My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

Marlin_main.cpp 315KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. *
  29. * It has preliminary support for Matthew Roberts advance algorithm
  30. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  31. */
  32. /**
  33. * -----------------
  34. * G-Codes in Marlin
  35. * -----------------
  36. *
  37. * Helpful G-code references:
  38. * - http://linuxcnc.org/handbook/gcode/g-code.html
  39. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  40. *
  41. * Help to document Marlin's G-codes online:
  42. * - http://reprap.org/wiki/G-code
  43. * - https://github.com/MarlinFirmware/MarlinDocumentation
  44. *
  45. * -----------------
  46. *
  47. * "G" Codes
  48. *
  49. * G0 -> G1
  50. * G1 - Coordinated Movement X Y Z E
  51. * G2 - CW ARC
  52. * G3 - CCW ARC
  53. * G4 - Dwell S<seconds> or P<milliseconds>
  54. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  55. * G10 - Retract filament according to settings of M207
  56. * G11 - Retract recover filament according to settings of M208
  57. * G12 - Clean tool
  58. * G20 - Set input units to inches
  59. * G21 - Set input units to millimeters
  60. * G28 - Home one or more axes
  61. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  62. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  63. * G31 - Dock sled (Z_PROBE_SLED only)
  64. * G32 - Undock sled (Z_PROBE_SLED only)
  65. * G38 - Probe target - similar to G28 except it uses the Z_MIN endstop for all three axes
  66. * G90 - Use Absolute Coordinates
  67. * G91 - Use Relative Coordinates
  68. * G92 - Set current position to coordinates given
  69. *
  70. * "M" Codes
  71. *
  72. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  73. * M1 - Same as M0
  74. * M17 - Enable/Power all stepper motors
  75. * M18 - Disable all stepper motors; same as M84
  76. * M20 - List SD card. (Requires SDSUPPORT)
  77. * M21 - Init SD card. (Requires SDSUPPORT)
  78. * M22 - Release SD card. (Requires SDSUPPORT)
  79. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  80. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  81. * M25 - Pause SD print. (Requires SDSUPPORT)
  82. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  83. * M27 - Report SD print status. (Requires SDSUPPORT)
  84. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  85. * M29 - Stop SD write. (Requires SDSUPPORT)
  86. * M30 - Delete file from SD: "M30 /path/file.gco"
  87. * M31 - Report time since last M109 or SD card start to serial.
  88. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  89. * Use P to run other files as sub-programs: "M32 P !filename#"
  90. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  91. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  92. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  93. * M43 - Monitor pins & report changes - report active pins
  94. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  95. * M75 - Start the print job timer.
  96. * M76 - Pause the print job timer.
  97. * M77 - Stop the print job timer.
  98. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  99. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  100. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  101. * M82 - Set E codes absolute (default).
  102. * M83 - Set E codes relative while in Absolute (G90) mode.
  103. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  104. * duration after which steppers should turn off. S0 disables the timeout.
  105. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  106. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  107. * M104 - Set extruder target temp.
  108. * M105 - Report current temperatures.
  109. * M106 - Fan on.
  110. * M107 - Fan off.
  111. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  112. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  113. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  114. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  115. * M110 - Set the current line number. (Used by host printing)
  116. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  117. * M112 - Emergency stop.
  118. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  119. * M114 - Report current position.
  120. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  121. * M117 - Display a message on the controller screen. (Requires an LCD)
  122. * M119 - Report endstops status.
  123. * M120 - Enable endstops detection.
  124. * M121 - Disable endstops detection.
  125. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  126. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  127. * M128 - EtoP Open. (Requires BARICUDA)
  128. * M129 - EtoP Closed. (Requires BARICUDA)
  129. * M140 - Set bed target temp. S<temp>
  130. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  131. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  132. * M150 - Set BlinkM Color R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM)
  133. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  134. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  135. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  136. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  137. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  138. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  139. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  140. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  141. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  142. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  143. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  144. * M205 - Set advanced settings. Current units apply:
  145. S<print> T<travel> minimum speeds
  146. B<minimum segment time>
  147. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  148. * M206 - Set additional homing offset.
  149. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  150. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  151. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  152. Every normal extrude-only move will be classified as retract depending on the direction.
  153. * M211 - Enable, Disable, and/or Report software endstops: S<0|1>
  154. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  155. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  156. * M221 - Set Flow Percentage: "M221 S<percent>"
  157. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  158. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  159. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  160. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  162. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  163. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  164. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  165. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  166. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  167. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  168. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  169. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  170. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  171. * M400 - Finish all moves.
  172. * M401 - Lower Z probe. (Requires a probe)
  173. * M402 - Raise Z probe. (Requires a probe)
  174. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  176. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  178. * M410 - Quickstop. Abort all planned moves.
  179. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  180. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  181. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  182. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  183. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  184. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  185. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  186. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  187. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  188. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s>" (Requires DELTA)
  189. * M666 - Set delta endstop adjustment. (Requires DELTA)
  190. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  191. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  192. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  193. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  194. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  195. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  196. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  197. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  198. *
  199. * ************ SCARA Specific - This can change to suit future G-code regulations
  200. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  201. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  202. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  203. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  204. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  205. * ************* SCARA End ***************
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  209. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  215. *
  216. */
  217. #include "Marlin.h"
  218. #include "ultralcd.h"
  219. #include "planner.h"
  220. #include "stepper.h"
  221. #include "endstops.h"
  222. #include "temperature.h"
  223. #include "cardreader.h"
  224. #include "configuration_store.h"
  225. #include "language.h"
  226. #include "pins_arduino.h"
  227. #include "math.h"
  228. #include "nozzle.h"
  229. #include "duration_t.h"
  230. #include "types.h"
  231. #if HAS_ABL
  232. #include "vector_3.h"
  233. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  234. #include "qr_solve.h"
  235. #endif
  236. #elif ENABLED(MESH_BED_LEVELING)
  237. #include "mesh_bed_leveling.h"
  238. #endif
  239. #if ENABLED(BEZIER_CURVE_SUPPORT)
  240. #include "planner_bezier.h"
  241. #endif
  242. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  243. #include "buzzer.h"
  244. #endif
  245. #if ENABLED(USE_WATCHDOG)
  246. #include "watchdog.h"
  247. #endif
  248. #if ENABLED(BLINKM)
  249. #include "blinkm.h"
  250. #include "Wire.h"
  251. #endif
  252. #if HAS_SERVOS
  253. #include "servo.h"
  254. #endif
  255. #if HAS_DIGIPOTSS
  256. #include <SPI.h>
  257. #endif
  258. #if ENABLED(DAC_STEPPER_CURRENT)
  259. #include "stepper_dac.h"
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. #include "twibus.h"
  263. #endif
  264. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  265. #include "endstop_interrupts.h"
  266. #endif
  267. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  268. void gcode_M100();
  269. #endif
  270. #if ENABLED(SDSUPPORT)
  271. CardReader card;
  272. #endif
  273. #if ENABLED(EXPERIMENTAL_I2CBUS)
  274. TWIBus i2c;
  275. #endif
  276. #if ENABLED(G38_PROBE_TARGET)
  277. bool G38_move = false,
  278. G38_endstop_hit = false;
  279. #endif
  280. bool Running = true;
  281. uint8_t marlin_debug_flags = DEBUG_NONE;
  282. /**
  283. * Cartesian Current Position
  284. * Used to track the logical position as moves are queued.
  285. * Used by 'line_to_current_position' to do a move after changing it.
  286. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  287. */
  288. float current_position[XYZE] = { 0.0 };
  289. /**
  290. * Cartesian Destination
  291. * A temporary position, usually applied to 'current_position'.
  292. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  293. * 'line_to_destination' sets 'current_position' to 'destination'.
  294. */
  295. static float destination[XYZE] = { 0.0 };
  296. /**
  297. * axis_homed
  298. * Flags that each linear axis was homed.
  299. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  300. *
  301. * axis_known_position
  302. * Flags that the position is known in each linear axis. Set when homed.
  303. * Cleared whenever a stepper powers off, potentially losing its position.
  304. */
  305. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  306. /**
  307. * GCode line number handling. Hosts may opt to include line numbers when
  308. * sending commands to Marlin, and lines will be checked for sequentiality.
  309. * M110 S<int> sets the current line number.
  310. */
  311. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  312. /**
  313. * GCode Command Queue
  314. * A simple ring buffer of BUFSIZE command strings.
  315. *
  316. * Commands are copied into this buffer by the command injectors
  317. * (immediate, serial, sd card) and they are processed sequentially by
  318. * the main loop. The process_next_command function parses the next
  319. * command and hands off execution to individual handler functions.
  320. */
  321. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  322. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  323. cmd_queue_index_w = 0, // Ring buffer write position
  324. commands_in_queue = 0; // Count of commands in the queue
  325. /**
  326. * Current GCode Command
  327. * When a GCode handler is running, these will be set
  328. */
  329. static char *current_command, // The command currently being executed
  330. *current_command_args, // The address where arguments begin
  331. *seen_pointer; // Set by code_seen(), used by the code_value functions
  332. /**
  333. * Next Injected Command pointer. NULL if no commands are being injected.
  334. * Used by Marlin internally to ensure that commands initiated from within
  335. * are enqueued ahead of any pending serial or sd card commands.
  336. */
  337. static const char *injected_commands_P = NULL;
  338. #if ENABLED(INCH_MODE_SUPPORT)
  339. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  340. #endif
  341. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  342. TempUnit input_temp_units = TEMPUNIT_C;
  343. #endif
  344. /**
  345. * Feed rates are often configured with mm/m
  346. * but the planner and stepper like mm/s units.
  347. */
  348. float constexpr homing_feedrate_mm_s[] = {
  349. #if ENABLED(DELTA)
  350. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  351. #else
  352. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  353. #endif
  354. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  355. };
  356. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  357. int feedrate_percentage = 100, saved_feedrate_percentage,
  358. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  359. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  360. volumetric_enabled = false;
  361. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  362. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  363. // The distance that XYZ has been offset by G92. Reset by G28.
  364. float position_shift[XYZ] = { 0 };
  365. // This offset is added to the configured home position.
  366. // Set by M206, M428, or menu item. Saved to EEPROM.
  367. float home_offset[XYZ] = { 0 };
  368. // Software Endstops are based on the configured limits.
  369. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  370. bool soft_endstops_enabled = true;
  371. #endif
  372. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  373. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  374. #if FAN_COUNT > 0
  375. int fanSpeeds[FAN_COUNT] = { 0 };
  376. #endif
  377. // The active extruder (tool). Set with T<extruder> command.
  378. uint8_t active_extruder = 0;
  379. // Relative Mode. Enable with G91, disable with G90.
  380. static bool relative_mode = false;
  381. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  382. volatile bool wait_for_heatup = true;
  383. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  384. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  385. volatile bool wait_for_user = false;
  386. #endif
  387. const char errormagic[] PROGMEM = "Error:";
  388. const char echomagic[] PROGMEM = "echo:";
  389. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  390. // Number of characters read in the current line of serial input
  391. static int serial_count = 0;
  392. // Inactivity shutdown
  393. millis_t previous_cmd_ms = 0;
  394. static millis_t max_inactive_time = 0;
  395. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  396. // Print Job Timer
  397. #if ENABLED(PRINTCOUNTER)
  398. PrintCounter print_job_timer = PrintCounter();
  399. #else
  400. Stopwatch print_job_timer = Stopwatch();
  401. #endif
  402. // Buzzer - I2C on the LCD or a BEEPER_PIN
  403. #if ENABLED(LCD_USE_I2C_BUZZER)
  404. #define BUZZ(d,f) lcd_buzz(d, f)
  405. #elif PIN_EXISTS(BEEPER)
  406. Buzzer buzzer;
  407. #define BUZZ(d,f) buzzer.tone(d, f)
  408. #else
  409. #define BUZZ(d,f) NOOP
  410. #endif
  411. static uint8_t target_extruder;
  412. #if HAS_BED_PROBE
  413. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  414. #endif
  415. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  416. #if HAS_ABL
  417. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  418. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  419. #elif defined(XY_PROBE_SPEED)
  420. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  421. #else
  422. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  423. #endif
  424. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  425. #if ENABLED(DELTA)
  426. #define ADJUST_DELTA(V) \
  427. if (planner.abl_enabled) { \
  428. const float zadj = bilinear_z_offset(V); \
  429. delta[A_AXIS] += zadj; \
  430. delta[B_AXIS] += zadj; \
  431. delta[C_AXIS] += zadj; \
  432. }
  433. #else
  434. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  435. #endif
  436. #elif IS_KINEMATIC
  437. #define ADJUST_DELTA(V) NOOP
  438. #endif
  439. #if ENABLED(Z_DUAL_ENDSTOPS)
  440. float z_endstop_adj = 0;
  441. #endif
  442. // Extruder offsets
  443. #if HOTENDS > 1
  444. float hotend_offset[XYZ][HOTENDS];
  445. #endif
  446. #if HAS_Z_SERVO_ENDSTOP
  447. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  448. #endif
  449. #if ENABLED(BARICUDA)
  450. int baricuda_valve_pressure = 0;
  451. int baricuda_e_to_p_pressure = 0;
  452. #endif
  453. #if ENABLED(FWRETRACT)
  454. bool autoretract_enabled = false;
  455. bool retracted[EXTRUDERS] = { false };
  456. bool retracted_swap[EXTRUDERS] = { false };
  457. float retract_length = RETRACT_LENGTH;
  458. float retract_length_swap = RETRACT_LENGTH_SWAP;
  459. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  460. float retract_zlift = RETRACT_ZLIFT;
  461. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  462. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  463. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  464. #endif // FWRETRACT
  465. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  466. bool powersupply =
  467. #if ENABLED(PS_DEFAULT_OFF)
  468. false
  469. #else
  470. true
  471. #endif
  472. ;
  473. #endif
  474. #if ENABLED(DELTA)
  475. #define SIN_60 0.8660254037844386
  476. #define COS_60 0.5
  477. float delta[ABC],
  478. endstop_adj[ABC] = { 0 };
  479. // these are the default values, can be overriden with M665
  480. float delta_radius = DELTA_RADIUS,
  481. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  482. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  483. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  484. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  485. delta_tower3_x = 0, // back middle tower
  486. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  487. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  488. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  489. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  490. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  491. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  492. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  493. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  494. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  495. delta_clip_start_height = Z_MAX_POS;
  496. float delta_safe_distance_from_top();
  497. #else
  498. static bool home_all_axis = true;
  499. #endif
  500. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  501. int bilinear_grid_spacing[2] = { 0 }, bilinear_start[2] = { 0 };
  502. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  503. #endif
  504. #if IS_SCARA
  505. // Float constants for SCARA calculations
  506. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  507. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  508. L2_2 = sq(float(L2));
  509. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  510. delta[ABC];
  511. #endif
  512. float cartes[XYZ] = { 0 };
  513. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  514. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  515. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  516. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  517. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  518. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  519. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  520. #endif
  521. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  522. static bool filament_ran_out = false;
  523. #endif
  524. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  525. FilamentChangeMenuResponse filament_change_menu_response;
  526. #endif
  527. #if ENABLED(MIXING_EXTRUDER)
  528. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  529. #if MIXING_VIRTUAL_TOOLS > 1
  530. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  531. #endif
  532. #endif
  533. static bool send_ok[BUFSIZE];
  534. #if HAS_SERVOS
  535. Servo servo[NUM_SERVOS];
  536. #define MOVE_SERVO(I, P) servo[I].move(P)
  537. #if HAS_Z_SERVO_ENDSTOP
  538. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  539. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  540. #endif
  541. #endif
  542. #ifdef CHDK
  543. millis_t chdkHigh = 0;
  544. boolean chdkActive = false;
  545. #endif
  546. #if ENABLED(PID_EXTRUSION_SCALING)
  547. int lpq_len = 20;
  548. #endif
  549. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  550. static MarlinBusyState busy_state = NOT_BUSY;
  551. static millis_t next_busy_signal_ms = 0;
  552. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  553. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  554. #else
  555. #define host_keepalive() ;
  556. #define KEEPALIVE_STATE(n) ;
  557. #endif // HOST_KEEPALIVE_FEATURE
  558. #define DEFINE_PGM_READ_ANY(type, reader) \
  559. static inline type pgm_read_any(const type *p) \
  560. { return pgm_read_##reader##_near(p); }
  561. DEFINE_PGM_READ_ANY(float, float)
  562. DEFINE_PGM_READ_ANY(signed char, byte)
  563. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  564. static const PROGMEM type array##_P[XYZ] = \
  565. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  566. static inline type array(int axis) \
  567. { return pgm_read_any(&array##_P[axis]); }
  568. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  569. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  570. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  571. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  572. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  573. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  574. /**
  575. * ***************************************************************************
  576. * ******************************** FUNCTIONS ********************************
  577. * ***************************************************************************
  578. */
  579. void stop();
  580. void get_available_commands();
  581. void process_next_command();
  582. void prepare_move_to_destination();
  583. void get_cartesian_from_steppers();
  584. void set_current_from_steppers_for_axis(const AxisEnum axis);
  585. #if ENABLED(ARC_SUPPORT)
  586. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  587. #endif
  588. #if ENABLED(BEZIER_CURVE_SUPPORT)
  589. void plan_cubic_move(const float offset[4]);
  590. #endif
  591. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  592. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  593. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  594. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  595. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  596. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  597. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  598. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  599. static void report_current_position();
  600. #if ENABLED(DEBUG_LEVELING_FEATURE)
  601. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  602. serialprintPGM(prefix);
  603. SERIAL_ECHOPAIR("(", x);
  604. SERIAL_ECHOPAIR(", ", y);
  605. SERIAL_ECHOPAIR(", ", z);
  606. SERIAL_ECHOPGM(")");
  607. if (suffix) serialprintPGM(suffix);
  608. else SERIAL_EOL;
  609. }
  610. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  611. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  612. }
  613. #if HAS_ABL
  614. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  615. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  616. }
  617. #endif
  618. #define DEBUG_POS(SUFFIX,VAR) do { \
  619. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  620. #endif
  621. /**
  622. * sync_plan_position
  623. *
  624. * Set the planner/stepper positions directly from current_position with
  625. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  626. */
  627. inline void sync_plan_position() {
  628. #if ENABLED(DEBUG_LEVELING_FEATURE)
  629. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  630. #endif
  631. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  632. }
  633. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  634. #if IS_KINEMATIC
  635. inline void sync_plan_position_kinematic() {
  636. #if ENABLED(DEBUG_LEVELING_FEATURE)
  637. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  638. #endif
  639. planner.set_position_mm_kinematic(current_position);
  640. }
  641. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  642. #else
  643. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  644. #endif
  645. #if ENABLED(SDSUPPORT)
  646. #include "SdFatUtil.h"
  647. int freeMemory() { return SdFatUtil::FreeRam(); }
  648. #else
  649. extern "C" {
  650. extern unsigned int __bss_end;
  651. extern unsigned int __heap_start;
  652. extern void* __brkval;
  653. int freeMemory() {
  654. int free_memory;
  655. if ((int)__brkval == 0)
  656. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  657. else
  658. free_memory = ((int)&free_memory) - ((int)__brkval);
  659. return free_memory;
  660. }
  661. }
  662. #endif //!SDSUPPORT
  663. #if ENABLED(DIGIPOT_I2C)
  664. extern void digipot_i2c_set_current(int channel, float current);
  665. extern void digipot_i2c_init();
  666. #endif
  667. /**
  668. * Inject the next "immediate" command, when possible.
  669. * Return true if any immediate commands remain to inject.
  670. */
  671. static bool drain_injected_commands_P() {
  672. if (injected_commands_P != NULL) {
  673. size_t i = 0;
  674. char c, cmd[30];
  675. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  676. cmd[sizeof(cmd) - 1] = '\0';
  677. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  678. cmd[i] = '\0';
  679. if (enqueue_and_echo_command(cmd)) { // success?
  680. if (c) // newline char?
  681. injected_commands_P += i + 1; // advance to the next command
  682. else
  683. injected_commands_P = NULL; // nul char? no more commands
  684. }
  685. }
  686. return (injected_commands_P != NULL); // return whether any more remain
  687. }
  688. /**
  689. * Record one or many commands to run from program memory.
  690. * Aborts the current queue, if any.
  691. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  692. */
  693. void enqueue_and_echo_commands_P(const char* pgcode) {
  694. injected_commands_P = pgcode;
  695. drain_injected_commands_P(); // first command executed asap (when possible)
  696. }
  697. void clear_command_queue() {
  698. cmd_queue_index_r = cmd_queue_index_w;
  699. commands_in_queue = 0;
  700. }
  701. /**
  702. * Once a new command is in the ring buffer, call this to commit it
  703. */
  704. inline void _commit_command(bool say_ok) {
  705. send_ok[cmd_queue_index_w] = say_ok;
  706. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  707. commands_in_queue++;
  708. }
  709. /**
  710. * Copy a command directly into the main command buffer, from RAM.
  711. * Returns true if successfully adds the command
  712. */
  713. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  714. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  715. strcpy(command_queue[cmd_queue_index_w], cmd);
  716. _commit_command(say_ok);
  717. return true;
  718. }
  719. void enqueue_and_echo_command_now(const char* cmd) {
  720. while (!enqueue_and_echo_command(cmd)) idle();
  721. }
  722. /**
  723. * Enqueue with Serial Echo
  724. */
  725. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  726. if (_enqueuecommand(cmd, say_ok)) {
  727. SERIAL_ECHO_START;
  728. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  729. SERIAL_CHAR('"');
  730. SERIAL_EOL;
  731. return true;
  732. }
  733. return false;
  734. }
  735. void setup_killpin() {
  736. #if HAS_KILL
  737. SET_INPUT(KILL_PIN);
  738. WRITE(KILL_PIN, HIGH);
  739. #endif
  740. }
  741. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  742. void setup_filrunoutpin() {
  743. SET_INPUT(FIL_RUNOUT_PIN);
  744. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  745. WRITE(FIL_RUNOUT_PIN, HIGH);
  746. #endif
  747. }
  748. #endif
  749. // Set home pin
  750. void setup_homepin(void) {
  751. #if HAS_HOME
  752. SET_INPUT(HOME_PIN);
  753. WRITE(HOME_PIN, HIGH);
  754. #endif
  755. }
  756. #if HAS_CASE_LIGHT
  757. void setup_case_light() {
  758. digitalWrite(CASE_LIGHT_PIN,
  759. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  760. 255
  761. #else
  762. 0
  763. #endif
  764. );
  765. analogWrite(CASE_LIGHT_PIN,
  766. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  767. 255
  768. #else
  769. 0
  770. #endif
  771. );
  772. }
  773. #endif
  774. void setup_powerhold() {
  775. #if HAS_SUICIDE
  776. OUT_WRITE(SUICIDE_PIN, HIGH);
  777. #endif
  778. #if HAS_POWER_SWITCH
  779. #if ENABLED(PS_DEFAULT_OFF)
  780. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  781. #else
  782. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  783. #endif
  784. #endif
  785. }
  786. void suicide() {
  787. #if HAS_SUICIDE
  788. OUT_WRITE(SUICIDE_PIN, LOW);
  789. #endif
  790. }
  791. void servo_init() {
  792. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  793. servo[0].attach(SERVO0_PIN);
  794. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  795. #endif
  796. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  797. servo[1].attach(SERVO1_PIN);
  798. servo[1].detach();
  799. #endif
  800. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  801. servo[2].attach(SERVO2_PIN);
  802. servo[2].detach();
  803. #endif
  804. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  805. servo[3].attach(SERVO3_PIN);
  806. servo[3].detach();
  807. #endif
  808. #if HAS_Z_SERVO_ENDSTOP
  809. /**
  810. * Set position of Z Servo Endstop
  811. *
  812. * The servo might be deployed and positioned too low to stow
  813. * when starting up the machine or rebooting the board.
  814. * There's no way to know where the nozzle is positioned until
  815. * homing has been done - no homing with z-probe without init!
  816. *
  817. */
  818. STOW_Z_SERVO();
  819. #endif
  820. }
  821. /**
  822. * Stepper Reset (RigidBoard, et.al.)
  823. */
  824. #if HAS_STEPPER_RESET
  825. void disableStepperDrivers() {
  826. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  827. }
  828. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  829. #endif
  830. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  831. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  832. i2c.receive(bytes);
  833. }
  834. void i2c_on_request() { // just send dummy data for now
  835. i2c.reply("Hello World!\n");
  836. }
  837. #endif
  838. void gcode_line_error(const char* err, bool doFlush = true) {
  839. SERIAL_ERROR_START;
  840. serialprintPGM(err);
  841. SERIAL_ERRORLN(gcode_LastN);
  842. //Serial.println(gcode_N);
  843. if (doFlush) FlushSerialRequestResend();
  844. serial_count = 0;
  845. }
  846. inline void get_serial_commands() {
  847. static char serial_line_buffer[MAX_CMD_SIZE];
  848. static boolean serial_comment_mode = false;
  849. // If the command buffer is empty for too long,
  850. // send "wait" to indicate Marlin is still waiting.
  851. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  852. static millis_t last_command_time = 0;
  853. millis_t ms = millis();
  854. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  855. SERIAL_ECHOLNPGM(MSG_WAIT);
  856. last_command_time = ms;
  857. }
  858. #endif
  859. /**
  860. * Loop while serial characters are incoming and the queue is not full
  861. */
  862. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  863. char serial_char = MYSERIAL.read();
  864. /**
  865. * If the character ends the line
  866. */
  867. if (serial_char == '\n' || serial_char == '\r') {
  868. serial_comment_mode = false; // end of line == end of comment
  869. if (!serial_count) continue; // skip empty lines
  870. serial_line_buffer[serial_count] = 0; // terminate string
  871. serial_count = 0; //reset buffer
  872. char* command = serial_line_buffer;
  873. while (*command == ' ') command++; // skip any leading spaces
  874. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  875. char* apos = strchr(command, '*');
  876. if (npos) {
  877. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  878. if (M110) {
  879. char* n2pos = strchr(command + 4, 'N');
  880. if (n2pos) npos = n2pos;
  881. }
  882. gcode_N = strtol(npos + 1, NULL, 10);
  883. if (gcode_N != gcode_LastN + 1 && !M110) {
  884. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  885. return;
  886. }
  887. if (apos) {
  888. byte checksum = 0, count = 0;
  889. while (command[count] != '*') checksum ^= command[count++];
  890. if (strtol(apos + 1, NULL, 10) != checksum) {
  891. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  892. return;
  893. }
  894. // if no errors, continue parsing
  895. }
  896. else {
  897. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  898. return;
  899. }
  900. gcode_LastN = gcode_N;
  901. // if no errors, continue parsing
  902. }
  903. else if (apos) { // No '*' without 'N'
  904. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  905. return;
  906. }
  907. // Movement commands alert when stopped
  908. if (IsStopped()) {
  909. char* gpos = strchr(command, 'G');
  910. if (gpos) {
  911. int codenum = strtol(gpos + 1, NULL, 10);
  912. switch (codenum) {
  913. case 0:
  914. case 1:
  915. case 2:
  916. case 3:
  917. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  918. LCD_MESSAGEPGM(MSG_STOPPED);
  919. break;
  920. }
  921. }
  922. }
  923. #if DISABLED(EMERGENCY_PARSER)
  924. // If command was e-stop process now
  925. if (strcmp(command, "M108") == 0) {
  926. wait_for_heatup = false;
  927. #if ENABLED(ULTIPANEL)
  928. wait_for_user = false;
  929. #endif
  930. }
  931. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  932. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  933. #endif
  934. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  935. last_command_time = ms;
  936. #endif
  937. // Add the command to the queue
  938. _enqueuecommand(serial_line_buffer, true);
  939. }
  940. else if (serial_count >= MAX_CMD_SIZE - 1) {
  941. // Keep fetching, but ignore normal characters beyond the max length
  942. // The command will be injected when EOL is reached
  943. }
  944. else if (serial_char == '\\') { // Handle escapes
  945. if (MYSERIAL.available() > 0) {
  946. // if we have one more character, copy it over
  947. serial_char = MYSERIAL.read();
  948. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  949. }
  950. // otherwise do nothing
  951. }
  952. else { // it's not a newline, carriage return or escape char
  953. if (serial_char == ';') serial_comment_mode = true;
  954. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  955. }
  956. } // queue has space, serial has data
  957. }
  958. #if ENABLED(SDSUPPORT)
  959. inline void get_sdcard_commands() {
  960. static bool stop_buffering = false,
  961. sd_comment_mode = false;
  962. if (!card.sdprinting) return;
  963. /**
  964. * '#' stops reading from SD to the buffer prematurely, so procedural
  965. * macro calls are possible. If it occurs, stop_buffering is triggered
  966. * and the buffer is run dry; this character _can_ occur in serial com
  967. * due to checksums, however, no checksums are used in SD printing.
  968. */
  969. if (commands_in_queue == 0) stop_buffering = false;
  970. uint16_t sd_count = 0;
  971. bool card_eof = card.eof();
  972. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  973. int16_t n = card.get();
  974. char sd_char = (char)n;
  975. card_eof = card.eof();
  976. if (card_eof || n == -1
  977. || sd_char == '\n' || sd_char == '\r'
  978. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  979. ) {
  980. if (card_eof) {
  981. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  982. card.printingHasFinished();
  983. card.checkautostart(true);
  984. }
  985. else if (n == -1) {
  986. SERIAL_ERROR_START;
  987. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  988. }
  989. if (sd_char == '#') stop_buffering = true;
  990. sd_comment_mode = false; //for new command
  991. if (!sd_count) continue; //skip empty lines
  992. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  993. sd_count = 0; //clear buffer
  994. _commit_command(false);
  995. }
  996. else if (sd_count >= MAX_CMD_SIZE - 1) {
  997. /**
  998. * Keep fetching, but ignore normal characters beyond the max length
  999. * The command will be injected when EOL is reached
  1000. */
  1001. }
  1002. else {
  1003. if (sd_char == ';') sd_comment_mode = true;
  1004. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1005. }
  1006. }
  1007. }
  1008. #endif // SDSUPPORT
  1009. /**
  1010. * Add to the circular command queue the next command from:
  1011. * - The command-injection queue (injected_commands_P)
  1012. * - The active serial input (usually USB)
  1013. * - The SD card file being actively printed
  1014. */
  1015. void get_available_commands() {
  1016. // if any immediate commands remain, don't get other commands yet
  1017. if (drain_injected_commands_P()) return;
  1018. get_serial_commands();
  1019. #if ENABLED(SDSUPPORT)
  1020. get_sdcard_commands();
  1021. #endif
  1022. }
  1023. inline bool code_has_value() {
  1024. int i = 1;
  1025. char c = seen_pointer[i];
  1026. while (c == ' ') c = seen_pointer[++i];
  1027. if (c == '-' || c == '+') c = seen_pointer[++i];
  1028. if (c == '.') c = seen_pointer[++i];
  1029. return NUMERIC(c);
  1030. }
  1031. inline float code_value_float() {
  1032. float ret;
  1033. char* e = strchr(seen_pointer, 'E');
  1034. if (e) {
  1035. *e = 0;
  1036. ret = strtod(seen_pointer + 1, NULL);
  1037. *e = 'E';
  1038. }
  1039. else
  1040. ret = strtod(seen_pointer + 1, NULL);
  1041. return ret;
  1042. }
  1043. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1044. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1045. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1046. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1047. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1048. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1049. #if ENABLED(INCH_MODE_SUPPORT)
  1050. inline void set_input_linear_units(LinearUnit units) {
  1051. switch (units) {
  1052. case LINEARUNIT_INCH:
  1053. linear_unit_factor = 25.4;
  1054. break;
  1055. case LINEARUNIT_MM:
  1056. default:
  1057. linear_unit_factor = 1.0;
  1058. break;
  1059. }
  1060. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1061. }
  1062. inline float axis_unit_factor(int axis) {
  1063. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1064. }
  1065. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1066. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1067. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1068. #else
  1069. inline float code_value_linear_units() { return code_value_float(); }
  1070. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1071. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1072. #endif
  1073. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1074. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1075. float code_value_temp_abs() {
  1076. switch (input_temp_units) {
  1077. case TEMPUNIT_C:
  1078. return code_value_float();
  1079. case TEMPUNIT_F:
  1080. return (code_value_float() - 32) * 0.5555555556;
  1081. case TEMPUNIT_K:
  1082. return code_value_float() - 272.15;
  1083. default:
  1084. return code_value_float();
  1085. }
  1086. }
  1087. float code_value_temp_diff() {
  1088. switch (input_temp_units) {
  1089. case TEMPUNIT_C:
  1090. case TEMPUNIT_K:
  1091. return code_value_float();
  1092. case TEMPUNIT_F:
  1093. return code_value_float() * 0.5555555556;
  1094. default:
  1095. return code_value_float();
  1096. }
  1097. }
  1098. #else
  1099. float code_value_temp_abs() { return code_value_float(); }
  1100. float code_value_temp_diff() { return code_value_float(); }
  1101. #endif
  1102. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1103. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1104. bool code_seen(char code) {
  1105. seen_pointer = strchr(current_command_args, code);
  1106. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1107. }
  1108. /**
  1109. * Set target_extruder from the T parameter or the active_extruder
  1110. *
  1111. * Returns TRUE if the target is invalid
  1112. */
  1113. bool get_target_extruder_from_command(int code) {
  1114. if (code_seen('T')) {
  1115. if (code_value_byte() >= EXTRUDERS) {
  1116. SERIAL_ECHO_START;
  1117. SERIAL_CHAR('M');
  1118. SERIAL_ECHO(code);
  1119. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1120. return true;
  1121. }
  1122. target_extruder = code_value_byte();
  1123. }
  1124. else
  1125. target_extruder = active_extruder;
  1126. return false;
  1127. }
  1128. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1129. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1130. #endif
  1131. #if ENABLED(DUAL_X_CARRIAGE)
  1132. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1133. static float x_home_pos(int extruder) {
  1134. if (extruder == 0)
  1135. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1136. else
  1137. /**
  1138. * In dual carriage mode the extruder offset provides an override of the
  1139. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1140. * This allow soft recalibration of the second extruder offset position
  1141. * without firmware reflash (through the M218 command).
  1142. */
  1143. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1144. }
  1145. static int x_home_dir(int extruder) {
  1146. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1147. }
  1148. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1149. static bool active_extruder_parked = false; // used in mode 1 & 2
  1150. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1151. static millis_t delayed_move_time = 0; // used in mode 1
  1152. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1153. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1154. #endif // DUAL_X_CARRIAGE
  1155. /**
  1156. * Software endstops can be used to monitor the open end of
  1157. * an axis that has a hardware endstop on the other end. Or
  1158. * they can prevent axes from moving past endstops and grinding.
  1159. *
  1160. * To keep doing their job as the coordinate system changes,
  1161. * the software endstop positions must be refreshed to remain
  1162. * at the same positions relative to the machine.
  1163. */
  1164. void update_software_endstops(AxisEnum axis) {
  1165. float offs = LOGICAL_POSITION(0, axis);
  1166. #if ENABLED(DUAL_X_CARRIAGE)
  1167. if (axis == X_AXIS) {
  1168. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1169. if (active_extruder != 0) {
  1170. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1171. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1172. return;
  1173. }
  1174. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1175. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1176. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1177. return;
  1178. }
  1179. }
  1180. else
  1181. #endif
  1182. {
  1183. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1184. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1185. }
  1186. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1187. if (DEBUGGING(LEVELING)) {
  1188. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1189. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1190. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1191. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1192. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1193. }
  1194. #endif
  1195. #if ENABLED(DELTA)
  1196. if (axis == Z_AXIS)
  1197. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1198. #endif
  1199. }
  1200. /**
  1201. * Change the home offset for an axis, update the current
  1202. * position and the software endstops to retain the same
  1203. * relative distance to the new home.
  1204. *
  1205. * Since this changes the current_position, code should
  1206. * call sync_plan_position soon after this.
  1207. */
  1208. static void set_home_offset(AxisEnum axis, float v) {
  1209. current_position[axis] += v - home_offset[axis];
  1210. home_offset[axis] = v;
  1211. update_software_endstops(axis);
  1212. }
  1213. /**
  1214. * Set an axis' current position to its home position (after homing).
  1215. *
  1216. * For Core and Cartesian robots this applies one-to-one when an
  1217. * individual axis has been homed.
  1218. *
  1219. * DELTA should wait until all homing is done before setting the XYZ
  1220. * current_position to home, because homing is a single operation.
  1221. * In the case where the axis positions are already known and previously
  1222. * homed, DELTA could home to X or Y individually by moving either one
  1223. * to the center. However, homing Z always homes XY and Z.
  1224. *
  1225. * SCARA should wait until all XY homing is done before setting the XY
  1226. * current_position to home, because neither X nor Y is at home until
  1227. * both are at home. Z can however be homed individually.
  1228. *
  1229. */
  1230. static void set_axis_is_at_home(AxisEnum axis) {
  1231. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1232. if (DEBUGGING(LEVELING)) {
  1233. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1234. SERIAL_CHAR(')');
  1235. SERIAL_EOL;
  1236. }
  1237. #endif
  1238. axis_known_position[axis] = axis_homed[axis] = true;
  1239. position_shift[axis] = 0;
  1240. update_software_endstops(axis);
  1241. #if ENABLED(DUAL_X_CARRIAGE)
  1242. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1243. if (active_extruder != 0)
  1244. current_position[X_AXIS] = x_home_pos(active_extruder);
  1245. else
  1246. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1247. update_software_endstops(X_AXIS);
  1248. return;
  1249. }
  1250. #endif
  1251. #if ENABLED(MORGAN_SCARA)
  1252. /**
  1253. * Morgan SCARA homes XY at the same time
  1254. */
  1255. if (axis == X_AXIS || axis == Y_AXIS) {
  1256. float homeposition[XYZ];
  1257. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1258. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1259. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1260. /**
  1261. * Get Home position SCARA arm angles using inverse kinematics,
  1262. * and calculate homing offset using forward kinematics
  1263. */
  1264. inverse_kinematics(homeposition);
  1265. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1266. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1267. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1268. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1269. /**
  1270. * SCARA home positions are based on configuration since the actual
  1271. * limits are determined by the inverse kinematic transform.
  1272. */
  1273. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1274. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1275. }
  1276. else
  1277. #endif
  1278. {
  1279. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1280. }
  1281. /**
  1282. * Z Probe Z Homing? Account for the probe's Z offset.
  1283. */
  1284. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1285. if (axis == Z_AXIS) {
  1286. #if HOMING_Z_WITH_PROBE
  1287. current_position[Z_AXIS] -= zprobe_zoffset;
  1288. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1289. if (DEBUGGING(LEVELING)) {
  1290. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1291. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1292. }
  1293. #endif
  1294. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1295. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1296. #endif
  1297. }
  1298. #endif
  1299. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1300. if (DEBUGGING(LEVELING)) {
  1301. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1302. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1303. DEBUG_POS("", current_position);
  1304. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1305. SERIAL_CHAR(')');
  1306. SERIAL_EOL;
  1307. }
  1308. #endif
  1309. }
  1310. /**
  1311. * Some planner shorthand inline functions
  1312. */
  1313. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1314. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1315. int hbd = homing_bump_divisor[axis];
  1316. if (hbd < 1) {
  1317. hbd = 10;
  1318. SERIAL_ECHO_START;
  1319. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1320. }
  1321. return homing_feedrate_mm_s[axis] / hbd;
  1322. }
  1323. //
  1324. // line_to_current_position
  1325. // Move the planner to the current position from wherever it last moved
  1326. // (or from wherever it has been told it is located).
  1327. //
  1328. inline void line_to_current_position() {
  1329. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1330. }
  1331. //
  1332. // line_to_destination
  1333. // Move the planner, not necessarily synced with current_position
  1334. //
  1335. inline void line_to_destination(float fr_mm_s) {
  1336. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1337. }
  1338. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1339. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1340. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1341. #if IS_KINEMATIC
  1342. /**
  1343. * Calculate delta, start a line, and set current_position to destination
  1344. */
  1345. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1346. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1347. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1348. #endif
  1349. if ( current_position[X_AXIS] == destination[X_AXIS]
  1350. && current_position[Y_AXIS] == destination[Y_AXIS]
  1351. && current_position[Z_AXIS] == destination[Z_AXIS]
  1352. && current_position[E_AXIS] == destination[E_AXIS]
  1353. ) return;
  1354. refresh_cmd_timeout();
  1355. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1356. set_current_to_destination();
  1357. }
  1358. #endif // IS_KINEMATIC
  1359. /**
  1360. * Plan a move to (X, Y, Z) and set the current_position
  1361. * The final current_position may not be the one that was requested
  1362. */
  1363. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1364. float old_feedrate_mm_s = feedrate_mm_s;
  1365. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1366. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1367. #endif
  1368. #if ENABLED(DELTA)
  1369. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1370. set_destination_to_current(); // sync destination at the start
  1371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1372. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1373. #endif
  1374. // when in the danger zone
  1375. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1376. if (z > delta_clip_start_height) { // staying in the danger zone
  1377. destination[X_AXIS] = x; // move directly (uninterpolated)
  1378. destination[Y_AXIS] = y;
  1379. destination[Z_AXIS] = z;
  1380. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1382. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1383. #endif
  1384. return;
  1385. }
  1386. else {
  1387. destination[Z_AXIS] = delta_clip_start_height;
  1388. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1389. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1390. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1391. #endif
  1392. }
  1393. }
  1394. if (z > current_position[Z_AXIS]) { // raising?
  1395. destination[Z_AXIS] = z;
  1396. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1397. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1398. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1399. #endif
  1400. }
  1401. destination[X_AXIS] = x;
  1402. destination[Y_AXIS] = y;
  1403. prepare_move_to_destination(); // set_current_to_destination
  1404. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1405. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1406. #endif
  1407. if (z < current_position[Z_AXIS]) { // lowering?
  1408. destination[Z_AXIS] = z;
  1409. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1410. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1411. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1412. #endif
  1413. }
  1414. #elif IS_SCARA
  1415. set_destination_to_current();
  1416. // If Z needs to raise, do it before moving XY
  1417. if (destination[Z_AXIS] < z) {
  1418. destination[Z_AXIS] = z;
  1419. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1420. }
  1421. destination[X_AXIS] = x;
  1422. destination[Y_AXIS] = y;
  1423. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1424. // If Z needs to lower, do it after moving XY
  1425. if (destination[Z_AXIS] > z) {
  1426. destination[Z_AXIS] = z;
  1427. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1428. }
  1429. #else
  1430. // If Z needs to raise, do it before moving XY
  1431. if (current_position[Z_AXIS] < z) {
  1432. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1433. current_position[Z_AXIS] = z;
  1434. line_to_current_position();
  1435. }
  1436. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1437. current_position[X_AXIS] = x;
  1438. current_position[Y_AXIS] = y;
  1439. line_to_current_position();
  1440. // If Z needs to lower, do it after moving XY
  1441. if (current_position[Z_AXIS] > z) {
  1442. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1443. current_position[Z_AXIS] = z;
  1444. line_to_current_position();
  1445. }
  1446. #endif
  1447. stepper.synchronize();
  1448. feedrate_mm_s = old_feedrate_mm_s;
  1449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1450. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1451. #endif
  1452. }
  1453. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1454. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1455. }
  1456. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1457. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1458. }
  1459. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1460. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1461. }
  1462. //
  1463. // Prepare to do endstop or probe moves
  1464. // with custom feedrates.
  1465. //
  1466. // - Save current feedrates
  1467. // - Reset the rate multiplier
  1468. // - Reset the command timeout
  1469. // - Enable the endstops (for endstop moves)
  1470. //
  1471. static void setup_for_endstop_or_probe_move() {
  1472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1473. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1474. #endif
  1475. saved_feedrate_mm_s = feedrate_mm_s;
  1476. saved_feedrate_percentage = feedrate_percentage;
  1477. feedrate_percentage = 100;
  1478. refresh_cmd_timeout();
  1479. }
  1480. static void clean_up_after_endstop_or_probe_move() {
  1481. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1482. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1483. #endif
  1484. feedrate_mm_s = saved_feedrate_mm_s;
  1485. feedrate_percentage = saved_feedrate_percentage;
  1486. refresh_cmd_timeout();
  1487. }
  1488. #if HAS_BED_PROBE
  1489. /**
  1490. * Raise Z to a minimum height to make room for a probe to move
  1491. */
  1492. inline void do_probe_raise(float z_raise) {
  1493. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1494. if (DEBUGGING(LEVELING)) {
  1495. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1496. SERIAL_CHAR(')');
  1497. SERIAL_EOL;
  1498. }
  1499. #endif
  1500. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1501. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1502. if (z_dest > current_position[Z_AXIS])
  1503. do_blocking_move_to_z(z_dest);
  1504. }
  1505. #endif //HAS_BED_PROBE
  1506. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1507. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1508. const bool xx = x && !axis_homed[X_AXIS],
  1509. yy = y && !axis_homed[Y_AXIS],
  1510. zz = z && !axis_homed[Z_AXIS];
  1511. if (xx || yy || zz) {
  1512. SERIAL_ECHO_START;
  1513. SERIAL_ECHOPGM(MSG_HOME " ");
  1514. if (xx) SERIAL_ECHOPGM(MSG_X);
  1515. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1516. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1517. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1518. #if ENABLED(ULTRA_LCD)
  1519. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1520. strcat_P(message, PSTR(MSG_HOME " "));
  1521. if (xx) strcat_P(message, PSTR(MSG_X));
  1522. if (yy) strcat_P(message, PSTR(MSG_Y));
  1523. if (zz) strcat_P(message, PSTR(MSG_Z));
  1524. strcat_P(message, PSTR(" " MSG_FIRST));
  1525. lcd_setstatus(message);
  1526. #endif
  1527. return true;
  1528. }
  1529. return false;
  1530. }
  1531. #endif
  1532. #if ENABLED(Z_PROBE_SLED)
  1533. #ifndef SLED_DOCKING_OFFSET
  1534. #define SLED_DOCKING_OFFSET 0
  1535. #endif
  1536. /**
  1537. * Method to dock/undock a sled designed by Charles Bell.
  1538. *
  1539. * stow[in] If false, move to MAX_X and engage the solenoid
  1540. * If true, move to MAX_X and release the solenoid
  1541. */
  1542. static void dock_sled(bool stow) {
  1543. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1544. if (DEBUGGING(LEVELING)) {
  1545. SERIAL_ECHOPAIR("dock_sled(", stow);
  1546. SERIAL_CHAR(')');
  1547. SERIAL_EOL;
  1548. }
  1549. #endif
  1550. // Dock sled a bit closer to ensure proper capturing
  1551. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1552. #if PIN_EXISTS(SLED)
  1553. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1554. #endif
  1555. }
  1556. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1557. void run_deploy_moves_script() {
  1558. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1559. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1560. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1561. #endif
  1562. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1563. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1564. #endif
  1565. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1566. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1567. #endif
  1568. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1569. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1570. #endif
  1571. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1572. #endif
  1573. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1574. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1575. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1576. #endif
  1577. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1578. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1579. #endif
  1580. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1581. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1582. #endif
  1583. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1584. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1585. #endif
  1586. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1587. #endif
  1588. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1589. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1590. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1591. #endif
  1592. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1593. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1594. #endif
  1595. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1596. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1597. #endif
  1598. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1599. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1600. #endif
  1601. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1602. #endif
  1603. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1604. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1605. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1606. #endif
  1607. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1608. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1609. #endif
  1610. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1611. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1612. #endif
  1613. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1614. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1615. #endif
  1616. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1617. #endif
  1618. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1619. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1620. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1621. #endif
  1622. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1623. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1624. #endif
  1625. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1626. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1627. #endif
  1628. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1629. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1630. #endif
  1631. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1632. #endif
  1633. }
  1634. void run_stow_moves_script() {
  1635. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1636. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1637. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1638. #endif
  1639. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1640. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1641. #endif
  1642. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1643. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1644. #endif
  1645. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1646. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1647. #endif
  1648. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1649. #endif
  1650. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1651. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1652. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1653. #endif
  1654. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1655. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1656. #endif
  1657. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1658. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1659. #endif
  1660. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1661. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1662. #endif
  1663. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1664. #endif
  1665. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1666. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1667. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1668. #endif
  1669. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1670. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1671. #endif
  1672. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1673. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1674. #endif
  1675. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1676. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1677. #endif
  1678. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1679. #endif
  1680. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1681. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1682. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1683. #endif
  1684. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1685. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1686. #endif
  1687. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1688. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1689. #endif
  1690. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1691. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1692. #endif
  1693. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1694. #endif
  1695. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1696. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1697. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1698. #endif
  1699. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1700. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1701. #endif
  1702. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1703. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1704. #endif
  1705. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1706. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1707. #endif
  1708. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1709. #endif
  1710. }
  1711. #endif
  1712. #if HAS_BED_PROBE
  1713. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1714. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1715. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1716. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1717. #else
  1718. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1719. #endif
  1720. #endif
  1721. #define DEPLOY_PROBE() set_probe_deployed(true)
  1722. #define STOW_PROBE() set_probe_deployed(false)
  1723. #if ENABLED(BLTOUCH)
  1724. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1725. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1726. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1727. if (DEBUGGING(LEVELING)) {
  1728. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1729. SERIAL_CHAR(')');
  1730. SERIAL_EOL;
  1731. }
  1732. #endif
  1733. }
  1734. #endif
  1735. // returns false for ok and true for failure
  1736. static bool set_probe_deployed(bool deploy) {
  1737. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1738. if (DEBUGGING(LEVELING)) {
  1739. DEBUG_POS("set_probe_deployed", current_position);
  1740. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1741. }
  1742. #endif
  1743. if (endstops.z_probe_enabled == deploy) return false;
  1744. // Make room for probe
  1745. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1746. // When deploying make sure BLTOUCH is not already triggered
  1747. #if ENABLED(BLTOUCH)
  1748. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1749. #elif ENABLED(Z_PROBE_SLED)
  1750. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1751. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1752. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1753. #endif
  1754. float oldXpos = current_position[X_AXIS],
  1755. oldYpos = current_position[Y_AXIS];
  1756. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1757. // If endstop is already false, the Z probe is deployed
  1758. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1759. // Would a goto be less ugly?
  1760. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1761. // for a triggered when stowed manual probe.
  1762. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1763. // otherwise an Allen-Key probe can't be stowed.
  1764. #endif
  1765. #if ENABLED(Z_PROBE_SLED)
  1766. dock_sled(!deploy);
  1767. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1768. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1769. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1770. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1771. #endif
  1772. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1773. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1774. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1775. if (IsRunning()) {
  1776. SERIAL_ERROR_START;
  1777. SERIAL_ERRORLNPGM("Z-Probe failed");
  1778. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1779. }
  1780. stop();
  1781. return true;
  1782. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1783. #endif
  1784. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1785. endstops.enable_z_probe(deploy);
  1786. return false;
  1787. }
  1788. static void do_probe_move(float z, float fr_mm_m) {
  1789. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1790. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1791. #endif
  1792. // Deploy BLTouch at the start of any probe
  1793. #if ENABLED(BLTOUCH)
  1794. set_bltouch_deployed(true);
  1795. #endif
  1796. // Move down until probe triggered
  1797. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1798. // Retract BLTouch immediately after a probe
  1799. #if ENABLED(BLTOUCH)
  1800. set_bltouch_deployed(false);
  1801. #endif
  1802. // Clear endstop flags
  1803. endstops.hit_on_purpose();
  1804. // Get Z where the steppers were interrupted
  1805. set_current_from_steppers_for_axis(Z_AXIS);
  1806. // Tell the planner where we actually are
  1807. SYNC_PLAN_POSITION_KINEMATIC();
  1808. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1809. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1810. #endif
  1811. }
  1812. // Do a single Z probe and return with current_position[Z_AXIS]
  1813. // at the height where the probe triggered.
  1814. static float run_z_probe() {
  1815. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1816. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1817. #endif
  1818. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1819. refresh_cmd_timeout();
  1820. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1821. // Do a first probe at the fast speed
  1822. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1823. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1824. float first_probe_z = current_position[Z_AXIS];
  1825. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1826. #endif
  1827. // move up by the bump distance
  1828. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1829. #else
  1830. // If the nozzle is above the travel height then
  1831. // move down quickly before doing the slow probe
  1832. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1833. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1834. if (z < current_position[Z_AXIS])
  1835. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1836. #endif
  1837. // move down slowly to find bed
  1838. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1839. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1840. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1841. #endif
  1842. // Debug: compare probe heights
  1843. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1844. if (DEBUGGING(LEVELING)) {
  1845. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1846. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1847. }
  1848. #endif
  1849. return current_position[Z_AXIS];
  1850. }
  1851. //
  1852. // - Move to the given XY
  1853. // - Deploy the probe, if not already deployed
  1854. // - Probe the bed, get the Z position
  1855. // - Depending on the 'stow' flag
  1856. // - Stow the probe, or
  1857. // - Raise to the BETWEEN height
  1858. // - Return the probed Z position
  1859. //
  1860. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1861. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1862. if (DEBUGGING(LEVELING)) {
  1863. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1864. SERIAL_ECHOPAIR(", ", y);
  1865. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1866. SERIAL_ECHOLNPGM("stow)");
  1867. DEBUG_POS("", current_position);
  1868. }
  1869. #endif
  1870. float old_feedrate_mm_s = feedrate_mm_s;
  1871. // Ensure a minimum height before moving the probe
  1872. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1873. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1874. // Move the probe to the given XY
  1875. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1876. if (DEPLOY_PROBE()) return NAN;
  1877. float measured_z = run_z_probe();
  1878. if (!stow)
  1879. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1880. else
  1881. if (STOW_PROBE()) return NAN;
  1882. if (verbose_level > 2) {
  1883. SERIAL_PROTOCOLPGM("Bed X: ");
  1884. SERIAL_PROTOCOL_F(x, 3);
  1885. SERIAL_PROTOCOLPGM(" Y: ");
  1886. SERIAL_PROTOCOL_F(y, 3);
  1887. SERIAL_PROTOCOLPGM(" Z: ");
  1888. SERIAL_PROTOCOL_F(measured_z, 3);
  1889. SERIAL_EOL;
  1890. }
  1891. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1892. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1893. #endif
  1894. feedrate_mm_s = old_feedrate_mm_s;
  1895. return measured_z;
  1896. }
  1897. #endif // HAS_BED_PROBE
  1898. #if PLANNER_LEVELING
  1899. /**
  1900. * Turn bed leveling on or off, fixing the current
  1901. * position as-needed.
  1902. *
  1903. * Disable: Current position = physical position
  1904. * Enable: Current position = "unleveled" physical position
  1905. */
  1906. void set_bed_leveling_enabled(bool enable=true) {
  1907. #if ENABLED(MESH_BED_LEVELING)
  1908. if (!enable && mbl.active())
  1909. current_position[Z_AXIS] +=
  1910. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - (MESH_HOME_SEARCH_Z);
  1911. mbl.set_active(enable && mbl.has_mesh()); // was set_has_mesh(). Is this not correct?
  1912. #elif HAS_ABL
  1913. if (enable != planner.abl_enabled) {
  1914. planner.abl_enabled = enable;
  1915. if (!enable)
  1916. set_current_from_steppers_for_axis(
  1917. #if ABL_PLANAR
  1918. ALL_AXES
  1919. #else
  1920. Z_AXIS
  1921. #endif
  1922. );
  1923. else
  1924. planner.unapply_leveling(current_position);
  1925. }
  1926. #endif
  1927. }
  1928. /**
  1929. * Reset calibration results to zero.
  1930. */
  1931. void reset_bed_level() {
  1932. #if ENABLED(MESH_BED_LEVELING)
  1933. if (mbl.has_mesh()) {
  1934. set_bed_leveling_enabled(false);
  1935. mbl.reset();
  1936. mbl.set_has_mesh(false);
  1937. }
  1938. #else
  1939. planner.abl_enabled = false;
  1940. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1941. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1942. #endif
  1943. #if ABL_PLANAR
  1944. planner.bed_level_matrix.set_to_identity();
  1945. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1946. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++)
  1947. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++)
  1948. bed_level_grid[x][y] = 1000.0;
  1949. #endif
  1950. #endif
  1951. }
  1952. #endif // PLANNER_LEVELING
  1953. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1954. /**
  1955. * Extrapolate a single point from its neighbors
  1956. */
  1957. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1958. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1959. if (DEBUGGING(LEVELING)) {
  1960. SERIAL_ECHOPGM("Extrapolate [");
  1961. if (x < 10) SERIAL_CHAR(' ');
  1962. SERIAL_ECHO((int)x);
  1963. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  1964. SERIAL_CHAR(' ');
  1965. if (y < 10) SERIAL_CHAR(' ');
  1966. SERIAL_ECHO((int)y);
  1967. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  1968. SERIAL_CHAR(']');
  1969. }
  1970. #endif
  1971. if (bed_level_grid[x][y] < 999.0) {
  1972. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1973. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  1974. #endif
  1975. return; // Don't overwrite good values.
  1976. }
  1977. SERIAL_EOL;
  1978. // Get X neighbors, Y neighbors, and XY neighbors
  1979. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  1980. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  1981. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  1982. // Treat far unprobed points as zero, near as equal to far
  1983. if (a2 > 999.0) a2 = 0.0; if (a1 > 999.0) a1 = a2;
  1984. if (b2 > 999.0) b2 = 0.0; if (b1 > 999.0) b1 = b2;
  1985. if (c2 > 999.0) c2 = 0.0; if (c1 > 999.0) c1 = c2;
  1986. float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  1987. // Take the average intstead of the median
  1988. bed_level_grid[x][y] = (a + b + c) / 3.0;
  1989. // Median is robust (ignores outliers).
  1990. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1991. // : ((c < b) ? b : (a < c) ? a : c);
  1992. }
  1993. //Enable this if your SCARA uses 180° of total area
  1994. //#define EXTRAPOLATE_FROM_EDGE
  1995. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  1996. #if ABL_GRID_POINTS_X < ABL_GRID_POINTS_Y
  1997. #define HALF_IN_X
  1998. #elif ABL_GRID_POINTS_Y < ABL_GRID_POINTS_X
  1999. #define HALF_IN_Y
  2000. #endif
  2001. #endif
  2002. /**
  2003. * Fill in the unprobed points (corners of circular print surface)
  2004. * using linear extrapolation, away from the center.
  2005. */
  2006. static void extrapolate_unprobed_bed_level() {
  2007. #ifdef HALF_IN_X
  2008. const uint8_t ctrx2 = 0, xlen = ABL_GRID_POINTS_X - 1;
  2009. #else
  2010. const uint8_t ctrx1 = (ABL_GRID_POINTS_X - 1) / 2, // left-of-center
  2011. ctrx2 = ABL_GRID_POINTS_X / 2, // right-of-center
  2012. xlen = ctrx1;
  2013. #endif
  2014. #ifdef HALF_IN_Y
  2015. const uint8_t ctry2 = 0, ylen = ABL_GRID_POINTS_Y - 1;
  2016. #else
  2017. const uint8_t ctry1 = (ABL_GRID_POINTS_Y - 1) / 2, // top-of-center
  2018. ctry2 = ABL_GRID_POINTS_Y / 2, // bottom-of-center
  2019. ylen = ctry1;
  2020. #endif
  2021. for (uint8_t xo = 0; xo <= xlen; xo++)
  2022. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2023. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2024. #ifndef HALF_IN_X
  2025. uint8_t x1 = ctrx1 - xo;
  2026. #endif
  2027. #ifndef HALF_IN_Y
  2028. uint8_t y1 = ctry1 - yo;
  2029. #ifndef HALF_IN_X
  2030. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2031. #endif
  2032. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2033. #endif
  2034. #ifndef HALF_IN_X
  2035. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2036. #endif
  2037. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2038. }
  2039. }
  2040. /**
  2041. * Print calibration results for plotting or manual frame adjustment.
  2042. */
  2043. static void print_bed_level() {
  2044. SERIAL_ECHOPGM("Bilinear Leveling Grid:\n ");
  2045. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  2046. SERIAL_PROTOCOLPGM(" ");
  2047. if (x < 10) SERIAL_PROTOCOLCHAR(' ');
  2048. SERIAL_PROTOCOL((int)x);
  2049. }
  2050. SERIAL_EOL;
  2051. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  2052. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2053. SERIAL_PROTOCOL((int)y);
  2054. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  2055. SERIAL_PROTOCOLCHAR(' ');
  2056. float offset = bed_level_grid[x][y];
  2057. if (offset < 999.0) {
  2058. if (offset > 0) SERIAL_CHAR('+');
  2059. SERIAL_PROTOCOL_F(offset, 2);
  2060. }
  2061. else
  2062. SERIAL_PROTOCOLPGM(" ====");
  2063. }
  2064. SERIAL_EOL;
  2065. }
  2066. SERIAL_EOL;
  2067. }
  2068. #endif // AUTO_BED_LEVELING_BILINEAR
  2069. /**
  2070. * Home an individual linear axis
  2071. */
  2072. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2073. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2074. if (DEBUGGING(LEVELING)) {
  2075. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2076. SERIAL_ECHOPAIR(", ", distance);
  2077. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2078. SERIAL_CHAR(')');
  2079. SERIAL_EOL;
  2080. }
  2081. #endif
  2082. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2083. bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2084. if (deploy_bltouch) set_bltouch_deployed(true);
  2085. #endif
  2086. // Tell the planner we're at Z=0
  2087. current_position[axis] = 0;
  2088. #if IS_SCARA
  2089. SYNC_PLAN_POSITION_KINEMATIC();
  2090. current_position[axis] = distance;
  2091. inverse_kinematics(current_position);
  2092. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2093. #else
  2094. sync_plan_position();
  2095. current_position[axis] = distance;
  2096. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2097. #endif
  2098. stepper.synchronize();
  2099. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2100. if (deploy_bltouch) set_bltouch_deployed(false);
  2101. #endif
  2102. endstops.hit_on_purpose();
  2103. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2104. if (DEBUGGING(LEVELING)) {
  2105. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2106. SERIAL_CHAR(')');
  2107. SERIAL_EOL;
  2108. }
  2109. #endif
  2110. }
  2111. /**
  2112. * Home an individual "raw axis" to its endstop.
  2113. * This applies to XYZ on Cartesian and Core robots, and
  2114. * to the individual ABC steppers on DELTA and SCARA.
  2115. *
  2116. * At the end of the procedure the axis is marked as
  2117. * homed and the current position of that axis is updated.
  2118. * Kinematic robots should wait till all axes are homed
  2119. * before updating the current position.
  2120. */
  2121. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2122. static void homeaxis(AxisEnum axis) {
  2123. #if IS_SCARA
  2124. // Only Z homing (with probe) is permitted
  2125. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2126. #else
  2127. #define CAN_HOME(A) \
  2128. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2129. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2130. #endif
  2131. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2132. if (DEBUGGING(LEVELING)) {
  2133. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2134. SERIAL_CHAR(')');
  2135. SERIAL_EOL;
  2136. }
  2137. #endif
  2138. int axis_home_dir =
  2139. #if ENABLED(DUAL_X_CARRIAGE)
  2140. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2141. #endif
  2142. home_dir(axis);
  2143. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2144. #if HOMING_Z_WITH_PROBE
  2145. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2146. #endif
  2147. // Set a flag for Z motor locking
  2148. #if ENABLED(Z_DUAL_ENDSTOPS)
  2149. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2150. #endif
  2151. // Fast move towards endstop until triggered
  2152. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2153. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2154. #endif
  2155. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2156. // When homing Z with probe respect probe clearance
  2157. const float bump = axis_home_dir * (
  2158. #if HOMING_Z_WITH_PROBE
  2159. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2160. #endif
  2161. home_bump_mm(axis)
  2162. );
  2163. // If a second homing move is configured...
  2164. if (bump) {
  2165. // Move away from the endstop by the axis HOME_BUMP_MM
  2166. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2167. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2168. #endif
  2169. do_homing_move(axis, -bump);
  2170. // Slow move towards endstop until triggered
  2171. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2172. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2173. #endif
  2174. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2175. }
  2176. #if ENABLED(Z_DUAL_ENDSTOPS)
  2177. if (axis == Z_AXIS) {
  2178. float adj = fabs(z_endstop_adj);
  2179. bool lockZ1;
  2180. if (axis_home_dir > 0) {
  2181. adj = -adj;
  2182. lockZ1 = (z_endstop_adj > 0);
  2183. }
  2184. else
  2185. lockZ1 = (z_endstop_adj < 0);
  2186. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2187. // Move to the adjusted endstop height
  2188. do_homing_move(axis, adj);
  2189. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2190. stepper.set_homing_flag(false);
  2191. } // Z_AXIS
  2192. #endif
  2193. #if IS_SCARA
  2194. set_axis_is_at_home(axis);
  2195. SYNC_PLAN_POSITION_KINEMATIC();
  2196. #elif ENABLED(DELTA)
  2197. // Delta has already moved all three towers up in G28
  2198. // so here it re-homes each tower in turn.
  2199. // Delta homing treats the axes as normal linear axes.
  2200. // retrace by the amount specified in endstop_adj
  2201. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2202. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2203. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2204. #endif
  2205. do_homing_move(axis, endstop_adj[axis]);
  2206. }
  2207. #else
  2208. // For cartesian/core machines,
  2209. // set the axis to its home position
  2210. set_axis_is_at_home(axis);
  2211. sync_plan_position();
  2212. destination[axis] = current_position[axis];
  2213. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2214. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2215. #endif
  2216. #endif
  2217. // Put away the Z probe
  2218. #if HOMING_Z_WITH_PROBE
  2219. if (axis == Z_AXIS && STOW_PROBE()) return;
  2220. #endif
  2221. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2222. if (DEBUGGING(LEVELING)) {
  2223. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2224. SERIAL_CHAR(')');
  2225. SERIAL_EOL;
  2226. }
  2227. #endif
  2228. } // homeaxis()
  2229. #if ENABLED(FWRETRACT)
  2230. void retract(bool retracting, bool swapping = false) {
  2231. if (retracting == retracted[active_extruder]) return;
  2232. float old_feedrate_mm_s = feedrate_mm_s;
  2233. set_destination_to_current();
  2234. if (retracting) {
  2235. feedrate_mm_s = retract_feedrate_mm_s;
  2236. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2237. sync_plan_position_e();
  2238. prepare_move_to_destination();
  2239. if (retract_zlift > 0.01) {
  2240. current_position[Z_AXIS] -= retract_zlift;
  2241. SYNC_PLAN_POSITION_KINEMATIC();
  2242. prepare_move_to_destination();
  2243. }
  2244. }
  2245. else {
  2246. if (retract_zlift > 0.01) {
  2247. current_position[Z_AXIS] += retract_zlift;
  2248. SYNC_PLAN_POSITION_KINEMATIC();
  2249. }
  2250. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2251. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2252. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2253. sync_plan_position_e();
  2254. prepare_move_to_destination();
  2255. }
  2256. feedrate_mm_s = old_feedrate_mm_s;
  2257. retracted[active_extruder] = retracting;
  2258. } // retract()
  2259. #endif // FWRETRACT
  2260. #if ENABLED(MIXING_EXTRUDER)
  2261. void normalize_mix() {
  2262. float mix_total = 0.0;
  2263. for (int i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2264. // Scale all values if they don't add up to ~1.0
  2265. if (!NEAR(mix_total, 1.0)) {
  2266. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2267. for (int i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2268. }
  2269. }
  2270. #if ENABLED(DIRECT_MIXING_IN_G1)
  2271. // Get mixing parameters from the GCode
  2272. // The total "must" be 1.0 (but it will be normalized)
  2273. // If no mix factors are given, the old mix is preserved
  2274. void gcode_get_mix() {
  2275. const char* mixing_codes = "ABCDHI";
  2276. byte mix_bits = 0;
  2277. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2278. if (code_seen(mixing_codes[i])) {
  2279. SBI(mix_bits, i);
  2280. float v = code_value_float();
  2281. NOLESS(v, 0.0);
  2282. mixing_factor[i] = RECIPROCAL(v);
  2283. }
  2284. }
  2285. // If any mixing factors were included, clear the rest
  2286. // If none were included, preserve the last mix
  2287. if (mix_bits) {
  2288. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2289. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2290. normalize_mix();
  2291. }
  2292. }
  2293. #endif
  2294. #endif
  2295. /**
  2296. * ***************************************************************************
  2297. * ***************************** G-CODE HANDLING *****************************
  2298. * ***************************************************************************
  2299. */
  2300. /**
  2301. * Set XYZE destination and feedrate from the current GCode command
  2302. *
  2303. * - Set destination from included axis codes
  2304. * - Set to current for missing axis codes
  2305. * - Set the feedrate, if included
  2306. */
  2307. void gcode_get_destination() {
  2308. LOOP_XYZE(i) {
  2309. if (code_seen(axis_codes[i]))
  2310. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2311. else
  2312. destination[i] = current_position[i];
  2313. }
  2314. if (code_seen('F') && code_value_linear_units() > 0.0)
  2315. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2316. #if ENABLED(PRINTCOUNTER)
  2317. if (!DEBUGGING(DRYRUN))
  2318. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2319. #endif
  2320. // Get ABCDHI mixing factors
  2321. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2322. gcode_get_mix();
  2323. #endif
  2324. }
  2325. void unknown_command_error() {
  2326. SERIAL_ECHO_START;
  2327. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2328. SERIAL_CHAR('"');
  2329. SERIAL_EOL;
  2330. }
  2331. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2332. /**
  2333. * Output a "busy" message at regular intervals
  2334. * while the machine is not accepting commands.
  2335. */
  2336. void host_keepalive() {
  2337. millis_t ms = millis();
  2338. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2339. if (PENDING(ms, next_busy_signal_ms)) return;
  2340. switch (busy_state) {
  2341. case IN_HANDLER:
  2342. case IN_PROCESS:
  2343. SERIAL_ECHO_START;
  2344. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2345. break;
  2346. case PAUSED_FOR_USER:
  2347. SERIAL_ECHO_START;
  2348. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2349. break;
  2350. case PAUSED_FOR_INPUT:
  2351. SERIAL_ECHO_START;
  2352. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2353. break;
  2354. default:
  2355. break;
  2356. }
  2357. }
  2358. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2359. }
  2360. #endif //HOST_KEEPALIVE_FEATURE
  2361. bool position_is_reachable(float target[XYZ]
  2362. #if HAS_BED_PROBE
  2363. , bool by_probe=false
  2364. #endif
  2365. ) {
  2366. float dx = RAW_X_POSITION(target[X_AXIS]),
  2367. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2368. #if HAS_BED_PROBE
  2369. if (by_probe) {
  2370. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2371. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2372. }
  2373. #endif
  2374. #if IS_SCARA
  2375. #if MIDDLE_DEAD_ZONE_R > 0
  2376. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2377. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2378. #else
  2379. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2380. #endif
  2381. #elif ENABLED(DELTA)
  2382. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2383. #else
  2384. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2385. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2386. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2387. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2388. #endif
  2389. }
  2390. /**************************************************
  2391. ***************** GCode Handlers *****************
  2392. **************************************************/
  2393. /**
  2394. * G0, G1: Coordinated movement of X Y Z E axes
  2395. */
  2396. inline void gcode_G0_G1(
  2397. #if IS_SCARA
  2398. bool fast_move=false
  2399. #endif
  2400. ) {
  2401. if (IsRunning()) {
  2402. gcode_get_destination(); // For X Y Z E F
  2403. #if ENABLED(FWRETRACT)
  2404. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2405. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2406. // Is this move an attempt to retract or recover?
  2407. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2408. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2409. sync_plan_position_e(); // AND from the planner
  2410. retract(!retracted[active_extruder]);
  2411. return;
  2412. }
  2413. }
  2414. #endif //FWRETRACT
  2415. #if IS_SCARA
  2416. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2417. #else
  2418. prepare_move_to_destination();
  2419. #endif
  2420. }
  2421. }
  2422. /**
  2423. * G2: Clockwise Arc
  2424. * G3: Counterclockwise Arc
  2425. *
  2426. * This command has two forms: IJ-form and R-form.
  2427. *
  2428. * - I specifies an X offset. J specifies a Y offset.
  2429. * At least one of the IJ parameters is required.
  2430. * X and Y can be omitted to do a complete circle.
  2431. * The given XY is not error-checked. The arc ends
  2432. * based on the angle of the destination.
  2433. * Mixing I or J with R will throw an error.
  2434. *
  2435. * - R specifies the radius. X or Y is required.
  2436. * Omitting both X and Y will throw an error.
  2437. * X or Y must differ from the current XY.
  2438. * Mixing R with I or J will throw an error.
  2439. *
  2440. * Examples:
  2441. *
  2442. * G2 I10 ; CW circle centered at X+10
  2443. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2444. */
  2445. #if ENABLED(ARC_SUPPORT)
  2446. inline void gcode_G2_G3(bool clockwise) {
  2447. if (IsRunning()) {
  2448. #if ENABLED(SF_ARC_FIX)
  2449. bool relative_mode_backup = relative_mode;
  2450. relative_mode = true;
  2451. #endif
  2452. gcode_get_destination();
  2453. #if ENABLED(SF_ARC_FIX)
  2454. relative_mode = relative_mode_backup;
  2455. #endif
  2456. float arc_offset[2] = { 0.0, 0.0 };
  2457. if (code_seen('R')) {
  2458. const float r = code_value_axis_units(X_AXIS),
  2459. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2460. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2461. if (r && (x2 != x1 || y2 != y1)) {
  2462. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2463. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2464. d = HYPOT(dx, dy), // Linear distance between the points
  2465. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2466. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2467. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2468. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2469. arc_offset[X_AXIS] = cx - x1;
  2470. arc_offset[Y_AXIS] = cy - y1;
  2471. }
  2472. }
  2473. else {
  2474. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2475. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2476. }
  2477. if (arc_offset[0] || arc_offset[1]) {
  2478. // Send an arc to the planner
  2479. plan_arc(destination, arc_offset, clockwise);
  2480. refresh_cmd_timeout();
  2481. }
  2482. else {
  2483. // Bad arguments
  2484. SERIAL_ERROR_START;
  2485. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2486. }
  2487. }
  2488. }
  2489. #endif
  2490. /**
  2491. * G4: Dwell S<seconds> or P<milliseconds>
  2492. */
  2493. inline void gcode_G4() {
  2494. millis_t dwell_ms = 0;
  2495. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2496. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2497. stepper.synchronize();
  2498. refresh_cmd_timeout();
  2499. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2500. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2501. while (PENDING(millis(), dwell_ms)) idle();
  2502. }
  2503. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2504. /**
  2505. * Parameters interpreted according to:
  2506. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2507. * However I, J omission is not supported at this point; all
  2508. * parameters can be omitted and default to zero.
  2509. */
  2510. /**
  2511. * G5: Cubic B-spline
  2512. */
  2513. inline void gcode_G5() {
  2514. if (IsRunning()) {
  2515. gcode_get_destination();
  2516. float offset[] = {
  2517. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2518. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2519. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2520. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2521. };
  2522. plan_cubic_move(offset);
  2523. }
  2524. }
  2525. #endif // BEZIER_CURVE_SUPPORT
  2526. #if ENABLED(FWRETRACT)
  2527. /**
  2528. * G10 - Retract filament according to settings of M207
  2529. * G11 - Recover filament according to settings of M208
  2530. */
  2531. inline void gcode_G10_G11(bool doRetract=false) {
  2532. #if EXTRUDERS > 1
  2533. if (doRetract) {
  2534. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2535. }
  2536. #endif
  2537. retract(doRetract
  2538. #if EXTRUDERS > 1
  2539. , retracted_swap[active_extruder]
  2540. #endif
  2541. );
  2542. }
  2543. #endif //FWRETRACT
  2544. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2545. /**
  2546. * G12: Clean the nozzle
  2547. */
  2548. inline void gcode_G12() {
  2549. // Don't allow nozzle cleaning without homing first
  2550. if (axis_unhomed_error(true, true, true)) { return; }
  2551. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2552. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2553. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2554. Nozzle::clean(pattern, strokes, objects);
  2555. }
  2556. #endif
  2557. #if ENABLED(INCH_MODE_SUPPORT)
  2558. /**
  2559. * G20: Set input mode to inches
  2560. */
  2561. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2562. /**
  2563. * G21: Set input mode to millimeters
  2564. */
  2565. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2566. #endif
  2567. #if ENABLED(NOZZLE_PARK_FEATURE)
  2568. /**
  2569. * G27: Park the nozzle
  2570. */
  2571. inline void gcode_G27() {
  2572. // Don't allow nozzle parking without homing first
  2573. if (axis_unhomed_error(true, true, true)) { return; }
  2574. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2575. Nozzle::park(z_action);
  2576. }
  2577. #endif // NOZZLE_PARK_FEATURE
  2578. #if ENABLED(QUICK_HOME)
  2579. static void quick_home_xy() {
  2580. // Pretend the current position is 0,0
  2581. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2582. sync_plan_position();
  2583. int x_axis_home_dir =
  2584. #if ENABLED(DUAL_X_CARRIAGE)
  2585. x_home_dir(active_extruder)
  2586. #else
  2587. home_dir(X_AXIS)
  2588. #endif
  2589. ;
  2590. float mlx = max_length(X_AXIS),
  2591. mly = max_length(Y_AXIS),
  2592. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2593. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2594. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2595. endstops.hit_on_purpose(); // clear endstop hit flags
  2596. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2597. }
  2598. #endif // QUICK_HOME
  2599. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2600. void log_machine_info() {
  2601. SERIAL_ECHOPGM("Machine Type: ");
  2602. #if ENABLED(DELTA)
  2603. SERIAL_ECHOLNPGM("Delta");
  2604. #elif IS_SCARA
  2605. SERIAL_ECHOLNPGM("SCARA");
  2606. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2607. SERIAL_ECHOLNPGM("Core");
  2608. #else
  2609. SERIAL_ECHOLNPGM("Cartesian");
  2610. #endif
  2611. SERIAL_ECHOPGM("Probe: ");
  2612. #if ENABLED(FIX_MOUNTED_PROBE)
  2613. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2614. #elif ENABLED(BLTOUCH)
  2615. SERIAL_ECHOLNPGM("BLTOUCH");
  2616. #elif HAS_Z_SERVO_ENDSTOP
  2617. SERIAL_ECHOLNPGM("SERVO PROBE");
  2618. #elif ENABLED(Z_PROBE_SLED)
  2619. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2620. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2621. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2622. #else
  2623. SERIAL_ECHOLNPGM("NONE");
  2624. #endif
  2625. #if HAS_BED_PROBE
  2626. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2627. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2628. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2629. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2630. SERIAL_ECHOPGM(" (Right");
  2631. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2632. SERIAL_ECHOPGM(" (Left");
  2633. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2634. SERIAL_ECHOPGM(" (Middle");
  2635. #else
  2636. SERIAL_ECHOPGM(" (Aligned With");
  2637. #endif
  2638. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2639. SERIAL_ECHOPGM("-Back");
  2640. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2641. SERIAL_ECHOPGM("-Front");
  2642. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2643. SERIAL_ECHOPGM("-Center");
  2644. #endif
  2645. if (zprobe_zoffset < 0)
  2646. SERIAL_ECHOPGM(" & Below");
  2647. else if (zprobe_zoffset > 0)
  2648. SERIAL_ECHOPGM(" & Above");
  2649. else
  2650. SERIAL_ECHOPGM(" & Same Z as");
  2651. SERIAL_ECHOLNPGM(" Nozzle)");
  2652. #endif
  2653. #if HAS_ABL
  2654. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2655. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2656. SERIAL_ECHOPGM("LINEAR");
  2657. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2658. SERIAL_ECHOPGM("BILINEAR");
  2659. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2660. SERIAL_ECHOPGM("3POINT");
  2661. #endif
  2662. if (planner.abl_enabled) {
  2663. SERIAL_ECHOLNPGM(" (enabled)");
  2664. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)
  2665. float diff[XYZ] = {
  2666. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2667. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2668. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2669. };
  2670. SERIAL_ECHOPGM("ABL Adjustment X");
  2671. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2672. SERIAL_ECHO(diff[X_AXIS]);
  2673. SERIAL_ECHOPGM(" Y");
  2674. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2675. SERIAL_ECHO(diff[Y_AXIS]);
  2676. SERIAL_ECHOPGM(" Z");
  2677. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2678. SERIAL_ECHO(diff[Z_AXIS]);
  2679. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2680. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2681. #endif
  2682. }
  2683. SERIAL_EOL;
  2684. #elif ENABLED(MESH_BED_LEVELING)
  2685. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2686. if (mbl.active()) {
  2687. SERIAL_ECHOLNPGM(" (enabled)");
  2688. SERIAL_ECHOPAIR("MBL Adjustment Z", mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)));
  2689. }
  2690. SERIAL_EOL;
  2691. #endif
  2692. }
  2693. #endif // DEBUG_LEVELING_FEATURE
  2694. #if ENABLED(DELTA)
  2695. /**
  2696. * A delta can only safely home all axes at the same time
  2697. * This is like quick_home_xy() but for 3 towers.
  2698. */
  2699. inline void home_delta() {
  2700. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2701. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2702. #endif
  2703. // Init the current position of all carriages to 0,0,0
  2704. ZERO(current_position);
  2705. sync_plan_position();
  2706. // Move all carriages together linearly until an endstop is hit.
  2707. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2708. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2709. line_to_current_position();
  2710. stepper.synchronize();
  2711. endstops.hit_on_purpose(); // clear endstop hit flags
  2712. // At least one carriage has reached the top.
  2713. // Now re-home each carriage separately.
  2714. HOMEAXIS(A);
  2715. HOMEAXIS(B);
  2716. HOMEAXIS(C);
  2717. // Set all carriages to their home positions
  2718. // Do this here all at once for Delta, because
  2719. // XYZ isn't ABC. Applying this per-tower would
  2720. // give the impression that they are the same.
  2721. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2722. SYNC_PLAN_POSITION_KINEMATIC();
  2723. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2724. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2725. #endif
  2726. }
  2727. #endif // DELTA
  2728. #if ENABLED(Z_SAFE_HOMING)
  2729. inline void home_z_safely() {
  2730. // Disallow Z homing if X or Y are unknown
  2731. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2732. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2733. SERIAL_ECHO_START;
  2734. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2735. return;
  2736. }
  2737. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2738. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2739. #endif
  2740. SYNC_PLAN_POSITION_KINEMATIC();
  2741. /**
  2742. * Move the Z probe (or just the nozzle) to the safe homing point
  2743. */
  2744. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2745. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2746. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2747. if (position_is_reachable(
  2748. destination
  2749. #if HOMING_Z_WITH_PROBE
  2750. , true
  2751. #endif
  2752. )
  2753. ) {
  2754. #if HOMING_Z_WITH_PROBE
  2755. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2756. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2757. #endif
  2758. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2759. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2760. #endif
  2761. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2762. HOMEAXIS(Z);
  2763. }
  2764. else {
  2765. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2766. SERIAL_ECHO_START;
  2767. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2768. }
  2769. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2770. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2771. #endif
  2772. }
  2773. #endif // Z_SAFE_HOMING
  2774. /**
  2775. * G28: Home all axes according to settings
  2776. *
  2777. * Parameters
  2778. *
  2779. * None Home to all axes with no parameters.
  2780. * With QUICK_HOME enabled XY will home together, then Z.
  2781. *
  2782. * Cartesian parameters
  2783. *
  2784. * X Home to the X endstop
  2785. * Y Home to the Y endstop
  2786. * Z Home to the Z endstop
  2787. *
  2788. */
  2789. inline void gcode_G28() {
  2790. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2791. if (DEBUGGING(LEVELING)) {
  2792. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2793. log_machine_info();
  2794. }
  2795. #endif
  2796. // Wait for planner moves to finish!
  2797. stepper.synchronize();
  2798. // For auto bed leveling, clear the level matrix
  2799. #if HAS_ABL
  2800. reset_bed_level();
  2801. #endif
  2802. // Always home with tool 0 active
  2803. #if HOTENDS > 1
  2804. uint8_t old_tool_index = active_extruder;
  2805. tool_change(0, 0, true);
  2806. #endif
  2807. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2808. extruder_duplication_enabled = false;
  2809. #endif
  2810. /**
  2811. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2812. * on again when homing all axis
  2813. */
  2814. #if ENABLED(MESH_BED_LEVELING)
  2815. float pre_home_z = MESH_HOME_SEARCH_Z;
  2816. if (mbl.active()) {
  2817. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2818. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2819. #endif
  2820. // Save known Z position if already homed
  2821. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2822. pre_home_z = current_position[Z_AXIS];
  2823. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2824. }
  2825. mbl.set_active(false);
  2826. current_position[Z_AXIS] = pre_home_z;
  2827. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2828. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2829. #endif
  2830. }
  2831. #endif
  2832. setup_for_endstop_or_probe_move();
  2833. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2834. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2835. #endif
  2836. endstops.enable(true); // Enable endstops for next homing move
  2837. #if ENABLED(DELTA)
  2838. home_delta();
  2839. #else // NOT DELTA
  2840. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2841. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2842. set_destination_to_current();
  2843. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2844. if (home_all_axis || homeZ) {
  2845. HOMEAXIS(Z);
  2846. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2847. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2848. #endif
  2849. }
  2850. #else
  2851. if (home_all_axis || homeX || homeY) {
  2852. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2853. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2854. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2855. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2856. if (DEBUGGING(LEVELING))
  2857. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2858. #endif
  2859. do_blocking_move_to_z(destination[Z_AXIS]);
  2860. }
  2861. }
  2862. #endif
  2863. #if ENABLED(QUICK_HOME)
  2864. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2865. #endif
  2866. #if ENABLED(HOME_Y_BEFORE_X)
  2867. // Home Y
  2868. if (home_all_axis || homeY) {
  2869. HOMEAXIS(Y);
  2870. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2871. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2872. #endif
  2873. }
  2874. #endif
  2875. // Home X
  2876. if (home_all_axis || homeX) {
  2877. #if ENABLED(DUAL_X_CARRIAGE)
  2878. int tmp_extruder = active_extruder;
  2879. active_extruder = !active_extruder;
  2880. HOMEAXIS(X);
  2881. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2882. active_extruder = tmp_extruder;
  2883. HOMEAXIS(X);
  2884. // reset state used by the different modes
  2885. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2886. delayed_move_time = 0;
  2887. active_extruder_parked = true;
  2888. #else
  2889. HOMEAXIS(X);
  2890. #endif
  2891. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2892. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2893. #endif
  2894. }
  2895. #if DISABLED(HOME_Y_BEFORE_X)
  2896. // Home Y
  2897. if (home_all_axis || homeY) {
  2898. HOMEAXIS(Y);
  2899. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2900. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2901. #endif
  2902. }
  2903. #endif
  2904. // Home Z last if homing towards the bed
  2905. #if Z_HOME_DIR < 0
  2906. if (home_all_axis || homeZ) {
  2907. #if ENABLED(Z_SAFE_HOMING)
  2908. home_z_safely();
  2909. #else
  2910. HOMEAXIS(Z);
  2911. #endif
  2912. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2913. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2914. #endif
  2915. } // home_all_axis || homeZ
  2916. #endif // Z_HOME_DIR < 0
  2917. SYNC_PLAN_POSITION_KINEMATIC();
  2918. #endif // !DELTA (gcode_G28)
  2919. endstops.not_homing();
  2920. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  2921. // move to a height where we can use the full xy-area
  2922. do_blocking_move_to_z(delta_clip_start_height);
  2923. #endif
  2924. // Enable mesh leveling again
  2925. #if ENABLED(MESH_BED_LEVELING)
  2926. if (mbl.has_mesh()) {
  2927. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2928. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2929. #endif
  2930. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2931. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2932. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2933. #endif
  2934. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2935. #if Z_HOME_DIR > 0
  2936. + Z_MAX_POS
  2937. #endif
  2938. ;
  2939. SYNC_PLAN_POSITION_KINEMATIC();
  2940. mbl.set_active(true);
  2941. #if ENABLED(MESH_G28_REST_ORIGIN)
  2942. current_position[Z_AXIS] = 0.0;
  2943. set_destination_to_current();
  2944. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  2945. stepper.synchronize();
  2946. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2947. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2948. #endif
  2949. #else
  2950. planner.unapply_leveling(current_position);
  2951. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2952. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2953. #endif
  2954. #endif
  2955. }
  2956. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2957. current_position[Z_AXIS] = pre_home_z;
  2958. SYNC_PLAN_POSITION_KINEMATIC();
  2959. mbl.set_active(true);
  2960. planner.unapply_leveling(current_position);
  2961. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2962. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2963. #endif
  2964. }
  2965. }
  2966. #endif
  2967. clean_up_after_endstop_or_probe_move();
  2968. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2969. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2970. #endif
  2971. // Restore the active tool after homing
  2972. #if HOTENDS > 1
  2973. tool_change(old_tool_index, 0, true);
  2974. #endif
  2975. report_current_position();
  2976. }
  2977. #if HAS_PROBING_PROCEDURE
  2978. void out_of_range_error(const char* p_edge) {
  2979. SERIAL_PROTOCOLPGM("?Probe ");
  2980. serialprintPGM(p_edge);
  2981. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2982. }
  2983. #endif
  2984. #if ENABLED(MESH_BED_LEVELING)
  2985. inline void _mbl_goto_xy(float x, float y) {
  2986. float old_feedrate_mm_s = feedrate_mm_s;
  2987. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2988. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2989. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2990. + Z_CLEARANCE_BETWEEN_PROBES
  2991. #elif Z_HOMING_HEIGHT > 0
  2992. + Z_HOMING_HEIGHT
  2993. #endif
  2994. ;
  2995. line_to_current_position();
  2996. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2997. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2998. line_to_current_position();
  2999. #if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
  3000. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  3001. line_to_current_position();
  3002. #endif
  3003. feedrate_mm_s = old_feedrate_mm_s;
  3004. stepper.synchronize();
  3005. }
  3006. /**
  3007. * G29: Mesh-based Z probe, probes a grid and produces a
  3008. * mesh to compensate for variable bed height
  3009. *
  3010. * Parameters With MESH_BED_LEVELING:
  3011. *
  3012. * S0 Produce a mesh report
  3013. * S1 Start probing mesh points
  3014. * S2 Probe the next mesh point
  3015. * S3 Xn Yn Zn.nn Manually modify a single point
  3016. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3017. * S5 Reset and disable mesh
  3018. *
  3019. * The S0 report the points as below
  3020. *
  3021. * +----> X-axis 1-n
  3022. * |
  3023. * |
  3024. * v Y-axis 1-n
  3025. *
  3026. */
  3027. inline void gcode_G29() {
  3028. static int probe_point = -1;
  3029. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3030. if (state < 0 || state > 5) {
  3031. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3032. return;
  3033. }
  3034. int8_t px, py;
  3035. switch (state) {
  3036. case MeshReport:
  3037. if (mbl.has_mesh()) {
  3038. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3039. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  3040. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  3041. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3042. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3043. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  3044. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  3045. SERIAL_PROTOCOLPGM(" ");
  3046. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  3047. }
  3048. SERIAL_EOL;
  3049. }
  3050. }
  3051. else
  3052. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3053. break;
  3054. case MeshStart:
  3055. mbl.reset();
  3056. probe_point = 0;
  3057. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3058. break;
  3059. case MeshNext:
  3060. if (probe_point < 0) {
  3061. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3062. return;
  3063. }
  3064. // For each G29 S2...
  3065. if (probe_point == 0) {
  3066. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  3067. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3068. #if Z_HOME_DIR > 0
  3069. + Z_MAX_POS
  3070. #endif
  3071. ;
  3072. SYNC_PLAN_POSITION_KINEMATIC();
  3073. }
  3074. else {
  3075. // For G29 S2 after adjusting Z.
  3076. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  3077. }
  3078. // If there's another point to sample, move there with optional lift.
  3079. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  3080. mbl.zigzag(probe_point, px, py);
  3081. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  3082. probe_point++;
  3083. }
  3084. else {
  3085. // One last "return to the bed" (as originally coded) at completion
  3086. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3087. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  3088. + Z_CLEARANCE_BETWEEN_PROBES
  3089. #elif Z_HOMING_HEIGHT > 0
  3090. + Z_HOMING_HEIGHT
  3091. #endif
  3092. ;
  3093. line_to_current_position();
  3094. stepper.synchronize();
  3095. // After recording the last point, activate the mbl and home
  3096. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3097. probe_point = -1;
  3098. mbl.set_has_mesh(true);
  3099. enqueue_and_echo_commands_P(PSTR("G28"));
  3100. }
  3101. break;
  3102. case MeshSet:
  3103. if (code_seen('X')) {
  3104. px = code_value_int() - 1;
  3105. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  3106. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  3107. return;
  3108. }
  3109. }
  3110. else {
  3111. SERIAL_CHAR('X'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3112. return;
  3113. }
  3114. if (code_seen('Y')) {
  3115. py = code_value_int() - 1;
  3116. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  3117. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  3118. return;
  3119. }
  3120. }
  3121. else {
  3122. SERIAL_CHAR('Y'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3123. return;
  3124. }
  3125. if (code_seen('Z')) {
  3126. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3127. }
  3128. else {
  3129. SERIAL_CHAR('Z'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3130. return;
  3131. }
  3132. break;
  3133. case MeshSetZOffset:
  3134. if (code_seen('Z')) {
  3135. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3136. }
  3137. else {
  3138. SERIAL_CHAR('Z'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3139. return;
  3140. }
  3141. break;
  3142. case MeshReset:
  3143. if (mbl.active()) {
  3144. current_position[Z_AXIS] +=
  3145. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  3146. mbl.reset();
  3147. SYNC_PLAN_POSITION_KINEMATIC();
  3148. }
  3149. else
  3150. mbl.reset();
  3151. } // switch(state)
  3152. report_current_position();
  3153. }
  3154. #elif HAS_ABL
  3155. /**
  3156. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3157. * Will fail if the printer has not been homed with G28.
  3158. *
  3159. * Enhanced G29 Auto Bed Leveling Probe Routine
  3160. *
  3161. * Parameters With ABL_GRID:
  3162. *
  3163. * P Set the size of the grid that will be probed (P x P points).
  3164. * Not supported by non-linear delta printer bed leveling.
  3165. * Example: "G29 P4"
  3166. *
  3167. * S Set the XY travel speed between probe points (in units/min)
  3168. *
  3169. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3170. * or clean the rotation Matrix. Useful to check the topology
  3171. * after a first run of G29.
  3172. *
  3173. * V Set the verbose level (0-4). Example: "G29 V3"
  3174. *
  3175. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3176. * This is useful for manual bed leveling and finding flaws in the bed (to
  3177. * assist with part placement).
  3178. * Not supported by non-linear delta printer bed leveling.
  3179. *
  3180. * F Set the Front limit of the probing grid
  3181. * B Set the Back limit of the probing grid
  3182. * L Set the Left limit of the probing grid
  3183. * R Set the Right limit of the probing grid
  3184. *
  3185. * Global Parameters:
  3186. *
  3187. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  3188. * Include "E" to engage/disengage the Z probe for each sample.
  3189. * There's no extra effect if you have a fixed Z probe.
  3190. * Usage: "G29 E" or "G29 e"
  3191. *
  3192. */
  3193. inline void gcode_G29() {
  3194. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3195. bool query = code_seen('Q');
  3196. uint8_t old_debug_flags = marlin_debug_flags;
  3197. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3198. if (DEBUGGING(LEVELING)) {
  3199. DEBUG_POS(">>> gcode_G29", current_position);
  3200. log_machine_info();
  3201. }
  3202. marlin_debug_flags = old_debug_flags;
  3203. if (query) return;
  3204. #endif
  3205. // Don't allow auto-leveling without homing first
  3206. if (axis_unhomed_error(true, true, true)) return;
  3207. int verbose_level = code_seen('V') ? code_value_int() : 1;
  3208. if (verbose_level < 0 || verbose_level > 4) {
  3209. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3210. return;
  3211. }
  3212. bool dryrun = code_seen('D'),
  3213. stow_probe_after_each = code_seen('E');
  3214. #if ABL_GRID
  3215. if (verbose_level > 0) {
  3216. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3217. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3218. }
  3219. #if ABL_PLANAR
  3220. bool do_topography_map = verbose_level > 2 || code_seen('T');
  3221. // X and Y specify points in each direction, overriding the default
  3222. // These values may be saved with the completed mesh
  3223. int abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_POINTS_X,
  3224. abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_POINTS_Y;
  3225. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3226. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3227. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3228. return;
  3229. }
  3230. #else
  3231. const int abl_grid_points_x = ABL_GRID_POINTS_X, abl_grid_points_y = ABL_GRID_POINTS_Y;
  3232. #endif
  3233. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3234. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  3235. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  3236. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  3237. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3238. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3239. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3240. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3241. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3242. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3243. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3244. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3245. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3246. if (left_out || right_out || front_out || back_out) {
  3247. if (left_out) {
  3248. out_of_range_error(PSTR("(L)eft"));
  3249. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3250. }
  3251. if (right_out) {
  3252. out_of_range_error(PSTR("(R)ight"));
  3253. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3254. }
  3255. if (front_out) {
  3256. out_of_range_error(PSTR("(F)ront"));
  3257. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3258. }
  3259. if (back_out) {
  3260. out_of_range_error(PSTR("(B)ack"));
  3261. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3262. }
  3263. return;
  3264. }
  3265. #endif // ABL_GRID
  3266. stepper.synchronize();
  3267. // Disable auto bed leveling during G29
  3268. bool abl_should_enable = planner.abl_enabled;
  3269. planner.abl_enabled = false;
  3270. if (!dryrun) {
  3271. // Re-orient the current position without leveling
  3272. // based on where the steppers are positioned.
  3273. set_current_from_steppers_for_axis(ALL_AXES);
  3274. // Sync the planner to where the steppers stopped
  3275. SYNC_PLAN_POSITION_KINEMATIC();
  3276. }
  3277. setup_for_endstop_or_probe_move();
  3278. // Deploy the probe. Probe will raise if needed.
  3279. if (DEPLOY_PROBE()) {
  3280. planner.abl_enabled = abl_should_enable;
  3281. return;
  3282. }
  3283. float xProbe = 0, yProbe = 0, measured_z = 0;
  3284. #if ABL_GRID
  3285. // probe at the points of a lattice grid
  3286. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3287. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3288. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3289. float zoffset = zprobe_zoffset;
  3290. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3291. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3292. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3293. || left_probe_bed_position != bilinear_start[X_AXIS]
  3294. || front_probe_bed_position != bilinear_start[Y_AXIS]
  3295. ) {
  3296. reset_bed_level();
  3297. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3298. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3299. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3300. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3301. // Can't re-enable (on error) until the new grid is written
  3302. abl_should_enable = false;
  3303. }
  3304. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3305. /**
  3306. * solve the plane equation ax + by + d = z
  3307. * A is the matrix with rows [x y 1] for all the probed points
  3308. * B is the vector of the Z positions
  3309. * the normal vector to the plane is formed by the coefficients of the
  3310. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3311. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3312. */
  3313. int abl2 = abl_grid_points_x * abl_grid_points_y,
  3314. indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3315. probePointCounter = -1;
  3316. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3317. eqnBVector[abl2], // "B" vector of Z points
  3318. mean = 0.0;
  3319. #endif // AUTO_BED_LEVELING_LINEAR
  3320. #if ENABLED(PROBE_Y_FIRST)
  3321. #define PR_OUTER_VAR xCount
  3322. #define PR_OUTER_END abl_grid_points_x
  3323. #define PR_INNER_VAR yCount
  3324. #define PR_INNER_END abl_grid_points_y
  3325. #else
  3326. #define PR_OUTER_VAR yCount
  3327. #define PR_OUTER_END abl_grid_points_y
  3328. #define PR_INNER_VAR xCount
  3329. #define PR_INNER_END abl_grid_points_x
  3330. #endif
  3331. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3332. // Outer loop is Y with PROBE_Y_FIRST disabled
  3333. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3334. int8_t inStart, inStop, inInc;
  3335. if (zig) { // away from origin
  3336. inStart = 0;
  3337. inStop = PR_INNER_END;
  3338. inInc = 1;
  3339. }
  3340. else { // towards origin
  3341. inStart = PR_INNER_END - 1;
  3342. inStop = -1;
  3343. inInc = -1;
  3344. }
  3345. zig = !zig; // zag
  3346. // Inner loop is Y with PROBE_Y_FIRST enabled
  3347. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3348. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3349. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3350. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3351. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3352. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3353. indexIntoAB[xCount][yCount] = ++probePointCounter;
  3354. #endif
  3355. #if IS_KINEMATIC
  3356. // Avoid probing outside the round or hexagonal area
  3357. float pos[XYZ] = { xProbe, yProbe, 0 };
  3358. if (!position_is_reachable(pos, true)) continue;
  3359. #endif
  3360. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3361. if (measured_z == NAN) {
  3362. planner.abl_enabled = abl_should_enable;
  3363. return;
  3364. }
  3365. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3366. mean += measured_z;
  3367. eqnBVector[probePointCounter] = measured_z;
  3368. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3369. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3370. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3371. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3372. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3373. #endif
  3374. idle();
  3375. } //xProbe
  3376. } //yProbe
  3377. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3378. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3379. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3380. #endif
  3381. // Probe at 3 arbitrary points
  3382. vector_3 points[3] = {
  3383. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3384. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3385. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3386. };
  3387. for (uint8_t i = 0; i < 3; ++i) {
  3388. // Retain the last probe position
  3389. xProbe = LOGICAL_X_POSITION(points[i].x);
  3390. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3391. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3392. }
  3393. if (measured_z == NAN) {
  3394. planner.abl_enabled = abl_should_enable;
  3395. return;
  3396. }
  3397. if (!dryrun) {
  3398. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3399. if (planeNormal.z < 0) {
  3400. planeNormal.x *= -1;
  3401. planeNormal.y *= -1;
  3402. planeNormal.z *= -1;
  3403. }
  3404. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3405. // Can't re-enable (on error) until the new grid is written
  3406. abl_should_enable = false;
  3407. }
  3408. #endif // AUTO_BED_LEVELING_3POINT
  3409. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3410. if (STOW_PROBE()) {
  3411. planner.abl_enabled = abl_should_enable;
  3412. return;
  3413. }
  3414. //
  3415. // Unless this is a dry run, auto bed leveling will
  3416. // definitely be enabled after this point
  3417. //
  3418. // Restore state after probing
  3419. clean_up_after_endstop_or_probe_move();
  3420. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3421. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3422. #endif
  3423. // Calculate leveling, print reports, correct the position
  3424. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3425. if (!dryrun) extrapolate_unprobed_bed_level();
  3426. print_bed_level();
  3427. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3428. // For LINEAR leveling calculate matrix, print reports, correct the position
  3429. // solve lsq problem
  3430. float plane_equation_coefficients[3];
  3431. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3432. mean /= abl2;
  3433. if (verbose_level) {
  3434. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3435. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3436. SERIAL_PROTOCOLPGM(" b: ");
  3437. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3438. SERIAL_PROTOCOLPGM(" d: ");
  3439. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3440. SERIAL_EOL;
  3441. if (verbose_level > 2) {
  3442. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3443. SERIAL_PROTOCOL_F(mean, 8);
  3444. SERIAL_EOL;
  3445. }
  3446. }
  3447. // Create the matrix but don't correct the position yet
  3448. if (!dryrun) {
  3449. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3450. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3451. );
  3452. }
  3453. // Show the Topography map if enabled
  3454. if (do_topography_map) {
  3455. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3456. " +--- BACK --+\n"
  3457. " | |\n"
  3458. " L | (+) | R\n"
  3459. " E | | I\n"
  3460. " F | (-) N (+) | G\n"
  3461. " T | | H\n"
  3462. " | (-) | T\n"
  3463. " | |\n"
  3464. " O-- FRONT --+\n"
  3465. " (0,0)");
  3466. float min_diff = 999;
  3467. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3468. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3469. int ind = indexIntoAB[xx][yy];
  3470. float diff = eqnBVector[ind] - mean,
  3471. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3472. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3473. z_tmp = 0;
  3474. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3475. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3476. if (diff >= 0.0)
  3477. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3478. else
  3479. SERIAL_PROTOCOLCHAR(' ');
  3480. SERIAL_PROTOCOL_F(diff, 5);
  3481. } // xx
  3482. SERIAL_EOL;
  3483. } // yy
  3484. SERIAL_EOL;
  3485. if (verbose_level > 3) {
  3486. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3487. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3488. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3489. int ind = indexIntoAB[xx][yy];
  3490. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3491. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3492. z_tmp = 0;
  3493. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3494. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3495. if (diff >= 0.0)
  3496. SERIAL_PROTOCOLPGM(" +");
  3497. // Include + for column alignment
  3498. else
  3499. SERIAL_PROTOCOLCHAR(' ');
  3500. SERIAL_PROTOCOL_F(diff, 5);
  3501. } // xx
  3502. SERIAL_EOL;
  3503. } // yy
  3504. SERIAL_EOL;
  3505. }
  3506. } //do_topography_map
  3507. #endif // AUTO_BED_LEVELING_LINEAR
  3508. #if ABL_PLANAR
  3509. // For LINEAR and 3POINT leveling correct the current position
  3510. if (verbose_level > 0)
  3511. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3512. if (!dryrun) {
  3513. //
  3514. // Correct the current XYZ position based on the tilted plane.
  3515. //
  3516. // 1. Get the distance from the current position to the reference point.
  3517. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3518. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3519. z_real = current_position[Z_AXIS],
  3520. z_zero = 0;
  3521. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3522. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3523. #endif
  3524. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3525. // 2. Apply the inverse matrix to the distance
  3526. // from the reference point to X, Y, and zero.
  3527. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3528. // 3. Get the matrix-based corrected Z.
  3529. // (Even if not used, get it for comparison.)
  3530. float new_z = z_real + z_zero;
  3531. // 4. Use the last measured distance to the bed, if possible
  3532. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3533. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3534. ) {
  3535. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3536. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3537. if (DEBUGGING(LEVELING)) {
  3538. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3539. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3540. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3541. }
  3542. #endif
  3543. new_z = simple_z;
  3544. }
  3545. // 5. The rotated XY and corrected Z are now current_position
  3546. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3547. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3548. current_position[Z_AXIS] = new_z;
  3549. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3550. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3551. #endif
  3552. }
  3553. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3554. if (!dryrun) {
  3555. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3556. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3557. #endif
  3558. // Unapply the offset because it is going to be immediately applied
  3559. // and cause compensation movement in Z
  3560. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3561. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3562. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3563. #endif
  3564. }
  3565. #endif // ABL_PLANAR
  3566. #ifdef Z_PROBE_END_SCRIPT
  3567. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3568. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3569. #endif
  3570. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3571. stepper.synchronize();
  3572. #endif
  3573. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3574. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3575. #endif
  3576. report_current_position();
  3577. KEEPALIVE_STATE(IN_HANDLER);
  3578. // Auto Bed Leveling is complete! Enable if possible.
  3579. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3580. if (planner.abl_enabled)
  3581. SYNC_PLAN_POSITION_KINEMATIC();
  3582. }
  3583. #endif // HAS_ABL
  3584. #if HAS_BED_PROBE
  3585. /**
  3586. * G30: Do a single Z probe at the current XY
  3587. * Usage:
  3588. * G30 <X#> <Y#> <S#>
  3589. * X = Probe X position (default=current probe position)
  3590. * Y = Probe Y position (default=current probe position)
  3591. * S = Stows the probe if 1 (default=1)
  3592. */
  3593. inline void gcode_G30() {
  3594. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3595. Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3596. float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
  3597. if (!position_is_reachable(pos, true)) return;
  3598. bool stow = code_seen('S') ? code_value_bool() : true;
  3599. // Disable leveling so the planner won't mess with us
  3600. #if PLANNER_LEVELING
  3601. set_bed_leveling_enabled(false);
  3602. #endif
  3603. setup_for_endstop_or_probe_move();
  3604. float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
  3605. SERIAL_PROTOCOLPGM("Bed X: ");
  3606. SERIAL_PROTOCOL(X_probe_location + 0.0001);
  3607. SERIAL_PROTOCOLPGM(" Y: ");
  3608. SERIAL_PROTOCOL(Y_probe_location + 0.0001);
  3609. SERIAL_PROTOCOLPGM(" Z: ");
  3610. SERIAL_PROTOCOLLN(measured_z + 0.0001);
  3611. clean_up_after_endstop_or_probe_move();
  3612. report_current_position();
  3613. }
  3614. #if ENABLED(Z_PROBE_SLED)
  3615. /**
  3616. * G31: Deploy the Z probe
  3617. */
  3618. inline void gcode_G31() { DEPLOY_PROBE(); }
  3619. /**
  3620. * G32: Stow the Z probe
  3621. */
  3622. inline void gcode_G32() { STOW_PROBE(); }
  3623. #endif // Z_PROBE_SLED
  3624. #endif // HAS_BED_PROBE
  3625. #if ENABLED(G38_PROBE_TARGET)
  3626. static bool G38_run_probe() {
  3627. bool G38_pass_fail = false;
  3628. // Get direction of move and retract
  3629. float retract_mm[XYZ];
  3630. LOOP_XYZ(i) {
  3631. float dist = destination[i] - current_position[i];
  3632. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  3633. }
  3634. stepper.synchronize(); // wait until the machine is idle
  3635. // Move until destination reached or target hit
  3636. endstops.enable(true);
  3637. G38_move = true;
  3638. G38_endstop_hit = false;
  3639. prepare_move_to_destination();
  3640. stepper.synchronize();
  3641. G38_move = false;
  3642. endstops.hit_on_purpose();
  3643. set_current_from_steppers_for_axis(ALL_AXES);
  3644. SYNC_PLAN_POSITION_KINEMATIC();
  3645. // Only do remaining moves if target was hit
  3646. if (G38_endstop_hit) {
  3647. G38_pass_fail = true;
  3648. // Move away by the retract distance
  3649. set_destination_to_current();
  3650. LOOP_XYZ(i) destination[i] += retract_mm[i];
  3651. endstops.enable(false);
  3652. prepare_move_to_destination();
  3653. stepper.synchronize();
  3654. feedrate_mm_s /= 4;
  3655. // Bump the target more slowly
  3656. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  3657. endstops.enable(true);
  3658. G38_move = true;
  3659. prepare_move_to_destination();
  3660. stepper.synchronize();
  3661. G38_move = false;
  3662. set_current_from_steppers_for_axis(ALL_AXES);
  3663. SYNC_PLAN_POSITION_KINEMATIC();
  3664. }
  3665. endstops.hit_on_purpose();
  3666. endstops.not_homing();
  3667. return G38_pass_fail;
  3668. }
  3669. /**
  3670. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  3671. * G38.3 - probe toward workpiece, stop on contact
  3672. *
  3673. * Like G28 except uses Z min endstop for all axes
  3674. */
  3675. inline void gcode_G38(bool is_38_2) {
  3676. // Get X Y Z E F
  3677. gcode_get_destination();
  3678. setup_for_endstop_or_probe_move();
  3679. // If any axis has enough movement, do the move
  3680. LOOP_XYZ(i)
  3681. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  3682. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  3683. // If G38.2 fails throw an error
  3684. if (!G38_run_probe() && is_38_2) {
  3685. SERIAL_ERROR_START;
  3686. SERIAL_ERRORLNPGM("Failed to reach target");
  3687. }
  3688. break;
  3689. }
  3690. clean_up_after_endstop_or_probe_move();
  3691. }
  3692. #endif // G38_PROBE_TARGET
  3693. /**
  3694. * G92: Set current position to given X Y Z E
  3695. */
  3696. inline void gcode_G92() {
  3697. bool didXYZ = false,
  3698. didE = code_seen('E');
  3699. if (!didE) stepper.synchronize();
  3700. LOOP_XYZE(i) {
  3701. if (code_seen(axis_codes[i])) {
  3702. #if IS_SCARA
  3703. current_position[i] = code_value_axis_units(i);
  3704. if (i != E_AXIS) didXYZ = true;
  3705. #else
  3706. float p = current_position[i],
  3707. v = code_value_axis_units(i);
  3708. current_position[i] = v;
  3709. if (i != E_AXIS) {
  3710. didXYZ = true;
  3711. position_shift[i] += v - p; // Offset the coordinate space
  3712. update_software_endstops((AxisEnum)i);
  3713. }
  3714. #endif
  3715. }
  3716. }
  3717. if (didXYZ)
  3718. SYNC_PLAN_POSITION_KINEMATIC();
  3719. else if (didE)
  3720. sync_plan_position_e();
  3721. report_current_position();
  3722. }
  3723. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  3724. /**
  3725. * M0: Unconditional stop - Wait for user button press on LCD
  3726. * M1: Conditional stop - Wait for user button press on LCD
  3727. */
  3728. inline void gcode_M0_M1() {
  3729. char* args = current_command_args;
  3730. millis_t codenum = 0;
  3731. bool hasP = false, hasS = false;
  3732. if (code_seen('P')) {
  3733. codenum = code_value_millis(); // milliseconds to wait
  3734. hasP = codenum > 0;
  3735. }
  3736. if (code_seen('S')) {
  3737. codenum = code_value_millis_from_seconds(); // seconds to wait
  3738. hasS = codenum > 0;
  3739. }
  3740. #if ENABLED(ULTIPANEL)
  3741. if (!hasP && !hasS && *args != '\0')
  3742. lcd_setstatus(args, true);
  3743. else {
  3744. LCD_MESSAGEPGM(MSG_USERWAIT);
  3745. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3746. dontExpireStatus();
  3747. #endif
  3748. }
  3749. #else
  3750. if (!hasP && !hasS && *args != '\0') {
  3751. SERIAL_ECHO_START;
  3752. SERIAL_ECHOLN(args);
  3753. }
  3754. #endif
  3755. wait_for_user = true;
  3756. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3757. stepper.synchronize();
  3758. refresh_cmd_timeout();
  3759. if (codenum > 0) {
  3760. codenum += previous_cmd_ms; // wait until this time for a click
  3761. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3762. }
  3763. else {
  3764. #if ENABLED(ULTIPANEL)
  3765. if (lcd_detected()) {
  3766. while (wait_for_user) idle();
  3767. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  3768. }
  3769. #else
  3770. while (wait_for_user) idle();
  3771. #endif
  3772. }
  3773. wait_for_user = false;
  3774. KEEPALIVE_STATE(IN_HANDLER);
  3775. }
  3776. #endif // EMERGENCY_PARSER || ULTIPANEL
  3777. /**
  3778. * M17: Enable power on all stepper motors
  3779. */
  3780. inline void gcode_M17() {
  3781. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3782. enable_all_steppers();
  3783. }
  3784. #if ENABLED(SDSUPPORT)
  3785. /**
  3786. * M20: List SD card to serial output
  3787. */
  3788. inline void gcode_M20() {
  3789. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3790. card.ls();
  3791. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3792. }
  3793. /**
  3794. * M21: Init SD Card
  3795. */
  3796. inline void gcode_M21() { card.initsd(); }
  3797. /**
  3798. * M22: Release SD Card
  3799. */
  3800. inline void gcode_M22() { card.release(); }
  3801. /**
  3802. * M23: Open a file
  3803. */
  3804. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3805. /**
  3806. * M24: Start SD Print
  3807. */
  3808. inline void gcode_M24() {
  3809. card.startFileprint();
  3810. print_job_timer.start();
  3811. }
  3812. /**
  3813. * M25: Pause SD Print
  3814. */
  3815. inline void gcode_M25() { card.pauseSDPrint(); }
  3816. /**
  3817. * M26: Set SD Card file index
  3818. */
  3819. inline void gcode_M26() {
  3820. if (card.cardOK && code_seen('S'))
  3821. card.setIndex(code_value_long());
  3822. }
  3823. /**
  3824. * M27: Get SD Card status
  3825. */
  3826. inline void gcode_M27() { card.getStatus(); }
  3827. /**
  3828. * M28: Start SD Write
  3829. */
  3830. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3831. /**
  3832. * M29: Stop SD Write
  3833. * Processed in write to file routine above
  3834. */
  3835. inline void gcode_M29() {
  3836. // card.saving = false;
  3837. }
  3838. /**
  3839. * M30 <filename>: Delete SD Card file
  3840. */
  3841. inline void gcode_M30() {
  3842. if (card.cardOK) {
  3843. card.closefile();
  3844. card.removeFile(current_command_args);
  3845. }
  3846. }
  3847. #endif // SDSUPPORT
  3848. /**
  3849. * M31: Get the time since the start of SD Print (or last M109)
  3850. */
  3851. inline void gcode_M31() {
  3852. char buffer[21];
  3853. duration_t elapsed = print_job_timer.duration();
  3854. elapsed.toString(buffer);
  3855. lcd_setstatus(buffer);
  3856. SERIAL_ECHO_START;
  3857. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3858. #if ENABLED(AUTOTEMP)
  3859. thermalManager.autotempShutdown();
  3860. #endif
  3861. }
  3862. #if ENABLED(SDSUPPORT)
  3863. /**
  3864. * M32: Select file and start SD Print
  3865. */
  3866. inline void gcode_M32() {
  3867. if (card.sdprinting)
  3868. stepper.synchronize();
  3869. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3870. if (!namestartpos)
  3871. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3872. else
  3873. namestartpos++; //to skip the '!'
  3874. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3875. if (card.cardOK) {
  3876. card.openFile(namestartpos, true, call_procedure);
  3877. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3878. card.setIndex(code_value_long());
  3879. card.startFileprint();
  3880. // Procedure calls count as normal print time.
  3881. if (!call_procedure) print_job_timer.start();
  3882. }
  3883. }
  3884. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3885. /**
  3886. * M33: Get the long full path of a file or folder
  3887. *
  3888. * Parameters:
  3889. * <dospath> Case-insensitive DOS-style path to a file or folder
  3890. *
  3891. * Example:
  3892. * M33 miscel~1/armchair/armcha~1.gco
  3893. *
  3894. * Output:
  3895. * /Miscellaneous/Armchair/Armchair.gcode
  3896. */
  3897. inline void gcode_M33() {
  3898. card.printLongPath(current_command_args);
  3899. }
  3900. #endif
  3901. /**
  3902. * M928: Start SD Write
  3903. */
  3904. inline void gcode_M928() {
  3905. card.openLogFile(current_command_args);
  3906. }
  3907. #endif // SDSUPPORT
  3908. /**
  3909. * Sensitive pin test for M42, M226
  3910. */
  3911. static bool pin_is_protected(uint8_t pin) {
  3912. static const int sensitive_pins[] = SENSITIVE_PINS;
  3913. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3914. if (sensitive_pins[i] == pin) return true;
  3915. return false;
  3916. }
  3917. /**
  3918. * M42: Change pin status via GCode
  3919. *
  3920. * P<pin> Pin number (LED if omitted)
  3921. * S<byte> Pin status from 0 - 255
  3922. */
  3923. inline void gcode_M42() {
  3924. if (!code_seen('S')) return;
  3925. int pin_status = code_value_int();
  3926. if (pin_status < 0 || pin_status > 255) return;
  3927. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3928. if (pin_number < 0) return;
  3929. if (pin_is_protected(pin_number)) {
  3930. SERIAL_ERROR_START;
  3931. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  3932. return;
  3933. }
  3934. pinMode(pin_number, OUTPUT);
  3935. digitalWrite(pin_number, pin_status);
  3936. analogWrite(pin_number, pin_status);
  3937. #if FAN_COUNT > 0
  3938. switch (pin_number) {
  3939. #if HAS_FAN0
  3940. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3941. #endif
  3942. #if HAS_FAN1
  3943. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3944. #endif
  3945. #if HAS_FAN2
  3946. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3947. #endif
  3948. }
  3949. #endif
  3950. }
  3951. #if ENABLED(PINS_DEBUGGING)
  3952. #include "pinsDebug.h"
  3953. /**
  3954. * M43: Pin report and debug
  3955. *
  3956. * E<bool> Enable / disable background endstop monitoring
  3957. * - Machine continues to operate
  3958. * - Reports changes to endstops
  3959. * - Toggles LED when an endstop changes
  3960. *
  3961. * or
  3962. *
  3963. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  3964. * W<bool> Watch pins -reporting changes- until reset, click, or M108.
  3965. * I<bool> Flag to ignore Marlin's pin protection.
  3966. *
  3967. */
  3968. inline void gcode_M43() {
  3969. // Enable or disable endstop monitoring
  3970. if (code_seen('E')) {
  3971. endstop_monitor_flag = code_value_bool();
  3972. SERIAL_PROTOCOLPGM("endstop monitor ");
  3973. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  3974. SERIAL_PROTOCOLLNPGM("abled");
  3975. return;
  3976. }
  3977. // Get the range of pins to test or watch
  3978. int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
  3979. if (code_seen('P')) {
  3980. first_pin = last_pin = code_value_byte();
  3981. if (first_pin > NUM_DIGITAL_PINS - 1) return;
  3982. }
  3983. bool ignore_protection = code_seen('I') ? code_value_bool() : false;
  3984. // Watch until click, M108, or reset
  3985. if (code_seen('W') && code_value_bool()) { // watch digital pins
  3986. byte pin_state[last_pin - first_pin + 1];
  3987. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  3988. if (pin_is_protected(pin) && !ignore_protection) continue;
  3989. pinMode(pin, INPUT_PULLUP);
  3990. // if (IS_ANALOG(pin))
  3991. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  3992. // else
  3993. pin_state[pin - first_pin] = digitalRead(pin);
  3994. }
  3995. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  3996. wait_for_user = true;
  3997. #endif
  3998. for(;;) {
  3999. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  4000. if (pin_is_protected(pin)) continue;
  4001. byte val;
  4002. // if (IS_ANALOG(pin))
  4003. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  4004. // else
  4005. val = digitalRead(pin);
  4006. if (val != pin_state[pin - first_pin]) {
  4007. report_pin_state(pin);
  4008. pin_state[pin - first_pin] = val;
  4009. }
  4010. }
  4011. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4012. if (!wait_for_user) break;
  4013. #endif
  4014. safe_delay(500);
  4015. }
  4016. return;
  4017. }
  4018. // Report current state of selected pin(s)
  4019. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  4020. report_pin_state_extended(pin, ignore_protection);
  4021. }
  4022. #endif // PINS_DEBUGGING
  4023. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  4024. /**
  4025. * M48: Z probe repeatability measurement function.
  4026. *
  4027. * Usage:
  4028. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  4029. * P = Number of sampled points (4-50, default 10)
  4030. * X = Sample X position
  4031. * Y = Sample Y position
  4032. * V = Verbose level (0-4, default=1)
  4033. * E = Engage Z probe for each reading
  4034. * L = Number of legs of movement before probe
  4035. * S = Schizoid (Or Star if you prefer)
  4036. *
  4037. * This function assumes the bed has been homed. Specifically, that a G28 command
  4038. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  4039. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4040. * regenerated.
  4041. */
  4042. inline void gcode_M48() {
  4043. if (axis_unhomed_error(true, true, true)) return;
  4044. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4045. if (verbose_level < 0 || verbose_level > 4) {
  4046. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  4047. return;
  4048. }
  4049. if (verbose_level > 0)
  4050. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  4051. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  4052. if (n_samples < 4 || n_samples > 50) {
  4053. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  4054. return;
  4055. }
  4056. float X_current = current_position[X_AXIS],
  4057. Y_current = current_position[Y_AXIS];
  4058. bool stow_probe_after_each = code_seen('E');
  4059. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  4060. #if DISABLED(DELTA)
  4061. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  4062. out_of_range_error(PSTR("X"));
  4063. return;
  4064. }
  4065. #endif
  4066. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4067. #if DISABLED(DELTA)
  4068. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  4069. out_of_range_error(PSTR("Y"));
  4070. return;
  4071. }
  4072. #else
  4073. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4074. if (!position_is_reachable(pos, true)) {
  4075. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4076. return;
  4077. }
  4078. #endif
  4079. bool seen_L = code_seen('L');
  4080. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4081. if (n_legs > 15) {
  4082. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4083. return;
  4084. }
  4085. if (n_legs == 1) n_legs = 2;
  4086. bool schizoid_flag = code_seen('S');
  4087. if (schizoid_flag && !seen_L) n_legs = 7;
  4088. /**
  4089. * Now get everything to the specified probe point So we can safely do a
  4090. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4091. * we don't want to use that as a starting point for each probe.
  4092. */
  4093. if (verbose_level > 2)
  4094. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4095. // Disable bed level correction in M48 because we want the raw data when we probe
  4096. #if HAS_ABL
  4097. reset_bed_level();
  4098. #endif
  4099. setup_for_endstop_or_probe_move();
  4100. // Move to the first point, deploy, and probe
  4101. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4102. randomSeed(millis());
  4103. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4104. for (uint8_t n = 0; n < n_samples; n++) {
  4105. if (n_legs) {
  4106. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4107. float angle = random(0.0, 360.0),
  4108. radius = random(
  4109. #if ENABLED(DELTA)
  4110. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4111. #else
  4112. 5, X_MAX_LENGTH / 8
  4113. #endif
  4114. );
  4115. if (verbose_level > 3) {
  4116. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4117. SERIAL_ECHOPAIR(" angle: ", angle);
  4118. SERIAL_ECHOPGM(" Direction: ");
  4119. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4120. SERIAL_ECHOLNPGM("Clockwise");
  4121. }
  4122. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4123. double delta_angle;
  4124. if (schizoid_flag)
  4125. // The points of a 5 point star are 72 degrees apart. We need to
  4126. // skip a point and go to the next one on the star.
  4127. delta_angle = dir * 2.0 * 72.0;
  4128. else
  4129. // If we do this line, we are just trying to move further
  4130. // around the circle.
  4131. delta_angle = dir * (float) random(25, 45);
  4132. angle += delta_angle;
  4133. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4134. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4135. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4136. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4137. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4138. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4139. #if DISABLED(DELTA)
  4140. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4141. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4142. #else
  4143. // If we have gone out too far, we can do a simple fix and scale the numbers
  4144. // back in closer to the origin.
  4145. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4146. X_current /= 1.25;
  4147. Y_current /= 1.25;
  4148. if (verbose_level > 3) {
  4149. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4150. SERIAL_ECHOLNPAIR(", ", Y_current);
  4151. }
  4152. }
  4153. #endif
  4154. if (verbose_level > 3) {
  4155. SERIAL_PROTOCOLPGM("Going to:");
  4156. SERIAL_ECHOPAIR(" X", X_current);
  4157. SERIAL_ECHOPAIR(" Y", Y_current);
  4158. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4159. }
  4160. do_blocking_move_to_xy(X_current, Y_current);
  4161. } // n_legs loop
  4162. } // n_legs
  4163. // Probe a single point
  4164. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4165. /**
  4166. * Get the current mean for the data points we have so far
  4167. */
  4168. double sum = 0.0;
  4169. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4170. mean = sum / (n + 1);
  4171. NOMORE(min, sample_set[n]);
  4172. NOLESS(max, sample_set[n]);
  4173. /**
  4174. * Now, use that mean to calculate the standard deviation for the
  4175. * data points we have so far
  4176. */
  4177. sum = 0.0;
  4178. for (uint8_t j = 0; j <= n; j++)
  4179. sum += sq(sample_set[j] - mean);
  4180. sigma = sqrt(sum / (n + 1));
  4181. if (verbose_level > 0) {
  4182. if (verbose_level > 1) {
  4183. SERIAL_PROTOCOL(n + 1);
  4184. SERIAL_PROTOCOLPGM(" of ");
  4185. SERIAL_PROTOCOL((int)n_samples);
  4186. SERIAL_PROTOCOLPGM(": z: ");
  4187. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4188. if (verbose_level > 2) {
  4189. SERIAL_PROTOCOLPGM(" mean: ");
  4190. SERIAL_PROTOCOL_F(mean, 4);
  4191. SERIAL_PROTOCOLPGM(" sigma: ");
  4192. SERIAL_PROTOCOL_F(sigma, 6);
  4193. SERIAL_PROTOCOLPGM(" min: ");
  4194. SERIAL_PROTOCOL_F(min, 3);
  4195. SERIAL_PROTOCOLPGM(" max: ");
  4196. SERIAL_PROTOCOL_F(max, 3);
  4197. SERIAL_PROTOCOLPGM(" range: ");
  4198. SERIAL_PROTOCOL_F(max-min, 3);
  4199. }
  4200. }
  4201. SERIAL_EOL;
  4202. }
  4203. } // End of probe loop
  4204. if (STOW_PROBE()) return;
  4205. SERIAL_PROTOCOLPGM("Finished!");
  4206. SERIAL_EOL;
  4207. if (verbose_level > 0) {
  4208. SERIAL_PROTOCOLPGM("Mean: ");
  4209. SERIAL_PROTOCOL_F(mean, 6);
  4210. SERIAL_PROTOCOLPGM(" Min: ");
  4211. SERIAL_PROTOCOL_F(min, 3);
  4212. SERIAL_PROTOCOLPGM(" Max: ");
  4213. SERIAL_PROTOCOL_F(max, 3);
  4214. SERIAL_PROTOCOLPGM(" Range: ");
  4215. SERIAL_PROTOCOL_F(max-min, 3);
  4216. SERIAL_EOL;
  4217. }
  4218. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4219. SERIAL_PROTOCOL_F(sigma, 6);
  4220. SERIAL_EOL;
  4221. SERIAL_EOL;
  4222. clean_up_after_endstop_or_probe_move();
  4223. report_current_position();
  4224. }
  4225. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4226. /**
  4227. * M75: Start print timer
  4228. */
  4229. inline void gcode_M75() { print_job_timer.start(); }
  4230. /**
  4231. * M76: Pause print timer
  4232. */
  4233. inline void gcode_M76() { print_job_timer.pause(); }
  4234. /**
  4235. * M77: Stop print timer
  4236. */
  4237. inline void gcode_M77() { print_job_timer.stop(); }
  4238. #if ENABLED(PRINTCOUNTER)
  4239. /**
  4240. * M78: Show print statistics
  4241. */
  4242. inline void gcode_M78() {
  4243. // "M78 S78" will reset the statistics
  4244. if (code_seen('S') && code_value_int() == 78)
  4245. print_job_timer.initStats();
  4246. else
  4247. print_job_timer.showStats();
  4248. }
  4249. #endif
  4250. /**
  4251. * M104: Set hot end temperature
  4252. */
  4253. inline void gcode_M104() {
  4254. if (get_target_extruder_from_command(104)) return;
  4255. if (DEBUGGING(DRYRUN)) return;
  4256. #if ENABLED(SINGLENOZZLE)
  4257. if (target_extruder != active_extruder) return;
  4258. #endif
  4259. if (code_seen('S')) {
  4260. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4261. #if ENABLED(DUAL_X_CARRIAGE)
  4262. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4263. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4264. #endif
  4265. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4266. /**
  4267. * Stop the timer at the end of print, starting is managed by
  4268. * 'heat and wait' M109.
  4269. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4270. * stand by mode, for instance in a dual extruder setup, without affecting
  4271. * the running print timer.
  4272. */
  4273. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4274. print_job_timer.stop();
  4275. LCD_MESSAGEPGM(WELCOME_MSG);
  4276. }
  4277. #endif
  4278. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4279. }
  4280. #if ENABLED(AUTOTEMP)
  4281. planner.autotemp_M104_M109();
  4282. #endif
  4283. }
  4284. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4285. void print_heaterstates() {
  4286. #if HAS_TEMP_HOTEND
  4287. SERIAL_PROTOCOLPGM(" T:");
  4288. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4289. SERIAL_PROTOCOLPGM(" /");
  4290. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4291. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4292. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4293. SERIAL_CHAR(')');
  4294. #endif
  4295. #endif
  4296. #if HAS_TEMP_BED
  4297. SERIAL_PROTOCOLPGM(" B:");
  4298. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4299. SERIAL_PROTOCOLPGM(" /");
  4300. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4301. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4302. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4303. SERIAL_CHAR(')');
  4304. #endif
  4305. #endif
  4306. #if HOTENDS > 1
  4307. HOTEND_LOOP() {
  4308. SERIAL_PROTOCOLPAIR(" T", e);
  4309. SERIAL_PROTOCOLCHAR(':');
  4310. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4311. SERIAL_PROTOCOLPGM(" /");
  4312. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4313. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4314. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4315. SERIAL_CHAR(')');
  4316. #endif
  4317. }
  4318. #endif
  4319. SERIAL_PROTOCOLPGM(" @:");
  4320. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4321. #if HAS_TEMP_BED
  4322. SERIAL_PROTOCOLPGM(" B@:");
  4323. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4324. #endif
  4325. #if HOTENDS > 1
  4326. HOTEND_LOOP() {
  4327. SERIAL_PROTOCOLPAIR(" @", e);
  4328. SERIAL_PROTOCOLCHAR(':');
  4329. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4330. }
  4331. #endif
  4332. }
  4333. #endif
  4334. /**
  4335. * M105: Read hot end and bed temperature
  4336. */
  4337. inline void gcode_M105() {
  4338. if (get_target_extruder_from_command(105)) return;
  4339. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4340. SERIAL_PROTOCOLPGM(MSG_OK);
  4341. print_heaterstates();
  4342. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4343. SERIAL_ERROR_START;
  4344. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4345. #endif
  4346. SERIAL_EOL;
  4347. }
  4348. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  4349. static uint8_t auto_report_temp_interval;
  4350. static millis_t next_temp_report_ms;
  4351. /**
  4352. * M155: Set temperature auto-report interval. M155 S<seconds>
  4353. */
  4354. inline void gcode_M155() {
  4355. if (code_seen('S')) {
  4356. auto_report_temp_interval = code_value_byte();
  4357. NOMORE(auto_report_temp_interval, 60);
  4358. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4359. }
  4360. }
  4361. inline void auto_report_temperatures() {
  4362. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  4363. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4364. print_heaterstates();
  4365. }
  4366. }
  4367. #endif // AUTO_REPORT_TEMPERATURES
  4368. #if FAN_COUNT > 0
  4369. /**
  4370. * M106: Set Fan Speed
  4371. *
  4372. * S<int> Speed between 0-255
  4373. * P<index> Fan index, if more than one fan
  4374. */
  4375. inline void gcode_M106() {
  4376. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4377. p = code_seen('P') ? code_value_ushort() : 0;
  4378. NOMORE(s, 255);
  4379. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4380. }
  4381. /**
  4382. * M107: Fan Off
  4383. */
  4384. inline void gcode_M107() {
  4385. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4386. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4387. }
  4388. #endif // FAN_COUNT > 0
  4389. #if DISABLED(EMERGENCY_PARSER)
  4390. /**
  4391. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4392. */
  4393. inline void gcode_M108() { wait_for_heatup = false; }
  4394. /**
  4395. * M112: Emergency Stop
  4396. */
  4397. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4398. /**
  4399. * M410: Quickstop - Abort all planned moves
  4400. *
  4401. * This will stop the carriages mid-move, so most likely they
  4402. * will be out of sync with the stepper position after this.
  4403. */
  4404. inline void gcode_M410() { quickstop_stepper(); }
  4405. #endif
  4406. #ifndef MIN_COOLING_SLOPE_DEG
  4407. #define MIN_COOLING_SLOPE_DEG 1.50
  4408. #endif
  4409. #ifndef MIN_COOLING_SLOPE_TIME
  4410. #define MIN_COOLING_SLOPE_TIME 60
  4411. #endif
  4412. /**
  4413. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4414. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4415. */
  4416. inline void gcode_M109() {
  4417. if (get_target_extruder_from_command(109)) return;
  4418. if (DEBUGGING(DRYRUN)) return;
  4419. #if ENABLED(SINGLENOZZLE)
  4420. if (target_extruder != active_extruder) return;
  4421. #endif
  4422. bool no_wait_for_cooling = code_seen('S');
  4423. if (no_wait_for_cooling || code_seen('R')) {
  4424. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4425. #if ENABLED(DUAL_X_CARRIAGE)
  4426. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4427. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4428. #endif
  4429. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4430. /**
  4431. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4432. * stand by mode, for instance in a dual extruder setup, without affecting
  4433. * the running print timer.
  4434. */
  4435. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4436. print_job_timer.stop();
  4437. LCD_MESSAGEPGM(WELCOME_MSG);
  4438. }
  4439. /**
  4440. * We do not check if the timer is already running because this check will
  4441. * be done for us inside the Stopwatch::start() method thus a running timer
  4442. * will not restart.
  4443. */
  4444. else print_job_timer.start();
  4445. #endif
  4446. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4447. }
  4448. #if ENABLED(AUTOTEMP)
  4449. planner.autotemp_M104_M109();
  4450. #endif
  4451. #if TEMP_RESIDENCY_TIME > 0
  4452. millis_t residency_start_ms = 0;
  4453. // Loop until the temperature has stabilized
  4454. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4455. #else
  4456. // Loop until the temperature is very close target
  4457. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4458. #endif //TEMP_RESIDENCY_TIME > 0
  4459. float theTarget = -1.0, old_temp = 9999.0;
  4460. bool wants_to_cool = false;
  4461. wait_for_heatup = true;
  4462. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4463. KEEPALIVE_STATE(NOT_BUSY);
  4464. do {
  4465. // Target temperature might be changed during the loop
  4466. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4467. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4468. theTarget = thermalManager.degTargetHotend(target_extruder);
  4469. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4470. if (no_wait_for_cooling && wants_to_cool) break;
  4471. }
  4472. now = millis();
  4473. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4474. next_temp_ms = now + 1000UL;
  4475. print_heaterstates();
  4476. #if TEMP_RESIDENCY_TIME > 0
  4477. SERIAL_PROTOCOLPGM(" W:");
  4478. if (residency_start_ms) {
  4479. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4480. SERIAL_PROTOCOLLN(rem);
  4481. }
  4482. else {
  4483. SERIAL_PROTOCOLLNPGM("?");
  4484. }
  4485. #else
  4486. SERIAL_EOL;
  4487. #endif
  4488. }
  4489. idle();
  4490. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4491. float temp = thermalManager.degHotend(target_extruder);
  4492. #if TEMP_RESIDENCY_TIME > 0
  4493. float temp_diff = fabs(theTarget - temp);
  4494. if (!residency_start_ms) {
  4495. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4496. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4497. }
  4498. else if (temp_diff > TEMP_HYSTERESIS) {
  4499. // Restart the timer whenever the temperature falls outside the hysteresis.
  4500. residency_start_ms = now;
  4501. }
  4502. #endif //TEMP_RESIDENCY_TIME > 0
  4503. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4504. if (wants_to_cool) {
  4505. // break after MIN_COOLING_SLOPE_TIME seconds
  4506. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4507. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4508. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4509. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4510. old_temp = temp;
  4511. }
  4512. }
  4513. } while (wait_for_heatup && TEMP_CONDITIONS);
  4514. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4515. KEEPALIVE_STATE(IN_HANDLER);
  4516. }
  4517. #if HAS_TEMP_BED
  4518. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4519. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4520. #endif
  4521. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4522. #define MIN_COOLING_SLOPE_TIME_BED 60
  4523. #endif
  4524. /**
  4525. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4526. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4527. */
  4528. inline void gcode_M190() {
  4529. if (DEBUGGING(DRYRUN)) return;
  4530. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4531. bool no_wait_for_cooling = code_seen('S');
  4532. if (no_wait_for_cooling || code_seen('R')) {
  4533. thermalManager.setTargetBed(code_value_temp_abs());
  4534. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4535. if (code_value_temp_abs() > BED_MINTEMP) {
  4536. /**
  4537. * We start the timer when 'heating and waiting' command arrives, LCD
  4538. * functions never wait. Cooling down managed by extruders.
  4539. *
  4540. * We do not check if the timer is already running because this check will
  4541. * be done for us inside the Stopwatch::start() method thus a running timer
  4542. * will not restart.
  4543. */
  4544. print_job_timer.start();
  4545. }
  4546. #endif
  4547. }
  4548. #if TEMP_BED_RESIDENCY_TIME > 0
  4549. millis_t residency_start_ms = 0;
  4550. // Loop until the temperature has stabilized
  4551. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4552. #else
  4553. // Loop until the temperature is very close target
  4554. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4555. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4556. float theTarget = -1.0, old_temp = 9999.0;
  4557. bool wants_to_cool = false;
  4558. wait_for_heatup = true;
  4559. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4560. KEEPALIVE_STATE(NOT_BUSY);
  4561. target_extruder = active_extruder; // for print_heaterstates
  4562. do {
  4563. // Target temperature might be changed during the loop
  4564. if (theTarget != thermalManager.degTargetBed()) {
  4565. wants_to_cool = thermalManager.isCoolingBed();
  4566. theTarget = thermalManager.degTargetBed();
  4567. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4568. if (no_wait_for_cooling && wants_to_cool) break;
  4569. }
  4570. now = millis();
  4571. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4572. next_temp_ms = now + 1000UL;
  4573. print_heaterstates();
  4574. #if TEMP_BED_RESIDENCY_TIME > 0
  4575. SERIAL_PROTOCOLPGM(" W:");
  4576. if (residency_start_ms) {
  4577. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4578. SERIAL_PROTOCOLLN(rem);
  4579. }
  4580. else {
  4581. SERIAL_PROTOCOLLNPGM("?");
  4582. }
  4583. #else
  4584. SERIAL_EOL;
  4585. #endif
  4586. }
  4587. idle();
  4588. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4589. float temp = thermalManager.degBed();
  4590. #if TEMP_BED_RESIDENCY_TIME > 0
  4591. float temp_diff = fabs(theTarget - temp);
  4592. if (!residency_start_ms) {
  4593. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4594. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4595. }
  4596. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4597. // Restart the timer whenever the temperature falls outside the hysteresis.
  4598. residency_start_ms = now;
  4599. }
  4600. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4601. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4602. if (wants_to_cool) {
  4603. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4604. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4605. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4606. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4607. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4608. old_temp = temp;
  4609. }
  4610. }
  4611. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4612. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4613. KEEPALIVE_STATE(IN_HANDLER);
  4614. }
  4615. #endif // HAS_TEMP_BED
  4616. /**
  4617. * M110: Set Current Line Number
  4618. */
  4619. inline void gcode_M110() {
  4620. if (code_seen('N')) gcode_N = code_value_long();
  4621. }
  4622. /**
  4623. * M111: Set the debug level
  4624. */
  4625. inline void gcode_M111() {
  4626. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4627. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4628. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4629. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4630. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4631. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4632. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4633. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4634. #endif
  4635. const static char* const debug_strings[] PROGMEM = {
  4636. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4637. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4638. str_debug_32
  4639. #endif
  4640. };
  4641. SERIAL_ECHO_START;
  4642. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4643. if (marlin_debug_flags) {
  4644. uint8_t comma = 0;
  4645. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4646. if (TEST(marlin_debug_flags, i)) {
  4647. if (comma++) SERIAL_CHAR(',');
  4648. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4649. }
  4650. }
  4651. }
  4652. else {
  4653. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4654. }
  4655. SERIAL_EOL;
  4656. }
  4657. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4658. /**
  4659. * M113: Get or set Host Keepalive interval (0 to disable)
  4660. *
  4661. * S<seconds> Optional. Set the keepalive interval.
  4662. */
  4663. inline void gcode_M113() {
  4664. if (code_seen('S')) {
  4665. host_keepalive_interval = code_value_byte();
  4666. NOMORE(host_keepalive_interval, 60);
  4667. }
  4668. else {
  4669. SERIAL_ECHO_START;
  4670. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4671. }
  4672. }
  4673. #endif
  4674. #if ENABLED(BARICUDA)
  4675. #if HAS_HEATER_1
  4676. /**
  4677. * M126: Heater 1 valve open
  4678. */
  4679. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4680. /**
  4681. * M127: Heater 1 valve close
  4682. */
  4683. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4684. #endif
  4685. #if HAS_HEATER_2
  4686. /**
  4687. * M128: Heater 2 valve open
  4688. */
  4689. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4690. /**
  4691. * M129: Heater 2 valve close
  4692. */
  4693. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4694. #endif
  4695. #endif //BARICUDA
  4696. /**
  4697. * M140: Set bed temperature
  4698. */
  4699. inline void gcode_M140() {
  4700. if (DEBUGGING(DRYRUN)) return;
  4701. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4702. }
  4703. #if ENABLED(ULTIPANEL)
  4704. /**
  4705. * M145: Set the heatup state for a material in the LCD menu
  4706. * S<material> (0=PLA, 1=ABS)
  4707. * H<hotend temp>
  4708. * B<bed temp>
  4709. * F<fan speed>
  4710. */
  4711. inline void gcode_M145() {
  4712. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  4713. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  4714. SERIAL_ERROR_START;
  4715. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4716. }
  4717. else {
  4718. int v;
  4719. if (code_seen('H')) {
  4720. v = code_value_int();
  4721. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4722. }
  4723. if (code_seen('F')) {
  4724. v = code_value_int();
  4725. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  4726. }
  4727. #if TEMP_SENSOR_BED != 0
  4728. if (code_seen('B')) {
  4729. v = code_value_int();
  4730. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4731. }
  4732. #endif
  4733. }
  4734. }
  4735. #endif // ULTIPANEL
  4736. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4737. /**
  4738. * M149: Set temperature units
  4739. */
  4740. inline void gcode_M149() {
  4741. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  4742. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  4743. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  4744. }
  4745. #endif
  4746. #if HAS_POWER_SWITCH
  4747. /**
  4748. * M80: Turn on Power Supply
  4749. */
  4750. inline void gcode_M80() {
  4751. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4752. /**
  4753. * If you have a switch on suicide pin, this is useful
  4754. * if you want to start another print with suicide feature after
  4755. * a print without suicide...
  4756. */
  4757. #if HAS_SUICIDE
  4758. OUT_WRITE(SUICIDE_PIN, HIGH);
  4759. #endif
  4760. #if ENABLED(ULTIPANEL)
  4761. powersupply = true;
  4762. LCD_MESSAGEPGM(WELCOME_MSG);
  4763. lcd_update();
  4764. #endif
  4765. }
  4766. #endif // HAS_POWER_SWITCH
  4767. /**
  4768. * M81: Turn off Power, including Power Supply, if there is one.
  4769. *
  4770. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4771. */
  4772. inline void gcode_M81() {
  4773. thermalManager.disable_all_heaters();
  4774. stepper.finish_and_disable();
  4775. #if FAN_COUNT > 0
  4776. #if FAN_COUNT > 1
  4777. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4778. #else
  4779. fanSpeeds[0] = 0;
  4780. #endif
  4781. #endif
  4782. delay(1000); // Wait 1 second before switching off
  4783. #if HAS_SUICIDE
  4784. stepper.synchronize();
  4785. suicide();
  4786. #elif HAS_POWER_SWITCH
  4787. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4788. #endif
  4789. #if ENABLED(ULTIPANEL)
  4790. #if HAS_POWER_SWITCH
  4791. powersupply = false;
  4792. #endif
  4793. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4794. lcd_update();
  4795. #endif
  4796. }
  4797. /**
  4798. * M82: Set E codes absolute (default)
  4799. */
  4800. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4801. /**
  4802. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4803. */
  4804. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4805. /**
  4806. * M18, M84: Disable all stepper motors
  4807. */
  4808. inline void gcode_M18_M84() {
  4809. if (code_seen('S')) {
  4810. stepper_inactive_time = code_value_millis_from_seconds();
  4811. }
  4812. else {
  4813. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4814. if (all_axis) {
  4815. stepper.finish_and_disable();
  4816. }
  4817. else {
  4818. stepper.synchronize();
  4819. if (code_seen('X')) disable_x();
  4820. if (code_seen('Y')) disable_y();
  4821. if (code_seen('Z')) disable_z();
  4822. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4823. if (code_seen('E')) {
  4824. disable_e0();
  4825. disable_e1();
  4826. disable_e2();
  4827. disable_e3();
  4828. }
  4829. #endif
  4830. }
  4831. }
  4832. }
  4833. /**
  4834. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4835. */
  4836. inline void gcode_M85() {
  4837. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4838. }
  4839. /**
  4840. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4841. * (Follows the same syntax as G92)
  4842. */
  4843. inline void gcode_M92() {
  4844. LOOP_XYZE(i) {
  4845. if (code_seen(axis_codes[i])) {
  4846. if (i == E_AXIS) {
  4847. float value = code_value_per_axis_unit(i);
  4848. if (value < 20.0) {
  4849. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4850. planner.max_jerk[E_AXIS] *= factor;
  4851. planner.max_feedrate_mm_s[E_AXIS] *= factor;
  4852. planner.max_acceleration_steps_per_s2[E_AXIS] *= factor;
  4853. }
  4854. planner.axis_steps_per_mm[E_AXIS] = value;
  4855. }
  4856. else {
  4857. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4858. }
  4859. }
  4860. }
  4861. planner.refresh_positioning();
  4862. }
  4863. /**
  4864. * Output the current position to serial
  4865. */
  4866. static void report_current_position() {
  4867. SERIAL_PROTOCOLPGM("X:");
  4868. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4869. SERIAL_PROTOCOLPGM(" Y:");
  4870. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4871. SERIAL_PROTOCOLPGM(" Z:");
  4872. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4873. SERIAL_PROTOCOLPGM(" E:");
  4874. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4875. stepper.report_positions();
  4876. #if IS_SCARA
  4877. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  4878. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  4879. SERIAL_EOL;
  4880. #endif
  4881. }
  4882. /**
  4883. * M114: Output current position to serial port
  4884. */
  4885. inline void gcode_M114() { report_current_position(); }
  4886. /**
  4887. * M115: Capabilities string
  4888. */
  4889. inline void gcode_M115() {
  4890. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  4891. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  4892. // EEPROM (M500, M501)
  4893. SERIAL_PROTOCOLPGM("Cap:");
  4894. #if ENABLED(EEPROM_SETTINGS)
  4895. SERIAL_PROTOCOLLNPGM("EEPROM:1");
  4896. #else
  4897. SERIAL_PROTOCOLLNPGM("EEPROM:0");
  4898. #endif
  4899. // AUTOREPORT_TEMP (M155)
  4900. SERIAL_PROTOCOLPGM("Cap:");
  4901. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  4902. SERIAL_PROTOCOLLNPGM("AUTOREPORT_TEMP:1");
  4903. #else
  4904. SERIAL_PROTOCOLLNPGM("AUTOREPORT_TEMP:0");
  4905. #endif
  4906. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  4907. SERIAL_PROTOCOLPGM("Cap:");
  4908. SERIAL_PROTOCOLPGM("PROGRESS:0");
  4909. // AUTOLEVEL (G29)
  4910. SERIAL_PROTOCOLPGM("Cap:");
  4911. #if HAS_ABL
  4912. SERIAL_PROTOCOLLNPGM("AUTOLEVEL:1");
  4913. #else
  4914. SERIAL_PROTOCOLLNPGM("AUTOLEVEL:0");
  4915. #endif
  4916. // Z_PROBE (G30)
  4917. SERIAL_PROTOCOLPGM("Cap:");
  4918. #if HAS_BED_PROBE
  4919. SERIAL_PROTOCOLLNPGM("Z_PROBE:1");
  4920. #else
  4921. SERIAL_PROTOCOLLNPGM("Z_PROBE:0");
  4922. #endif
  4923. // SOFTWARE_POWER (G30)
  4924. SERIAL_PROTOCOLPGM("Cap:");
  4925. #if HAS_POWER_SWITCH
  4926. SERIAL_PROTOCOLLNPGM("SOFTWARE_POWER:1");
  4927. #else
  4928. SERIAL_PROTOCOLLNPGM("SOFTWARE_POWER:0");
  4929. #endif
  4930. // TOGGLE_LIGHTS (M355)
  4931. SERIAL_PROTOCOLPGM("Cap:");
  4932. #if HAS_CASE_LIGHT
  4933. SERIAL_PROTOCOLLNPGM("TOGGLE_LIGHTS:1");
  4934. #else
  4935. SERIAL_PROTOCOLLNPGM("TOGGLE_LIGHTS:0");
  4936. #endif
  4937. // EMERGENCY_PARSER (M108, M112, M410)
  4938. SERIAL_PROTOCOLPGM("Cap:");
  4939. #if ENABLED(EMERGENCY_PARSER)
  4940. SERIAL_PROTOCOLLNPGM("EMERGENCY_PARSER:1");
  4941. #else
  4942. SERIAL_PROTOCOLLNPGM("EMERGENCY_PARSER:0");
  4943. #endif
  4944. #endif // EXTENDED_CAPABILITIES_REPORT
  4945. }
  4946. /**
  4947. * M117: Set LCD Status Message
  4948. */
  4949. inline void gcode_M117() {
  4950. lcd_setstatus(current_command_args);
  4951. }
  4952. /**
  4953. * M119: Output endstop states to serial output
  4954. */
  4955. inline void gcode_M119() { endstops.M119(); }
  4956. /**
  4957. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4958. */
  4959. inline void gcode_M120() { endstops.enable_globally(true); }
  4960. /**
  4961. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4962. */
  4963. inline void gcode_M121() { endstops.enable_globally(false); }
  4964. #if ENABLED(HAVE_TMC2130DRIVER)
  4965. /**
  4966. * M122: Output Trinamic TMC2130 status to serial output. Very bad formatting.
  4967. */
  4968. static void tmc2130_report(Trinamic_TMC2130 &stepr, const char *name) {
  4969. stepr.read_STAT();
  4970. SERIAL_PROTOCOL(name);
  4971. SERIAL_PROTOCOL(": ");
  4972. stepr.isReset() ? SERIAL_PROTOCOLPGM("RESET ") : SERIAL_PROTOCOLPGM("----- ");
  4973. stepr.isError() ? SERIAL_PROTOCOLPGM("ERROR ") : SERIAL_PROTOCOLPGM("----- ");
  4974. stepr.isStallguard() ? SERIAL_PROTOCOLPGM("SLGRD ") : SERIAL_PROTOCOLPGM("----- ");
  4975. stepr.isStandstill() ? SERIAL_PROTOCOLPGM("STILL ") : SERIAL_PROTOCOLPGM("----- ");
  4976. SERIAL_PROTOCOLLN(stepr.debug());
  4977. }
  4978. inline void gcode_M122() {
  4979. SERIAL_PROTOCOLLNPGM("Reporting TMC2130 status");
  4980. #if ENABLED(X_IS_TMC2130)
  4981. tmc2130_report(stepperX, "X");
  4982. #endif
  4983. #if ENABLED(X2_IS_TMC2130)
  4984. tmc2130_report(stepperX2, "X2");
  4985. #endif
  4986. #if ENABLED(Y_IS_TMC2130)
  4987. tmc2130_report(stepperY, "Y");
  4988. #endif
  4989. #if ENABLED(Y2_IS_TMC2130)
  4990. tmc2130_report(stepperY2, "Y2");
  4991. #endif
  4992. #if ENABLED(Z_IS_TMC2130)
  4993. tmc2130_report(stepperZ, "Z");
  4994. #endif
  4995. #if ENABLED(Z2_IS_TMC2130)
  4996. tmc2130_report(stepperZ2, "Z2");
  4997. #endif
  4998. #if ENABLED(E0_IS_TMC2130)
  4999. tmc2130_report(stepperE0, "E0");
  5000. #endif
  5001. #if ENABLED(E1_IS_TMC2130)
  5002. tmc2130_report(stepperE1, "E1");
  5003. #endif
  5004. #if ENABLED(E2_IS_TMC2130)
  5005. tmc2130_report(stepperE2, "E2");
  5006. #endif
  5007. #if ENABLED(E3_IS_TMC2130)
  5008. tmc2130_report(stepperE3, "E3");
  5009. #endif
  5010. }
  5011. #endif // HAVE_TMC2130DRIVER
  5012. #if ENABLED(BLINKM)
  5013. /**
  5014. * M150: Set Status LED Color - Use R-U-B for R-G-B
  5015. */
  5016. inline void gcode_M150() {
  5017. SendColors(
  5018. code_seen('R') ? code_value_byte() : 0,
  5019. code_seen('U') ? code_value_byte() : 0,
  5020. code_seen('B') ? code_value_byte() : 0
  5021. );
  5022. }
  5023. #endif // BLINKM
  5024. /**
  5025. * M200: Set filament diameter and set E axis units to cubic units
  5026. *
  5027. * T<extruder> - Optional extruder number. Current extruder if omitted.
  5028. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  5029. */
  5030. inline void gcode_M200() {
  5031. if (get_target_extruder_from_command(200)) return;
  5032. if (code_seen('D')) {
  5033. // setting any extruder filament size disables volumetric on the assumption that
  5034. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5035. // for all extruders
  5036. volumetric_enabled = (code_value_linear_units() != 0.0);
  5037. if (volumetric_enabled) {
  5038. filament_size[target_extruder] = code_value_linear_units();
  5039. // make sure all extruders have some sane value for the filament size
  5040. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  5041. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  5042. }
  5043. }
  5044. else {
  5045. //reserved for setting filament diameter via UFID or filament measuring device
  5046. return;
  5047. }
  5048. calculate_volumetric_multipliers();
  5049. }
  5050. /**
  5051. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  5052. */
  5053. inline void gcode_M201() {
  5054. LOOP_XYZE(i) {
  5055. if (code_seen(axis_codes[i])) {
  5056. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  5057. }
  5058. }
  5059. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5060. planner.reset_acceleration_rates();
  5061. }
  5062. #if 0 // Not used for Sprinter/grbl gen6
  5063. inline void gcode_M202() {
  5064. LOOP_XYZE(i) {
  5065. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  5066. }
  5067. }
  5068. #endif
  5069. /**
  5070. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  5071. */
  5072. inline void gcode_M203() {
  5073. LOOP_XYZE(i)
  5074. if (code_seen(axis_codes[i]))
  5075. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  5076. }
  5077. /**
  5078. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  5079. *
  5080. * P = Printing moves
  5081. * R = Retract only (no X, Y, Z) moves
  5082. * T = Travel (non printing) moves
  5083. *
  5084. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  5085. */
  5086. inline void gcode_M204() {
  5087. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  5088. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  5089. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  5090. }
  5091. if (code_seen('P')) {
  5092. planner.acceleration = code_value_linear_units();
  5093. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  5094. }
  5095. if (code_seen('R')) {
  5096. planner.retract_acceleration = code_value_linear_units();
  5097. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  5098. }
  5099. if (code_seen('T')) {
  5100. planner.travel_acceleration = code_value_linear_units();
  5101. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  5102. }
  5103. }
  5104. /**
  5105. * M205: Set Advanced Settings
  5106. *
  5107. * S = Min Feed Rate (units/s)
  5108. * T = Min Travel Feed Rate (units/s)
  5109. * B = Min Segment Time (µs)
  5110. * X = Max X Jerk (units/sec^2)
  5111. * Y = Max Y Jerk (units/sec^2)
  5112. * Z = Max Z Jerk (units/sec^2)
  5113. * E = Max E Jerk (units/sec^2)
  5114. */
  5115. inline void gcode_M205() {
  5116. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  5117. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  5118. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  5119. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  5120. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5121. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  5122. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  5123. }
  5124. /**
  5125. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  5126. */
  5127. inline void gcode_M206() {
  5128. LOOP_XYZ(i)
  5129. if (code_seen(axis_codes[i]))
  5130. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  5131. #if ENABLED(MORGAN_SCARA)
  5132. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  5133. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  5134. #endif
  5135. SYNC_PLAN_POSITION_KINEMATIC();
  5136. report_current_position();
  5137. }
  5138. #if ENABLED(DELTA)
  5139. /**
  5140. * M665: Set delta configurations
  5141. *
  5142. * L = diagonal rod
  5143. * R = delta radius
  5144. * S = segments per second
  5145. * A = Alpha (Tower 1) diagonal rod trim
  5146. * B = Beta (Tower 2) diagonal rod trim
  5147. * C = Gamma (Tower 3) diagonal rod trim
  5148. */
  5149. inline void gcode_M665() {
  5150. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5151. if (code_seen('R')) delta_radius = code_value_linear_units();
  5152. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5153. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  5154. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  5155. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  5156. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5157. }
  5158. /**
  5159. * M666: Set delta endstop adjustment
  5160. */
  5161. inline void gcode_M666() {
  5162. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5163. if (DEBUGGING(LEVELING)) {
  5164. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5165. }
  5166. #endif
  5167. LOOP_XYZ(i) {
  5168. if (code_seen(axis_codes[i])) {
  5169. endstop_adj[i] = code_value_axis_units(i);
  5170. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5171. if (DEBUGGING(LEVELING)) {
  5172. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5173. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5174. }
  5175. #endif
  5176. }
  5177. }
  5178. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5179. if (DEBUGGING(LEVELING)) {
  5180. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5181. }
  5182. #endif
  5183. }
  5184. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5185. /**
  5186. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5187. */
  5188. inline void gcode_M666() {
  5189. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5190. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5191. }
  5192. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5193. #if ENABLED(FWRETRACT)
  5194. /**
  5195. * M207: Set firmware retraction values
  5196. *
  5197. * S[+units] retract_length
  5198. * W[+units] retract_length_swap (multi-extruder)
  5199. * F[units/min] retract_feedrate_mm_s
  5200. * Z[units] retract_zlift
  5201. */
  5202. inline void gcode_M207() {
  5203. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5204. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5205. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5206. #if EXTRUDERS > 1
  5207. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5208. #endif
  5209. }
  5210. /**
  5211. * M208: Set firmware un-retraction values
  5212. *
  5213. * S[+units] retract_recover_length (in addition to M207 S*)
  5214. * W[+units] retract_recover_length_swap (multi-extruder)
  5215. * F[units/min] retract_recover_feedrate_mm_s
  5216. */
  5217. inline void gcode_M208() {
  5218. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5219. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5220. #if EXTRUDERS > 1
  5221. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5222. #endif
  5223. }
  5224. /**
  5225. * M209: Enable automatic retract (M209 S1)
  5226. * For slicers that don't support G10/11, reversed extrude-only
  5227. * moves will be classified as retraction.
  5228. */
  5229. inline void gcode_M209() {
  5230. if (code_seen('S')) {
  5231. autoretract_enabled = code_value_bool();
  5232. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5233. }
  5234. }
  5235. #endif // FWRETRACT
  5236. /**
  5237. * M211: Enable, Disable, and/or Report software endstops
  5238. *
  5239. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  5240. */
  5241. inline void gcode_M211() {
  5242. SERIAL_ECHO_START;
  5243. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5244. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5245. #endif
  5246. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5247. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5248. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5249. #else
  5250. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5251. SERIAL_ECHOPGM(MSG_OFF);
  5252. #endif
  5253. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  5254. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  5255. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  5256. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  5257. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  5258. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  5259. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  5260. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  5261. }
  5262. #if HOTENDS > 1
  5263. /**
  5264. * M218 - set hotend offset (in linear units)
  5265. *
  5266. * T<tool>
  5267. * X<xoffset>
  5268. * Y<yoffset>
  5269. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  5270. */
  5271. inline void gcode_M218() {
  5272. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  5273. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  5274. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  5275. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5276. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  5277. #endif
  5278. SERIAL_ECHO_START;
  5279. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5280. HOTEND_LOOP() {
  5281. SERIAL_CHAR(' ');
  5282. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  5283. SERIAL_CHAR(',');
  5284. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  5285. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5286. SERIAL_CHAR(',');
  5287. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  5288. #endif
  5289. }
  5290. SERIAL_EOL;
  5291. }
  5292. #endif // HOTENDS > 1
  5293. /**
  5294. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  5295. */
  5296. inline void gcode_M220() {
  5297. if (code_seen('S')) feedrate_percentage = code_value_int();
  5298. }
  5299. /**
  5300. * M221: Set extrusion percentage (M221 T0 S95)
  5301. */
  5302. inline void gcode_M221() {
  5303. if (get_target_extruder_from_command(221)) return;
  5304. if (code_seen('S'))
  5305. flow_percentage[target_extruder] = code_value_int();
  5306. }
  5307. /**
  5308. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  5309. */
  5310. inline void gcode_M226() {
  5311. if (code_seen('P')) {
  5312. int pin_number = code_value_int(),
  5313. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  5314. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  5315. int target = LOW;
  5316. stepper.synchronize();
  5317. pinMode(pin_number, INPUT);
  5318. switch (pin_state) {
  5319. case 1:
  5320. target = HIGH;
  5321. break;
  5322. case 0:
  5323. target = LOW;
  5324. break;
  5325. case -1:
  5326. target = !digitalRead(pin_number);
  5327. break;
  5328. }
  5329. while (digitalRead(pin_number) != target) idle();
  5330. } // pin_state -1 0 1 && pin_number > -1
  5331. } // code_seen('P')
  5332. }
  5333. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5334. /**
  5335. * M260: Send data to a I2C slave device
  5336. *
  5337. * This is a PoC, the formating and arguments for the GCODE will
  5338. * change to be more compatible, the current proposal is:
  5339. *
  5340. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  5341. *
  5342. * M260 B<byte-1 value in base 10>
  5343. * M260 B<byte-2 value in base 10>
  5344. * M260 B<byte-3 value in base 10>
  5345. *
  5346. * M260 S1 ; Send the buffered data and reset the buffer
  5347. * M260 R1 ; Reset the buffer without sending data
  5348. *
  5349. */
  5350. inline void gcode_M260() {
  5351. // Set the target address
  5352. if (code_seen('A')) i2c.address(code_value_byte());
  5353. // Add a new byte to the buffer
  5354. if (code_seen('B')) i2c.addbyte(code_value_byte());
  5355. // Flush the buffer to the bus
  5356. if (code_seen('S')) i2c.send();
  5357. // Reset and rewind the buffer
  5358. else if (code_seen('R')) i2c.reset();
  5359. }
  5360. /**
  5361. * M261: Request X bytes from I2C slave device
  5362. *
  5363. * Usage: M261 A<slave device address base 10> B<number of bytes>
  5364. */
  5365. inline void gcode_M261() {
  5366. if (code_seen('A')) i2c.address(code_value_byte());
  5367. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  5368. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  5369. i2c.relay(bytes);
  5370. }
  5371. else {
  5372. SERIAL_ERROR_START;
  5373. SERIAL_ERRORLN("Bad i2c request");
  5374. }
  5375. }
  5376. #endif // EXPERIMENTAL_I2CBUS
  5377. #if HAS_SERVOS
  5378. /**
  5379. * M280: Get or set servo position. P<index> [S<angle>]
  5380. */
  5381. inline void gcode_M280() {
  5382. if (!code_seen('P')) return;
  5383. int servo_index = code_value_int();
  5384. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  5385. if (code_seen('S'))
  5386. MOVE_SERVO(servo_index, code_value_int());
  5387. else {
  5388. SERIAL_ECHO_START;
  5389. SERIAL_ECHOPAIR(" Servo ", servo_index);
  5390. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  5391. }
  5392. }
  5393. else {
  5394. SERIAL_ERROR_START;
  5395. SERIAL_ECHOPAIR("Servo ", servo_index);
  5396. SERIAL_ECHOLNPGM(" out of range");
  5397. }
  5398. }
  5399. #endif // HAS_SERVOS
  5400. #if HAS_BUZZER
  5401. /**
  5402. * M300: Play beep sound S<frequency Hz> P<duration ms>
  5403. */
  5404. inline void gcode_M300() {
  5405. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  5406. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  5407. // Limits the tone duration to 0-5 seconds.
  5408. NOMORE(duration, 5000);
  5409. BUZZ(duration, frequency);
  5410. }
  5411. #endif // HAS_BUZZER
  5412. #if ENABLED(PIDTEMP)
  5413. /**
  5414. * M301: Set PID parameters P I D (and optionally C, L)
  5415. *
  5416. * P[float] Kp term
  5417. * I[float] Ki term (unscaled)
  5418. * D[float] Kd term (unscaled)
  5419. *
  5420. * With PID_EXTRUSION_SCALING:
  5421. *
  5422. * C[float] Kc term
  5423. * L[float] LPQ length
  5424. */
  5425. inline void gcode_M301() {
  5426. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  5427. // default behaviour (omitting E parameter) is to update for extruder 0 only
  5428. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  5429. if (e < HOTENDS) { // catch bad input value
  5430. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  5431. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  5432. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  5433. #if ENABLED(PID_EXTRUSION_SCALING)
  5434. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  5435. if (code_seen('L')) lpq_len = code_value_float();
  5436. NOMORE(lpq_len, LPQ_MAX_LEN);
  5437. #endif
  5438. thermalManager.updatePID();
  5439. SERIAL_ECHO_START;
  5440. #if ENABLED(PID_PARAMS_PER_HOTEND)
  5441. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  5442. #endif // PID_PARAMS_PER_HOTEND
  5443. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  5444. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  5445. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  5446. #if ENABLED(PID_EXTRUSION_SCALING)
  5447. //Kc does not have scaling applied above, or in resetting defaults
  5448. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  5449. #endif
  5450. SERIAL_EOL;
  5451. }
  5452. else {
  5453. SERIAL_ERROR_START;
  5454. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  5455. }
  5456. }
  5457. #endif // PIDTEMP
  5458. #if ENABLED(PIDTEMPBED)
  5459. inline void gcode_M304() {
  5460. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  5461. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  5462. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  5463. thermalManager.updatePID();
  5464. SERIAL_ECHO_START;
  5465. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  5466. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  5467. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  5468. }
  5469. #endif // PIDTEMPBED
  5470. #if defined(CHDK) || HAS_PHOTOGRAPH
  5471. /**
  5472. * M240: Trigger a camera by emulating a Canon RC-1
  5473. * See http://www.doc-diy.net/photo/rc-1_hacked/
  5474. */
  5475. inline void gcode_M240() {
  5476. #ifdef CHDK
  5477. OUT_WRITE(CHDK, HIGH);
  5478. chdkHigh = millis();
  5479. chdkActive = true;
  5480. #elif HAS_PHOTOGRAPH
  5481. const uint8_t NUM_PULSES = 16;
  5482. const float PULSE_LENGTH = 0.01524;
  5483. for (int i = 0; i < NUM_PULSES; i++) {
  5484. WRITE(PHOTOGRAPH_PIN, HIGH);
  5485. _delay_ms(PULSE_LENGTH);
  5486. WRITE(PHOTOGRAPH_PIN, LOW);
  5487. _delay_ms(PULSE_LENGTH);
  5488. }
  5489. delay(7.33);
  5490. for (int i = 0; i < NUM_PULSES; i++) {
  5491. WRITE(PHOTOGRAPH_PIN, HIGH);
  5492. _delay_ms(PULSE_LENGTH);
  5493. WRITE(PHOTOGRAPH_PIN, LOW);
  5494. _delay_ms(PULSE_LENGTH);
  5495. }
  5496. #endif // !CHDK && HAS_PHOTOGRAPH
  5497. }
  5498. #endif // CHDK || PHOTOGRAPH_PIN
  5499. #if HAS_LCD_CONTRAST
  5500. /**
  5501. * M250: Read and optionally set the LCD contrast
  5502. */
  5503. inline void gcode_M250() {
  5504. if (code_seen('C')) set_lcd_contrast(code_value_int());
  5505. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5506. SERIAL_PROTOCOL(lcd_contrast);
  5507. SERIAL_EOL;
  5508. }
  5509. #endif // HAS_LCD_CONTRAST
  5510. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5511. /**
  5512. * M302: Allow cold extrudes, or set the minimum extrude temperature
  5513. *
  5514. * S<temperature> sets the minimum extrude temperature
  5515. * P<bool> enables (1) or disables (0) cold extrusion
  5516. *
  5517. * Examples:
  5518. *
  5519. * M302 ; report current cold extrusion state
  5520. * M302 P0 ; enable cold extrusion checking
  5521. * M302 P1 ; disables cold extrusion checking
  5522. * M302 S0 ; always allow extrusion (disables checking)
  5523. * M302 S170 ; only allow extrusion above 170
  5524. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  5525. */
  5526. inline void gcode_M302() {
  5527. bool seen_S = code_seen('S');
  5528. if (seen_S) {
  5529. thermalManager.extrude_min_temp = code_value_temp_abs();
  5530. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  5531. }
  5532. if (code_seen('P'))
  5533. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  5534. else if (!seen_S) {
  5535. // Report current state
  5536. SERIAL_ECHO_START;
  5537. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  5538. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  5539. SERIAL_ECHOLNPGM("C)");
  5540. }
  5541. }
  5542. #endif // PREVENT_COLD_EXTRUSION
  5543. /**
  5544. * M303: PID relay autotune
  5545. *
  5546. * S<temperature> sets the target temperature. (default 150C)
  5547. * E<extruder> (-1 for the bed) (default 0)
  5548. * C<cycles>
  5549. * U<bool> with a non-zero value will apply the result to current settings
  5550. */
  5551. inline void gcode_M303() {
  5552. #if HAS_PID_HEATING
  5553. int e = code_seen('E') ? code_value_int() : 0;
  5554. int c = code_seen('C') ? code_value_int() : 5;
  5555. bool u = code_seen('U') && code_value_bool();
  5556. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  5557. if (e >= 0 && e < HOTENDS)
  5558. target_extruder = e;
  5559. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  5560. thermalManager.PID_autotune(temp, e, c, u);
  5561. KEEPALIVE_STATE(IN_HANDLER);
  5562. #else
  5563. SERIAL_ERROR_START;
  5564. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5565. #endif
  5566. }
  5567. #if ENABLED(MORGAN_SCARA)
  5568. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  5569. if (IsRunning()) {
  5570. forward_kinematics_SCARA(delta_a, delta_b);
  5571. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  5572. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  5573. destination[Z_AXIS] = current_position[Z_AXIS];
  5574. prepare_move_to_destination();
  5575. return true;
  5576. }
  5577. return false;
  5578. }
  5579. /**
  5580. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5581. */
  5582. inline bool gcode_M360() {
  5583. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5584. return SCARA_move_to_cal(0, 120);
  5585. }
  5586. /**
  5587. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5588. */
  5589. inline bool gcode_M361() {
  5590. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5591. return SCARA_move_to_cal(90, 130);
  5592. }
  5593. /**
  5594. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5595. */
  5596. inline bool gcode_M362() {
  5597. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5598. return SCARA_move_to_cal(60, 180);
  5599. }
  5600. /**
  5601. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5602. */
  5603. inline bool gcode_M363() {
  5604. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5605. return SCARA_move_to_cal(50, 90);
  5606. }
  5607. /**
  5608. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5609. */
  5610. inline bool gcode_M364() {
  5611. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5612. return SCARA_move_to_cal(45, 135);
  5613. }
  5614. #endif // SCARA
  5615. #if ENABLED(EXT_SOLENOID)
  5616. void enable_solenoid(uint8_t num) {
  5617. switch (num) {
  5618. case 0:
  5619. OUT_WRITE(SOL0_PIN, HIGH);
  5620. break;
  5621. #if HAS_SOLENOID_1
  5622. case 1:
  5623. OUT_WRITE(SOL1_PIN, HIGH);
  5624. break;
  5625. #endif
  5626. #if HAS_SOLENOID_2
  5627. case 2:
  5628. OUT_WRITE(SOL2_PIN, HIGH);
  5629. break;
  5630. #endif
  5631. #if HAS_SOLENOID_3
  5632. case 3:
  5633. OUT_WRITE(SOL3_PIN, HIGH);
  5634. break;
  5635. #endif
  5636. default:
  5637. SERIAL_ECHO_START;
  5638. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5639. break;
  5640. }
  5641. }
  5642. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5643. void disable_all_solenoids() {
  5644. OUT_WRITE(SOL0_PIN, LOW);
  5645. OUT_WRITE(SOL1_PIN, LOW);
  5646. OUT_WRITE(SOL2_PIN, LOW);
  5647. OUT_WRITE(SOL3_PIN, LOW);
  5648. }
  5649. /**
  5650. * M380: Enable solenoid on the active extruder
  5651. */
  5652. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5653. /**
  5654. * M381: Disable all solenoids
  5655. */
  5656. inline void gcode_M381() { disable_all_solenoids(); }
  5657. #endif // EXT_SOLENOID
  5658. /**
  5659. * M400: Finish all moves
  5660. */
  5661. inline void gcode_M400() { stepper.synchronize(); }
  5662. #if HAS_BED_PROBE
  5663. /**
  5664. * M401: Engage Z Servo endstop if available
  5665. */
  5666. inline void gcode_M401() { DEPLOY_PROBE(); }
  5667. /**
  5668. * M402: Retract Z Servo endstop if enabled
  5669. */
  5670. inline void gcode_M402() { STOW_PROBE(); }
  5671. #endif // HAS_BED_PROBE
  5672. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5673. /**
  5674. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5675. */
  5676. inline void gcode_M404() {
  5677. if (code_seen('W')) {
  5678. filament_width_nominal = code_value_linear_units();
  5679. }
  5680. else {
  5681. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5682. SERIAL_PROTOCOLLN(filament_width_nominal);
  5683. }
  5684. }
  5685. /**
  5686. * M405: Turn on filament sensor for control
  5687. */
  5688. inline void gcode_M405() {
  5689. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5690. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5691. if (code_seen('D')) meas_delay_cm = code_value_int();
  5692. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5693. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5694. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5695. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5696. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5697. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5698. }
  5699. filament_sensor = true;
  5700. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5701. //SERIAL_PROTOCOL(filament_width_meas);
  5702. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5703. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5704. }
  5705. /**
  5706. * M406: Turn off filament sensor for control
  5707. */
  5708. inline void gcode_M406() { filament_sensor = false; }
  5709. /**
  5710. * M407: Get measured filament diameter on serial output
  5711. */
  5712. inline void gcode_M407() {
  5713. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5714. SERIAL_PROTOCOLLN(filament_width_meas);
  5715. }
  5716. #endif // FILAMENT_WIDTH_SENSOR
  5717. void quickstop_stepper() {
  5718. stepper.quick_stop();
  5719. stepper.synchronize();
  5720. set_current_from_steppers_for_axis(ALL_AXES);
  5721. SYNC_PLAN_POSITION_KINEMATIC();
  5722. }
  5723. #if PLANNER_LEVELING
  5724. /**
  5725. * M420: Enable/Disable Bed Leveling
  5726. */
  5727. inline void gcode_M420() { if (code_seen('S')) set_bed_leveling_enabled(code_value_bool()); }
  5728. #endif
  5729. #if ENABLED(MESH_BED_LEVELING)
  5730. /**
  5731. * M421: Set a single Mesh Bed Leveling Z coordinate
  5732. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5733. */
  5734. inline void gcode_M421() {
  5735. int8_t px = 0, py = 0;
  5736. float z = 0;
  5737. bool hasX, hasY, hasZ, hasI, hasJ;
  5738. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5739. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5740. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5741. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5742. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5743. if (hasX && hasY && hasZ) {
  5744. if (px >= 0 && py >= 0)
  5745. mbl.set_z(px, py, z);
  5746. else {
  5747. SERIAL_ERROR_START;
  5748. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5749. }
  5750. }
  5751. else if (hasI && hasJ && hasZ) {
  5752. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5753. mbl.set_z(px, py, z);
  5754. else {
  5755. SERIAL_ERROR_START;
  5756. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5757. }
  5758. }
  5759. else {
  5760. SERIAL_ERROR_START;
  5761. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5762. }
  5763. }
  5764. #endif
  5765. /**
  5766. * M428: Set home_offset based on the distance between the
  5767. * current_position and the nearest "reference point."
  5768. * If an axis is past center its endstop position
  5769. * is the reference-point. Otherwise it uses 0. This allows
  5770. * the Z offset to be set near the bed when using a max endstop.
  5771. *
  5772. * M428 can't be used more than 2cm away from 0 or an endstop.
  5773. *
  5774. * Use M206 to set these values directly.
  5775. */
  5776. inline void gcode_M428() {
  5777. bool err = false;
  5778. LOOP_XYZ(i) {
  5779. if (axis_homed[i]) {
  5780. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  5781. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5782. if (diff > -20 && diff < 20) {
  5783. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5784. }
  5785. else {
  5786. SERIAL_ERROR_START;
  5787. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5788. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5789. BUZZ(200, 40);
  5790. err = true;
  5791. break;
  5792. }
  5793. }
  5794. }
  5795. if (!err) {
  5796. SYNC_PLAN_POSITION_KINEMATIC();
  5797. report_current_position();
  5798. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5799. BUZZ(200, 659);
  5800. BUZZ(200, 698);
  5801. }
  5802. }
  5803. /**
  5804. * M500: Store settings in EEPROM
  5805. */
  5806. inline void gcode_M500() {
  5807. Config_StoreSettings();
  5808. }
  5809. /**
  5810. * M501: Read settings from EEPROM
  5811. */
  5812. inline void gcode_M501() {
  5813. Config_RetrieveSettings();
  5814. }
  5815. /**
  5816. * M502: Revert to default settings
  5817. */
  5818. inline void gcode_M502() {
  5819. Config_ResetDefault();
  5820. }
  5821. /**
  5822. * M503: print settings currently in memory
  5823. */
  5824. inline void gcode_M503() {
  5825. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5826. }
  5827. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5828. /**
  5829. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5830. */
  5831. inline void gcode_M540() {
  5832. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5833. }
  5834. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5835. #if HAS_BED_PROBE
  5836. inline void gcode_M851() {
  5837. SERIAL_ECHO_START;
  5838. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5839. SERIAL_CHAR(' ');
  5840. if (code_seen('Z')) {
  5841. float value = code_value_axis_units(Z_AXIS);
  5842. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5843. zprobe_zoffset = value;
  5844. SERIAL_ECHO(zprobe_zoffset);
  5845. }
  5846. else {
  5847. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5848. SERIAL_CHAR(' ');
  5849. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5850. }
  5851. }
  5852. else {
  5853. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5854. }
  5855. SERIAL_EOL;
  5856. }
  5857. #endif // HAS_BED_PROBE
  5858. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5859. /**
  5860. * M600: Pause for filament change
  5861. *
  5862. * E[distance] - Retract the filament this far (negative value)
  5863. * Z[distance] - Move the Z axis by this distance
  5864. * X[position] - Move to this X position, with Y
  5865. * Y[position] - Move to this Y position, with X
  5866. * L[distance] - Retract distance for removal (manual reload)
  5867. *
  5868. * Default values are used for omitted arguments.
  5869. *
  5870. */
  5871. inline void gcode_M600() {
  5872. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5873. SERIAL_ERROR_START;
  5874. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5875. return;
  5876. }
  5877. // Show initial message and wait for synchronize steppers
  5878. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5879. stepper.synchronize();
  5880. float lastpos[NUM_AXIS];
  5881. // Save current position of all axes
  5882. LOOP_XYZE(i)
  5883. lastpos[i] = destination[i] = current_position[i];
  5884. // Define runplan for move axes
  5885. #if IS_KINEMATIC
  5886. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder);
  5887. #else
  5888. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5889. #endif
  5890. KEEPALIVE_STATE(IN_HANDLER);
  5891. // Initial retract before move to filament change position
  5892. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5893. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5894. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5895. #endif
  5896. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5897. // Lift Z axis
  5898. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5899. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5900. FILAMENT_CHANGE_Z_ADD
  5901. #else
  5902. 0
  5903. #endif
  5904. ;
  5905. if (z_lift > 0) {
  5906. destination[Z_AXIS] += z_lift;
  5907. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5908. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5909. }
  5910. // Move XY axes to filament exchange position
  5911. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5912. #ifdef FILAMENT_CHANGE_X_POS
  5913. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5914. #endif
  5915. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5916. #ifdef FILAMENT_CHANGE_Y_POS
  5917. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5918. #endif
  5919. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5920. stepper.synchronize();
  5921. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5922. // Unload filament
  5923. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5924. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5925. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5926. #endif
  5927. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5928. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5929. stepper.synchronize();
  5930. disable_e0();
  5931. disable_e1();
  5932. disable_e2();
  5933. disable_e3();
  5934. delay(100);
  5935. #if HAS_BUZZER
  5936. millis_t next_buzz = 0;
  5937. #endif
  5938. // Wait for filament insert by user and press button
  5939. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5940. // LCD click or M108 will clear this
  5941. wait_for_user = true;
  5942. while (wait_for_user) {
  5943. #if HAS_BUZZER
  5944. millis_t ms = millis();
  5945. if (ms >= next_buzz) {
  5946. BUZZ(300, 2000);
  5947. next_buzz = ms + 2500; // Beep every 2.5s while waiting
  5948. }
  5949. #endif
  5950. idle(true);
  5951. }
  5952. // Show load message
  5953. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5954. // Load filament
  5955. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5956. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5957. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5958. #endif
  5959. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5960. stepper.synchronize();
  5961. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5962. do {
  5963. // Extrude filament to get into hotend
  5964. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5965. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5966. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5967. stepper.synchronize();
  5968. // Ask user if more filament should be extruded
  5969. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5970. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5971. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5972. KEEPALIVE_STATE(IN_HANDLER);
  5973. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5974. #endif
  5975. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5976. KEEPALIVE_STATE(IN_HANDLER);
  5977. // Set extruder to saved position
  5978. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  5979. planner.set_e_position_mm(current_position[E_AXIS]);
  5980. #if IS_KINEMATIC
  5981. // Move XYZ to starting position
  5982. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5983. #else
  5984. // Move XY to starting position, then Z
  5985. destination[X_AXIS] = lastpos[X_AXIS];
  5986. destination[Y_AXIS] = lastpos[Y_AXIS];
  5987. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5988. destination[Z_AXIS] = lastpos[Z_AXIS];
  5989. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5990. #endif
  5991. stepper.synchronize();
  5992. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5993. filament_ran_out = false;
  5994. #endif
  5995. // Show status screen
  5996. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5997. }
  5998. #endif // FILAMENT_CHANGE_FEATURE
  5999. #if ENABLED(DUAL_X_CARRIAGE)
  6000. /**
  6001. * M605: Set dual x-carriage movement mode
  6002. *
  6003. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  6004. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  6005. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  6006. * units x-offset and an optional differential hotend temperature of
  6007. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  6008. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  6009. *
  6010. * Note: the X axis should be homed after changing dual x-carriage mode.
  6011. */
  6012. inline void gcode_M605() {
  6013. stepper.synchronize();
  6014. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  6015. switch (dual_x_carriage_mode) {
  6016. case DXC_FULL_CONTROL_MODE:
  6017. case DXC_AUTO_PARK_MODE:
  6018. break;
  6019. case DXC_DUPLICATION_MODE:
  6020. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  6021. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  6022. SERIAL_ECHO_START;
  6023. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6024. SERIAL_CHAR(' ');
  6025. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  6026. SERIAL_CHAR(',');
  6027. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  6028. SERIAL_CHAR(' ');
  6029. SERIAL_ECHO(duplicate_extruder_x_offset);
  6030. SERIAL_CHAR(',');
  6031. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  6032. break;
  6033. default:
  6034. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  6035. break;
  6036. }
  6037. active_extruder_parked = false;
  6038. extruder_duplication_enabled = false;
  6039. delayed_move_time = 0;
  6040. }
  6041. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  6042. inline void gcode_M605() {
  6043. stepper.synchronize();
  6044. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  6045. SERIAL_ECHO_START;
  6046. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  6047. }
  6048. #endif // M605
  6049. #if ENABLED(LIN_ADVANCE)
  6050. /**
  6051. * M905: Set advance factor
  6052. */
  6053. inline void gcode_M905() {
  6054. stepper.synchronize();
  6055. planner.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  6056. }
  6057. #endif
  6058. /**
  6059. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  6060. */
  6061. inline void gcode_M907() {
  6062. #if HAS_DIGIPOTSS
  6063. LOOP_XYZE(i)
  6064. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  6065. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  6066. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  6067. #elif HAS_MOTOR_CURRENT_PWM
  6068. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  6069. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  6070. #endif
  6071. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  6072. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  6073. #endif
  6074. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  6075. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  6076. #endif
  6077. #endif
  6078. #if ENABLED(DIGIPOT_I2C)
  6079. // this one uses actual amps in floating point
  6080. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  6081. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  6082. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  6083. #endif
  6084. #if ENABLED(DAC_STEPPER_CURRENT)
  6085. if (code_seen('S')) {
  6086. float dac_percent = code_value_float();
  6087. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  6088. }
  6089. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  6090. #endif
  6091. }
  6092. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6093. /**
  6094. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  6095. */
  6096. inline void gcode_M908() {
  6097. #if HAS_DIGIPOTSS
  6098. stepper.digitalPotWrite(
  6099. code_seen('P') ? code_value_int() : 0,
  6100. code_seen('S') ? code_value_int() : 0
  6101. );
  6102. #endif
  6103. #ifdef DAC_STEPPER_CURRENT
  6104. dac_current_raw(
  6105. code_seen('P') ? code_value_byte() : -1,
  6106. code_seen('S') ? code_value_ushort() : 0
  6107. );
  6108. #endif
  6109. }
  6110. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6111. inline void gcode_M909() { dac_print_values(); }
  6112. inline void gcode_M910() { dac_commit_eeprom(); }
  6113. #endif
  6114. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6115. #if HAS_MICROSTEPS
  6116. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6117. inline void gcode_M350() {
  6118. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  6119. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  6120. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  6121. stepper.microstep_readings();
  6122. }
  6123. /**
  6124. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  6125. * S# determines MS1 or MS2, X# sets the pin high/low.
  6126. */
  6127. inline void gcode_M351() {
  6128. if (code_seen('S')) switch (code_value_byte()) {
  6129. case 1:
  6130. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  6131. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  6132. break;
  6133. case 2:
  6134. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  6135. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  6136. break;
  6137. }
  6138. stepper.microstep_readings();
  6139. }
  6140. #endif // HAS_MICROSTEPS
  6141. #if HAS_CASE_LIGHT
  6142. /**
  6143. * M355: Turn case lights on/off and set brightness
  6144. *
  6145. * S<bool> Turn case light on or off
  6146. * P<byte> Set case light brightness (PWM pin required)
  6147. */
  6148. inline void gcode_M355() {
  6149. static bool case_light_on
  6150. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  6151. = true
  6152. #endif
  6153. ;
  6154. static uint8_t case_light_brightness = 255;
  6155. if (code_seen('P')) case_light_brightness = code_value_byte();
  6156. if (code_seen('S')) {
  6157. case_light_on = code_value_bool();
  6158. digitalWrite(CASE_LIGHT_PIN, case_light_on ? HIGH : LOW);
  6159. analogWrite(CASE_LIGHT_PIN, case_light_on ? case_light_brightness : 0);
  6160. }
  6161. SERIAL_ECHO_START;
  6162. SERIAL_ECHOPGM("Case lights ");
  6163. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  6164. }
  6165. #endif // HAS_CASE_LIGHT
  6166. #if ENABLED(MIXING_EXTRUDER)
  6167. /**
  6168. * M163: Set a single mix factor for a mixing extruder
  6169. * This is called "weight" by some systems.
  6170. *
  6171. * S[index] The channel index to set
  6172. * P[float] The mix value
  6173. *
  6174. */
  6175. inline void gcode_M163() {
  6176. int mix_index = code_seen('S') ? code_value_int() : 0;
  6177. if (mix_index < MIXING_STEPPERS) {
  6178. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  6179. NOLESS(mix_value, 0.0);
  6180. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  6181. }
  6182. }
  6183. #if MIXING_VIRTUAL_TOOLS > 1
  6184. /**
  6185. * M164: Store the current mix factors as a virtual tool.
  6186. *
  6187. * S[index] The virtual tool to store
  6188. *
  6189. */
  6190. inline void gcode_M164() {
  6191. int tool_index = code_seen('S') ? code_value_int() : 0;
  6192. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  6193. normalize_mix();
  6194. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  6195. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  6196. }
  6197. }
  6198. #endif
  6199. #if ENABLED(DIRECT_MIXING_IN_G1)
  6200. /**
  6201. * M165: Set multiple mix factors for a mixing extruder.
  6202. * Factors that are left out will be set to 0.
  6203. * All factors together must add up to 1.0.
  6204. *
  6205. * A[factor] Mix factor for extruder stepper 1
  6206. * B[factor] Mix factor for extruder stepper 2
  6207. * C[factor] Mix factor for extruder stepper 3
  6208. * D[factor] Mix factor for extruder stepper 4
  6209. * H[factor] Mix factor for extruder stepper 5
  6210. * I[factor] Mix factor for extruder stepper 6
  6211. *
  6212. */
  6213. inline void gcode_M165() { gcode_get_mix(); }
  6214. #endif
  6215. #endif // MIXING_EXTRUDER
  6216. /**
  6217. * M999: Restart after being stopped
  6218. *
  6219. * Default behaviour is to flush the serial buffer and request
  6220. * a resend to the host starting on the last N line received.
  6221. *
  6222. * Sending "M999 S1" will resume printing without flushing the
  6223. * existing command buffer.
  6224. *
  6225. */
  6226. inline void gcode_M999() {
  6227. Running = true;
  6228. lcd_reset_alert_level();
  6229. if (code_seen('S') && code_value_bool()) return;
  6230. // gcode_LastN = Stopped_gcode_LastN;
  6231. FlushSerialRequestResend();
  6232. }
  6233. #if ENABLED(SWITCHING_EXTRUDER)
  6234. inline void move_extruder_servo(uint8_t e) {
  6235. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  6236. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  6237. }
  6238. #endif
  6239. inline void invalid_extruder_error(const uint8_t &e) {
  6240. SERIAL_ECHO_START;
  6241. SERIAL_CHAR('T');
  6242. SERIAL_PROTOCOL_F(e, DEC);
  6243. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  6244. }
  6245. /**
  6246. * Perform a tool-change, which may result in moving the
  6247. * previous tool out of the way and the new tool into place.
  6248. */
  6249. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  6250. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  6251. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  6252. invalid_extruder_error(tmp_extruder);
  6253. return;
  6254. }
  6255. // T0-Tnnn: Switch virtual tool by changing the mix
  6256. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  6257. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  6258. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6259. #if HOTENDS > 1
  6260. if (tmp_extruder >= EXTRUDERS) {
  6261. invalid_extruder_error(tmp_extruder);
  6262. return;
  6263. }
  6264. float old_feedrate_mm_s = feedrate_mm_s;
  6265. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  6266. if (tmp_extruder != active_extruder) {
  6267. if (!no_move && axis_unhomed_error(true, true, true)) {
  6268. SERIAL_ECHOLNPGM("No move on toolchange");
  6269. no_move = true;
  6270. }
  6271. // Save current position to destination, for use later
  6272. set_destination_to_current();
  6273. #if ENABLED(DUAL_X_CARRIAGE)
  6274. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6275. if (DEBUGGING(LEVELING)) {
  6276. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  6277. switch (dual_x_carriage_mode) {
  6278. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  6279. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  6280. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  6281. }
  6282. }
  6283. #endif
  6284. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  6285. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  6286. ) {
  6287. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6288. if (DEBUGGING(LEVELING)) {
  6289. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  6290. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  6291. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  6292. }
  6293. #endif
  6294. // Park old head: 1) raise 2) move to park position 3) lower
  6295. for (uint8_t i = 0; i < 3; i++)
  6296. planner.buffer_line(
  6297. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  6298. current_position[Y_AXIS],
  6299. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  6300. current_position[E_AXIS],
  6301. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  6302. active_extruder
  6303. );
  6304. stepper.synchronize();
  6305. }
  6306. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  6307. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  6308. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  6309. active_extruder = tmp_extruder;
  6310. // This function resets the max/min values - the current position may be overwritten below.
  6311. set_axis_is_at_home(X_AXIS);
  6312. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6313. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  6314. #endif
  6315. switch (dual_x_carriage_mode) {
  6316. case DXC_FULL_CONTROL_MODE:
  6317. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6318. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6319. break;
  6320. case DXC_AUTO_PARK_MODE:
  6321. // record raised toolhead position for use by unpark
  6322. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  6323. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  6324. #if ENABLED(max_software_endstops)
  6325. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6326. #endif
  6327. active_extruder_parked = true;
  6328. delayed_move_time = 0;
  6329. break;
  6330. case DXC_DUPLICATION_MODE:
  6331. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  6332. if (active_extruder_parked)
  6333. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6334. else
  6335. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  6336. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6337. extruder_duplication_enabled = false;
  6338. break;
  6339. }
  6340. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6341. if (DEBUGGING(LEVELING)) {
  6342. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  6343. DEBUG_POS("New extruder (parked)", current_position);
  6344. }
  6345. #endif
  6346. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  6347. #else // !DUAL_X_CARRIAGE
  6348. #if ENABLED(SWITCHING_EXTRUDER)
  6349. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  6350. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  6351. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  6352. set_destination_to_current();
  6353. // Always raise by some amount
  6354. destination[Z_AXIS] += z_raise;
  6355. planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6356. stepper.synchronize();
  6357. move_extruder_servo(active_extruder);
  6358. delay(500);
  6359. // Move back down, if needed
  6360. if (z_raise != z_diff) {
  6361. destination[Z_AXIS] = current_position[Z_AXIS] + z_diff;
  6362. planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6363. stepper.synchronize();
  6364. }
  6365. #endif
  6366. /**
  6367. * Set current_position to the position of the new nozzle.
  6368. * Offsets are based on linear distance, so we need to get
  6369. * the resulting position in coordinate space.
  6370. *
  6371. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  6372. * - With mesh leveling, update Z for the new position
  6373. * - Otherwise, just use the raw linear distance
  6374. *
  6375. * Software endstops are altered here too. Consider a case where:
  6376. * E0 at X=0 ... E1 at X=10
  6377. * When we switch to E1 now X=10, but E1 can't move left.
  6378. * To express this we apply the change in XY to the software endstops.
  6379. * E1 can move farther right than E0, so the right limit is extended.
  6380. *
  6381. * Note that we don't adjust the Z software endstops. Why not?
  6382. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  6383. * because the bed is 1mm lower at the new position. As long as
  6384. * the first nozzle is out of the way, the carriage should be
  6385. * allowed to move 1mm lower. This technically "breaks" the
  6386. * Z software endstop. But this is technically correct (and
  6387. * there is no viable alternative).
  6388. */
  6389. #if ABL_PLANAR
  6390. // Offset extruder, make sure to apply the bed level rotation matrix
  6391. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  6392. hotend_offset[Y_AXIS][tmp_extruder],
  6393. 0),
  6394. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  6395. hotend_offset[Y_AXIS][active_extruder],
  6396. 0),
  6397. offset_vec = tmp_offset_vec - act_offset_vec;
  6398. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6399. if (DEBUGGING(LEVELING)) {
  6400. tmp_offset_vec.debug("tmp_offset_vec");
  6401. act_offset_vec.debug("act_offset_vec");
  6402. offset_vec.debug("offset_vec (BEFORE)");
  6403. }
  6404. #endif
  6405. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  6406. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6407. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  6408. #endif
  6409. // Adjustments to the current position
  6410. float xydiff[2] = { offset_vec.x, offset_vec.y };
  6411. current_position[Z_AXIS] += offset_vec.z;
  6412. #else // !ABL_PLANAR
  6413. float xydiff[2] = {
  6414. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  6415. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  6416. };
  6417. #if ENABLED(MESH_BED_LEVELING)
  6418. if (mbl.active()) {
  6419. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6420. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  6421. #endif
  6422. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  6423. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  6424. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  6425. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6426. if (DEBUGGING(LEVELING))
  6427. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  6428. #endif
  6429. }
  6430. #endif // MESH_BED_LEVELING
  6431. #endif // !HAS_ABL
  6432. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6433. if (DEBUGGING(LEVELING)) {
  6434. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  6435. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  6436. SERIAL_ECHOLNPGM(" }");
  6437. }
  6438. #endif
  6439. // The newly-selected extruder XY is actually at...
  6440. current_position[X_AXIS] += xydiff[X_AXIS];
  6441. current_position[Y_AXIS] += xydiff[Y_AXIS];
  6442. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  6443. position_shift[i] += xydiff[i];
  6444. update_software_endstops((AxisEnum)i);
  6445. }
  6446. // Set the new active extruder
  6447. active_extruder = tmp_extruder;
  6448. #endif // !DUAL_X_CARRIAGE
  6449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6450. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  6451. #endif
  6452. // Tell the planner the new "current position"
  6453. SYNC_PLAN_POSITION_KINEMATIC();
  6454. // Move to the "old position" (move the extruder into place)
  6455. if (!no_move && IsRunning()) {
  6456. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6457. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  6458. #endif
  6459. prepare_move_to_destination();
  6460. }
  6461. } // (tmp_extruder != active_extruder)
  6462. stepper.synchronize();
  6463. #if ENABLED(EXT_SOLENOID)
  6464. disable_all_solenoids();
  6465. enable_solenoid_on_active_extruder();
  6466. #endif // EXT_SOLENOID
  6467. feedrate_mm_s = old_feedrate_mm_s;
  6468. #else // HOTENDS <= 1
  6469. // Set the new active extruder
  6470. active_extruder = tmp_extruder;
  6471. UNUSED(fr_mm_s);
  6472. UNUSED(no_move);
  6473. #endif // HOTENDS <= 1
  6474. SERIAL_ECHO_START;
  6475. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  6476. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6477. }
  6478. /**
  6479. * T0-T3: Switch tool, usually switching extruders
  6480. *
  6481. * F[units/min] Set the movement feedrate
  6482. * S1 Don't move the tool in XY after change
  6483. */
  6484. inline void gcode_T(uint8_t tmp_extruder) {
  6485. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6486. if (DEBUGGING(LEVELING)) {
  6487. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  6488. SERIAL_CHAR(')');
  6489. SERIAL_EOL;
  6490. DEBUG_POS("BEFORE", current_position);
  6491. }
  6492. #endif
  6493. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  6494. tool_change(tmp_extruder);
  6495. #elif HOTENDS > 1
  6496. tool_change(
  6497. tmp_extruder,
  6498. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  6499. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  6500. );
  6501. #endif
  6502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6503. if (DEBUGGING(LEVELING)) {
  6504. DEBUG_POS("AFTER", current_position);
  6505. SERIAL_ECHOLNPGM("<<< gcode_T");
  6506. }
  6507. #endif
  6508. }
  6509. /**
  6510. * Process a single command and dispatch it to its handler
  6511. * This is called from the main loop()
  6512. */
  6513. void process_next_command() {
  6514. current_command = command_queue[cmd_queue_index_r];
  6515. if (DEBUGGING(ECHO)) {
  6516. SERIAL_ECHO_START;
  6517. SERIAL_ECHOLN(current_command);
  6518. }
  6519. // Sanitize the current command:
  6520. // - Skip leading spaces
  6521. // - Bypass N[-0-9][0-9]*[ ]*
  6522. // - Overwrite * with nul to mark the end
  6523. while (*current_command == ' ') ++current_command;
  6524. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  6525. current_command += 2; // skip N[-0-9]
  6526. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  6527. while (*current_command == ' ') ++current_command; // skip [ ]*
  6528. }
  6529. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  6530. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  6531. char *cmd_ptr = current_command;
  6532. // Get the command code, which must be G, M, or T
  6533. char command_code = *cmd_ptr++;
  6534. // Skip spaces to get the numeric part
  6535. while (*cmd_ptr == ' ') cmd_ptr++;
  6536. // Allow for decimal point in command
  6537. #if ENABLED(G38_PROBE_TARGET)
  6538. uint8_t subcode = 0;
  6539. #endif
  6540. uint16_t codenum = 0; // define ahead of goto
  6541. // Bail early if there's no code
  6542. bool code_is_good = NUMERIC(*cmd_ptr);
  6543. if (!code_is_good) goto ExitUnknownCommand;
  6544. // Get and skip the code number
  6545. do {
  6546. codenum = (codenum * 10) + (*cmd_ptr - '0');
  6547. cmd_ptr++;
  6548. } while (NUMERIC(*cmd_ptr));
  6549. // Allow for decimal point in command
  6550. #if ENABLED(G38_PROBE_TARGET)
  6551. if (*cmd_ptr == '.') {
  6552. cmd_ptr++;
  6553. while (NUMERIC(*cmd_ptr))
  6554. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  6555. }
  6556. #endif
  6557. // Skip all spaces to get to the first argument, or nul
  6558. while (*cmd_ptr == ' ') cmd_ptr++;
  6559. // The command's arguments (if any) start here, for sure!
  6560. current_command_args = cmd_ptr;
  6561. KEEPALIVE_STATE(IN_HANDLER);
  6562. // Handle a known G, M, or T
  6563. switch (command_code) {
  6564. case 'G': switch (codenum) {
  6565. // G0, G1
  6566. case 0:
  6567. case 1:
  6568. #if IS_SCARA
  6569. gcode_G0_G1(codenum == 0);
  6570. #else
  6571. gcode_G0_G1();
  6572. #endif
  6573. break;
  6574. // G2, G3
  6575. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  6576. case 2: // G2 - CW ARC
  6577. case 3: // G3 - CCW ARC
  6578. gcode_G2_G3(codenum == 2);
  6579. break;
  6580. #endif
  6581. // G4 Dwell
  6582. case 4:
  6583. gcode_G4();
  6584. break;
  6585. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6586. // G5
  6587. case 5: // G5 - Cubic B_spline
  6588. gcode_G5();
  6589. break;
  6590. #endif // BEZIER_CURVE_SUPPORT
  6591. #if ENABLED(FWRETRACT)
  6592. case 10: // G10: retract
  6593. case 11: // G11: retract_recover
  6594. gcode_G10_G11(codenum == 10);
  6595. break;
  6596. #endif // FWRETRACT
  6597. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6598. case 12:
  6599. gcode_G12(); // G12: Nozzle Clean
  6600. break;
  6601. #endif // NOZZLE_CLEAN_FEATURE
  6602. #if ENABLED(INCH_MODE_SUPPORT)
  6603. case 20: //G20: Inch Mode
  6604. gcode_G20();
  6605. break;
  6606. case 21: //G21: MM Mode
  6607. gcode_G21();
  6608. break;
  6609. #endif // INCH_MODE_SUPPORT
  6610. #if ENABLED(NOZZLE_PARK_FEATURE)
  6611. case 27: // G27: Nozzle Park
  6612. gcode_G27();
  6613. break;
  6614. #endif // NOZZLE_PARK_FEATURE
  6615. case 28: // G28: Home all axes, one at a time
  6616. gcode_G28();
  6617. break;
  6618. #if PLANNER_LEVELING
  6619. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6620. gcode_G29();
  6621. break;
  6622. #endif // PLANNER_LEVELING
  6623. #if HAS_BED_PROBE
  6624. case 30: // G30 Single Z probe
  6625. gcode_G30();
  6626. break;
  6627. #if ENABLED(Z_PROBE_SLED)
  6628. case 31: // G31: dock the sled
  6629. gcode_G31();
  6630. break;
  6631. case 32: // G32: undock the sled
  6632. gcode_G32();
  6633. break;
  6634. #endif // Z_PROBE_SLED
  6635. #endif // HAS_BED_PROBE
  6636. #if ENABLED(G38_PROBE_TARGET)
  6637. case 38: // G38.2 & G38.3
  6638. if (subcode == 2 || subcode == 3)
  6639. gcode_G38(subcode == 2);
  6640. break;
  6641. #endif
  6642. case 90: // G90
  6643. relative_mode = false;
  6644. break;
  6645. case 91: // G91
  6646. relative_mode = true;
  6647. break;
  6648. case 92: // G92
  6649. gcode_G92();
  6650. break;
  6651. }
  6652. break;
  6653. case 'M': switch (codenum) {
  6654. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  6655. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  6656. case 1: // M1: Conditional stop - Wait for user button press on LCD
  6657. gcode_M0_M1();
  6658. break;
  6659. #endif // ULTIPANEL
  6660. case 17: // M17: Enable all stepper motors
  6661. gcode_M17();
  6662. break;
  6663. #if ENABLED(SDSUPPORT)
  6664. case 20: // M20: list SD card
  6665. gcode_M20(); break;
  6666. case 21: // M21: init SD card
  6667. gcode_M21(); break;
  6668. case 22: // M22: release SD card
  6669. gcode_M22(); break;
  6670. case 23: // M23: Select file
  6671. gcode_M23(); break;
  6672. case 24: // M24: Start SD print
  6673. gcode_M24(); break;
  6674. case 25: // M25: Pause SD print
  6675. gcode_M25(); break;
  6676. case 26: // M26: Set SD index
  6677. gcode_M26(); break;
  6678. case 27: // M27: Get SD status
  6679. gcode_M27(); break;
  6680. case 28: // M28: Start SD write
  6681. gcode_M28(); break;
  6682. case 29: // M29: Stop SD write
  6683. gcode_M29(); break;
  6684. case 30: // M30 <filename> Delete File
  6685. gcode_M30(); break;
  6686. case 32: // M32: Select file and start SD print
  6687. gcode_M32(); break;
  6688. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6689. case 33: // M33: Get the long full path to a file or folder
  6690. gcode_M33(); break;
  6691. #endif
  6692. case 928: // M928: Start SD write
  6693. gcode_M928(); break;
  6694. #endif //SDSUPPORT
  6695. case 31: // M31: Report time since the start of SD print or last M109
  6696. gcode_M31(); break;
  6697. case 42: // M42: Change pin state
  6698. gcode_M42(); break;
  6699. #if ENABLED(PINS_DEBUGGING)
  6700. case 43: // M43: Read pin state
  6701. gcode_M43(); break;
  6702. #endif
  6703. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6704. case 48: // M48: Z probe repeatability test
  6705. gcode_M48();
  6706. break;
  6707. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6708. case 75: // M75: Start print timer
  6709. gcode_M75(); break;
  6710. case 76: // M76: Pause print timer
  6711. gcode_M76(); break;
  6712. case 77: // M77: Stop print timer
  6713. gcode_M77(); break;
  6714. #if ENABLED(PRINTCOUNTER)
  6715. case 78: // M78: Show print statistics
  6716. gcode_M78(); break;
  6717. #endif
  6718. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6719. case 100: // M100: Free Memory Report
  6720. gcode_M100();
  6721. break;
  6722. #endif
  6723. case 104: // M104: Set hot end temperature
  6724. gcode_M104();
  6725. break;
  6726. case 110: // M110: Set Current Line Number
  6727. gcode_M110();
  6728. break;
  6729. case 111: // M111: Set debug level
  6730. gcode_M111();
  6731. break;
  6732. #if DISABLED(EMERGENCY_PARSER)
  6733. case 108: // M108: Cancel Waiting
  6734. gcode_M108();
  6735. break;
  6736. case 112: // M112: Emergency Stop
  6737. gcode_M112();
  6738. break;
  6739. case 410: // M410 quickstop - Abort all the planned moves.
  6740. gcode_M410();
  6741. break;
  6742. #endif
  6743. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6744. case 113: // M113: Set Host Keepalive interval
  6745. gcode_M113();
  6746. break;
  6747. #endif
  6748. case 140: // M140: Set bed temperature
  6749. gcode_M140();
  6750. break;
  6751. case 105: // M105: Report current temperature
  6752. gcode_M105();
  6753. KEEPALIVE_STATE(NOT_BUSY);
  6754. return; // "ok" already printed
  6755. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  6756. case 155: // M155: Set temperature auto-report interval
  6757. gcode_M155();
  6758. break;
  6759. #endif
  6760. case 109: // M109: Wait for hotend temperature to reach target
  6761. gcode_M109();
  6762. break;
  6763. #if HAS_TEMP_BED
  6764. case 190: // M190: Wait for bed temperature to reach target
  6765. gcode_M190();
  6766. break;
  6767. #endif // HAS_TEMP_BED
  6768. #if FAN_COUNT > 0
  6769. case 106: // M106: Fan On
  6770. gcode_M106();
  6771. break;
  6772. case 107: // M107: Fan Off
  6773. gcode_M107();
  6774. break;
  6775. #endif // FAN_COUNT > 0
  6776. #if ENABLED(BARICUDA)
  6777. // PWM for HEATER_1_PIN
  6778. #if HAS_HEATER_1
  6779. case 126: // M126: valve open
  6780. gcode_M126();
  6781. break;
  6782. case 127: // M127: valve closed
  6783. gcode_M127();
  6784. break;
  6785. #endif // HAS_HEATER_1
  6786. // PWM for HEATER_2_PIN
  6787. #if HAS_HEATER_2
  6788. case 128: // M128: valve open
  6789. gcode_M128();
  6790. break;
  6791. case 129: // M129: valve closed
  6792. gcode_M129();
  6793. break;
  6794. #endif // HAS_HEATER_2
  6795. #endif // BARICUDA
  6796. #if HAS_POWER_SWITCH
  6797. case 80: // M80: Turn on Power Supply
  6798. gcode_M80();
  6799. break;
  6800. #endif // HAS_POWER_SWITCH
  6801. case 81: // M81: Turn off Power, including Power Supply, if possible
  6802. gcode_M81();
  6803. break;
  6804. case 82: // M83: Set E axis normal mode (same as other axes)
  6805. gcode_M82();
  6806. break;
  6807. case 83: // M83: Set E axis relative mode
  6808. gcode_M83();
  6809. break;
  6810. case 18: // M18 => M84
  6811. case 84: // M84: Disable all steppers or set timeout
  6812. gcode_M18_M84();
  6813. break;
  6814. case 85: // M85: Set inactivity stepper shutdown timeout
  6815. gcode_M85();
  6816. break;
  6817. case 92: // M92: Set the steps-per-unit for one or more axes
  6818. gcode_M92();
  6819. break;
  6820. case 114: // M114: Report current position
  6821. gcode_M114();
  6822. break;
  6823. case 115: // M115: Report capabilities
  6824. gcode_M115();
  6825. break;
  6826. case 117: // M117: Set LCD message text, if possible
  6827. gcode_M117();
  6828. break;
  6829. case 119: // M119: Report endstop states
  6830. gcode_M119();
  6831. break;
  6832. case 120: // M120: Enable endstops
  6833. gcode_M120();
  6834. break;
  6835. case 121: // M121: Disable endstops
  6836. gcode_M121();
  6837. break;
  6838. #if ENABLED(HAVE_TMC2130DRIVER)
  6839. case 122: // M122: Diagnose, used to debug TMC2130
  6840. gcode_M122();
  6841. break;
  6842. #endif
  6843. #if ENABLED(ULTIPANEL)
  6844. case 145: // M145: Set material heatup parameters
  6845. gcode_M145();
  6846. break;
  6847. #endif
  6848. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6849. case 149: // M149: Set temperature units
  6850. gcode_M149();
  6851. break;
  6852. #endif
  6853. #if ENABLED(BLINKM)
  6854. case 150: // M150: Set the BlinkM LCD color
  6855. gcode_M150();
  6856. break;
  6857. #endif // BLINKM
  6858. #if ENABLED(MIXING_EXTRUDER)
  6859. case 163: // M163: Set a component weight for mixing extruder
  6860. gcode_M163();
  6861. break;
  6862. #if MIXING_VIRTUAL_TOOLS > 1
  6863. case 164: // M164: Save current mix as a virtual extruder
  6864. gcode_M164();
  6865. break;
  6866. #endif
  6867. #if ENABLED(DIRECT_MIXING_IN_G1)
  6868. case 165: // M165: Set multiple mix weights
  6869. gcode_M165();
  6870. break;
  6871. #endif
  6872. #endif
  6873. case 200: // M200: Set filament diameter, E to cubic units
  6874. gcode_M200();
  6875. break;
  6876. case 201: // M201: Set max acceleration for print moves (units/s^2)
  6877. gcode_M201();
  6878. break;
  6879. #if 0 // Not used for Sprinter/grbl gen6
  6880. case 202: // M202
  6881. gcode_M202();
  6882. break;
  6883. #endif
  6884. case 203: // M203: Set max feedrate (units/sec)
  6885. gcode_M203();
  6886. break;
  6887. case 204: // M204: Set acceleration
  6888. gcode_M204();
  6889. break;
  6890. case 205: //M205: Set advanced settings
  6891. gcode_M205();
  6892. break;
  6893. case 206: // M206: Set home offsets
  6894. gcode_M206();
  6895. break;
  6896. #if ENABLED(DELTA)
  6897. case 665: // M665: Set delta configurations
  6898. gcode_M665();
  6899. break;
  6900. #endif
  6901. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6902. case 666: // M666: Set delta or dual endstop adjustment
  6903. gcode_M666();
  6904. break;
  6905. #endif
  6906. #if ENABLED(FWRETRACT)
  6907. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  6908. gcode_M207();
  6909. break;
  6910. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  6911. gcode_M208();
  6912. break;
  6913. case 209: // M209: Turn Automatic Retract Detection on/off
  6914. gcode_M209();
  6915. break;
  6916. #endif // FWRETRACT
  6917. case 211: // M211: Enable, Disable, and/or Report software endstops
  6918. gcode_M211();
  6919. break;
  6920. #if HOTENDS > 1
  6921. case 218: // M218: Set a tool offset
  6922. gcode_M218();
  6923. break;
  6924. #endif
  6925. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6926. gcode_M220();
  6927. break;
  6928. case 221: // M221: Set Flow Percentage
  6929. gcode_M221();
  6930. break;
  6931. case 226: // M226: Wait until a pin reaches a state
  6932. gcode_M226();
  6933. break;
  6934. #if HAS_SERVOS
  6935. case 280: // M280: Set servo position absolute
  6936. gcode_M280();
  6937. break;
  6938. #endif // HAS_SERVOS
  6939. #if HAS_BUZZER
  6940. case 300: // M300: Play beep tone
  6941. gcode_M300();
  6942. break;
  6943. #endif // HAS_BUZZER
  6944. #if ENABLED(PIDTEMP)
  6945. case 301: // M301: Set hotend PID parameters
  6946. gcode_M301();
  6947. break;
  6948. #endif // PIDTEMP
  6949. #if ENABLED(PIDTEMPBED)
  6950. case 304: // M304: Set bed PID parameters
  6951. gcode_M304();
  6952. break;
  6953. #endif // PIDTEMPBED
  6954. #if defined(CHDK) || HAS_PHOTOGRAPH
  6955. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6956. gcode_M240();
  6957. break;
  6958. #endif // CHDK || PHOTOGRAPH_PIN
  6959. #if HAS_LCD_CONTRAST
  6960. case 250: // M250: Set LCD contrast
  6961. gcode_M250();
  6962. break;
  6963. #endif // HAS_LCD_CONTRAST
  6964. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6965. case 260: // M260: Send data to an i2c slave
  6966. gcode_M260();
  6967. break;
  6968. case 261: // M261: Request data from an i2c slave
  6969. gcode_M261();
  6970. break;
  6971. #endif // EXPERIMENTAL_I2CBUS
  6972. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6973. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  6974. gcode_M302();
  6975. break;
  6976. #endif // PREVENT_COLD_EXTRUSION
  6977. case 303: // M303: PID autotune
  6978. gcode_M303();
  6979. break;
  6980. #if ENABLED(MORGAN_SCARA)
  6981. case 360: // M360: SCARA Theta pos1
  6982. if (gcode_M360()) return;
  6983. break;
  6984. case 361: // M361: SCARA Theta pos2
  6985. if (gcode_M361()) return;
  6986. break;
  6987. case 362: // M362: SCARA Psi pos1
  6988. if (gcode_M362()) return;
  6989. break;
  6990. case 363: // M363: SCARA Psi pos2
  6991. if (gcode_M363()) return;
  6992. break;
  6993. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  6994. if (gcode_M364()) return;
  6995. break;
  6996. #endif // SCARA
  6997. case 400: // M400: Finish all moves
  6998. gcode_M400();
  6999. break;
  7000. #if HAS_BED_PROBE
  7001. case 401: // M401: Deploy probe
  7002. gcode_M401();
  7003. break;
  7004. case 402: // M402: Stow probe
  7005. gcode_M402();
  7006. break;
  7007. #endif // HAS_BED_PROBE
  7008. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7009. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  7010. gcode_M404();
  7011. break;
  7012. case 405: // M405: Turn on filament sensor for control
  7013. gcode_M405();
  7014. break;
  7015. case 406: // M406: Turn off filament sensor for control
  7016. gcode_M406();
  7017. break;
  7018. case 407: // M407: Display measured filament diameter
  7019. gcode_M407();
  7020. break;
  7021. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  7022. #if PLANNER_LEVELING
  7023. case 420: // M420: Enable/Disable Bed Leveling
  7024. gcode_M420();
  7025. break;
  7026. #endif
  7027. #if ENABLED(MESH_BED_LEVELING)
  7028. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  7029. gcode_M421();
  7030. break;
  7031. #endif
  7032. case 428: // M428: Apply current_position to home_offset
  7033. gcode_M428();
  7034. break;
  7035. case 500: // M500: Store settings in EEPROM
  7036. gcode_M500();
  7037. break;
  7038. case 501: // M501: Read settings from EEPROM
  7039. gcode_M501();
  7040. break;
  7041. case 502: // M502: Revert to default settings
  7042. gcode_M502();
  7043. break;
  7044. case 503: // M503: print settings currently in memory
  7045. gcode_M503();
  7046. break;
  7047. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7048. case 540: // M540: Set abort on endstop hit for SD printing
  7049. gcode_M540();
  7050. break;
  7051. #endif
  7052. #if HAS_BED_PROBE
  7053. case 851: // M851: Set Z Probe Z Offset
  7054. gcode_M851();
  7055. break;
  7056. #endif // HAS_BED_PROBE
  7057. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7058. case 600: // M600: Pause for filament change
  7059. gcode_M600();
  7060. break;
  7061. #endif // FILAMENT_CHANGE_FEATURE
  7062. #if ENABLED(DUAL_X_CARRIAGE)
  7063. case 605: // M605: Set Dual X Carriage movement mode
  7064. gcode_M605();
  7065. break;
  7066. #endif // DUAL_X_CARRIAGE
  7067. #if ENABLED(LIN_ADVANCE)
  7068. case 905: // M905: Set advance K factor.
  7069. gcode_M905();
  7070. break;
  7071. #endif
  7072. case 907: // M907: Set digital trimpot motor current using axis codes.
  7073. gcode_M907();
  7074. break;
  7075. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7076. case 908: // M908: Control digital trimpot directly.
  7077. gcode_M908();
  7078. break;
  7079. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7080. case 909: // M909: Print digipot/DAC current value
  7081. gcode_M909();
  7082. break;
  7083. case 910: // M910: Commit digipot/DAC value to external EEPROM
  7084. gcode_M910();
  7085. break;
  7086. #endif
  7087. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7088. #if HAS_MICROSTEPS
  7089. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7090. gcode_M350();
  7091. break;
  7092. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  7093. gcode_M351();
  7094. break;
  7095. #endif // HAS_MICROSTEPS
  7096. #if HAS_CASE_LIGHT
  7097. case 355: // M355 Turn case lights on/off
  7098. gcode_M355();
  7099. break;
  7100. #endif // HAS_CASE_LIGHT
  7101. case 999: // M999: Restart after being Stopped
  7102. gcode_M999();
  7103. break;
  7104. }
  7105. break;
  7106. case 'T':
  7107. gcode_T(codenum);
  7108. break;
  7109. default: code_is_good = false;
  7110. }
  7111. KEEPALIVE_STATE(NOT_BUSY);
  7112. ExitUnknownCommand:
  7113. // Still unknown command? Throw an error
  7114. if (!code_is_good) unknown_command_error();
  7115. ok_to_send();
  7116. }
  7117. /**
  7118. * Send a "Resend: nnn" message to the host to
  7119. * indicate that a command needs to be re-sent.
  7120. */
  7121. void FlushSerialRequestResend() {
  7122. //char command_queue[cmd_queue_index_r][100]="Resend:";
  7123. MYSERIAL.flush();
  7124. SERIAL_PROTOCOLPGM(MSG_RESEND);
  7125. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  7126. ok_to_send();
  7127. }
  7128. /**
  7129. * Send an "ok" message to the host, indicating
  7130. * that a command was successfully processed.
  7131. *
  7132. * If ADVANCED_OK is enabled also include:
  7133. * N<int> Line number of the command, if any
  7134. * P<int> Planner space remaining
  7135. * B<int> Block queue space remaining
  7136. */
  7137. void ok_to_send() {
  7138. refresh_cmd_timeout();
  7139. if (!send_ok[cmd_queue_index_r]) return;
  7140. SERIAL_PROTOCOLPGM(MSG_OK);
  7141. #if ENABLED(ADVANCED_OK)
  7142. char* p = command_queue[cmd_queue_index_r];
  7143. if (*p == 'N') {
  7144. SERIAL_PROTOCOL(' ');
  7145. SERIAL_ECHO(*p++);
  7146. while (NUMERIC_SIGNED(*p))
  7147. SERIAL_ECHO(*p++);
  7148. }
  7149. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  7150. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  7151. #endif
  7152. SERIAL_EOL;
  7153. }
  7154. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  7155. /**
  7156. * Constrain the given coordinates to the software endstops.
  7157. */
  7158. void clamp_to_software_endstops(float target[XYZ]) {
  7159. #if ENABLED(min_software_endstops)
  7160. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  7161. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  7162. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  7163. #endif
  7164. #if ENABLED(max_software_endstops)
  7165. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  7166. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  7167. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7168. #endif
  7169. }
  7170. #endif
  7171. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7172. // Get the Z adjustment for non-linear bed leveling
  7173. float bilinear_z_offset(float cartesian[XYZ]) {
  7174. // XY relative to the probed area
  7175. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  7176. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  7177. // Convert to grid box units
  7178. float ratio_x = x / bilinear_grid_spacing[X_AXIS],
  7179. ratio_y = y / bilinear_grid_spacing[Y_AXIS];
  7180. // Whole units for the grid line indices. Constrained within bounds.
  7181. const int gridx = constrain(floor(ratio_x), 0, ABL_GRID_POINTS_X - 1),
  7182. gridy = constrain(floor(ratio_y), 0, ABL_GRID_POINTS_Y - 1),
  7183. nextx = min(gridx + 1, ABL_GRID_POINTS_X - 1),
  7184. nexty = min(gridy + 1, ABL_GRID_POINTS_Y - 1);
  7185. // Subtract whole to get the ratio within the grid box
  7186. ratio_x -= gridx; ratio_y -= gridy;
  7187. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  7188. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  7189. // Z at the box corners
  7190. const float z1 = bed_level_grid[gridx][gridy], // left-front
  7191. z2 = bed_level_grid[gridx][nexty], // left-back
  7192. z3 = bed_level_grid[nextx][gridy], // right-front
  7193. z4 = bed_level_grid[nextx][nexty], // right-back
  7194. // Bilinear interpolate
  7195. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  7196. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  7197. offset = L + ratio_x * (R - L);
  7198. /*
  7199. static float last_offset = 0;
  7200. if (fabs(last_offset - offset) > 0.2) {
  7201. SERIAL_ECHOPGM("Sudden Shift at ");
  7202. SERIAL_ECHOPAIR("x=", x);
  7203. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  7204. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  7205. SERIAL_ECHOPAIR(" y=", y);
  7206. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  7207. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  7208. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  7209. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  7210. SERIAL_ECHOPAIR(" z1=", z1);
  7211. SERIAL_ECHOPAIR(" z2=", z2);
  7212. SERIAL_ECHOPAIR(" z3=", z3);
  7213. SERIAL_ECHOLNPAIR(" z4=", z4);
  7214. SERIAL_ECHOPAIR(" L=", L);
  7215. SERIAL_ECHOPAIR(" R=", R);
  7216. SERIAL_ECHOLNPAIR(" offset=", offset);
  7217. }
  7218. last_offset = offset;
  7219. //*/
  7220. return offset;
  7221. }
  7222. #endif // AUTO_BED_LEVELING_BILINEAR
  7223. #if ENABLED(DELTA)
  7224. /**
  7225. * Recalculate factors used for delta kinematics whenever
  7226. * settings have been changed (e.g., by M665).
  7227. */
  7228. void recalc_delta_settings(float radius, float diagonal_rod) {
  7229. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  7230. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  7231. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  7232. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  7233. delta_tower3_x = 0.0; // back middle tower
  7234. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  7235. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  7236. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  7237. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  7238. }
  7239. #if ENABLED(DELTA_FAST_SQRT)
  7240. /**
  7241. * Fast inverse sqrt from Quake III Arena
  7242. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  7243. */
  7244. float Q_rsqrt(float number) {
  7245. long i;
  7246. float x2, y;
  7247. const float threehalfs = 1.5f;
  7248. x2 = number * 0.5f;
  7249. y = number;
  7250. i = * ( long * ) &y; // evil floating point bit level hacking
  7251. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  7252. y = * ( float * ) &i;
  7253. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  7254. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  7255. return y;
  7256. }
  7257. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  7258. #else
  7259. #define _SQRT(n) sqrt(n)
  7260. #endif
  7261. /**
  7262. * Delta Inverse Kinematics
  7263. *
  7264. * Calculate the tower positions for a given logical
  7265. * position, storing the result in the delta[] array.
  7266. *
  7267. * This is an expensive calculation, requiring 3 square
  7268. * roots per segmented linear move, and strains the limits
  7269. * of a Mega2560 with a Graphical Display.
  7270. *
  7271. * Suggested optimizations include:
  7272. *
  7273. * - Disable the home_offset (M206) and/or position_shift (G92)
  7274. * features to remove up to 12 float additions.
  7275. *
  7276. * - Use a fast-inverse-sqrt function and add the reciprocal.
  7277. * (see above)
  7278. */
  7279. // Macro to obtain the Z position of an individual tower
  7280. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  7281. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  7282. delta_tower##T##_x - raw[X_AXIS], \
  7283. delta_tower##T##_y - raw[Y_AXIS] \
  7284. ) \
  7285. )
  7286. #define DELTA_RAW_IK() do { \
  7287. delta[A_AXIS] = DELTA_Z(1); \
  7288. delta[B_AXIS] = DELTA_Z(2); \
  7289. delta[C_AXIS] = DELTA_Z(3); \
  7290. } while(0)
  7291. #define DELTA_LOGICAL_IK() do { \
  7292. const float raw[XYZ] = { \
  7293. RAW_X_POSITION(logical[X_AXIS]), \
  7294. RAW_Y_POSITION(logical[Y_AXIS]), \
  7295. RAW_Z_POSITION(logical[Z_AXIS]) \
  7296. }; \
  7297. DELTA_RAW_IK(); \
  7298. } while(0)
  7299. #define DELTA_DEBUG() do { \
  7300. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  7301. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  7302. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  7303. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  7304. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  7305. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  7306. } while(0)
  7307. void inverse_kinematics(const float logical[XYZ]) {
  7308. DELTA_LOGICAL_IK();
  7309. // DELTA_DEBUG();
  7310. }
  7311. /**
  7312. * Calculate the highest Z position where the
  7313. * effector has the full range of XY motion.
  7314. */
  7315. float delta_safe_distance_from_top() {
  7316. float cartesian[XYZ] = {
  7317. LOGICAL_X_POSITION(0),
  7318. LOGICAL_Y_POSITION(0),
  7319. LOGICAL_Z_POSITION(0)
  7320. };
  7321. inverse_kinematics(cartesian);
  7322. float distance = delta[A_AXIS];
  7323. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  7324. inverse_kinematics(cartesian);
  7325. return abs(distance - delta[A_AXIS]);
  7326. }
  7327. /**
  7328. * Delta Forward Kinematics
  7329. *
  7330. * See the Wikipedia article "Trilateration"
  7331. * https://en.wikipedia.org/wiki/Trilateration
  7332. *
  7333. * Establish a new coordinate system in the plane of the
  7334. * three carriage points. This system has its origin at
  7335. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  7336. * plane with a Z component of zero.
  7337. * We will define unit vectors in this coordinate system
  7338. * in our original coordinate system. Then when we calculate
  7339. * the Xnew, Ynew and Znew values, we can translate back into
  7340. * the original system by moving along those unit vectors
  7341. * by the corresponding values.
  7342. *
  7343. * Variable names matched to Marlin, c-version, and avoid the
  7344. * use of any vector library.
  7345. *
  7346. * by Andreas Hardtung 2016-06-07
  7347. * based on a Java function from "Delta Robot Kinematics V3"
  7348. * by Steve Graves
  7349. *
  7350. * The result is stored in the cartes[] array.
  7351. */
  7352. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  7353. // Create a vector in old coordinates along x axis of new coordinate
  7354. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  7355. // Get the Magnitude of vector.
  7356. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  7357. // Create unit vector by dividing by magnitude.
  7358. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  7359. // Get the vector from the origin of the new system to the third point.
  7360. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  7361. // Use the dot product to find the component of this vector on the X axis.
  7362. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  7363. // Create a vector along the x axis that represents the x component of p13.
  7364. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  7365. // Subtract the X component from the original vector leaving only Y. We use the
  7366. // variable that will be the unit vector after we scale it.
  7367. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  7368. // The magnitude of Y component
  7369. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  7370. // Convert to a unit vector
  7371. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  7372. // The cross product of the unit x and y is the unit z
  7373. // float[] ez = vectorCrossProd(ex, ey);
  7374. float ez[3] = {
  7375. ex[1] * ey[2] - ex[2] * ey[1],
  7376. ex[2] * ey[0] - ex[0] * ey[2],
  7377. ex[0] * ey[1] - ex[1] * ey[0]
  7378. };
  7379. // We now have the d, i and j values defined in Wikipedia.
  7380. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  7381. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  7382. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  7383. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  7384. // Start from the origin of the old coordinates and add vectors in the
  7385. // old coords that represent the Xnew, Ynew and Znew to find the point
  7386. // in the old system.
  7387. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  7388. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  7389. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  7390. }
  7391. void forward_kinematics_DELTA(float point[ABC]) {
  7392. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  7393. }
  7394. #endif // DELTA
  7395. /**
  7396. * Get the stepper positions in the cartes[] array.
  7397. * Forward kinematics are applied for DELTA and SCARA.
  7398. *
  7399. * The result is in the current coordinate space with
  7400. * leveling applied. The coordinates need to be run through
  7401. * unapply_leveling to obtain the "ideal" coordinates
  7402. * suitable for current_position, etc.
  7403. */
  7404. void get_cartesian_from_steppers() {
  7405. #if ENABLED(DELTA)
  7406. forward_kinematics_DELTA(
  7407. stepper.get_axis_position_mm(A_AXIS),
  7408. stepper.get_axis_position_mm(B_AXIS),
  7409. stepper.get_axis_position_mm(C_AXIS)
  7410. );
  7411. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7412. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7413. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  7414. #elif IS_SCARA
  7415. forward_kinematics_SCARA(
  7416. stepper.get_axis_position_degrees(A_AXIS),
  7417. stepper.get_axis_position_degrees(B_AXIS)
  7418. );
  7419. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7420. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7421. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7422. #else
  7423. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  7424. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  7425. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7426. #endif
  7427. }
  7428. /**
  7429. * Set the current_position for an axis based on
  7430. * the stepper positions, removing any leveling that
  7431. * may have been applied.
  7432. */
  7433. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  7434. get_cartesian_from_steppers();
  7435. #if PLANNER_LEVELING
  7436. planner.unapply_leveling(cartes);
  7437. #endif
  7438. if (axis == ALL_AXES)
  7439. memcpy(current_position, cartes, sizeof(cartes));
  7440. else
  7441. current_position[axis] = cartes[axis];
  7442. }
  7443. #if ENABLED(MESH_BED_LEVELING)
  7444. /**
  7445. * Prepare a mesh-leveled linear move in a Cartesian setup,
  7446. * splitting the move where it crosses mesh borders.
  7447. */
  7448. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  7449. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  7450. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  7451. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  7452. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  7453. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  7454. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  7455. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  7456. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  7457. if (cx1 == cx2 && cy1 == cy2) {
  7458. // Start and end on same mesh square
  7459. line_to_destination(fr_mm_s);
  7460. set_current_to_destination();
  7461. return;
  7462. }
  7463. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  7464. float normalized_dist, end[XYZE];
  7465. // Split at the left/front border of the right/top square
  7466. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  7467. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  7468. memcpy(end, destination, sizeof(end));
  7469. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  7470. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  7471. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  7472. CBI(x_splits, gcx);
  7473. }
  7474. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  7475. memcpy(end, destination, sizeof(end));
  7476. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  7477. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  7478. destination[X_AXIS] = MBL_SEGMENT_END(X);
  7479. CBI(y_splits, gcy);
  7480. }
  7481. else {
  7482. // Already split on a border
  7483. line_to_destination(fr_mm_s);
  7484. set_current_to_destination();
  7485. return;
  7486. }
  7487. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  7488. destination[E_AXIS] = MBL_SEGMENT_END(E);
  7489. // Do the split and look for more borders
  7490. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7491. // Restore destination from stack
  7492. memcpy(destination, end, sizeof(end));
  7493. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7494. }
  7495. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  7496. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / bilinear_grid_spacing[A##_AXIS])
  7497. /**
  7498. * Prepare a bilinear-leveled linear move on Cartesian,
  7499. * splitting the move where it crosses grid borders.
  7500. */
  7501. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  7502. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  7503. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  7504. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  7505. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  7506. cx1 = constrain(cx1, 0, ABL_GRID_POINTS_X - 2);
  7507. cy1 = constrain(cy1, 0, ABL_GRID_POINTS_Y - 2);
  7508. cx2 = constrain(cx2, 0, ABL_GRID_POINTS_X - 2);
  7509. cy2 = constrain(cy2, 0, ABL_GRID_POINTS_Y - 2);
  7510. if (cx1 == cx2 && cy1 == cy2) {
  7511. // Start and end on same mesh square
  7512. line_to_destination(fr_mm_s);
  7513. set_current_to_destination();
  7514. return;
  7515. }
  7516. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  7517. float normalized_dist, end[XYZE];
  7518. // Split at the left/front border of the right/top square
  7519. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  7520. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  7521. memcpy(end, destination, sizeof(end));
  7522. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + bilinear_grid_spacing[X_AXIS] * gcx);
  7523. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  7524. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  7525. CBI(x_splits, gcx);
  7526. }
  7527. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  7528. memcpy(end, destination, sizeof(end));
  7529. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + bilinear_grid_spacing[Y_AXIS] * gcy);
  7530. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  7531. destination[X_AXIS] = LINE_SEGMENT_END(X);
  7532. CBI(y_splits, gcy);
  7533. }
  7534. else {
  7535. // Already split on a border
  7536. line_to_destination(fr_mm_s);
  7537. set_current_to_destination();
  7538. return;
  7539. }
  7540. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  7541. destination[E_AXIS] = LINE_SEGMENT_END(E);
  7542. // Do the split and look for more borders
  7543. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  7544. // Restore destination from stack
  7545. memcpy(destination, end, sizeof(end));
  7546. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  7547. }
  7548. #endif // AUTO_BED_LEVELING_BILINEAR
  7549. #if IS_KINEMATIC
  7550. /**
  7551. * Prepare a linear move in a DELTA or SCARA setup.
  7552. *
  7553. * This calls planner.buffer_line several times, adding
  7554. * small incremental moves for DELTA or SCARA.
  7555. */
  7556. inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
  7557. // Get the top feedrate of the move in the XY plane
  7558. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  7559. // If the move is only in Z/E don't split up the move
  7560. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  7561. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  7562. return true;
  7563. }
  7564. // Get the cartesian distances moved in XYZE
  7565. float difference[NUM_AXIS];
  7566. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  7567. // Get the linear distance in XYZ
  7568. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  7569. // If the move is very short, check the E move distance
  7570. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  7571. // No E move either? Game over.
  7572. if (UNEAR_ZERO(cartesian_mm)) return false;
  7573. // Minimum number of seconds to move the given distance
  7574. float seconds = cartesian_mm / _feedrate_mm_s;
  7575. // The number of segments-per-second times the duration
  7576. // gives the number of segments
  7577. uint16_t segments = delta_segments_per_second * seconds;
  7578. // For SCARA minimum segment size is 0.5mm
  7579. #if IS_SCARA
  7580. NOMORE(segments, cartesian_mm * 2);
  7581. #endif
  7582. // At least one segment is required
  7583. NOLESS(segments, 1);
  7584. // The approximate length of each segment
  7585. float segment_distance[XYZE] = {
  7586. difference[X_AXIS] / segments,
  7587. difference[Y_AXIS] / segments,
  7588. difference[Z_AXIS] / segments,
  7589. difference[E_AXIS] / segments
  7590. };
  7591. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  7592. // SERIAL_ECHOPAIR(" seconds=", seconds);
  7593. // SERIAL_ECHOLNPAIR(" segments=", segments);
  7594. // Drop one segment so the last move is to the exact target.
  7595. // If there's only 1 segment, loops will be skipped entirely.
  7596. --segments;
  7597. // Using "raw" coordinates saves 6 float subtractions
  7598. // per segment, saving valuable CPU cycles
  7599. #if ENABLED(USE_RAW_KINEMATICS)
  7600. // Get the raw current position as starting point
  7601. float raw[XYZE] = {
  7602. RAW_CURRENT_POSITION(X_AXIS),
  7603. RAW_CURRENT_POSITION(Y_AXIS),
  7604. RAW_CURRENT_POSITION(Z_AXIS),
  7605. current_position[E_AXIS]
  7606. };
  7607. #define DELTA_VAR raw
  7608. // Delta can inline its kinematics
  7609. #if ENABLED(DELTA)
  7610. #define DELTA_IK() DELTA_RAW_IK()
  7611. #else
  7612. #define DELTA_IK() inverse_kinematics(raw)
  7613. #endif
  7614. #else
  7615. // Get the logical current position as starting point
  7616. float logical[XYZE];
  7617. memcpy(logical, current_position, sizeof(logical));
  7618. #define DELTA_VAR logical
  7619. // Delta can inline its kinematics
  7620. #if ENABLED(DELTA)
  7621. #define DELTA_IK() DELTA_LOGICAL_IK()
  7622. #else
  7623. #define DELTA_IK() inverse_kinematics(logical)
  7624. #endif
  7625. #endif
  7626. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  7627. // Only interpolate XYZ. Advance E normally.
  7628. #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
  7629. // Get the starting delta if interpolation is possible
  7630. if (segments >= 2) {
  7631. DELTA_IK();
  7632. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7633. }
  7634. // Loop using decrement
  7635. for (uint16_t s = segments + 1; --s;) {
  7636. // Are there at least 2 moves left?
  7637. if (s >= 2) {
  7638. // Save the previous delta for interpolation
  7639. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  7640. // Get the delta 2 segments ahead (rather than the next)
  7641. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  7642. // Advance E normally
  7643. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7644. // Get the exact delta for the move after this
  7645. DELTA_IK();
  7646. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7647. // Move to the interpolated delta position first
  7648. planner.buffer_line(
  7649. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  7650. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  7651. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  7652. DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
  7653. );
  7654. // Advance E once more for the next move
  7655. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7656. // Do an extra decrement of the loop
  7657. --s;
  7658. }
  7659. else {
  7660. // Get the last segment delta. (Used when segments is odd)
  7661. DELTA_NEXT(segment_distance[i]);
  7662. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7663. DELTA_IK();
  7664. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7665. }
  7666. // Move to the non-interpolated position
  7667. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7668. }
  7669. #else
  7670. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
  7671. // For non-interpolated delta calculate every segment
  7672. for (uint16_t s = segments + 1; --s;) {
  7673. DELTA_NEXT(segment_distance[i]);
  7674. planner.buffer_line_kinematic(DELTA_VAR, _feedrate_mm_s, active_extruder);
  7675. }
  7676. #endif
  7677. // Since segment_distance is only approximate,
  7678. // the final move must be to the exact destination.
  7679. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  7680. return true;
  7681. }
  7682. #else // !IS_KINEMATIC
  7683. /**
  7684. * Prepare a linear move in a Cartesian setup.
  7685. * If Mesh Bed Leveling is enabled, perform a mesh move.
  7686. */
  7687. inline bool prepare_move_to_destination_cartesian() {
  7688. // Do not use feedrate_percentage for E or Z only moves
  7689. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  7690. line_to_destination();
  7691. }
  7692. else {
  7693. #if ENABLED(MESH_BED_LEVELING)
  7694. if (mbl.active()) {
  7695. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7696. return false;
  7697. }
  7698. else
  7699. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7700. if (planner.abl_enabled) {
  7701. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7702. return false;
  7703. }
  7704. else
  7705. #endif
  7706. line_to_destination(MMS_SCALED(feedrate_mm_s));
  7707. }
  7708. return true;
  7709. }
  7710. #endif // !IS_KINEMATIC
  7711. #if ENABLED(DUAL_X_CARRIAGE)
  7712. /**
  7713. * Prepare a linear move in a dual X axis setup
  7714. */
  7715. inline bool prepare_move_to_destination_dualx() {
  7716. if (active_extruder_parked) {
  7717. switch (dual_x_carriage_mode) {
  7718. case DXC_FULL_CONTROL_MODE:
  7719. break;
  7720. case DXC_DUPLICATION_MODE:
  7721. if (active_extruder == 0) {
  7722. // move duplicate extruder into correct duplication position.
  7723. planner.set_position_mm(
  7724. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  7725. current_position[Y_AXIS],
  7726. current_position[Z_AXIS],
  7727. current_position[E_AXIS]
  7728. );
  7729. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  7730. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  7731. SYNC_PLAN_POSITION_KINEMATIC();
  7732. stepper.synchronize();
  7733. extruder_duplication_enabled = true;
  7734. active_extruder_parked = false;
  7735. }
  7736. break;
  7737. case DXC_AUTO_PARK_MODE:
  7738. if (current_position[E_AXIS] == destination[E_AXIS]) {
  7739. // This is a travel move (with no extrusion)
  7740. // Skip it, but keep track of the current position
  7741. // (so it can be used as the start of the next non-travel move)
  7742. if (delayed_move_time != 0xFFFFFFFFUL) {
  7743. set_current_to_destination();
  7744. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  7745. delayed_move_time = millis();
  7746. return false;
  7747. }
  7748. }
  7749. delayed_move_time = 0;
  7750. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  7751. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7752. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  7753. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7754. active_extruder_parked = false;
  7755. break;
  7756. }
  7757. }
  7758. return true;
  7759. }
  7760. #endif // DUAL_X_CARRIAGE
  7761. /**
  7762. * Prepare a single move and get ready for the next one
  7763. *
  7764. * This may result in several calls to planner.buffer_line to
  7765. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  7766. */
  7767. void prepare_move_to_destination() {
  7768. clamp_to_software_endstops(destination);
  7769. refresh_cmd_timeout();
  7770. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7771. if (!DEBUGGING(DRYRUN)) {
  7772. if (destination[E_AXIS] != current_position[E_AXIS]) {
  7773. if (thermalManager.tooColdToExtrude(active_extruder)) {
  7774. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7775. SERIAL_ECHO_START;
  7776. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  7777. }
  7778. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  7779. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  7780. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7781. SERIAL_ECHO_START;
  7782. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  7783. }
  7784. #endif
  7785. }
  7786. }
  7787. #endif
  7788. #if IS_KINEMATIC
  7789. if (!prepare_kinematic_move_to(destination)) return;
  7790. #else
  7791. #if ENABLED(DUAL_X_CARRIAGE)
  7792. if (!prepare_move_to_destination_dualx()) return;
  7793. #endif
  7794. if (!prepare_move_to_destination_cartesian()) return;
  7795. #endif
  7796. set_current_to_destination();
  7797. }
  7798. #if ENABLED(ARC_SUPPORT)
  7799. /**
  7800. * Plan an arc in 2 dimensions
  7801. *
  7802. * The arc is approximated by generating many small linear segments.
  7803. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  7804. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  7805. * larger segments will tend to be more efficient. Your slicer should have
  7806. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  7807. */
  7808. void plan_arc(
  7809. float logical[NUM_AXIS], // Destination position
  7810. float* offset, // Center of rotation relative to current_position
  7811. uint8_t clockwise // Clockwise?
  7812. ) {
  7813. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  7814. center_X = current_position[X_AXIS] + offset[X_AXIS],
  7815. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  7816. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  7817. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  7818. r_X = -offset[X_AXIS], // Radius vector from center to current location
  7819. r_Y = -offset[Y_AXIS],
  7820. rt_X = logical[X_AXIS] - center_X,
  7821. rt_Y = logical[Y_AXIS] - center_Y;
  7822. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  7823. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  7824. if (angular_travel < 0) angular_travel += RADIANS(360);
  7825. if (clockwise) angular_travel -= RADIANS(360);
  7826. // Make a circle if the angular rotation is 0
  7827. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  7828. angular_travel += RADIANS(360);
  7829. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  7830. if (mm_of_travel < 0.001) return;
  7831. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  7832. if (segments == 0) segments = 1;
  7833. /**
  7834. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  7835. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  7836. * r_T = [cos(phi) -sin(phi);
  7837. * sin(phi) cos(phi)] * r ;
  7838. *
  7839. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  7840. * defined from the circle center to the initial position. Each line segment is formed by successive
  7841. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  7842. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  7843. * all double numbers are single precision on the Arduino. (True double precision will not have
  7844. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  7845. * tool precision in some cases. Therefore, arc path correction is implemented.
  7846. *
  7847. * Small angle approximation may be used to reduce computation overhead further. This approximation
  7848. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  7849. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  7850. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  7851. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  7852. * issue for CNC machines with the single precision Arduino calculations.
  7853. *
  7854. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  7855. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  7856. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  7857. * This is important when there are successive arc motions.
  7858. */
  7859. // Vector rotation matrix values
  7860. float arc_target[XYZE],
  7861. theta_per_segment = angular_travel / segments,
  7862. linear_per_segment = linear_travel / segments,
  7863. extruder_per_segment = extruder_travel / segments,
  7864. sin_T = theta_per_segment,
  7865. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  7866. // Initialize the linear axis
  7867. arc_target[Z_AXIS] = current_position[Z_AXIS];
  7868. // Initialize the extruder axis
  7869. arc_target[E_AXIS] = current_position[E_AXIS];
  7870. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  7871. millis_t next_idle_ms = millis() + 200UL;
  7872. int8_t count = 0;
  7873. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  7874. thermalManager.manage_heater();
  7875. if (ELAPSED(millis(), next_idle_ms)) {
  7876. next_idle_ms = millis() + 200UL;
  7877. idle();
  7878. }
  7879. if (++count < N_ARC_CORRECTION) {
  7880. // Apply vector rotation matrix to previous r_X / 1
  7881. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  7882. r_X = r_X * cos_T - r_Y * sin_T;
  7883. r_Y = r_new_Y;
  7884. }
  7885. else {
  7886. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7887. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7888. // To reduce stuttering, the sin and cos could be computed at different times.
  7889. // For now, compute both at the same time.
  7890. float cos_Ti = cos(i * theta_per_segment),
  7891. sin_Ti = sin(i * theta_per_segment);
  7892. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7893. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7894. count = 0;
  7895. }
  7896. // Update arc_target location
  7897. arc_target[X_AXIS] = center_X + r_X;
  7898. arc_target[Y_AXIS] = center_Y + r_Y;
  7899. arc_target[Z_AXIS] += linear_per_segment;
  7900. arc_target[E_AXIS] += extruder_per_segment;
  7901. clamp_to_software_endstops(arc_target);
  7902. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  7903. }
  7904. // Ensure last segment arrives at target location.
  7905. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  7906. // As far as the parser is concerned, the position is now == target. In reality the
  7907. // motion control system might still be processing the action and the real tool position
  7908. // in any intermediate location.
  7909. set_current_to_destination();
  7910. }
  7911. #endif
  7912. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7913. void plan_cubic_move(const float offset[4]) {
  7914. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7915. // As far as the parser is concerned, the position is now == destination. In reality the
  7916. // motion control system might still be processing the action and the real tool position
  7917. // in any intermediate location.
  7918. set_current_to_destination();
  7919. }
  7920. #endif // BEZIER_CURVE_SUPPORT
  7921. #if HAS_CONTROLLERFAN
  7922. void controllerFan() {
  7923. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7924. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7925. millis_t ms = millis();
  7926. if (ELAPSED(ms, nextMotorCheck)) {
  7927. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7928. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7929. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7930. #if E_STEPPERS > 1
  7931. || E1_ENABLE_READ == E_ENABLE_ON
  7932. #if HAS_X2_ENABLE
  7933. || X2_ENABLE_READ == X_ENABLE_ON
  7934. #endif
  7935. #if E_STEPPERS > 2
  7936. || E2_ENABLE_READ == E_ENABLE_ON
  7937. #if E_STEPPERS > 3
  7938. || E3_ENABLE_READ == E_ENABLE_ON
  7939. #endif
  7940. #endif
  7941. #endif
  7942. ) {
  7943. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7944. }
  7945. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7946. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7947. // allows digital or PWM fan output to be used (see M42 handling)
  7948. digitalWrite(CONTROLLERFAN_PIN, speed);
  7949. analogWrite(CONTROLLERFAN_PIN, speed);
  7950. }
  7951. }
  7952. #endif // HAS_CONTROLLERFAN
  7953. #if ENABLED(MORGAN_SCARA)
  7954. /**
  7955. * Morgan SCARA Forward Kinematics. Results in cartes[].
  7956. * Maths and first version by QHARLEY.
  7957. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7958. */
  7959. void forward_kinematics_SCARA(const float &a, const float &b) {
  7960. float a_sin = sin(RADIANS(a)) * L1,
  7961. a_cos = cos(RADIANS(a)) * L1,
  7962. b_sin = sin(RADIANS(b)) * L2,
  7963. b_cos = cos(RADIANS(b)) * L2;
  7964. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7965. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7966. /*
  7967. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  7968. SERIAL_ECHOPAIR(" b=", b);
  7969. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7970. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7971. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7972. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7973. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7974. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7975. //*/
  7976. }
  7977. /**
  7978. * Morgan SCARA Inverse Kinematics. Results in delta[].
  7979. *
  7980. * See http://forums.reprap.org/read.php?185,283327
  7981. *
  7982. * Maths and first version by QHARLEY.
  7983. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7984. */
  7985. void inverse_kinematics(const float logical[XYZ]) {
  7986. static float C2, S2, SK1, SK2, THETA, PSI;
  7987. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  7988. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7989. if (L1 == L2)
  7990. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  7991. else
  7992. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  7993. S2 = sqrt(sq(C2) - 1);
  7994. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  7995. SK1 = L1 + L2 * C2;
  7996. // Rotated Arm2 gives the distance from Arm1 to Arm2
  7997. SK2 = L2 * S2;
  7998. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  7999. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  8000. // Angle of Arm2
  8001. PSI = atan2(S2, C2);
  8002. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  8003. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  8004. delta[C_AXIS] = logical[Z_AXIS];
  8005. /*
  8006. DEBUG_POS("SCARA IK", logical);
  8007. DEBUG_POS("SCARA IK", delta);
  8008. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  8009. SERIAL_ECHOPAIR(",", sy);
  8010. SERIAL_ECHOPAIR(" C2=", C2);
  8011. SERIAL_ECHOPAIR(" S2=", S2);
  8012. SERIAL_ECHOPAIR(" Theta=", THETA);
  8013. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  8014. //*/
  8015. }
  8016. #endif // MORGAN_SCARA
  8017. #if ENABLED(TEMP_STAT_LEDS)
  8018. static bool red_led = false;
  8019. static millis_t next_status_led_update_ms = 0;
  8020. void handle_status_leds(void) {
  8021. if (ELAPSED(millis(), next_status_led_update_ms)) {
  8022. next_status_led_update_ms += 500; // Update every 0.5s
  8023. float max_temp = 0.0;
  8024. #if HAS_TEMP_BED
  8025. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  8026. #endif
  8027. HOTEND_LOOP() {
  8028. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  8029. }
  8030. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  8031. if (new_led != red_led) {
  8032. red_led = new_led;
  8033. #if PIN_EXISTS(STAT_LED_RED)
  8034. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  8035. #if PIN_EXISTS(STAT_LED_BLUE)
  8036. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  8037. #endif
  8038. #else
  8039. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  8040. #endif
  8041. }
  8042. }
  8043. }
  8044. #endif
  8045. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8046. void handle_filament_runout() {
  8047. if (!filament_ran_out) {
  8048. filament_ran_out = true;
  8049. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  8050. stepper.synchronize();
  8051. }
  8052. }
  8053. #endif // FILAMENT_RUNOUT_SENSOR
  8054. #if ENABLED(FAST_PWM_FAN)
  8055. void setPwmFrequency(uint8_t pin, int val) {
  8056. val &= 0x07;
  8057. switch (digitalPinToTimer(pin)) {
  8058. #if defined(TCCR0A)
  8059. case TIMER0A:
  8060. case TIMER0B:
  8061. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8062. // TCCR0B |= val;
  8063. break;
  8064. #endif
  8065. #if defined(TCCR1A)
  8066. case TIMER1A:
  8067. case TIMER1B:
  8068. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8069. // TCCR1B |= val;
  8070. break;
  8071. #endif
  8072. #if defined(TCCR2)
  8073. case TIMER2:
  8074. case TIMER2:
  8075. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8076. TCCR2 |= val;
  8077. break;
  8078. #endif
  8079. #if defined(TCCR2A)
  8080. case TIMER2A:
  8081. case TIMER2B:
  8082. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8083. TCCR2B |= val;
  8084. break;
  8085. #endif
  8086. #if defined(TCCR3A)
  8087. case TIMER3A:
  8088. case TIMER3B:
  8089. case TIMER3C:
  8090. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8091. TCCR3B |= val;
  8092. break;
  8093. #endif
  8094. #if defined(TCCR4A)
  8095. case TIMER4A:
  8096. case TIMER4B:
  8097. case TIMER4C:
  8098. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8099. TCCR4B |= val;
  8100. break;
  8101. #endif
  8102. #if defined(TCCR5A)
  8103. case TIMER5A:
  8104. case TIMER5B:
  8105. case TIMER5C:
  8106. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8107. TCCR5B |= val;
  8108. break;
  8109. #endif
  8110. }
  8111. }
  8112. #endif // FAST_PWM_FAN
  8113. float calculate_volumetric_multiplier(float diameter) {
  8114. if (!volumetric_enabled || diameter == 0) return 1.0;
  8115. return 1.0 / (M_PI * diameter * 0.5 * diameter * 0.5);
  8116. }
  8117. void calculate_volumetric_multipliers() {
  8118. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  8119. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  8120. }
  8121. void enable_all_steppers() {
  8122. enable_x();
  8123. enable_y();
  8124. enable_z();
  8125. enable_e0();
  8126. enable_e1();
  8127. enable_e2();
  8128. enable_e3();
  8129. }
  8130. void disable_all_steppers() {
  8131. disable_x();
  8132. disable_y();
  8133. disable_z();
  8134. disable_e0();
  8135. disable_e1();
  8136. disable_e2();
  8137. disable_e3();
  8138. }
  8139. /**
  8140. * Manage several activities:
  8141. * - Check for Filament Runout
  8142. * - Keep the command buffer full
  8143. * - Check for maximum inactive time between commands
  8144. * - Check for maximum inactive time between stepper commands
  8145. * - Check if pin CHDK needs to go LOW
  8146. * - Check for KILL button held down
  8147. * - Check for HOME button held down
  8148. * - Check if cooling fan needs to be switched on
  8149. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  8150. */
  8151. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  8152. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8153. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  8154. handle_filament_runout();
  8155. #endif
  8156. if (commands_in_queue < BUFSIZE) get_available_commands();
  8157. millis_t ms = millis();
  8158. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  8159. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  8160. && !ignore_stepper_queue && !planner.blocks_queued()) {
  8161. #if ENABLED(DISABLE_INACTIVE_X)
  8162. disable_x();
  8163. #endif
  8164. #if ENABLED(DISABLE_INACTIVE_Y)
  8165. disable_y();
  8166. #endif
  8167. #if ENABLED(DISABLE_INACTIVE_Z)
  8168. disable_z();
  8169. #endif
  8170. #if ENABLED(DISABLE_INACTIVE_E)
  8171. disable_e0();
  8172. disable_e1();
  8173. disable_e2();
  8174. disable_e3();
  8175. #endif
  8176. }
  8177. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  8178. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  8179. chdkActive = false;
  8180. WRITE(CHDK, LOW);
  8181. }
  8182. #endif
  8183. #if HAS_KILL
  8184. // Check if the kill button was pressed and wait just in case it was an accidental
  8185. // key kill key press
  8186. // -------------------------------------------------------------------------------
  8187. static int killCount = 0; // make the inactivity button a bit less responsive
  8188. const int KILL_DELAY = 750;
  8189. if (!READ(KILL_PIN))
  8190. killCount++;
  8191. else if (killCount > 0)
  8192. killCount--;
  8193. // Exceeded threshold and we can confirm that it was not accidental
  8194. // KILL the machine
  8195. // ----------------------------------------------------------------
  8196. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  8197. #endif
  8198. #if HAS_HOME
  8199. // Check to see if we have to home, use poor man's debouncer
  8200. // ---------------------------------------------------------
  8201. static int homeDebounceCount = 0; // poor man's debouncing count
  8202. const int HOME_DEBOUNCE_DELAY = 2500;
  8203. if (!READ(HOME_PIN)) {
  8204. if (!homeDebounceCount) {
  8205. enqueue_and_echo_commands_P(PSTR("G28"));
  8206. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  8207. }
  8208. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  8209. homeDebounceCount++;
  8210. else
  8211. homeDebounceCount = 0;
  8212. }
  8213. #endif
  8214. #if HAS_CONTROLLERFAN
  8215. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  8216. #endif
  8217. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  8218. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  8219. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  8220. bool oldstatus;
  8221. #if ENABLED(SWITCHING_EXTRUDER)
  8222. oldstatus = E0_ENABLE_READ;
  8223. enable_e0();
  8224. #else // !SWITCHING_EXTRUDER
  8225. switch (active_extruder) {
  8226. case 0:
  8227. oldstatus = E0_ENABLE_READ;
  8228. enable_e0();
  8229. break;
  8230. #if E_STEPPERS > 1
  8231. case 1:
  8232. oldstatus = E1_ENABLE_READ;
  8233. enable_e1();
  8234. break;
  8235. #if E_STEPPERS > 2
  8236. case 2:
  8237. oldstatus = E2_ENABLE_READ;
  8238. enable_e2();
  8239. break;
  8240. #if E_STEPPERS > 3
  8241. case 3:
  8242. oldstatus = E3_ENABLE_READ;
  8243. enable_e3();
  8244. break;
  8245. #endif
  8246. #endif
  8247. #endif
  8248. }
  8249. #endif // !SWITCHING_EXTRUDER
  8250. previous_cmd_ms = ms; // refresh_cmd_timeout()
  8251. #if IS_KINEMATIC
  8252. inverse_kinematics(current_position);
  8253. ADJUST_DELTA(current_position);
  8254. planner.buffer_line(
  8255. delta[A_AXIS], delta[B_AXIS], delta[C_AXIS],
  8256. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  8257. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  8258. );
  8259. #else
  8260. planner.buffer_line(
  8261. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  8262. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  8263. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  8264. );
  8265. #endif
  8266. stepper.synchronize();
  8267. planner.set_e_position_mm(current_position[E_AXIS]);
  8268. #if ENABLED(SWITCHING_EXTRUDER)
  8269. E0_ENABLE_WRITE(oldstatus);
  8270. #else
  8271. switch (active_extruder) {
  8272. case 0:
  8273. E0_ENABLE_WRITE(oldstatus);
  8274. break;
  8275. #if E_STEPPERS > 1
  8276. case 1:
  8277. E1_ENABLE_WRITE(oldstatus);
  8278. break;
  8279. #if E_STEPPERS > 2
  8280. case 2:
  8281. E2_ENABLE_WRITE(oldstatus);
  8282. break;
  8283. #if E_STEPPERS > 3
  8284. case 3:
  8285. E3_ENABLE_WRITE(oldstatus);
  8286. break;
  8287. #endif
  8288. #endif
  8289. #endif
  8290. }
  8291. #endif // !SWITCHING_EXTRUDER
  8292. }
  8293. #endif // EXTRUDER_RUNOUT_PREVENT
  8294. #if ENABLED(DUAL_X_CARRIAGE)
  8295. // handle delayed move timeout
  8296. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  8297. // travel moves have been received so enact them
  8298. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  8299. set_destination_to_current();
  8300. prepare_move_to_destination();
  8301. }
  8302. #endif
  8303. #if ENABLED(TEMP_STAT_LEDS)
  8304. handle_status_leds();
  8305. #endif
  8306. planner.check_axes_activity();
  8307. }
  8308. /**
  8309. * Standard idle routine keeps the machine alive
  8310. */
  8311. void idle(
  8312. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8313. bool no_stepper_sleep/*=false*/
  8314. #endif
  8315. ) {
  8316. lcd_update();
  8317. host_keepalive();
  8318. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8319. auto_report_temperatures();
  8320. #endif
  8321. manage_inactivity(
  8322. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8323. no_stepper_sleep
  8324. #endif
  8325. );
  8326. thermalManager.manage_heater();
  8327. #if ENABLED(PRINTCOUNTER)
  8328. print_job_timer.tick();
  8329. #endif
  8330. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  8331. buzzer.tick();
  8332. #endif
  8333. }
  8334. /**
  8335. * Kill all activity and lock the machine.
  8336. * After this the machine will need to be reset.
  8337. */
  8338. void kill(const char* lcd_msg) {
  8339. SERIAL_ERROR_START;
  8340. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  8341. #if ENABLED(ULTRA_LCD)
  8342. kill_screen(lcd_msg);
  8343. #else
  8344. UNUSED(lcd_msg);
  8345. #endif
  8346. delay(500); // Wait a short time
  8347. cli(); // Stop interrupts
  8348. thermalManager.disable_all_heaters();
  8349. disable_all_steppers();
  8350. #if HAS_POWER_SWITCH
  8351. pinMode(PS_ON_PIN, INPUT);
  8352. #endif
  8353. suicide();
  8354. while (1) {
  8355. #if ENABLED(USE_WATCHDOG)
  8356. watchdog_reset();
  8357. #endif
  8358. } // Wait for reset
  8359. }
  8360. /**
  8361. * Turn off heaters and stop the print in progress
  8362. * After a stop the machine may be resumed with M999
  8363. */
  8364. void stop() {
  8365. thermalManager.disable_all_heaters();
  8366. if (IsRunning()) {
  8367. Running = false;
  8368. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8369. SERIAL_ERROR_START;
  8370. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  8371. LCD_MESSAGEPGM(MSG_STOPPED);
  8372. }
  8373. }
  8374. /**
  8375. * Marlin entry-point: Set up before the program loop
  8376. * - Set up the kill pin, filament runout, power hold
  8377. * - Start the serial port
  8378. * - Print startup messages and diagnostics
  8379. * - Get EEPROM or default settings
  8380. * - Initialize managers for:
  8381. * • temperature
  8382. * • planner
  8383. * • watchdog
  8384. * • stepper
  8385. * • photo pin
  8386. * • servos
  8387. * • LCD controller
  8388. * • Digipot I2C
  8389. * • Z probe sled
  8390. * • status LEDs
  8391. */
  8392. void setup() {
  8393. #ifdef DISABLE_JTAG
  8394. // Disable JTAG on AT90USB chips to free up pins for IO
  8395. MCUCR = 0x80;
  8396. MCUCR = 0x80;
  8397. #endif
  8398. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8399. setup_filrunoutpin();
  8400. #endif
  8401. setup_killpin();
  8402. setup_powerhold();
  8403. #if HAS_STEPPER_RESET
  8404. disableStepperDrivers();
  8405. #endif
  8406. MYSERIAL.begin(BAUDRATE);
  8407. SERIAL_PROTOCOLLNPGM("start");
  8408. SERIAL_ECHO_START;
  8409. // Check startup - does nothing if bootloader sets MCUSR to 0
  8410. byte mcu = MCUSR;
  8411. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  8412. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  8413. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  8414. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  8415. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  8416. MCUSR = 0;
  8417. SERIAL_ECHOPGM(MSG_MARLIN);
  8418. SERIAL_CHAR(' ');
  8419. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  8420. SERIAL_EOL;
  8421. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  8422. SERIAL_ECHO_START;
  8423. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  8424. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  8425. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  8426. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  8427. #endif
  8428. SERIAL_ECHO_START;
  8429. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  8430. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  8431. // Send "ok" after commands by default
  8432. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  8433. // Load data from EEPROM if available (or use defaults)
  8434. // This also updates variables in the planner, elsewhere
  8435. Config_RetrieveSettings();
  8436. // Initialize current position based on home_offset
  8437. memcpy(current_position, home_offset, sizeof(home_offset));
  8438. // Vital to init stepper/planner equivalent for current_position
  8439. SYNC_PLAN_POSITION_KINEMATIC();
  8440. thermalManager.init(); // Initialize temperature loop
  8441. #if ENABLED(USE_WATCHDOG)
  8442. watchdog_init();
  8443. #endif
  8444. stepper.init(); // Initialize stepper, this enables interrupts!
  8445. servo_init();
  8446. #if HAS_PHOTOGRAPH
  8447. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  8448. #endif
  8449. #if HAS_CASE_LIGHT
  8450. setup_case_light();
  8451. #endif
  8452. #if HAS_BED_PROBE
  8453. endstops.enable_z_probe(false);
  8454. #endif
  8455. #if HAS_CONTROLLERFAN
  8456. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  8457. #endif
  8458. #if HAS_STEPPER_RESET
  8459. enableStepperDrivers();
  8460. #endif
  8461. #if ENABLED(DIGIPOT_I2C)
  8462. digipot_i2c_init();
  8463. #endif
  8464. #if ENABLED(DAC_STEPPER_CURRENT)
  8465. dac_init();
  8466. #endif
  8467. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  8468. OUT_WRITE(SLED_PIN, LOW); // turn it off
  8469. #endif // Z_PROBE_SLED
  8470. setup_homepin();
  8471. #if PIN_EXISTS(STAT_LED_RED)
  8472. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  8473. #endif
  8474. #if PIN_EXISTS(STAT_LED_BLUE)
  8475. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  8476. #endif
  8477. lcd_init();
  8478. #if ENABLED(SHOW_BOOTSCREEN)
  8479. #if ENABLED(DOGLCD)
  8480. safe_delay(BOOTSCREEN_TIMEOUT);
  8481. #elif ENABLED(ULTRA_LCD)
  8482. bootscreen();
  8483. #if DISABLED(SDSUPPORT)
  8484. lcd_init();
  8485. #endif
  8486. #endif
  8487. #endif
  8488. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8489. // Initialize mixing to 100% color 1
  8490. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8491. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  8492. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  8493. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8494. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  8495. #endif
  8496. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  8497. i2c.onReceive(i2c_on_receive);
  8498. i2c.onRequest(i2c_on_request);
  8499. #endif
  8500. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  8501. setup_endstop_interrupts();
  8502. #endif
  8503. }
  8504. /**
  8505. * The main Marlin program loop
  8506. *
  8507. * - Save or log commands to SD
  8508. * - Process available commands (if not saving)
  8509. * - Call heater manager
  8510. * - Call inactivity manager
  8511. * - Call endstop manager
  8512. * - Call LCD update
  8513. */
  8514. void loop() {
  8515. if (commands_in_queue < BUFSIZE) get_available_commands();
  8516. #if ENABLED(SDSUPPORT)
  8517. card.checkautostart(false);
  8518. #endif
  8519. if (commands_in_queue) {
  8520. #if ENABLED(SDSUPPORT)
  8521. if (card.saving) {
  8522. char* command = command_queue[cmd_queue_index_r];
  8523. if (strstr_P(command, PSTR("M29"))) {
  8524. // M29 closes the file
  8525. card.closefile();
  8526. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  8527. ok_to_send();
  8528. }
  8529. else {
  8530. // Write the string from the read buffer to SD
  8531. card.write_command(command);
  8532. if (card.logging)
  8533. process_next_command(); // The card is saving because it's logging
  8534. else
  8535. ok_to_send();
  8536. }
  8537. }
  8538. else
  8539. process_next_command();
  8540. #else
  8541. process_next_command();
  8542. #endif // SDSUPPORT
  8543. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  8544. if (commands_in_queue) {
  8545. --commands_in_queue;
  8546. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  8547. }
  8548. }
  8549. endstops.report_state();
  8550. idle();
  8551. }