My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

temperature.h 6.0KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175
  1. /*
  2. temperature.h - temperature controller
  3. Part of Marlin
  4. Copyright (c) 2011 Erik van der Zalm
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #ifndef temperature_h
  17. #define temperature_h
  18. #include "Marlin.h"
  19. #include "planner.h"
  20. #ifdef PID_ADD_EXTRUSION_RATE
  21. #include "stepper.h"
  22. #endif
  23. // public functions
  24. void tp_init(); //initialize the heating
  25. void manage_heater(); //it is critical that this is called periodically.
  26. #ifdef FILAMENT_SENSOR
  27. // For converting raw Filament Width to milimeters
  28. float analog2widthFil();
  29. // For converting raw Filament Width to an extrusion ratio
  30. int widthFil_to_size_ratio();
  31. #endif
  32. // low level conversion routines
  33. // do not use these routines and variables outside of temperature.cpp
  34. extern int target_temperature[4];
  35. extern float current_temperature[4];
  36. #ifdef SHOW_TEMP_ADC_VALUES
  37. extern int current_temperature_raw[4];
  38. extern int current_temperature_bed_raw;
  39. #endif
  40. extern int target_temperature_bed;
  41. extern float current_temperature_bed;
  42. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  43. extern float redundant_temperature;
  44. #endif
  45. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  46. extern unsigned char soft_pwm_bed;
  47. #endif
  48. #ifdef PIDTEMP
  49. #ifdef PID_PARAMS_PER_EXTRUDER
  50. extern float Kp[EXTRUDERS], Ki[EXTRUDERS], Kd[EXTRUDERS], Kc[EXTRUDERS]; // one param per extruder
  51. #define PID_PARAM(param,e) param[e] // use macro to point to array value
  52. #else
  53. extern float Kp, Ki, Kd, Kc; // one param per extruder - saves 20 or 36 bytes of ram (inc array pointer)
  54. #define PID_PARAM(param, e) param // use macro to point directly to value
  55. #endif // PID_PARAMS_PER_EXTRUDER
  56. float scalePID_i(float i);
  57. float scalePID_d(float d);
  58. float unscalePID_i(float i);
  59. float unscalePID_d(float d);
  60. #endif
  61. #ifdef PIDTEMPBED
  62. extern float bedKp,bedKi,bedKd;
  63. #endif
  64. #ifdef BABYSTEPPING
  65. extern volatile int babystepsTodo[3];
  66. #endif
  67. //high level conversion routines, for use outside of temperature.cpp
  68. //inline so that there is no performance decrease.
  69. //deg=degreeCelsius
  70. FORCE_INLINE float degHotend(uint8_t extruder) { return current_temperature[extruder]; }
  71. FORCE_INLINE float degBed() { return current_temperature_bed; }
  72. #ifdef SHOW_TEMP_ADC_VALUES
  73. FORCE_INLINE float rawHotendTemp(uint8_t extruder) { return current_temperature_raw[extruder]; }
  74. FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; }
  75. #endif
  76. FORCE_INLINE float degTargetHotend(uint8_t extruder) { return target_temperature[extruder]; }
  77. FORCE_INLINE float degTargetBed() { return target_temperature_bed; }
  78. FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) { target_temperature[extruder] = celsius; }
  79. FORCE_INLINE void setTargetBed(const float &celsius) { target_temperature_bed = celsius; }
  80. FORCE_INLINE bool isHeatingHotend(uint8_t extruder) { return target_temperature[extruder] > current_temperature[extruder]; }
  81. FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
  82. FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; }
  83. FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
  84. #define degHotend0() degHotend(0)
  85. #define degTargetHotend0() degTargetHotend(0)
  86. #define setTargetHotend0(_celsius) setTargetHotend((_celsius), 0)
  87. #define isHeatingHotend0() isHeatingHotend(0)
  88. #define isCoolingHotend0() isCoolingHotend(0)
  89. #if EXTRUDERS > 1
  90. #define degHotend1() degHotend(1)
  91. #define degTargetHotend1() degTargetHotend(1)
  92. #define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
  93. #define isHeatingHotend1() isHeatingHotend(1)
  94. #define isCoolingHotend1() isCoolingHotend(1)
  95. #else
  96. #define setTargetHotend1(_celsius) do{}while(0)
  97. #endif
  98. #if EXTRUDERS > 2
  99. #define degHotend2() degHotend(2)
  100. #define degTargetHotend2() degTargetHotend(2)
  101. #define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
  102. #define isHeatingHotend2() isHeatingHotend(2)
  103. #define isCoolingHotend2() isCoolingHotend(2)
  104. #else
  105. #define setTargetHotend2(_celsius) do{}while(0)
  106. #endif
  107. #if EXTRUDERS > 3
  108. #define degHotend3() degHotend(3)
  109. #define degTargetHotend3() degTargetHotend(3)
  110. #define setTargetHotend3(_celsius) setTargetHotend((_celsius), 3)
  111. #define isHeatingHotend3() isHeatingHotend(3)
  112. #define isCoolingHotend3() isCoolingHotend(3)
  113. #else
  114. #define setTargetHotend3(_celsius) do{}while(0)
  115. #endif
  116. #if EXTRUDERS > 4
  117. #error Invalid number of extruders
  118. #endif
  119. int getHeaterPower(int heater);
  120. void disable_heater();
  121. void setWatch();
  122. void updatePID();
  123. #if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
  124. void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
  125. static int thermal_runaway_state_machine[4]; // = {0,0,0,0};
  126. static unsigned long thermal_runaway_timer[4]; // = {0,0,0,0};
  127. static bool thermal_runaway = false;
  128. #if TEMP_SENSOR_BED != 0
  129. static int thermal_runaway_bed_state_machine;
  130. static unsigned long thermal_runaway_bed_timer;
  131. #endif
  132. #endif
  133. FORCE_INLINE void autotempShutdown() {
  134. #ifdef AUTOTEMP
  135. if (autotemp_enabled) {
  136. autotemp_enabled = false;
  137. if (degTargetHotend(active_extruder) > autotemp_min)
  138. setTargetHotend(0, active_extruder);
  139. }
  140. #endif
  141. }
  142. void PID_autotune(float temp, int extruder, int ncycles);
  143. void setExtruderAutoFanState(int pin, bool state);
  144. void checkExtruderAutoFans();
  145. #endif