My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * temperature.cpp - temperature control
  24. */
  25. #include "Marlin.h"
  26. #include "ultralcd.h"
  27. #include "temperature.h"
  28. #include "thermistortables.h"
  29. #include "language.h"
  30. #if ENABLED(HEATER_0_USES_MAX6675)
  31. #include "spi.h"
  32. #endif
  33. #if ENABLED(BABYSTEPPING)
  34. #include "stepper.h"
  35. #endif
  36. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  37. #include "endstops.h"
  38. #endif
  39. #if ENABLED(USE_WATCHDOG)
  40. #include "watchdog.h"
  41. #endif
  42. #ifdef K1 // Defined in Configuration.h in the PID settings
  43. #define K2 (1.0-K1)
  44. #endif
  45. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  46. static void* heater_ttbl_map[2] = {(void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE };
  47. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  48. #else
  49. static void* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE, (void*)HEATER_4_TEMPTABLE);
  50. static uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN, HEATER_4_TEMPTABLE_LEN);
  51. #endif
  52. Temperature thermalManager;
  53. // public:
  54. float Temperature::current_temperature[HOTENDS] = { 0.0 },
  55. Temperature::current_temperature_bed = 0.0;
  56. int Temperature::current_temperature_raw[HOTENDS] = { 0 },
  57. Temperature::target_temperature[HOTENDS] = { 0 },
  58. Temperature::current_temperature_bed_raw = 0,
  59. Temperature::target_temperature_bed = 0;
  60. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  61. float Temperature::redundant_temperature = 0.0;
  62. #endif
  63. uint8_t Temperature::soft_pwm_bed;
  64. #if ENABLED(FAN_SOFT_PWM)
  65. uint8_t Temperature::fanSpeedSoftPwm[FAN_COUNT];
  66. #endif
  67. #if ENABLED(PIDTEMP)
  68. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  69. float Temperature::Kp[HOTENDS] = ARRAY_BY_HOTENDS1(DEFAULT_Kp),
  70. Temperature::Ki[HOTENDS] = ARRAY_BY_HOTENDS1((DEFAULT_Ki) * (PID_dT)),
  71. Temperature::Kd[HOTENDS] = ARRAY_BY_HOTENDS1((DEFAULT_Kd) / (PID_dT));
  72. #if ENABLED(PID_EXTRUSION_SCALING)
  73. float Temperature::Kc[HOTENDS] = ARRAY_BY_HOTENDS1(DEFAULT_Kc);
  74. #endif
  75. #else
  76. float Temperature::Kp = DEFAULT_Kp,
  77. Temperature::Ki = (DEFAULT_Ki) * (PID_dT),
  78. Temperature::Kd = (DEFAULT_Kd) / (PID_dT);
  79. #if ENABLED(PID_EXTRUSION_SCALING)
  80. float Temperature::Kc = DEFAULT_Kc;
  81. #endif
  82. #endif
  83. #endif
  84. #if ENABLED(PIDTEMPBED)
  85. float Temperature::bedKp = DEFAULT_bedKp,
  86. Temperature::bedKi = ((DEFAULT_bedKi) * PID_dT),
  87. Temperature::bedKd = ((DEFAULT_bedKd) / PID_dT);
  88. #endif
  89. #if ENABLED(BABYSTEPPING)
  90. volatile int Temperature::babystepsTodo[XYZ] = { 0 };
  91. #endif
  92. #if WATCH_HOTENDS
  93. int Temperature::watch_target_temp[HOTENDS] = { 0 };
  94. millis_t Temperature::watch_heater_next_ms[HOTENDS] = { 0 };
  95. #endif
  96. #if WATCH_THE_BED
  97. int Temperature::watch_target_bed_temp = 0;
  98. millis_t Temperature::watch_bed_next_ms = 0;
  99. #endif
  100. #if ENABLED(PREVENT_COLD_EXTRUSION)
  101. bool Temperature::allow_cold_extrude = false;
  102. float Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
  103. #endif
  104. // private:
  105. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  106. int Temperature::redundant_temperature_raw = 0;
  107. float Temperature::redundant_temperature = 0.0;
  108. #endif
  109. volatile bool Temperature::temp_meas_ready = false;
  110. #if ENABLED(PIDTEMP)
  111. float Temperature::temp_iState[HOTENDS] = { 0 },
  112. Temperature::temp_dState[HOTENDS] = { 0 },
  113. Temperature::pTerm[HOTENDS],
  114. Temperature::iTerm[HOTENDS],
  115. Temperature::dTerm[HOTENDS];
  116. #if ENABLED(PID_EXTRUSION_SCALING)
  117. float Temperature::cTerm[HOTENDS];
  118. long Temperature::last_e_position;
  119. long Temperature::lpq[LPQ_MAX_LEN];
  120. int Temperature::lpq_ptr = 0;
  121. #endif
  122. float Temperature::pid_error[HOTENDS];
  123. bool Temperature::pid_reset[HOTENDS];
  124. #endif
  125. #if ENABLED(PIDTEMPBED)
  126. float Temperature::temp_iState_bed = { 0 },
  127. Temperature::temp_dState_bed = { 0 },
  128. Temperature::pTerm_bed,
  129. Temperature::iTerm_bed,
  130. Temperature::dTerm_bed,
  131. Temperature::pid_error_bed;
  132. #else
  133. millis_t Temperature::next_bed_check_ms;
  134. #endif
  135. unsigned long Temperature::raw_temp_value[MAX_EXTRUDERS] = { 0 };
  136. unsigned long Temperature::raw_temp_bed_value = 0;
  137. // Init min and max temp with extreme values to prevent false errors during startup
  138. int Temperature::minttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP, HEATER_4_RAW_LO_TEMP),
  139. Temperature::maxttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP, HEATER_4_RAW_HI_TEMP),
  140. Temperature::minttemp[HOTENDS] = { 0 },
  141. Temperature::maxttemp[HOTENDS] = ARRAY_BY_HOTENDS1(16383);
  142. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  143. int Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
  144. #endif
  145. #ifdef MILLISECONDS_PREHEAT_TIME
  146. unsigned long Temperature::preheat_end_time[HOTENDS] = { 0 };
  147. #endif
  148. #ifdef BED_MINTEMP
  149. int Temperature::bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  150. #endif
  151. #ifdef BED_MAXTEMP
  152. int Temperature::bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  153. #endif
  154. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  155. int Temperature::meas_shift_index; // Index of a delayed sample in buffer
  156. #endif
  157. #if HAS_AUTO_FAN
  158. millis_t Temperature::next_auto_fan_check_ms = 0;
  159. #endif
  160. uint8_t Temperature::soft_pwm[HOTENDS];
  161. #if ENABLED(FAN_SOFT_PWM)
  162. uint8_t Temperature::soft_pwm_fan[FAN_COUNT];
  163. #endif
  164. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  165. int Temperature::current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  166. #endif
  167. #if HAS_PID_HEATING
  168. void Temperature::PID_autotune(float temp, int hotend, int ncycles, bool set_result/*=false*/) {
  169. float input = 0.0;
  170. int cycles = 0;
  171. bool heating = true;
  172. millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
  173. long t_high = 0, t_low = 0;
  174. long bias, d;
  175. float Ku, Tu;
  176. float workKp = 0, workKi = 0, workKd = 0;
  177. float max = 0, min = 10000;
  178. #if HAS_AUTO_FAN
  179. next_auto_fan_check_ms = temp_ms + 2500UL;
  180. #endif
  181. if (hotend >=
  182. #if ENABLED(PIDTEMP)
  183. HOTENDS
  184. #else
  185. 0
  186. #endif
  187. || hotend <
  188. #if ENABLED(PIDTEMPBED)
  189. -1
  190. #else
  191. 0
  192. #endif
  193. ) {
  194. SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
  195. return;
  196. }
  197. SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
  198. disable_all_heaters(); // switch off all heaters.
  199. #if HAS_PID_FOR_BOTH
  200. if (hotend < 0)
  201. soft_pwm_bed = bias = d = (MAX_BED_POWER) >> 1;
  202. else
  203. soft_pwm[hotend] = bias = d = (PID_MAX) >> 1;
  204. #elif ENABLED(PIDTEMP)
  205. soft_pwm[hotend] = bias = d = (PID_MAX) >> 1;
  206. #else
  207. soft_pwm_bed = bias = d = (MAX_BED_POWER) >> 1;
  208. #endif
  209. wait_for_heatup = true;
  210. // PID Tuning loop
  211. while (wait_for_heatup) {
  212. millis_t ms = millis();
  213. if (temp_meas_ready) { // temp sample ready
  214. updateTemperaturesFromRawValues();
  215. input =
  216. #if HAS_PID_FOR_BOTH
  217. hotend < 0 ? current_temperature_bed : current_temperature[hotend]
  218. #elif ENABLED(PIDTEMP)
  219. current_temperature[hotend]
  220. #else
  221. current_temperature_bed
  222. #endif
  223. ;
  224. NOLESS(max, input);
  225. NOMORE(min, input);
  226. #if HAS_AUTO_FAN
  227. if (ELAPSED(ms, next_auto_fan_check_ms)) {
  228. checkExtruderAutoFans();
  229. next_auto_fan_check_ms = ms + 2500UL;
  230. }
  231. #endif
  232. if (heating && input > temp) {
  233. if (ELAPSED(ms, t2 + 5000UL)) {
  234. heating = false;
  235. #if HAS_PID_FOR_BOTH
  236. if (hotend < 0)
  237. soft_pwm_bed = (bias - d) >> 1;
  238. else
  239. soft_pwm[hotend] = (bias - d) >> 1;
  240. #elif ENABLED(PIDTEMP)
  241. soft_pwm[hotend] = (bias - d) >> 1;
  242. #elif ENABLED(PIDTEMPBED)
  243. soft_pwm_bed = (bias - d) >> 1;
  244. #endif
  245. t1 = ms;
  246. t_high = t1 - t2;
  247. max = temp;
  248. }
  249. }
  250. if (!heating && input < temp) {
  251. if (ELAPSED(ms, t1 + 5000UL)) {
  252. heating = true;
  253. t2 = ms;
  254. t_low = t2 - t1;
  255. if (cycles > 0) {
  256. long max_pow =
  257. #if HAS_PID_FOR_BOTH
  258. hotend < 0 ? MAX_BED_POWER : PID_MAX
  259. #elif ENABLED(PIDTEMP)
  260. PID_MAX
  261. #else
  262. MAX_BED_POWER
  263. #endif
  264. ;
  265. bias += (d * (t_high - t_low)) / (t_low + t_high);
  266. bias = constrain(bias, 20, max_pow - 20);
  267. d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
  268. SERIAL_PROTOCOLPAIR(MSG_BIAS, bias);
  269. SERIAL_PROTOCOLPAIR(MSG_D, d);
  270. SERIAL_PROTOCOLPAIR(MSG_T_MIN, min);
  271. SERIAL_PROTOCOLPAIR(MSG_T_MAX, max);
  272. if (cycles > 2) {
  273. Ku = (4.0 * d) / (M_PI * (max - min) * 0.5);
  274. Tu = ((float)(t_low + t_high) * 0.001);
  275. SERIAL_PROTOCOLPAIR(MSG_KU, Ku);
  276. SERIAL_PROTOCOLPAIR(MSG_TU, Tu);
  277. workKp = 0.6 * Ku;
  278. workKi = 2 * workKp / Tu;
  279. workKd = workKp * Tu * 0.125;
  280. SERIAL_PROTOCOLLNPGM("\n" MSG_CLASSIC_PID);
  281. SERIAL_PROTOCOLPAIR(MSG_KP, workKp);
  282. SERIAL_PROTOCOLPAIR(MSG_KI, workKi);
  283. SERIAL_PROTOCOLLNPAIR(MSG_KD, workKd);
  284. /**
  285. workKp = 0.33*Ku;
  286. workKi = workKp/Tu;
  287. workKd = workKp*Tu/3;
  288. SERIAL_PROTOCOLLNPGM(" Some overshoot");
  289. SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
  290. SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
  291. SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
  292. workKp = 0.2*Ku;
  293. workKi = 2*workKp/Tu;
  294. workKd = workKp*Tu/3;
  295. SERIAL_PROTOCOLLNPGM(" No overshoot");
  296. SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
  297. SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
  298. SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
  299. */
  300. }
  301. }
  302. #if HAS_PID_FOR_BOTH
  303. if (hotend < 0)
  304. soft_pwm_bed = (bias + d) >> 1;
  305. else
  306. soft_pwm[hotend] = (bias + d) >> 1;
  307. #elif ENABLED(PIDTEMP)
  308. soft_pwm[hotend] = (bias + d) >> 1;
  309. #else
  310. soft_pwm_bed = (bias + d) >> 1;
  311. #endif
  312. cycles++;
  313. min = temp;
  314. }
  315. }
  316. }
  317. #define MAX_OVERSHOOT_PID_AUTOTUNE 20
  318. if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) {
  319. SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
  320. return;
  321. }
  322. // Every 2 seconds...
  323. if (ELAPSED(ms, temp_ms + 2000UL)) {
  324. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  325. print_heaterstates();
  326. SERIAL_EOL;
  327. #endif
  328. temp_ms = ms;
  329. } // every 2 seconds
  330. // Over 2 minutes?
  331. if (((ms - t1) + (ms - t2)) > (10L * 60L * 1000L * 2L)) {
  332. SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
  333. return;
  334. }
  335. if (cycles > ncycles) {
  336. SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
  337. #if HAS_PID_FOR_BOTH
  338. const char* estring = hotend < 0 ? "bed" : "";
  339. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kp ", workKp); SERIAL_EOL;
  340. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Ki ", workKi); SERIAL_EOL;
  341. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kd ", workKd); SERIAL_EOL;
  342. #elif ENABLED(PIDTEMP)
  343. SERIAL_PROTOCOLPAIR("#define DEFAULT_Kp ", workKp); SERIAL_EOL;
  344. SERIAL_PROTOCOLPAIR("#define DEFAULT_Ki ", workKi); SERIAL_EOL;
  345. SERIAL_PROTOCOLPAIR("#define DEFAULT_Kd ", workKd); SERIAL_EOL;
  346. #else
  347. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKp ", workKp); SERIAL_EOL;
  348. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKi ", workKi); SERIAL_EOL;
  349. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKd ", workKd); SERIAL_EOL;
  350. #endif
  351. #define _SET_BED_PID() do { \
  352. bedKp = workKp; \
  353. bedKi = scalePID_i(workKi); \
  354. bedKd = scalePID_d(workKd); \
  355. updatePID(); } while(0)
  356. #define _SET_EXTRUDER_PID() do { \
  357. PID_PARAM(Kp, hotend) = workKp; \
  358. PID_PARAM(Ki, hotend) = scalePID_i(workKi); \
  359. PID_PARAM(Kd, hotend) = scalePID_d(workKd); \
  360. updatePID(); } while(0)
  361. // Use the result? (As with "M303 U1")
  362. if (set_result) {
  363. #if HAS_PID_FOR_BOTH
  364. if (hotend < 0)
  365. _SET_BED_PID();
  366. else
  367. _SET_EXTRUDER_PID();
  368. #elif ENABLED(PIDTEMP)
  369. _SET_EXTRUDER_PID();
  370. #else
  371. _SET_BED_PID();
  372. #endif
  373. }
  374. return;
  375. }
  376. lcd_update();
  377. }
  378. if (!wait_for_heatup) disable_all_heaters();
  379. }
  380. #endif // HAS_PID_HEATING
  381. /**
  382. * Class and Instance Methods
  383. */
  384. Temperature::Temperature() { }
  385. void Temperature::updatePID() {
  386. #if ENABLED(PIDTEMP)
  387. #if ENABLED(PID_EXTRUSION_SCALING)
  388. last_e_position = 0;
  389. #endif
  390. #endif
  391. }
  392. int Temperature::getHeaterPower(int heater) {
  393. return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
  394. }
  395. #if HAS_AUTO_FAN
  396. void Temperature::checkExtruderAutoFans() {
  397. constexpr int8_t fanPin[] = { E0_AUTO_FAN_PIN, E1_AUTO_FAN_PIN, E2_AUTO_FAN_PIN, E3_AUTO_FAN_PIN, E4_AUTO_FAN_PIN };
  398. constexpr int fanBit[] = {
  399. 0,
  400. AUTO_1_IS_0 ? 0 : 1,
  401. AUTO_2_IS_0 ? 0 : AUTO_2_IS_1 ? 1 : 2,
  402. AUTO_3_IS_0 ? 0 : AUTO_3_IS_1 ? 1 : AUTO_3_IS_2 ? 2 : 3,
  403. AUTO_4_IS_0 ? 0 : AUTO_4_IS_1 ? 1 : AUTO_4_IS_2 ? 2 : AUTO_4_IS_3 ? 3 : 4
  404. };
  405. uint8_t fanState = 0;
  406. HOTEND_LOOP() {
  407. if (current_temperature[e] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  408. SBI(fanState, fanBit[e]);
  409. }
  410. uint8_t fanDone = 0;
  411. for (uint8_t f = 0; f < COUNT(fanPin); f++) {
  412. int8_t pin = fanPin[f];
  413. if (pin >= 0 && !TEST(fanDone, fanBit[f])) {
  414. uint8_t newFanSpeed = TEST(fanState, fanBit[f]) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  415. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  416. digitalWrite(pin, newFanSpeed);
  417. analogWrite(pin, newFanSpeed);
  418. SBI(fanDone, fanBit[f]);
  419. }
  420. }
  421. }
  422. #endif // HAS_AUTO_FAN
  423. //
  424. // Temperature Error Handlers
  425. //
  426. void Temperature::_temp_error(int e, const char* serial_msg, const char* lcd_msg) {
  427. static bool killed = false;
  428. if (IsRunning()) {
  429. SERIAL_ERROR_START;
  430. serialprintPGM(serial_msg);
  431. SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
  432. if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED);
  433. }
  434. #if DISABLED(BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE)
  435. if (!killed) {
  436. Running = false;
  437. killed = true;
  438. kill(lcd_msg);
  439. }
  440. else
  441. disable_all_heaters(); // paranoia
  442. #endif
  443. }
  444. void Temperature::max_temp_error(int8_t e) {
  445. #if HAS_TEMP_BED
  446. _temp_error(e, PSTR(MSG_T_MAXTEMP), e >= 0 ? PSTR(MSG_ERR_MAXTEMP) : PSTR(MSG_ERR_MAXTEMP_BED));
  447. #else
  448. _temp_error(HOTEND_INDEX, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
  449. #if HOTENDS == 1
  450. UNUSED(e);
  451. #endif
  452. #endif
  453. }
  454. void Temperature::min_temp_error(int8_t e) {
  455. #if HAS_TEMP_BED
  456. _temp_error(e, PSTR(MSG_T_MINTEMP), e >= 0 ? PSTR(MSG_ERR_MINTEMP) : PSTR(MSG_ERR_MINTEMP_BED));
  457. #else
  458. _temp_error(HOTEND_INDEX, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
  459. #if HOTENDS == 1
  460. UNUSED(e);
  461. #endif
  462. #endif
  463. }
  464. float Temperature::get_pid_output(int e) {
  465. #if HOTENDS == 1
  466. UNUSED(e);
  467. #define _HOTEND_TEST true
  468. #else
  469. #define _HOTEND_TEST e == active_extruder
  470. #endif
  471. float pid_output;
  472. #if ENABLED(PIDTEMP)
  473. #if DISABLED(PID_OPENLOOP)
  474. pid_error[HOTEND_INDEX] = target_temperature[HOTEND_INDEX] - current_temperature[HOTEND_INDEX];
  475. dTerm[HOTEND_INDEX] = K2 * PID_PARAM(Kd, HOTEND_INDEX) * (current_temperature[HOTEND_INDEX] - temp_dState[HOTEND_INDEX]) + K1 * dTerm[HOTEND_INDEX];
  476. temp_dState[HOTEND_INDEX] = current_temperature[HOTEND_INDEX];
  477. if (pid_error[HOTEND_INDEX] > PID_FUNCTIONAL_RANGE) {
  478. pid_output = BANG_MAX;
  479. pid_reset[HOTEND_INDEX] = true;
  480. }
  481. else if (pid_error[HOTEND_INDEX] < -(PID_FUNCTIONAL_RANGE) || target_temperature[HOTEND_INDEX] == 0) {
  482. pid_output = 0;
  483. pid_reset[HOTEND_INDEX] = true;
  484. }
  485. else {
  486. if (pid_reset[HOTEND_INDEX]) {
  487. temp_iState[HOTEND_INDEX] = 0.0;
  488. pid_reset[HOTEND_INDEX] = false;
  489. }
  490. pTerm[HOTEND_INDEX] = PID_PARAM(Kp, HOTEND_INDEX) * pid_error[HOTEND_INDEX];
  491. temp_iState[HOTEND_INDEX] += pid_error[HOTEND_INDEX];
  492. iTerm[HOTEND_INDEX] = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX];
  493. pid_output = pTerm[HOTEND_INDEX] + iTerm[HOTEND_INDEX] - dTerm[HOTEND_INDEX];
  494. #if ENABLED(PID_EXTRUSION_SCALING)
  495. cTerm[HOTEND_INDEX] = 0;
  496. if (_HOTEND_TEST) {
  497. long e_position = stepper.position(E_AXIS);
  498. if (e_position > last_e_position) {
  499. lpq[lpq_ptr] = e_position - last_e_position;
  500. last_e_position = e_position;
  501. }
  502. else {
  503. lpq[lpq_ptr] = 0;
  504. }
  505. if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
  506. cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
  507. pid_output += cTerm[HOTEND_INDEX];
  508. }
  509. #endif // PID_EXTRUSION_SCALING
  510. if (pid_output > PID_MAX) {
  511. if (pid_error[HOTEND_INDEX] > 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
  512. pid_output = PID_MAX;
  513. }
  514. else if (pid_output < 0) {
  515. if (pid_error[HOTEND_INDEX] < 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
  516. pid_output = 0;
  517. }
  518. }
  519. #else
  520. pid_output = constrain(target_temperature[HOTEND_INDEX], 0, PID_MAX);
  521. #endif //PID_OPENLOOP
  522. #if ENABLED(PID_DEBUG)
  523. SERIAL_ECHO_START;
  524. SERIAL_ECHOPAIR(MSG_PID_DEBUG, HOTEND_INDEX);
  525. SERIAL_ECHOPAIR(MSG_PID_DEBUG_INPUT, current_temperature[HOTEND_INDEX]);
  526. SERIAL_ECHOPAIR(MSG_PID_DEBUG_OUTPUT, pid_output);
  527. SERIAL_ECHOPAIR(MSG_PID_DEBUG_PTERM, pTerm[HOTEND_INDEX]);
  528. SERIAL_ECHOPAIR(MSG_PID_DEBUG_ITERM, iTerm[HOTEND_INDEX]);
  529. SERIAL_ECHOPAIR(MSG_PID_DEBUG_DTERM, dTerm[HOTEND_INDEX]);
  530. #if ENABLED(PID_EXTRUSION_SCALING)
  531. SERIAL_ECHOPAIR(MSG_PID_DEBUG_CTERM, cTerm[HOTEND_INDEX]);
  532. #endif
  533. SERIAL_EOL;
  534. #endif //PID_DEBUG
  535. #else /* PID off */
  536. pid_output = (current_temperature[HOTEND_INDEX] < target_temperature[HOTEND_INDEX]) ? PID_MAX : 0;
  537. #endif
  538. return pid_output;
  539. }
  540. #if ENABLED(PIDTEMPBED)
  541. float Temperature::get_pid_output_bed() {
  542. float pid_output;
  543. #if DISABLED(PID_OPENLOOP)
  544. pid_error_bed = target_temperature_bed - current_temperature_bed;
  545. pTerm_bed = bedKp * pid_error_bed;
  546. temp_iState_bed += pid_error_bed;
  547. iTerm_bed = bedKi * temp_iState_bed;
  548. dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
  549. temp_dState_bed = current_temperature_bed;
  550. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  551. if (pid_output > MAX_BED_POWER) {
  552. if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  553. pid_output = MAX_BED_POWER;
  554. }
  555. else if (pid_output < 0) {
  556. if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  557. pid_output = 0;
  558. }
  559. #else
  560. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  561. #endif // PID_OPENLOOP
  562. #if ENABLED(PID_BED_DEBUG)
  563. SERIAL_ECHO_START;
  564. SERIAL_ECHOPGM(" PID_BED_DEBUG ");
  565. SERIAL_ECHOPGM(": Input ");
  566. SERIAL_ECHO(current_temperature_bed);
  567. SERIAL_ECHOPGM(" Output ");
  568. SERIAL_ECHO(pid_output);
  569. SERIAL_ECHOPGM(" pTerm ");
  570. SERIAL_ECHO(pTerm_bed);
  571. SERIAL_ECHOPGM(" iTerm ");
  572. SERIAL_ECHO(iTerm_bed);
  573. SERIAL_ECHOPGM(" dTerm ");
  574. SERIAL_ECHOLN(dTerm_bed);
  575. #endif //PID_BED_DEBUG
  576. return pid_output;
  577. }
  578. #endif //PIDTEMPBED
  579. /**
  580. * Manage heating activities for extruder hot-ends and a heated bed
  581. * - Acquire updated temperature readings
  582. * - Also resets the watchdog timer
  583. * - Invoke thermal runaway protection
  584. * - Manage extruder auto-fan
  585. * - Apply filament width to the extrusion rate (may move)
  586. * - Update the heated bed PID output value
  587. */
  588. /**
  589. * The following line SOMETIMES results in the dreaded "unable to find a register to spill in class 'POINTER_REGS'"
  590. * compile error.
  591. * thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
  592. *
  593. * This is due to a bug in the C++ compiler used by the Arduino IDE from 1.6.10 to at least 1.8.1.
  594. *
  595. * The work around is to add the compiler flag "__attribute__((__optimize__("O2")))" to the declaration for manage_heater()
  596. */
  597. //void Temperature::manage_heater() __attribute__((__optimize__("O2")));
  598. void Temperature::manage_heater() {
  599. if (!temp_meas_ready) return;
  600. updateTemperaturesFromRawValues(); // also resets the watchdog
  601. #if ENABLED(HEATER_0_USES_MAX6675)
  602. if (current_temperature[0] > min(HEATER_0_MAXTEMP, MAX6675_TMAX - 1)) max_temp_error(0);
  603. if (current_temperature[0] < max(HEATER_0_MINTEMP, MAX6675_TMIN + 0.01)) min_temp_error(0);
  604. #endif
  605. #if WATCH_HOTENDS || WATCH_THE_BED || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN
  606. millis_t ms = millis();
  607. #endif
  608. // Loop through all hotends
  609. HOTEND_LOOP() {
  610. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  611. thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
  612. #endif
  613. float pid_output = get_pid_output(e);
  614. // Check if temperature is within the correct range
  615. soft_pwm[e] = (current_temperature[e] > minttemp[e] || is_preheating(e)) && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
  616. // Check if the temperature is failing to increase
  617. #if WATCH_HOTENDS
  618. // Is it time to check this extruder's heater?
  619. if (watch_heater_next_ms[e] && ELAPSED(ms, watch_heater_next_ms[e])) {
  620. // Has it failed to increase enough?
  621. if (degHotend(e) < watch_target_temp[e]) {
  622. // Stop!
  623. _temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  624. }
  625. else {
  626. // Start again if the target is still far off
  627. start_watching_heater(e);
  628. }
  629. }
  630. #endif // THERMAL_PROTECTION_HOTENDS
  631. // Check if the temperature is failing to increase
  632. #if WATCH_THE_BED
  633. // Is it time to check the bed?
  634. if (watch_bed_next_ms && ELAPSED(ms, watch_bed_next_ms)) {
  635. // Has it failed to increase enough?
  636. if (degBed() < watch_target_bed_temp) {
  637. // Stop!
  638. _temp_error(-1, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  639. }
  640. else {
  641. // Start again if the target is still far off
  642. start_watching_bed();
  643. }
  644. }
  645. #endif // THERMAL_PROTECTION_HOTENDS
  646. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  647. if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  648. _temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
  649. }
  650. #endif
  651. } // HOTEND_LOOP
  652. #if HAS_AUTO_FAN
  653. if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
  654. checkExtruderAutoFans();
  655. next_auto_fan_check_ms = ms + 2500UL;
  656. }
  657. #endif
  658. // Control the extruder rate based on the width sensor
  659. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  660. if (filament_sensor) {
  661. meas_shift_index = filwidth_delay_index[0] - meas_delay_cm;
  662. if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
  663. // Get the delayed info and add 100 to reconstitute to a percent of
  664. // the nominal filament diameter then square it to get an area
  665. meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
  666. float vm = pow((measurement_delay[meas_shift_index] + 100.0) * 0.01, 2);
  667. NOLESS(vm, 0.01);
  668. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
  669. }
  670. #endif //FILAMENT_WIDTH_SENSOR
  671. #if DISABLED(PIDTEMPBED)
  672. if (PENDING(ms, next_bed_check_ms)) return;
  673. next_bed_check_ms = ms + BED_CHECK_INTERVAL;
  674. #endif
  675. #if TEMP_SENSOR_BED != 0
  676. #if HAS_THERMALLY_PROTECTED_BED
  677. thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
  678. #endif
  679. #if ENABLED(PIDTEMPBED)
  680. float pid_output = get_pid_output_bed();
  681. soft_pwm_bed = WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP) ? (int)pid_output >> 1 : 0;
  682. #elif ENABLED(BED_LIMIT_SWITCHING)
  683. // Check if temperature is within the correct band
  684. if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
  685. if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
  686. soft_pwm_bed = 0;
  687. else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS))
  688. soft_pwm_bed = MAX_BED_POWER >> 1;
  689. }
  690. else {
  691. soft_pwm_bed = 0;
  692. WRITE_HEATER_BED(LOW);
  693. }
  694. #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
  695. // Check if temperature is within the correct range
  696. if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
  697. soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
  698. }
  699. else {
  700. soft_pwm_bed = 0;
  701. WRITE_HEATER_BED(LOW);
  702. }
  703. #endif
  704. #endif //TEMP_SENSOR_BED != 0
  705. }
  706. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  707. // Derived from RepRap FiveD extruder::getTemperature()
  708. // For hot end temperature measurement.
  709. float Temperature::analog2temp(int raw, uint8_t e) {
  710. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  711. if (e > HOTENDS)
  712. #else
  713. if (e >= HOTENDS)
  714. #endif
  715. {
  716. SERIAL_ERROR_START;
  717. SERIAL_ERROR((int)e);
  718. SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
  719. kill(PSTR(MSG_KILLED));
  720. return 0.0;
  721. }
  722. #if ENABLED(HEATER_0_USES_MAX6675)
  723. if (e == 0) return 0.25 * raw;
  724. #endif
  725. if (heater_ttbl_map[e] != NULL) {
  726. float celsius = 0;
  727. uint8_t i;
  728. short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]);
  729. for (i = 1; i < heater_ttbllen_map[e]; i++) {
  730. if (PGM_RD_W((*tt)[i][0]) > raw) {
  731. celsius = PGM_RD_W((*tt)[i - 1][1]) +
  732. (raw - PGM_RD_W((*tt)[i - 1][0])) *
  733. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i - 1][1])) /
  734. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i - 1][0]));
  735. break;
  736. }
  737. }
  738. // Overflow: Set to last value in the table
  739. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i - 1][1]);
  740. return celsius;
  741. }
  742. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
  743. }
  744. // Derived from RepRap FiveD extruder::getTemperature()
  745. // For bed temperature measurement.
  746. float Temperature::analog2tempBed(int raw) {
  747. #if ENABLED(BED_USES_THERMISTOR)
  748. float celsius = 0;
  749. byte i;
  750. for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
  751. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
  752. celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]) +
  753. (raw - PGM_RD_W(BEDTEMPTABLE[i - 1][0])) *
  754. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i - 1][1])) /
  755. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i - 1][0]));
  756. break;
  757. }
  758. }
  759. // Overflow: Set to last value in the table
  760. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]);
  761. return celsius;
  762. #elif defined(BED_USES_AD595)
  763. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
  764. #else
  765. UNUSED(raw);
  766. return 0;
  767. #endif
  768. }
  769. /**
  770. * Get the raw values into the actual temperatures.
  771. * The raw values are created in interrupt context,
  772. * and this function is called from normal context
  773. * as it would block the stepper routine.
  774. */
  775. void Temperature::updateTemperaturesFromRawValues() {
  776. #if ENABLED(HEATER_0_USES_MAX6675)
  777. current_temperature_raw[0] = read_max6675();
  778. #endif
  779. HOTEND_LOOP()
  780. current_temperature[e] = Temperature::analog2temp(current_temperature_raw[e], e);
  781. current_temperature_bed = Temperature::analog2tempBed(current_temperature_bed_raw);
  782. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  783. redundant_temperature = Temperature::analog2temp(redundant_temperature_raw, 1);
  784. #endif
  785. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  786. filament_width_meas = analog2widthFil();
  787. #endif
  788. #if ENABLED(USE_WATCHDOG)
  789. // Reset the watchdog after we know we have a temperature measurement.
  790. watchdog_reset();
  791. #endif
  792. CRITICAL_SECTION_START;
  793. temp_meas_ready = false;
  794. CRITICAL_SECTION_END;
  795. }
  796. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  797. // Convert raw Filament Width to millimeters
  798. float Temperature::analog2widthFil() {
  799. return current_raw_filwidth / 16383.0 * 5.0;
  800. //return current_raw_filwidth;
  801. }
  802. // Convert raw Filament Width to a ratio
  803. int Temperature::widthFil_to_size_ratio() {
  804. float temp = filament_width_meas;
  805. if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
  806. else NOMORE(temp, MEASURED_UPPER_LIMIT);
  807. return filament_width_nominal / temp * 100;
  808. }
  809. #endif
  810. #if ENABLED(HEATER_0_USES_MAX6675)
  811. #ifndef MAX6675_SCK_PIN
  812. #define MAX6675_SCK_PIN SCK_PIN
  813. #endif
  814. #ifndef MAX6675_DO_PIN
  815. #define MAX6675_DO_PIN MISO_PIN
  816. #endif
  817. Spi<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
  818. #endif
  819. /**
  820. * Initialize the temperature manager
  821. * The manager is implemented by periodic calls to manage_heater()
  822. */
  823. void Temperature::init() {
  824. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  825. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  826. MCUCR = _BV(JTD);
  827. MCUCR = _BV(JTD);
  828. #endif
  829. // Finish init of mult hotend arrays
  830. HOTEND_LOOP() maxttemp[e] = maxttemp[0];
  831. #if ENABLED(PIDTEMP) && ENABLED(PID_EXTRUSION_SCALING)
  832. last_e_position = 0;
  833. #endif
  834. #if HAS_HEATER_0
  835. SET_OUTPUT(HEATER_0_PIN);
  836. #endif
  837. #if HAS_HEATER_1
  838. SET_OUTPUT(HEATER_1_PIN);
  839. #endif
  840. #if HAS_HEATER_2
  841. SET_OUTPUT(HEATER_2_PIN);
  842. #endif
  843. #if HAS_HEATER_3
  844. SET_OUTPUT(HEATER_3_PIN);
  845. #endif
  846. #if HAS_HEATER_4
  847. SET_OUTPUT(HEATER_3_PIN);
  848. #endif
  849. #if HAS_HEATER_BED
  850. SET_OUTPUT(HEATER_BED_PIN);
  851. #endif
  852. #if HAS_FAN0
  853. SET_OUTPUT(FAN_PIN);
  854. #if ENABLED(FAST_PWM_FAN)
  855. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  856. #endif
  857. #endif
  858. #if HAS_FAN1
  859. SET_OUTPUT(FAN1_PIN);
  860. #if ENABLED(FAST_PWM_FAN)
  861. setPwmFrequency(FAN1_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  862. #endif
  863. #endif
  864. #if HAS_FAN2
  865. SET_OUTPUT(FAN2_PIN);
  866. #if ENABLED(FAST_PWM_FAN)
  867. setPwmFrequency(FAN2_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  868. #endif
  869. #endif
  870. #if ENABLED(HEATER_0_USES_MAX6675)
  871. OUT_WRITE(SCK_PIN, LOW);
  872. OUT_WRITE(MOSI_PIN, HIGH);
  873. SET_INPUT_PULLUP(MISO_PIN);
  874. max6675_spi.init();
  875. OUT_WRITE(SS_PIN, HIGH);
  876. OUT_WRITE(MAX6675_SS, HIGH);
  877. #endif // HEATER_0_USES_MAX6675
  878. #ifdef DIDR2
  879. #define ANALOG_SELECT(pin) do{ if (pin < 8) SBI(DIDR0, pin); else SBI(DIDR2, pin - 8); }while(0)
  880. #else
  881. #define ANALOG_SELECT(pin) do{ SBI(DIDR0, pin); }while(0)
  882. #endif
  883. // Set analog inputs
  884. ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIF) | 0x07;
  885. DIDR0 = 0;
  886. #ifdef DIDR2
  887. DIDR2 = 0;
  888. #endif
  889. #if HAS_TEMP_0
  890. ANALOG_SELECT(TEMP_0_PIN);
  891. #endif
  892. #if HAS_TEMP_1
  893. ANALOG_SELECT(TEMP_1_PIN);
  894. #endif
  895. #if HAS_TEMP_2
  896. ANALOG_SELECT(TEMP_2_PIN);
  897. #endif
  898. #if HAS_TEMP_3
  899. ANALOG_SELECT(TEMP_3_PIN);
  900. #endif
  901. #if HAS_TEMP_4
  902. ANALOG_SELECT(TEMP_4_PIN);
  903. #endif
  904. #if HAS_TEMP_BED
  905. ANALOG_SELECT(TEMP_BED_PIN);
  906. #endif
  907. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  908. ANALOG_SELECT(FILWIDTH_PIN);
  909. #endif
  910. #if HAS_AUTO_FAN_0
  911. #if E0_AUTO_FAN_PIN == FAN1_PIN
  912. SET_OUTPUT(E0_AUTO_FAN_PIN);
  913. #if ENABLED(FAST_PWM_FAN)
  914. setPwmFrequency(E0_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  915. #endif
  916. #else
  917. SET_OUTPUT(E0_AUTO_FAN_PIN);
  918. #endif
  919. #endif
  920. #if HAS_AUTO_FAN_1 && !AUTO_1_IS_0
  921. #if E1_AUTO_FAN_PIN == FAN1_PIN
  922. SET_OUTPUT(E1_AUTO_FAN_PIN);
  923. #if ENABLED(FAST_PWM_FAN)
  924. setPwmFrequency(E1_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  925. #endif
  926. #else
  927. SET_OUTPUT(E1_AUTO_FAN_PIN);
  928. #endif
  929. #endif
  930. #if HAS_AUTO_FAN_2 && !AUTO_2_IS_0 && !AUTO_2_IS_1
  931. #if E2_AUTO_FAN_PIN == FAN1_PIN
  932. SET_OUTPUT(E2_AUTO_FAN_PIN);
  933. #if ENABLED(FAST_PWM_FAN)
  934. setPwmFrequency(E2_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  935. #endif
  936. #else
  937. SET_OUTPUT(E2_AUTO_FAN_PIN);
  938. #endif
  939. #endif
  940. #if HAS_AUTO_FAN_3 && !AUTO_3_IS_0 && !AUTO_3_IS_1 && !AUTO_3_IS_2
  941. #if E3_AUTO_FAN_PIN == FAN1_PIN
  942. SET_OUTPUT(E3_AUTO_FAN_PIN);
  943. #if ENABLED(FAST_PWM_FAN)
  944. setPwmFrequency(E3_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  945. #endif
  946. #else
  947. SET_OUTPUT(E3_AUTO_FAN_PIN);
  948. #endif
  949. #endif
  950. #if HAS_AUTO_FAN_4 && !AUTO_4_IS_0 && !AUTO_4_IS_1 && !AUTO_4_IS_2 && !AUTO_4_IS_3
  951. #if E4_AUTO_FAN_PIN == FAN1_PIN
  952. SET_OUTPUT(E4_AUTO_FAN_PIN);
  953. #if ENABLED(FAST_PWM_FAN)
  954. setPwmFrequency(E4_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  955. #endif
  956. #else
  957. SET_OUTPUT(E4_AUTO_FAN_PIN);
  958. #endif
  959. #endif
  960. // Use timer0 for temperature measurement
  961. // Interleave temperature interrupt with millies interrupt
  962. OCR0B = 128;
  963. SBI(TIMSK0, OCIE0B);
  964. // Wait for temperature measurement to settle
  965. delay(250);
  966. #define TEMP_MIN_ROUTINE(NR) \
  967. minttemp[NR] = HEATER_ ##NR## _MINTEMP; \
  968. while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ##NR## _MINTEMP) { \
  969. if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
  970. minttemp_raw[NR] += OVERSAMPLENR; \
  971. else \
  972. minttemp_raw[NR] -= OVERSAMPLENR; \
  973. }
  974. #define TEMP_MAX_ROUTINE(NR) \
  975. maxttemp[NR] = HEATER_ ##NR## _MAXTEMP; \
  976. while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ##NR## _MAXTEMP) { \
  977. if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
  978. maxttemp_raw[NR] -= OVERSAMPLENR; \
  979. else \
  980. maxttemp_raw[NR] += OVERSAMPLENR; \
  981. }
  982. #ifdef HEATER_0_MINTEMP
  983. TEMP_MIN_ROUTINE(0);
  984. #endif
  985. #ifdef HEATER_0_MAXTEMP
  986. TEMP_MAX_ROUTINE(0);
  987. #endif
  988. #if HOTENDS > 1
  989. #ifdef HEATER_1_MINTEMP
  990. TEMP_MIN_ROUTINE(1);
  991. #endif
  992. #ifdef HEATER_1_MAXTEMP
  993. TEMP_MAX_ROUTINE(1);
  994. #endif
  995. #if HOTENDS > 2
  996. #ifdef HEATER_2_MINTEMP
  997. TEMP_MIN_ROUTINE(2);
  998. #endif
  999. #ifdef HEATER_2_MAXTEMP
  1000. TEMP_MAX_ROUTINE(2);
  1001. #endif
  1002. #if HOTENDS > 3
  1003. #ifdef HEATER_3_MINTEMP
  1004. TEMP_MIN_ROUTINE(3);
  1005. #endif
  1006. #ifdef HEATER_3_MAXTEMP
  1007. TEMP_MAX_ROUTINE(3);
  1008. #endif
  1009. #if HOTENDS > 4
  1010. #ifdef HEATER_4_MINTEMP
  1011. TEMP_MIN_ROUTINE(4);
  1012. #endif
  1013. #ifdef HEATER_4_MAXTEMP
  1014. TEMP_MAX_ROUTINE(4);
  1015. #endif
  1016. #endif // HOTENDS > 4
  1017. #endif // HOTENDS > 3
  1018. #endif // HOTENDS > 2
  1019. #endif // HOTENDS > 1
  1020. #ifdef BED_MINTEMP
  1021. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1022. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1023. bed_minttemp_raw += OVERSAMPLENR;
  1024. #else
  1025. bed_minttemp_raw -= OVERSAMPLENR;
  1026. #endif
  1027. }
  1028. #endif //BED_MINTEMP
  1029. #ifdef BED_MAXTEMP
  1030. while (analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1031. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1032. bed_maxttemp_raw -= OVERSAMPLENR;
  1033. #else
  1034. bed_maxttemp_raw += OVERSAMPLENR;
  1035. #endif
  1036. }
  1037. #endif //BED_MAXTEMP
  1038. }
  1039. #if WATCH_HOTENDS
  1040. /**
  1041. * Start Heating Sanity Check for hotends that are below
  1042. * their target temperature by a configurable margin.
  1043. * This is called when the temperature is set. (M104, M109)
  1044. */
  1045. void Temperature::start_watching_heater(uint8_t e) {
  1046. #if HOTENDS == 1
  1047. UNUSED(e);
  1048. #endif
  1049. if (degHotend(HOTEND_INDEX) < degTargetHotend(HOTEND_INDEX) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
  1050. watch_target_temp[HOTEND_INDEX] = degHotend(HOTEND_INDEX) + WATCH_TEMP_INCREASE;
  1051. watch_heater_next_ms[HOTEND_INDEX] = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
  1052. }
  1053. else
  1054. watch_heater_next_ms[HOTEND_INDEX] = 0;
  1055. }
  1056. #endif
  1057. #if WATCH_THE_BED
  1058. /**
  1059. * Start Heating Sanity Check for hotends that are below
  1060. * their target temperature by a configurable margin.
  1061. * This is called when the temperature is set. (M140, M190)
  1062. */
  1063. void Temperature::start_watching_bed() {
  1064. if (degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) {
  1065. watch_target_bed_temp = degBed() + WATCH_BED_TEMP_INCREASE;
  1066. watch_bed_next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL;
  1067. }
  1068. else
  1069. watch_bed_next_ms = 0;
  1070. }
  1071. #endif
  1072. #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
  1073. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  1074. Temperature::TRState Temperature::thermal_runaway_state_machine[HOTENDS] = { TRInactive };
  1075. millis_t Temperature::thermal_runaway_timer[HOTENDS] = { 0 };
  1076. #endif
  1077. #if HAS_THERMALLY_PROTECTED_BED
  1078. Temperature::TRState Temperature::thermal_runaway_bed_state_machine = TRInactive;
  1079. millis_t Temperature::thermal_runaway_bed_timer;
  1080. #endif
  1081. void Temperature::thermal_runaway_protection(Temperature::TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
  1082. static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
  1083. /**
  1084. SERIAL_ECHO_START;
  1085. SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
  1086. if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id);
  1087. SERIAL_ECHOPAIR(" ; State:", *state);
  1088. SERIAL_ECHOPAIR(" ; Timer:", *timer);
  1089. SERIAL_ECHOPAIR(" ; Temperature:", temperature);
  1090. SERIAL_ECHOPAIR(" ; Target Temp:", target_temperature);
  1091. SERIAL_EOL;
  1092. */
  1093. int heater_index = heater_id >= 0 ? heater_id : HOTENDS;
  1094. // If the target temperature changes, restart
  1095. if (tr_target_temperature[heater_index] != target_temperature) {
  1096. tr_target_temperature[heater_index] = target_temperature;
  1097. *state = target_temperature > 0 ? TRFirstHeating : TRInactive;
  1098. }
  1099. switch (*state) {
  1100. // Inactive state waits for a target temperature to be set
  1101. case TRInactive: break;
  1102. // When first heating, wait for the temperature to be reached then go to Stable state
  1103. case TRFirstHeating:
  1104. if (temperature < tr_target_temperature[heater_index]) break;
  1105. *state = TRStable;
  1106. // While the temperature is stable watch for a bad temperature
  1107. case TRStable:
  1108. if (temperature >= tr_target_temperature[heater_index] - hysteresis_degc) {
  1109. *timer = millis() + period_seconds * 1000UL;
  1110. break;
  1111. }
  1112. else if (PENDING(millis(), *timer)) break;
  1113. *state = TRRunaway;
  1114. case TRRunaway:
  1115. _temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
  1116. }
  1117. }
  1118. #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
  1119. void Temperature::disable_all_heaters() {
  1120. HOTEND_LOOP() setTargetHotend(0, e);
  1121. setTargetBed(0);
  1122. // If all heaters go down then for sure our print job has stopped
  1123. print_job_timer.stop();
  1124. #define DISABLE_HEATER(NR) { \
  1125. setTargetHotend(0, NR); \
  1126. soft_pwm[NR] = 0; \
  1127. WRITE_HEATER_ ##NR (LOW); \
  1128. }
  1129. #if HAS_TEMP_HOTEND
  1130. DISABLE_HEATER(0);
  1131. #if HOTENDS > 1
  1132. DISABLE_HEATER(1);
  1133. #if HOTENDS > 2
  1134. DISABLE_HEATER(2);
  1135. #if HOTENDS > 3
  1136. DISABLE_HEATER(3);
  1137. #if HOTENDS > 4
  1138. DISABLE_HEATER(4);
  1139. #endif // HOTENDS > 4
  1140. #endif // HOTENDS > 3
  1141. #endif // HOTENDS > 2
  1142. #endif // HOTENDS > 1
  1143. #endif
  1144. #if HAS_TEMP_BED
  1145. target_temperature_bed = 0;
  1146. soft_pwm_bed = 0;
  1147. #if HAS_HEATER_BED
  1148. WRITE_HEATER_BED(LOW);
  1149. #endif
  1150. #endif
  1151. }
  1152. #if ENABLED(HEATER_0_USES_MAX6675)
  1153. #define MAX6675_HEAT_INTERVAL 250u
  1154. #if ENABLED(MAX6675_IS_MAX31855)
  1155. uint32_t max6675_temp = 2000;
  1156. #define MAX6675_ERROR_MASK 7
  1157. #define MAX6675_DISCARD_BITS 18
  1158. #define MAX6675_SPEED_BITS (_BV(SPR1)) // clock ÷ 64
  1159. #else
  1160. uint16_t max6675_temp = 2000;
  1161. #define MAX6675_ERROR_MASK 4
  1162. #define MAX6675_DISCARD_BITS 3
  1163. #define MAX6675_SPEED_BITS (_BV(SPR0)) // clock ÷ 16
  1164. #endif
  1165. int Temperature::read_max6675() {
  1166. static millis_t next_max6675_ms = 0;
  1167. millis_t ms = millis();
  1168. if (PENDING(ms, next_max6675_ms)) return (int)max6675_temp;
  1169. next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
  1170. CBI(
  1171. #ifdef PRR
  1172. PRR
  1173. #elif defined(PRR0)
  1174. PRR0
  1175. #endif
  1176. , PRSPI);
  1177. SPCR = _BV(MSTR) | _BV(SPE) | MAX6675_SPEED_BITS;
  1178. WRITE(MAX6675_SS, 0); // enable TT_MAX6675
  1179. // ensure 100ns delay - a bit extra is fine
  1180. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1181. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1182. // Read a big-endian temperature value
  1183. max6675_temp = 0;
  1184. for (uint8_t i = sizeof(max6675_temp); i--;) {
  1185. max6675_temp |= max6675_spi.receive();
  1186. if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
  1187. }
  1188. WRITE(MAX6675_SS, 1); // disable TT_MAX6675
  1189. if (max6675_temp & MAX6675_ERROR_MASK) {
  1190. SERIAL_ERROR_START;
  1191. SERIAL_ERRORPGM("Temp measurement error! ");
  1192. #if MAX6675_ERROR_MASK == 7
  1193. SERIAL_ERRORPGM("MAX31855 ");
  1194. if (max6675_temp & 1)
  1195. SERIAL_ERRORLNPGM("Open Circuit");
  1196. else if (max6675_temp & 2)
  1197. SERIAL_ERRORLNPGM("Short to GND");
  1198. else if (max6675_temp & 4)
  1199. SERIAL_ERRORLNPGM("Short to VCC");
  1200. #else
  1201. SERIAL_ERRORLNPGM("MAX6675");
  1202. #endif
  1203. max6675_temp = MAX6675_TMAX * 4; // thermocouple open
  1204. }
  1205. else
  1206. max6675_temp >>= MAX6675_DISCARD_BITS;
  1207. #if ENABLED(MAX6675_IS_MAX31855)
  1208. // Support negative temperature
  1209. if (max6675_temp & 0x00002000) max6675_temp |= 0xffffc000;
  1210. #endif
  1211. return (int)max6675_temp;
  1212. }
  1213. #endif //HEATER_0_USES_MAX6675
  1214. /**
  1215. * Get raw temperatures
  1216. */
  1217. void Temperature::set_current_temp_raw() {
  1218. #if HAS_TEMP_0 && DISABLED(HEATER_0_USES_MAX6675)
  1219. current_temperature_raw[0] = raw_temp_value[0];
  1220. #endif
  1221. #if HAS_TEMP_1
  1222. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  1223. redundant_temperature_raw = raw_temp_value[1];
  1224. #else
  1225. current_temperature_raw[1] = raw_temp_value[1];
  1226. #endif
  1227. #if HAS_TEMP_2
  1228. current_temperature_raw[2] = raw_temp_value[2];
  1229. #if HAS_TEMP_3
  1230. current_temperature_raw[3] = raw_temp_value[3];
  1231. #if HAS_TEMP_4
  1232. current_temperature_raw[4] = raw_temp_value[4];
  1233. #endif
  1234. #endif
  1235. #endif
  1236. #endif
  1237. current_temperature_bed_raw = raw_temp_bed_value;
  1238. temp_meas_ready = true;
  1239. }
  1240. #if ENABLED(PINS_DEBUGGING)
  1241. /**
  1242. * monitors endstops & Z probe for changes
  1243. *
  1244. * If a change is detected then the LED is toggled and
  1245. * a message is sent out the serial port
  1246. *
  1247. * Yes, we could miss a rapid back & forth change but
  1248. * that won't matter because this is all manual.
  1249. *
  1250. */
  1251. void endstop_monitor() {
  1252. static uint16_t old_endstop_bits_local = 0;
  1253. static uint8_t local_LED_status = 0;
  1254. uint16_t current_endstop_bits_local = 0;
  1255. #if HAS_X_MIN
  1256. if (READ(X_MIN_PIN)) SBI(current_endstop_bits_local, X_MIN);
  1257. #endif
  1258. #if HAS_X_MAX
  1259. if (READ(X_MAX_PIN)) SBI(current_endstop_bits_local, X_MAX);
  1260. #endif
  1261. #if HAS_Y_MIN
  1262. if (READ(Y_MIN_PIN)) SBI(current_endstop_bits_local, Y_MIN);
  1263. #endif
  1264. #if HAS_Y_MAX
  1265. if (READ(Y_MAX_PIN)) SBI(current_endstop_bits_local, Y_MAX);
  1266. #endif
  1267. #if HAS_Z_MIN
  1268. if (READ(Z_MIN_PIN)) SBI(current_endstop_bits_local, Z_MIN);
  1269. #endif
  1270. #if HAS_Z_MAX
  1271. if (READ(Z_MAX_PIN)) SBI(current_endstop_bits_local, Z_MAX);
  1272. #endif
  1273. #if HAS_Z_MIN_PROBE_PIN
  1274. if (READ(Z_MIN_PROBE_PIN)) SBI(current_endstop_bits_local, Z_MIN_PROBE);
  1275. #endif
  1276. #if HAS_Z2_MIN
  1277. if (READ(Z2_MIN_PIN)) SBI(current_endstop_bits_local, Z2_MIN);
  1278. #endif
  1279. #if HAS_Z2_MAX
  1280. if (READ(Z2_MAX_PIN)) SBI(current_endstop_bits_local, Z2_MAX);
  1281. #endif
  1282. uint16_t endstop_change = current_endstop_bits_local ^ old_endstop_bits_local;
  1283. if (endstop_change) {
  1284. #if HAS_X_MIN
  1285. if (TEST(endstop_change, X_MIN)) SERIAL_PROTOCOLPAIR("X_MIN:", !!TEST(current_endstop_bits_local, X_MIN));
  1286. #endif
  1287. #if HAS_X_MAX
  1288. if (TEST(endstop_change, X_MAX)) SERIAL_PROTOCOLPAIR(" X_MAX:", !!TEST(current_endstop_bits_local, X_MAX));
  1289. #endif
  1290. #if HAS_Y_MIN
  1291. if (TEST(endstop_change, Y_MIN)) SERIAL_PROTOCOLPAIR(" Y_MIN:", !!TEST(current_endstop_bits_local, Y_MIN));
  1292. #endif
  1293. #if HAS_Y_MAX
  1294. if (TEST(endstop_change, Y_MAX)) SERIAL_PROTOCOLPAIR(" Y_MAX:", !!TEST(current_endstop_bits_local, Y_MAX));
  1295. #endif
  1296. #if HAS_Z_MIN
  1297. if (TEST(endstop_change, Z_MIN)) SERIAL_PROTOCOLPAIR(" Z_MIN:", !!TEST(current_endstop_bits_local, Z_MIN));
  1298. #endif
  1299. #if HAS_Z_MAX
  1300. if (TEST(endstop_change, Z_MAX)) SERIAL_PROTOCOLPAIR(" Z_MAX:", !!TEST(current_endstop_bits_local, Z_MAX));
  1301. #endif
  1302. #if HAS_Z_MIN_PROBE_PIN
  1303. if (TEST(endstop_change, Z_MIN_PROBE)) SERIAL_PROTOCOLPAIR(" PROBE:", !!TEST(current_endstop_bits_local, Z_MIN_PROBE));
  1304. #endif
  1305. #if HAS_Z2_MIN
  1306. if (TEST(endstop_change, Z2_MIN)) SERIAL_PROTOCOLPAIR(" Z2_MIN:", !!TEST(current_endstop_bits_local, Z2_MIN));
  1307. #endif
  1308. #if HAS_Z2_MAX
  1309. if (TEST(endstop_change, Z2_MAX)) SERIAL_PROTOCOLPAIR(" Z2_MAX:", !!TEST(current_endstop_bits_local, Z2_MAX));
  1310. #endif
  1311. SERIAL_PROTOCOLPGM("\n\n");
  1312. analogWrite(LED_PIN, local_LED_status);
  1313. local_LED_status ^= 255;
  1314. old_endstop_bits_local = current_endstop_bits_local;
  1315. }
  1316. }
  1317. #endif // PINS_DEBUGGING
  1318. /**
  1319. * Timer 0 is shared with millies so don't change the prescaler.
  1320. *
  1321. * This ISR uses the compare method so it runs at the base
  1322. * frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
  1323. * in OCR0B above (128 or halfway between OVFs).
  1324. *
  1325. * - Manage PWM to all the heaters and fan
  1326. * - Prepare or Measure one of the raw ADC sensor values
  1327. * - Check new temperature values for MIN/MAX errors (kill on error)
  1328. * - Step the babysteps value for each axis towards 0
  1329. * - For PINS_DEBUGGING, monitor and report endstop pins
  1330. * - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
  1331. */
  1332. ISR(TIMER0_COMPB_vect) { Temperature::isr(); }
  1333. volatile bool Temperature::in_temp_isr = false;
  1334. void Temperature::isr() {
  1335. // The stepper ISR can interrupt this ISR. When it does it re-enables this ISR
  1336. // at the end of its run, potentially causing re-entry. This flag prevents it.
  1337. if (in_temp_isr) return;
  1338. in_temp_isr = true;
  1339. // Allow UART and stepper ISRs
  1340. CBI(TIMSK0, OCIE0B); //Disable Temperature ISR
  1341. sei();
  1342. static int8_t temp_count = -1;
  1343. static ADCSensorState adc_sensor_state = StartupDelay;
  1344. static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
  1345. // avoid multiple loads of pwm_count
  1346. uint8_t pwm_count_tmp = pwm_count;
  1347. // Static members for each heater
  1348. #if ENABLED(SLOW_PWM_HEATERS)
  1349. static uint8_t slow_pwm_count = 0;
  1350. #define ISR_STATICS(n) \
  1351. static uint8_t soft_pwm_ ## n; \
  1352. static uint8_t state_heater_ ## n = 0; \
  1353. static uint8_t state_timer_heater_ ## n = 0
  1354. #else
  1355. #define ISR_STATICS(n) static uint8_t soft_pwm_ ## n = 0
  1356. #endif
  1357. // Statics per heater
  1358. ISR_STATICS(0);
  1359. #if HOTENDS > 1
  1360. ISR_STATICS(1);
  1361. #if HOTENDS > 2
  1362. ISR_STATICS(2);
  1363. #if HOTENDS > 3
  1364. ISR_STATICS(3);
  1365. #if HOTENDS > 4
  1366. ISR_STATICS(4);
  1367. #endif // HOTENDS > 4
  1368. #endif // HOTENDS > 3
  1369. #endif // HOTENDS > 2
  1370. #endif // HOTENDS > 1
  1371. #if HAS_HEATER_BED
  1372. ISR_STATICS(BED);
  1373. #endif
  1374. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1375. static unsigned long raw_filwidth_value = 0;
  1376. #endif
  1377. #if DISABLED(SLOW_PWM_HEATERS)
  1378. constexpr uint8_t pwm_mask =
  1379. #if ENABLED(SOFT_PWM_DITHER)
  1380. _BV(SOFT_PWM_SCALE) - 1
  1381. #else
  1382. 0
  1383. #endif
  1384. ;
  1385. /**
  1386. * Standard PWM modulation
  1387. */
  1388. if (pwm_count_tmp >= 127) {
  1389. pwm_count_tmp -= 127;
  1390. soft_pwm_0 = (soft_pwm_0 & pwm_mask) + soft_pwm[0];
  1391. WRITE_HEATER_0(soft_pwm_0 > pwm_mask ? HIGH : LOW);
  1392. #if HOTENDS > 1
  1393. soft_pwm_1 = (soft_pwm_1 & pwm_mask) + soft_pwm[1];
  1394. WRITE_HEATER_1(soft_pwm_1 > pwm_mask ? HIGH : LOW);
  1395. #if HOTENDS > 2
  1396. soft_pwm_2 = (soft_pwm_2 & pwm_mask) + soft_pwm[2];
  1397. WRITE_HEATER_2(soft_pwm_2 > pwm_mask ? HIGH : LOW);
  1398. #if HOTENDS > 3
  1399. soft_pwm_3 = (soft_pwm_3 & pwm_mask) + soft_pwm[3];
  1400. WRITE_HEATER_3(soft_pwm_3 > pwm_mask ? HIGH : LOW);
  1401. #if HOTENDS > 4
  1402. soft_pwm_4 = (soft_pwm_4 & pwm_mask) + soft_pwm[4];
  1403. WRITE_HEATER_4(soft_pwm_4 > pwm_mask ? HIGH : LOW);
  1404. #endif // HOTENDS > 4
  1405. #endif // HOTENDS > 3
  1406. #endif // HOTENDS > 2
  1407. #endif // HOTENDS > 1
  1408. #if HAS_HEATER_BED
  1409. soft_pwm_BED = (soft_pwm_BED & pwm_mask) + soft_pwm_bed;
  1410. WRITE_HEATER_BED(soft_pwm_BED > pwm_mask ? HIGH : LOW);
  1411. #endif
  1412. #if ENABLED(FAN_SOFT_PWM)
  1413. #if HAS_FAN0
  1414. soft_pwm_fan[0] = (soft_pwm_fan[0] & pwm_mask) + fanSpeedSoftPwm[0] >> 1;
  1415. WRITE_FAN(soft_pwm_fan[0] > pwm_mask ? HIGH : LOW);
  1416. #endif
  1417. #if HAS_FAN1
  1418. soft_pwm_fan[1] = (soft_pwm_fan[1] & pwm_mask) + fanSpeedSoftPwm[1] >> 1;
  1419. WRITE_FAN1(soft_pwm_fan[1] > pwm_mask ? HIGH : LOW);
  1420. #endif
  1421. #if HAS_FAN2
  1422. soft_pwm_fan[2] = (soft_pwm_fan[2] & pwm_mask) + fanSpeedSoftPwm[2] >> 1;
  1423. WRITE_FAN2(soft_pwm_fan[2] > pwm_mask ? HIGH : LOW);
  1424. #endif
  1425. #endif
  1426. }
  1427. else {
  1428. if (soft_pwm_0 <= pwm_count_tmp) WRITE_HEATER_0(0);
  1429. #if HOTENDS > 1
  1430. if (soft_pwm_1 <= pwm_count_tmp) WRITE_HEATER_1(0);
  1431. #if HOTENDS > 2
  1432. if (soft_pwm_2 <= pwm_count_tmp) WRITE_HEATER_2(0);
  1433. #if HOTENDS > 3
  1434. if (soft_pwm_3 <= pwm_count_tmp) WRITE_HEATER_3(0);
  1435. #if HOTENDS > 4
  1436. if (soft_pwm_4 <= pwm_count_tmp) WRITE_HEATER_4(0);
  1437. #endif // HOTENDS > 4
  1438. #endif // HOTENDS > 3
  1439. #endif // HOTENDS > 2
  1440. #endif // HOTENDS > 1
  1441. #if HAS_HEATER_BED
  1442. if (soft_pwm_BED <= pwm_count_tmp) WRITE_HEATER_BED(0);
  1443. #endif
  1444. #if ENABLED(FAN_SOFT_PWM)
  1445. #if HAS_FAN0
  1446. if (soft_pwm_fan[0] <= pwm_count_tmp) WRITE_FAN(0);
  1447. #endif
  1448. #if HAS_FAN1
  1449. if (soft_pwm_fan[1] <= pwm_count_tmp) WRITE_FAN1(0);
  1450. #endif
  1451. #if HAS_FAN2
  1452. if (soft_pwm_fan[2] <= pwm_count_tmp) WRITE_FAN2(0);
  1453. #endif
  1454. #endif
  1455. }
  1456. // SOFT_PWM_SCALE to frequency:
  1457. //
  1458. // 0: 16000000/64/256/128 = 7.6294 Hz
  1459. // 1: / 64 = 15.2588 Hz
  1460. // 2: / 32 = 30.5176 Hz
  1461. // 3: / 16 = 61.0352 Hz
  1462. // 4: / 8 = 122.0703 Hz
  1463. // 5: / 4 = 244.1406 Hz
  1464. pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
  1465. #else // SLOW_PWM_HEATERS
  1466. /**
  1467. * SLOW PWM HEATERS
  1468. *
  1469. * For relay-driven heaters
  1470. */
  1471. #ifndef MIN_STATE_TIME
  1472. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1473. #endif
  1474. // Macros for Slow PWM timer logic
  1475. #define _SLOW_PWM_ROUTINE(NR, src) \
  1476. soft_pwm_ ##NR = src; \
  1477. if (soft_pwm_ ##NR > 0) { \
  1478. if (state_timer_heater_ ##NR == 0) { \
  1479. if (state_heater_ ##NR == 0) state_timer_heater_ ##NR = MIN_STATE_TIME; \
  1480. state_heater_ ##NR = 1; \
  1481. WRITE_HEATER_ ##NR(1); \
  1482. } \
  1483. } \
  1484. else { \
  1485. if (state_timer_heater_ ##NR == 0) { \
  1486. if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
  1487. state_heater_ ##NR = 0; \
  1488. WRITE_HEATER_ ##NR(0); \
  1489. } \
  1490. }
  1491. #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
  1492. #define PWM_OFF_ROUTINE(NR) \
  1493. if (soft_pwm_ ##NR < slow_pwm_count) { \
  1494. if (state_timer_heater_ ##NR == 0) { \
  1495. if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
  1496. state_heater_ ##NR = 0; \
  1497. WRITE_HEATER_ ##NR (0); \
  1498. } \
  1499. }
  1500. if (slow_pwm_count == 0) {
  1501. SLOW_PWM_ROUTINE(0);
  1502. #if HOTENDS > 1
  1503. SLOW_PWM_ROUTINE(1);
  1504. #if HOTENDS > 2
  1505. SLOW_PWM_ROUTINE(2);
  1506. #if HOTENDS > 3
  1507. SLOW_PWM_ROUTINE(3);
  1508. #if HOTENDS > 4
  1509. SLOW_PWM_ROUTINE(4);
  1510. #endif // HOTENDS > 4
  1511. #endif // HOTENDS > 3
  1512. #endif // HOTENDS > 2
  1513. #endif // HOTENDS > 1
  1514. #if HAS_HEATER_BED
  1515. _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
  1516. #endif
  1517. } // slow_pwm_count == 0
  1518. PWM_OFF_ROUTINE(0);
  1519. #if HOTENDS > 1
  1520. PWM_OFF_ROUTINE(1);
  1521. #if HOTENDS > 2
  1522. PWM_OFF_ROUTINE(2);
  1523. #if HOTENDS > 3
  1524. PWM_OFF_ROUTINE(3);
  1525. #if HOTENDS > 4
  1526. PWM_OFF_ROUTINE(4);
  1527. #endif // HOTENDS > 4
  1528. #endif // HOTENDS > 3
  1529. #endif // HOTENDS > 2
  1530. #endif // HOTENDS > 1
  1531. #if HAS_HEATER_BED
  1532. PWM_OFF_ROUTINE(BED); // BED
  1533. #endif
  1534. #if ENABLED(FAN_SOFT_PWM)
  1535. if (pwm_count_tmp >= 127) {
  1536. pwm_count_tmp = 0;
  1537. #if HAS_FAN0
  1538. soft_pwm_fan[0] = fanSpeedSoftPwm[0] >> 1;
  1539. WRITE_FAN(soft_pwm_fan[0] > 0 ? HIGH : LOW);
  1540. #endif
  1541. #if HAS_FAN1
  1542. soft_pwm_fan[1] = fanSpeedSoftPwm[1] >> 1;
  1543. WRITE_FAN1(soft_pwm_fan[1] > 0 ? HIGH : LOW);
  1544. #endif
  1545. #if HAS_FAN2
  1546. soft_pwm_fan[2] = fanSpeedSoftPwm[2] >> 1;
  1547. WRITE_FAN2(soft_pwm_fan[2] > 0 ? HIGH : LOW);
  1548. #endif
  1549. }
  1550. #if HAS_FAN0
  1551. if (soft_pwm_fan[0] <= pwm_count_tmp) WRITE_FAN(0);
  1552. #endif
  1553. #if HAS_FAN1
  1554. if (soft_pwm_fan[1] <= pwm_count_tmp) WRITE_FAN1(0);
  1555. #endif
  1556. #if HAS_FAN2
  1557. if (soft_pwm_fan[2] <= pwm_count_tmp) WRITE_FAN2(0);
  1558. #endif
  1559. #endif // FAN_SOFT_PWM
  1560. // SOFT_PWM_SCALE to frequency:
  1561. //
  1562. // 0: 16000000/64/256/128 = 7.6294 Hz
  1563. // 1: / 64 = 15.2588 Hz
  1564. // 2: / 32 = 30.5176 Hz
  1565. // 3: / 16 = 61.0352 Hz
  1566. // 4: / 8 = 122.0703 Hz
  1567. // 5: / 4 = 244.1406 Hz
  1568. pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
  1569. // increment slow_pwm_count only every 64th pwm_count,
  1570. // i.e. yielding a PWM frequency of 16/128 Hz (8s).
  1571. if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) {
  1572. slow_pwm_count++;
  1573. slow_pwm_count &= 0x7F;
  1574. if (state_timer_heater_0 > 0) state_timer_heater_0--;
  1575. #if HOTENDS > 1
  1576. if (state_timer_heater_1 > 0) state_timer_heater_1--;
  1577. #if HOTENDS > 2
  1578. if (state_timer_heater_2 > 0) state_timer_heater_2--;
  1579. #if HOTENDS > 3
  1580. if (state_timer_heater_3 > 0) state_timer_heater_3--;
  1581. #if HOTENDS > 4
  1582. if (state_timer_heater_4 > 0) state_timer_heater_4--;
  1583. #endif // HOTENDS > 4
  1584. #endif // HOTENDS > 3
  1585. #endif // HOTENDS > 2
  1586. #endif // HOTENDS > 1
  1587. #if HAS_HEATER_BED
  1588. if (state_timer_heater_BED > 0) state_timer_heater_BED--;
  1589. #endif
  1590. } // ((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0
  1591. #endif // SLOW_PWM_HEATERS
  1592. //
  1593. // Update lcd buttons 488 times per second
  1594. //
  1595. static bool do_buttons;
  1596. if ((do_buttons ^= true)) lcd_buttons_update();
  1597. /**
  1598. * One sensor is sampled on every other call of the ISR.
  1599. * Each sensor is read 16 (OVERSAMPLENR) times, taking the average.
  1600. *
  1601. * On each Prepare pass, ADC is started for a sensor pin.
  1602. * On the next pass, the ADC value is read and accumulated.
  1603. *
  1604. * This gives each ADC 0.9765ms to charge up.
  1605. */
  1606. #define SET_ADMUX_ADCSRA(pin) ADMUX = _BV(REFS0) | (pin & 0x07); SBI(ADCSRA, ADSC)
  1607. #ifdef MUX5
  1608. #define START_ADC(pin) if (pin > 7) ADCSRB = _BV(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1609. #else
  1610. #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1611. #endif
  1612. switch (adc_sensor_state) {
  1613. case SensorsReady: {
  1614. // All sensors have been read. Stay in this state for a few
  1615. // ISRs to save on calls to temp update/checking code below.
  1616. constexpr int extra_loops = MIN_ADC_ISR_LOOPS - (int)SensorsReady;
  1617. static uint8_t delay_count = 0;
  1618. if (extra_loops > 0) {
  1619. if (delay_count == 0) delay_count = extra_loops; // Init this delay
  1620. if (--delay_count) // While delaying...
  1621. adc_sensor_state = (ADCSensorState)(int(SensorsReady) - 1); // retain this state (else, next state will be 0)
  1622. break;
  1623. }
  1624. else
  1625. adc_sensor_state = (ADCSensorState)0; // Fall-through to start first sensor now
  1626. }
  1627. #if HAS_TEMP_0
  1628. case PrepareTemp_0:
  1629. START_ADC(TEMP_0_PIN);
  1630. break;
  1631. case MeasureTemp_0:
  1632. raw_temp_value[0] += ADC;
  1633. break;
  1634. #endif
  1635. #if HAS_TEMP_BED
  1636. case PrepareTemp_BED:
  1637. START_ADC(TEMP_BED_PIN);
  1638. break;
  1639. case MeasureTemp_BED:
  1640. raw_temp_bed_value += ADC;
  1641. break;
  1642. #endif
  1643. #if HAS_TEMP_1
  1644. case PrepareTemp_1:
  1645. START_ADC(TEMP_1_PIN);
  1646. break;
  1647. case MeasureTemp_1:
  1648. raw_temp_value[1] += ADC;
  1649. break;
  1650. #endif
  1651. #if HAS_TEMP_2
  1652. case PrepareTemp_2:
  1653. START_ADC(TEMP_2_PIN);
  1654. break;
  1655. case MeasureTemp_2:
  1656. raw_temp_value[2] += ADC;
  1657. break;
  1658. #endif
  1659. #if HAS_TEMP_3
  1660. case PrepareTemp_3:
  1661. START_ADC(TEMP_3_PIN);
  1662. break;
  1663. case MeasureTemp_3:
  1664. raw_temp_value[3] += ADC;
  1665. break;
  1666. #endif
  1667. #if HAS_TEMP_4
  1668. case PrepareTemp_4:
  1669. START_ADC(TEMP_4_PIN);
  1670. break;
  1671. case MeasureTemp_4:
  1672. raw_temp_value[4] += ADC;
  1673. break;
  1674. #endif
  1675. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1676. case Prepare_FILWIDTH:
  1677. START_ADC(FILWIDTH_PIN);
  1678. break;
  1679. case Measure_FILWIDTH:
  1680. if (ADC > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read.
  1681. raw_filwidth_value -= (raw_filwidth_value >> 7); // Subtract 1/128th of the raw_filwidth_value
  1682. raw_filwidth_value += ((unsigned long)ADC << 7); // Add new ADC reading, scaled by 128
  1683. }
  1684. break;
  1685. #endif
  1686. case StartupDelay: break;
  1687. } // switch(adc_sensor_state)
  1688. if (!adc_sensor_state && ++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1689. temp_count = 0;
  1690. // Update the raw values if they've been read. Else we could be updating them during reading.
  1691. if (!temp_meas_ready) set_current_temp_raw();
  1692. // Filament Sensor - can be read any time since IIR filtering is used
  1693. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1694. current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1695. #endif
  1696. ZERO(raw_temp_value);
  1697. raw_temp_bed_value = 0;
  1698. #define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) > (HEATER_##N##_RAW_HI_TEMP) ? -1 : 1)
  1699. int constexpr temp_dir[] = {
  1700. #if ENABLED(HEATER_0_USES_MAX6675)
  1701. 0
  1702. #else
  1703. TEMPDIR(0)
  1704. #endif
  1705. #if HOTENDS > 1
  1706. , TEMPDIR(1)
  1707. #if HOTENDS > 2
  1708. , TEMPDIR(2)
  1709. #if HOTENDS > 3
  1710. , TEMPDIR(3)
  1711. #if HOTENDS > 4
  1712. , TEMPDIR(4)
  1713. #endif // HOTENDS > 4
  1714. #endif // HOTENDS > 3
  1715. #endif // HOTENDS > 2
  1716. #endif // HOTENDS > 1
  1717. };
  1718. for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
  1719. const int tdir = temp_dir[e], rawtemp = current_temperature_raw[e] * tdir;
  1720. if (rawtemp > maxttemp_raw[e] * tdir && target_temperature[e] > 0.0f) max_temp_error(e);
  1721. if (rawtemp < minttemp_raw[e] * tdir && !is_preheating(e) && target_temperature[e] > 0.0f) {
  1722. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1723. if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
  1724. #endif
  1725. min_temp_error(e);
  1726. }
  1727. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1728. else
  1729. consecutive_low_temperature_error[e] = 0;
  1730. #endif
  1731. }
  1732. #if HAS_TEMP_BED
  1733. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1734. #define GEBED <=
  1735. #else
  1736. #define GEBED >=
  1737. #endif
  1738. if (current_temperature_bed_raw GEBED bed_maxttemp_raw && target_temperature_bed > 0.0f) max_temp_error(-1);
  1739. if (bed_minttemp_raw GEBED current_temperature_bed_raw && target_temperature_bed > 0.0f) min_temp_error(-1);
  1740. #endif
  1741. } // temp_count >= OVERSAMPLENR
  1742. // Go to the next state, up to SensorsReady
  1743. adc_sensor_state = (ADCSensorState)((int(adc_sensor_state) + 1) % int(StartupDelay));
  1744. #if ENABLED(BABYSTEPPING)
  1745. LOOP_XYZ(axis) {
  1746. int curTodo = babystepsTodo[axis]; //get rid of volatile for performance
  1747. if (curTodo > 0) {
  1748. stepper.babystep((AxisEnum)axis,/*fwd*/true);
  1749. babystepsTodo[axis]--; //fewer to do next time
  1750. }
  1751. else if (curTodo < 0) {
  1752. stepper.babystep((AxisEnum)axis,/*fwd*/false);
  1753. babystepsTodo[axis]++; //fewer to do next time
  1754. }
  1755. }
  1756. #endif //BABYSTEPPING
  1757. #if ENABLED(PINS_DEBUGGING)
  1758. extern bool endstop_monitor_flag;
  1759. // run the endstop monitor at 15Hz
  1760. static uint8_t endstop_monitor_count = 16; // offset this check from the others
  1761. if (endstop_monitor_flag) {
  1762. endstop_monitor_count += _BV(1); // 15 Hz
  1763. endstop_monitor_count &= 0x7F;
  1764. if (!endstop_monitor_count) endstop_monitor(); // report changes in endstop status
  1765. }
  1766. #endif
  1767. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  1768. extern volatile uint8_t e_hit;
  1769. if (e_hit && ENDSTOPS_ENABLED) {
  1770. endstops.update(); // call endstop update routine
  1771. e_hit--;
  1772. }
  1773. #endif
  1774. cli();
  1775. in_temp_isr = false;
  1776. SBI(TIMSK0, OCIE0B); //re-enable Temperature ISR
  1777. }