 3POINT leveling correct the current position
  4084. if (verbose_level > 0)
  4085. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  4086. if (!dryrun) {
  4087. //
  4088. // Correct the current XYZ position based on the tilted plane.
  4089. //
  4090. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4091. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4092. #endif
  4093. float converted[XYZ];
  4094. COPY(converted, current_position);
  4095. planner.abl_enabled = true;
  4096. planner.unapply_leveling(converted); // use conversion machinery
  4097. planner.abl_enabled = false;
  4098. // Use the last measured distance to the bed, if possible
  4099. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4100. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4101. ) {
  4102. float simple_z = current_position[Z_AXIS] - measured_z;
  4103. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4104. if (DEBUGGING(LEVELING)) {
  4105. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4106. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4107. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4108. }
  4109. #endif
  4110. converted[Z_AXIS] = simple_z;
  4111. }
  4112. // The rotated XY and corrected Z are now current_position
  4113. COPY(current_position, converted);
  4114. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4115. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4116. #endif
  4117. }
  4118. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4119. if (!dryrun) {
  4120. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4121. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4122. #endif
  4123. // Unapply the offset because it is going to be immediately applied
  4124. // and cause compensation movement in Z
  4125. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4126. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4127. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4128. #endif
  4129. }
  4130. #endif // ABL_PLANAR
  4131. #ifdef Z_PROBE_END_SCRIPT
  4132. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4133. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4134. #endif
  4135. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4136. stepper.synchronize();
  4137. #endif
  4138. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4139. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4140. #endif
  4141. report_current_position();
  4142. KEEPALIVE_STATE(IN_HANDLER);
  4143. // Auto Bed Leveling is complete! Enable if possible.
  4144. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4145. if (planner.abl_enabled)
  4146. SYNC_PLAN_POSITION_KINEMATIC();
  4147. }
  4148. #endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  4149. #if HAS_BED_PROBE
  4150. /**
  4151. * G30: Do a single Z probe at the current XY
  4152. * Usage:
  4153. * G30 <X#> <Y#> <S#>
  4154. * X = Probe X position (default=current probe position)
  4155. * Y = Probe Y position (default=current probe position)
  4156. * S = Stows the probe if 1 (default=1)
  4157. */
  4158. inline void gcode_G30() {
  4159. const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  4160. ypos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  4161. pos[XYZ] = { xpos, ypos, LOGICAL_Z_POSITION(0) };
  4162. if (!position_is_reachable(pos, true)) return;
  4163. // Disable leveling so the planner won't mess with us
  4164. #if PLANNER_LEVELING
  4165. set_bed_leveling_enabled(false);
  4166. #endif
  4167. setup_for_endstop_or_probe_move();
  4168. const float measured_z = probe_pt(xpos, ypos, !code_seen('S') || code_value_bool(), 1);
  4169. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4170. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4171. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4172. clean_up_after_endstop_or_probe_move();
  4173. report_current_position();
  4174. }
  4175. #if ENABLED(Z_PROBE_SLED)
  4176. /**
  4177. * G31: Deploy the Z probe
  4178. */
  4179. inline void gcode_G31() { DEPLOY_PROBE(); }
  4180. /**
  4181. * G32: Stow the Z probe
  4182. */
  4183. inline void gcode_G32() { STOW_PROBE(); }
  4184. #endif // Z_PROBE_SLED
  4185. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4186. /**
  4187. * G33: Delta '4-point' auto calibration iteration
  4188. *
  4189. * Usage: G33 <Cn> <Vn>
  4190. *
  4191. * C (default) = Calibrate endstops, height and delta radius
  4192. *
  4193. * -2, 1-4: n x n probe points, default 3 x 3
  4194. *
  4195. * 1: probe center
  4196. * set height only - useful when z_offset is changed
  4197. * 2: probe center and towers
  4198. * solve one '4 point' calibration
  4199. * -2: probe center and opposite the towers
  4200. * solve one '4 point' calibration
  4201. * 3: probe 3 center points, towers and opposite-towers
  4202. * averages between 2 '4 point' calibrations
  4203. * 4: probe 4 center points, towers, opposite-towers and itermediate points
  4204. * averages between 4 '4 point' calibrations
  4205. *
  4206. * V Verbose level (0-3, default 1)
  4207. *
  4208. * 0: Dry-run mode: no calibration
  4209. * 1: Settings
  4210. * 2: Setting + probe results
  4211. * 3: Expert mode: setting + iteration factors (see Configuration_adv.h)
  4212. * This prematurely stops the iteration process when factors are found
  4213. */
  4214. inline void gcode_G33() {
  4215. stepper.synchronize();
  4216. #if PLANNER_LEVELING
  4217. set_bed_leveling_enabled(false);
  4218. #endif
  4219. const int8_t pp = code_seen('C') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS,
  4220. probe_points = (WITHIN(pp, 1, 4) || pp == -2) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS;
  4221. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4222. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4223. #define _MAX_M33_V 3
  4224. if (verbose_level == 3 && probe_points == 1) verbose_level--; // needs at least 4 points
  4225. #else
  4226. #define _MAX_M33_V 2
  4227. if (verbose_level > 2)
  4228. SERIAL_PROTOCOLLNPGM("Enable DELTA_CALIBRATE_EXPERT_MODE in Configuration_adv.h");
  4229. #endif
  4230. if (!WITHIN(verbose_level, 0, _MAX_M33_V)) verbose_level = 1;
  4231. float zero_std_dev = verbose_level ? 999.0 : 0.0; // 0.0 in dry-run mode : forced end
  4232. gcode_G28();
  4233. float e_old[XYZ],
  4234. dr_old = delta_radius,
  4235. zh_old = home_offset[Z_AXIS];
  4236. COPY(e_old,endstop_adj);
  4237. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4238. // expert variables
  4239. float h_f_old = 1.00, r_f_old = 0.00,
  4240. h_diff_min = 1.00, r_diff_max = 0.10;
  4241. #endif
  4242. // print settings
  4243. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4244. SERIAL_PROTOCOLPGM("Checking... AC");
  4245. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4246. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4247. if (verbose_level == 3) SERIAL_PROTOCOLPGM(" (EXPERT)");
  4248. #endif
  4249. SERIAL_EOL;
  4250. LCD_MESSAGEPGM("Checking... AC");
  4251. SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4252. if (abs(probe_points) > 1) {
  4253. SERIAL_PROTOCOLPGM(" Ex:");
  4254. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4255. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4256. SERIAL_PROTOCOLPGM(" Ey:");
  4257. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4258. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4259. SERIAL_PROTOCOLPGM(" Ez:");
  4260. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4261. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4262. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4263. }
  4264. SERIAL_EOL;
  4265. #if ENABLED(Z_PROBE_SLED)
  4266. DEPLOY_PROBE();
  4267. #endif
  4268. float test_precision;
  4269. int8_t iterations = 0;
  4270. do { // start iterations
  4271. setup_for_endstop_or_probe_move();
  4272. test_precision =
  4273. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4274. // Expert mode : forced end at std_dev < 0.1
  4275. (verbose_level == 3 && zero_std_dev < 0.1) ? 0.0 :
  4276. #endif
  4277. zero_std_dev
  4278. ;
  4279. float z_at_pt[13] = { 0 };
  4280. iterations++;
  4281. // probe the points
  4282. int16_t center_points = 0;
  4283. if (probe_points != 3) {
  4284. z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);
  4285. center_points = 1;
  4286. }
  4287. int16_t step_axis = 4;
  4288. if (probe_points >= 3) {
  4289. for (int8_t axis = 9; axis > 0; axis -= step_axis) { // uint8_t starts endless loop
  4290. z_at_pt[0] += probe_pt(
  4291. 0.1 * cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS),
  4292. 0.1 * sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1);
  4293. }
  4294. center_points += 3;
  4295. z_at_pt[0] /= center_points;
  4296. }
  4297. float S1 = z_at_pt[0], S2 = sq(S1);
  4298. int16_t N = 1, start = (probe_points == -2) ? 3 : 1;
  4299. step_axis = (abs(probe_points) == 2) ? 4 : (probe_points == 3) ? 2 : 1;
  4300. if (probe_points != 1) {
  4301. for (uint8_t axis = start; axis < 13; axis += step_axis)
  4302. z_at_pt[axis] += probe_pt(
  4303. cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS),
  4304. sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1
  4305. );
  4306. if (probe_points == 4) step_axis = 2;
  4307. }
  4308. for (uint8_t axis = start; axis < 13; axis += step_axis) {
  4309. if (probe_points == 4)
  4310. z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
  4311. S1 += z_at_pt[axis];
  4312. S2 += sq(z_at_pt[axis]);
  4313. N++;
  4314. }
  4315. zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; // deviation from zero plane
  4316. // Solve matrices
  4317. if (zero_std_dev < test_precision) {
  4318. COPY(e_old, endstop_adj);
  4319. dr_old = delta_radius;
  4320. zh_old = home_offset[Z_AXIS];
  4321. float e_delta[XYZ] = { 0.0 }, r_delta = 0.0;
  4322. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4323. float h_f_new = 0.0, r_f_new = 0.0 , t_f_new = 0.0,
  4324. h_diff = 0.00, r_diff = 0.00;
  4325. #endif
  4326. #define ZP(N,I) ((N) * z_at_pt[I])
  4327. #define Z1000(I) ZP(1.00, I)
  4328. #define Z1050(I) ZP(H_FACTOR, I)
  4329. #define Z0700(I) ZP((H_FACTOR) * 2.0 / 3.00, I)
  4330. #define Z0350(I) ZP((H_FACTOR) / 3.00, I)
  4331. #define Z0175(I) ZP((H_FACTOR) / 6.00, I)
  4332. #define Z2250(I) ZP(R_FACTOR, I)
  4333. #define Z0750(I) ZP((R_FACTOR) / 3.00, I)
  4334. #define Z0375(I) ZP((R_FACTOR) / 6.00, I)
  4335. switch (probe_points) {
  4336. case 1:
  4337. LOOP_XYZ(i) e_delta[i] = Z1000(0);
  4338. r_delta = 0.00;
  4339. break;
  4340. case 2:
  4341. e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
  4342. e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
  4343. e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
  4344. r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
  4345. break;
  4346. case -2:
  4347. e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
  4348. e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
  4349. e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
  4350. r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
  4351. break;
  4352. default:
  4353. e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
  4354. e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
  4355. e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
  4356. r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
  4357. break;
  4358. }
  4359. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4360. // Calculate h & r factors
  4361. if (verbose_level == 3) {
  4362. LOOP_XYZ(axis) h_f_new += e_delta[axis] / 3;
  4363. r_f_new = r_delta;
  4364. h_diff = (1.0 / H_FACTOR) * (h_f_old - h_f_new) / h_f_old;
  4365. if (h_diff < h_diff_min && h_diff > 0.9) h_diff_min = h_diff;
  4366. if (r_f_old != 0)
  4367. r_diff = ( 0.0301 * sq(R_FACTOR) * R_FACTOR
  4368. + 0.311 * sq(R_FACTOR)
  4369. + 1.1493 * R_FACTOR
  4370. + 1.7952
  4371. ) * (r_f_old - r_f_new) / r_f_old;
  4372. if (r_diff > r_diff_max && r_diff < 0.4444) r_diff_max = r_diff;
  4373. SERIAL_EOL;
  4374. h_f_old = h_f_new;
  4375. r_f_old = r_f_new;
  4376. }
  4377. #endif // DELTA_CALIBRATE_EXPERT_MODE
  4378. // Adjust delta_height and endstops by the max amount
  4379. LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
  4380. delta_radius += r_delta;
  4381. const float z_temp = MAX3(endstop_adj[0], endstop_adj[1], endstop_adj[2]);
  4382. home_offset[Z_AXIS] -= z_temp;
  4383. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  4384. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4385. }
  4386. else { // !iterate
  4387. // step one back
  4388. COPY(endstop_adj, e_old);
  4389. delta_radius = dr_old;
  4390. home_offset[Z_AXIS] = zh_old;
  4391. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4392. }
  4393. // print report
  4394. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4395. if (verbose_level == 3) {
  4396. const float r_factor = 22.902 * sq(r_diff_max) * r_diff_max
  4397. - 44.988 * sq(r_diff_max)
  4398. + 31.697 * r_diff_max
  4399. - 9.4439;
  4400. SERIAL_PROTOCOLPAIR("h_factor:", 1.0 / h_diff_min);
  4401. SERIAL_PROTOCOLPAIR(" r_factor:", r_factor);
  4402. SERIAL_EOL;
  4403. }
  4404. #endif
  4405. if (verbose_level == 2) {
  4406. SERIAL_PROTOCOLPGM(". c:");
  4407. if (z_at_pt[0] > 0) SERIAL_CHAR('+');
  4408. SERIAL_PROTOCOL_F(z_at_pt[0], 2);
  4409. if (probe_points > 1) {
  4410. SERIAL_PROTOCOLPGM(" x:");
  4411. if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
  4412. SERIAL_PROTOCOL_F(z_at_pt[1], 2);
  4413. SERIAL_PROTOCOLPGM(" y:");
  4414. if (z_at_pt[5] >= 0) SERIAL_CHAR('+');
  4415. SERIAL_PROTOCOL_F(z_at_pt[5], 2);
  4416. SERIAL_PROTOCOLPGM(" z:");
  4417. if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
  4418. SERIAL_PROTOCOL_F(z_at_pt[9], 2);
  4419. }
  4420. if (probe_points > 0) SERIAL_EOL;
  4421. if (probe_points > 2 || probe_points == -2) {
  4422. if (probe_points > 2) SERIAL_PROTOCOLPGM(". ");
  4423. SERIAL_PROTOCOLPGM(" yz:");
  4424. if (z_at_pt[7] >= 0) SERIAL_CHAR('+');
  4425. SERIAL_PROTOCOL_F(z_at_pt[7], 2);
  4426. SERIAL_PROTOCOLPGM(" zx:");
  4427. if (z_at_pt[11] >= 0) SERIAL_CHAR('+');
  4428. SERIAL_PROTOCOL_F(z_at_pt[11], 2);
  4429. SERIAL_PROTOCOLPGM(" xy:");
  4430. if (z_at_pt[3] >= 0) SERIAL_CHAR('+');
  4431. SERIAL_PROTOCOL_F(z_at_pt[3], 2);
  4432. SERIAL_EOL;
  4433. }
  4434. }
  4435. if (test_precision != 0.0) { // !forced end
  4436. if (zero_std_dev >= test_precision) {
  4437. SERIAL_PROTOCOLPGM("Calibration OK");
  4438. SERIAL_PROTOCOLLNPGM(" rolling back 1");
  4439. LCD_MESSAGEPGM("Calibration OK");
  4440. SERIAL_EOL;
  4441. }
  4442. else { // !end iterations
  4443. char mess[15] = "No convergence";
  4444. if (iterations < 31)
  4445. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  4446. SERIAL_PROTOCOL(mess);
  4447. SERIAL_PROTOCOLPGM(" std dev:");
  4448. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4449. SERIAL_EOL;
  4450. lcd_setstatus(mess);
  4451. }
  4452. SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4453. if (abs(probe_points) > 1) {
  4454. SERIAL_PROTOCOLPGM(" Ex:");
  4455. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4456. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4457. SERIAL_PROTOCOLPGM(" Ey:");
  4458. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4459. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4460. SERIAL_PROTOCOLPGM(" Ez:");
  4461. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4462. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4463. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4464. }
  4465. SERIAL_EOL;
  4466. if (zero_std_dev >= test_precision)
  4467. SERIAL_PROTOCOLLNPGM("Save with M500");
  4468. }
  4469. else { // forced end
  4470. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4471. if (verbose_level == 3)
  4472. SERIAL_PROTOCOLLNPGM("Copy to Configuration_adv.h");
  4473. else
  4474. #endif
  4475. {
  4476. SERIAL_PROTOCOLPGM("End DRY-RUN std dev:");
  4477. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4478. SERIAL_EOL;
  4479. }
  4480. }
  4481. clean_up_after_endstop_or_probe_move();
  4482. stepper.synchronize();
  4483. gcode_G28();
  4484. } while (zero_std_dev < test_precision && iterations < 31);
  4485. #if ENABLED(Z_PROBE_SLED)
  4486. RETRACT_PROBE();
  4487. #endif
  4488. }
  4489. #endif // DELTA_AUTO_CALIBRATION
  4490. #endif // HAS_BED_PROBE
  4491. #if ENABLED(G38_PROBE_TARGET)
  4492. static bool G38_run_probe() {
  4493. bool G38_pass_fail = false;
  4494. // Get direction of move and retract
  4495. float retract_mm[XYZ];
  4496. LOOP_XYZ(i) {
  4497. float dist = destination[i] - current_position[i];
  4498. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4499. }
  4500. stepper.synchronize(); // wait until the machine is idle
  4501. // Move until destination reached or target hit
  4502. endstops.enable(true);
  4503. G38_move = true;
  4504. G38_endstop_hit = false;
  4505. prepare_move_to_destination();
  4506. stepper.synchronize();
  4507. G38_move = false;
  4508. endstops.hit_on_purpose();
  4509. set_current_from_steppers_for_axis(ALL_AXES);
  4510. SYNC_PLAN_POSITION_KINEMATIC();
  4511. if (G38_endstop_hit) {
  4512. G38_pass_fail = true;
  4513. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4514. // Move away by the retract distance
  4515. set_destination_to_current();
  4516. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4517. endstops.enable(false);
  4518. prepare_move_to_destination();
  4519. stepper.synchronize();
  4520. feedrate_mm_s /= 4;
  4521. // Bump the target more slowly
  4522. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4523. endstops.enable(true);
  4524. G38_move = true;
  4525. prepare_move_to_destination();
  4526. stepper.synchronize();
  4527. G38_move = false;
  4528. set_current_from_steppers_for_axis(ALL_AXES);
  4529. SYNC_PLAN_POSITION_KINEMATIC();
  4530. #endif
  4531. }
  4532. endstops.hit_on_purpose();
  4533. endstops.not_homing();
  4534. return G38_pass_fail;
  4535. }
  4536. /**
  4537. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4538. * G38.3 - probe toward workpiece, stop on contact
  4539. *
  4540. * Like G28 except uses Z min probe for all axes
  4541. */
  4542. inline void gcode_G38(bool is_38_2) {
  4543. // Get X Y Z E F
  4544. gcode_get_destination();
  4545. setup_for_endstop_or_probe_move();
  4546. // If any axis has enough movement, do the move
  4547. LOOP_XYZ(i)
  4548. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4549. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4550. // If G38.2 fails throw an error
  4551. if (!G38_run_probe() && is_38_2) {
  4552. SERIAL_ERROR_START;
  4553. SERIAL_ERRORLNPGM("Failed to reach target");
  4554. }
  4555. break;
  4556. }
  4557. clean_up_after_endstop_or_probe_move();
  4558. }
  4559. #endif // G38_PROBE_TARGET
  4560. /**
  4561. * G92: Set current position to given X Y Z E
  4562. */
  4563. inline void gcode_G92() {
  4564. bool didXYZ = false,
  4565. didE = code_seen('E');
  4566. if (!didE) stepper.synchronize();
  4567. LOOP_XYZE(i) {
  4568. if (code_seen(axis_codes[i])) {
  4569. #if IS_SCARA
  4570. current_position[i] = code_value_axis_units((AxisEnum)i);
  4571. if (i != E_AXIS) didXYZ = true;
  4572. #else
  4573. #if HAS_POSITION_SHIFT
  4574. const float p = current_position[i];
  4575. #endif
  4576. float v = code_value_axis_units((AxisEnum)i);
  4577. current_position[i] = v;
  4578. if (i != E_AXIS) {
  4579. didXYZ = true;
  4580. #if HAS_POSITION_SHIFT
  4581. position_shift[i] += v - p; // Offset the coordinate space
  4582. update_software_endstops((AxisEnum)i);
  4583. #endif
  4584. }
  4585. #endif
  4586. }
  4587. }
  4588. if (didXYZ)
  4589. SYNC_PLAN_POSITION_KINEMATIC();
  4590. else if (didE)
  4591. sync_plan_position_e();
  4592. report_current_position();
  4593. }
  4594. #if HAS_RESUME_CONTINUE
  4595. /**
  4596. * M0: Unconditional stop - Wait for user button press on LCD
  4597. * M1: Conditional stop - Wait for user button press on LCD
  4598. */
  4599. inline void gcode_M0_M1() {
  4600. const char * const args = current_command_args;
  4601. millis_t codenum = 0;
  4602. bool hasP = false, hasS = false;
  4603. if (code_seen('P')) {
  4604. codenum = code_value_millis(); // milliseconds to wait
  4605. hasP = codenum > 0;
  4606. }
  4607. if (code_seen('S')) {
  4608. codenum = code_value_millis_from_seconds(); // seconds to wait
  4609. hasS = codenum > 0;
  4610. }
  4611. #if ENABLED(ULTIPANEL)
  4612. if (!hasP && !hasS && *args != '\0')
  4613. lcd_setstatus(args, true);
  4614. else {
  4615. LCD_MESSAGEPGM(MSG_USERWAIT);
  4616. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4617. dontExpireStatus();
  4618. #endif
  4619. }
  4620. #else
  4621. if (!hasP && !hasS && *args != '\0') {
  4622. SERIAL_ECHO_START;
  4623. SERIAL_ECHOLN(args);
  4624. }
  4625. #endif
  4626. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4627. wait_for_user = true;
  4628. stepper.synchronize();
  4629. refresh_cmd_timeout();
  4630. if (codenum > 0) {
  4631. codenum += previous_cmd_ms; // wait until this time for a click
  4632. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4633. }
  4634. else {
  4635. #if ENABLED(ULTIPANEL)
  4636. if (lcd_detected()) {
  4637. while (wait_for_user) idle();
  4638. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4639. }
  4640. #else
  4641. while (wait_for_user) idle();
  4642. #endif
  4643. }
  4644. wait_for_user = false;
  4645. KEEPALIVE_STATE(IN_HANDLER);
  4646. }
  4647. #endif // HAS_RESUME_CONTINUE
  4648. /**
  4649. * M17: Enable power on all stepper motors
  4650. */
  4651. inline void gcode_M17() {
  4652. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4653. enable_all_steppers();
  4654. }
  4655. #if IS_KINEMATIC
  4656. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4657. #else
  4658. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4659. #endif
  4660. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4661. float resume_position[XYZE];
  4662. bool move_away_flag = false;
  4663. inline void move_back_on_resume() {
  4664. if (!move_away_flag) return;
  4665. move_away_flag = false;
  4666. // Set extruder to saved position
  4667. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4668. planner.set_e_position_mm(current_position[E_AXIS]);
  4669. #if IS_KINEMATIC
  4670. // Move XYZ to starting position
  4671. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4672. #else
  4673. // Move XY to starting position, then Z
  4674. destination[X_AXIS] = resume_position[X_AXIS];
  4675. destination[Y_AXIS] = resume_position[Y_AXIS];
  4676. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4677. destination[Z_AXIS] = resume_position[Z_AXIS];
  4678. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4679. #endif
  4680. stepper.synchronize();
  4681. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4682. filament_ran_out = false;
  4683. #endif
  4684. set_current_to_destination();
  4685. }
  4686. #endif // PARK_HEAD_ON_PAUSE
  4687. #if ENABLED(SDSUPPORT)
  4688. /**
  4689. * M20: List SD card to serial output
  4690. */
  4691. inline void gcode_M20() {
  4692. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4693. card.ls();
  4694. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4695. }
  4696. /**
  4697. * M21: Init SD Card
  4698. */
  4699. inline void gcode_M21() { card.initsd(); }
  4700. /**
  4701. * M22: Release SD Card
  4702. */
  4703. inline void gcode_M22() { card.release(); }
  4704. /**
  4705. * M23: Open a file
  4706. */
  4707. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4708. /**
  4709. * M24: Start or Resume SD Print
  4710. */
  4711. inline void gcode_M24() {
  4712. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4713. move_back_on_resume();
  4714. #endif
  4715. card.startFileprint();
  4716. print_job_timer.start();
  4717. }
  4718. /**
  4719. * M25: Pause SD Print
  4720. */
  4721. inline void gcode_M25() {
  4722. card.pauseSDPrint();
  4723. print_job_timer.pause();
  4724. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4725. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4726. #endif
  4727. }
  4728. /**
  4729. * M26: Set SD Card file index
  4730. */
  4731. inline void gcode_M26() {
  4732. if (card.cardOK && code_seen('S'))
  4733. card.setIndex(code_value_long());
  4734. }
  4735. /**
  4736. * M27: Get SD Card status
  4737. */
  4738. inline void gcode_M27() { card.getStatus(); }
  4739. /**
  4740. * M28: Start SD Write
  4741. */
  4742. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4743. /**
  4744. * M29: Stop SD Write
  4745. * Processed in write to file routine above
  4746. */
  4747. inline void gcode_M29() {
  4748. // card.saving = false;
  4749. }
  4750. /**
  4751. * M30 <filename>: Delete SD Card file
  4752. */
  4753. inline void gcode_M30() {
  4754. if (card.cardOK) {
  4755. card.closefile();
  4756. card.removeFile(current_command_args);
  4757. }
  4758. }
  4759. #endif // SDSUPPORT
  4760. /**
  4761. * M31: Get the time since the start of SD Print (or last M109)
  4762. */
  4763. inline void gcode_M31() {
  4764. char buffer[21];
  4765. duration_t elapsed = print_job_timer.duration();
  4766. elapsed.toString(buffer);
  4767. lcd_setstatus(buffer);
  4768. SERIAL_ECHO_START;
  4769. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4770. #if ENABLED(AUTOTEMP)
  4771. thermalManager.autotempShutdown();
  4772. #endif
  4773. }
  4774. #if ENABLED(SDSUPPORT)
  4775. /**
  4776. * M32: Select file and start SD Print
  4777. */
  4778. inline void gcode_M32() {
  4779. if (card.sdprinting)
  4780. stepper.synchronize();
  4781. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4782. if (!namestartpos)
  4783. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4784. else
  4785. namestartpos++; //to skip the '!'
  4786. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4787. if (card.cardOK) {
  4788. card.openFile(namestartpos, true, call_procedure);
  4789. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4790. card.setIndex(code_value_long());
  4791. card.startFileprint();
  4792. // Procedure calls count as normal print time.
  4793. if (!call_procedure) print_job_timer.start();
  4794. }
  4795. }
  4796. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4797. /**
  4798. * M33: Get the long full path of a file or folder
  4799. *
  4800. * Parameters:
  4801. * <dospath> Case-insensitive DOS-style path to a file or folder
  4802. *
  4803. * Example:
  4804. * M33 miscel~1/armchair/armcha~1.gco
  4805. *
  4806. * Output:
  4807. * /Miscellaneous/Armchair/Armchair.gcode
  4808. */
  4809. inline void gcode_M33() {
  4810. card.printLongPath(current_command_args);
  4811. }
  4812. #endif
  4813. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4814. /**
  4815. * M34: Set SD Card Sorting Options
  4816. */
  4817. inline void gcode_M34() {
  4818. if (code_seen('S')) card.setSortOn(code_value_bool());
  4819. if (code_seen('F')) {
  4820. int v = code_value_long();
  4821. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4822. }
  4823. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4824. }
  4825. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4826. /**
  4827. * M928: Start SD Write
  4828. */
  4829. inline void gcode_M928() {
  4830. card.openLogFile(current_command_args);
  4831. }
  4832. #endif // SDSUPPORT
  4833. /**
  4834. * Sensitive pin test for M42, M226
  4835. */
  4836. static bool pin_is_protected(uint8_t pin) {
  4837. static const int sensitive_pins[] = SENSITIVE_PINS;
  4838. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4839. if (sensitive_pins[i] == pin) return true;
  4840. return false;
  4841. }
  4842. /**
  4843. * M42: Change pin status via GCode
  4844. *
  4845. * P<pin> Pin number (LED if omitted)
  4846. * S<byte> Pin status from 0 - 255
  4847. */
  4848. inline void gcode_M42() {
  4849. if (!code_seen('S')) return;
  4850. int pin_status = code_value_int();
  4851. if (!WITHIN(pin_status, 0, 255)) return;
  4852. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4853. if (pin_number < 0) return;
  4854. if (pin_is_protected(pin_number)) {
  4855. SERIAL_ERROR_START;
  4856. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4857. return;
  4858. }
  4859. pinMode(pin_number, OUTPUT);
  4860. digitalWrite(pin_number, pin_status);
  4861. analogWrite(pin_number, pin_status);
  4862. #if FAN_COUNT > 0
  4863. switch (pin_number) {
  4864. #if HAS_FAN0
  4865. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4866. #endif
  4867. #if HAS_FAN1
  4868. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4869. #endif
  4870. #if HAS_FAN2
  4871. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4872. #endif
  4873. }
  4874. #endif
  4875. }
  4876. #if ENABLED(PINS_DEBUGGING)
  4877. #include "pinsDebug.h"
  4878. inline void toggle_pins() {
  4879. const bool I_flag = code_seen('I') && code_value_bool();
  4880. const int repeat = code_seen('R') ? code_value_int() : 1,
  4881. start = code_seen('S') ? code_value_int() : 0,
  4882. end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1,
  4883. wait = code_seen('W') ? code_value_int() : 500;
  4884. for (uint8_t pin = start; pin <= end; pin++) {
  4885. if (!I_flag && pin_is_protected(pin)) {
  4886. SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
  4887. SERIAL_ECHOLNPGM(" untouched.");
  4888. }
  4889. else {
  4890. SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
  4891. pinMode(pin, OUTPUT);
  4892. for (int16_t j = 0; j < repeat; j++) {
  4893. digitalWrite(pin, 0);
  4894. safe_delay(wait);
  4895. digitalWrite(pin, 1);
  4896. safe_delay(wait);
  4897. digitalWrite(pin, 0);
  4898. safe_delay(wait);
  4899. }
  4900. }
  4901. SERIAL_CHAR('\n');
  4902. }
  4903. SERIAL_ECHOLNPGM("Done.");
  4904. } // toggle_pins
  4905. inline void servo_probe_test() {
  4906. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  4907. SERIAL_ERROR_START;
  4908. SERIAL_ERRORLNPGM("SERVO not setup");
  4909. #elif !HAS_Z_SERVO_ENDSTOP
  4910. SERIAL_ERROR_START;
  4911. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  4912. #else
  4913. #if !defined(z_servo_angle)
  4914. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  4915. #endif
  4916. const uint8_t probe_index = code_seen('P') ? code_value_byte() : Z_ENDSTOP_SERVO_NR;
  4917. SERIAL_PROTOCOLLNPGM("Servo probe test");
  4918. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  4919. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  4920. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  4921. bool probe_inverting;
  4922. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  4923. #define PROBE_TEST_PIN Z_MIN_PIN
  4924. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  4925. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  4926. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  4927. #if Z_MIN_ENDSTOP_INVERTING
  4928. SERIAL_PROTOCOLLNPGM("true");
  4929. #else
  4930. SERIAL_PROTOCOLLNPGM("false");
  4931. #endif
  4932. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  4933. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  4934. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  4935. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  4936. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  4937. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  4938. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  4939. SERIAL_PROTOCOLLNPGM("true");
  4940. #else
  4941. SERIAL_PROTOCOLLNPGM("false");
  4942. #endif
  4943. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  4944. #endif
  4945. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  4946. pinMode(PROBE_TEST_PIN, INPUT_PULLUP);
  4947. bool deploy_state;
  4948. bool stow_state;
  4949. for (uint8_t i = 0; i < 4; i++) {
  4950. servo[probe_index].move(z_servo_angle[0]); //deploy
  4951. safe_delay(500);
  4952. deploy_state = digitalRead(PROBE_TEST_PIN);
  4953. servo[probe_index].move(z_servo_angle[1]); //stow
  4954. safe_delay(500);
  4955. stow_state = digitalRead(PROBE_TEST_PIN);
  4956. }
  4957. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  4958. refresh_cmd_timeout();
  4959. if (deploy_state != stow_state) {
  4960. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  4961. if (deploy_state) {
  4962. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  4963. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  4964. }
  4965. else {
  4966. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  4967. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  4968. }
  4969. #if ENABLED(BLTOUCH)
  4970. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  4971. #endif
  4972. }
  4973. else { // measure active signal length
  4974. servo[probe_index].move(z_servo_angle[0]); // deploy
  4975. safe_delay(500);
  4976. SERIAL_PROTOCOLLNPGM("please trigger probe");
  4977. uint16_t probe_counter = 0;
  4978. // Allow 30 seconds max for operator to trigger probe
  4979. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  4980. safe_delay(2);
  4981. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  4982. refresh_cmd_timeout();
  4983. if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
  4984. for (probe_counter = 1; probe_counter < 50 && deploy_state != digitalRead(PROBE_TEST_PIN); ++probe_counter)
  4985. safe_delay(2);
  4986. if (probe_counter == 50)
  4987. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  4988. else if (probe_counter >= 2)
  4989. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  4990. else
  4991. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  4992. servo[probe_index].move(z_servo_angle[1]); //stow
  4993. } // pulse detected
  4994. } // for loop waiting for trigger
  4995. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  4996. } // measure active signal length
  4997. #endif
  4998. } // servo_probe_test
  4999. /**
  5000. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  5001. *
  5002. * M43 - report name and state of pin(s)
  5003. * P<pin> Pin to read or watch. If omitted, reads all pins.
  5004. * I Flag to ignore Marlin's pin protection.
  5005. *
  5006. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  5007. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  5008. * I Flag to ignore Marlin's pin protection.
  5009. *
  5010. * M43 E<bool> - Enable / disable background endstop monitoring
  5011. * - Machine continues to operate
  5012. * - Reports changes to endstops
  5013. * - Toggles LED when an endstop changes
  5014. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  5015. *
  5016. * M43 T - Toggle pin(s) and report which pin is being toggled
  5017. * S<pin> - Start Pin number. If not given, will default to 0
  5018. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  5019. * I - Flag to ignore Marlin's pin protection. Use with caution!!!!
  5020. * R - Repeat pulses on each pin this number of times before continueing to next pin
  5021. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  5022. *
  5023. * M43 S - Servo probe test
  5024. * P<index> - Probe index (optional - defaults to 0
  5025. */
  5026. inline void gcode_M43() {
  5027. if (code_seen('T')) { // must be first ot else it's "S" and "E" parameters will execute endstop or servo test
  5028. toggle_pins();
  5029. return;
  5030. }
  5031. // Enable or disable endstop monitoring
  5032. if (code_seen('E')) {
  5033. endstop_monitor_flag = code_value_bool();
  5034. SERIAL_PROTOCOLPGM("endstop monitor ");
  5035. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  5036. SERIAL_PROTOCOLLNPGM("abled");
  5037. return;
  5038. }
  5039. if (code_seen('S')) {
  5040. servo_probe_test();
  5041. return;
  5042. }
  5043. // Get the range of pins to test or watch
  5044. const uint8_t first_pin = code_seen('P') ? code_value_byte() : 0,
  5045. last_pin = code_seen('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  5046. if (first_pin > last_pin) return;
  5047. const bool ignore_protection = code_seen('I') && code_value_bool();
  5048. // Watch until click, M108, or reset
  5049. if (code_seen('W') && code_value_bool()) {
  5050. SERIAL_PROTOCOLLNPGM("Watching pins");
  5051. byte pin_state[last_pin - first_pin + 1];
  5052. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5053. if (pin_is_protected(pin) && !ignore_protection) continue;
  5054. pinMode(pin, INPUT_PULLUP);
  5055. /*
  5056. if (IS_ANALOG(pin))
  5057. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  5058. else
  5059. //*/
  5060. pin_state[pin - first_pin] = digitalRead(pin);
  5061. }
  5062. #if HAS_RESUME_CONTINUE
  5063. wait_for_user = true;
  5064. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5065. #endif
  5066. for (;;) {
  5067. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5068. if (pin_is_protected(pin)) continue;
  5069. const byte val =
  5070. /*
  5071. IS_ANALOG(pin)
  5072. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  5073. :
  5074. //*/
  5075. digitalRead(pin);
  5076. if (val != pin_state[pin - first_pin]) {
  5077. report_pin_state(pin);
  5078. pin_state[pin - first_pin] = val;
  5079. }
  5080. }
  5081. #if HAS_RESUME_CONTINUE
  5082. if (!wait_for_user) {
  5083. KEEPALIVE_STATE(IN_HANDLER);
  5084. break;
  5085. }
  5086. #endif
  5087. safe_delay(500);
  5088. }
  5089. return;
  5090. }
  5091. // Report current state of selected pin(s)
  5092. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  5093. report_pin_state_extended(pin, ignore_protection);
  5094. }
  5095. #endif // PINS_DEBUGGING
  5096. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5097. /**
  5098. * M48: Z probe repeatability measurement function.
  5099. *
  5100. * Usage:
  5101. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  5102. * P = Number of sampled points (4-50, default 10)
  5103. * X = Sample X position
  5104. * Y = Sample Y position
  5105. * V = Verbose level (0-4, default=1)
  5106. * E = Engage Z probe for each reading
  5107. * L = Number of legs of movement before probe
  5108. * S = Schizoid (Or Star if you prefer)
  5109. *
  5110. * This function assumes the bed has been homed. Specifically, that a G28 command
  5111. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  5112. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  5113. * regenerated.
  5114. */
  5115. inline void gcode_M48() {
  5116. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5117. bool bed_leveling_state_at_entry=0;
  5118. bed_leveling_state_at_entry = ubl.state.active;
  5119. #endif
  5120. if (axis_unhomed_error(true, true, true)) return;
  5121. const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  5122. if (!WITHIN(verbose_level, 0, 4)) {
  5123. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  5124. return;
  5125. }
  5126. if (verbose_level > 0)
  5127. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  5128. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  5129. if (!WITHIN(n_samples, 4, 50)) {
  5130. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  5131. return;
  5132. }
  5133. float X_current = current_position[X_AXIS],
  5134. Y_current = current_position[Y_AXIS];
  5135. bool stow_probe_after_each = code_seen('E');
  5136. float X_probe_location = code_seen('X') ? code_value_linear_units() : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  5137. #if DISABLED(DELTA)
  5138. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  5139. out_of_range_error(PSTR("X"));
  5140. return;
  5141. }
  5142. #endif
  5143. float Y_probe_location = code_seen('Y') ? code_value_linear_units() : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  5144. #if DISABLED(DELTA)
  5145. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  5146. out_of_range_error(PSTR("Y"));
  5147. return;
  5148. }
  5149. #else
  5150. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  5151. if (!position_is_reachable(pos, true)) {
  5152. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  5153. return;
  5154. }
  5155. #endif
  5156. bool seen_L = code_seen('L');
  5157. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  5158. if (n_legs > 15) {
  5159. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  5160. return;
  5161. }
  5162. if (n_legs == 1) n_legs = 2;
  5163. bool schizoid_flag = code_seen('S');
  5164. if (schizoid_flag && !seen_L) n_legs = 7;
  5165. /**
  5166. * Now get everything to the specified probe point So we can safely do a
  5167. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  5168. * we don't want to use that as a starting point for each probe.
  5169. */
  5170. if (verbose_level > 2)
  5171. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  5172. // Disable bed level correction in M48 because we want the raw data when we probe
  5173. #if HAS_ABL
  5174. const bool abl_was_enabled = planner.abl_enabled;
  5175. set_bed_leveling_enabled(false);
  5176. #endif
  5177. setup_for_endstop_or_probe_move();
  5178. // Move to the first point, deploy, and probe
  5179. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  5180. randomSeed(millis());
  5181. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  5182. for (uint8_t n = 0; n < n_samples; n++) {
  5183. if (n_legs) {
  5184. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  5185. float angle = random(0.0, 360.0),
  5186. radius = random(
  5187. #if ENABLED(DELTA)
  5188. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  5189. #else
  5190. 5, X_MAX_LENGTH / 8
  5191. #endif
  5192. );
  5193. if (verbose_level > 3) {
  5194. SERIAL_ECHOPAIR("Starting radius: ", radius);
  5195. SERIAL_ECHOPAIR(" angle: ", angle);
  5196. SERIAL_ECHOPGM(" Direction: ");
  5197. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  5198. SERIAL_ECHOLNPGM("Clockwise");
  5199. }
  5200. for (uint8_t l = 0; l < n_legs - 1; l++) {
  5201. double delta_angle;
  5202. if (schizoid_flag)
  5203. // The points of a 5 point star are 72 degrees apart. We need to
  5204. // skip a point and go to the next one on the star.
  5205. delta_angle = dir * 2.0 * 72.0;
  5206. else
  5207. // If we do this line, we are just trying to move further
  5208. // around the circle.
  5209. delta_angle = dir * (float) random(25, 45);
  5210. angle += delta_angle;
  5211. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  5212. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  5213. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  5214. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  5215. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  5216. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  5217. #if DISABLED(DELTA)
  5218. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  5219. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  5220. #else
  5221. // If we have gone out too far, we can do a simple fix and scale the numbers
  5222. // back in closer to the origin.
  5223. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  5224. X_current *= 0.8;
  5225. Y_current *= 0.8;
  5226. if (verbose_level > 3) {
  5227. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  5228. SERIAL_ECHOLNPAIR(", ", Y_current);
  5229. }
  5230. }
  5231. #endif
  5232. if (verbose_level > 3) {
  5233. SERIAL_PROTOCOLPGM("Going to:");
  5234. SERIAL_ECHOPAIR(" X", X_current);
  5235. SERIAL_ECHOPAIR(" Y", Y_current);
  5236. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  5237. }
  5238. do_blocking_move_to_xy(X_current, Y_current);
  5239. } // n_legs loop
  5240. } // n_legs
  5241. // Probe a single point
  5242. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  5243. /**
  5244. * Get the current mean for the data points we have so far
  5245. */
  5246. double sum = 0.0;
  5247. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  5248. mean = sum / (n + 1);
  5249. NOMORE(min, sample_set[n]);
  5250. NOLESS(max, sample_set[n]);
  5251. /**
  5252. * Now, use that mean to calculate the standard deviation for the
  5253. * data points we have so far
  5254. */
  5255. sum = 0.0;
  5256. for (uint8_t j = 0; j <= n; j++)
  5257. sum += sq(sample_set[j] - mean);
  5258. sigma = sqrt(sum / (n + 1));
  5259. if (verbose_level > 0) {
  5260. if (verbose_level > 1) {
  5261. SERIAL_PROTOCOL(n + 1);
  5262. SERIAL_PROTOCOLPGM(" of ");
  5263. SERIAL_PROTOCOL((int)n_samples);
  5264. SERIAL_PROTOCOLPGM(": z: ");
  5265. SERIAL_PROTOCOL_F(sample_set[n], 3);
  5266. if (verbose_level > 2) {
  5267. SERIAL_PROTOCOLPGM(" mean: ");
  5268. SERIAL_PROTOCOL_F(mean, 4);
  5269. SERIAL_PROTOCOLPGM(" sigma: ");
  5270. SERIAL_PROTOCOL_F(sigma, 6);
  5271. SERIAL_PROTOCOLPGM(" min: ");
  5272. SERIAL_PROTOCOL_F(min, 3);
  5273. SERIAL_PROTOCOLPGM(" max: ");
  5274. SERIAL_PROTOCOL_F(max, 3);
  5275. SERIAL_PROTOCOLPGM(" range: ");
  5276. SERIAL_PROTOCOL_F(max-min, 3);
  5277. }
  5278. SERIAL_EOL;
  5279. }
  5280. }
  5281. } // End of probe loop
  5282. if (STOW_PROBE()) return;
  5283. SERIAL_PROTOCOLPGM("Finished!");
  5284. SERIAL_EOL;
  5285. if (verbose_level > 0) {
  5286. SERIAL_PROTOCOLPGM("Mean: ");
  5287. SERIAL_PROTOCOL_F(mean, 6);
  5288. SERIAL_PROTOCOLPGM(" Min: ");
  5289. SERIAL_PROTOCOL_F(min, 3);
  5290. SERIAL_PROTOCOLPGM(" Max: ");
  5291. SERIAL_PROTOCOL_F(max, 3);
  5292. SERIAL_PROTOCOLPGM(" Range: ");
  5293. SERIAL_PROTOCOL_F(max-min, 3);
  5294. SERIAL_EOL;
  5295. }
  5296. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5297. SERIAL_PROTOCOL_F(sigma, 6);
  5298. SERIAL_EOL;
  5299. SERIAL_EOL;
  5300. clean_up_after_endstop_or_probe_move();
  5301. // Re-enable bed level correction if it has been on
  5302. #if HAS_ABL
  5303. set_bed_leveling_enabled(abl_was_enabled);
  5304. #endif
  5305. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5306. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  5307. ubl.state.active = bed_leveling_state_at_entry;
  5308. #endif
  5309. report_current_position();
  5310. }
  5311. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5312. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  5313. inline void gcode_M49() {
  5314. ubl.g26_debug_flag ^= true;
  5315. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  5316. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  5317. }
  5318. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  5319. /**
  5320. * M75: Start print timer
  5321. */
  5322. inline void gcode_M75() { print_job_timer.start(); }
  5323. /**
  5324. * M76: Pause print timer
  5325. */
  5326. inline void gcode_M76() { print_job_timer.pause(); }
  5327. /**
  5328. * M77: Stop print timer
  5329. */
  5330. inline void gcode_M77() { print_job_timer.stop(); }
  5331. #if ENABLED(PRINTCOUNTER)
  5332. /**
  5333. * M78: Show print statistics
  5334. */
  5335. inline void gcode_M78() {
  5336. // "M78 S78" will reset the statistics
  5337. if (code_seen('S') && code_value_int() == 78)
  5338. print_job_timer.initStats();
  5339. else
  5340. print_job_timer.showStats();
  5341. }
  5342. #endif
  5343. /**
  5344. * M104: Set hot end temperature
  5345. */
  5346. inline void gcode_M104() {
  5347. if (get_target_extruder_from_command(104)) return;
  5348. if (DEBUGGING(DRYRUN)) return;
  5349. #if ENABLED(SINGLENOZZLE)
  5350. if (target_extruder != active_extruder) return;
  5351. #endif
  5352. if (code_seen('S')) {
  5353. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5354. #if ENABLED(DUAL_X_CARRIAGE)
  5355. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5356. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5357. #endif
  5358. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5359. /**
  5360. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  5361. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  5362. * standby mode, for instance in a dual extruder setup, without affecting
  5363. * the running print timer.
  5364. */
  5365. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  5366. print_job_timer.stop();
  5367. LCD_MESSAGEPGM(WELCOME_MSG);
  5368. }
  5369. #endif
  5370. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5371. }
  5372. #if ENABLED(AUTOTEMP)
  5373. planner.autotemp_M104_M109();
  5374. #endif
  5375. }
  5376. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5377. void print_heaterstates() {
  5378. #if HAS_TEMP_HOTEND
  5379. SERIAL_PROTOCOLPGM(" T:");
  5380. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  5381. SERIAL_PROTOCOLPGM(" /");
  5382. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  5383. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5384. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  5385. SERIAL_PROTOCOLCHAR(')');
  5386. #endif
  5387. #endif
  5388. #if HAS_TEMP_BED
  5389. SERIAL_PROTOCOLPGM(" B:");
  5390. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  5391. SERIAL_PROTOCOLPGM(" /");
  5392. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  5393. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5394. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  5395. SERIAL_PROTOCOLCHAR(')');
  5396. #endif
  5397. #endif
  5398. #if HOTENDS > 1
  5399. HOTEND_LOOP() {
  5400. SERIAL_PROTOCOLPAIR(" T", e);
  5401. SERIAL_PROTOCOLCHAR(':');
  5402. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  5403. SERIAL_PROTOCOLPGM(" /");
  5404. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  5405. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5406. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  5407. SERIAL_PROTOCOLCHAR(')');
  5408. #endif
  5409. }
  5410. #endif
  5411. SERIAL_PROTOCOLPGM(" @:");
  5412. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  5413. #if HAS_TEMP_BED
  5414. SERIAL_PROTOCOLPGM(" B@:");
  5415. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  5416. #endif
  5417. #if HOTENDS > 1
  5418. HOTEND_LOOP() {
  5419. SERIAL_PROTOCOLPAIR(" @", e);
  5420. SERIAL_PROTOCOLCHAR(':');
  5421. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  5422. }
  5423. #endif
  5424. }
  5425. #endif
  5426. /**
  5427. * M105: Read hot end and bed temperature
  5428. */
  5429. inline void gcode_M105() {
  5430. if (get_target_extruder_from_command(105)) return;
  5431. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5432. SERIAL_PROTOCOLPGM(MSG_OK);
  5433. print_heaterstates();
  5434. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  5435. SERIAL_ERROR_START;
  5436. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  5437. #endif
  5438. SERIAL_EOL;
  5439. }
  5440. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  5441. static uint8_t auto_report_temp_interval;
  5442. static millis_t next_temp_report_ms;
  5443. /**
  5444. * M155: Set temperature auto-report interval. M155 S<seconds>
  5445. */
  5446. inline void gcode_M155() {
  5447. if (code_seen('S')) {
  5448. auto_report_temp_interval = code_value_byte();
  5449. NOMORE(auto_report_temp_interval, 60);
  5450. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5451. }
  5452. }
  5453. inline void auto_report_temperatures() {
  5454. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  5455. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5456. print_heaterstates();
  5457. SERIAL_EOL;
  5458. }
  5459. }
  5460. #endif // AUTO_REPORT_TEMPERATURES
  5461. #if FAN_COUNT > 0
  5462. /**
  5463. * M106: Set Fan Speed
  5464. *
  5465. * S<int> Speed between 0-255
  5466. * P<index> Fan index, if more than one fan
  5467. */
  5468. inline void gcode_M106() {
  5469. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  5470. p = code_seen('P') ? code_value_ushort() : 0;
  5471. NOMORE(s, 255);
  5472. if (p < FAN_COUNT) fanSpeeds[p] = s;
  5473. }
  5474. /**
  5475. * M107: Fan Off
  5476. */
  5477. inline void gcode_M107() {
  5478. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  5479. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  5480. }
  5481. #endif // FAN_COUNT > 0
  5482. #if DISABLED(EMERGENCY_PARSER)
  5483. /**
  5484. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  5485. */
  5486. inline void gcode_M108() { wait_for_heatup = false; }
  5487. /**
  5488. * M112: Emergency Stop
  5489. */
  5490. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  5491. /**
  5492. * M410: Quickstop - Abort all planned moves
  5493. *
  5494. * This will stop the carriages mid-move, so most likely they
  5495. * will be out of sync with the stepper position after this.
  5496. */
  5497. inline void gcode_M410() { quickstop_stepper(); }
  5498. #endif
  5499. /**
  5500. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  5501. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  5502. */
  5503. #ifndef MIN_COOLING_SLOPE_DEG
  5504. #define MIN_COOLING_SLOPE_DEG 1.50
  5505. #endif
  5506. #ifndef MIN_COOLING_SLOPE_TIME
  5507. #define MIN_COOLING_SLOPE_TIME 60
  5508. #endif
  5509. inline void gcode_M109() {
  5510. if (get_target_extruder_from_command(109)) return;
  5511. if (DEBUGGING(DRYRUN)) return;
  5512. #if ENABLED(SINGLENOZZLE)
  5513. if (target_extruder != active_extruder) return;
  5514. #endif
  5515. const bool no_wait_for_cooling = code_seen('S');
  5516. if (no_wait_for_cooling || code_seen('R')) {
  5517. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5518. #if ENABLED(DUAL_X_CARRIAGE)
  5519. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5520. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5521. #endif
  5522. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5523. /**
  5524. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  5525. * standby mode, (e.g., in a dual extruder setup) without affecting
  5526. * the running print timer.
  5527. */
  5528. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP) / 2) {
  5529. print_job_timer.stop();
  5530. LCD_MESSAGEPGM(WELCOME_MSG);
  5531. }
  5532. else
  5533. print_job_timer.start();
  5534. #endif
  5535. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5536. }
  5537. else return;
  5538. #if ENABLED(AUTOTEMP)
  5539. planner.autotemp_M104_M109();
  5540. #endif
  5541. #if TEMP_RESIDENCY_TIME > 0
  5542. millis_t residency_start_ms = 0;
  5543. // Loop until the temperature has stabilized
  5544. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  5545. #else
  5546. // Loop until the temperature is very close target
  5547. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  5548. #endif
  5549. float target_temp = -1.0, old_temp = 9999.0;
  5550. bool wants_to_cool = false;
  5551. wait_for_heatup = true;
  5552. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5553. KEEPALIVE_STATE(NOT_BUSY);
  5554. #if ENABLED(PRINTER_EVENT_LEDS)
  5555. const float start_temp = thermalManager.degHotend(target_extruder);
  5556. uint8_t old_blue = 0;
  5557. #endif
  5558. do {
  5559. // Target temperature might be changed during the loop
  5560. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  5561. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  5562. target_temp = thermalManager.degTargetHotend(target_extruder);
  5563. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5564. if (no_wait_for_cooling && wants_to_cool) break;
  5565. }
  5566. now = millis();
  5567. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  5568. next_temp_ms = now + 1000UL;
  5569. print_heaterstates();
  5570. #if TEMP_RESIDENCY_TIME > 0
  5571. SERIAL_PROTOCOLPGM(" W:");
  5572. if (residency_start_ms) {
  5573. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5574. SERIAL_PROTOCOLLN(rem);
  5575. }
  5576. else {
  5577. SERIAL_PROTOCOLLNPGM("?");
  5578. }
  5579. #else
  5580. SERIAL_EOL;
  5581. #endif
  5582. }
  5583. idle();
  5584. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5585. const float temp = thermalManager.degHotend(target_extruder);
  5586. #if ENABLED(PRINTER_EVENT_LEDS)
  5587. // Gradually change LED strip from violet to red as nozzle heats up
  5588. if (!wants_to_cool) {
  5589. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  5590. if (blue != old_blue) set_led_color(255, 0, (old_blue = blue));
  5591. }
  5592. #endif
  5593. #if TEMP_RESIDENCY_TIME > 0
  5594. const float temp_diff = fabs(target_temp - temp);
  5595. if (!residency_start_ms) {
  5596. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  5597. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  5598. }
  5599. else if (temp_diff > TEMP_HYSTERESIS) {
  5600. // Restart the timer whenever the temperature falls outside the hysteresis.
  5601. residency_start_ms = now;
  5602. }
  5603. #endif
  5604. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  5605. if (wants_to_cool) {
  5606. // break after MIN_COOLING_SLOPE_TIME seconds
  5607. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  5608. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5609. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  5610. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  5611. old_temp = temp;
  5612. }
  5613. }
  5614. } while (wait_for_heatup && TEMP_CONDITIONS);
  5615. if (wait_for_heatup) {
  5616. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  5617. #if ENABLED(PRINTER_EVENT_LEDS)
  5618. #if ENABLED(RGBW_LED)
  5619. set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
  5620. #else
  5621. set_led_color(255, 255, 255); // Set LEDs All On
  5622. #endif
  5623. #endif
  5624. }
  5625. KEEPALIVE_STATE(IN_HANDLER);
  5626. }
  5627. #if HAS_TEMP_BED
  5628. #ifndef MIN_COOLING_SLOPE_DEG_BED
  5629. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  5630. #endif
  5631. #ifndef MIN_COOLING_SLOPE_TIME_BED
  5632. #define MIN_COOLING_SLOPE_TIME_BED 60
  5633. #endif
  5634. /**
  5635. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  5636. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  5637. */
  5638. inline void gcode_M190() {
  5639. if (DEBUGGING(DRYRUN)) return;
  5640. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5641. const bool no_wait_for_cooling = code_seen('S');
  5642. if (no_wait_for_cooling || code_seen('R')) {
  5643. thermalManager.setTargetBed(code_value_temp_abs());
  5644. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5645. if (code_value_temp_abs() > BED_MINTEMP)
  5646. print_job_timer.start();
  5647. #endif
  5648. }
  5649. else return;
  5650. #if TEMP_BED_RESIDENCY_TIME > 0
  5651. millis_t residency_start_ms = 0;
  5652. // Loop until the temperature has stabilized
  5653. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5654. #else
  5655. // Loop until the temperature is very close target
  5656. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5657. #endif
  5658. float target_temp = -1.0, old_temp = 9999.0;
  5659. bool wants_to_cool = false;
  5660. wait_for_heatup = true;
  5661. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5662. KEEPALIVE_STATE(NOT_BUSY);
  5663. target_extruder = active_extruder; // for print_heaterstates
  5664. #if ENABLED(PRINTER_EVENT_LEDS)
  5665. const float start_temp = thermalManager.degBed();
  5666. uint8_t old_red = 255;
  5667. #endif
  5668. do {
  5669. // Target temperature might be changed during the loop
  5670. if (target_temp != thermalManager.degTargetBed()) {
  5671. wants_to_cool = thermalManager.isCoolingBed();
  5672. target_temp = thermalManager.degTargetBed();
  5673. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5674. if (no_wait_for_cooling && wants_to_cool) break;
  5675. }
  5676. now = millis();
  5677. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5678. next_temp_ms = now + 1000UL;
  5679. print_heaterstates();
  5680. #if TEMP_BED_RESIDENCY_TIME > 0
  5681. SERIAL_PROTOCOLPGM(" W:");
  5682. if (residency_start_ms) {
  5683. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5684. SERIAL_PROTOCOLLN(rem);
  5685. }
  5686. else {
  5687. SERIAL_PROTOCOLLNPGM("?");
  5688. }
  5689. #else
  5690. SERIAL_EOL;
  5691. #endif
  5692. }
  5693. idle();
  5694. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5695. const float temp = thermalManager.degBed();
  5696. #if ENABLED(PRINTER_EVENT_LEDS)
  5697. // Gradually change LED strip from blue to violet as bed heats up
  5698. if (!wants_to_cool) {
  5699. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  5700. if (red != old_red) set_led_color((old_red = red), 0, 255);
  5701. }
  5702. }
  5703. #endif
  5704. #if TEMP_BED_RESIDENCY_TIME > 0
  5705. const float temp_diff = fabs(target_temp - temp);
  5706. if (!residency_start_ms) {
  5707. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5708. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5709. }
  5710. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5711. // Restart the timer whenever the temperature falls outside the hysteresis.
  5712. residency_start_ms = now;
  5713. }
  5714. #endif // TEMP_BED_RESIDENCY_TIME > 0
  5715. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5716. if (wants_to_cool) {
  5717. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  5718. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5719. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5720. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5721. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5722. old_temp = temp;
  5723. }
  5724. }
  5725. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5726. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5727. KEEPALIVE_STATE(IN_HANDLER);
  5728. }
  5729. #endif // HAS_TEMP_BED
  5730. /**
  5731. * M110: Set Current Line Number
  5732. */
  5733. inline void gcode_M110() {
  5734. if (code_seen('N')) gcode_LastN = code_value_long();
  5735. }
  5736. /**
  5737. * M111: Set the debug level
  5738. */
  5739. inline void gcode_M111() {
  5740. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t)DEBUG_NONE;
  5741. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5742. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5743. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5744. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5745. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5746. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5747. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5748. #endif
  5749. const static char* const debug_strings[] PROGMEM = {
  5750. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5751. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5752. str_debug_32
  5753. #endif
  5754. };
  5755. SERIAL_ECHO_START;
  5756. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  5757. if (marlin_debug_flags) {
  5758. uint8_t comma = 0;
  5759. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  5760. if (TEST(marlin_debug_flags, i)) {
  5761. if (comma++) SERIAL_CHAR(',');
  5762. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  5763. }
  5764. }
  5765. }
  5766. else {
  5767. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  5768. }
  5769. SERIAL_EOL;
  5770. }
  5771. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5772. /**
  5773. * M113: Get or set Host Keepalive interval (0 to disable)
  5774. *
  5775. * S<seconds> Optional. Set the keepalive interval.
  5776. */
  5777. inline void gcode_M113() {
  5778. if (code_seen('S')) {
  5779. host_keepalive_interval = code_value_byte();
  5780. NOMORE(host_keepalive_interval, 60);
  5781. }
  5782. else {
  5783. SERIAL_ECHO_START;
  5784. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5785. }
  5786. }
  5787. #endif
  5788. #if ENABLED(BARICUDA)
  5789. #if HAS_HEATER_1
  5790. /**
  5791. * M126: Heater 1 valve open
  5792. */
  5793. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  5794. /**
  5795. * M127: Heater 1 valve close
  5796. */
  5797. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  5798. #endif
  5799. #if HAS_HEATER_2
  5800. /**
  5801. * M128: Heater 2 valve open
  5802. */
  5803. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  5804. /**
  5805. * M129: Heater 2 valve close
  5806. */
  5807. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  5808. #endif
  5809. #endif //BARICUDA
  5810. /**
  5811. * M140: Set bed temperature
  5812. */
  5813. inline void gcode_M140() {
  5814. if (DEBUGGING(DRYRUN)) return;
  5815. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  5816. }
  5817. #if ENABLED(ULTIPANEL)
  5818. /**
  5819. * M145: Set the heatup state for a material in the LCD menu
  5820. *
  5821. * S<material> (0=PLA, 1=ABS)
  5822. * H<hotend temp>
  5823. * B<bed temp>
  5824. * F<fan speed>
  5825. */
  5826. inline void gcode_M145() {
  5827. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  5828. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  5829. SERIAL_ERROR_START;
  5830. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  5831. }
  5832. else {
  5833. int v;
  5834. if (code_seen('H')) {
  5835. v = code_value_int();
  5836. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  5837. }
  5838. if (code_seen('F')) {
  5839. v = code_value_int();
  5840. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  5841. }
  5842. #if TEMP_SENSOR_BED != 0
  5843. if (code_seen('B')) {
  5844. v = code_value_int();
  5845. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5846. }
  5847. #endif
  5848. }
  5849. }
  5850. #endif // ULTIPANEL
  5851. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5852. /**
  5853. * M149: Set temperature units
  5854. */
  5855. inline void gcode_M149() {
  5856. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5857. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5858. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5859. }
  5860. #endif
  5861. #if HAS_POWER_SWITCH
  5862. /**
  5863. * M80: Turn on Power Supply
  5864. */
  5865. inline void gcode_M80() {
  5866. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5867. /**
  5868. * If you have a switch on suicide pin, this is useful
  5869. * if you want to start another print with suicide feature after
  5870. * a print without suicide...
  5871. */
  5872. #if HAS_SUICIDE
  5873. OUT_WRITE(SUICIDE_PIN, HIGH);
  5874. #endif
  5875. #if ENABLED(HAVE_TMC2130)
  5876. delay(100);
  5877. tmc2130_init(); // Settings only stick when the driver has power
  5878. #endif
  5879. #if ENABLED(ULTIPANEL)
  5880. powersupply = true;
  5881. LCD_MESSAGEPGM(WELCOME_MSG);
  5882. #endif
  5883. }
  5884. #endif // HAS_POWER_SWITCH
  5885. /**
  5886. * M81: Turn off Power, including Power Supply, if there is one.
  5887. *
  5888. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5889. */
  5890. inline void gcode_M81() {
  5891. thermalManager.disable_all_heaters();
  5892. stepper.finish_and_disable();
  5893. #if FAN_COUNT > 0
  5894. #if FAN_COUNT > 1
  5895. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5896. #else
  5897. fanSpeeds[0] = 0;
  5898. #endif
  5899. #endif
  5900. safe_delay(1000); // Wait 1 second before switching off
  5901. #if HAS_SUICIDE
  5902. stepper.synchronize();
  5903. suicide();
  5904. #elif HAS_POWER_SWITCH
  5905. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5906. #endif
  5907. #if ENABLED(ULTIPANEL)
  5908. #if HAS_POWER_SWITCH
  5909. powersupply = false;
  5910. #endif
  5911. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  5912. #endif
  5913. }
  5914. /**
  5915. * M82: Set E codes absolute (default)
  5916. */
  5917. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  5918. /**
  5919. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  5920. */
  5921. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  5922. /**
  5923. * M18, M84: Disable all stepper motors
  5924. */
  5925. inline void gcode_M18_M84() {
  5926. if (code_seen('S')) {
  5927. stepper_inactive_time = code_value_millis_from_seconds();
  5928. }
  5929. else {
  5930. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  5931. if (all_axis) {
  5932. stepper.finish_and_disable();
  5933. }
  5934. else {
  5935. stepper.synchronize();
  5936. if (code_seen('X')) disable_X();
  5937. if (code_seen('Y')) disable_Y();
  5938. if (code_seen('Z')) disable_Z();
  5939. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5940. if (code_seen('E')) disable_e_steppers();
  5941. #endif
  5942. }
  5943. }
  5944. }
  5945. /**
  5946. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  5947. */
  5948. inline void gcode_M85() {
  5949. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  5950. }
  5951. /**
  5952. * Multi-stepper support for M92, M201, M203
  5953. */
  5954. #if ENABLED(DISTINCT_E_FACTORS)
  5955. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  5956. #define TARGET_EXTRUDER target_extruder
  5957. #else
  5958. #define GET_TARGET_EXTRUDER(CMD) NOOP
  5959. #define TARGET_EXTRUDER 0
  5960. #endif
  5961. /**
  5962. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  5963. * (Follows the same syntax as G92)
  5964. *
  5965. * With multiple extruders use T to specify which one.
  5966. */
  5967. inline void gcode_M92() {
  5968. GET_TARGET_EXTRUDER(92);
  5969. LOOP_XYZE(i) {
  5970. if (code_seen(axis_codes[i])) {
  5971. if (i == E_AXIS) {
  5972. const float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  5973. if (value < 20.0) {
  5974. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  5975. planner.max_jerk[E_AXIS] *= factor;
  5976. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  5977. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  5978. }
  5979. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  5980. }
  5981. else {
  5982. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  5983. }
  5984. }
  5985. }
  5986. planner.refresh_positioning();
  5987. }
  5988. /**
  5989. * Output the current position to serial
  5990. */
  5991. static void report_current_position() {
  5992. SERIAL_PROTOCOLPGM("X:");
  5993. SERIAL_PROTOCOL(current_position[X_AXIS]);
  5994. SERIAL_PROTOCOLPGM(" Y:");
  5995. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  5996. SERIAL_PROTOCOLPGM(" Z:");
  5997. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  5998. SERIAL_PROTOCOLPGM(" E:");
  5999. SERIAL_PROTOCOL(current_position[E_AXIS]);
  6000. stepper.report_positions();
  6001. #if IS_SCARA
  6002. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  6003. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  6004. SERIAL_EOL;
  6005. #endif
  6006. }
  6007. /**
  6008. * M114: Output current position to serial port
  6009. */
  6010. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  6011. /**
  6012. * M115: Capabilities string
  6013. */
  6014. inline void gcode_M115() {
  6015. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  6016. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  6017. // EEPROM (M500, M501)
  6018. #if ENABLED(EEPROM_SETTINGS)
  6019. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  6020. #else
  6021. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  6022. #endif
  6023. // AUTOREPORT_TEMP (M155)
  6024. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  6025. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  6026. #else
  6027. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  6028. #endif
  6029. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  6030. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  6031. // AUTOLEVEL (G29)
  6032. #if HAS_ABL
  6033. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  6034. #else
  6035. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  6036. #endif
  6037. // Z_PROBE (G30)
  6038. #if HAS_BED_PROBE
  6039. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  6040. #else
  6041. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  6042. #endif
  6043. // MESH_REPORT (M420 V)
  6044. #if PLANNER_LEVELING
  6045. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  6046. #else
  6047. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  6048. #endif
  6049. // SOFTWARE_POWER (G30)
  6050. #if HAS_POWER_SWITCH
  6051. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  6052. #else
  6053. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  6054. #endif
  6055. // TOGGLE_LIGHTS (M355)
  6056. #if HAS_CASE_LIGHT
  6057. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  6058. #else
  6059. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  6060. #endif
  6061. // EMERGENCY_PARSER (M108, M112, M410)
  6062. #if ENABLED(EMERGENCY_PARSER)
  6063. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  6064. #else
  6065. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  6066. #endif
  6067. #endif // EXTENDED_CAPABILITIES_REPORT
  6068. }
  6069. /**
  6070. * M117: Set LCD Status Message
  6071. */
  6072. inline void gcode_M117() {
  6073. lcd_setstatus(current_command_args);
  6074. }
  6075. /**
  6076. * M119: Output endstop states to serial output
  6077. */
  6078. inline void gcode_M119() { endstops.M119(); }
  6079. /**
  6080. * M120: Enable endstops and set non-homing endstop state to "enabled"
  6081. */
  6082. inline void gcode_M120() { endstops.enable_globally(true); }
  6083. /**
  6084. * M121: Disable endstops and set non-homing endstop state to "disabled"
  6085. */
  6086. inline void gcode_M121() { endstops.enable_globally(false); }
  6087. #if ENABLED(PARK_HEAD_ON_PAUSE)
  6088. /**
  6089. * M125: Store current position and move to filament change position.
  6090. * Called on pause (by M25) to prevent material leaking onto the
  6091. * object. On resume (M24) the head will be moved back and the
  6092. * print will resume.
  6093. *
  6094. * If Marlin is compiled without SD Card support, M125 can be
  6095. * used directly to pause the print and move to park position,
  6096. * resuming with a button click or M108.
  6097. *
  6098. * L = override retract length
  6099. * X = override X
  6100. * Y = override Y
  6101. * Z = override Z raise
  6102. */
  6103. inline void gcode_M125() {
  6104. if (move_away_flag) return; // already paused
  6105. const bool job_running = print_job_timer.isRunning();
  6106. // there are blocks after this one, or sd printing
  6107. move_away_flag = job_running || planner.blocks_queued()
  6108. #if ENABLED(SDSUPPORT)
  6109. || card.sdprinting
  6110. #endif
  6111. ;
  6112. if (!move_away_flag) return; // nothing to pause
  6113. // M125 can be used to pause a print too
  6114. #if ENABLED(SDSUPPORT)
  6115. card.pauseSDPrint();
  6116. #endif
  6117. print_job_timer.pause();
  6118. // Save current position
  6119. COPY(resume_position, current_position);
  6120. set_destination_to_current();
  6121. // Initial retract before move to filament change position
  6122. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6123. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6124. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6125. #endif
  6126. ;
  6127. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6128. // Lift Z axis
  6129. const float z_lift = code_seen('Z') ? code_value_linear_units() :
  6130. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6131. FILAMENT_CHANGE_Z_ADD
  6132. #else
  6133. 0
  6134. #endif
  6135. ;
  6136. if (z_lift > 0) {
  6137. destination[Z_AXIS] += z_lift;
  6138. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6139. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6140. }
  6141. // Move XY axes to filament change position or given position
  6142. destination[X_AXIS] = code_seen('X') ? code_value_linear_units() : 0
  6143. #ifdef FILAMENT_CHANGE_X_POS
  6144. + FILAMENT_CHANGE_X_POS
  6145. #endif
  6146. ;
  6147. destination[Y_AXIS] = code_seen('Y') ? code_value_linear_units() : 0
  6148. #ifdef FILAMENT_CHANGE_Y_POS
  6149. + FILAMENT_CHANGE_Y_POS
  6150. #endif
  6151. ;
  6152. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6153. if (active_extruder > 0) {
  6154. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  6155. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  6156. }
  6157. #endif
  6158. clamp_to_software_endstops(destination);
  6159. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6160. set_current_to_destination();
  6161. stepper.synchronize();
  6162. disable_e_steppers();
  6163. #if DISABLED(SDSUPPORT)
  6164. // Wait for lcd click or M108
  6165. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6166. wait_for_user = true;
  6167. while (wait_for_user) idle();
  6168. KEEPALIVE_STATE(IN_HANDLER);
  6169. // Return to print position and continue
  6170. move_back_on_resume();
  6171. if (job_running) print_job_timer.start();
  6172. move_away_flag = false;
  6173. #endif
  6174. }
  6175. #endif // PARK_HEAD_ON_PAUSE
  6176. #if HAS_COLOR_LEDS
  6177. /**
  6178. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  6179. *
  6180. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  6181. *
  6182. * Examples:
  6183. *
  6184. * M150 R255 ; Turn LED red
  6185. * M150 R255 U127 ; Turn LED orange (PWM only)
  6186. * M150 ; Turn LED off
  6187. * M150 R U B ; Turn LED white
  6188. * M150 W ; Turn LED white using a white LED
  6189. *
  6190. */
  6191. inline void gcode_M150() {
  6192. set_led_color(
  6193. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6194. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6195. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  6196. #if ENABLED(RGBW_LED)
  6197. , code_seen('W') ? (code_has_value() ? code_value_byte() : 255) : 0
  6198. #endif
  6199. );
  6200. }
  6201. #endif // BLINKM || RGB_LED
  6202. /**
  6203. * M200: Set filament diameter and set E axis units to cubic units
  6204. *
  6205. * T<extruder> - Optional extruder number. Current extruder if omitted.
  6206. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  6207. */
  6208. inline void gcode_M200() {
  6209. if (get_target_extruder_from_command(200)) return;
  6210. if (code_seen('D')) {
  6211. // setting any extruder filament size disables volumetric on the assumption that
  6212. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6213. // for all extruders
  6214. volumetric_enabled = (code_value_linear_units() != 0.0);
  6215. if (volumetric_enabled) {
  6216. filament_size[target_extruder] = code_value_linear_units();
  6217. // make sure all extruders have some sane value for the filament size
  6218. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  6219. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  6220. }
  6221. }
  6222. calculate_volumetric_multipliers();
  6223. }
  6224. /**
  6225. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  6226. *
  6227. * With multiple extruders use T to specify which one.
  6228. */
  6229. inline void gcode_M201() {
  6230. GET_TARGET_EXTRUDER(201);
  6231. LOOP_XYZE(i) {
  6232. if (code_seen(axis_codes[i])) {
  6233. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6234. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units((AxisEnum)a);
  6235. }
  6236. }
  6237. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6238. planner.reset_acceleration_rates();
  6239. }
  6240. #if 0 // Not used for Sprinter/grbl gen6
  6241. inline void gcode_M202() {
  6242. LOOP_XYZE(i) {
  6243. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  6244. }
  6245. }
  6246. #endif
  6247. /**
  6248. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  6249. *
  6250. * With multiple extruders use T to specify which one.
  6251. */
  6252. inline void gcode_M203() {
  6253. GET_TARGET_EXTRUDER(203);
  6254. LOOP_XYZE(i)
  6255. if (code_seen(axis_codes[i])) {
  6256. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6257. planner.max_feedrate_mm_s[a] = code_value_axis_units((AxisEnum)a);
  6258. }
  6259. }
  6260. /**
  6261. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  6262. *
  6263. * P = Printing moves
  6264. * R = Retract only (no X, Y, Z) moves
  6265. * T = Travel (non printing) moves
  6266. *
  6267. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  6268. */
  6269. inline void gcode_M204() {
  6270. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  6271. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  6272. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  6273. }
  6274. if (code_seen('P')) {
  6275. planner.acceleration = code_value_linear_units();
  6276. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  6277. }
  6278. if (code_seen('R')) {
  6279. planner.retract_acceleration = code_value_linear_units();
  6280. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  6281. }
  6282. if (code_seen('T')) {
  6283. planner.travel_acceleration = code_value_linear_units();
  6284. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  6285. }
  6286. }
  6287. /**
  6288. * M205: Set Advanced Settings
  6289. *
  6290. * S = Min Feed Rate (units/s)
  6291. * T = Min Travel Feed Rate (units/s)
  6292. * B = Min Segment Time (µs)
  6293. * X = Max X Jerk (units/sec^2)
  6294. * Y = Max Y Jerk (units/sec^2)
  6295. * Z = Max Z Jerk (units/sec^2)
  6296. * E = Max E Jerk (units/sec^2)
  6297. */
  6298. inline void gcode_M205() {
  6299. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  6300. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  6301. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  6302. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_linear_units();
  6303. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_linear_units();
  6304. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_linear_units();
  6305. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_linear_units();
  6306. }
  6307. #if HAS_M206_COMMAND
  6308. /**
  6309. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  6310. */
  6311. inline void gcode_M206() {
  6312. LOOP_XYZ(i)
  6313. if (code_seen(axis_codes[i]))
  6314. set_home_offset((AxisEnum)i, code_value_linear_units());
  6315. #if ENABLED(MORGAN_SCARA)
  6316. if (code_seen('T')) set_home_offset(A_AXIS, code_value_linear_units()); // Theta
  6317. if (code_seen('P')) set_home_offset(B_AXIS, code_value_linear_units()); // Psi
  6318. #endif
  6319. SYNC_PLAN_POSITION_KINEMATIC();
  6320. report_current_position();
  6321. }
  6322. #endif // HAS_M206_COMMAND
  6323. #if ENABLED(DELTA)
  6324. /**
  6325. * M665: Set delta configurations
  6326. *
  6327. * H = diagonal rod // AC-version
  6328. * L = diagonal rod
  6329. * R = delta radius
  6330. * S = segments per second
  6331. * A = Alpha (Tower 1) diagonal rod trim
  6332. * B = Beta (Tower 2) diagonal rod trim
  6333. * C = Gamma (Tower 3) diagonal rod trim
  6334. */
  6335. inline void gcode_M665() {
  6336. if (code_seen('H')) {
  6337. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6338. current_position[Z_AXIS] += code_value_linear_units() - DELTA_HEIGHT - home_offset[Z_AXIS];
  6339. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6340. update_software_endstops(Z_AXIS);
  6341. }
  6342. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  6343. if (code_seen('R')) delta_radius = code_value_linear_units();
  6344. if (code_seen('S')) delta_segments_per_second = code_value_float();
  6345. if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units();
  6346. if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units();
  6347. if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units();
  6348. if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  6349. if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  6350. if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units();
  6351. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  6352. }
  6353. /**
  6354. * M666: Set delta endstop adjustment
  6355. */
  6356. inline void gcode_M666() {
  6357. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6358. if (DEBUGGING(LEVELING)) {
  6359. SERIAL_ECHOLNPGM(">>> gcode_M666");
  6360. }
  6361. #endif
  6362. LOOP_XYZ(i) {
  6363. if (code_seen(axis_codes[i])) {
  6364. endstop_adj[i] = code_value_linear_units();
  6365. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6366. if (DEBUGGING(LEVELING)) {
  6367. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  6368. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  6369. }
  6370. #endif
  6371. }
  6372. }
  6373. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6374. if (DEBUGGING(LEVELING)) {
  6375. SERIAL_ECHOLNPGM("<<< gcode_M666");
  6376. }
  6377. #endif
  6378. }
  6379. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  6380. /**
  6381. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  6382. */
  6383. inline void gcode_M666() {
  6384. if (code_seen('Z')) z_endstop_adj = code_value_linear_units();
  6385. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  6386. }
  6387. #endif // !DELTA && Z_DUAL_ENDSTOPS
  6388. #if ENABLED(FWRETRACT)
  6389. /**
  6390. * M207: Set firmware retraction values
  6391. *
  6392. * S[+units] retract_length
  6393. * W[+units] retract_length_swap (multi-extruder)
  6394. * F[units/min] retract_feedrate_mm_s
  6395. * Z[units] retract_zlift
  6396. */
  6397. inline void gcode_M207() {
  6398. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  6399. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6400. if (code_seen('Z')) retract_zlift = code_value_linear_units();
  6401. #if EXTRUDERS > 1
  6402. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  6403. #endif
  6404. }
  6405. /**
  6406. * M208: Set firmware un-retraction values
  6407. *
  6408. * S[+units] retract_recover_length (in addition to M207 S*)
  6409. * W[+units] retract_recover_length_swap (multi-extruder)
  6410. * F[units/min] retract_recover_feedrate_mm_s
  6411. */
  6412. inline void gcode_M208() {
  6413. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  6414. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6415. #if EXTRUDERS > 1
  6416. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  6417. #endif
  6418. }
  6419. /**
  6420. * M209: Enable automatic retract (M209 S1)
  6421. * For slicers that don't support G10/11, reversed extrude-only
  6422. * moves will be classified as retraction.
  6423. */
  6424. inline void gcode_M209() {
  6425. if (code_seen('S')) {
  6426. autoretract_enabled = code_value_bool();
  6427. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  6428. }
  6429. }
  6430. #endif // FWRETRACT
  6431. /**
  6432. * M211: Enable, Disable, and/or Report software endstops
  6433. *
  6434. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  6435. */
  6436. inline void gcode_M211() {
  6437. SERIAL_ECHO_START;
  6438. #if HAS_SOFTWARE_ENDSTOPS
  6439. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  6440. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6441. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  6442. #else
  6443. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6444. SERIAL_ECHOPGM(MSG_OFF);
  6445. #endif
  6446. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  6447. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  6448. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  6449. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  6450. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  6451. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  6452. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  6453. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  6454. }
  6455. #if HOTENDS > 1
  6456. /**
  6457. * M218 - set hotend offset (in linear units)
  6458. *
  6459. * T<tool>
  6460. * X<xoffset>
  6461. * Y<yoffset>
  6462. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  6463. */
  6464. inline void gcode_M218() {
  6465. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  6466. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_linear_units();
  6467. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_linear_units();
  6468. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6469. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_linear_units();
  6470. #endif
  6471. SERIAL_ECHO_START;
  6472. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6473. HOTEND_LOOP() {
  6474. SERIAL_CHAR(' ');
  6475. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  6476. SERIAL_CHAR(',');
  6477. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  6478. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6479. SERIAL_CHAR(',');
  6480. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  6481. #endif
  6482. }
  6483. SERIAL_EOL;
  6484. }
  6485. #endif // HOTENDS > 1
  6486. /**
  6487. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  6488. */
  6489. inline void gcode_M220() {
  6490. if (code_seen('S')) feedrate_percentage = code_value_int();
  6491. }
  6492. /**
  6493. * M221: Set extrusion percentage (M221 T0 S95)
  6494. */
  6495. inline void gcode_M221() {
  6496. if (get_target_extruder_from_command(221)) return;
  6497. if (code_seen('S'))
  6498. flow_percentage[target_extruder] = code_value_int();
  6499. }
  6500. /**
  6501. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  6502. */
  6503. inline void gcode_M226() {
  6504. if (code_seen('P')) {
  6505. int pin_number = code_value_int(),
  6506. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  6507. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  6508. int target = LOW;
  6509. stepper.synchronize();
  6510. pinMode(pin_number, INPUT);
  6511. switch (pin_state) {
  6512. case 1:
  6513. target = HIGH;
  6514. break;
  6515. case 0:
  6516. target = LOW;
  6517. break;
  6518. case -1:
  6519. target = !digitalRead(pin_number);
  6520. break;
  6521. }
  6522. while (digitalRead(pin_number) != target) idle();
  6523. } // pin_state -1 0 1 && pin_number > -1
  6524. } // code_seen('P')
  6525. }
  6526. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6527. /**
  6528. * M260: Send data to a I2C slave device
  6529. *
  6530. * This is a PoC, the formating and arguments for the GCODE will
  6531. * change to be more compatible, the current proposal is:
  6532. *
  6533. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  6534. *
  6535. * M260 B<byte-1 value in base 10>
  6536. * M260 B<byte-2 value in base 10>
  6537. * M260 B<byte-3 value in base 10>
  6538. *
  6539. * M260 S1 ; Send the buffered data and reset the buffer
  6540. * M260 R1 ; Reset the buffer without sending data
  6541. *
  6542. */
  6543. inline void gcode_M260() {
  6544. // Set the target address
  6545. if (code_seen('A')) i2c.address(code_value_byte());
  6546. // Add a new byte to the buffer
  6547. if (code_seen('B')) i2c.addbyte(code_value_byte());
  6548. // Flush the buffer to the bus
  6549. if (code_seen('S')) i2c.send();
  6550. // Reset and rewind the buffer
  6551. else if (code_seen('R')) i2c.reset();
  6552. }
  6553. /**
  6554. * M261: Request X bytes from I2C slave device
  6555. *
  6556. * Usage: M261 A<slave device address base 10> B<number of bytes>
  6557. */
  6558. inline void gcode_M261() {
  6559. if (code_seen('A')) i2c.address(code_value_byte());
  6560. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  6561. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  6562. i2c.relay(bytes);
  6563. }
  6564. else {
  6565. SERIAL_ERROR_START;
  6566. SERIAL_ERRORLN("Bad i2c request");
  6567. }
  6568. }
  6569. #endif // EXPERIMENTAL_I2CBUS
  6570. #if HAS_SERVOS
  6571. /**
  6572. * M280: Get or set servo position. P<index> [S<angle>]
  6573. */
  6574. inline void gcode_M280() {
  6575. if (!code_seen('P')) return;
  6576. int servo_index = code_value_int();
  6577. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  6578. if (code_seen('S'))
  6579. MOVE_SERVO(servo_index, code_value_int());
  6580. else {
  6581. SERIAL_ECHO_START;
  6582. SERIAL_ECHOPAIR(" Servo ", servo_index);
  6583. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  6584. }
  6585. }
  6586. else {
  6587. SERIAL_ERROR_START;
  6588. SERIAL_ECHOPAIR("Servo ", servo_index);
  6589. SERIAL_ECHOLNPGM(" out of range");
  6590. }
  6591. }
  6592. #endif // HAS_SERVOS
  6593. #if HAS_BUZZER
  6594. /**
  6595. * M300: Play beep sound S<frequency Hz> P<duration ms>
  6596. */
  6597. inline void gcode_M300() {
  6598. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  6599. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  6600. // Limits the tone duration to 0-5 seconds.
  6601. NOMORE(duration, 5000);
  6602. BUZZ(duration, frequency);
  6603. }
  6604. #endif // HAS_BUZZER
  6605. #if ENABLED(PIDTEMP)
  6606. /**
  6607. * M301: Set PID parameters P I D (and optionally C, L)
  6608. *
  6609. * P[float] Kp term
  6610. * I[float] Ki term (unscaled)
  6611. * D[float] Kd term (unscaled)
  6612. *
  6613. * With PID_EXTRUSION_SCALING:
  6614. *
  6615. * C[float] Kc term
  6616. * L[float] LPQ length
  6617. */
  6618. inline void gcode_M301() {
  6619. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  6620. // default behaviour (omitting E parameter) is to update for extruder 0 only
  6621. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  6622. if (e < HOTENDS) { // catch bad input value
  6623. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  6624. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  6625. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  6626. #if ENABLED(PID_EXTRUSION_SCALING)
  6627. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  6628. if (code_seen('L')) lpq_len = code_value_float();
  6629. NOMORE(lpq_len, LPQ_MAX_LEN);
  6630. #endif
  6631. thermalManager.updatePID();
  6632. SERIAL_ECHO_START;
  6633. #if ENABLED(PID_PARAMS_PER_HOTEND)
  6634. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  6635. #endif // PID_PARAMS_PER_HOTEND
  6636. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  6637. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  6638. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  6639. #if ENABLED(PID_EXTRUSION_SCALING)
  6640. //Kc does not have scaling applied above, or in resetting defaults
  6641. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6642. #endif
  6643. SERIAL_EOL;
  6644. }
  6645. else {
  6646. SERIAL_ERROR_START;
  6647. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6648. }
  6649. }
  6650. #endif // PIDTEMP
  6651. #if ENABLED(PIDTEMPBED)
  6652. inline void gcode_M304() {
  6653. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6654. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6655. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6656. thermalManager.updatePID();
  6657. SERIAL_ECHO_START;
  6658. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6659. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6660. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6661. }
  6662. #endif // PIDTEMPBED
  6663. #if defined(CHDK) || HAS_PHOTOGRAPH
  6664. /**
  6665. * M240: Trigger a camera by emulating a Canon RC-1
  6666. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6667. */
  6668. inline void gcode_M240() {
  6669. #ifdef CHDK
  6670. OUT_WRITE(CHDK, HIGH);
  6671. chdkHigh = millis();
  6672. chdkActive = true;
  6673. #elif HAS_PHOTOGRAPH
  6674. const uint8_t NUM_PULSES = 16;
  6675. const float PULSE_LENGTH = 0.01524;
  6676. for (int i = 0; i < NUM_PULSES; i++) {
  6677. WRITE(PHOTOGRAPH_PIN, HIGH);
  6678. _delay_ms(PULSE_LENGTH);
  6679. WRITE(PHOTOGRAPH_PIN, LOW);
  6680. _delay_ms(PULSE_LENGTH);
  6681. }
  6682. delay(7.33);
  6683. for (int i = 0; i < NUM_PULSES; i++) {
  6684. WRITE(PHOTOGRAPH_PIN, HIGH);
  6685. _delay_ms(PULSE_LENGTH);
  6686. WRITE(PHOTOGRAPH_PIN, LOW);
  6687. _delay_ms(PULSE_LENGTH);
  6688. }
  6689. #endif // !CHDK && HAS_PHOTOGRAPH
  6690. }
  6691. #endif // CHDK || PHOTOGRAPH_PIN
  6692. #if HAS_LCD_CONTRAST
  6693. /**
  6694. * M250: Read and optionally set the LCD contrast
  6695. */
  6696. inline void gcode_M250() {
  6697. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6698. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6699. SERIAL_PROTOCOL(lcd_contrast);
  6700. SERIAL_EOL;
  6701. }
  6702. #endif // HAS_LCD_CONTRAST
  6703. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6704. /**
  6705. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6706. *
  6707. * S<temperature> sets the minimum extrude temperature
  6708. * P<bool> enables (1) or disables (0) cold extrusion
  6709. *
  6710. * Examples:
  6711. *
  6712. * M302 ; report current cold extrusion state
  6713. * M302 P0 ; enable cold extrusion checking
  6714. * M302 P1 ; disables cold extrusion checking
  6715. * M302 S0 ; always allow extrusion (disables checking)
  6716. * M302 S170 ; only allow extrusion above 170
  6717. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6718. */
  6719. inline void gcode_M302() {
  6720. bool seen_S = code_seen('S');
  6721. if (seen_S) {
  6722. thermalManager.extrude_min_temp = code_value_temp_abs();
  6723. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6724. }
  6725. if (code_seen('P'))
  6726. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6727. else if (!seen_S) {
  6728. // Report current state
  6729. SERIAL_ECHO_START;
  6730. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6731. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  6732. SERIAL_ECHOLNPGM("C)");
  6733. }
  6734. }
  6735. #endif // PREVENT_COLD_EXTRUSION
  6736. /**
  6737. * M303: PID relay autotune
  6738. *
  6739. * S<temperature> sets the target temperature. (default 150C)
  6740. * E<extruder> (-1 for the bed) (default 0)
  6741. * C<cycles>
  6742. * U<bool> with a non-zero value will apply the result to current settings
  6743. */
  6744. inline void gcode_M303() {
  6745. #if HAS_PID_HEATING
  6746. int e = code_seen('E') ? code_value_int() : 0;
  6747. int c = code_seen('C') ? code_value_int() : 5;
  6748. bool u = code_seen('U') && code_value_bool();
  6749. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  6750. if (WITHIN(e, 0, HOTENDS - 1))
  6751. target_extruder = e;
  6752. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  6753. thermalManager.PID_autotune(temp, e, c, u);
  6754. KEEPALIVE_STATE(IN_HANDLER);
  6755. #else
  6756. SERIAL_ERROR_START;
  6757. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  6758. #endif
  6759. }
  6760. #if ENABLED(MORGAN_SCARA)
  6761. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  6762. if (IsRunning()) {
  6763. forward_kinematics_SCARA(delta_a, delta_b);
  6764. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  6765. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  6766. destination[Z_AXIS] = current_position[Z_AXIS];
  6767. prepare_move_to_destination();
  6768. return true;
  6769. }
  6770. return false;
  6771. }
  6772. /**
  6773. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  6774. */
  6775. inline bool gcode_M360() {
  6776. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  6777. return SCARA_move_to_cal(0, 120);
  6778. }
  6779. /**
  6780. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  6781. */
  6782. inline bool gcode_M361() {
  6783. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  6784. return SCARA_move_to_cal(90, 130);
  6785. }
  6786. /**
  6787. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  6788. */
  6789. inline bool gcode_M362() {
  6790. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  6791. return SCARA_move_to_cal(60, 180);
  6792. }
  6793. /**
  6794. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  6795. */
  6796. inline bool gcode_M363() {
  6797. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  6798. return SCARA_move_to_cal(50, 90);
  6799. }
  6800. /**
  6801. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  6802. */
  6803. inline bool gcode_M364() {
  6804. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  6805. return SCARA_move_to_cal(45, 135);
  6806. }
  6807. #endif // SCARA
  6808. #if ENABLED(EXT_SOLENOID)
  6809. void enable_solenoid(const uint8_t num) {
  6810. switch (num) {
  6811. case 0:
  6812. OUT_WRITE(SOL0_PIN, HIGH);
  6813. break;
  6814. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6815. case 1:
  6816. OUT_WRITE(SOL1_PIN, HIGH);
  6817. break;
  6818. #endif
  6819. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6820. case 2:
  6821. OUT_WRITE(SOL2_PIN, HIGH);
  6822. break;
  6823. #endif
  6824. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6825. case 3:
  6826. OUT_WRITE(SOL3_PIN, HIGH);
  6827. break;
  6828. #endif
  6829. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6830. case 4:
  6831. OUT_WRITE(SOL4_PIN, HIGH);
  6832. break;
  6833. #endif
  6834. default:
  6835. SERIAL_ECHO_START;
  6836. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  6837. break;
  6838. }
  6839. }
  6840. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  6841. void disable_all_solenoids() {
  6842. OUT_WRITE(SOL0_PIN, LOW);
  6843. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6844. OUT_WRITE(SOL1_PIN, LOW);
  6845. #endif
  6846. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6847. OUT_WRITE(SOL2_PIN, LOW);
  6848. #endif
  6849. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6850. OUT_WRITE(SOL3_PIN, LOW);
  6851. #endif
  6852. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6853. OUT_WRITE(SOL4_PIN, LOW);
  6854. #endif
  6855. }
  6856. /**
  6857. * M380: Enable solenoid on the active extruder
  6858. */
  6859. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6860. /**
  6861. * M381: Disable all solenoids
  6862. */
  6863. inline void gcode_M381() { disable_all_solenoids(); }
  6864. #endif // EXT_SOLENOID
  6865. /**
  6866. * M400: Finish all moves
  6867. */
  6868. inline void gcode_M400() { stepper.synchronize(); }
  6869. #if HAS_BED_PROBE
  6870. /**
  6871. * M401: Engage Z Servo endstop if available
  6872. */
  6873. inline void gcode_M401() { DEPLOY_PROBE(); }
  6874. /**
  6875. * M402: Retract Z Servo endstop if enabled
  6876. */
  6877. inline void gcode_M402() { STOW_PROBE(); }
  6878. #endif // HAS_BED_PROBE
  6879. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6880. /**
  6881. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6882. */
  6883. inline void gcode_M404() {
  6884. if (code_seen('W')) {
  6885. filament_width_nominal = code_value_linear_units();
  6886. }
  6887. else {
  6888. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6889. SERIAL_PROTOCOLLN(filament_width_nominal);
  6890. }
  6891. }
  6892. /**
  6893. * M405: Turn on filament sensor for control
  6894. */
  6895. inline void gcode_M405() {
  6896. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6897. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6898. if (code_seen('D')) meas_delay_cm = code_value_int();
  6899. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6900. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6901. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  6902. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6903. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  6904. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  6905. }
  6906. filament_sensor = true;
  6907. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6908. //SERIAL_PROTOCOL(filament_width_meas);
  6909. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  6910. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  6911. }
  6912. /**
  6913. * M406: Turn off filament sensor for control
  6914. */
  6915. inline void gcode_M406() { filament_sensor = false; }
  6916. /**
  6917. * M407: Get measured filament diameter on serial output
  6918. */
  6919. inline void gcode_M407() {
  6920. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6921. SERIAL_PROTOCOLLN(filament_width_meas);
  6922. }
  6923. #endif // FILAMENT_WIDTH_SENSOR
  6924. void quickstop_stepper() {
  6925. stepper.quick_stop();
  6926. stepper.synchronize();
  6927. set_current_from_steppers_for_axis(ALL_AXES);
  6928. SYNC_PLAN_POSITION_KINEMATIC();
  6929. }
  6930. #if PLANNER_LEVELING
  6931. /**
  6932. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  6933. *
  6934. * S[bool] Turns leveling on or off
  6935. * Z[height] Sets the Z fade height (0 or none to disable)
  6936. * V[bool] Verbose - Print the leveling grid
  6937. *
  6938. * With AUTO_BED_LEVELING_UBL only:
  6939. *
  6940. * L[index] Load UBL mesh from index (0 is default)
  6941. */
  6942. inline void gcode_M420() {
  6943. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6944. // L to load a mesh from the EEPROM
  6945. if (code_seen('L')) {
  6946. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  6947. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  6948. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  6949. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  6950. return;
  6951. }
  6952. ubl.load_mesh(storage_slot);
  6953. if (storage_slot != ubl.state.eeprom_storage_slot) ubl.store_state();
  6954. ubl.state.eeprom_storage_slot = storage_slot;
  6955. }
  6956. #endif // AUTO_BED_LEVELING_UBL
  6957. // V to print the matrix or mesh
  6958. if (code_seen('V')) {
  6959. #if ABL_PLANAR
  6960. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  6961. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6962. if (bilinear_grid_spacing[X_AXIS]) {
  6963. print_bilinear_leveling_grid();
  6964. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6965. bed_level_virt_print();
  6966. #endif
  6967. }
  6968. #elif ENABLED(MESH_BED_LEVELING)
  6969. if (mbl.has_mesh()) {
  6970. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  6971. mbl_mesh_report();
  6972. }
  6973. #endif
  6974. }
  6975. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6976. // L to load a mesh from the EEPROM
  6977. if (code_seen('L') || code_seen('V')) {
  6978. ubl.display_map(0); // Currently only supports one map type
  6979. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  6980. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  6981. }
  6982. #endif
  6983. bool to_enable = false;
  6984. if (code_seen('S')) {
  6985. to_enable = code_value_bool();
  6986. set_bed_leveling_enabled(to_enable);
  6987. }
  6988. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  6989. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  6990. #endif
  6991. const bool new_status =
  6992. #if ENABLED(MESH_BED_LEVELING)
  6993. mbl.active()
  6994. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6995. ubl.state.active
  6996. #else
  6997. planner.abl_enabled
  6998. #endif
  6999. ;
  7000. if (to_enable && !new_status) {
  7001. SERIAL_ERROR_START;
  7002. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  7003. }
  7004. SERIAL_ECHO_START;
  7005. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  7006. }
  7007. #endif
  7008. #if ENABLED(MESH_BED_LEVELING)
  7009. /**
  7010. * M421: Set a single Mesh Bed Leveling Z coordinate
  7011. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  7012. */
  7013. inline void gcode_M421() {
  7014. int8_t px = 0, py = 0;
  7015. float z = 0;
  7016. bool hasX, hasY, hasZ, hasI, hasJ;
  7017. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_linear_units());
  7018. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_linear_units());
  7019. if ((hasI = code_seen('I'))) px = code_value_linear_units();
  7020. if ((hasJ = code_seen('J'))) py = code_value_linear_units();
  7021. if ((hasZ = code_seen('Z'))) z = code_value_linear_units();
  7022. if (hasX && hasY && hasZ) {
  7023. if (px >= 0 && py >= 0)
  7024. mbl.set_z(px, py, z);
  7025. else {
  7026. SERIAL_ERROR_START;
  7027. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7028. }
  7029. }
  7030. else if (hasI && hasJ && hasZ) {
  7031. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_Y - 1))
  7032. mbl.set_z(px, py, z);
  7033. else {
  7034. SERIAL_ERROR_START;
  7035. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7036. }
  7037. }
  7038. else {
  7039. SERIAL_ERROR_START;
  7040. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7041. }
  7042. }
  7043. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
  7044. /**
  7045. * M421: Set a single Mesh Bed Leveling Z coordinate
  7046. *
  7047. * M421 I<xindex> J<yindex> Z<linear>
  7048. */
  7049. inline void gcode_M421() {
  7050. int8_t px = 0, py = 0;
  7051. float z = 0;
  7052. bool hasI, hasJ, hasZ;
  7053. if ((hasI = code_seen('I'))) px = code_value_linear_units();
  7054. if ((hasJ = code_seen('J'))) py = code_value_linear_units();
  7055. if ((hasZ = code_seen('Z'))) z = code_value_linear_units();
  7056. if (hasI && hasJ && hasZ) {
  7057. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_X - 1)) {
  7058. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7059. ubl.z_values[px][py] = z;
  7060. #else
  7061. bed_level_grid[px][py] = z;
  7062. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7063. bed_level_virt_interpolate();
  7064. #endif
  7065. #endif
  7066. }
  7067. else {
  7068. SERIAL_ERROR_START;
  7069. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7070. }
  7071. }
  7072. else {
  7073. SERIAL_ERROR_START;
  7074. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7075. }
  7076. }
  7077. #endif
  7078. #if HAS_M206_COMMAND
  7079. /**
  7080. * M428: Set home_offset based on the distance between the
  7081. * current_position and the nearest "reference point."
  7082. * If an axis is past center its endstop position
  7083. * is the reference-point. Otherwise it uses 0. This allows
  7084. * the Z offset to be set near the bed when using a max endstop.
  7085. *
  7086. * M428 can't be used more than 2cm away from 0 or an endstop.
  7087. *
  7088. * Use M206 to set these values directly.
  7089. */
  7090. inline void gcode_M428() {
  7091. bool err = false;
  7092. LOOP_XYZ(i) {
  7093. if (axis_homed[i]) {
  7094. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  7095. diff = current_position[i] - LOGICAL_POSITION(base, i);
  7096. if (WITHIN(diff, -20, 20)) {
  7097. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  7098. }
  7099. else {
  7100. SERIAL_ERROR_START;
  7101. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  7102. LCD_ALERTMESSAGEPGM("Err: Too far!");
  7103. BUZZ(200, 40);
  7104. err = true;
  7105. break;
  7106. }
  7107. }
  7108. }
  7109. if (!err) {
  7110. SYNC_PLAN_POSITION_KINEMATIC();
  7111. report_current_position();
  7112. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  7113. BUZZ(100, 659);
  7114. BUZZ(100, 698);
  7115. }
  7116. }
  7117. #endif // HAS_M206_COMMAND
  7118. /**
  7119. * M500: Store settings in EEPROM
  7120. */
  7121. inline void gcode_M500() {
  7122. (void)settings.save();
  7123. }
  7124. /**
  7125. * M501: Read settings from EEPROM
  7126. */
  7127. inline void gcode_M501() {
  7128. (void)settings.load();
  7129. }
  7130. /**
  7131. * M502: Revert to default settings
  7132. */
  7133. inline void gcode_M502() {
  7134. (void)settings.reset();
  7135. }
  7136. /**
  7137. * M503: print settings currently in memory
  7138. */
  7139. inline void gcode_M503() {
  7140. (void)settings.report(code_seen('S') && !code_value_bool());
  7141. }
  7142. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7143. /**
  7144. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  7145. */
  7146. inline void gcode_M540() {
  7147. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  7148. }
  7149. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  7150. #if HAS_BED_PROBE
  7151. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  7152. static float last_zoffset = NAN;
  7153. if (!isnan(last_zoffset)) {
  7154. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7155. const float diff = zprobe_zoffset - last_zoffset;
  7156. #endif
  7157. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7158. // Correct bilinear grid for new probe offset
  7159. if (diff) {
  7160. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  7161. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  7162. bed_level_grid[x][y] -= diff;
  7163. }
  7164. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7165. bed_level_virt_interpolate();
  7166. #endif
  7167. #endif
  7168. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7169. if (!no_babystep && planner.abl_enabled)
  7170. thermalManager.babystep_axis(Z_AXIS, -lround(diff * planner.axis_steps_per_mm[Z_AXIS]));
  7171. #else
  7172. UNUSED(no_babystep);
  7173. #endif
  7174. }
  7175. last_zoffset = zprobe_zoffset;
  7176. }
  7177. inline void gcode_M851() {
  7178. SERIAL_ECHO_START;
  7179. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  7180. if (code_seen('Z')) {
  7181. const float value = code_value_linear_units();
  7182. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  7183. zprobe_zoffset = value;
  7184. refresh_zprobe_zoffset();
  7185. SERIAL_ECHO(zprobe_zoffset);
  7186. }
  7187. else
  7188. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  7189. }
  7190. else
  7191. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  7192. SERIAL_EOL;
  7193. }
  7194. #endif // HAS_BED_PROBE
  7195. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7196. void filament_change_beep(const bool init=false) {
  7197. static millis_t next_buzz = 0;
  7198. static uint16_t runout_beep = 0;
  7199. if (init) next_buzz = runout_beep = 0;
  7200. const millis_t ms = millis();
  7201. if (ELAPSED(ms, next_buzz)) {
  7202. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  7203. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  7204. BUZZ(300, 2000);
  7205. runout_beep++;
  7206. }
  7207. }
  7208. }
  7209. static bool busy_doing_M600 = false;
  7210. /**
  7211. * M600: Pause for filament change
  7212. *
  7213. * E[distance] - Retract the filament this far (negative value)
  7214. * Z[distance] - Move the Z axis by this distance
  7215. * X[position] - Move to this X position, with Y
  7216. * Y[position] - Move to this Y position, with X
  7217. * L[distance] - Retract distance for removal (manual reload)
  7218. *
  7219. * Default values are used for omitted arguments.
  7220. *
  7221. */
  7222. inline void gcode_M600() {
  7223. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  7224. SERIAL_ERROR_START;
  7225. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  7226. return;
  7227. }
  7228. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  7229. // Pause the print job timer
  7230. const bool job_running = print_job_timer.isRunning();
  7231. print_job_timer.pause();
  7232. // Show initial message and wait for synchronize steppers
  7233. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  7234. stepper.synchronize();
  7235. // Save current position of all axes
  7236. float lastpos[XYZE];
  7237. COPY(lastpos, current_position);
  7238. set_destination_to_current();
  7239. // Initial retract before move to filament change position
  7240. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  7241. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  7242. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  7243. #endif
  7244. ;
  7245. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  7246. // Lift Z axis
  7247. float z_lift = code_seen('Z') ? code_value_linear_units() :
  7248. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  7249. FILAMENT_CHANGE_Z_ADD
  7250. #else
  7251. 0
  7252. #endif
  7253. ;
  7254. if (z_lift > 0) {
  7255. destination[Z_AXIS] += z_lift;
  7256. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  7257. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7258. }
  7259. // Move XY axes to filament exchange position
  7260. if (code_seen('X')) destination[X_AXIS] = code_value_linear_units();
  7261. #ifdef FILAMENT_CHANGE_X_POS
  7262. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  7263. #endif
  7264. if (code_seen('Y')) destination[Y_AXIS] = code_value_linear_units();
  7265. #ifdef FILAMENT_CHANGE_Y_POS
  7266. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  7267. #endif
  7268. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7269. stepper.synchronize();
  7270. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  7271. idle();
  7272. // Unload filament
  7273. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  7274. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  7275. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  7276. #endif
  7277. ;
  7278. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  7279. // Synchronize steppers and then disable extruders steppers for manual filament changing
  7280. stepper.synchronize();
  7281. disable_e_steppers();
  7282. safe_delay(100);
  7283. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  7284. bool nozzle_timed_out = false;
  7285. float temps[4];
  7286. // Wait for filament insert by user and press button
  7287. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7288. #if HAS_BUZZER
  7289. filament_change_beep(true);
  7290. #endif
  7291. idle();
  7292. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  7293. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7294. wait_for_user = true; // LCD click or M108 will clear this
  7295. while (wait_for_user) {
  7296. if (nozzle_timed_out)
  7297. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7298. #if HAS_BUZZER
  7299. filament_change_beep();
  7300. #endif
  7301. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  7302. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  7303. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  7304. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7305. }
  7306. idle(true);
  7307. }
  7308. KEEPALIVE_STATE(IN_HANDLER);
  7309. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  7310. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  7311. // Show "wait for heating"
  7312. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  7313. wait_for_heatup = true;
  7314. while (wait_for_heatup) {
  7315. idle();
  7316. wait_for_heatup = false;
  7317. HOTEND_LOOP() {
  7318. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  7319. wait_for_heatup = true;
  7320. break;
  7321. }
  7322. }
  7323. }
  7324. // Show "insert filament"
  7325. if (nozzle_timed_out)
  7326. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7327. #if HAS_BUZZER
  7328. filament_change_beep(true);
  7329. #endif
  7330. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7331. wait_for_user = true; // LCD click or M108 will clear this
  7332. while (wait_for_user && nozzle_timed_out) {
  7333. #if HAS_BUZZER
  7334. filament_change_beep();
  7335. #endif
  7336. idle(true);
  7337. }
  7338. KEEPALIVE_STATE(IN_HANDLER);
  7339. // Show "load" message
  7340. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  7341. // Load filament
  7342. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  7343. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  7344. + FILAMENT_CHANGE_LOAD_LENGTH
  7345. #endif
  7346. ;
  7347. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  7348. stepper.synchronize();
  7349. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  7350. do {
  7351. // "Wait for filament extrude"
  7352. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  7353. // Extrude filament to get into hotend
  7354. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  7355. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  7356. stepper.synchronize();
  7357. // Show "Extrude More" / "Resume" menu and wait for reply
  7358. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7359. wait_for_user = false;
  7360. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  7361. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  7362. KEEPALIVE_STATE(IN_HANDLER);
  7363. // Keep looping if "Extrude More" was selected
  7364. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  7365. #endif
  7366. // "Wait for print to resume"
  7367. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  7368. // Set extruder to saved position
  7369. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  7370. planner.set_e_position_mm(current_position[E_AXIS]);
  7371. #if IS_KINEMATIC
  7372. // Move XYZ to starting position
  7373. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  7374. #else
  7375. // Move XY to starting position, then Z
  7376. destination[X_AXIS] = lastpos[X_AXIS];
  7377. destination[Y_AXIS] = lastpos[Y_AXIS];
  7378. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7379. destination[Z_AXIS] = lastpos[Z_AXIS];
  7380. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7381. #endif
  7382. stepper.synchronize();
  7383. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7384. filament_ran_out = false;
  7385. #endif
  7386. // Show status screen
  7387. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  7388. // Resume the print job timer if it was running
  7389. if (job_running) print_job_timer.start();
  7390. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  7391. }
  7392. #endif // FILAMENT_CHANGE_FEATURE
  7393. #if ENABLED(DUAL_X_CARRIAGE)
  7394. /**
  7395. * M605: Set dual x-carriage movement mode
  7396. *
  7397. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  7398. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  7399. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  7400. * units x-offset and an optional differential hotend temperature of
  7401. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  7402. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  7403. *
  7404. * Note: the X axis should be homed after changing dual x-carriage mode.
  7405. */
  7406. inline void gcode_M605() {
  7407. stepper.synchronize();
  7408. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  7409. switch (dual_x_carriage_mode) {
  7410. case DXC_FULL_CONTROL_MODE:
  7411. case DXC_AUTO_PARK_MODE:
  7412. break;
  7413. case DXC_DUPLICATION_MODE:
  7414. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_linear_units(), X2_MIN_POS - x_home_pos(0));
  7415. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  7416. SERIAL_ECHO_START;
  7417. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7418. SERIAL_CHAR(' ');
  7419. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  7420. SERIAL_CHAR(',');
  7421. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  7422. SERIAL_CHAR(' ');
  7423. SERIAL_ECHO(duplicate_extruder_x_offset);
  7424. SERIAL_CHAR(',');
  7425. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  7426. break;
  7427. default:
  7428. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  7429. break;
  7430. }
  7431. active_extruder_parked = false;
  7432. extruder_duplication_enabled = false;
  7433. delayed_move_time = 0;
  7434. }
  7435. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  7436. inline void gcode_M605() {
  7437. stepper.synchronize();
  7438. extruder_duplication_enabled = code_seen('S') && code_value_int() == (int)DXC_DUPLICATION_MODE;
  7439. SERIAL_ECHO_START;
  7440. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  7441. }
  7442. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  7443. #if ENABLED(LIN_ADVANCE)
  7444. /**
  7445. * M900: Set and/or Get advance K factor and WH/D ratio
  7446. *
  7447. * K<factor> Set advance K factor
  7448. * R<ratio> Set ratio directly (overrides WH/D)
  7449. * W<width> H<height> D<diam> Set ratio from WH/D
  7450. */
  7451. inline void gcode_M900() {
  7452. stepper.synchronize();
  7453. const float newK = code_seen('K') ? code_value_float() : -1;
  7454. if (newK >= 0) planner.set_extruder_advance_k(newK);
  7455. float newR = code_seen('R') ? code_value_float() : -1;
  7456. if (newR < 0) {
  7457. const float newD = code_seen('D') ? code_value_float() : -1,
  7458. newW = code_seen('W') ? code_value_float() : -1,
  7459. newH = code_seen('H') ? code_value_float() : -1;
  7460. if (newD >= 0 && newW >= 0 && newH >= 0)
  7461. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  7462. }
  7463. if (newR >= 0) planner.set_advance_ed_ratio(newR);
  7464. SERIAL_ECHO_START;
  7465. SERIAL_ECHOPAIR("Advance K=", planner.get_extruder_advance_k());
  7466. SERIAL_ECHOPGM(" E/D=");
  7467. const float ratio = planner.get_advance_ed_ratio();
  7468. ratio ? SERIAL_ECHO(ratio) : SERIAL_ECHOPGM("Auto");
  7469. SERIAL_EOL;
  7470. }
  7471. #endif // LIN_ADVANCE
  7472. #if ENABLED(HAVE_TMC2130)
  7473. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  7474. SERIAL_CHAR(name);
  7475. SERIAL_ECHOPGM(" axis driver current: ");
  7476. SERIAL_ECHOLN(st.getCurrent());
  7477. }
  7478. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  7479. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  7480. tmc2130_get_current(st, name);
  7481. }
  7482. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  7483. SERIAL_CHAR(name);
  7484. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  7485. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  7486. SERIAL_EOL;
  7487. }
  7488. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  7489. st.clear_otpw();
  7490. SERIAL_CHAR(name);
  7491. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  7492. }
  7493. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  7494. SERIAL_CHAR(name);
  7495. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  7496. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  7497. }
  7498. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  7499. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  7500. tmc2130_get_pwmthrs(st, name, spmm);
  7501. }
  7502. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  7503. SERIAL_CHAR(name);
  7504. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  7505. SERIAL_ECHOLN(st.sgt());
  7506. }
  7507. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  7508. st.sgt(sgt_val);
  7509. tmc2130_get_sgt(st, name);
  7510. }
  7511. /**
  7512. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7513. * Report driver currents when no axis specified
  7514. *
  7515. * S1: Enable automatic current control
  7516. * S0: Disable
  7517. */
  7518. inline void gcode_M906() {
  7519. uint16_t values[XYZE];
  7520. LOOP_XYZE(i)
  7521. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7522. #if ENABLED(X_IS_TMC2130)
  7523. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  7524. else tmc2130_get_current(stepperX, 'X');
  7525. #endif
  7526. #if ENABLED(Y_IS_TMC2130)
  7527. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  7528. else tmc2130_get_current(stepperY, 'Y');
  7529. #endif
  7530. #if ENABLED(Z_IS_TMC2130)
  7531. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  7532. else tmc2130_get_current(stepperZ, 'Z');
  7533. #endif
  7534. #if ENABLED(E0_IS_TMC2130)
  7535. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  7536. else tmc2130_get_current(stepperE0, 'E');
  7537. #endif
  7538. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  7539. if (code_seen('S')) auto_current_control = code_value_bool();
  7540. #endif
  7541. }
  7542. /**
  7543. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  7544. * The flag is held by the library and persist until manually cleared by M912
  7545. */
  7546. inline void gcode_M911() {
  7547. const bool reportX = code_seen('X'), reportY = code_seen('Y'), reportZ = code_seen('Z'), reportE = code_seen('E'),
  7548. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  7549. #if ENABLED(X_IS_TMC2130)
  7550. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  7551. #endif
  7552. #if ENABLED(Y_IS_TMC2130)
  7553. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  7554. #endif
  7555. #if ENABLED(Z_IS_TMC2130)
  7556. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  7557. #endif
  7558. #if ENABLED(E0_IS_TMC2130)
  7559. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  7560. #endif
  7561. }
  7562. /**
  7563. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  7564. */
  7565. inline void gcode_M912() {
  7566. const bool clearX = code_seen('X'), clearY = code_seen('Y'), clearZ = code_seen('Z'), clearE = code_seen('E'),
  7567. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  7568. #if ENABLED(X_IS_TMC2130)
  7569. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  7570. #endif
  7571. #if ENABLED(Y_IS_TMC2130)
  7572. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  7573. #endif
  7574. #if ENABLED(Z_IS_TMC2130)
  7575. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  7576. #endif
  7577. #if ENABLED(E0_IS_TMC2130)
  7578. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  7579. #endif
  7580. }
  7581. /**
  7582. * M913: Set HYBRID_THRESHOLD speed.
  7583. */
  7584. #if ENABLED(HYBRID_THRESHOLD)
  7585. inline void gcode_M913() {
  7586. uint16_t values[XYZE];
  7587. LOOP_XYZE(i)
  7588. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7589. #if ENABLED(X_IS_TMC2130)
  7590. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  7591. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  7592. #endif
  7593. #if ENABLED(Y_IS_TMC2130)
  7594. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  7595. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  7596. #endif
  7597. #if ENABLED(Z_IS_TMC2130)
  7598. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  7599. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  7600. #endif
  7601. #if ENABLED(E0_IS_TMC2130)
  7602. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  7603. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  7604. #endif
  7605. }
  7606. #endif // HYBRID_THRESHOLD
  7607. /**
  7608. * M914: Set SENSORLESS_HOMING sensitivity.
  7609. */
  7610. #if ENABLED(SENSORLESS_HOMING)
  7611. inline void gcode_M914() {
  7612. #if ENABLED(X_IS_TMC2130)
  7613. if (code_seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', code_value_int());
  7614. else tmc2130_get_sgt(stepperX, 'X');
  7615. #endif
  7616. #if ENABLED(Y_IS_TMC2130)
  7617. if (code_seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', code_value_int());
  7618. else tmc2130_get_sgt(stepperY, 'Y');
  7619. #endif
  7620. }
  7621. #endif // SENSORLESS_HOMING
  7622. #endif // HAVE_TMC2130
  7623. /**
  7624. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  7625. */
  7626. inline void gcode_M907() {
  7627. #if HAS_DIGIPOTSS
  7628. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  7629. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  7630. if (code_seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  7631. #elif HAS_MOTOR_CURRENT_PWM
  7632. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  7633. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  7634. #endif
  7635. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  7636. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  7637. #endif
  7638. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  7639. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  7640. #endif
  7641. #endif
  7642. #if ENABLED(DIGIPOT_I2C)
  7643. // this one uses actual amps in floating point
  7644. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  7645. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  7646. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  7647. #endif
  7648. #if ENABLED(DAC_STEPPER_CURRENT)
  7649. if (code_seen('S')) {
  7650. const float dac_percent = code_value_float();
  7651. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  7652. }
  7653. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  7654. #endif
  7655. }
  7656. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7657. /**
  7658. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  7659. */
  7660. inline void gcode_M908() {
  7661. #if HAS_DIGIPOTSS
  7662. stepper.digitalPotWrite(
  7663. code_seen('P') ? code_value_int() : 0,
  7664. code_seen('S') ? code_value_int() : 0
  7665. );
  7666. #endif
  7667. #ifdef DAC_STEPPER_CURRENT
  7668. dac_current_raw(
  7669. code_seen('P') ? code_value_byte() : -1,
  7670. code_seen('S') ? code_value_ushort() : 0
  7671. );
  7672. #endif
  7673. }
  7674. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7675. inline void gcode_M909() { dac_print_values(); }
  7676. inline void gcode_M910() { dac_commit_eeprom(); }
  7677. #endif
  7678. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7679. #if HAS_MICROSTEPS
  7680. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7681. inline void gcode_M350() {
  7682. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  7683. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  7684. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  7685. stepper.microstep_readings();
  7686. }
  7687. /**
  7688. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  7689. * S# determines MS1 or MS2, X# sets the pin high/low.
  7690. */
  7691. inline void gcode_M351() {
  7692. if (code_seen('S')) switch (code_value_byte()) {
  7693. case 1:
  7694. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  7695. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  7696. break;
  7697. case 2:
  7698. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  7699. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  7700. break;
  7701. }
  7702. stepper.microstep_readings();
  7703. }
  7704. #endif // HAS_MICROSTEPS
  7705. #if HAS_CASE_LIGHT
  7706. uint8_t case_light_brightness = 255;
  7707. void update_case_light() {
  7708. WRITE(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  7709. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  7710. }
  7711. #endif // HAS_CASE_LIGHT
  7712. /**
  7713. * M355: Turn case lights on/off and set brightness
  7714. *
  7715. * S<bool> Turn case light on or off
  7716. * P<byte> Set case light brightness (PWM pin required)
  7717. */
  7718. inline void gcode_M355() {
  7719. #if HAS_CASE_LIGHT
  7720. if (code_seen('P')) case_light_brightness = code_value_byte();
  7721. if (code_seen('S')) case_light_on = code_value_bool();
  7722. update_case_light();
  7723. SERIAL_ECHO_START;
  7724. SERIAL_ECHOPGM("Case lights ");
  7725. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  7726. #else
  7727. SERIAL_ERROR_START;
  7728. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  7729. #endif // HAS_CASE_LIGHT
  7730. }
  7731. #if ENABLED(MIXING_EXTRUDER)
  7732. /**
  7733. * M163: Set a single mix factor for a mixing extruder
  7734. * This is called "weight" by some systems.
  7735. *
  7736. * S[index] The channel index to set
  7737. * P[float] The mix value
  7738. *
  7739. */
  7740. inline void gcode_M163() {
  7741. const int mix_index = code_seen('S') ? code_value_int() : 0;
  7742. if (mix_index < MIXING_STEPPERS) {
  7743. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  7744. NOLESS(mix_value, 0.0);
  7745. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  7746. }
  7747. }
  7748. #if MIXING_VIRTUAL_TOOLS > 1
  7749. /**
  7750. * M164: Store the current mix factors as a virtual tool.
  7751. *
  7752. * S[index] The virtual tool to store
  7753. *
  7754. */
  7755. inline void gcode_M164() {
  7756. const int tool_index = code_seen('S') ? code_value_int() : 0;
  7757. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  7758. normalize_mix();
  7759. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7760. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  7761. }
  7762. }
  7763. #endif
  7764. #if ENABLED(DIRECT_MIXING_IN_G1)
  7765. /**
  7766. * M165: Set multiple mix factors for a mixing extruder.
  7767. * Factors that are left out will be set to 0.
  7768. * All factors together must add up to 1.0.
  7769. *
  7770. * A[factor] Mix factor for extruder stepper 1
  7771. * B[factor] Mix factor for extruder stepper 2
  7772. * C[factor] Mix factor for extruder stepper 3
  7773. * D[factor] Mix factor for extruder stepper 4
  7774. * H[factor] Mix factor for extruder stepper 5
  7775. * I[factor] Mix factor for extruder stepper 6
  7776. *
  7777. */
  7778. inline void gcode_M165() { gcode_get_mix(); }
  7779. #endif
  7780. #endif // MIXING_EXTRUDER
  7781. /**
  7782. * M999: Restart after being stopped
  7783. *
  7784. * Default behaviour is to flush the serial buffer and request
  7785. * a resend to the host starting on the last N line received.
  7786. *
  7787. * Sending "M999 S1" will resume printing without flushing the
  7788. * existing command buffer.
  7789. *
  7790. */
  7791. inline void gcode_M999() {
  7792. Running = true;
  7793. lcd_reset_alert_level();
  7794. if (code_seen('S') && code_value_bool()) return;
  7795. // gcode_LastN = Stopped_gcode_LastN;
  7796. FlushSerialRequestResend();
  7797. }
  7798. #if ENABLED(SWITCHING_EXTRUDER)
  7799. inline void move_extruder_servo(uint8_t e) {
  7800. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  7801. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  7802. safe_delay(500);
  7803. }
  7804. #endif
  7805. inline void invalid_extruder_error(const uint8_t &e) {
  7806. SERIAL_ECHO_START;
  7807. SERIAL_CHAR('T');
  7808. SERIAL_ECHO_F(e, DEC);
  7809. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  7810. }
  7811. /**
  7812. * Perform a tool-change, which may result in moving the
  7813. * previous tool out of the way and the new tool into place.
  7814. */
  7815. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  7816. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7817. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  7818. return invalid_extruder_error(tmp_extruder);
  7819. // T0-Tnnn: Switch virtual tool by changing the mix
  7820. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  7821. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  7822. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7823. #if HOTENDS > 1
  7824. if (tmp_extruder >= EXTRUDERS)
  7825. return invalid_extruder_error(tmp_extruder);
  7826. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  7827. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  7828. if (tmp_extruder != active_extruder) {
  7829. if (!no_move && axis_unhomed_error(true, true, true)) {
  7830. SERIAL_ECHOLNPGM("No move on toolchange");
  7831. no_move = true;
  7832. }
  7833. // Save current position to destination, for use later
  7834. set_destination_to_current();
  7835. #if ENABLED(DUAL_X_CARRIAGE)
  7836. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7837. if (DEBUGGING(LEVELING)) {
  7838. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  7839. switch (dual_x_carriage_mode) {
  7840. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  7841. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  7842. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  7843. }
  7844. }
  7845. #endif
  7846. const float xhome = x_home_pos(active_extruder);
  7847. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  7848. && IsRunning()
  7849. && (delayed_move_time || current_position[X_AXIS] != xhome)
  7850. ) {
  7851. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  7852. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7853. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  7854. #endif
  7855. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7856. if (DEBUGGING(LEVELING)) {
  7857. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  7858. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  7859. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  7860. }
  7861. #endif
  7862. // Park old head: 1) raise 2) move to park position 3) lower
  7863. for (uint8_t i = 0; i < 3; i++)
  7864. planner.buffer_line(
  7865. i == 0 ? current_position[X_AXIS] : xhome,
  7866. current_position[Y_AXIS],
  7867. i == 2 ? current_position[Z_AXIS] : raised_z,
  7868. current_position[E_AXIS],
  7869. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  7870. active_extruder
  7871. );
  7872. stepper.synchronize();
  7873. }
  7874. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  7875. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  7876. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  7877. // Activate the new extruder
  7878. active_extruder = tmp_extruder;
  7879. // This function resets the max/min values - the current position may be overwritten below.
  7880. set_axis_is_at_home(X_AXIS);
  7881. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7882. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  7883. #endif
  7884. // Only when auto-parking are carriages safe to move
  7885. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  7886. switch (dual_x_carriage_mode) {
  7887. case DXC_FULL_CONTROL_MODE:
  7888. // New current position is the position of the activated extruder
  7889. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7890. // Save the inactive extruder's position (from the old current_position)
  7891. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7892. break;
  7893. case DXC_AUTO_PARK_MODE:
  7894. // record raised toolhead position for use by unpark
  7895. COPY(raised_parked_position, current_position);
  7896. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  7897. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7898. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7899. #endif
  7900. active_extruder_parked = true;
  7901. delayed_move_time = 0;
  7902. break;
  7903. case DXC_DUPLICATION_MODE:
  7904. // If the new extruder is the left one, set it "parked"
  7905. // This triggers the second extruder to move into the duplication position
  7906. active_extruder_parked = (active_extruder == 0);
  7907. if (active_extruder_parked)
  7908. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7909. else
  7910. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  7911. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7912. extruder_duplication_enabled = false;
  7913. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7914. if (DEBUGGING(LEVELING)) {
  7915. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  7916. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  7917. }
  7918. #endif
  7919. break;
  7920. }
  7921. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7922. if (DEBUGGING(LEVELING)) {
  7923. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  7924. DEBUG_POS("New extruder (parked)", current_position);
  7925. }
  7926. #endif
  7927. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  7928. #else // !DUAL_X_CARRIAGE
  7929. #if ENABLED(SWITCHING_EXTRUDER)
  7930. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  7931. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  7932. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  7933. // Always raise by some amount (destination copied from current_position earlier)
  7934. current_position[Z_AXIS] += z_raise;
  7935. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7936. stepper.synchronize();
  7937. move_extruder_servo(active_extruder);
  7938. #endif
  7939. /**
  7940. * Set current_position to the position of the new nozzle.
  7941. * Offsets are based on linear distance, so we need to get
  7942. * the resulting position in coordinate space.
  7943. *
  7944. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  7945. * - With mesh leveling, update Z for the new position
  7946. * - Otherwise, just use the raw linear distance
  7947. *
  7948. * Software endstops are altered here too. Consider a case where:
  7949. * E0 at X=0 ... E1 at X=10
  7950. * When we switch to E1 now X=10, but E1 can't move left.
  7951. * To express this we apply the change in XY to the software endstops.
  7952. * E1 can move farther right than E0, so the right limit is extended.
  7953. *
  7954. * Note that we don't adjust the Z software endstops. Why not?
  7955. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  7956. * because the bed is 1mm lower at the new position. As long as
  7957. * the first nozzle is out of the way, the carriage should be
  7958. * allowed to move 1mm lower. This technically "breaks" the
  7959. * Z software endstop. But this is technically correct (and
  7960. * there is no viable alternative).
  7961. */
  7962. #if ABL_PLANAR
  7963. // Offset extruder, make sure to apply the bed level rotation matrix
  7964. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  7965. hotend_offset[Y_AXIS][tmp_extruder],
  7966. 0),
  7967. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  7968. hotend_offset[Y_AXIS][active_extruder],
  7969. 0),
  7970. offset_vec = tmp_offset_vec - act_offset_vec;
  7971. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7972. if (DEBUGGING(LEVELING)) {
  7973. tmp_offset_vec.debug("tmp_offset_vec");
  7974. act_offset_vec.debug("act_offset_vec");
  7975. offset_vec.debug("offset_vec (BEFORE)");
  7976. }
  7977. #endif
  7978. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  7979. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7980. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  7981. #endif
  7982. // Adjustments to the current position
  7983. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  7984. current_position[Z_AXIS] += offset_vec.z;
  7985. #else // !ABL_PLANAR
  7986. const float xydiff[2] = {
  7987. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  7988. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  7989. };
  7990. #if ENABLED(MESH_BED_LEVELING)
  7991. if (mbl.active()) {
  7992. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7993. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  7994. #endif
  7995. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  7996. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  7997. z1 = current_position[Z_AXIS], z2 = z1;
  7998. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  7999. planner.apply_leveling(x2, y2, z2);
  8000. current_position[Z_AXIS] += z2 - z1;
  8001. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8002. if (DEBUGGING(LEVELING))
  8003. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  8004. #endif
  8005. }
  8006. #endif // MESH_BED_LEVELING
  8007. #endif // !HAS_ABL
  8008. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8009. if (DEBUGGING(LEVELING)) {
  8010. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  8011. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  8012. SERIAL_ECHOLNPGM(" }");
  8013. }
  8014. #endif
  8015. // The newly-selected extruder XY is actually at...
  8016. current_position[X_AXIS] += xydiff[X_AXIS];
  8017. current_position[Y_AXIS] += xydiff[Y_AXIS];
  8018. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  8019. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  8020. #if HAS_POSITION_SHIFT
  8021. position_shift[i] += xydiff[i];
  8022. #endif
  8023. update_software_endstops((AxisEnum)i);
  8024. }
  8025. #endif
  8026. // Set the new active extruder
  8027. active_extruder = tmp_extruder;
  8028. #endif // !DUAL_X_CARRIAGE
  8029. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8030. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  8031. #endif
  8032. // Tell the planner the new "current position"
  8033. SYNC_PLAN_POSITION_KINEMATIC();
  8034. // Move to the "old position" (move the extruder into place)
  8035. if (!no_move && IsRunning()) {
  8036. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8037. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  8038. #endif
  8039. prepare_move_to_destination();
  8040. }
  8041. #if ENABLED(SWITCHING_EXTRUDER)
  8042. // Move back down, if needed. (Including when the new tool is higher.)
  8043. if (z_raise != z_diff) {
  8044. destination[Z_AXIS] += z_diff;
  8045. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  8046. prepare_move_to_destination();
  8047. }
  8048. #endif
  8049. } // (tmp_extruder != active_extruder)
  8050. stepper.synchronize();
  8051. #if ENABLED(EXT_SOLENOID)
  8052. disable_all_solenoids();
  8053. enable_solenoid_on_active_extruder();
  8054. #endif // EXT_SOLENOID
  8055. feedrate_mm_s = old_feedrate_mm_s;
  8056. #else // HOTENDS <= 1
  8057. // Set the new active extruder
  8058. active_extruder = tmp_extruder;
  8059. UNUSED(fr_mm_s);
  8060. UNUSED(no_move);
  8061. #endif // HOTENDS <= 1
  8062. SERIAL_ECHO_START;
  8063. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  8064. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8065. }
  8066. /**
  8067. * T0-T3: Switch tool, usually switching extruders
  8068. *
  8069. * F[units/min] Set the movement feedrate
  8070. * S1 Don't move the tool in XY after change
  8071. */
  8072. inline void gcode_T(uint8_t tmp_extruder) {
  8073. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8074. if (DEBUGGING(LEVELING)) {
  8075. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  8076. SERIAL_CHAR(')');
  8077. SERIAL_EOL;
  8078. DEBUG_POS("BEFORE", current_position);
  8079. }
  8080. #endif
  8081. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  8082. tool_change(tmp_extruder);
  8083. #elif HOTENDS > 1
  8084. tool_change(
  8085. tmp_extruder,
  8086. code_seen('F') ? MMM_TO_MMS(code_value_linear_units()) : 0.0,
  8087. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  8088. );
  8089. #endif
  8090. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8091. if (DEBUGGING(LEVELING)) {
  8092. DEBUG_POS("AFTER", current_position);
  8093. SERIAL_ECHOLNPGM("<<< gcode_T");
  8094. }
  8095. #endif
  8096. }
  8097. /**
  8098. * Process a single command and dispatch it to its handler
  8099. * This is called from the main loop()
  8100. */
  8101. void process_next_command() {
  8102. current_command = command_queue[cmd_queue_index_r];
  8103. if (DEBUGGING(ECHO)) {
  8104. SERIAL_ECHO_START;
  8105. SERIAL_ECHOLN(current_command);
  8106. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8107. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  8108. M100_dump_routine(" Command Queue:", &command_queue[0][0], &command_queue[BUFSIZE][MAX_CMD_SIZE]);
  8109. #endif
  8110. }
  8111. // Sanitize the current command:
  8112. // - Skip leading spaces
  8113. // - Bypass N[-0-9][0-9]*[ ]*
  8114. // - Overwrite * with nul to mark the end
  8115. while (*current_command == ' ') ++current_command;
  8116. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  8117. current_command += 2; // skip N[-0-9]
  8118. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  8119. while (*current_command == ' ') ++current_command; // skip [ ]*
  8120. }
  8121. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  8122. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  8123. char *cmd_ptr = current_command;
  8124. // Get the command code, which must be G, M, or T
  8125. char command_code = *cmd_ptr++;
  8126. // Skip spaces to get the numeric part
  8127. while (*cmd_ptr == ' ') cmd_ptr++;
  8128. // Allow for decimal point in command
  8129. #if ENABLED(G38_PROBE_TARGET)
  8130. uint8_t subcode = 0;
  8131. #endif
  8132. uint16_t codenum = 0; // define ahead of goto
  8133. // Bail early if there's no code
  8134. bool code_is_good = NUMERIC(*cmd_ptr);
  8135. if (!code_is_good) goto ExitUnknownCommand;
  8136. // Get and skip the code number
  8137. do {
  8138. codenum = (codenum * 10) + (*cmd_ptr - '0');
  8139. cmd_ptr++;
  8140. } while (NUMERIC(*cmd_ptr));
  8141. // Allow for decimal point in command
  8142. #if ENABLED(G38_PROBE_TARGET)
  8143. if (*cmd_ptr == '.') {
  8144. cmd_ptr++;
  8145. while (NUMERIC(*cmd_ptr))
  8146. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  8147. }
  8148. #endif
  8149. // Skip all spaces to get to the first argument, or nul
  8150. while (*cmd_ptr == ' ') cmd_ptr++;
  8151. // The command's arguments (if any) start here, for sure!
  8152. current_command_args = cmd_ptr;
  8153. KEEPALIVE_STATE(IN_HANDLER);
  8154. // Handle a known G, M, or T
  8155. switch (command_code) {
  8156. case 'G': switch (codenum) {
  8157. // G0, G1
  8158. case 0:
  8159. case 1:
  8160. #if IS_SCARA
  8161. gcode_G0_G1(codenum == 0);
  8162. #else
  8163. gcode_G0_G1();
  8164. #endif
  8165. break;
  8166. // G2, G3
  8167. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  8168. case 2: // G2 - CW ARC
  8169. case 3: // G3 - CCW ARC
  8170. gcode_G2_G3(codenum == 2);
  8171. break;
  8172. #endif
  8173. // G4 Dwell
  8174. case 4:
  8175. gcode_G4();
  8176. break;
  8177. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8178. // G5
  8179. case 5: // G5 - Cubic B_spline
  8180. gcode_G5();
  8181. break;
  8182. #endif // BEZIER_CURVE_SUPPORT
  8183. #if ENABLED(FWRETRACT)
  8184. case 10: // G10: retract
  8185. case 11: // G11: retract_recover
  8186. gcode_G10_G11(codenum == 10);
  8187. break;
  8188. #endif // FWRETRACT
  8189. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  8190. case 12:
  8191. gcode_G12(); // G12: Nozzle Clean
  8192. break;
  8193. #endif // NOZZLE_CLEAN_FEATURE
  8194. #if ENABLED(INCH_MODE_SUPPORT)
  8195. case 20: //G20: Inch Mode
  8196. gcode_G20();
  8197. break;
  8198. case 21: //G21: MM Mode
  8199. gcode_G21();
  8200. break;
  8201. #endif // INCH_MODE_SUPPORT
  8202. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8203. case 26: // G26: Mesh Validation Pattern generation
  8204. gcode_G26();
  8205. break;
  8206. #endif // AUTO_BED_LEVELING_UBL
  8207. #if ENABLED(NOZZLE_PARK_FEATURE)
  8208. case 27: // G27: Nozzle Park
  8209. gcode_G27();
  8210. break;
  8211. #endif // NOZZLE_PARK_FEATURE
  8212. case 28: // G28: Home all axes, one at a time
  8213. gcode_G28();
  8214. break;
  8215. #if PLANNER_LEVELING || ENABLED(AUTO_BED_LEVELING_UBL)
  8216. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  8217. // or provides access to the UBL System if enabled.
  8218. gcode_G29();
  8219. break;
  8220. #endif // PLANNER_LEVELING
  8221. #if HAS_BED_PROBE
  8222. case 30: // G30 Single Z probe
  8223. gcode_G30();
  8224. break;
  8225. #if ENABLED(Z_PROBE_SLED)
  8226. case 31: // G31: dock the sled
  8227. gcode_G31();
  8228. break;
  8229. case 32: // G32: undock the sled
  8230. gcode_G32();
  8231. break;
  8232. #endif // Z_PROBE_SLED
  8233. #if ENABLED(DELTA_AUTO_CALIBRATION)
  8234. case 33: // G33: Delta Auto Calibrate
  8235. gcode_G33();
  8236. break;
  8237. #endif // DELTA_AUTO_CALIBRATION
  8238. #endif // HAS_BED_PROBE
  8239. #if ENABLED(G38_PROBE_TARGET)
  8240. case 38: // G38.2 & G38.3
  8241. if (subcode == 2 || subcode == 3)
  8242. gcode_G38(subcode == 2);
  8243. break;
  8244. #endif
  8245. case 90: // G90
  8246. relative_mode = false;
  8247. break;
  8248. case 91: // G91
  8249. relative_mode = true;
  8250. break;
  8251. case 92: // G92
  8252. gcode_G92();
  8253. break;
  8254. }
  8255. break;
  8256. case 'M': switch (codenum) {
  8257. #if HAS_RESUME_CONTINUE
  8258. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  8259. case 1: // M1: Conditional stop - Wait for user button press on LCD
  8260. gcode_M0_M1();
  8261. break;
  8262. #endif // ULTIPANEL
  8263. case 17: // M17: Enable all stepper motors
  8264. gcode_M17();
  8265. break;
  8266. #if ENABLED(SDSUPPORT)
  8267. case 20: // M20: list SD card
  8268. gcode_M20(); break;
  8269. case 21: // M21: init SD card
  8270. gcode_M21(); break;
  8271. case 22: // M22: release SD card
  8272. gcode_M22(); break;
  8273. case 23: // M23: Select file
  8274. gcode_M23(); break;
  8275. case 24: // M24: Start SD print
  8276. gcode_M24(); break;
  8277. case 25: // M25: Pause SD print
  8278. gcode_M25(); break;
  8279. case 26: // M26: Set SD index
  8280. gcode_M26(); break;
  8281. case 27: // M27: Get SD status
  8282. gcode_M27(); break;
  8283. case 28: // M28: Start SD write
  8284. gcode_M28(); break;
  8285. case 29: // M29: Stop SD write
  8286. gcode_M29(); break;
  8287. case 30: // M30 <filename> Delete File
  8288. gcode_M30(); break;
  8289. case 32: // M32: Select file and start SD print
  8290. gcode_M32(); break;
  8291. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  8292. case 33: // M33: Get the long full path to a file or folder
  8293. gcode_M33(); break;
  8294. #endif
  8295. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  8296. case 34: //M34 - Set SD card sorting options
  8297. gcode_M34(); break;
  8298. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  8299. case 928: // M928: Start SD write
  8300. gcode_M928(); break;
  8301. #endif //SDSUPPORT
  8302. case 31: // M31: Report time since the start of SD print or last M109
  8303. gcode_M31(); break;
  8304. case 42: // M42: Change pin state
  8305. gcode_M42(); break;
  8306. #if ENABLED(PINS_DEBUGGING)
  8307. case 43: // M43: Read pin state
  8308. gcode_M43(); break;
  8309. #endif
  8310. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  8311. case 48: // M48: Z probe repeatability test
  8312. gcode_M48();
  8313. break;
  8314. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  8315. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8316. case 49: // M49: Turn on or off G26 debug flag for verbose output
  8317. gcode_M49();
  8318. break;
  8319. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  8320. case 75: // M75: Start print timer
  8321. gcode_M75(); break;
  8322. case 76: // M76: Pause print timer
  8323. gcode_M76(); break;
  8324. case 77: // M77: Stop print timer
  8325. gcode_M77(); break;
  8326. #if ENABLED(PRINTCOUNTER)
  8327. case 78: // M78: Show print statistics
  8328. gcode_M78(); break;
  8329. #endif
  8330. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8331. case 100: // M100: Free Memory Report
  8332. gcode_M100();
  8333. break;
  8334. #endif
  8335. case 104: // M104: Set hot end temperature
  8336. gcode_M104();
  8337. break;
  8338. case 110: // M110: Set Current Line Number
  8339. gcode_M110();
  8340. break;
  8341. case 111: // M111: Set debug level
  8342. gcode_M111();
  8343. break;
  8344. #if DISABLED(EMERGENCY_PARSER)
  8345. case 108: // M108: Cancel Waiting
  8346. gcode_M108();
  8347. break;
  8348. case 112: // M112: Emergency Stop
  8349. gcode_M112();
  8350. break;
  8351. case 410: // M410 quickstop - Abort all the planned moves.
  8352. gcode_M410();
  8353. break;
  8354. #endif
  8355. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  8356. case 113: // M113: Set Host Keepalive interval
  8357. gcode_M113();
  8358. break;
  8359. #endif
  8360. case 140: // M140: Set bed temperature
  8361. gcode_M140();
  8362. break;
  8363. case 105: // M105: Report current temperature
  8364. gcode_M105();
  8365. KEEPALIVE_STATE(NOT_BUSY);
  8366. return; // "ok" already printed
  8367. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8368. case 155: // M155: Set temperature auto-report interval
  8369. gcode_M155();
  8370. break;
  8371. #endif
  8372. case 109: // M109: Wait for hotend temperature to reach target
  8373. gcode_M109();
  8374. break;
  8375. #if HAS_TEMP_BED
  8376. case 190: // M190: Wait for bed temperature to reach target
  8377. gcode_M190();
  8378. break;
  8379. #endif // HAS_TEMP_BED
  8380. #if FAN_COUNT > 0
  8381. case 106: // M106: Fan On
  8382. gcode_M106();
  8383. break;
  8384. case 107: // M107: Fan Off
  8385. gcode_M107();
  8386. break;
  8387. #endif // FAN_COUNT > 0
  8388. #if ENABLED(PARK_HEAD_ON_PAUSE)
  8389. case 125: // M125: Store current position and move to filament change position
  8390. gcode_M125(); break;
  8391. #endif
  8392. #if ENABLED(BARICUDA)
  8393. // PWM for HEATER_1_PIN
  8394. #if HAS_HEATER_1
  8395. case 126: // M126: valve open
  8396. gcode_M126();
  8397. break;
  8398. case 127: // M127: valve closed
  8399. gcode_M127();
  8400. break;
  8401. #endif // HAS_HEATER_1
  8402. // PWM for HEATER_2_PIN
  8403. #if HAS_HEATER_2
  8404. case 128: // M128: valve open
  8405. gcode_M128();
  8406. break;
  8407. case 129: // M129: valve closed
  8408. gcode_M129();
  8409. break;
  8410. #endif // HAS_HEATER_2
  8411. #endif // BARICUDA
  8412. #if HAS_POWER_SWITCH
  8413. case 80: // M80: Turn on Power Supply
  8414. gcode_M80();
  8415. break;
  8416. #endif // HAS_POWER_SWITCH
  8417. case 81: // M81: Turn off Power, including Power Supply, if possible
  8418. gcode_M81();
  8419. break;
  8420. case 82: // M83: Set E axis normal mode (same as other axes)
  8421. gcode_M82();
  8422. break;
  8423. case 83: // M83: Set E axis relative mode
  8424. gcode_M83();
  8425. break;
  8426. case 18: // M18 => M84
  8427. case 84: // M84: Disable all steppers or set timeout
  8428. gcode_M18_M84();
  8429. break;
  8430. case 85: // M85: Set inactivity stepper shutdown timeout
  8431. gcode_M85();
  8432. break;
  8433. case 92: // M92: Set the steps-per-unit for one or more axes
  8434. gcode_M92();
  8435. break;
  8436. case 114: // M114: Report current position
  8437. gcode_M114();
  8438. break;
  8439. case 115: // M115: Report capabilities
  8440. gcode_M115();
  8441. break;
  8442. case 117: // M117: Set LCD message text, if possible
  8443. gcode_M117();
  8444. break;
  8445. case 119: // M119: Report endstop states
  8446. gcode_M119();
  8447. break;
  8448. case 120: // M120: Enable endstops
  8449. gcode_M120();
  8450. break;
  8451. case 121: // M121: Disable endstops
  8452. gcode_M121();
  8453. break;
  8454. #if ENABLED(ULTIPANEL)
  8455. case 145: // M145: Set material heatup parameters
  8456. gcode_M145();
  8457. break;
  8458. #endif
  8459. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  8460. case 149: // M149: Set temperature units
  8461. gcode_M149();
  8462. break;
  8463. #endif
  8464. #if HAS_COLOR_LEDS
  8465. case 150: // M150: Set Status LED Color
  8466. gcode_M150();
  8467. break;
  8468. #endif // BLINKM
  8469. #if ENABLED(MIXING_EXTRUDER)
  8470. case 163: // M163: Set a component weight for mixing extruder
  8471. gcode_M163();
  8472. break;
  8473. #if MIXING_VIRTUAL_TOOLS > 1
  8474. case 164: // M164: Save current mix as a virtual extruder
  8475. gcode_M164();
  8476. break;
  8477. #endif
  8478. #if ENABLED(DIRECT_MIXING_IN_G1)
  8479. case 165: // M165: Set multiple mix weights
  8480. gcode_M165();
  8481. break;
  8482. #endif
  8483. #endif
  8484. case 200: // M200: Set filament diameter, E to cubic units
  8485. gcode_M200();
  8486. break;
  8487. case 201: // M201: Set max acceleration for print moves (units/s^2)
  8488. gcode_M201();
  8489. break;
  8490. #if 0 // Not used for Sprinter/grbl gen6
  8491. case 202: // M202
  8492. gcode_M202();
  8493. break;
  8494. #endif
  8495. case 203: // M203: Set max feedrate (units/sec)
  8496. gcode_M203();
  8497. break;
  8498. case 204: // M204: Set acceleration
  8499. gcode_M204();
  8500. break;
  8501. case 205: //M205: Set advanced settings
  8502. gcode_M205();
  8503. break;
  8504. #if HAS_M206_COMMAND
  8505. case 206: // M206: Set home offsets
  8506. gcode_M206();
  8507. break;
  8508. #endif
  8509. #if ENABLED(DELTA)
  8510. case 665: // M665: Set delta configurations
  8511. gcode_M665();
  8512. break;
  8513. #endif
  8514. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  8515. case 666: // M666: Set delta or dual endstop adjustment
  8516. gcode_M666();
  8517. break;
  8518. #endif
  8519. #if ENABLED(FWRETRACT)
  8520. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  8521. gcode_M207();
  8522. break;
  8523. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  8524. gcode_M208();
  8525. break;
  8526. case 209: // M209: Turn Automatic Retract Detection on/off
  8527. gcode_M209();
  8528. break;
  8529. #endif // FWRETRACT
  8530. case 211: // M211: Enable, Disable, and/or Report software endstops
  8531. gcode_M211();
  8532. break;
  8533. #if HOTENDS > 1
  8534. case 218: // M218: Set a tool offset
  8535. gcode_M218();
  8536. break;
  8537. #endif
  8538. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  8539. gcode_M220();
  8540. break;
  8541. case 221: // M221: Set Flow Percentage
  8542. gcode_M221();
  8543. break;
  8544. case 226: // M226: Wait until a pin reaches a state
  8545. gcode_M226();
  8546. break;
  8547. #if HAS_SERVOS
  8548. case 280: // M280: Set servo position absolute
  8549. gcode_M280();
  8550. break;
  8551. #endif // HAS_SERVOS
  8552. #if HAS_BUZZER
  8553. case 300: // M300: Play beep tone
  8554. gcode_M300();
  8555. break;
  8556. #endif // HAS_BUZZER
  8557. #if ENABLED(PIDTEMP)
  8558. case 301: // M301: Set hotend PID parameters
  8559. gcode_M301();
  8560. break;
  8561. #endif // PIDTEMP
  8562. #if ENABLED(PIDTEMPBED)
  8563. case 304: // M304: Set bed PID parameters
  8564. gcode_M304();
  8565. break;
  8566. #endif // PIDTEMPBED
  8567. #if defined(CHDK) || HAS_PHOTOGRAPH
  8568. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  8569. gcode_M240();
  8570. break;
  8571. #endif // CHDK || PHOTOGRAPH_PIN
  8572. #if HAS_LCD_CONTRAST
  8573. case 250: // M250: Set LCD contrast
  8574. gcode_M250();
  8575. break;
  8576. #endif // HAS_LCD_CONTRAST
  8577. #if ENABLED(EXPERIMENTAL_I2CBUS)
  8578. case 260: // M260: Send data to an i2c slave
  8579. gcode_M260();
  8580. break;
  8581. case 261: // M261: Request data from an i2c slave
  8582. gcode_M261();
  8583. break;
  8584. #endif // EXPERIMENTAL_I2CBUS
  8585. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8586. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  8587. gcode_M302();
  8588. break;
  8589. #endif // PREVENT_COLD_EXTRUSION
  8590. case 303: // M303: PID autotune
  8591. gcode_M303();
  8592. break;
  8593. #if ENABLED(MORGAN_SCARA)
  8594. case 360: // M360: SCARA Theta pos1
  8595. if (gcode_M360()) return;
  8596. break;
  8597. case 361: // M361: SCARA Theta pos2
  8598. if (gcode_M361()) return;
  8599. break;
  8600. case 362: // M362: SCARA Psi pos1
  8601. if (gcode_M362()) return;
  8602. break;
  8603. case 363: // M363: SCARA Psi pos2
  8604. if (gcode_M363()) return;
  8605. break;
  8606. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  8607. if (gcode_M364()) return;
  8608. break;
  8609. #endif // SCARA
  8610. case 400: // M400: Finish all moves
  8611. gcode_M400();
  8612. break;
  8613. #if HAS_BED_PROBE
  8614. case 401: // M401: Deploy probe
  8615. gcode_M401();
  8616. break;
  8617. case 402: // M402: Stow probe
  8618. gcode_M402();
  8619. break;
  8620. #endif // HAS_BED_PROBE
  8621. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8622. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  8623. gcode_M404();
  8624. break;
  8625. case 405: // M405: Turn on filament sensor for control
  8626. gcode_M405();
  8627. break;
  8628. case 406: // M406: Turn off filament sensor for control
  8629. gcode_M406();
  8630. break;
  8631. case 407: // M407: Display measured filament diameter
  8632. gcode_M407();
  8633. break;
  8634. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  8635. #if PLANNER_LEVELING
  8636. case 420: // M420: Enable/Disable Bed Leveling
  8637. gcode_M420();
  8638. break;
  8639. #endif
  8640. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8641. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  8642. gcode_M421();
  8643. break;
  8644. #endif
  8645. #if HAS_M206_COMMAND
  8646. case 428: // M428: Apply current_position to home_offset
  8647. gcode_M428();
  8648. break;
  8649. #endif
  8650. case 500: // M500: Store settings in EEPROM
  8651. gcode_M500();
  8652. break;
  8653. case 501: // M501: Read settings from EEPROM
  8654. gcode_M501();
  8655. break;
  8656. case 502: // M502: Revert to default settings
  8657. gcode_M502();
  8658. break;
  8659. case 503: // M503: print settings currently in memory
  8660. gcode_M503();
  8661. break;
  8662. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8663. case 540: // M540: Set abort on endstop hit for SD printing
  8664. gcode_M540();
  8665. break;
  8666. #endif
  8667. #if HAS_BED_PROBE
  8668. case 851: // M851: Set Z Probe Z Offset
  8669. gcode_M851();
  8670. break;
  8671. #endif // HAS_BED_PROBE
  8672. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8673. case 600: // M600: Pause for filament change
  8674. gcode_M600();
  8675. break;
  8676. #endif // FILAMENT_CHANGE_FEATURE
  8677. #if ENABLED(DUAL_X_CARRIAGE)
  8678. case 605: // M605: Set Dual X Carriage movement mode
  8679. gcode_M605();
  8680. break;
  8681. #endif // DUAL_X_CARRIAGE
  8682. #if ENABLED(LIN_ADVANCE)
  8683. case 900: // M900: Set advance K factor.
  8684. gcode_M900();
  8685. break;
  8686. #endif
  8687. #if ENABLED(HAVE_TMC2130)
  8688. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8689. gcode_M906();
  8690. break;
  8691. #endif
  8692. case 907: // M907: Set digital trimpot motor current using axis codes.
  8693. gcode_M907();
  8694. break;
  8695. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8696. case 908: // M908: Control digital trimpot directly.
  8697. gcode_M908();
  8698. break;
  8699. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8700. case 909: // M909: Print digipot/DAC current value
  8701. gcode_M909();
  8702. break;
  8703. case 910: // M910: Commit digipot/DAC value to external EEPROM
  8704. gcode_M910();
  8705. break;
  8706. #endif
  8707. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8708. #if ENABLED(HAVE_TMC2130)
  8709. case 911: // M911: Report TMC2130 prewarn triggered flags
  8710. gcode_M911();
  8711. break;
  8712. case 912: // M911: Clear TMC2130 prewarn triggered flags
  8713. gcode_M912();
  8714. break;
  8715. #if ENABLED(HYBRID_THRESHOLD)
  8716. case 913: // M913: Set HYBRID_THRESHOLD speed.
  8717. gcode_M913();
  8718. break;
  8719. #endif
  8720. #if ENABLED(SENSORLESS_HOMING)
  8721. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  8722. gcode_M914();
  8723. break;
  8724. #endif
  8725. #endif
  8726. #if HAS_MICROSTEPS
  8727. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8728. gcode_M350();
  8729. break;
  8730. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  8731. gcode_M351();
  8732. break;
  8733. #endif // HAS_MICROSTEPS
  8734. case 355: // M355 Turn case lights on/off
  8735. gcode_M355();
  8736. break;
  8737. case 999: // M999: Restart after being Stopped
  8738. gcode_M999();
  8739. break;
  8740. }
  8741. break;
  8742. case 'T':
  8743. gcode_T(codenum);
  8744. break;
  8745. default: code_is_good = false;
  8746. }
  8747. KEEPALIVE_STATE(NOT_BUSY);
  8748. ExitUnknownCommand:
  8749. // Still unknown command? Throw an error
  8750. if (!code_is_good) unknown_command_error();
  8751. ok_to_send();
  8752. }
  8753. /**
  8754. * Send a "Resend: nnn" message to the host to
  8755. * indicate that a command needs to be re-sent.
  8756. */
  8757. void FlushSerialRequestResend() {
  8758. //char command_queue[cmd_queue_index_r][100]="Resend:";
  8759. MYSERIAL.flush();
  8760. SERIAL_PROTOCOLPGM(MSG_RESEND);
  8761. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  8762. ok_to_send();
  8763. }
  8764. /**
  8765. * Send an "ok" message to the host, indicating
  8766. * that a command was successfully processed.
  8767. *
  8768. * If ADVANCED_OK is enabled also include:
  8769. * N<int> Line number of the command, if any
  8770. * P<int> Planner space remaining
  8771. * B<int> Block queue space remaining
  8772. */
  8773. void ok_to_send() {
  8774. refresh_cmd_timeout();
  8775. if (!send_ok[cmd_queue_index_r]) return;
  8776. SERIAL_PROTOCOLPGM(MSG_OK);
  8777. #if ENABLED(ADVANCED_OK)
  8778. char* p = command_queue[cmd_queue_index_r];
  8779. if (*p == 'N') {
  8780. SERIAL_PROTOCOL(' ');
  8781. SERIAL_ECHO(*p++);
  8782. while (NUMERIC_SIGNED(*p))
  8783. SERIAL_ECHO(*p++);
  8784. }
  8785. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  8786. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  8787. #endif
  8788. SERIAL_EOL;
  8789. }
  8790. #if HAS_SOFTWARE_ENDSTOPS
  8791. /**
  8792. * Constrain the given coordinates to the software endstops.
  8793. */
  8794. void clamp_to_software_endstops(float target[XYZ]) {
  8795. if (!soft_endstops_enabled) return;
  8796. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  8797. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  8798. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  8799. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  8800. #endif
  8801. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8802. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  8803. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  8804. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8805. #endif
  8806. }
  8807. #endif
  8808. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8809. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8810. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  8811. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  8812. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  8813. #define ABL_BG_GRID(X,Y) bed_level_grid_virt[X][Y]
  8814. #else
  8815. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  8816. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  8817. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  8818. #define ABL_BG_GRID(X,Y) bed_level_grid[X][Y]
  8819. #endif
  8820. // Get the Z adjustment for non-linear bed leveling
  8821. float bilinear_z_offset(float cartesian[XYZ]) {
  8822. // XY relative to the probed area
  8823. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  8824. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  8825. // Convert to grid box units
  8826. float ratio_x = x / ABL_BG_SPACING(X_AXIS),
  8827. ratio_y = y / ABL_BG_SPACING(Y_AXIS);
  8828. // Whole units for the grid line indices. Constrained within bounds.
  8829. const int gridx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1),
  8830. gridy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1),
  8831. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1),
  8832. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  8833. // Subtract whole to get the ratio within the grid box
  8834. ratio_x -= gridx; ratio_y -= gridy;
  8835. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  8836. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  8837. // Z at the box corners
  8838. const float z1 = ABL_BG_GRID(gridx, gridy), // left-front
  8839. z2 = ABL_BG_GRID(gridx, nexty), // left-back
  8840. z3 = ABL_BG_GRID(nextx, gridy), // right-front
  8841. z4 = ABL_BG_GRID(nextx, nexty), // right-back
  8842. // Bilinear interpolate
  8843. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  8844. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  8845. offset = L + ratio_x * (R - L);
  8846. /*
  8847. static float last_offset = 0;
  8848. if (fabs(last_offset - offset) > 0.2) {
  8849. SERIAL_ECHOPGM("Sudden Shift at ");
  8850. SERIAL_ECHOPAIR("x=", x);
  8851. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  8852. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  8853. SERIAL_ECHOPAIR(" y=", y);
  8854. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  8855. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  8856. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  8857. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  8858. SERIAL_ECHOPAIR(" z1=", z1);
  8859. SERIAL_ECHOPAIR(" z2=", z2);
  8860. SERIAL_ECHOPAIR(" z3=", z3);
  8861. SERIAL_ECHOLNPAIR(" z4=", z4);
  8862. SERIAL_ECHOPAIR(" L=", L);
  8863. SERIAL_ECHOPAIR(" R=", R);
  8864. SERIAL_ECHOLNPAIR(" offset=", offset);
  8865. }
  8866. last_offset = offset;
  8867. */
  8868. return offset;
  8869. }
  8870. #endif // AUTO_BED_LEVELING_BILINEAR
  8871. #if ENABLED(DELTA)
  8872. /**
  8873. * Recalculate factors used for delta kinematics whenever
  8874. * settings have been changed (e.g., by M665).
  8875. */
  8876. void recalc_delta_settings(float radius, float diagonal_rod) {
  8877. delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  8878. delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  8879. delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  8880. delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  8881. delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); // back middle tower
  8882. delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3);
  8883. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]);
  8884. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]);
  8885. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]);
  8886. }
  8887. #if ENABLED(DELTA_FAST_SQRT)
  8888. /**
  8889. * Fast inverse sqrt from Quake III Arena
  8890. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  8891. */
  8892. float Q_rsqrt(float number) {
  8893. long i;
  8894. float x2, y;
  8895. const float threehalfs = 1.5f;
  8896. x2 = number * 0.5f;
  8897. y = number;
  8898. i = * ( long * ) &y; // evil floating point bit level hacking
  8899. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  8900. y = * ( float * ) &i;
  8901. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  8902. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  8903. return y;
  8904. }
  8905. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  8906. #else
  8907. #define _SQRT(n) sqrt(n)
  8908. #endif
  8909. /**
  8910. * Delta Inverse Kinematics
  8911. *
  8912. * Calculate the tower positions for a given logical
  8913. * position, storing the result in the delta[] array.
  8914. *
  8915. * This is an expensive calculation, requiring 3 square
  8916. * roots per segmented linear move, and strains the limits
  8917. * of a Mega2560 with a Graphical Display.
  8918. *
  8919. * Suggested optimizations include:
  8920. *
  8921. * - Disable the home_offset (M206) and/or position_shift (G92)
  8922. * features to remove up to 12 float additions.
  8923. *
  8924. * - Use a fast-inverse-sqrt function and add the reciprocal.
  8925. * (see above)
  8926. */
  8927. // Macro to obtain the Z position of an individual tower
  8928. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  8929. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  8930. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  8931. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  8932. ) \
  8933. )
  8934. #define DELTA_RAW_IK() do { \
  8935. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  8936. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  8937. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  8938. } while(0)
  8939. #define DELTA_LOGICAL_IK() do { \
  8940. const float raw[XYZ] = { \
  8941. RAW_X_POSITION(logical[X_AXIS]), \
  8942. RAW_Y_POSITION(logical[Y_AXIS]), \
  8943. RAW_Z_POSITION(logical[Z_AXIS]) \
  8944. }; \
  8945. DELTA_RAW_IK(); \
  8946. } while(0)
  8947. #define DELTA_DEBUG() do { \
  8948. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  8949. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  8950. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  8951. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  8952. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  8953. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  8954. } while(0)
  8955. void inverse_kinematics(const float logical[XYZ]) {
  8956. DELTA_LOGICAL_IK();
  8957. // DELTA_DEBUG();
  8958. }
  8959. /**
  8960. * Calculate the highest Z position where the
  8961. * effector has the full range of XY motion.
  8962. */
  8963. float delta_safe_distance_from_top() {
  8964. float cartesian[XYZ] = {
  8965. LOGICAL_X_POSITION(0),
  8966. LOGICAL_Y_POSITION(0),
  8967. LOGICAL_Z_POSITION(0)
  8968. };
  8969. inverse_kinematics(cartesian);
  8970. float distance = delta[A_AXIS];
  8971. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  8972. inverse_kinematics(cartesian);
  8973. return abs(distance - delta[A_AXIS]);
  8974. }
  8975. /**
  8976. * Delta Forward Kinematics
  8977. *
  8978. * See the Wikipedia article "Trilateration"
  8979. * https://en.wikipedia.org/wiki/Trilateration
  8980. *
  8981. * Establish a new coordinate system in the plane of the
  8982. * three carriage points. This system has its origin at
  8983. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  8984. * plane with a Z component of zero.
  8985. * We will define unit vectors in this coordinate system
  8986. * in our original coordinate system. Then when we calculate
  8987. * the Xnew, Ynew and Znew values, we can translate back into
  8988. * the original system by moving along those unit vectors
  8989. * by the corresponding values.
  8990. *
  8991. * Variable names matched to Marlin, c-version, and avoid the
  8992. * use of any vector library.
  8993. *
  8994. * by Andreas Hardtung 2016-06-07
  8995. * based on a Java function from "Delta Robot Kinematics V3"
  8996. * by Steve Graves
  8997. *
  8998. * The result is stored in the cartes[] array.
  8999. */
  9000. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  9001. // Create a vector in old coordinates along x axis of new coordinate
  9002. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  9003. // Get the Magnitude of vector.
  9004. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  9005. // Create unit vector by dividing by magnitude.
  9006. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  9007. // Get the vector from the origin of the new system to the third point.
  9008. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  9009. // Use the dot product to find the component of this vector on the X axis.
  9010. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  9011. // Create a vector along the x axis that represents the x component of p13.
  9012. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  9013. // Subtract the X component from the original vector leaving only Y. We use the
  9014. // variable that will be the unit vector after we scale it.
  9015. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  9016. // The magnitude of Y component
  9017. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  9018. // Convert to a unit vector
  9019. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  9020. // The cross product of the unit x and y is the unit z
  9021. // float[] ez = vectorCrossProd(ex, ey);
  9022. float ez[3] = {
  9023. ex[1] * ey[2] - ex[2] * ey[1],
  9024. ex[2] * ey[0] - ex[0] * ey[2],
  9025. ex[0] * ey[1] - ex[1] * ey[0]
  9026. };
  9027. // We now have the d, i and j values defined in Wikipedia.
  9028. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  9029. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  9030. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  9031. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  9032. // Start from the origin of the old coordinates and add vectors in the
  9033. // old coords that represent the Xnew, Ynew and Znew to find the point
  9034. // in the old system.
  9035. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  9036. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  9037. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  9038. }
  9039. void forward_kinematics_DELTA(float point[ABC]) {
  9040. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  9041. }
  9042. #endif // DELTA
  9043. /**
  9044. * Get the stepper positions in the cartes[] array.
  9045. * Forward kinematics are applied for DELTA and SCARA.
  9046. *
  9047. * The result is in the current coordinate space with
  9048. * leveling applied. The coordinates need to be run through
  9049. * unapply_leveling to obtain the "ideal" coordinates
  9050. * suitable for current_position, etc.
  9051. */
  9052. void get_cartesian_from_steppers() {
  9053. #if ENABLED(DELTA)
  9054. forward_kinematics_DELTA(
  9055. stepper.get_axis_position_mm(A_AXIS),
  9056. stepper.get_axis_position_mm(B_AXIS),
  9057. stepper.get_axis_position_mm(C_AXIS)
  9058. );
  9059. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9060. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9061. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  9062. #elif IS_SCARA
  9063. forward_kinematics_SCARA(
  9064. stepper.get_axis_position_degrees(A_AXIS),
  9065. stepper.get_axis_position_degrees(B_AXIS)
  9066. );
  9067. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9068. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9069. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9070. #else
  9071. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  9072. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  9073. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9074. #endif
  9075. }
  9076. /**
  9077. * Set the current_position for an axis based on
  9078. * the stepper positions, removing any leveling that
  9079. * may have been applied.
  9080. */
  9081. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  9082. get_cartesian_from_steppers();
  9083. #if PLANNER_LEVELING && DISABLED(AUTO_BED_LEVELING_UBL)
  9084. planner.unapply_leveling(cartes);
  9085. #endif
  9086. if (axis == ALL_AXES)
  9087. COPY(current_position, cartes);
  9088. else
  9089. current_position[axis] = cartes[axis];
  9090. }
  9091. #if ENABLED(MESH_BED_LEVELING)
  9092. /**
  9093. * Prepare a mesh-leveled linear move in a Cartesian setup,
  9094. * splitting the move where it crosses mesh borders.
  9095. */
  9096. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  9097. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  9098. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  9099. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  9100. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  9101. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  9102. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  9103. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  9104. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  9105. if (cx1 == cx2 && cy1 == cy2) {
  9106. // Start and end on same mesh square
  9107. line_to_destination(fr_mm_s);
  9108. set_current_to_destination();
  9109. return;
  9110. }
  9111. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9112. float normalized_dist, end[XYZE];
  9113. // Split at the left/front border of the right/top square
  9114. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9115. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9116. COPY(end, destination);
  9117. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  9118. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9119. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  9120. CBI(x_splits, gcx);
  9121. }
  9122. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9123. COPY(end, destination);
  9124. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  9125. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9126. destination[X_AXIS] = MBL_SEGMENT_END(X);
  9127. CBI(y_splits, gcy);
  9128. }
  9129. else {
  9130. // Already split on a border
  9131. line_to_destination(fr_mm_s);
  9132. set_current_to_destination();
  9133. return;
  9134. }
  9135. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  9136. destination[E_AXIS] = MBL_SEGMENT_END(E);
  9137. // Do the split and look for more borders
  9138. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9139. // Restore destination from stack
  9140. COPY(destination, end);
  9141. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9142. }
  9143. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  9144. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / ABL_BG_SPACING(A##_AXIS))
  9145. /**
  9146. * Prepare a bilinear-leveled linear move on Cartesian,
  9147. * splitting the move where it crosses grid borders.
  9148. */
  9149. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  9150. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  9151. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  9152. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  9153. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  9154. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  9155. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  9156. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  9157. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  9158. if (cx1 == cx2 && cy1 == cy2) {
  9159. // Start and end on same mesh square
  9160. line_to_destination(fr_mm_s);
  9161. set_current_to_destination();
  9162. return;
  9163. }
  9164. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9165. float normalized_dist, end[XYZE];
  9166. // Split at the left/front border of the right/top square
  9167. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9168. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9169. COPY(end, destination);
  9170. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  9171. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9172. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  9173. CBI(x_splits, gcx);
  9174. }
  9175. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9176. COPY(end, destination);
  9177. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  9178. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9179. destination[X_AXIS] = LINE_SEGMENT_END(X);
  9180. CBI(y_splits, gcy);
  9181. }
  9182. else {
  9183. // Already split on a border
  9184. line_to_destination(fr_mm_s);
  9185. set_current_to_destination();
  9186. return;
  9187. }
  9188. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  9189. destination[E_AXIS] = LINE_SEGMENT_END(E);
  9190. // Do the split and look for more borders
  9191. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9192. // Restore destination from stack
  9193. COPY(destination, end);
  9194. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9195. }
  9196. #endif // AUTO_BED_LEVELING_BILINEAR
  9197. #if IS_KINEMATIC
  9198. /**
  9199. * Prepare a linear move in a DELTA or SCARA setup.
  9200. *
  9201. * This calls planner.buffer_line several times, adding
  9202. * small incremental moves for DELTA or SCARA.
  9203. */
  9204. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  9205. // Get the top feedrate of the move in the XY plane
  9206. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  9207. // If the move is only in Z/E don't split up the move
  9208. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  9209. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9210. return false;
  9211. }
  9212. // Get the cartesian distances moved in XYZE
  9213. float difference[XYZE];
  9214. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  9215. // Get the linear distance in XYZ
  9216. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  9217. // If the move is very short, check the E move distance
  9218. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  9219. // No E move either? Game over.
  9220. if (UNEAR_ZERO(cartesian_mm)) return true;
  9221. // Minimum number of seconds to move the given distance
  9222. float seconds = cartesian_mm / _feedrate_mm_s;
  9223. // The number of segments-per-second times the duration
  9224. // gives the number of segments
  9225. uint16_t segments = delta_segments_per_second * seconds;
  9226. // For SCARA minimum segment size is 0.25mm
  9227. #if IS_SCARA
  9228. NOMORE(segments, cartesian_mm * 4);
  9229. #endif
  9230. // At least one segment is required
  9231. NOLESS(segments, 1);
  9232. // The approximate length of each segment
  9233. const float inv_segments = 1.0 / float(segments),
  9234. segment_distance[XYZE] = {
  9235. difference[X_AXIS] * inv_segments,
  9236. difference[Y_AXIS] * inv_segments,
  9237. difference[Z_AXIS] * inv_segments,
  9238. difference[E_AXIS] * inv_segments
  9239. };
  9240. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  9241. // SERIAL_ECHOPAIR(" seconds=", seconds);
  9242. // SERIAL_ECHOLNPAIR(" segments=", segments);
  9243. #if IS_SCARA
  9244. // SCARA needs to scale the feed rate from mm/s to degrees/s
  9245. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  9246. feed_factor = inv_segment_length * _feedrate_mm_s;
  9247. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  9248. oldB = stepper.get_axis_position_degrees(B_AXIS);
  9249. #endif
  9250. // Get the logical current position as starting point
  9251. float logical[XYZE];
  9252. COPY(logical, current_position);
  9253. // Drop one segment so the last move is to the exact target.
  9254. // If there's only 1 segment, loops will be skipped entirely.
  9255. --segments;
  9256. // Calculate and execute the segments
  9257. for (uint16_t s = segments + 1; --s;) {
  9258. LOOP_XYZE(i) logical[i] += segment_distance[i];
  9259. #if ENABLED(DELTA)
  9260. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  9261. #else
  9262. inverse_kinematics(logical);
  9263. #endif
  9264. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  9265. #if IS_SCARA
  9266. // For SCARA scale the feed rate from mm/s to degrees/s
  9267. // Use ratio between the length of the move and the larger angle change
  9268. const float adiff = abs(delta[A_AXIS] - oldA),
  9269. bdiff = abs(delta[B_AXIS] - oldB);
  9270. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9271. oldA = delta[A_AXIS];
  9272. oldB = delta[B_AXIS];
  9273. #else
  9274. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  9275. #endif
  9276. }
  9277. // Since segment_distance is only approximate,
  9278. // the final move must be to the exact destination.
  9279. #if IS_SCARA
  9280. // For SCARA scale the feed rate from mm/s to degrees/s
  9281. // With segments > 1 length is 1 segment, otherwise total length
  9282. inverse_kinematics(ltarget);
  9283. ADJUST_DELTA(logical);
  9284. const float adiff = abs(delta[A_AXIS] - oldA),
  9285. bdiff = abs(delta[B_AXIS] - oldB);
  9286. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9287. #else
  9288. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9289. #endif
  9290. return false;
  9291. }
  9292. #else // !IS_KINEMATIC
  9293. /**
  9294. * Prepare a linear move in a Cartesian setup.
  9295. * If Mesh Bed Leveling is enabled, perform a mesh move.
  9296. *
  9297. * Returns true if the caller didn't update current_position.
  9298. */
  9299. inline bool prepare_move_to_destination_cartesian() {
  9300. // Do not use feedrate_percentage for E or Z only moves
  9301. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  9302. line_to_destination();
  9303. }
  9304. else {
  9305. #if ENABLED(MESH_BED_LEVELING)
  9306. if (mbl.active()) {
  9307. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9308. return true;
  9309. }
  9310. else
  9311. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  9312. if (ubl.state.active) {
  9313. ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
  9314. return true;
  9315. }
  9316. else
  9317. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9318. if (planner.abl_enabled) {
  9319. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9320. return true;
  9321. }
  9322. else
  9323. #endif
  9324. line_to_destination(MMS_SCALED(feedrate_mm_s));
  9325. }
  9326. return false;
  9327. }
  9328. #endif // !IS_KINEMATIC
  9329. #if ENABLED(DUAL_X_CARRIAGE)
  9330. /**
  9331. * Prepare a linear move in a dual X axis setup
  9332. */
  9333. inline bool prepare_move_to_destination_dualx() {
  9334. if (active_extruder_parked) {
  9335. switch (dual_x_carriage_mode) {
  9336. case DXC_FULL_CONTROL_MODE:
  9337. break;
  9338. case DXC_AUTO_PARK_MODE:
  9339. if (current_position[E_AXIS] == destination[E_AXIS]) {
  9340. // This is a travel move (with no extrusion)
  9341. // Skip it, but keep track of the current position
  9342. // (so it can be used as the start of the next non-travel move)
  9343. if (delayed_move_time != 0xFFFFFFFFUL) {
  9344. set_current_to_destination();
  9345. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  9346. delayed_move_time = millis();
  9347. return true;
  9348. }
  9349. }
  9350. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  9351. for (uint8_t i = 0; i < 3; i++)
  9352. planner.buffer_line(
  9353. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  9354. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  9355. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  9356. current_position[E_AXIS],
  9357. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  9358. active_extruder
  9359. );
  9360. delayed_move_time = 0;
  9361. active_extruder_parked = false;
  9362. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9363. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  9364. #endif
  9365. break;
  9366. case DXC_DUPLICATION_MODE:
  9367. if (active_extruder == 0) {
  9368. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9369. if (DEBUGGING(LEVELING)) {
  9370. SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
  9371. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  9372. }
  9373. #endif
  9374. // move duplicate extruder into correct duplication position.
  9375. planner.set_position_mm(
  9376. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  9377. current_position[Y_AXIS],
  9378. current_position[Z_AXIS],
  9379. current_position[E_AXIS]
  9380. );
  9381. planner.buffer_line(
  9382. current_position[X_AXIS] + duplicate_extruder_x_offset,
  9383. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  9384. planner.max_feedrate_mm_s[X_AXIS], 1
  9385. );
  9386. SYNC_PLAN_POSITION_KINEMATIC();
  9387. stepper.synchronize();
  9388. extruder_duplication_enabled = true;
  9389. active_extruder_parked = false;
  9390. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9391. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  9392. #endif
  9393. }
  9394. else {
  9395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9396. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  9397. #endif
  9398. }
  9399. break;
  9400. }
  9401. }
  9402. return false;
  9403. }
  9404. #endif // DUAL_X_CARRIAGE
  9405. /**
  9406. * Prepare a single move and get ready for the next one
  9407. *
  9408. * This may result in several calls to planner.buffer_line to
  9409. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  9410. */
  9411. void prepare_move_to_destination() {
  9412. clamp_to_software_endstops(destination);
  9413. refresh_cmd_timeout();
  9414. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9415. if (!DEBUGGING(DRYRUN)) {
  9416. if (destination[E_AXIS] != current_position[E_AXIS]) {
  9417. if (thermalManager.tooColdToExtrude(active_extruder)) {
  9418. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9419. SERIAL_ECHO_START;
  9420. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  9421. }
  9422. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  9423. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  9424. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9425. SERIAL_ECHO_START;
  9426. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  9427. }
  9428. #endif
  9429. }
  9430. }
  9431. #endif
  9432. #if IS_KINEMATIC
  9433. if (prepare_kinematic_move_to(destination)) return;
  9434. #else
  9435. #if ENABLED(DUAL_X_CARRIAGE)
  9436. if (prepare_move_to_destination_dualx()) return;
  9437. #endif
  9438. if (prepare_move_to_destination_cartesian()) return;
  9439. #endif
  9440. set_current_to_destination();
  9441. }
  9442. #if ENABLED(ARC_SUPPORT)
  9443. /**
  9444. * Plan an arc in 2 dimensions
  9445. *
  9446. * The arc is approximated by generating many small linear segments.
  9447. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  9448. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  9449. * larger segments will tend to be more efficient. Your slicer should have
  9450. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  9451. */
  9452. void plan_arc(
  9453. float logical[XYZE], // Destination position
  9454. float *offset, // Center of rotation relative to current_position
  9455. uint8_t clockwise // Clockwise?
  9456. ) {
  9457. float r_X = -offset[X_AXIS], // Radius vector from center to current location
  9458. r_Y = -offset[Y_AXIS];
  9459. const float radius = HYPOT(r_X, r_Y),
  9460. center_X = current_position[X_AXIS] - r_X,
  9461. center_Y = current_position[Y_AXIS] - r_Y,
  9462. rt_X = logical[X_AXIS] - center_X,
  9463. rt_Y = logical[Y_AXIS] - center_Y,
  9464. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  9465. extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
  9466. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  9467. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  9468. if (angular_travel < 0) angular_travel += RADIANS(360);
  9469. if (clockwise) angular_travel -= RADIANS(360);
  9470. // Make a circle if the angular rotation is 0
  9471. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  9472. angular_travel += RADIANS(360);
  9473. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  9474. if (mm_of_travel < 0.001) return;
  9475. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  9476. if (segments == 0) segments = 1;
  9477. /**
  9478. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  9479. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  9480. * r_T = [cos(phi) -sin(phi);
  9481. * sin(phi) cos(phi)] * r ;
  9482. *
  9483. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  9484. * defined from the circle center to the initial position. Each line segment is formed by successive
  9485. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  9486. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  9487. * all double numbers are single precision on the Arduino. (True double precision will not have
  9488. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  9489. * tool precision in some cases. Therefore, arc path correction is implemented.
  9490. *
  9491. * Small angle approximation may be used to reduce computation overhead further. This approximation
  9492. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  9493. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  9494. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  9495. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  9496. * issue for CNC machines with the single precision Arduino calculations.
  9497. *
  9498. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  9499. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  9500. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  9501. * This is important when there are successive arc motions.
  9502. */
  9503. // Vector rotation matrix values
  9504. float arc_target[XYZE];
  9505. const float theta_per_segment = angular_travel / segments,
  9506. linear_per_segment = linear_travel / segments,
  9507. extruder_per_segment = extruder_travel / segments,
  9508. sin_T = theta_per_segment,
  9509. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  9510. // Initialize the linear axis
  9511. arc_target[Z_AXIS] = current_position[Z_AXIS];
  9512. // Initialize the extruder axis
  9513. arc_target[E_AXIS] = current_position[E_AXIS];
  9514. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  9515. millis_t next_idle_ms = millis() + 200UL;
  9516. int8_t count = 0;
  9517. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  9518. thermalManager.manage_heater();
  9519. if (ELAPSED(millis(), next_idle_ms)) {
  9520. next_idle_ms = millis() + 200UL;
  9521. idle();
  9522. }
  9523. if (++count < N_ARC_CORRECTION) {
  9524. // Apply vector rotation matrix to previous r_X / 1
  9525. const float r_new_Y = r_X * sin_T + r_Y * cos_T;
  9526. r_X = r_X * cos_T - r_Y * sin_T;
  9527. r_Y = r_new_Y;
  9528. }
  9529. else {
  9530. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  9531. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  9532. // To reduce stuttering, the sin and cos could be computed at different times.
  9533. // For now, compute both at the same time.
  9534. const float cos_Ti = cos(i * theta_per_segment),
  9535. sin_Ti = sin(i * theta_per_segment);
  9536. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  9537. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  9538. count = 0;
  9539. }
  9540. // Update arc_target location
  9541. arc_target[X_AXIS] = center_X + r_X;
  9542. arc_target[Y_AXIS] = center_Y + r_Y;
  9543. arc_target[Z_AXIS] += linear_per_segment;
  9544. arc_target[E_AXIS] += extruder_per_segment;
  9545. clamp_to_software_endstops(arc_target);
  9546. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  9547. }
  9548. // Ensure last segment arrives at target location.
  9549. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  9550. // As far as the parser is concerned, the position is now == target. In reality the
  9551. // motion control system might still be processing the action and the real tool position
  9552. // in any intermediate location.
  9553. set_current_to_destination();
  9554. }
  9555. #endif
  9556. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9557. void plan_cubic_move(const float offset[4]) {
  9558. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  9559. // As far as the parser is concerned, the position is now == destination. In reality the
  9560. // motion control system might still be processing the action and the real tool position
  9561. // in any intermediate location.
  9562. set_current_to_destination();
  9563. }
  9564. #endif // BEZIER_CURVE_SUPPORT
  9565. #if HAS_CONTROLLERFAN
  9566. void controllerFan() {
  9567. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  9568. nextMotorCheck = 0; // Last time the state was checked
  9569. const millis_t ms = millis();
  9570. if (ELAPSED(ms, nextMotorCheck)) {
  9571. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  9572. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  9573. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  9574. #if E_STEPPERS > 1
  9575. || E1_ENABLE_READ == E_ENABLE_ON
  9576. #if HAS_X2_ENABLE
  9577. || X2_ENABLE_READ == X_ENABLE_ON
  9578. #endif
  9579. #if E_STEPPERS > 2
  9580. || E2_ENABLE_READ == E_ENABLE_ON
  9581. #if E_STEPPERS > 3
  9582. || E3_ENABLE_READ == E_ENABLE_ON
  9583. #if E_STEPPERS > 4
  9584. || E4_ENABLE_READ == E_ENABLE_ON
  9585. #endif // E_STEPPERS > 4
  9586. #endif // E_STEPPERS > 3
  9587. #endif // E_STEPPERS > 2
  9588. #endif // E_STEPPERS > 1
  9589. ) {
  9590. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  9591. }
  9592. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  9593. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  9594. // allows digital or PWM fan output to be used (see M42 handling)
  9595. WRITE(CONTROLLERFAN_PIN, speed);
  9596. analogWrite(CONTROLLERFAN_PIN, speed);
  9597. }
  9598. }
  9599. #endif // HAS_CONTROLLERFAN
  9600. #if ENABLED(MORGAN_SCARA)
  9601. /**
  9602. * Morgan SCARA Forward Kinematics. Results in cartes[].
  9603. * Maths and first version by QHARLEY.
  9604. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9605. */
  9606. void forward_kinematics_SCARA(const float &a, const float &b) {
  9607. float a_sin = sin(RADIANS(a)) * L1,
  9608. a_cos = cos(RADIANS(a)) * L1,
  9609. b_sin = sin(RADIANS(b)) * L2,
  9610. b_cos = cos(RADIANS(b)) * L2;
  9611. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  9612. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  9613. /*
  9614. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  9615. SERIAL_ECHOPAIR(" b=", b);
  9616. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  9617. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  9618. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  9619. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  9620. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  9621. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  9622. //*/
  9623. }
  9624. /**
  9625. * Morgan SCARA Inverse Kinematics. Results in delta[].
  9626. *
  9627. * See http://forums.reprap.org/read.php?185,283327
  9628. *
  9629. * Maths and first version by QHARLEY.
  9630. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9631. */
  9632. void inverse_kinematics(const float logical[XYZ]) {
  9633. static float C2, S2, SK1, SK2, THETA, PSI;
  9634. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  9635. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  9636. if (L1 == L2)
  9637. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  9638. else
  9639. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  9640. S2 = sqrt(sq(C2) - 1);
  9641. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  9642. SK1 = L1 + L2 * C2;
  9643. // Rotated Arm2 gives the distance from Arm1 to Arm2
  9644. SK2 = L2 * S2;
  9645. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  9646. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  9647. // Angle of Arm2
  9648. PSI = atan2(S2, C2);
  9649. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  9650. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  9651. delta[C_AXIS] = logical[Z_AXIS];
  9652. /*
  9653. DEBUG_POS("SCARA IK", logical);
  9654. DEBUG_POS("SCARA IK", delta);
  9655. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  9656. SERIAL_ECHOPAIR(",", sy);
  9657. SERIAL_ECHOPAIR(" C2=", C2);
  9658. SERIAL_ECHOPAIR(" S2=", S2);
  9659. SERIAL_ECHOPAIR(" Theta=", THETA);
  9660. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  9661. //*/
  9662. }
  9663. #endif // MORGAN_SCARA
  9664. #if ENABLED(TEMP_STAT_LEDS)
  9665. static bool red_led = false;
  9666. static millis_t next_status_led_update_ms = 0;
  9667. void handle_status_leds(void) {
  9668. if (ELAPSED(millis(), next_status_led_update_ms)) {
  9669. next_status_led_update_ms += 500; // Update every 0.5s
  9670. float max_temp = 0.0;
  9671. #if HAS_TEMP_BED
  9672. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  9673. #endif
  9674. HOTEND_LOOP() {
  9675. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  9676. }
  9677. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  9678. if (new_led != red_led) {
  9679. red_led = new_led;
  9680. #if PIN_EXISTS(STAT_LED_RED)
  9681. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  9682. #if PIN_EXISTS(STAT_LED_BLUE)
  9683. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  9684. #endif
  9685. #else
  9686. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  9687. #endif
  9688. }
  9689. }
  9690. }
  9691. #endif
  9692. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9693. void handle_filament_runout() {
  9694. if (!filament_ran_out) {
  9695. filament_ran_out = true;
  9696. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  9697. stepper.synchronize();
  9698. }
  9699. }
  9700. #endif // FILAMENT_RUNOUT_SENSOR
  9701. #if ENABLED(FAST_PWM_FAN)
  9702. void setPwmFrequency(uint8_t pin, int val) {
  9703. val &= 0x07;
  9704. switch (digitalPinToTimer(pin)) {
  9705. #ifdef TCCR0A
  9706. case TIMER0A:
  9707. case TIMER0B:
  9708. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  9709. // TCCR0B |= val;
  9710. break;
  9711. #endif
  9712. #ifdef TCCR1A
  9713. case TIMER1A:
  9714. case TIMER1B:
  9715. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  9716. // TCCR1B |= val;
  9717. break;
  9718. #endif
  9719. #ifdef TCCR2
  9720. case TIMER2:
  9721. case TIMER2:
  9722. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  9723. TCCR2 |= val;
  9724. break;
  9725. #endif
  9726. #ifdef TCCR2A
  9727. case TIMER2A:
  9728. case TIMER2B:
  9729. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  9730. TCCR2B |= val;
  9731. break;
  9732. #endif
  9733. #ifdef TCCR3A
  9734. case TIMER3A:
  9735. case TIMER3B:
  9736. case TIMER3C:
  9737. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  9738. TCCR3B |= val;
  9739. break;
  9740. #endif
  9741. #ifdef TCCR4A
  9742. case TIMER4A:
  9743. case TIMER4B:
  9744. case TIMER4C:
  9745. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  9746. TCCR4B |= val;
  9747. break;
  9748. #endif
  9749. #ifdef TCCR5A
  9750. case TIMER5A:
  9751. case TIMER5B:
  9752. case TIMER5C:
  9753. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  9754. TCCR5B |= val;
  9755. break;
  9756. #endif
  9757. }
  9758. }
  9759. #endif // FAST_PWM_FAN
  9760. float calculate_volumetric_multiplier(float diameter) {
  9761. if (!volumetric_enabled || diameter == 0) return 1.0;
  9762. return 1.0 / (M_PI * sq(diameter * 0.5));
  9763. }
  9764. void calculate_volumetric_multipliers() {
  9765. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  9766. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  9767. }
  9768. void enable_all_steppers() {
  9769. enable_X();
  9770. enable_Y();
  9771. enable_Z();
  9772. enable_E0();
  9773. enable_E1();
  9774. enable_E2();
  9775. enable_E3();
  9776. enable_E4();
  9777. }
  9778. void disable_e_steppers() {
  9779. disable_E0();
  9780. disable_E1();
  9781. disable_E2();
  9782. disable_E3();
  9783. disable_E4();
  9784. }
  9785. void disable_all_steppers() {
  9786. disable_X();
  9787. disable_Y();
  9788. disable_Z();
  9789. disable_e_steppers();
  9790. }
  9791. #if ENABLED(HAVE_TMC2130)
  9792. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  9793. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  9794. const bool is_otpw = st.checkOT();
  9795. // Report if a warning was triggered
  9796. static bool previous_otpw = false;
  9797. if (is_otpw && !previous_otpw) {
  9798. char timestamp[10];
  9799. duration_t elapsed = print_job_timer.duration();
  9800. const bool has_days = (elapsed.value > 60*60*24L);
  9801. (void)elapsed.toDigital(timestamp, has_days);
  9802. SERIAL_ECHO(timestamp);
  9803. SERIAL_ECHO(": ");
  9804. SERIAL_ECHO(axisID);
  9805. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  9806. }
  9807. previous_otpw = is_otpw;
  9808. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9809. // Return if user has not enabled current control start with M906 S1.
  9810. if (!auto_current_control) return;
  9811. /**
  9812. * Decrease current if is_otpw is true.
  9813. * Bail out if driver is disabled.
  9814. * Increase current if OTPW has not been triggered yet.
  9815. */
  9816. uint16_t current = st.getCurrent();
  9817. if (is_otpw) {
  9818. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  9819. #if ENABLED(REPORT_CURRENT_CHANGE)
  9820. SERIAL_ECHO(axisID);
  9821. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  9822. #endif
  9823. }
  9824. else if (!st.isEnabled())
  9825. return;
  9826. else if (!is_otpw && !st.getOTPW()) {
  9827. current += CURRENT_STEP;
  9828. if (current <= AUTO_ADJUST_MAX) {
  9829. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  9830. #if ENABLED(REPORT_CURRENT_CHANGE)
  9831. SERIAL_ECHO(axisID);
  9832. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  9833. #endif
  9834. }
  9835. }
  9836. SERIAL_EOL;
  9837. #endif
  9838. }
  9839. void checkOverTemp() {
  9840. static millis_t next_cOT = 0;
  9841. if (ELAPSED(millis(), next_cOT)) {
  9842. next_cOT = millis() + 5000;
  9843. #if ENABLED(X_IS_TMC2130)
  9844. automatic_current_control(stepperX, "X");
  9845. #endif
  9846. #if ENABLED(Y_IS_TMC2130)
  9847. automatic_current_control(stepperY, "Y");
  9848. #endif
  9849. #if ENABLED(Z_IS_TMC2130)
  9850. automatic_current_control(stepperZ, "Z");
  9851. #endif
  9852. #if ENABLED(X2_IS_TMC2130)
  9853. automatic_current_control(stepperX2, "X2");
  9854. #endif
  9855. #if ENABLED(Y2_IS_TMC2130)
  9856. automatic_current_control(stepperY2, "Y2");
  9857. #endif
  9858. #if ENABLED(Z2_IS_TMC2130)
  9859. automatic_current_control(stepperZ2, "Z2");
  9860. #endif
  9861. #if ENABLED(E0_IS_TMC2130)
  9862. automatic_current_control(stepperE0, "E0");
  9863. #endif
  9864. #if ENABLED(E1_IS_TMC2130)
  9865. automatic_current_control(stepperE1, "E1");
  9866. #endif
  9867. #if ENABLED(E2_IS_TMC2130)
  9868. automatic_current_control(stepperE2, "E2");
  9869. #endif
  9870. #if ENABLED(E3_IS_TMC2130)
  9871. automatic_current_control(stepperE3, "E3");
  9872. #endif
  9873. #if ENABLED(E4_IS_TMC2130)
  9874. automatic_current_control(stepperE4, "E4");
  9875. #endif
  9876. #if ENABLED(E4_IS_TMC2130)
  9877. automatic_current_control(stepperE4);
  9878. #endif
  9879. }
  9880. }
  9881. #endif // HAVE_TMC2130
  9882. /**
  9883. * Manage several activities:
  9884. * - Check for Filament Runout
  9885. * - Keep the command buffer full
  9886. * - Check for maximum inactive time between commands
  9887. * - Check for maximum inactive time between stepper commands
  9888. * - Check if pin CHDK needs to go LOW
  9889. * - Check for KILL button held down
  9890. * - Check for HOME button held down
  9891. * - Check if cooling fan needs to be switched on
  9892. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  9893. */
  9894. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  9895. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9896. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  9897. handle_filament_runout();
  9898. #endif
  9899. if (commands_in_queue < BUFSIZE) get_available_commands();
  9900. const millis_t ms = millis();
  9901. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  9902. SERIAL_ERROR_START;
  9903. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  9904. kill(PSTR(MSG_KILLED));
  9905. }
  9906. // Prevent steppers timing-out in the middle of M600
  9907. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  9908. #define M600_TEST !busy_doing_M600
  9909. #else
  9910. #define M600_TEST true
  9911. #endif
  9912. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  9913. && !ignore_stepper_queue && !planner.blocks_queued()) {
  9914. #if ENABLED(DISABLE_INACTIVE_X)
  9915. disable_X();
  9916. #endif
  9917. #if ENABLED(DISABLE_INACTIVE_Y)
  9918. disable_Y();
  9919. #endif
  9920. #if ENABLED(DISABLE_INACTIVE_Z)
  9921. disable_Z();
  9922. #endif
  9923. #if ENABLED(DISABLE_INACTIVE_E)
  9924. disable_e_steppers();
  9925. #endif
  9926. }
  9927. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  9928. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  9929. chdkActive = false;
  9930. WRITE(CHDK, LOW);
  9931. }
  9932. #endif
  9933. #if HAS_KILL
  9934. // Check if the kill button was pressed and wait just in case it was an accidental
  9935. // key kill key press
  9936. // -------------------------------------------------------------------------------
  9937. static int killCount = 0; // make the inactivity button a bit less responsive
  9938. const int KILL_DELAY = 750;
  9939. if (!READ(KILL_PIN))
  9940. killCount++;
  9941. else if (killCount > 0)
  9942. killCount--;
  9943. // Exceeded threshold and we can confirm that it was not accidental
  9944. // KILL the machine
  9945. // ----------------------------------------------------------------
  9946. if (killCount >= KILL_DELAY) {
  9947. SERIAL_ERROR_START;
  9948. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  9949. kill(PSTR(MSG_KILLED));
  9950. }
  9951. #endif
  9952. #if HAS_HOME
  9953. // Check to see if we have to home, use poor man's debouncer
  9954. // ---------------------------------------------------------
  9955. static int homeDebounceCount = 0; // poor man's debouncing count
  9956. const int HOME_DEBOUNCE_DELAY = 2500;
  9957. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  9958. if (!homeDebounceCount) {
  9959. enqueue_and_echo_commands_P(PSTR("G28"));
  9960. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  9961. }
  9962. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  9963. homeDebounceCount++;
  9964. else
  9965. homeDebounceCount = 0;
  9966. }
  9967. #endif
  9968. #if HAS_CONTROLLERFAN
  9969. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  9970. #endif
  9971. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  9972. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  9973. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  9974. bool oldstatus;
  9975. #if ENABLED(SWITCHING_EXTRUDER)
  9976. oldstatus = E0_ENABLE_READ;
  9977. enable_E0();
  9978. #else // !SWITCHING_EXTRUDER
  9979. switch (active_extruder) {
  9980. case 0: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  9981. #if E_STEPPERS > 1
  9982. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  9983. #if E_STEPPERS > 2
  9984. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  9985. #if E_STEPPERS > 3
  9986. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  9987. #if E_STEPPERS > 4
  9988. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  9989. #endif // E_STEPPERS > 4
  9990. #endif // E_STEPPERS > 3
  9991. #endif // E_STEPPERS > 2
  9992. #endif // E_STEPPERS > 1
  9993. }
  9994. #endif // !SWITCHING_EXTRUDER
  9995. previous_cmd_ms = ms; // refresh_cmd_timeout()
  9996. const float olde = current_position[E_AXIS];
  9997. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  9998. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  9999. current_position[E_AXIS] = olde;
  10000. planner.set_e_position_mm(olde);
  10001. stepper.synchronize();
  10002. #if ENABLED(SWITCHING_EXTRUDER)
  10003. E0_ENABLE_WRITE(oldstatus);
  10004. #else
  10005. switch (active_extruder) {
  10006. case 0: E0_ENABLE_WRITE(oldstatus); break;
  10007. #if E_STEPPERS > 1
  10008. case 1: E1_ENABLE_WRITE(oldstatus); break;
  10009. #if E_STEPPERS > 2
  10010. case 2: E2_ENABLE_WRITE(oldstatus); break;
  10011. #if E_STEPPERS > 3
  10012. case 3: E3_ENABLE_WRITE(oldstatus); break;
  10013. #if E_STEPPERS > 4
  10014. case 4: E4_ENABLE_WRITE(oldstatus); break;
  10015. #endif // E_STEPPERS > 4
  10016. #endif // E_STEPPERS > 3
  10017. #endif // E_STEPPERS > 2
  10018. #endif // E_STEPPERS > 1
  10019. }
  10020. #endif // !SWITCHING_EXTRUDER
  10021. }
  10022. #endif // EXTRUDER_RUNOUT_PREVENT
  10023. #if ENABLED(DUAL_X_CARRIAGE)
  10024. // handle delayed move timeout
  10025. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  10026. // travel moves have been received so enact them
  10027. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  10028. set_destination_to_current();
  10029. prepare_move_to_destination();
  10030. }
  10031. #endif
  10032. #if ENABLED(TEMP_STAT_LEDS)
  10033. handle_status_leds();
  10034. #endif
  10035. #if ENABLED(HAVE_TMC2130)
  10036. checkOverTemp();
  10037. #endif
  10038. planner.check_axes_activity();
  10039. }
  10040. /**
  10041. * Standard idle routine keeps the machine alive
  10042. */
  10043. void idle(
  10044. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10045. bool no_stepper_sleep/*=false*/
  10046. #endif
  10047. ) {
  10048. lcd_update();
  10049. host_keepalive();
  10050. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  10051. auto_report_temperatures();
  10052. #endif
  10053. manage_inactivity(
  10054. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10055. no_stepper_sleep
  10056. #endif
  10057. );
  10058. thermalManager.manage_heater();
  10059. #if ENABLED(PRINTCOUNTER)
  10060. print_job_timer.tick();
  10061. #endif
  10062. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  10063. buzzer.tick();
  10064. #endif
  10065. }
  10066. /**
  10067. * Kill all activity and lock the machine.
  10068. * After this the machine will need to be reset.
  10069. */
  10070. void kill(const char* lcd_msg) {
  10071. SERIAL_ERROR_START;
  10072. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  10073. thermalManager.disable_all_heaters();
  10074. disable_all_steppers();
  10075. #if ENABLED(ULTRA_LCD)
  10076. kill_screen(lcd_msg);
  10077. #else
  10078. UNUSED(lcd_msg);
  10079. #endif
  10080. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  10081. cli(); // Stop interrupts
  10082. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  10083. thermalManager.disable_all_heaters(); //turn off heaters again
  10084. #if HAS_POWER_SWITCH
  10085. SET_INPUT(PS_ON_PIN);
  10086. #endif
  10087. suicide();
  10088. while (1) {
  10089. #if ENABLED(USE_WATCHDOG)
  10090. watchdog_reset();
  10091. #endif
  10092. } // Wait for reset
  10093. }
  10094. /**
  10095. * Turn off heaters and stop the print in progress
  10096. * After a stop the machine may be resumed with M999
  10097. */
  10098. void stop() {
  10099. thermalManager.disable_all_heaters();
  10100. if (IsRunning()) {
  10101. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  10102. SERIAL_ERROR_START;
  10103. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  10104. LCD_MESSAGEPGM(MSG_STOPPED);
  10105. safe_delay(350); // allow enough time for messages to get out before stopping
  10106. Running = false;
  10107. }
  10108. }
  10109. /**
  10110. * Marlin entry-point: Set up before the program loop
  10111. * - Set up the kill pin, filament runout, power hold
  10112. * - Start the serial port
  10113. * - Print startup messages and diagnostics
  10114. * - Get EEPROM or default settings
  10115. * - Initialize managers for:
  10116. * • temperature
  10117. * • planner
  10118. * • watchdog
  10119. * • stepper
  10120. * • photo pin
  10121. * • servos
  10122. * • LCD controller
  10123. * • Digipot I2C
  10124. * • Z probe sled
  10125. * • status LEDs
  10126. */
  10127. void setup() {
  10128. #ifdef DISABLE_JTAG
  10129. // Disable JTAG on AT90USB chips to free up pins for IO
  10130. MCUCR = 0x80;
  10131. MCUCR = 0x80;
  10132. #endif
  10133. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10134. setup_filrunoutpin();
  10135. #endif
  10136. setup_killpin();
  10137. setup_powerhold();
  10138. #if HAS_STEPPER_RESET
  10139. disableStepperDrivers();
  10140. #endif
  10141. MYSERIAL.begin(BAUDRATE);
  10142. SERIAL_PROTOCOLLNPGM("start");
  10143. SERIAL_ECHO_START;
  10144. // Check startup - does nothing if bootloader sets MCUSR to 0
  10145. byte mcu = MCUSR;
  10146. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  10147. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  10148. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  10149. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  10150. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  10151. MCUSR = 0;
  10152. SERIAL_ECHOPGM(MSG_MARLIN);
  10153. SERIAL_CHAR(' ');
  10154. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  10155. SERIAL_EOL;
  10156. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  10157. SERIAL_ECHO_START;
  10158. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  10159. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  10160. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  10161. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  10162. #endif
  10163. SERIAL_ECHO_START;
  10164. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  10165. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  10166. // Send "ok" after commands by default
  10167. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  10168. // Load data from EEPROM if available (or use defaults)
  10169. // This also updates variables in the planner, elsewhere
  10170. (void)settings.load();
  10171. #if HAS_M206_COMMAND
  10172. // Initialize current position based on home_offset
  10173. COPY(current_position, home_offset);
  10174. #else
  10175. ZERO(current_position);
  10176. #endif
  10177. // Vital to init stepper/planner equivalent for current_position
  10178. SYNC_PLAN_POSITION_KINEMATIC();
  10179. thermalManager.init(); // Initialize temperature loop
  10180. #if ENABLED(USE_WATCHDOG)
  10181. watchdog_init();
  10182. #endif
  10183. stepper.init(); // Initialize stepper, this enables interrupts!
  10184. servo_init();
  10185. #if HAS_PHOTOGRAPH
  10186. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  10187. #endif
  10188. #if HAS_CASE_LIGHT
  10189. update_case_light();
  10190. #endif
  10191. #if HAS_BED_PROBE
  10192. endstops.enable_z_probe(false);
  10193. #endif
  10194. #if HAS_CONTROLLERFAN
  10195. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  10196. #endif
  10197. #if HAS_STEPPER_RESET
  10198. enableStepperDrivers();
  10199. #endif
  10200. #if ENABLED(DIGIPOT_I2C)
  10201. digipot_i2c_init();
  10202. #endif
  10203. #if ENABLED(DAC_STEPPER_CURRENT)
  10204. dac_init();
  10205. #endif
  10206. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  10207. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  10208. #endif
  10209. setup_homepin();
  10210. #if PIN_EXISTS(STAT_LED_RED)
  10211. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  10212. #endif
  10213. #if PIN_EXISTS(STAT_LED_BLUE)
  10214. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  10215. #endif
  10216. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  10217. SET_OUTPUT(RGB_LED_R_PIN);
  10218. SET_OUTPUT(RGB_LED_G_PIN);
  10219. SET_OUTPUT(RGB_LED_B_PIN);
  10220. #if ENABLED(RGBW_LED)
  10221. SET_OUTPUT(RGB_LED_W_PIN);
  10222. #endif
  10223. #endif
  10224. lcd_init();
  10225. #if ENABLED(SHOW_BOOTSCREEN)
  10226. #if ENABLED(DOGLCD)
  10227. safe_delay(BOOTSCREEN_TIMEOUT);
  10228. #elif ENABLED(ULTRA_LCD)
  10229. bootscreen();
  10230. #if DISABLED(SDSUPPORT)
  10231. lcd_init();
  10232. #endif
  10233. #endif
  10234. #endif
  10235. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  10236. // Initialize mixing to 100% color 1
  10237. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10238. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  10239. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  10240. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10241. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  10242. #endif
  10243. #if ENABLED(BLTOUCH)
  10244. bltouch_command(BLTOUCH_RESET); // Just in case the BLTouch is in the error state, try to
  10245. set_bltouch_deployed(true); // reset it. Also needs to deploy and stow to clear the
  10246. set_bltouch_deployed(false); // error condition.
  10247. #endif
  10248. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  10249. i2c.onReceive(i2c_on_receive);
  10250. i2c.onRequest(i2c_on_request);
  10251. #endif
  10252. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  10253. setup_endstop_interrupts();
  10254. #endif
  10255. }
  10256. /**
  10257. * The main Marlin program loop
  10258. *
  10259. * - Save or log commands to SD
  10260. * - Process available commands (if not saving)
  10261. * - Call heater manager
  10262. * - Call inactivity manager
  10263. * - Call endstop manager
  10264. * - Call LCD update
  10265. */
  10266. void loop() {
  10267. if (commands_in_queue < BUFSIZE) get_available_commands();
  10268. #if ENABLED(SDSUPPORT)
  10269. card.checkautostart(false);
  10270. #endif
  10271. if (commands_in_queue) {
  10272. #if ENABLED(SDSUPPORT)
  10273. if (card.saving) {
  10274. char* command = command_queue[cmd_queue_index_r];
  10275. if (strstr_P(command, PSTR("M29"))) {
  10276. // M29 closes the file
  10277. card.closefile();
  10278. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  10279. ok_to_send();
  10280. }
  10281. else {
  10282. // Write the string from the read buffer to SD
  10283. card.write_command(command);
  10284. if (card.logging)
  10285. process_next_command(); // The card is saving because it's logging
  10286. else
  10287. ok_to_send();
  10288. }
  10289. }
  10290. else
  10291. process_next_command();
  10292. #else
  10293. process_next_command();
  10294. #endif // SDSUPPORT
  10295. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  10296. if (commands_in_queue) {
  10297. --commands_in_queue;
  10298. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  10299. }
  10300. }
  10301. endstops.report_state();
  10302. idle();
  10303. }