My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. //#include "vector_3.h"
  25. //#include "qr_solve.h"
  26. #include "ubl.h"
  27. #include "Marlin.h"
  28. #include "hex_print_routines.h"
  29. #include "configuration_store.h"
  30. #include "ultralcd.h"
  31. #include "stepper.h"
  32. #include <math.h>
  33. #include "least_squares_fit.h"
  34. extern float destination[XYZE];
  35. extern float current_position[XYZE];
  36. void lcd_return_to_status();
  37. bool lcd_clicked();
  38. void lcd_implementation_clear();
  39. void lcd_mesh_edit_setup(float initial);
  40. float lcd_mesh_edit();
  41. void lcd_z_offset_edit_setup(float);
  42. float lcd_z_offset_edit();
  43. extern float meshedit_done;
  44. extern long babysteps_done;
  45. extern float code_value_float();
  46. extern uint8_t code_value_byte();
  47. extern bool code_value_bool();
  48. extern bool code_has_value();
  49. extern float probe_pt(float x, float y, bool, int);
  50. extern bool set_probe_deployed(bool);
  51. void smart_fill_mesh();
  52. bool ProbeStay = true;
  53. #define SIZE_OF_LITTLE_RAISE 0
  54. #define BIG_RAISE_NOT_NEEDED 0
  55. extern void lcd_quick_feedback();
  56. /**
  57. * G29: Unified Bed Leveling by Roxy
  58. *
  59. * Parameters understood by this leveling system:
  60. *
  61. * A Activate Activate the Unified Bed Leveling system.
  62. *
  63. * B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
  64. * G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card
  65. * as a shim that the nozzle will pinch as it is lowered. The idea is that you
  66. * can easily feel the nozzle getting to the same height by the amount of resistance
  67. * the business card exhibits to movement. You should try to achieve the same amount
  68. * of resistance on each probed point to facilitate accurate and repeatable measurements.
  69. * You should be very careful not to drive the nozzle into the bussiness card with a
  70. * lot of force as it is very possible to cause damage to your printer if your are
  71. * careless. If you use the B option with G29 P2 B you can leave the number parameter off
  72. * on its first use to enable measurement of the business card thickness. Subsequent usage
  73. * of the B parameter can have the number previously measured supplied to the command.
  74. * Incidently, you are much better off using something like a Spark Gap feeler gauge than
  75. * something that compresses like a Business Card.
  76. *
  77. * C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
  78. * further refine the behaviour of several other commands. Issuing a G29 P1 C will
  79. * continue the generation of a partially constructed Mesh without invalidating what has
  80. * been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
  81. * location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
  82. * it indicates to use the current location instead of defaulting to the center of the print bed.
  83. *
  84. * D Disable Disable the Unified Bed Leveling system.
  85. *
  86. * E Stow_probe Stow the probe after each sampled point.
  87. *
  88. * F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the
  89. * specified height, no correction is applied and natural printer kenimatics take over. If no
  90. * number is specified for the command, 10mm is assumed to be reasonable.
  91. *
  92. * H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
  93. * default is 5mm.
  94. *
  95. * I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
  96. * the X and Y parameter are used. If no number is specified, only the closest Mesh
  97. * point to the location is invalidated. The M parameter is available as well to produce
  98. * a map after the operation. This command is useful to invalidate a portion of the
  99. * Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
  100. * attempting to invalidate an isolated bad point in the mesh, the M option will indicate
  101. * where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
  102. * the bed and use this feature to select the center of the area (or cell) you want to
  103. * invalidate.
  104. *
  105. * J # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
  106. *
  107. * j EEPROM Dump This function probably goes away after debug is complete.
  108. *
  109. * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
  110. * command literally performs a diff between two Meshes.
  111. *
  112. * L Load * Load Mesh from the previously activated location in the EEPROM.
  113. *
  114. * L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated
  115. * for subsequent Load and Store operations.
  116. *
  117. * O Map * Display the Mesh Map Topology.
  118. * The parameter can be specified alone (ie. G29 O) or in combination with many of the
  119. * other commands. The Mesh Map option works with all of the Phase
  120. * commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O) The Map parameter can also of a Map Type
  121. * specified. A map type of 0 is the default is user readable. A map type of 1 can
  122. * be specified and is suitable to Cut & Paste into Excel to allow graphing of the user's
  123. * mesh.
  124. *
  125. * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
  126. * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
  127. * each additional Phase that processes it.
  128. *
  129. * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
  130. * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
  131. * was turned on. Setting the entire Mesh to Zero is a special case that allows
  132. * a subsequent G or T leveling operation for backward compatibility.
  133. *
  134. * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
  135. * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
  136. * DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
  137. * generated. This will be handled in Phase 2. If the Phase 1 command is given the
  138. * C (Continue) parameter it does not invalidate the Mesh prior to automatically
  139. * probing needed locations. This allows you to invalidate portions of the Mesh but still
  140. * use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
  141. * parameter can be given to prioritize where the command should be trying to measure points.
  142. * If the X and Y parameters are not specified the current probe position is used. Phase 1
  143. * allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
  144. * Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
  145. * It will suspend generation of the Mesh if it sees the user request that. (This check is
  146. * only done between probe points. You will need to press and hold the switch until the
  147. * Phase 1 command can detect it.)
  148. *
  149. * P2 Phase 2 Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
  150. * parameter to control the height between Mesh points. The default height for movement
  151. * between Mesh points is 5mm. A smaller number can be used to make this part of the
  152. * calibration less time consuming. You will be running the nozzle down until it just barely
  153. * touches the glass. You should have the nozzle clean with no plastic obstructing your view.
  154. * Use caution and move slowly. It is possible to damage your printer if you are careless.
  155. * Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
  156. * nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
  157. *
  158. * The H parameter can be set negative if your Mesh dips in a large area. You can press
  159. * and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
  160. * can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
  161. * area you are manually probing. Note that the command tries to start you in a corner
  162. * of the bed where movement will be predictable. You can force the location to be used in
  163. * the distance calculations by using the X and Y parameters. You may find it is helpful to
  164. * print out a Mesh Map (G29 O) to understand where the mesh is invalidated and where
  165. * the nozzle will need to move in order to complete the command. The C parameter is
  166. * available on the Phase 2 command also and indicates the search for points to measure should
  167. * be done based on the current location of the nozzle.
  168. *
  169. * A B parameter is also available for this command and described up above. It places the
  170. * manual probe subsystem into Business Card mode where the thickness of a business care is
  171. * measured and then used to accurately set the nozzle height in all manual probing for the
  172. * duration of the command. (S for Shim mode would be a better parameter name, but S is needed
  173. * for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
  174. * better results if you use a flexible Shim that does not compress very much. That makes it
  175. * easier for you to get the nozzle to press with similar amounts of force against the shim so you
  176. * can get accurate measurements. As you are starting to touch the nozzle against the shim try
  177. * to get it to grasp the shim with the same force as when you measured the thickness of the
  178. * shim at the start of the command.
  179. *
  180. * Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression
  181. * of the Mesh being built.
  182. *
  183. * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths the
  184. * user can go down. If the user specifies the value using the C parameter, the closest invalid
  185. * mesh points to the nozzle will be filled. The user can specify a repeat count using the R
  186. * parameter with the C version of the command.
  187. *
  188. * A second version of the fill command is available if no C constant is specified. Not
  189. * specifying a C constant will invoke the 'Smart Fill' algorithm. The G29 P3 command will search
  190. * from the edges of the mesh inward looking for invalid mesh points. It will look at the next
  191. * several mesh points to determine if the print bed is sloped up or down. If the bed is sloped
  192. * upward from the invalid mesh point, it will be replaced with the value of the nearest mesh point.
  193. * If the bed is sloped downward from the invalid mesh point, it will be replaced with a value that
  194. * puts all three points in a line. The second version of the G29 P3 command is a quick, easy and
  195. * usually safe way to populate the unprobed regions of your mesh so you can continue to the G26
  196. * Mesh Validation Pattern phase. Please note that you are populating your mesh with unverified
  197. * numbers. You should use some scrutiny and caution.
  198. *
  199. * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of
  200. * an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
  201. * (More work and details on doing this later!)
  202. * The System will search for the closest Mesh Point to the nozzle. It will move the
  203. * nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
  204. * so it is just barely touching the bed. When the user clicks the control, the System
  205. * will lock in that height for that point in the Mesh Compensation System.
  206. *
  207. * Phase 4 has several additional parameters that the user may find helpful. Phase 4
  208. * can be started at a specific location by specifying an X and Y parameter. Phase 4
  209. * can be requested to continue the adjustment of Mesh Points by using the R(epeat)
  210. * parameter. If the Repetition count is not specified, it is assumed the user wishes
  211. * to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
  212. * The command can be terminated early (or after the area of interest has been edited) by
  213. * pressing and holding the encoder wheel until the system recognizes the exit request.
  214. * Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
  215. *
  216. * Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
  217. * information left on the printer's bed from the G26 command it is very straight forward
  218. * and easy to fine tune the Mesh. One concept that is important to remember and that
  219. * will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
  220. * If you have too little clearance and not much plastic was extruded in an area, you want to
  221. * LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
  222. * RAISE the Mesh Point at that location.
  223. *
  224. *
  225. * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
  226. * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
  227. * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
  228. * execute a G29 P6 C <mean height>.
  229. *
  230. * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
  231. * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
  232. * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
  233. * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
  234. * 0.000 at the Z Home location.
  235. *
  236. * Q Test * Load specified Test Pattern to assist in checking correct operation of system. This
  237. * command is not anticipated to be of much value to the typical user. It is intended
  238. * for developers to help them verify correct operation of the Unified Bed Leveling System.
  239. *
  240. * R # Repeat Repeat this command the specified number of times. If no number is specified the
  241. * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
  242. *
  243. * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
  244. * current state of the Unified Bed Leveling system in the EEPROM.
  245. *
  246. * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
  247. * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
  248. * extend to a limit related to the available EEPROM storage.
  249. *
  250. * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into the system
  251. * at a later date. The GCode output can be saved and later replayed by the host software
  252. * to reconstruct the current mesh on another machine.
  253. *
  254. * T 3-Point Perform a 3 Point Bed Leveling on the current Mesh
  255. *
  256. * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
  257. * Only used for G29 P1 O U It will speed up the probing of the edge of the bed. This
  258. * is useful when the entire bed does not need to be probed because it will be adjusted.
  259. *
  260. * W What? Display valuable data the Unified Bed Leveling System knows.
  261. *
  262. * X # * * X Location for this line of commands
  263. *
  264. * Y # * * Y Location for this line of commands
  265. *
  266. * Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered
  267. * by just doing a G29 Z
  268. *
  269. * Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference.
  270. * zprobe_zoffset is added to the calculation.
  271. *
  272. *
  273. * Release Notes:
  274. * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
  275. * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
  276. * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
  277. * respectively.)
  278. *
  279. * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
  280. * the Unified Bed Leveling probes points further and further away from the starting location. (The
  281. * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
  282. * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
  283. * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
  284. * perform a small print and check out your settings quicker. You do not need to populate the
  285. * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
  286. * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
  287. * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
  288. *
  289. * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
  290. * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
  291. * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
  292. * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
  293. * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
  294. * this is going to be helpful to the users!)
  295. *
  296. * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
  297. * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
  298. * we now have the functionality and features of all three systems combined.
  299. */
  300. #define USE_NOZZLE_AS_REFERENCE 0
  301. #define USE_PROBE_AS_REFERENCE 1
  302. // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
  303. static int g29_verbose_level, phase_value = -1, repetition_cnt,
  304. storage_slot = 0, map_type, grid_size;
  305. static bool repeat_flag, c_flag, x_flag, y_flag;
  306. static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0;
  307. extern void lcd_setstatus(const char* message, const bool persist);
  308. extern void lcd_setstatuspgm(const char* message, const uint8_t level);
  309. void __attribute__((optimize("O0"))) gcode_G29() {
  310. if (ubl.eeprom_start < 0) {
  311. SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
  312. SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
  313. return;
  314. }
  315. if (!code_seen('N') && axis_unhomed_error(true, true, true)) // Don't allow auto-leveling without homing first
  316. home_all_axes();
  317. if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
  318. // Invalidate Mesh Points. This command is a little bit asymetrical because
  319. // it directly specifies the repetition count and does not use the 'R' parameter.
  320. if (code_seen('I')) {
  321. uint8_t cnt = 0;
  322. repetition_cnt = code_has_value() ? code_value_int() : 1;
  323. while (repetition_cnt--) {
  324. if (cnt > 20) { cnt = 0; idle(); }
  325. const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
  326. if (location.x_index < 0) {
  327. SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
  328. break; // No more invalid Mesh Points to populate
  329. }
  330. ubl.z_values[location.x_index][location.y_index] = NAN;
  331. cnt++;
  332. }
  333. SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
  334. }
  335. if (code_seen('Q')) {
  336. const int test_pattern = code_has_value() ? code_value_int() : -1;
  337. if (!WITHIN(test_pattern, 0, 2)) {
  338. SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
  339. return;
  340. }
  341. SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
  342. switch (test_pattern) {
  343. case 0:
  344. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
  345. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
  346. const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x,
  347. p2 = 0.5 * (GRID_MAX_POINTS_Y) - y;
  348. ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2);
  349. }
  350. }
  351. break;
  352. case 1:
  353. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
  354. ubl.z_values[x][x] += 9.999;
  355. ubl.z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
  356. }
  357. break;
  358. case 2:
  359. // Allow the user to specify the height because 10mm is a little extreme in some cases.
  360. for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
  361. for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
  362. ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
  363. break;
  364. }
  365. }
  366. if (code_seen('J')) {
  367. if (!WITHIN(grid_size, 2, 9)) {
  368. SERIAL_PROTOCOLLNPGM("ERROR - grid size must be between 2 and 9");
  369. return;
  370. }
  371. ubl.save_ubl_active_state_and_disable();
  372. ubl.tilt_mesh_based_on_probed_grid(code_seen('O') || code_seen('M'));
  373. ubl.restore_ubl_active_state_and_leave();
  374. }
  375. if (code_seen('P')) {
  376. phase_value = code_value_int();
  377. if (!WITHIN(phase_value, 0, 7)) {
  378. SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n");
  379. return;
  380. }
  381. switch (phase_value) {
  382. case 0:
  383. //
  384. // Zero Mesh Data
  385. //
  386. ubl.reset();
  387. SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
  388. break;
  389. case 1:
  390. //
  391. // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
  392. //
  393. if (!code_seen('C')) {
  394. ubl.invalidate();
  395. SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
  396. }
  397. if (g29_verbose_level > 1) {
  398. SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", x_pos);
  399. SERIAL_PROTOCOLCHAR(',');
  400. SERIAL_PROTOCOL(y_pos);
  401. SERIAL_PROTOCOLLNPGM(")\n");
  402. }
  403. ubl.probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
  404. code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U'));
  405. break;
  406. case 2: {
  407. //
  408. // Manually Probe Mesh in areas that can't be reached by the probe
  409. //
  410. SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
  411. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  412. if (!x_flag && !y_flag) {
  413. /**
  414. * Use a good default location for the path.
  415. * The flipped > and < operators in these comparisons is intentional.
  416. * It should cause the probed points to follow a nice path on Cartesian printers.
  417. * It may make sense to have Delta printers default to the center of the bed.
  418. * Until that is decided, this can be forced with the X and Y parameters.
  419. */
  420. x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? UBL_MESH_MAX_X : UBL_MESH_MIN_X;
  421. y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? UBL_MESH_MAX_Y : UBL_MESH_MIN_Y;
  422. }
  423. if (code_seen('C')) {
  424. x_pos = current_position[X_AXIS];
  425. y_pos = current_position[Y_AXIS];
  426. }
  427. const float height = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES;
  428. if (code_seen('B')) {
  429. card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height);
  430. if (fabs(card_thickness) > 1.5) {
  431. SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.\n");
  432. return;
  433. }
  434. }
  435. manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('O') || code_seen('M'));
  436. SERIAL_PROTOCOLLNPGM("G29 P2 finished");
  437. } break;
  438. case 3: {
  439. /**
  440. * Populate invalid mesh areas. Proceed with caution.
  441. * Two choices are available:
  442. * - Specify a constant with the 'C' parameter.
  443. * - Allow 'G29 P3' to choose a 'reasonable' constant.
  444. */
  445. if (c_flag) {
  446. while (repetition_cnt--) {
  447. const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
  448. if (location.x_index < 0) break; // No more invalid Mesh Points to populate
  449. ubl.z_values[location.x_index][location.y_index] = ubl_constant;
  450. }
  451. break;
  452. }
  453. else
  454. smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
  455. } break;
  456. case 4:
  457. //
  458. // Fine Tune (i.e., Edit) the Mesh
  459. //
  460. fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M'));
  461. break;
  462. case 5: ubl.find_mean_mesh_height(); break;
  463. case 6: ubl.shift_mesh_height(); break;
  464. }
  465. }
  466. if (code_seen('T')) {
  467. float z1 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level),
  468. z2 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y), false, g29_verbose_level),
  469. z3 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y), true, g29_verbose_level);
  470. // We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
  471. // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
  472. ubl.save_ubl_active_state_and_disable();
  473. z1 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y)) /* + zprobe_zoffset */ ;
  474. z2 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y)) /* + zprobe_zoffset */ ;
  475. z3 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y)) /* + zprobe_zoffset */ ;
  476. do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
  477. ubl.tilt_mesh_based_on_3pts(z1, z2, z3);
  478. ubl.restore_ubl_active_state_and_leave();
  479. }
  480. //
  481. // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  482. // good to have the extra information. Soon... we prune this to just a few items
  483. //
  484. if (code_seen('W')) g29_what_command();
  485. //
  486. // When we are fully debugged, the EEPROM dump command will get deleted also. But
  487. // right now, it is good to have the extra information. Soon... we prune this.
  488. //
  489. if (code_seen('j')) g29_eeprom_dump(); // EEPROM Dump
  490. //
  491. // When we are fully debugged, this may go away. But there are some valid
  492. // use cases for the users. So we can wait and see what to do with it.
  493. //
  494. if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
  495. g29_compare_current_mesh_to_stored_mesh();
  496. //
  497. // Load a Mesh from the EEPROM
  498. //
  499. if (code_seen('L')) { // Load Current Mesh Data
  500. storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  501. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  502. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  503. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  504. return;
  505. }
  506. ubl.load_mesh(storage_slot);
  507. ubl.state.eeprom_storage_slot = storage_slot;
  508. SERIAL_PROTOCOLLNPGM("Done.\n");
  509. }
  510. //
  511. // Store a Mesh in the EEPROM
  512. //
  513. if (code_seen('S')) { // Store (or Save) Current Mesh Data
  514. storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  515. if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
  516. SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
  517. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  518. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  519. if (!isnan(ubl.z_values[x][y])) {
  520. SERIAL_ECHOPAIR("M421 I ", x);
  521. SERIAL_ECHOPAIR(" J ", y);
  522. SERIAL_ECHOPGM(" Z ");
  523. SERIAL_ECHO_F(ubl.z_values[x][y], 6);
  524. SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[x])));
  525. SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[y])));
  526. SERIAL_EOL;
  527. }
  528. return;
  529. }
  530. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  531. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  532. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  533. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
  534. goto LEAVE;
  535. }
  536. ubl.store_mesh(storage_slot);
  537. ubl.state.eeprom_storage_slot = storage_slot;
  538. SERIAL_PROTOCOLLNPGM("Done.\n");
  539. }
  540. if (code_seen('O') || code_seen('M'))
  541. ubl.display_map(code_has_value() ? code_value_int() : 0);
  542. if (code_seen('Z')) {
  543. if (code_has_value())
  544. ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
  545. else {
  546. ubl.save_ubl_active_state_and_disable();
  547. //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
  548. ubl.has_control_of_lcd_panel = true; // Grab the LCD Hardware
  549. measured_z = 1.5;
  550. do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
  551. // The user is not going to be locking in a new Z-Offset very often so
  552. // it won't be that painful to spin the Encoder Wheel for 1.5mm
  553. lcd_implementation_clear();
  554. lcd_z_offset_edit_setup(measured_z);
  555. KEEPALIVE_STATE(PAUSED_FOR_USER);
  556. do {
  557. measured_z = lcd_z_offset_edit();
  558. idle();
  559. do_blocking_move_to_z(measured_z);
  560. } while (!ubl_lcd_clicked());
  561. ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
  562. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  563. // or here. So, until we are done looking for a long Encoder Wheel Press,
  564. // we need to take control of the panel
  565. KEEPALIVE_STATE(IN_HANDLER);
  566. lcd_return_to_status();
  567. const millis_t nxt = millis() + 1500UL;
  568. while (ubl_lcd_clicked()) { // debounce and watch for abort
  569. idle();
  570. if (ELAPSED(millis(), nxt)) {
  571. SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
  572. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  573. LCD_MESSAGEPGM("Z-Offset Stopped");
  574. ubl.restore_ubl_active_state_and_leave();
  575. goto LEAVE;
  576. }
  577. }
  578. ubl.has_control_of_lcd_panel = false;
  579. safe_delay(20); // We don't want any switch noise.
  580. ubl.state.z_offset = measured_z;
  581. lcd_implementation_clear();
  582. ubl.restore_ubl_active_state_and_leave();
  583. }
  584. }
  585. LEAVE:
  586. lcd_reset_alert_level();
  587. LCD_MESSAGEPGM("");
  588. lcd_quick_feedback();
  589. ubl.has_control_of_lcd_panel = false;
  590. }
  591. void unified_bed_leveling::find_mean_mesh_height() {
  592. float sum = 0.0;
  593. int n = 0;
  594. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  595. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  596. if (!isnan(ubl.z_values[x][y])) {
  597. sum += ubl.z_values[x][y];
  598. n++;
  599. }
  600. const float mean = sum / n;
  601. //
  602. // Now do the sumation of the squares of difference from mean
  603. //
  604. float sum_of_diff_squared = 0.0;
  605. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  606. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  607. if (!isnan(ubl.z_values[x][y]))
  608. sum_of_diff_squared += sq(ubl.z_values[x][y] - mean);
  609. SERIAL_ECHOLNPAIR("# of samples: ", n);
  610. SERIAL_ECHOPGM("Mean Mesh Height: ");
  611. SERIAL_ECHO_F(mean, 6);
  612. SERIAL_EOL;
  613. const float sigma = sqrt(sum_of_diff_squared / (n + 1));
  614. SERIAL_ECHOPGM("Standard Deviation: ");
  615. SERIAL_ECHO_F(sigma, 6);
  616. SERIAL_EOL;
  617. if (c_flag)
  618. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  619. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  620. if (!isnan(ubl.z_values[x][y]))
  621. ubl.z_values[x][y] -= mean + ubl_constant;
  622. }
  623. void unified_bed_leveling::shift_mesh_height() {
  624. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  625. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  626. if (!isnan(ubl.z_values[x][y]))
  627. ubl.z_values[x][y] += ubl_constant;
  628. }
  629. /**
  630. * Probe all invalidated locations of the mesh that can be reached by the probe.
  631. * This attempts to fill in locations closest to the nozzle's start location first.
  632. */
  633. void unified_bed_leveling::probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) {
  634. mesh_index_pair location;
  635. ubl.has_control_of_lcd_panel = true;
  636. ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  637. DEPLOY_PROBE();
  638. do {
  639. if (ubl_lcd_clicked()) {
  640. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
  641. lcd_quick_feedback();
  642. STOW_PROBE();
  643. while (ubl_lcd_clicked()) idle();
  644. ubl.has_control_of_lcd_panel = false;
  645. ubl.restore_ubl_active_state_and_leave();
  646. safe_delay(50); // Debounce the Encoder wheel
  647. return;
  648. }
  649. location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, do_furthest);
  650. if (location.x_index >= 0 && location.y_index >= 0) {
  651. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  652. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
  653. // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
  654. if (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) {
  655. SERIAL_ERROR_START;
  656. SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
  657. ubl.has_control_of_lcd_panel = false;
  658. goto LEAVE;
  659. }
  660. const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level);
  661. ubl.z_values[location.x_index][location.y_index] = measured_z;
  662. }
  663. if (do_ubl_mesh_map) ubl.display_map(map_type);
  664. } while (location.x_index >= 0 && location.y_index >= 0);
  665. LEAVE:
  666. STOW_PROBE();
  667. ubl.restore_ubl_active_state_and_leave();
  668. do_blocking_move_to_xy(
  669. constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_X, UBL_MESH_MAX_X),
  670. constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)
  671. );
  672. }
  673. void unified_bed_leveling::tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
  674. int i, j;
  675. matrix_3x3 rotation;
  676. vector_3 v1 = vector_3( (UBL_PROBE_PT_1_X - UBL_PROBE_PT_2_X),
  677. (UBL_PROBE_PT_1_Y - UBL_PROBE_PT_2_Y),
  678. (z1 - z2) ),
  679. v2 = vector_3( (UBL_PROBE_PT_3_X - UBL_PROBE_PT_2_X),
  680. (UBL_PROBE_PT_3_Y - UBL_PROBE_PT_2_Y),
  681. (z3 - z2) ),
  682. normal = vector_3::cross(v1, v2);
  683. normal = normal.get_normal();
  684. /**
  685. * This vector is normal to the tilted plane.
  686. * However, we don't know its direction. We need it to point up. So if
  687. * Z is negative, we need to invert the sign of all components of the vector
  688. */
  689. if (normal.z < 0.0) {
  690. normal.x = -normal.x;
  691. normal.y = -normal.y;
  692. normal.z = -normal.z;
  693. }
  694. rotation = matrix_3x3::create_look_at(vector_3(normal.x, normal.y, 1));
  695. if (g29_verbose_level > 2) {
  696. SERIAL_ECHOPGM("bed plane normal = [");
  697. SERIAL_PROTOCOL_F(normal.x, 7);
  698. SERIAL_PROTOCOLCHAR(',');
  699. SERIAL_PROTOCOL_F(normal.y, 7);
  700. SERIAL_PROTOCOLCHAR(',');
  701. SERIAL_PROTOCOL_F(normal.z, 7);
  702. SERIAL_ECHOLNPGM("]");
  703. rotation.debug(PSTR("rotation matrix:"));
  704. }
  705. //
  706. // All of 3 of these points should give us the same d constant
  707. //
  708. float t = normal.x * (UBL_PROBE_PT_1_X) + normal.y * (UBL_PROBE_PT_1_Y),
  709. d = t + normal.z * z1;
  710. if (g29_verbose_level>2) {
  711. SERIAL_ECHOPGM("D constant: ");
  712. SERIAL_PROTOCOL_F(d, 7);
  713. SERIAL_ECHOLNPGM(" ");
  714. }
  715. #if ENABLED(DEBUG_LEVELING_FEATURE)
  716. if (DEBUGGING(LEVELING)) {
  717. SERIAL_ECHOPGM("d from 1st point: ");
  718. SERIAL_ECHO_F(d, 6);
  719. SERIAL_EOL;
  720. t = normal.x * (UBL_PROBE_PT_2_X) + normal.y * (UBL_PROBE_PT_2_Y);
  721. d = t + normal.z * z2;
  722. SERIAL_ECHOPGM("d from 2nd point: ");
  723. SERIAL_ECHO_F(d, 6);
  724. SERIAL_EOL;
  725. t = normal.x * (UBL_PROBE_PT_3_X) + normal.y * (UBL_PROBE_PT_3_Y);
  726. d = t + normal.z * z3;
  727. SERIAL_ECHOPGM("d from 3rd point: ");
  728. SERIAL_ECHO_F(d, 6);
  729. SERIAL_EOL;
  730. }
  731. #endif
  732. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  733. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  734. float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]),
  735. y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]),
  736. z_tmp = ubl.z_values[i][j];
  737. #if ENABLED(DEBUG_LEVELING_FEATURE)
  738. if (DEBUGGING(LEVELING)) {
  739. SERIAL_ECHOPGM("before rotation = [");
  740. SERIAL_PROTOCOL_F(x_tmp, 7);
  741. SERIAL_PROTOCOLCHAR(',');
  742. SERIAL_PROTOCOL_F(y_tmp, 7);
  743. SERIAL_PROTOCOLCHAR(',');
  744. SERIAL_PROTOCOL_F(z_tmp, 7);
  745. SERIAL_ECHOPGM("] ---> ");
  746. safe_delay(20);
  747. }
  748. #endif
  749. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  750. #if ENABLED(DEBUG_LEVELING_FEATURE)
  751. if (DEBUGGING(LEVELING)) {
  752. SERIAL_ECHOPGM("after rotation = [");
  753. SERIAL_PROTOCOL_F(x_tmp, 7);
  754. SERIAL_PROTOCOLCHAR(',');
  755. SERIAL_PROTOCOL_F(y_tmp, 7);
  756. SERIAL_PROTOCOLCHAR(',');
  757. SERIAL_PROTOCOL_F(z_tmp, 7);
  758. SERIAL_ECHOLNPGM("]");
  759. safe_delay(55);
  760. }
  761. #endif
  762. ubl.z_values[i][j] += z_tmp - d;
  763. }
  764. }
  765. }
  766. float use_encoder_wheel_to_measure_point() {
  767. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  768. delay(50); // debounce
  769. KEEPALIVE_STATE(PAUSED_FOR_USER);
  770. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  771. idle();
  772. if (ubl.encoder_diff) {
  773. do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff));
  774. ubl.encoder_diff = 0;
  775. }
  776. }
  777. KEEPALIVE_STATE(IN_HANDLER);
  778. return current_position[Z_AXIS];
  779. }
  780. static void say_and_take_a_measurement() {
  781. SERIAL_PROTOCOLLNPGM(" and take a measurement.");
  782. }
  783. float measure_business_card_thickness(const float &in_height) {
  784. ubl.has_control_of_lcd_panel = true;
  785. ubl.save_ubl_active_state_and_disable(); // Disable bed level correction for probing
  786. do_blocking_move_to_z(in_height);
  787. do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
  788. //, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
  789. stepper.synchronize();
  790. SERIAL_PROTOCOLPGM("Place shim under nozzle");
  791. say_and_take_a_measurement();
  792. const float z1 = use_encoder_wheel_to_measure_point();
  793. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  794. stepper.synchronize();
  795. SERIAL_PROTOCOLPGM("Remove shim");
  796. say_and_take_a_measurement();
  797. const float z2 = use_encoder_wheel_to_measure_point();
  798. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  799. if (g29_verbose_level > 1) {
  800. SERIAL_PROTOCOLPGM("Business Card is: ");
  801. SERIAL_PROTOCOL_F(abs(z1 - z2), 6);
  802. SERIAL_PROTOCOLLNPGM("mm thick.");
  803. }
  804. ubl.has_control_of_lcd_panel = false;
  805. ubl.restore_ubl_active_state_and_leave();
  806. return abs(z1 - z2);
  807. }
  808. void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
  809. ubl.has_control_of_lcd_panel = true;
  810. ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  811. do_blocking_move_to_z(z_clearance);
  812. do_blocking_move_to_xy(lx, ly);
  813. float last_x = -9999.99, last_y = -9999.99;
  814. mesh_index_pair location;
  815. do {
  816. location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_NOZZLE_AS_REFERENCE, NULL, false);
  817. // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
  818. if (location.x_index < 0 && location.y_index < 0) continue;
  819. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  820. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
  821. // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
  822. if (!WITHIN(rawx, UBL_MESH_MIN_X, UBL_MESH_MAX_X) || !WITHIN(rawy, UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)) {
  823. SERIAL_ERROR_START;
  824. SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
  825. ubl.has_control_of_lcd_panel = false;
  826. goto LEAVE;
  827. }
  828. const float xProbe = LOGICAL_X_POSITION(rawx),
  829. yProbe = LOGICAL_Y_POSITION(rawy),
  830. dx = xProbe - last_x,
  831. dy = yProbe - last_y;
  832. if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED)
  833. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  834. else
  835. do_blocking_move_to_z(z_clearance);
  836. do_blocking_move_to_xy(xProbe, yProbe);
  837. last_x = xProbe;
  838. last_y = yProbe;
  839. KEEPALIVE_STATE(PAUSED_FOR_USER);
  840. ubl.has_control_of_lcd_panel = true;
  841. if (do_ubl_mesh_map) ubl.display_map(map_type); // show user where we're probing
  842. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  843. delay(50); // debounce
  844. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  845. idle();
  846. if (ubl.encoder_diff) {
  847. do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0);
  848. ubl.encoder_diff = 0;
  849. }
  850. }
  851. const millis_t nxt = millis() + 1500L;
  852. while (ubl_lcd_clicked()) { // debounce and watch for abort
  853. idle();
  854. if (ELAPSED(millis(), nxt)) {
  855. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
  856. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  857. lcd_quick_feedback();
  858. while (ubl_lcd_clicked()) idle();
  859. ubl.has_control_of_lcd_panel = false;
  860. KEEPALIVE_STATE(IN_HANDLER);
  861. ubl.restore_ubl_active_state_and_leave();
  862. return;
  863. }
  864. }
  865. ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
  866. if (g29_verbose_level > 2) {
  867. SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
  868. SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6);
  869. SERIAL_EOL;
  870. }
  871. } while (location.x_index >= 0 && location.y_index >= 0);
  872. if (do_ubl_mesh_map) ubl.display_map(map_type);
  873. LEAVE:
  874. ubl.restore_ubl_active_state_and_leave();
  875. KEEPALIVE_STATE(IN_HANDLER);
  876. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  877. do_blocking_move_to_xy(lx, ly);
  878. }
  879. static void say_ubl_name() {
  880. SERIAL_PROTOCOLPGM("Unified Bed Leveling ");
  881. }
  882. static void report_ubl_state() {
  883. say_ubl_name();
  884. SERIAL_PROTOCOLPGM("System ");
  885. if (!ubl.state.active) SERIAL_PROTOCOLPGM("de");
  886. SERIAL_PROTOCOLLNPGM("activated.\n");
  887. }
  888. bool g29_parameter_parsing() {
  889. bool err_flag = false;
  890. LCD_MESSAGEPGM("Doing G29 UBL!");
  891. lcd_quick_feedback();
  892. ubl_constant = 0.0;
  893. repetition_cnt = 0;
  894. x_flag = code_seen('X') && code_has_value();
  895. x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
  896. y_flag = code_seen('Y') && code_has_value();
  897. y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
  898. repeat_flag = code_seen('R');
  899. if (repeat_flag) {
  900. repetition_cnt = code_has_value() ? code_value_int() : (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y);
  901. if (repetition_cnt < 1) {
  902. SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
  903. return UBL_ERR;
  904. }
  905. }
  906. g29_verbose_level = code_seen('V') ? code_value_int() : 0;
  907. if (!WITHIN(g29_verbose_level, 0, 4)) {
  908. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4)\n");
  909. err_flag = true;
  910. }
  911. if (code_seen('J')) {
  912. grid_size = code_has_value() ? code_value_int() : 3;
  913. if (!WITHIN(grid_size, 2, 5)) {
  914. SERIAL_PROTOCOLLNPGM("Invalid grid probe points specified.\n");
  915. err_flag = true;
  916. }
  917. }
  918. if (x_flag != y_flag) {
  919. SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
  920. err_flag = true;
  921. }
  922. if (!WITHIN(RAW_X_POSITION(x_pos), UBL_MESH_MIN_X, UBL_MESH_MAX_X)) {
  923. SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
  924. err_flag = true;
  925. }
  926. if (!WITHIN(RAW_Y_POSITION(y_pos), UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)) {
  927. SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
  928. err_flag = true;
  929. }
  930. if (err_flag) return UBL_ERR;
  931. // Activate or deactivate UBL
  932. if (code_seen('A')) {
  933. if (code_seen('D')) {
  934. SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
  935. return UBL_ERR;
  936. }
  937. ubl.state.active = 1;
  938. report_ubl_state();
  939. }
  940. else if (code_seen('D')) {
  941. ubl.state.active = 0;
  942. report_ubl_state();
  943. }
  944. // Set global 'C' flag and its value
  945. if ((c_flag = code_seen('C')))
  946. ubl_constant = code_value_float();
  947. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  948. if (code_seen('F') && code_has_value()) {
  949. const float fh = code_value_float();
  950. if (!WITHIN(fh, 0.0, 100.0)) {
  951. SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
  952. return UBL_ERR;
  953. }
  954. set_z_fade_height(fh);
  955. }
  956. #endif
  957. map_type = code_seen('O') && code_has_value() ? code_value_int() : 0;
  958. if (!WITHIN(map_type, 0, 1)) {
  959. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  960. return UBL_ERR;
  961. }
  962. if (code_seen('M')) { // Check if a map type was specified
  963. map_type = code_has_value() ? code_value_int() : 0;
  964. if (!WITHIN(map_type, 0, 1)) {
  965. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  966. return UBL_ERR;
  967. }
  968. }
  969. return UBL_OK;
  970. }
  971. /**
  972. * This function goes away after G29 debug is complete. But for right now, it is a handy
  973. * routine to dump binary data structures.
  974. */
  975. /*
  976. void dump(char * const str, const float &f) {
  977. char *ptr;
  978. SERIAL_PROTOCOL(str);
  979. SERIAL_PROTOCOL_F(f, 8);
  980. SERIAL_PROTOCOLPGM(" ");
  981. ptr = (char*)&f;
  982. for (uint8_t i = 0; i < 4; i++)
  983. SERIAL_PROTOCOLPAIR(" ", hex_byte(*ptr++));
  984. SERIAL_PROTOCOLPAIR(" isnan()=", isnan(f));
  985. SERIAL_PROTOCOLPAIR(" isinf()=", isinf(f));
  986. if (f == -INFINITY)
  987. SERIAL_PROTOCOLPGM(" Minus Infinity detected.");
  988. SERIAL_EOL;
  989. }
  990. //*/
  991. static int ubl_state_at_invocation = 0,
  992. ubl_state_recursion_chk = 0;
  993. void unified_bed_leveling::save_ubl_active_state_and_disable() {
  994. ubl_state_recursion_chk++;
  995. if (ubl_state_recursion_chk != 1) {
  996. SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
  997. LCD_MESSAGEPGM("save_UBL_active() error");
  998. lcd_quick_feedback();
  999. return;
  1000. }
  1001. ubl_state_at_invocation = ubl.state.active;
  1002. ubl.state.active = 0;
  1003. }
  1004. void unified_bed_leveling::restore_ubl_active_state_and_leave() {
  1005. if (--ubl_state_recursion_chk) {
  1006. SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
  1007. LCD_MESSAGEPGM("restore_UBL_active() error");
  1008. lcd_quick_feedback();
  1009. return;
  1010. }
  1011. ubl.state.active = ubl_state_at_invocation;
  1012. }
  1013. /**
  1014. * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  1015. * good to have the extra information. Soon... we prune this to just a few items
  1016. */
  1017. void g29_what_command() {
  1018. const uint16_t k = E2END - ubl.eeprom_start;
  1019. say_ubl_name();
  1020. SERIAL_PROTOCOLPGM("System Version " UBL_VERSION " ");
  1021. if (ubl.state.active)
  1022. SERIAL_PROTOCOLCHAR('A');
  1023. else
  1024. SERIAL_PROTOCOLPGM("Ina");
  1025. SERIAL_PROTOCOLLNPGM("ctive.\n");
  1026. safe_delay(50);
  1027. if (ubl.state.eeprom_storage_slot == -1)
  1028. SERIAL_PROTOCOLPGM("No Mesh Loaded.");
  1029. else {
  1030. SERIAL_PROTOCOLPAIR("Mesh ", ubl.state.eeprom_storage_slot);
  1031. SERIAL_PROTOCOLPGM(" Loaded.");
  1032. }
  1033. SERIAL_EOL;
  1034. safe_delay(50);
  1035. SERIAL_PROTOCOLLNPAIR("UBL object count: ", (int)ubl_cnt);
  1036. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1037. SERIAL_PROTOCOLLNPAIR("planner.z_fade_height : ", planner.z_fade_height);
  1038. #endif
  1039. SERIAL_PROTOCOLPGM("zprobe_zoffset: ");
  1040. SERIAL_PROTOCOL_F(zprobe_zoffset, 7);
  1041. SERIAL_EOL;
  1042. SERIAL_PROTOCOLPGM("z_offset: ");
  1043. SERIAL_PROTOCOL_F(ubl.state.z_offset, 7);
  1044. SERIAL_EOL;
  1045. safe_delay(25);
  1046. SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=", hex_address((void*)ubl.eeprom_start));
  1047. SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
  1048. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1049. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[i])), 1);
  1050. SERIAL_PROTOCOLPGM(" ");
  1051. safe_delay(50);
  1052. }
  1053. SERIAL_EOL;
  1054. SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
  1055. for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
  1056. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[i])), 1);
  1057. SERIAL_PROTOCOLPGM(" ");
  1058. safe_delay(50);
  1059. }
  1060. SERIAL_EOL;
  1061. #if HAS_KILL
  1062. SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
  1063. SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
  1064. #endif
  1065. SERIAL_EOL;
  1066. safe_delay(50);
  1067. SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
  1068. SERIAL_EOL;
  1069. SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
  1070. SERIAL_EOL;
  1071. safe_delay(50);
  1072. SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: ", hex_address((void*)ubl.eeprom_start));
  1073. SERIAL_PROTOCOLLNPAIR("end of EEPROM : ", hex_address((void*)E2END));
  1074. safe_delay(50);
  1075. SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
  1076. SERIAL_EOL;
  1077. SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(ubl.z_values));
  1078. SERIAL_EOL;
  1079. safe_delay(50);
  1080. SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)k));
  1081. safe_delay(50);
  1082. SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(ubl.z_values));
  1083. SERIAL_PROTOCOLLNPGM(" meshes.\n");
  1084. safe_delay(50);
  1085. SERIAL_PROTOCOLPAIR("sizeof(ubl.state) : ", (int)sizeof(ubl.state));
  1086. SERIAL_PROTOCOLPAIR("\nGRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
  1087. SERIAL_PROTOCOLPAIR("\nGRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
  1088. safe_delay(50);
  1089. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X);
  1090. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y);
  1091. safe_delay(50);
  1092. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X);
  1093. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y);
  1094. safe_delay(50);
  1095. SERIAL_PROTOCOLPGM("\nMESH_X_DIST ");
  1096. SERIAL_PROTOCOL_F(MESH_X_DIST, 6);
  1097. SERIAL_PROTOCOLPGM("\nMESH_Y_DIST ");
  1098. SERIAL_PROTOCOL_F(MESH_Y_DIST, 6);
  1099. SERIAL_EOL;
  1100. safe_delay(50);
  1101. if (!ubl.sanity_check()) {
  1102. say_ubl_name();
  1103. SERIAL_PROTOCOLLNPGM("sanity checks passed.");
  1104. }
  1105. }
  1106. /**
  1107. * When we are fully debugged, the EEPROM dump command will get deleted also. But
  1108. * right now, it is good to have the extra information. Soon... we prune this.
  1109. */
  1110. void g29_eeprom_dump() {
  1111. unsigned char cccc;
  1112. uint16_t kkkk;
  1113. SERIAL_ECHO_START;
  1114. SERIAL_ECHOLNPGM("EEPROM Dump:");
  1115. for (uint16_t i = 0; i < E2END + 1; i += 16) {
  1116. if (!(i & 0x3)) idle();
  1117. print_hex_word(i);
  1118. SERIAL_ECHOPGM(": ");
  1119. for (uint16_t j = 0; j < 16; j++) {
  1120. kkkk = i + j;
  1121. eeprom_read_block(&cccc, (void *)kkkk, 1);
  1122. print_hex_byte(cccc);
  1123. SERIAL_ECHO(' ');
  1124. }
  1125. SERIAL_EOL;
  1126. }
  1127. SERIAL_EOL;
  1128. }
  1129. /**
  1130. * When we are fully debugged, this may go away. But there are some valid
  1131. * use cases for the users. So we can wait and see what to do with it.
  1132. */
  1133. void g29_compare_current_mesh_to_stored_mesh() {
  1134. float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  1135. if (!code_has_value()) {
  1136. SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
  1137. return;
  1138. }
  1139. storage_slot = code_value_int();
  1140. int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values);
  1141. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  1142. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  1143. return;
  1144. }
  1145. j = UBL_LAST_EEPROM_INDEX - (storage_slot + 1) * sizeof(tmp_z_values);
  1146. eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
  1147. SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
  1148. SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address ", hex_address((void*)j)); // Soon, we can remove the extra clutter of printing
  1149. // the address in the EEPROM where the Mesh is stored.
  1150. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  1151. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  1152. ubl.z_values[x][y] -= tmp_z_values[x][y];
  1153. }
  1154. mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], const bool far_flag) {
  1155. mesh_index_pair out_mesh;
  1156. out_mesh.x_index = out_mesh.y_index = -1;
  1157. const float current_x = current_position[X_AXIS],
  1158. current_y = current_position[Y_AXIS];
  1159. // Get our reference position. Either the nozzle or probe location.
  1160. const float px = lx - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
  1161. py = ly - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
  1162. float closest = far_flag ? -99999.99 : 99999.99;
  1163. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1164. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1165. if ( (type == INVALID && isnan(ubl.z_values[i][j])) // Check to see if this location holds the right thing
  1166. || (type == REAL && !isnan(ubl.z_values[i][j]))
  1167. || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
  1168. ) {
  1169. // We only get here if we found a Mesh Point of the specified type
  1170. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // Check if we can probe this mesh location
  1171. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
  1172. // If using the probe as the reference there are some unreachable locations.
  1173. // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
  1174. if (probe_as_reference == USE_PROBE_AS_REFERENCE &&
  1175. (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y))
  1176. ) continue;
  1177. // Unreachable. Check if it's the closest location to the nozzle.
  1178. // Add in a weighting factor that considers the current location of the nozzle.
  1179. const float mx = LOGICAL_X_POSITION(rawx), // Check if we can probe this mesh location
  1180. my = LOGICAL_Y_POSITION(rawy);
  1181. float distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1;
  1182. /**
  1183. * If doing the far_flag action, we want to be as far as possible
  1184. * from the starting point and from any other probed points. We
  1185. * want the next point spread out and filling in any blank spaces
  1186. * in the mesh. So we add in some of the distance to every probed
  1187. * point we can find.
  1188. */
  1189. if (far_flag) {
  1190. for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
  1191. for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
  1192. if (!isnan(ubl.z_values[k][l])) {
  1193. distance += sq(i - k) * (MESH_X_DIST) * .05
  1194. + sq(j - l) * (MESH_Y_DIST) * .05;
  1195. }
  1196. }
  1197. }
  1198. }
  1199. // if far_flag, look for farthest point
  1200. if (far_flag == (distance > closest) && distance != closest) {
  1201. closest = distance; // We found a closer/farther location with
  1202. out_mesh.x_index = i; // the specified type of mesh value.
  1203. out_mesh.y_index = j;
  1204. out_mesh.distance = closest;
  1205. }
  1206. }
  1207. } // for j
  1208. } // for i
  1209. return out_mesh;
  1210. }
  1211. void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
  1212. if (!code_seen('R')) // fine_tune_mesh() is special. If no repetion count flag is specified
  1213. repetition_cnt = 1; // we know to do exactly one mesh location. Otherwise we use what the parser decided.
  1214. mesh_index_pair location;
  1215. uint16_t not_done[16];
  1216. int32_t round_off;
  1217. ubl.save_ubl_active_state_and_disable();
  1218. memset(not_done, 0xFF, sizeof(not_done));
  1219. LCD_MESSAGEPGM("Fine Tuning Mesh");
  1220. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1221. do_blocking_move_to_xy(lx, ly);
  1222. do {
  1223. location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
  1224. // It doesn't matter if the probe can't reach this
  1225. // location. This is a manual edit of the Mesh Point.
  1226. if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
  1227. bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
  1228. // different location the next time through the loop
  1229. const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  1230. rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
  1231. // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
  1232. if (!WITHIN(rawx, UBL_MESH_MIN_X, UBL_MESH_MAX_X) || !WITHIN(rawy, UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)) { // In theory, we don't need this check.
  1233. SERIAL_ERROR_START;
  1234. SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now
  1235. ubl.has_control_of_lcd_panel = false;
  1236. goto FINE_TUNE_EXIT;
  1237. }
  1238. float new_z = ubl.z_values[location.x_index][location.y_index];
  1239. if (!isnan(new_z)) { //can't fine tune a point that hasn't been probed
  1240. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
  1241. do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
  1242. round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
  1243. new_z = float(round_off) / 1000.0;
  1244. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1245. ubl.has_control_of_lcd_panel = true;
  1246. if (do_ubl_mesh_map) ubl.display_map(map_type); // show the user which point is being adjusted
  1247. lcd_implementation_clear();
  1248. lcd_mesh_edit_setup(new_z);
  1249. do {
  1250. new_z = lcd_mesh_edit();
  1251. idle();
  1252. } while (!ubl_lcd_clicked());
  1253. lcd_return_to_status();
  1254. // There is a race condition for the Encoder Wheel getting clicked.
  1255. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  1256. // or here.
  1257. ubl.has_control_of_lcd_panel = true;
  1258. }
  1259. const millis_t nxt = millis() + 1500UL;
  1260. while (ubl_lcd_clicked()) { // debounce and watch for abort
  1261. idle();
  1262. if (ELAPSED(millis(), nxt)) {
  1263. lcd_return_to_status();
  1264. //SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
  1265. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1266. LCD_MESSAGEPGM("Mesh Editing Stopped");
  1267. while (ubl_lcd_clicked()) idle();
  1268. goto FINE_TUNE_EXIT;
  1269. }
  1270. }
  1271. safe_delay(20); // We don't want any switch noise.
  1272. ubl.z_values[location.x_index][location.y_index] = new_z;
  1273. lcd_implementation_clear();
  1274. } while (location.x_index >= 0 && location.y_index >= 0 && (--repetition_cnt>0));
  1275. FINE_TUNE_EXIT:
  1276. ubl.has_control_of_lcd_panel = false;
  1277. KEEPALIVE_STATE(IN_HANDLER);
  1278. if (do_ubl_mesh_map) ubl.display_map(map_type);
  1279. ubl.restore_ubl_active_state_and_leave();
  1280. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1281. do_blocking_move_to_xy(lx, ly);
  1282. LCD_MESSAGEPGM("Done Editing Mesh");
  1283. SERIAL_ECHOLNPGM("Done Editing Mesh");
  1284. }
  1285. /**
  1286. * 'Smart Fill': Scan from the outward edges of the mesh towards the center.
  1287. * If an invalid location is found, use the next two points (if valid) to
  1288. * calculate a 'reasonable' value for the unprobed mesh point.
  1289. */
  1290. bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  1291. const int8_t x1 = x + xdir, x2 = x1 + xdir,
  1292. y1 = y + ydir, y2 = y1 + ydir;
  1293. // A NAN next to a pair of real values?
  1294. if (isnan(ubl.z_values[x][y]) && !isnan(ubl.z_values[x1][y1]) && !isnan(ubl.z_values[x2][y2])) {
  1295. if (ubl.z_values[x1][y1] < ubl.z_values[x2][y2]) // Angled downward?
  1296. ubl.z_values[x][y] = ubl.z_values[x1][y1]; // Use nearest (maybe a little too high.)
  1297. else {
  1298. const float diff = ubl.z_values[x1][y1] - ubl.z_values[x2][y2]; // Angled upward
  1299. ubl.z_values[x][y] = ubl.z_values[x1][y1] + diff; // Use closest plus difference
  1300. }
  1301. return true;
  1302. }
  1303. return false;
  1304. }
  1305. typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
  1306. void smart_fill_loop(const smart_fill_info &f) {
  1307. if (f.yfirst) {
  1308. const int8_t dir = f.ex > f.sx ? 1 : -1;
  1309. for (uint8_t y = f.sy; y != f.ey; ++y)
  1310. for (uint8_t x = f.sx; x != f.ex; x += dir)
  1311. if (smart_fill_one(x, y, dir, 0)) break;
  1312. }
  1313. else {
  1314. const int8_t dir = f.ey > f.sy ? 1 : -1;
  1315. for (uint8_t x = f.sx; x != f.ex; ++x)
  1316. for (uint8_t y = f.sy; y != f.ey; y += dir)
  1317. if (smart_fill_one(x, y, 0, dir)) break;
  1318. }
  1319. }
  1320. void smart_fill_mesh() {
  1321. const smart_fill_info info[] = {
  1322. { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
  1323. { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
  1324. { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
  1325. { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true } // Right side of the mesh looking left
  1326. };
  1327. for (uint8_t i = 0; i < COUNT(info); ++i) smart_fill_loop(info[i]);
  1328. }
  1329. void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) {
  1330. constexpr int16_t x_min = max(MIN_PROBE_X, UBL_MESH_MIN_X),
  1331. x_max = min(MAX_PROBE_X, UBL_MESH_MAX_X),
  1332. y_min = max(MIN_PROBE_Y, UBL_MESH_MIN_Y),
  1333. y_max = min(MAX_PROBE_Y, UBL_MESH_MAX_Y);
  1334. const float dx = float(x_max - x_min) / (grid_size - 1.0),
  1335. dy = float(y_max - y_min) / (grid_size - 1.0);
  1336. struct linear_fit_data lsf_results;
  1337. incremental_LSF_reset(&lsf_results);
  1338. bool zig_zag = false;
  1339. for (uint8_t ix = 0; ix < grid_size; ix++) {
  1340. const float x = float(x_min) + ix * dx;
  1341. for (int8_t iy = 0; iy < grid_size; iy++) {
  1342. const float y = float(y_min) + dy * (zig_zag ? grid_size - 1 - iy : iy);
  1343. float measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), code_seen('E'), g29_verbose_level);
  1344. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1345. if (DEBUGGING(LEVELING)) {
  1346. SERIAL_CHAR('(');
  1347. SERIAL_PROTOCOL_F(x, 7);
  1348. SERIAL_CHAR(',');
  1349. SERIAL_PROTOCOL_F(y, 7);
  1350. SERIAL_ECHOPGM(") logical: ");
  1351. SERIAL_CHAR('(');
  1352. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(x), 7);
  1353. SERIAL_CHAR(',');
  1354. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(y), 7);
  1355. SERIAL_ECHOPGM(") measured: ");
  1356. SERIAL_PROTOCOL_F(measured_z, 7);
  1357. SERIAL_ECHOPGM(" correction: ");
  1358. SERIAL_PROTOCOL_F(ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)), 7);
  1359. }
  1360. #endif
  1361. measured_z -= ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)) /* + zprobe_zoffset */ ;
  1362. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1363. if (DEBUGGING(LEVELING)) {
  1364. SERIAL_ECHOPGM(" final >>>---> ");
  1365. SERIAL_PROTOCOL_F(measured_z, 7);
  1366. SERIAL_EOL;
  1367. }
  1368. #endif
  1369. incremental_LSF(&lsf_results, x, y, measured_z);
  1370. }
  1371. zig_zag ^= true;
  1372. }
  1373. const int status = finish_incremental_LSF(&lsf_results);
  1374. if (g29_verbose_level > 3) {
  1375. SERIAL_ECHOPGM("LSF Results A=");
  1376. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1377. SERIAL_ECHOPGM(" B=");
  1378. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1379. SERIAL_ECHOPGM(" D=");
  1380. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1381. SERIAL_EOL;
  1382. }
  1383. vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1.0000).get_normal();
  1384. if (g29_verbose_level > 2) {
  1385. SERIAL_ECHOPGM("bed plane normal = [");
  1386. SERIAL_PROTOCOL_F(normal.x, 7);
  1387. SERIAL_PROTOCOLCHAR(',');
  1388. SERIAL_PROTOCOL_F(normal.y, 7);
  1389. SERIAL_PROTOCOLCHAR(',');
  1390. SERIAL_PROTOCOL_F(normal.z, 7);
  1391. SERIAL_ECHOLNPGM("]");
  1392. }
  1393. matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
  1394. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1395. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1396. float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]),
  1397. y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]),
  1398. z_tmp = ubl.z_values[i][j];
  1399. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1400. if (DEBUGGING(LEVELING)) {
  1401. SERIAL_ECHOPGM("before rotation = [");
  1402. SERIAL_PROTOCOL_F(x_tmp, 7);
  1403. SERIAL_PROTOCOLCHAR(',');
  1404. SERIAL_PROTOCOL_F(y_tmp, 7);
  1405. SERIAL_PROTOCOLCHAR(',');
  1406. SERIAL_PROTOCOL_F(z_tmp, 7);
  1407. SERIAL_ECHOPGM("] ---> ");
  1408. safe_delay(20);
  1409. }
  1410. #endif
  1411. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  1412. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1413. if (DEBUGGING(LEVELING)) {
  1414. SERIAL_ECHOPGM("after rotation = [");
  1415. SERIAL_PROTOCOL_F(x_tmp, 7);
  1416. SERIAL_PROTOCOLCHAR(',');
  1417. SERIAL_PROTOCOL_F(y_tmp, 7);
  1418. SERIAL_PROTOCOLCHAR(',');
  1419. SERIAL_PROTOCOL_F(z_tmp, 7);
  1420. SERIAL_ECHOLNPGM("]");
  1421. safe_delay(55);
  1422. }
  1423. #endif
  1424. ubl.z_values[i][j] += z_tmp - lsf_results.D;
  1425. }
  1426. }
  1427. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1428. if (DEBUGGING(LEVELING)) {
  1429. rotation.debug(PSTR("rotation matrix:"));
  1430. SERIAL_ECHOPGM("LSF Results A=");
  1431. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1432. SERIAL_ECHOPGM(" B=");
  1433. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1434. SERIAL_ECHOPGM(" D=");
  1435. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1436. SERIAL_EOL;
  1437. safe_delay(55);
  1438. SERIAL_ECHOPGM("bed plane normal = [");
  1439. SERIAL_PROTOCOL_F(normal.x, 7);
  1440. SERIAL_PROTOCOLCHAR(',');
  1441. SERIAL_PROTOCOL_F(normal.y, 7);
  1442. SERIAL_PROTOCOLCHAR(',');
  1443. SERIAL_PROTOCOL_F(normal.z, 7);
  1444. SERIAL_ECHOPGM("]\n");
  1445. SERIAL_EOL;
  1446. }
  1447. #endif
  1448. }
  1449. #endif // AUTO_BED_LEVELING_UBL